xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision 685c703c)
1 /*
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  *
36  * $FreeBSD: src/sys/dev/ath/if_ath.c,v 1.94.2.17 2006/04/19 16:14:47 sam Exp $
37  * $DragonFly: src/sys/dev/netif/ath/ath/if_ath.c,v 1.2 2006/08/06 12:49:04 swildner Exp $
38  */
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_ath.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/errno.h>
58 #include <sys/callout.h>
59 #include <sys/bus.h>
60 #include <sys/endian.h>
61 #include <sys/kthread.h>
62 #include <sys/serialize.h>
63 
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 #include <sys/bus.h>
67 #include <sys/rman.h>
68 
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 #include <net/if_arp.h>
74 #include <net/ethernet.h>
75 #include <net/if_llc.h>
76 #include <net/ifq_var.h>
77 
78 #include <netproto/802_11/ieee80211_var.h>
79 
80 #include <net/bpf.h>
81 
82 #define ATH_DEBUG
83 
84 #include <dev/netif/ath/ath/if_athvar.h>
85 #include <contrib/dev/ath/ah_desc.h>
86 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
87 
88 /* unaligned little endian access */
89 #define LE_READ_2(p)							\
90 	((uint16_t)							\
91 	 ((((uint8_t *)(p))[0]      ) | (((uint8_t *)(p))[1] <<  8)))
92 #define LE_READ_4(p)							\
93 	((uint32_t)							\
94 	 ((((uint8_t *)(p))[0]      ) | (((uint8_t *)(p))[1] <<  8) |	\
95 	  (((uint8_t *)(p))[2] << 16) | (((uint8_t *)(p))[3] << 24)))
96 
97 enum {
98 	ATH_LED_TX,
99 	ATH_LED_RX,
100 	ATH_LED_POLL,
101 };
102 
103 static void	ath_init(void *);
104 static void	ath_stop_no_pwchg(struct ifnet *);
105 static void	ath_stop(struct ifnet *);
106 static void	ath_start(struct ifnet *);
107 static int	ath_reset(struct ifnet *);
108 static int	ath_media_change(struct ifnet *);
109 static void	ath_watchdog(struct ifnet *);
110 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
111 static void	ath_fatal_proc(struct ath_softc *);
112 static void	ath_rxorn_proc(struct ath_softc *);
113 static void	ath_bmiss_proc(struct ath_softc *);
114 static void	ath_radar_proc(struct ath_softc *);
115 static int	ath_key_alloc(struct ieee80211com *,
116 			const struct ieee80211_key *,
117 			ieee80211_keyix *, ieee80211_keyix *);
118 static int	ath_key_delete(struct ieee80211com *,
119 			const struct ieee80211_key *);
120 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
121 			const uint8_t mac[IEEE80211_ADDR_LEN]);
122 static void	ath_key_update_begin(struct ieee80211com *);
123 static void	ath_key_update_end(struct ieee80211com *);
124 static void	ath_mode_init(struct ath_softc *);
125 static void	ath_setslottime(struct ath_softc *);
126 static void	ath_updateslot(struct ifnet *);
127 static int	ath_beaconq_setup(struct ath_hal *);
128 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
129 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
130 static void	ath_beacon_proc(struct ath_softc *);
131 static void	ath_bstuck_proc(struct ath_softc *);
132 static void	ath_beacon_free(struct ath_softc *);
133 static void	ath_beacon_config(struct ath_softc *);
134 static void	ath_descdma_cleanup(struct ath_softc *sc,
135 			struct ath_descdma *, ath_bufhead *);
136 static int	ath_desc_alloc(struct ath_softc *);
137 static void	ath_desc_free(struct ath_softc *);
138 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
139 static void	ath_node_free(struct ieee80211_node *);
140 static uint8_t	ath_node_getrssi(const struct ieee80211_node *);
141 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
142 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
143 			struct ieee80211_node *ni,
144 			int subtype, int rssi, uint32_t rstamp);
145 static void	ath_setdefantenna(struct ath_softc *, u_int);
146 static void	ath_rx_proc(struct ath_softc *);
147 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
148 static int	ath_tx_setup(struct ath_softc *, int, int);
149 static int	ath_wme_update(struct ieee80211com *);
150 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
151 static void	ath_tx_cleanup(struct ath_softc *);
152 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
153 			     struct ath_buf *, struct mbuf *);
154 static void	ath_tx_proc_q0(struct ath_softc *);
155 static void	ath_tx_proc_q0123(struct ath_softc *);
156 static void	ath_tx_proc(struct ath_softc *);
157 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
158 static void	ath_draintxq(struct ath_softc *);
159 static void	ath_stoprecv(struct ath_softc *);
160 static int	ath_startrecv(struct ath_softc *);
161 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
162 static void	ath_next_scan(void *);
163 static void	ath_calibrate(void *);
164 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
165 static void	ath_setup_stationkey(struct ieee80211_node *);
166 static void	ath_newassoc(struct ieee80211_node *, int);
167 static int	ath_getchannels(struct ath_softc *, u_int cc,
168 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
169 static void	ath_led_event(struct ath_softc *, int);
170 static void	ath_update_txpow(struct ath_softc *);
171 
172 static int	ath_rate_setup(struct ath_softc *, u_int mode);
173 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
174 
175 static void	ath_sysctlattach(struct ath_softc *);
176 static void	ath_bpfattach(struct ath_softc *);
177 static void	ath_announce(struct ath_softc *);
178 
179 static void	ath_dma_map_mbuf(void *, bus_dma_segment_t *, int, bus_size_t,
180 				 int);
181 
182 SYSCTL_DECL(_hw_ath);
183 
184 /* XXX validate sysctl values */
185 static	int ath_dwelltime = 200;		/* 5 channels/second */
186 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
187 	    0, "channel dwell time (ms) for AP/station scanning");
188 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
189 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
190 	    0, "chip calibration interval (secs)");
191 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
192 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
193 	    0, "outdoor operation");
194 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
195 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
196 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
197 	    0, "extended channel mode");
198 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
199 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
200 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
201 	    0, "country code");
202 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
203 static	int ath_regdomain = 0;			/* regulatory domain */
204 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
205 	    0, "regulatory domain");
206 
207 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
208 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RD, &ath_rxbuf,
209 	    0, "rx buffers allocated");
210 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
211 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
212 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RD, &ath_txbuf,
213 	    0, "tx buffers allocated");
214 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
215 
216 #ifdef ATH_DEBUG
217 static	int ath_debug = 0;
218 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
219 	    0, "control debugging printfs");
220 TUNABLE_INT("hw.ath.debug", &ath_debug);
221 enum {
222 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
223 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
224 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
225 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
226 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
227 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
228 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
229 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
230 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
231 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
232 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
233 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
234 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
235 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
236 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
237 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
238 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
239 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
240 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
241 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
242 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
243 	ATH_DEBUG_ANY		= 0xffffffff
244 };
245 #define	IFF_DUMPPKTS(sc, m) \
246 	((sc->sc_debug & (m)) || \
247 	 (sc->sc_ic.ic_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
248 #define	DPRINTF(sc, m, fmt, ...) do {				\
249 	if (sc->sc_debug & (m))					\
250 		printf(fmt, __VA_ARGS__);			\
251 } while (0)
252 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
253 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
254 		ath_keyprint(__func__, ix, hk, mac);		\
255 } while (0)
256 static	void ath_printrxbuf(struct ath_buf *bf, u_int ix, int);
257 static	void ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done);
258 #else
259 #define	IFF_DUMPPKTS(sc, m) \
260 	((sc->sc_ic.ic_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
261 #define	DPRINTF(sc, m, fmt, ...) do {				\
262 	(void) sc;						\
263 } while (0)
264 #define	KEYPRINTF(sc, k, ix, mac) do {				\
265 	(void) sc;						\
266 } while (0)
267 #endif
268 
269 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
270 
271 int
272 ath_attach(uint16_t devid, struct ath_softc *sc)
273 {
274 	struct ieee80211com *ic = &sc->sc_ic;
275 	struct ifnet *ifp = &ic->ic_if;
276 	struct ath_hal *ah = NULL;
277 	HAL_STATUS status;
278 	int error = 0, i;
279 
280 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
281 
282 	/* set these up early for if_printf use */
283 	if_initname(ifp, device_get_name(sc->sc_dev),
284 		    device_get_unit(sc->sc_dev));
285 
286 	/*
287 	 * Mark device invalid so any interrupts (shared or otherwise)
288 	 * that arrive before the HAL is setup are discarded.
289 	 */
290 	sc->sc_invalid = 1;
291 
292 	/*
293 	 * Arrange interrupt line.
294 	 */
295 	sc->sc_irq_rid = 0;
296 	sc->sc_irq = bus_alloc_resource_any(sc->sc_dev, SYS_RES_IRQ,
297 					    &sc->sc_irq_rid,
298 					    RF_SHAREABLE | RF_ACTIVE);
299 	if (sc->sc_irq == NULL) {
300 		if_printf(ifp, "could not map interrupt\n");
301 		return ENXIO;
302 	}
303 
304 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
305 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
306 					     SYSCTL_STATIC_CHILDREN(_hw),
307 					     OID_AUTO,
308 					     device_get_nameunit(sc->sc_dev),
309 					     CTLFLAG_RD, 0, "");
310 	if (sc->sc_sysctl_tree == NULL) {
311 		if_printf(ifp, "could not add sysctl node\n");
312 		error = ENXIO;
313 		goto fail;
314 	}
315 
316 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
317 	if (ah == NULL) {
318 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
319 			status);
320 		error = ENXIO;
321 		goto fail;
322 	}
323 	sc->sc_ah = ah;
324 
325 	if (ah->ah_abi != HAL_ABI_VERSION) {
326 		if_printf(ifp, "HAL ABI mismatch detected "
327 			"(HAL:0x%x != driver:0x%x)\n",
328 			ah->ah_abi, HAL_ABI_VERSION);
329 		error = ENXIO;
330 		goto fail;
331 	}
332 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
333 
334 	/*
335 	 * Check if the MAC has multi-rate retry support.
336 	 * We do this by trying to setup a fake extended
337 	 * descriptor.  MAC's that don't have support will
338 	 * return false w/o doing anything.  MAC's that do
339 	 * support it will return true w/o doing anything.
340 	 */
341 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
342 
343 	/*
344 	 * Check if the device has hardware counters for PHY
345 	 * errors.  If so we need to enable the MIB interrupt
346 	 * so we can act on stat triggers.
347 	 */
348 	if (ath_hal_hwphycounters(ah))
349 		sc->sc_needmib = 1;
350 
351 	/*
352 	 * Get the hardware key cache size.
353 	 */
354 	sc->sc_keymax = ath_hal_keycachesize(ah);
355 	if (sc->sc_keymax > ATH_KEYMAX) {
356 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
357 			ATH_KEYMAX, sc->sc_keymax);
358 		sc->sc_keymax = ATH_KEYMAX;
359 	}
360 	/*
361 	 * Reset the key cache since some parts do not
362 	 * reset the contents on initial power up.
363 	 */
364 	for (i = 0; i < sc->sc_keymax; i++)
365 		ath_hal_keyreset(ah, i);
366 	/*
367 	 * Mark key cache slots associated with global keys
368 	 * as in use.  If we knew TKIP was not to be used we
369 	 * could leave the +32, +64, and +32+64 slots free.
370 	 * XXX only for splitmic.
371 	 */
372 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
373 		setbit(sc->sc_keymap, i);
374 		setbit(sc->sc_keymap, i+32);
375 		setbit(sc->sc_keymap, i+64);
376 		setbit(sc->sc_keymap, i+32+64);
377 	}
378 
379 	/*
380 	 * Collect the channel list using the default country
381 	 * code and including outdoor channels.  The 802.11 layer
382 	 * is resposible for filtering this list based on settings
383 	 * like the phy mode.
384 	 */
385 	error = ath_getchannels(sc, ath_countrycode,
386 				ath_outdoor, ath_xchanmode);
387 	if (error)
388 		goto fail;
389 
390 	/*
391 	 * Setup rate tables for all potential media types.
392 	 */
393 	ath_rate_setup(sc, IEEE80211_MODE_11A);
394 	ath_rate_setup(sc, IEEE80211_MODE_11B);
395 	ath_rate_setup(sc, IEEE80211_MODE_11G);
396 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
397 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
398 
399 	/* NB: setup here so ath_rate_update is happy */
400 	ath_setcurmode(sc, IEEE80211_MODE_11A);
401 
402 	/*
403 	 * Allocate tx+rx descriptors and populate the lists.
404 	 */
405 	error = ath_desc_alloc(sc);
406 	if (error) {
407 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
408 		goto fail;
409 	}
410 
411 	callout_init(&sc->sc_scan_ch);
412 	callout_init(&sc->sc_cal_ch);
413 	callout_init(&sc->sc_dfs_ch);
414 
415 	/*
416 	 * Allocate hardware transmit queues: one queue for
417 	 * beacon frames and one data queue for each QoS
418 	 * priority.  Note that the hal handles reseting
419 	 * these queues at the needed time.
420 	 *
421 	 * XXX PS-Poll
422 	 */
423 	sc->sc_bhalq = ath_beaconq_setup(ah);
424 	if (sc->sc_bhalq == (u_int)-1) {
425 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
426 		error = EIO;
427 		goto fail;
428 	}
429 
430 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
431 	if (sc->sc_cabq == NULL) {
432 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
433 		error = EIO;
434 		goto fail;
435 	}
436 
437 	/* NB: insure BK queue is the lowest priority h/w queue */
438 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
439 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
440 			ieee80211_wme_acnames[WME_AC_BK]);
441 		error = EIO;
442 		goto fail;
443 	}
444 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
445 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
446 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
447 		/*
448 		 * Not enough hardware tx queues to properly do WME;
449 		 * just punt and assign them all to the same h/w queue.
450 		 * We could do a better job of this if, for example,
451 		 * we allocate queues when we switch from station to
452 		 * AP mode.
453 		 */
454 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
455 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
456 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
457 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
458 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
459 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
460 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
461 	}
462 
463 	/*
464 	 * Special case certain configurations.  Note the
465 	 * CAB queue is handled by these specially so don't
466 	 * include them when checking the txq setup mask.
467 	 */
468 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
469 	case 0x01:
470 		sc->sc_tx_proc = ath_tx_proc_q0;
471 		if_printf(ifp, "tx_proc_q0\n");
472 		break;
473 	case 0x0f:
474 		sc->sc_tx_proc = ath_tx_proc_q0123;
475 		if_printf(ifp, "tx_proc_q0123\n");
476 		break;
477 	default:
478 		sc->sc_tx_proc = ath_tx_proc;
479 		if_printf(ifp, "tx_proc\n");
480 		break;
481 	}
482 
483 	/*
484 	 * Setup rate control.  Some rate control modules
485 	 * call back to change the anntena state so expose
486 	 * the necessary entry points.
487 	 * XXX maybe belongs in struct ath_ratectrl?
488 	 */
489 	sc->sc_setdefantenna = ath_setdefantenna;
490 	sc->sc_rc = ath_rate_attach(sc);
491 	if (sc->sc_rc == NULL) {
492 		error = EIO;
493 		goto fail;
494 	}
495 
496 	sc->sc_blinking = 0;
497 	sc->sc_ledstate = 1;
498 	sc->sc_ledon = 0;			/* low true */
499 	sc->sc_ledidle = (2700 * hz) / 1000;	/* 2.7sec */
500 	callout_init(&sc->sc_ledtimer);
501 
502 	/*
503 	 * Auto-enable soft led processing for IBM cards and for
504 	 * 5211 minipci cards.  Users can also manually enable/disable
505 	 * support with a sysctl.
506 	 */
507 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
508 	if (sc->sc_softled) {
509 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
510 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
511 	}
512 
513 	ifp->if_softc = sc;
514 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
515 	ifp->if_start = ath_start;
516 	ifp->if_watchdog = ath_watchdog;
517 	ifp->if_ioctl = ath_ioctl;
518 	ifp->if_init = ath_init;
519 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
520 	ifq_set_ready(&ifp->if_snd);
521 
522 	ic->ic_reset = ath_reset;
523 	ic->ic_newassoc = ath_newassoc;
524 	ic->ic_updateslot = ath_updateslot;
525 	ic->ic_wme.wme_update = ath_wme_update;
526 	/* XXX not right but it's not used anywhere important */
527 	ic->ic_phytype = IEEE80211_T_OFDM;
528 	ic->ic_opmode = IEEE80211_M_STA;
529 	ic->ic_caps =
530 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
531 		| IEEE80211_C_HOSTAP		/* hostap mode */
532 		| IEEE80211_C_MONITOR		/* monitor mode */
533 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
534 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
535 		| IEEE80211_C_SHSLOT		/* short slot time supported */
536 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
537 		;
538 	/*
539 	 * Query the hal to figure out h/w crypto support.
540 	 */
541 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
542 		ic->ic_caps |= IEEE80211_C_WEP;
543 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
544 		ic->ic_caps |= IEEE80211_C_AES;
545 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
546 		ic->ic_caps |= IEEE80211_C_AES_CCM;
547 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
548 		ic->ic_caps |= IEEE80211_C_CKIP;
549 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
550 		ic->ic_caps |= IEEE80211_C_TKIP;
551 		/*
552 		 * Check if h/w does the MIC and/or whether the
553 		 * separate key cache entries are required to
554 		 * handle both tx+rx MIC keys.
555 		 */
556 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
557 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
558 		if (ath_hal_tkipsplit(ah))
559 			sc->sc_splitmic = 1;
560 	}
561 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
562 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
563 	/*
564 	 * TPC support can be done either with a global cap or
565 	 * per-packet support.  The latter is not available on
566 	 * all parts.  We're a bit pedantic here as all parts
567 	 * support a global cap.
568 	 */
569 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
570 		ic->ic_caps |= IEEE80211_C_TXPMGT;
571 
572 	/*
573 	 * Mark WME capability only if we have sufficient
574 	 * hardware queues to do proper priority scheduling.
575 	 */
576 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
577 		ic->ic_caps |= IEEE80211_C_WME;
578 	/*
579 	 * Check for misc other capabilities.
580 	 */
581 	if (ath_hal_hasbursting(ah))
582 		ic->ic_caps |= IEEE80211_C_BURST;
583 
584 	/*
585 	 * Indicate we need the 802.11 header padded to a
586 	 * 32-bit boundary for 4-address and QoS frames.
587 	 */
588 	ic->ic_flags |= IEEE80211_F_DATAPAD;
589 
590 	/*
591 	 * Query the hal about antenna support.
592 	 */
593 	sc->sc_defant = ath_hal_getdefantenna(ah);
594 
595 	/*
596 	 * Not all chips have the VEOL support we want to
597 	 * use with IBSS beacons; check here for it.
598 	 */
599 	sc->sc_hasveol = ath_hal_hasveol(ah);
600 
601 	/* get mac address from hardware */
602 	ath_hal_getmac(ah, ic->ic_myaddr);
603 
604 	/* call MI attach routine. */
605 	ieee80211_ifattach(ic);
606 	sc->sc_opmode = ic->ic_opmode;
607 	/* override default methods */
608 	ic->ic_node_alloc = ath_node_alloc;
609 	sc->sc_node_free = ic->ic_node_free;
610 	ic->ic_node_free = ath_node_free;
611 	ic->ic_node_getrssi = ath_node_getrssi;
612 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
613 	ic->ic_recv_mgmt = ath_recv_mgmt;
614 	sc->sc_newstate = ic->ic_newstate;
615 	ic->ic_newstate = ath_newstate;
616 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
617 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
618 	ic->ic_crypto.cs_key_delete = ath_key_delete;
619 	ic->ic_crypto.cs_key_set = ath_key_set;
620 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
621 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
622 	/* complete initialization */
623 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
624 
625 	ath_bpfattach(sc);
626 	/*
627 	 * Setup dynamic sysctl's now that country code and
628 	 * regdomain are available from the hal.
629 	 */
630 	ath_sysctlattach(sc);
631 
632 	error = bus_setup_intr(sc->sc_dev, sc->sc_irq, INTR_MPSAFE, ath_intr,
633 			       sc, &sc->sc_ih, ifp->if_serializer);
634 	if (error) {
635 		if_printf(ifp, "could not establish interrupt\n");
636 		bpfdetach(ifp);
637 		ieee80211_ifdetach(ic);
638 		goto fail;
639 	}
640 
641 	if (bootverbose)
642 		ieee80211_announce(ic);
643 	ath_announce(sc);
644 
645 	return 0;
646 fail:
647 	ath_detach(sc);
648 	return error;
649 }
650 
651 int
652 ath_detach(struct ath_softc *sc)
653 {
654 	struct ifnet *ifp = &sc->sc_ic.ic_if;
655 
656 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
657 		__func__, ifp->if_flags);
658 
659 	/*
660 	 * NB: the order of these is important:
661 	 * o call the 802.11 layer before detaching the hal to
662 	 *   insure callbacks into the driver to delete global
663 	 *   key cache entries can be handled
664 	 * o reclaim the tx queue data structures after calling
665 	 *   the 802.11 layer as we'll get called back to reclaim
666 	 *   node state and potentially want to use them
667 	 * o to cleanup the tx queues the hal is called, so detach
668 	 *   it last
669 	 * Other than that, it's straightforward...
670 	 */
671 
672 	if (device_is_attached(sc->sc_dev)) {
673 		lwkt_serialize_enter(ifp->if_serializer);
674 
675 		ath_rate_stop(sc->sc_rc);
676 
677 		/*
678 		 * It seems power changing in ath_stop() will freeze
679 		 * ath_hal_releasetxqueue(), which is called by
680 		 * ath_tx_cleanup() below.
681 		 */
682 #if 1
683 		ath_stop_no_pwchg(ifp);
684 #else
685 		ath_stop(ifp);
686 #endif
687 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
688 
689 		lwkt_serialize_exit(ifp->if_serializer);
690 
691 		bpfdetach(ifp);
692 		ieee80211_ifdetach(&sc->sc_ic);
693 	}
694 
695 	if (sc->sc_rc != NULL)
696 		ath_rate_detach(sc->sc_rc);
697 
698 	ath_desc_free(sc);
699 
700 	ath_tx_cleanup(sc);
701 
702 	if (sc->sc_ah)
703 		ath_hal_detach(sc->sc_ah);
704 
705 	if (sc->sc_irq != NULL) {
706 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
707 				     sc->sc_irq);
708 	}
709 
710 	if (sc->sc_sysctl_tree != NULL)
711 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
712 
713 	return 0;
714 }
715 
716 void
717 ath_suspend(struct ath_softc *sc)
718 {
719 	struct ifnet *ifp = &sc->sc_ic.ic_if;
720 
721 	lwkt_serialize_enter(ifp->if_serializer);
722 
723 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
724 		__func__, ifp->if_flags);
725 	ath_stop(ifp);
726 
727 	lwkt_serialize_exit(ifp->if_serializer);
728 }
729 
730 void
731 ath_resume(struct ath_softc *sc)
732 {
733 	struct ifnet *ifp = &sc->sc_ic.ic_if;
734 
735 	lwkt_serialize_enter(ifp->if_serializer);
736 
737 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
738 		__func__, ifp->if_flags);
739 
740 	if (ifp->if_flags & IFF_UP) {
741 		ath_init(sc);
742 		if (ifp->if_flags & IFF_RUNNING)
743 			ath_start(ifp);
744 	}
745 	if (sc->sc_softled) {
746 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
747 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
748 	}
749 
750 	lwkt_serialize_exit(ifp->if_serializer);
751 }
752 
753 void
754 ath_shutdown(struct ath_softc *sc)
755 {
756 	struct ifnet *ifp = &sc->sc_ic.ic_if;
757 
758 	lwkt_serialize_enter(ifp->if_serializer);
759 
760 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
761 		__func__, ifp->if_flags);
762 	ath_stop(ifp);
763 
764 	lwkt_serialize_exit(ifp->if_serializer);
765 }
766 
767 /*
768  * Interrupt handler.  Most of the actual processing is deferred.
769  */
770 void
771 ath_intr(void *arg)
772 {
773 	struct ath_softc *sc = arg;
774 	struct ifnet *ifp = &sc->sc_ic.ic_if;
775 	struct ath_hal *ah = sc->sc_ah;
776 	HAL_INT status;
777 
778 	if (sc->sc_invalid) {
779 		/*
780 		 * The hardware is not ready/present, don't touch anything.
781 		 * Note this can happen early on if the IRQ is shared.
782 		 */
783 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
784 		return;
785 	}
786 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
787 		return;
788 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
789 	    (IFF_UP | IFF_RUNNING)) {
790 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
791 			__func__, ifp->if_flags);
792 		ath_hal_getisr(ah, &status);	/* clear ISR */
793 		ath_hal_intrset(ah, 0);		/* disable further intr's */
794 		return;
795 	}
796 	/*
797 	 * Figure out the reason(s) for the interrupt.  Note
798 	 * that the hal returns a pseudo-ISR that may include
799 	 * bits we haven't explicitly enabled so we mask the
800 	 * value to insure we only process bits we requested.
801 	 */
802 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
803 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
804 	status &= sc->sc_imask;			/* discard unasked for bits */
805 	if (status & HAL_INT_FATAL) {
806 		/*
807 		 * Fatal errors are unrecoverable.  Typically
808 		 * these are caused by DMA errors.  Unfortunately
809 		 * the exact reason is not (presently) returned
810 		 * by the hal.
811 		 */
812 		sc->sc_stats.ast_hardware++;
813 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
814 		ath_fatal_proc(sc);
815 	} else if (status & HAL_INT_RXORN) {
816 		sc->sc_stats.ast_rxorn++;
817 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
818 		ath_rxorn_proc(sc);
819 	} else {
820 		if (status & HAL_INT_SWBA) {
821 			/*
822 			 * Software beacon alert--time to send a beacon.
823 			 * Handle beacon transmission directly; deferring
824 			 * this is too slow to meet timing constraints
825 			 * under load.
826 			 */
827 			ath_beacon_proc(sc);
828 		}
829 		if (status & HAL_INT_RXEOL) {
830 			/*
831 			 * NB: the hardware should re-read the link when
832 			 *     RXE bit is written, but it doesn't work at
833 			 *     least on older hardware revs.
834 			 */
835 			sc->sc_stats.ast_rxeol++;
836 			sc->sc_rxlink = NULL;
837 		}
838 		if (status & HAL_INT_TXURN) {
839 			sc->sc_stats.ast_txurn++;
840 			/* bump tx trigger level */
841 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
842 		}
843 		if (status & HAL_INT_RX)
844 			ath_rx_proc(sc);
845 		if (status & HAL_INT_TX)
846 			sc->sc_tx_proc(sc);
847 		if (status & HAL_INT_BMISS) {
848 			sc->sc_stats.ast_bmiss++;
849 			ath_bmiss_proc(sc);
850 		}
851 		if (status & HAL_INT_MIB) {
852 			sc->sc_stats.ast_mib++;
853 			/*
854 			 * Disable interrupts until we service the MIB
855 			 * interrupt; otherwise it will continue to fire.
856 			 */
857 			ath_hal_intrset(ah, 0);
858 			/*
859 			 * Let the hal handle the event.  We assume it will
860 			 * clear whatever condition caused the interrupt.
861 			 */
862 			ath_hal_mibevent(ah, &sc->sc_halstats);
863 			ath_hal_intrset(ah, sc->sc_imask);
864 		}
865 	}
866 }
867 
868 static void
869 ath_fatal_proc(struct ath_softc *sc)
870 {
871 	struct ifnet *ifp = &sc->sc_ic.ic_if;
872 
873 	if_printf(ifp, "hardware error; resetting\n");
874 	ath_reset(ifp);
875 }
876 
877 static void
878 ath_rxorn_proc(struct ath_softc *sc)
879 {
880 	struct ifnet *ifp = &sc->sc_ic.ic_if;
881 
882 	if_printf(ifp, "rx FIFO overrun; resetting\n");
883 	ath_reset(ifp);
884 }
885 
886 static void
887 ath_bmiss_proc(struct ath_softc *sc)
888 {
889 	struct ieee80211com *ic = &sc->sc_ic;
890 
891 	DPRINTF(sc, ATH_DEBUG_ANY, "%s\n", __func__);
892 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
893 		("unexpect operating mode %u", ic->ic_opmode));
894 	if (ic->ic_state == IEEE80211_S_RUN) {
895 		uint64_t lastrx = sc->sc_lastrx;
896 		uint64_t tsf = ath_hal_gettsf64(sc->sc_ah);
897 		u_int bmisstimeout =
898 			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
899 
900 		DPRINTF(sc, ATH_DEBUG_BEACON,
901 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
902 		    __func__, (unsigned long long) tsf,
903 		    (unsigned long long)(tsf - lastrx),
904 		    (unsigned long long) lastrx, bmisstimeout);
905 		/*
906 		 * Workaround phantom bmiss interrupts by sanity-checking
907 		 * the time of our last rx'd frame.  If it is within the
908 		 * beacon miss interval then ignore the interrupt.  If it's
909 		 * truly a bmiss we'll get another interrupt soon and that'll
910 		 * be dispatched up for processing.
911 		 */
912 		if (tsf - lastrx > bmisstimeout)
913 			ieee80211_beacon_miss(ic);
914 		else
915 			sc->sc_stats.ast_bmiss_phantom++;
916 	}
917 }
918 
919 static void
920 ath_radar_proc(struct ath_softc *sc)
921 {
922 	struct ifnet *ifp = &sc->sc_ic.ic_if;
923 	struct ath_hal *ah = sc->sc_ah;
924 	HAL_CHANNEL hchan;
925 
926 	if (ath_hal_procdfs(ah, &hchan)) {
927 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
928 			hchan.channel, hchan.channelFlags, hchan.privFlags);
929 		/*
930 		 * Initiate channel change.
931 		 */
932 		/* XXX not yet */
933 	}
934 }
935 
936 static u_int
937 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
938 {
939 #define	N(a)	(sizeof(a) / sizeof(a[0]))
940 	static const u_int modeflags[] = {
941 		0,			/* IEEE80211_MODE_AUTO */
942 		CHANNEL_A,		/* IEEE80211_MODE_11A */
943 		CHANNEL_B,		/* IEEE80211_MODE_11B */
944 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
945 		0,			/* IEEE80211_MODE_FH */
946 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
947 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
948 	};
949 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
950 
951 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
952 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
953 	return modeflags[mode];
954 #undef N
955 }
956 
957 /* XXX error cleanup */
958 static void
959 ath_init(void *arg)
960 {
961 	struct ath_softc *sc = arg;
962 	struct ieee80211com *ic = &sc->sc_ic;
963 	struct ifnet *ifp = &ic->ic_if;
964 	struct ath_hal *ah = sc->sc_ah;
965 	HAL_STATUS status;
966 
967 	ASSERT_SERIALIZED(ifp->if_serializer);
968 
969 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
970 		__func__, ifp->if_flags);
971 
972 	/*
973 	 * Stop anything previously setup.  This is safe
974 	 * whether this is the first time through or not.
975 	 */
976 	ath_stop_no_pwchg(ifp);
977 
978 	/*
979 	 * The basic interface to setting the hardware in a good
980 	 * state is ``reset''.  On return the hardware is known to
981 	 * be powered up and with interrupts disabled.  This must
982 	 * be followed by initialization of the appropriate bits
983 	 * and then setup of the interrupt mask.
984 	 */
985 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
986 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
987 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE,
988 			   &status)) {
989 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
990 			status);
991 		return;
992 	}
993 
994 	/*
995 	 * This is needed only to setup initial state
996 	 * but it's best done after a reset.
997 	 */
998 	ath_update_txpow(sc);
999 	/*
1000 	 * Likewise this is set during reset so update
1001 	 * state cached in the driver.
1002 	 */
1003 	sc->sc_diversity = ath_hal_getdiversity(ah);
1004 	sc->sc_calinterval = 1;
1005 	sc->sc_caltries = 0;
1006 
1007 	/*
1008 	 * Setup the hardware after reset: the key cache
1009 	 * is filled as needed and the receive engine is
1010 	 * set going.  Frame transmit is handled entirely
1011 	 * in the frame output path; there's nothing to do
1012 	 * here except setup the interrupt mask.
1013 	 */
1014 	if (ath_startrecv(sc) != 0) {
1015 		if_printf(ifp, "unable to start recv logic\n");
1016 		return;
1017 	}
1018 
1019 	/*
1020 	 * Enable interrupts.
1021 	 */
1022 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1023 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1024 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1025 	/*
1026 	 * Enable MIB interrupts when there are hardware phy counters.
1027 	 * Note we only do this (at the moment) for station mode.
1028 	 */
1029 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1030 		sc->sc_imask |= HAL_INT_MIB;
1031 	ath_hal_intrset(ah, sc->sc_imask);
1032 
1033 	ifp->if_flags |= IFF_RUNNING;
1034 	ic->ic_state = IEEE80211_S_INIT;
1035 
1036 	/*
1037 	 * The hardware should be ready to go now so it's safe
1038 	 * to kick the 802.11 state machine as it's likely to
1039 	 * immediately call back to us to send mgmt frames.
1040 	 */
1041 	ath_chan_change(sc, ic->ic_curchan);
1042 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1043 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1044 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1045 	} else {
1046 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1047 	}
1048 }
1049 
1050 static void
1051 ath_stop_no_pwchg(struct ifnet *ifp)
1052 {
1053 	struct ath_softc *sc = ifp->if_softc;
1054 	struct ieee80211com *ic = &sc->sc_ic;
1055 	struct ath_hal *ah = sc->sc_ah;
1056 
1057 	ASSERT_SERIALIZED(ifp->if_serializer);
1058 
1059 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1060 		__func__, sc->sc_invalid, ifp->if_flags);
1061 
1062 	if (ifp->if_flags & IFF_RUNNING) {
1063 		/*
1064 		 * Shutdown the hardware and driver:
1065 		 *    reset 802.11 state machine
1066 		 *    turn off timers
1067 		 *    disable interrupts
1068 		 *    turn off the radio
1069 		 *    clear transmit machinery
1070 		 *    clear receive machinery
1071 		 *    drain and release tx queues
1072 		 *    reclaim beacon resources
1073 		 *    power down hardware
1074 		 *
1075 		 * Note that some of this work is not possible if the
1076 		 * hardware is gone (invalid).
1077 		 */
1078 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1079 		ifp->if_flags &= ~IFF_RUNNING;
1080 		ifp->if_timer = 0;
1081 		if (!sc->sc_invalid) {
1082 			if (sc->sc_softled) {
1083 				callout_stop(&sc->sc_ledtimer);
1084 				ath_hal_gpioset(ah, sc->sc_ledpin,
1085 					!sc->sc_ledon);
1086 				sc->sc_blinking = 0;
1087 			}
1088 			ath_hal_intrset(ah, 0);
1089 		}
1090 		ath_draintxq(sc);
1091 		if (!sc->sc_invalid) {
1092 			ath_stoprecv(sc);
1093 			ath_hal_phydisable(ah);
1094 		} else
1095 			sc->sc_rxlink = NULL;
1096 #ifdef foo
1097 		ifq_purge(&ifp->if_snd);
1098 #endif
1099 		ath_beacon_free(sc);
1100 	}
1101 }
1102 
1103 static void
1104 ath_stop(struct ifnet *ifp)
1105 {
1106 	struct ath_softc *sc = ifp->if_softc;
1107 
1108 	ASSERT_SERIALIZED(ifp->if_serializer);
1109 
1110 	ath_stop_no_pwchg(ifp);
1111 	if (!sc->sc_invalid) {
1112 		/*
1113 		 * Set the chip in full sleep mode.  Note that we are
1114 		 * careful to do this only when bringing the interface
1115 		 * completely to a stop.  When the chip is in this state
1116 		 * it must be carefully woken up or references to
1117 		 * registers in the PCI clock domain may freeze the bus
1118 		 * (and system).  This varies by chip and is mostly an
1119 		 * issue with newer parts that go to sleep more quickly.
1120 		 */
1121 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1122 	}
1123 }
1124 
1125 /*
1126  * Reset the hardware w/o losing operational state.  This is
1127  * basically a more efficient way of doing ath_stop, ath_init,
1128  * followed by state transitions to the current 802.11
1129  * operational state.  Used to recover from various errors and
1130  * to reset or reload hardware state.
1131  */
1132 static int
1133 ath_reset(struct ifnet *ifp)
1134 {
1135 	struct ath_softc *sc = ifp->if_softc;
1136 	struct ieee80211com *ic = &sc->sc_ic;
1137 	struct ath_hal *ah = sc->sc_ah;
1138 	struct ieee80211_channel *c;
1139 	HAL_STATUS status;
1140 
1141 	ASSERT_SERIALIZED(ifp->if_serializer);
1142 
1143 	/*
1144 	 * Convert to a HAL channel description with the flags
1145 	 * constrained to reflect the current operating mode.
1146 	 */
1147 	c = ic->ic_curchan;
1148 	sc->sc_curchan.channel = c->ic_freq;
1149 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1150 
1151 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1152 	ath_draintxq(sc);		/* stop xmit side */
1153 	ath_stoprecv(sc);		/* stop recv side */
1154 	/* NB: indicate channel change so we do a full reset */
1155 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE,
1156 			   &status)) {
1157 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1158 			__func__, status);
1159 	}
1160 	ath_update_txpow(sc);		/* update tx power state */
1161 	sc->sc_diversity = ath_hal_getdiversity(ah);
1162 	sc->sc_calinterval = 1;
1163 	sc->sc_caltries = 0;
1164 	/*
1165 	 * We may be doing a reset in response to an ioctl
1166 	 * that changes the channel so update any state that
1167 	 * might change as a result.
1168 	 */
1169 	ath_chan_change(sc, c);
1170 	if (ath_startrecv(sc) != 0)	/* restart recv */
1171 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1172 	if (ic->ic_state == IEEE80211_S_RUN)
1173 		ath_beacon_config(sc);	/* restart beacons */
1174 	ath_hal_intrset(ah, sc->sc_imask);
1175 
1176 	ath_start(ifp);			/* restart xmit */
1177 	return 0;
1178 }
1179 
1180 static void
1181 ath_start(struct ifnet *ifp)
1182 {
1183 	struct ath_softc *sc = ifp->if_softc;
1184 	struct ath_hal *ah = sc->sc_ah;
1185 	struct ieee80211com *ic = &sc->sc_ic;
1186 	struct ieee80211_node *ni;
1187 	struct ath_buf *bf;
1188 	struct mbuf *m;
1189 	struct ieee80211_frame *wh;
1190 	struct ether_header *eh;
1191 
1192 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1193 		return;
1194 
1195 	for (;;) {
1196 		/*
1197 		 * Grab a TX buffer and associated resources.
1198 		 */
1199 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1200 		if (bf != NULL)
1201 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1202 		if (bf == NULL) {
1203 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1204 				__func__);
1205 			sc->sc_stats.ast_tx_qstop++;
1206 			ifp->if_flags |= IFF_OACTIVE;
1207 			break;
1208 		}
1209 		/*
1210 		 * Poll the management queue for frames; they
1211 		 * have priority over normal data frames.
1212 		 */
1213 		IF_DEQUEUE(&ic->ic_mgtq, m);
1214 		if (m == NULL) {
1215 			/*
1216 			 * No data frames go out unless we're associated.
1217 			 */
1218 			if (ic->ic_state != IEEE80211_S_RUN) {
1219 				DPRINTF(sc, ATH_DEBUG_XMIT,
1220 				    "%s: discard data packet, state %s\n",
1221 				    __func__,
1222 				    ieee80211_state_name[ic->ic_state]);
1223 				sc->sc_stats.ast_tx_discard++;
1224 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1225 				break;
1226 			}
1227 			m = ifq_dequeue(&ifp->if_snd, NULL);
1228 			if (m == NULL) {
1229 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1230 				break;
1231 			}
1232 			/*
1233 			 * Find the node for the destination so we can do
1234 			 * things like power save and fast frames aggregation.
1235 			 */
1236 			if (m->m_len < sizeof(struct ether_header) &&
1237 			    (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1238 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1239 				ni = NULL;
1240 				goto bad;
1241 			}
1242 			eh = mtod(m, struct ether_header *);
1243 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1244 			if (ni == NULL) {
1245 				/* NB: ieee80211_find_txnode does stat+msg */
1246 				m_freem(m);
1247 				goto bad;
1248 			}
1249 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1250 			    (m->m_flags & M_PWR_SAV) == 0) {
1251 				/*
1252 				 * Station in power save mode; pass the frame
1253 				 * to the 802.11 layer and continue.  We'll get
1254 				 * the frame back when the time is right.
1255 				 */
1256 				ieee80211_pwrsave(ic, ni, m);
1257 				goto reclaim;
1258 			}
1259 			/* calculate priority so we can find the tx queue */
1260 			if (ieee80211_classify(ic, m, ni)) {
1261 				DPRINTF(sc, ATH_DEBUG_XMIT,
1262 					"%s: discard, classification failure\n",
1263 					__func__);
1264 				m_freem(m);
1265 				goto bad;
1266 			}
1267 			ifp->if_opackets++;
1268 			BPF_MTAP(ifp, m);
1269 			/*
1270 			 * Encapsulate the packet in prep for transmission.
1271 			 */
1272 			m = ieee80211_encap(ic, m, ni);
1273 			if (m == NULL) {
1274 				DPRINTF(sc, ATH_DEBUG_XMIT,
1275 					"%s: encapsulation failure\n",
1276 					__func__);
1277 				sc->sc_stats.ast_tx_encap++;
1278 				goto bad;
1279 			}
1280 		} else {
1281 			/*
1282 			 * Hack!  The referenced node pointer is in the
1283 			 * rcvif field of the packet header.  This is
1284 			 * placed there by ieee80211_mgmt_output because
1285 			 * we need to hold the reference with the frame
1286 			 * and there's no other way (other than packet
1287 			 * tags which we consider too expensive to use)
1288 			 * to pass it along.
1289 			 */
1290 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1291 			m->m_pkthdr.rcvif = NULL;
1292 
1293 			wh = mtod(m, struct ieee80211_frame *);
1294 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1295 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1296 				/* fill time stamp */
1297 				uint64_t tsf;
1298 				uint32_t *tstamp;
1299 
1300 				tsf = ath_hal_gettsf64(ah);
1301 				/* XXX: adjust 100us delay to xmit */
1302 				tsf += 100;
1303 				tstamp = (uint32_t *)&wh[1];
1304 				tstamp[0] = htole32(tsf & 0xffffffff);
1305 				tstamp[1] = htole32(tsf >> 32);
1306 			}
1307 			sc->sc_stats.ast_tx_mgmt++;
1308 		}
1309 
1310 		if (ath_tx_start(sc, ni, bf, m)) {
1311 bad:
1312 			ifp->if_oerrors++;
1313 reclaim:
1314 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1315 			if (ni != NULL)
1316 				ieee80211_free_node(ni);
1317 			continue;
1318 		}
1319 
1320 		sc->sc_tx_timer = 5;
1321 		ifp->if_timer = 1;
1322 	}
1323 }
1324 
1325 static int
1326 ath_media_change(struct ifnet *ifp)
1327 {
1328 #define	IS_UP(ifp) \
1329 	((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_RUNNING | IFF_UP))
1330 	int error;
1331 
1332 	error = ieee80211_media_change(ifp);
1333 	if (error == ENETRESET) {
1334 		struct ath_softc *sc = ifp->if_softc;
1335 		struct ieee80211com *ic = &sc->sc_ic;
1336 
1337 		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1338 			/*
1339 			 * Adhoc demo mode is just ibss mode w/o beacons
1340 			 * (mostly).  The hal knows nothing about it;
1341 			 * tell it we're operating in ibss mode.
1342 			 */
1343 			sc->sc_opmode = HAL_M_IBSS;
1344 		} else
1345 			sc->sc_opmode = ic->ic_opmode;
1346 		if (IS_UP(ifp))
1347 			ath_init(ifp->if_softc);	/* XXX lose error */
1348 		error = 0;
1349 	}
1350 	return error;
1351 #undef IS_UP
1352 }
1353 
1354 #ifdef ATH_DEBUG
1355 static void
1356 ath_keyprint(const char *tag, u_int ix,
1357 	const HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1358 {
1359 	static const char *ciphers[] = {
1360 		"WEP",
1361 		"AES-OCB",
1362 		"AES-CCM",
1363 		"CKIP",
1364 		"TKIP",
1365 		"CLR",
1366 	};
1367 	int i, n;
1368 
1369 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1370 	for (i = 0, n = hk->kv_len; i < n; i++)
1371 		printf("%02x", hk->kv_val[i]);
1372 	printf(" mac %6D", mac, ":");
1373 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1374 		printf(" mic ");
1375 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1376 			printf("%02x", hk->kv_mic[i]);
1377 	}
1378 	printf("\n");
1379 }
1380 #endif
1381 
1382 /*
1383  * Set a TKIP key into the hardware.  This handles the
1384  * potential distribution of key state to multiple key
1385  * cache slots for TKIP.
1386  */
1387 static int
1388 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1389 	HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1390 {
1391 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1392 	static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
1393 	struct ath_hal *ah = sc->sc_ah;
1394 
1395 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1396 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1397 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1398 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1399 		/*
1400 		 * TX key goes at first index, RX key at the rx index.
1401 		 * The hal handles the MIC keys at index+64.
1402 		 */
1403 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1404 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1405 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1406 			return 0;
1407 
1408 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1409 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1410 		/* XXX delete tx key on failure? */
1411 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1412 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1413 		/*
1414 		 * TX/RX key goes at first index.
1415 		 * The hal handles the MIC keys are index+64.
1416 		 */
1417 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1418 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1419 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1420 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1421 	}
1422 	return 0;
1423 #undef IEEE80211_KEY_XR
1424 }
1425 
1426 /*
1427  * Set a net80211 key into the hardware.  This handles the
1428  * potential distribution of key state to multiple key
1429  * cache slots for TKIP with hardware MIC support.
1430  */
1431 static int
1432 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1433 	const uint8_t mac0[IEEE80211_ADDR_LEN],
1434 	struct ieee80211_node *bss)
1435 {
1436 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1437 	static const uint8_t ciphermap[] = {
1438 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1439 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1440 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1441 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1442 		(uint8_t) -1,		/* 4 is not allocated */
1443 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1444 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1445 	};
1446 	struct ath_hal *ah = sc->sc_ah;
1447 	const struct ieee80211_cipher *cip = k->wk_cipher;
1448 	uint8_t gmac[IEEE80211_ADDR_LEN];
1449 	const uint8_t *mac;
1450 	HAL_KEYVAL hk;
1451 
1452 	memset(&hk, 0, sizeof(hk));
1453 	/*
1454 	 * Software crypto uses a "clear key" so non-crypto
1455 	 * state kept in the key cache are maintained and
1456 	 * so that rx frames have an entry to match.
1457 	 */
1458 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1459 		KASSERT(cip->ic_cipher < N(ciphermap),
1460 			("invalid cipher type %u", cip->ic_cipher));
1461 		hk.kv_type = ciphermap[cip->ic_cipher];
1462 		hk.kv_len = k->wk_keylen;
1463 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1464 	} else
1465 		hk.kv_type = HAL_CIPHER_CLR;
1466 
1467 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1468 		/*
1469 		 * Group keys on hardware that supports multicast frame
1470 		 * key search use a mac that is the sender's address with
1471 		 * the high bit set instead of the app-specified address.
1472 		 */
1473 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1474 		gmac[0] |= 0x80;
1475 		mac = gmac;
1476 	} else
1477 		mac = mac0;
1478 
1479 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1480 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1481 	    sc->sc_splitmic) {
1482 		return ath_keyset_tkip(sc, k, &hk, mac);
1483 	} else {
1484 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1485 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1486 	}
1487 #undef N
1488 }
1489 
1490 /*
1491  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1492  * each key, one for decrypt/encrypt and the other for the MIC.
1493  */
1494 static uint16_t
1495 key_alloc_2pair(struct ath_softc *sc,
1496 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1497 {
1498 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1499 	u_int i, keyix;
1500 
1501 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1502 	/* XXX could optimize */
1503 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1504 		uint8_t b = sc->sc_keymap[i];
1505 		if (b != 0xff) {
1506 			/*
1507 			 * One or more slots in this byte are free.
1508 			 */
1509 			keyix = i*NBBY;
1510 			while (b & 1) {
1511 		again:
1512 				keyix++;
1513 				b >>= 1;
1514 			}
1515 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1516 			if (isset(sc->sc_keymap, keyix+32) ||
1517 			    isset(sc->sc_keymap, keyix+64) ||
1518 			    isset(sc->sc_keymap, keyix+32+64)) {
1519 				/* full pair unavailable */
1520 				/* XXX statistic */
1521 				if (keyix == (i+1)*NBBY) {
1522 					/* no slots were appropriate, advance */
1523 					continue;
1524 				}
1525 				goto again;
1526 			}
1527 			setbit(sc->sc_keymap, keyix);
1528 			setbit(sc->sc_keymap, keyix+64);
1529 			setbit(sc->sc_keymap, keyix+32);
1530 			setbit(sc->sc_keymap, keyix+32+64);
1531 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1532 				"%s: key pair %u,%u %u,%u\n",
1533 				__func__, keyix, keyix+64,
1534 				keyix+32, keyix+32+64);
1535 			*txkeyix = keyix;
1536 			*rxkeyix = keyix+32;
1537 			return 1;
1538 		}
1539 	}
1540 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1541 	return 0;
1542 #undef N
1543 }
1544 
1545 /*
1546  * Allocate a single key cache slot.
1547  */
1548 static int
1549 key_alloc_single(struct ath_softc *sc,
1550 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1551 {
1552 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1553 	u_int i, keyix;
1554 
1555 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1556 	for (i = 0; i < N(sc->sc_keymap); i++) {
1557 		uint8_t b = sc->sc_keymap[i];
1558 		if (b != 0xff) {
1559 			/*
1560 			 * One or more slots are free.
1561 			 */
1562 			keyix = i*NBBY;
1563 			while (b & 1)
1564 				keyix++, b >>= 1;
1565 			setbit(sc->sc_keymap, keyix);
1566 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1567 				__func__, keyix);
1568 			*txkeyix = *rxkeyix = keyix;
1569 			return 1;
1570 		}
1571 	}
1572 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1573 	return 0;
1574 #undef N
1575 }
1576 
1577 /*
1578  * Allocate one or more key cache slots for a uniacst key.  The
1579  * key itself is needed only to identify the cipher.  For hardware
1580  * TKIP with split cipher+MIC keys we allocate two key cache slot
1581  * pairs so that we can setup separate TX and RX MIC keys.  Note
1582  * that the MIC key for a TKIP key at slot i is assumed by the
1583  * hardware to be at slot i+64.  This limits TKIP keys to the first
1584  * 64 entries.
1585  */
1586 static int
1587 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1588 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1589 {
1590 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1591 
1592 	/*
1593 	 * Group key allocation must be handled specially for
1594 	 * parts that do not support multicast key cache search
1595 	 * functionality.  For those parts the key id must match
1596 	 * the h/w key index so lookups find the right key.  On
1597 	 * parts w/ the key search facility we install the sender's
1598 	 * mac address (with the high bit set) and let the hardware
1599 	 * find the key w/o using the key id.  This is preferred as
1600 	 * it permits us to support multiple users for adhoc and/or
1601 	 * multi-station operation.
1602 	 */
1603 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1604 		if (!(&ic->ic_nw_keys[0] <= k &&
1605 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1606 			/* should not happen */
1607 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1608 				"%s: bogus group key\n", __func__);
1609 			return 0;
1610 		}
1611 		/*
1612 		 * XXX we pre-allocate the global keys so
1613 		 * have no way to check if they've already been allocated.
1614 		 */
1615 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1616 		return 1;
1617 	}
1618 
1619 	/*
1620 	 * We allocate two pair for TKIP when using the h/w to do
1621 	 * the MIC.  For everything else, including software crypto,
1622 	 * we allocate a single entry.  Note that s/w crypto requires
1623 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1624 	 * not support pass-through cache entries and we map all
1625 	 * those requests to slot 0.
1626 	 */
1627 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1628 		return key_alloc_single(sc, keyix, rxkeyix);
1629 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1630 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1631 		return key_alloc_2pair(sc, keyix, rxkeyix);
1632 	} else {
1633 		return key_alloc_single(sc, keyix, rxkeyix);
1634 	}
1635 }
1636 
1637 /*
1638  * Delete an entry in the key cache allocated by ath_key_alloc.
1639  */
1640 static int
1641 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1642 {
1643 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1644 	struct ath_hal *ah = sc->sc_ah;
1645 	const struct ieee80211_cipher *cip = k->wk_cipher;
1646 	u_int keyix = k->wk_keyix;
1647 
1648 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1649 
1650 	ath_hal_keyreset(ah, keyix);
1651 	/*
1652 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1653 	 */
1654 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1655 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1656 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1657 	if (keyix >= IEEE80211_WEP_NKID) {
1658 		/*
1659 		 * Don't touch keymap entries for global keys so
1660 		 * they are never considered for dynamic allocation.
1661 		 */
1662 		clrbit(sc->sc_keymap, keyix);
1663 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1664 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1665 		    sc->sc_splitmic) {
1666 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1667 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1668 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1669 		}
1670 	}
1671 	return 1;
1672 }
1673 
1674 /*
1675  * Set the key cache contents for the specified key.  Key cache
1676  * slot(s) must already have been allocated by ath_key_alloc.
1677  */
1678 static int
1679 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1680 	const uint8_t mac[IEEE80211_ADDR_LEN])
1681 {
1682 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1683 
1684 	return ath_keyset(sc, k, mac, ic->ic_bss);
1685 }
1686 
1687 /*
1688  * Block/unblock tx+rx processing while a key change is done.
1689  * We assume the caller serializes key management operations
1690  * so we only need to worry about synchronization with other
1691  * uses that originate in the driver.
1692  */
1693 static void
1694 ath_key_update_begin(struct ieee80211com *ic)
1695 {
1696 	struct ifnet *ifp = ic->ic_ifp;
1697 	struct ath_softc *sc = ifp->if_softc;
1698 
1699 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1700 #if 0
1701 	tasklet_disable(&sc->sc_rxtq);
1702 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1703 #endif
1704 }
1705 
1706 static void
1707 ath_key_update_end(struct ieee80211com *ic)
1708 {
1709 	struct ifnet *ifp = ic->ic_ifp;
1710 	struct ath_softc *sc = ifp->if_softc;
1711 
1712 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1713 #if 0
1714 	IF_UNLOCK(&ifp->if_snd);
1715 	tasklet_enable(&sc->sc_rxtq);
1716 #endif
1717 }
1718 
1719 /*
1720  * Calculate the receive filter according to the
1721  * operating mode and state:
1722  *
1723  * o always accept unicast, broadcast, and multicast traffic
1724  * o maintain current state of phy error reception (the hal
1725  *   may enable phy error frames for noise immunity work)
1726  * o probe request frames are accepted only when operating in
1727  *   hostap, adhoc, or monitor modes
1728  * o enable promiscuous mode according to the interface state
1729  * o accept beacons:
1730  *   - when operating in adhoc mode so the 802.11 layer creates
1731  *     node table entries for peers,
1732  *   - when operating in station mode for collecting rssi data when
1733  *     the station is otherwise quiet, or
1734  *   - when scanning
1735  */
1736 static uint32_t
1737 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1738 {
1739 #define	RX_FILTER_PRESERVE	(HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
1740 	struct ieee80211com *ic = &sc->sc_ic;
1741 	struct ath_hal *ah = sc->sc_ah;
1742 	struct ifnet *ifp = &ic->ic_if;
1743 	uint32_t rfilt;
1744 
1745 	rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
1746 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1747 	if (ic->ic_opmode != IEEE80211_M_STA)
1748 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1749 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1750 	    (ifp->if_flags & IFF_PROMISC))
1751 		rfilt |= HAL_RX_FILTER_PROM;
1752 	if (ic->ic_opmode == IEEE80211_M_STA ||
1753 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1754 	    state == IEEE80211_S_SCAN)
1755 		rfilt |= HAL_RX_FILTER_BEACON;
1756 	return rfilt;
1757 #undef RX_FILTER_PRESERVE
1758 }
1759 
1760 static void
1761 ath_mode_init(struct ath_softc *sc)
1762 {
1763 	struct ieee80211com *ic = &sc->sc_ic;
1764 	struct ath_hal *ah = sc->sc_ah;
1765 	struct ifnet *ifp = &ic->ic_if;
1766 	uint32_t rfilt, mfilt[2], val;
1767 	uint8_t pos;
1768 	struct ifmultiaddr *ifma;
1769 
1770 	/* configure rx filter */
1771 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1772 	ath_hal_setrxfilter(ah, rfilt);
1773 
1774 	/* configure operational mode */
1775 	ath_hal_setopmode(ah);
1776 
1777 	/*
1778 	 * Handle any link-level address change.  Note that we only
1779 	 * need to force ic_myaddr; any other addresses are handled
1780 	 * as a byproduct of the ifnet code marking the interface
1781 	 * down then up.
1782 	 *
1783 	 * XXX should get from lladdr instead of arpcom but that's more work
1784 	 */
1785 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1786 	ath_hal_setmac(ah, ic->ic_myaddr);
1787 
1788 	/* calculate and install multicast filter */
1789 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1790 		mfilt[0] = mfilt[1] = 0;
1791 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1792 			caddr_t dl;
1793 
1794 			/* calculate XOR of eight 6bit values */
1795 			dl = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1796 			val = LE_READ_4(dl + 0);
1797 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1798 			val = LE_READ_4(dl + 3);
1799 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1800 			pos &= 0x3f;
1801 			mfilt[pos / 32] |= (1 << (pos % 32));
1802 		}
1803 	} else {
1804 		mfilt[0] = mfilt[1] = ~0;
1805 	}
1806 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1807 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1808 		__func__, rfilt, mfilt[0], mfilt[1]);
1809 }
1810 
1811 /*
1812  * Set the slot time based on the current setting.
1813  */
1814 static void
1815 ath_setslottime(struct ath_softc *sc)
1816 {
1817 	struct ieee80211com *ic = &sc->sc_ic;
1818 	struct ath_hal *ah = sc->sc_ah;
1819 
1820 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1821 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1822 	else
1823 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1824 	sc->sc_updateslot = OK;
1825 }
1826 
1827 /*
1828  * Callback from the 802.11 layer to update the
1829  * slot time based on the current setting.
1830  */
1831 static void
1832 ath_updateslot(struct ifnet *ifp)
1833 {
1834 	struct ath_softc *sc = ifp->if_softc;
1835 	struct ieee80211com *ic = &sc->sc_ic;
1836 
1837 	/*
1838 	 * When not coordinating the BSS, change the hardware
1839 	 * immediately.  For other operation we defer the change
1840 	 * until beacon updates have propagated to the stations.
1841 	 */
1842 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1843 		sc->sc_updateslot = UPDATE;
1844 	else
1845 		ath_setslottime(sc);
1846 }
1847 
1848 /*
1849  * Setup a h/w transmit queue for beacons.
1850  */
1851 static int
1852 ath_beaconq_setup(struct ath_hal *ah)
1853 {
1854 	HAL_TXQ_INFO qi;
1855 
1856 	memset(&qi, 0, sizeof(qi));
1857 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1858 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1859 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1860 	/* NB: for dynamic turbo, don't enable any other interrupts */
1861 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1862 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1863 }
1864 
1865 /*
1866  * Setup the transmit queue parameters for the beacon queue.
1867  */
1868 static int
1869 ath_beaconq_config(struct ath_softc *sc)
1870 {
1871 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1872 	struct ieee80211com *ic = &sc->sc_ic;
1873 	struct ath_hal *ah = sc->sc_ah;
1874 	HAL_TXQ_INFO qi;
1875 
1876 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1877 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1878 		/*
1879 		 * Always burst out beacon and CAB traffic.
1880 		 */
1881 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1882 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1883 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1884 	} else {
1885 		struct wmeParams *wmep =
1886 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1887 		/*
1888 		 * Adhoc mode; important thing is to use 2x cwmin.
1889 		 */
1890 		qi.tqi_aifs = wmep->wmep_aifsn;
1891 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1892 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1893 	}
1894 
1895 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1896 		device_printf(sc->sc_dev, "unable to update parameters for "
1897 			"beacon hardware queue!\n");
1898 		return 0;
1899 	} else {
1900 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1901 		return 1;
1902 	}
1903 #undef ATH_EXPONENT_TO_VALUE
1904 }
1905 
1906 /*
1907  * Allocate and setup an initial beacon frame.
1908  */
1909 static int
1910 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1911 {
1912 	struct ieee80211com *ic = ni->ni_ic;
1913 	struct ath_buf *bf;
1914 	struct mbuf *m;
1915 	int error;
1916 
1917 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1918 	if (bf == NULL) {
1919 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1920 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1921 		return ENOMEM;			/* XXX */
1922 	}
1923 	/*
1924 	 * NB: the beacon data buffer must be 32-bit aligned;
1925 	 * we assume the mbuf routines will return us something
1926 	 * with this alignment (perhaps should assert).
1927 	 */
1928 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1929 	if (m == NULL) {
1930 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1931 			__func__);
1932 		sc->sc_stats.ast_be_nombuf++;
1933 		return ENOMEM;
1934 	}
1935 
1936 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1937 				     ath_dma_map_mbuf, bf, BUS_DMA_NOWAIT);
1938 	if (error == 0) {
1939 		bf->bf_m = m;
1940 		bf->bf_node = ieee80211_ref_node(ni);
1941 	} else {
1942 		m_freem(m);
1943 	}
1944 	return error;
1945 }
1946 
1947 /*
1948  * Setup the beacon frame for transmit.
1949  */
1950 static void
1951 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1952 {
1953 #define	USE_SHPREAMBLE(_ic) \
1954 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1955 		== IEEE80211_F_SHPREAMBLE)
1956 	struct ieee80211_node *ni = bf->bf_node;
1957 	struct ieee80211com *ic = ni->ni_ic;
1958 	struct mbuf *m = bf->bf_m;
1959 	struct ath_hal *ah = sc->sc_ah;
1960 	struct ath_desc *ds;
1961 	int flags, antenna;
1962 	const HAL_RATE_TABLE *rt;
1963 	uint8_t rix, rate;
1964 
1965 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1966 		__func__, m, m->m_len);
1967 
1968 	/* setup descriptors */
1969 	ds = bf->bf_desc;
1970 
1971 	flags = HAL_TXDESC_NOACK;
1972 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1973 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1974 		flags |= HAL_TXDESC_VEOL;
1975 		/*
1976 		 * Let hardware handle antenna switching.
1977 		 */
1978 		antenna = sc->sc_txantenna;
1979 	} else {
1980 		ds->ds_link = 0;
1981 		/*
1982 		 * Switch antenna every 4 beacons.
1983 		 * XXX assumes two antenna
1984 		 */
1985 		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1986 	}
1987 
1988 	KASSERT(bf->bf_nseg == 1,
1989 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1990 	ds->ds_data = bf->bf_segs[0].ds_addr;
1991 	/*
1992 	 * Calculate rate code.
1993 	 * XXX everything at min xmit rate
1994 	 */
1995 	rix = sc->sc_minrateix;
1996 	rt = sc->sc_currates;
1997 	rate = rt->info[rix].rateCode;
1998 	if (USE_SHPREAMBLE(ic))
1999 		rate |= rt->info[rix].shortPreamble;
2000 	ath_hal_setuptxdesc(ah, ds
2001 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2002 		, sizeof(struct ieee80211_frame)/* header length */
2003 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2004 		, ni->ni_txpower		/* txpower XXX */
2005 		, rate, 1			/* series 0 rate/tries */
2006 		, HAL_TXKEYIX_INVALID		/* no encryption */
2007 		, antenna			/* antenna mode */
2008 		, flags				/* no ack, veol for beacons */
2009 		, 0				/* rts/cts rate */
2010 		, 0				/* rts/cts duration */
2011 	);
2012 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2013 	ath_hal_filltxdesc(ah, ds
2014 		, roundup(m->m_len, 4)		/* buffer length */
2015 		, AH_TRUE			/* first segment */
2016 		, AH_TRUE			/* last segment */
2017 		, ds				/* first descriptor */
2018 	);
2019 #undef USE_SHPREAMBLE
2020 }
2021 
2022 /*
2023  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2024  * frame contents are done as needed and the slot time is
2025  * also adjusted based on current state.
2026  */
2027 static void
2028 ath_beacon_proc(struct ath_softc *sc)
2029 {
2030 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2031 	struct ieee80211_node *ni = bf->bf_node;
2032 	struct ieee80211com *ic = ni->ni_ic;
2033 	struct ath_hal *ah = sc->sc_ah;
2034 	struct mbuf *m;
2035 	int ncabq, error, otherant;
2036 
2037 	if (ic->ic_opmode == IEEE80211_M_STA ||
2038 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2039 	    bf == NULL || bf->bf_m == NULL) {
2040 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2041 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2042 		return;
2043 	}
2044 	/*
2045 	 * Check if the previous beacon has gone out.  If
2046 	 * not don't don't try to post another, skip this
2047 	 * period and wait for the next.  Missed beacons
2048 	 * indicate a problem and should not occur.  If we
2049 	 * miss too many consecutive beacons reset the device.
2050 	 */
2051 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2052 		sc->sc_bmisscount++;
2053 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2054 			"%s: missed %u consecutive beacons\n",
2055 			__func__, sc->sc_bmisscount);
2056 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2057 			ath_bstuck_proc(sc);
2058 		return;
2059 	}
2060 	if (sc->sc_bmisscount != 0) {
2061 		DPRINTF(sc, ATH_DEBUG_BEACON,
2062 			"%s: resume beacon xmit after %u misses\n",
2063 			__func__, sc->sc_bmisscount);
2064 		sc->sc_bmisscount = 0;
2065 	}
2066 
2067 	/*
2068 	 * Update dynamic beacon contents.  If this returns
2069 	 * non-zero then we need to remap the memory because
2070 	 * the beacon frame changed size (probably because
2071 	 * of the TIM bitmap).
2072 	 */
2073 	m = bf->bf_m;
2074 	ncabq = sc->sc_cabq->axq_depth;
2075 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2076 		/* XXX too conservative? */
2077 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2078 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2079 					     ath_dma_map_mbuf, bf,
2080 					     BUS_DMA_NOWAIT);
2081 		if (error != 0) {
2082 			if_printf(ic->ic_ifp,
2083 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2084 			    __func__, error);
2085 			return;
2086 		}
2087 	}
2088 
2089 	/*
2090 	 * Handle slot time change when a non-ERP station joins/leaves
2091 	 * an 11g network.  The 802.11 layer notifies us via callback,
2092 	 * we mark updateslot, then wait one beacon before effecting
2093 	 * the change.  This gives associated stations at least one
2094 	 * beacon interval to note the state change.
2095 	 */
2096 	/* XXX locking */
2097 	if (sc->sc_updateslot == UPDATE)
2098 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2099 	else if (sc->sc_updateslot == COMMIT)
2100 		ath_setslottime(sc);		/* commit change to h/w */
2101 
2102 	/*
2103 	 * Check recent per-antenna transmit statistics and flip
2104 	 * the default antenna if noticeably more frames went out
2105 	 * on the non-default antenna.
2106 	 * XXX assumes 2 anntenae
2107 	 */
2108 	otherant = sc->sc_defant & 1 ? 2 : 1;
2109 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2110 		ath_setdefantenna(sc, otherant);
2111 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2112 
2113 	/*
2114 	 * Construct tx descriptor.
2115 	 */
2116 	ath_beacon_setup(sc, bf);
2117 
2118 	/*
2119 	 * Stop any current dma and put the new frame on the queue.
2120 	 * This should never fail since we check above that no frames
2121 	 * are still pending on the queue.
2122 	 */
2123 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2124 		DPRINTF(sc, ATH_DEBUG_ANY,
2125 			"%s: beacon queue %u did not stop?\n",
2126 			__func__, sc->sc_bhalq);
2127 	}
2128 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2129 
2130 	/*
2131 	 * Enable the CAB queue before the beacon queue to
2132 	 * insure cab frames are triggered by this beacon.
2133 	 */
2134 	if (sc->sc_boff.bo_tim[4] & 1)	/* NB: only at DTIM */
2135 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2136 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2137 	ath_hal_txstart(ah, sc->sc_bhalq);
2138 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2139 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2140 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2141 
2142 	sc->sc_stats.ast_be_xmit++;
2143 }
2144 
2145 /*
2146  * Reset the hardware after detecting beacons have stopped.
2147  */
2148 static void
2149 ath_bstuck_proc(struct ath_softc *sc)
2150 {
2151 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2152 
2153 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2154 		  sc->sc_bmisscount);
2155 	ath_reset(ifp);
2156 }
2157 
2158 /*
2159  * Reclaim beacon resources.
2160  */
2161 static void
2162 ath_beacon_free(struct ath_softc *sc)
2163 {
2164 	struct ath_buf *bf;
2165 
2166 	ASSERT_SERIALIZED(sc->sc_ic.ic_if.if_serializer);
2167 
2168 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2169 		if (bf->bf_m != NULL) {
2170 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2171 			m_freem(bf->bf_m);
2172 			bf->bf_m = NULL;
2173 		}
2174 		if (bf->bf_node != NULL) {
2175 			ieee80211_free_node(bf->bf_node);
2176 			bf->bf_node = NULL;
2177 		}
2178 	}
2179 }
2180 
2181 /*
2182  * Configure the beacon and sleep timers.
2183  *
2184  * When operating as an AP this resets the TSF and sets
2185  * up the hardware to notify us when we need to issue beacons.
2186  *
2187  * When operating in station mode this sets up the beacon
2188  * timers according to the timestamp of the last received
2189  * beacon and the current TSF, configures PCF and DTIM
2190  * handling, programs the sleep registers so the hardware
2191  * will wakeup in time to receive beacons, and configures
2192  * the beacon miss handling so we'll receive a BMISS
2193  * interrupt when we stop seeing beacons from the AP
2194  * we've associated with.
2195  */
2196 static void
2197 ath_beacon_config(struct ath_softc *sc)
2198 {
2199 #define	TSF_TO_TU(_h,_l) \
2200 	((((uint32_t)(_h)) << 22) | (((uint32_t)(_l)) >> 10))
2201 #define	FUDGE	2
2202 	struct ath_hal *ah = sc->sc_ah;
2203 	struct ieee80211com *ic = &sc->sc_ic;
2204 	struct ieee80211_node *ni = ic->ic_bss;
2205 	uint32_t nexttbtt, intval, tsftu;
2206 	uint64_t tsf;
2207 
2208 	/* extract tstamp from last beacon and convert to TU */
2209 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2210 			     LE_READ_4(ni->ni_tstamp.data));
2211 	/* NB: the beacon interval is kept internally in TU's */
2212 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2213 	if (nexttbtt == 0)		/* e.g. for ap mode */
2214 		nexttbtt = intval;
2215 	else if (intval)		/* NB: can be 0 for monitor mode */
2216 		nexttbtt = roundup(nexttbtt, intval);
2217 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2218 		__func__, nexttbtt, intval, ni->ni_intval);
2219 	if (ic->ic_opmode == IEEE80211_M_STA) {
2220 		HAL_BEACON_STATE bs;
2221 		int dtimperiod, dtimcount;
2222 		int cfpperiod, cfpcount;
2223 
2224 		/*
2225 		 * Setup dtim and cfp parameters according to
2226 		 * last beacon we received (which may be none).
2227 		 */
2228 		dtimperiod = ni->ni_dtim_period;
2229 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2230 			dtimperiod = 1;
2231 		dtimcount = ni->ni_dtim_count;
2232 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2233 			dtimcount = 0;		/* XXX? */
2234 		cfpperiod = 1;			/* NB: no PCF support yet */
2235 		cfpcount = 0;
2236 		/*
2237 		 * Pull nexttbtt forward to reflect the current
2238 		 * TSF and calculate dtim+cfp state for the result.
2239 		 */
2240 		tsf = ath_hal_gettsf64(ah);
2241 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2242 		do {
2243 			nexttbtt += intval;
2244 			if (--dtimcount < 0) {
2245 				dtimcount = dtimperiod - 1;
2246 				if (--cfpcount < 0)
2247 					cfpcount = cfpperiod - 1;
2248 			}
2249 		} while (nexttbtt < tsftu);
2250 		memset(&bs, 0, sizeof(bs));
2251 		bs.bs_intval = intval;
2252 		bs.bs_nexttbtt = nexttbtt;
2253 		bs.bs_dtimperiod = dtimperiod*intval;
2254 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2255 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2256 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2257 		bs.bs_cfpmaxduration = 0;
2258 #if 0
2259 		/*
2260 		 * The 802.11 layer records the offset to the DTIM
2261 		 * bitmap while receiving beacons; use it here to
2262 		 * enable h/w detection of our AID being marked in
2263 		 * the bitmap vector (to indicate frames for us are
2264 		 * pending at the AP).
2265 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2266 		 * XXX enable based on h/w rev for newer chips
2267 		 */
2268 		bs.bs_timoffset = ni->ni_timoff;
2269 #endif
2270 		/*
2271 		 * Calculate the number of consecutive beacons to miss
2272 		 * before taking a BMISS interrupt.  The configuration
2273 		 * is specified in ms, so we need to convert that to
2274 		 * TU's and then calculate based on the beacon interval.
2275 		 * Note that we clamp the result to at most 10 beacons.
2276 		 */
2277 		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2278 		if (bs.bs_bmissthreshold > 10)
2279 			bs.bs_bmissthreshold = 10;
2280 		else if (bs.bs_bmissthreshold <= 0)
2281 			bs.bs_bmissthreshold = 1;
2282 
2283 		/*
2284 		 * Calculate sleep duration.  The configuration is
2285 		 * given in ms.  We insure a multiple of the beacon
2286 		 * period is used.  Also, if the sleep duration is
2287 		 * greater than the DTIM period then it makes senses
2288 		 * to make it a multiple of that.
2289 		 *
2290 		 * XXX fixed at 100ms
2291 		 */
2292 		bs.bs_sleepduration =
2293 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2294 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2295 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2296 
2297 		DPRINTF(sc, ATH_DEBUG_BEACON,
2298 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2299 			, __func__
2300 			, tsf, tsftu
2301 			, bs.bs_intval
2302 			, bs.bs_nexttbtt
2303 			, bs.bs_dtimperiod
2304 			, bs.bs_nextdtim
2305 			, bs.bs_bmissthreshold
2306 			, bs.bs_sleepduration
2307 			, bs.bs_cfpperiod
2308 			, bs.bs_cfpmaxduration
2309 			, bs.bs_cfpnext
2310 			, bs.bs_timoffset
2311 		);
2312 		ath_hal_intrset(ah, 0);
2313 		ath_hal_beacontimers(ah, &bs);
2314 		sc->sc_imask |= HAL_INT_BMISS;
2315 		ath_hal_intrset(ah, sc->sc_imask);
2316 	} else {
2317 		ath_hal_intrset(ah, 0);
2318 		if (nexttbtt == intval)
2319 			intval |= HAL_BEACON_RESET_TSF;
2320 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2321 			/*
2322 			 * In IBSS mode enable the beacon timers but only
2323 			 * enable SWBA interrupts if we need to manually
2324 			 * prepare beacon frames.  Otherwise we use a
2325 			 * self-linked tx descriptor and let the hardware
2326 			 * deal with things.
2327 			 */
2328 			intval |= HAL_BEACON_ENA;
2329 			if (!sc->sc_hasveol)
2330 				sc->sc_imask |= HAL_INT_SWBA;
2331 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2332 				/*
2333 				 * Pull nexttbtt forward to reflect
2334 				 * the current TSF.
2335 				 */
2336 				tsf = ath_hal_gettsf64(ah);
2337 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2338 				do {
2339 					nexttbtt += intval;
2340 				} while (nexttbtt < tsftu);
2341 			}
2342 			ath_beaconq_config(sc);
2343 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2344 			/*
2345 			 * In AP mode we enable the beacon timers and
2346 			 * SWBA interrupts to prepare beacon frames.
2347 			 */
2348 			intval |= HAL_BEACON_ENA;
2349 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2350 			ath_beaconq_config(sc);
2351 		}
2352 		ath_hal_beaconinit(ah, nexttbtt, intval);
2353 		sc->sc_bmisscount = 0;
2354 		ath_hal_intrset(ah, sc->sc_imask);
2355 		/*
2356 		 * When using a self-linked beacon descriptor in
2357 		 * ibss mode load it once here.
2358 		 */
2359 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2360 			ath_beacon_proc(sc);
2361 	}
2362 	sc->sc_syncbeacon = 0;
2363 #undef FUDGE
2364 #undef TSF_TO_TU
2365 }
2366 
2367 static void
2368 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2369 {
2370 	bus_addr_t *paddr = (bus_addr_t*) arg;
2371 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2372 	*paddr = segs->ds_addr;
2373 }
2374 
2375 static int
2376 ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
2377 		  ath_bufhead *head, const char *name, int nbuf, int ndesc)
2378 {
2379 #define	DS2PHYS(_dd, _ds) \
2380 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2381 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2382 	struct ath_desc *ds;
2383 	struct ath_buf *bf;
2384 	int i, bsize, error;
2385 
2386 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2387 	    __func__, name, nbuf, ndesc);
2388 
2389 	dd->dd_name = name;
2390 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2391 	STAILQ_INIT(head);
2392 
2393 	/*
2394 	 * Setup DMA descriptor area.
2395 	 */
2396 	error = bus_dma_tag_create(NULL,	/* parent */
2397 		       PAGE_SIZE, 0,		/* alignment, bounds */
2398 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2399 		       BUS_SPACE_MAXADDR,	/* highaddr */
2400 		       NULL, NULL,		/* filter, filterarg */
2401 		       dd->dd_desc_len,		/* maxsize */
2402 		       1,			/* nsegments */
2403 		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2404 		       BUS_DMA_ALLOCNOW,	/* flags */
2405 		       &dd->dd_dmat);
2406 	if (error) {
2407 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2408 		return error;
2409 	}
2410 
2411 	/* allocate descriptors */
2412 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_WAITOK, &dd->dd_dmamap);
2413 	if (error) {
2414 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2415 			"error %u\n", dd->dd_name, error);
2416 		return error;
2417 	}
2418 
2419 	error = bus_dmamem_alloc(dd->dd_dmat, (void **)&dd->dd_desc,
2420 				 BUS_DMA_WAITOK, &dd->dd_dmamap);
2421 	if (error) {
2422 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2423 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2424 		return error;
2425 	}
2426 
2427 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2428 				dd->dd_desc, dd->dd_desc_len,
2429 				ath_load_cb, &dd->dd_desc_paddr,
2430 				BUS_DMA_WAITOK);
2431 	if (error) {
2432 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2433 			dd->dd_name, error);
2434 
2435 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2436 		dd->dd_desc = NULL;
2437 		return error;
2438 	}
2439 
2440 	ds = dd->dd_desc;
2441 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2442 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2443 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2444 
2445 	/* allocate rx buffers */
2446 	bsize = sizeof(struct ath_buf) * nbuf;
2447 	bf = malloc(bsize, M_ATHDEV, M_WAITOK | M_ZERO);
2448 	dd->dd_bufptr = bf;
2449 
2450 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2451 		bf->bf_desc = ds;
2452 		bf->bf_daddr = DS2PHYS(dd, ds);
2453 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_WAITOK,
2454 					  &bf->bf_dmamap);
2455 		if (error) {
2456 			if_printf(ifp, "unable to create dmamap for %s "
2457 				"buffer %u, error %u\n", dd->dd_name, i, error);
2458 			ath_descdma_cleanup(sc, dd, head);
2459 			return error;
2460 		}
2461 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2462 	}
2463 	return 0;
2464 
2465 #if 0
2466 fail3:
2467 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2468 fail2:
2469 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2470 fail1:
2471 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2472 fail0:
2473 	bus_dma_tag_destroy(dd->dd_dmat);
2474 	memset(dd, 0, sizeof(*dd));
2475 	return error;
2476 #endif
2477 #undef DS2PHYS
2478 }
2479 
2480 static void
2481 ath_descdma_cleanup(struct ath_softc *sc,
2482 	struct ath_descdma *dd, ath_bufhead *head)
2483 {
2484 	struct ath_buf *bf;
2485 	struct ieee80211_node *ni;
2486 
2487 	if (dd->dd_desc != NULL) {
2488 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2489 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2490 		dd->dd_desc = NULL;
2491 	}
2492 
2493 	if (dd->dd_dmamap != NULL) {
2494 		bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2495 		dd->dd_dmamap = NULL;
2496 	}
2497 
2498 	if (dd->dd_dmat != NULL) {
2499 		bus_dma_tag_destroy(dd->dd_dmat);
2500 		dd->dd_dmat = NULL;
2501 	}
2502 
2503 	STAILQ_FOREACH(bf, head, bf_list) {
2504 		if (bf->bf_m) {
2505 			m_freem(bf->bf_m);
2506 			bf->bf_m = NULL;
2507 		}
2508 		if (bf->bf_dmamap != NULL) {
2509 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2510 			bf->bf_dmamap = NULL;
2511 		}
2512 		ni = bf->bf_node;
2513 		bf->bf_node = NULL;
2514 		if (ni != NULL) {
2515 			/*
2516 			 * Reclaim node reference.
2517 			 */
2518 			ieee80211_free_node(ni);
2519 		}
2520 	}
2521 	STAILQ_INIT(head);
2522 
2523 	if (dd->dd_bufptr != NULL)
2524 		free(dd->dd_bufptr, M_ATHDEV);
2525 	memset(dd, 0, sizeof(*dd));
2526 }
2527 
2528 static int
2529 ath_desc_alloc(struct ath_softc *sc)
2530 {
2531 	int error;
2532 
2533 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2534 				  "rx", ath_rxbuf, 1);
2535 	if (error)
2536 		return error;
2537 
2538 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2539 				  "tx", ath_txbuf, ATH_TXDESC);
2540 	if (error)
2541 		return error;
2542 
2543 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2544 				  "beacon", 1, 1);
2545 	if (error)
2546 		return error;
2547 	return 0;
2548 }
2549 
2550 static void
2551 ath_desc_free(struct ath_softc *sc)
2552 {
2553 
2554 	if (sc->sc_bdma.dd_desc_len != 0) {
2555 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2556 		sc->sc_bdma.dd_desc_len = 0;
2557 	}
2558 	if (sc->sc_txdma.dd_desc_len != 0) {
2559 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2560 		sc->sc_txdma.dd_desc_len = 0;
2561 	}
2562 	if (sc->sc_rxdma.dd_desc_len != 0) {
2563 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2564 		sc->sc_rxdma.dd_desc_len = 0;
2565 	}
2566 }
2567 
2568 static struct ieee80211_node *
2569 ath_node_alloc(struct ieee80211_node_table *nt)
2570 {
2571 	struct ieee80211com *ic = nt->nt_ic;
2572 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2573 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2574 	struct ath_node *an;
2575 
2576 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2577 	if (an == NULL) {
2578 		/* XXX stat+msg */
2579 		return NULL;
2580 	}
2581 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2582 	ath_rate_node_init(sc, an);
2583 
2584 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2585 	return &an->an_node;
2586 }
2587 
2588 static void
2589 ath_node_free(struct ieee80211_node *ni)
2590 {
2591 	struct ieee80211com *ic = ni->ni_ic;
2592         struct ath_softc *sc = ic->ic_ifp->if_softc;
2593 
2594 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2595 
2596 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2597 	sc->sc_node_free(ni);
2598 }
2599 
2600 static uint8_t
2601 ath_node_getrssi(const struct ieee80211_node *ni)
2602 {
2603 #define	HAL_EP_RND(x, mul) \
2604 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2605 	uint32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2606 	int32_t rssi;
2607 
2608 	/*
2609 	 * When only one frame is received there will be no state in
2610 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2611 	 */
2612 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2613 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2614 	else
2615 		rssi = ni->ni_rssi;
2616 	/* NB: theoretically we shouldn't need this, but be paranoid */
2617 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2618 #undef HAL_EP_RND
2619 }
2620 
2621 static int
2622 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2623 {
2624 	struct ath_hal *ah = sc->sc_ah;
2625 	int error;
2626 	struct mbuf *m;
2627 	struct ath_desc *ds;
2628 
2629 	m = bf->bf_m;
2630 	if (m == NULL) {
2631 		/*
2632 		 * NB: by assigning a page to the rx dma buffer we
2633 		 * implicitly satisfy the Atheros requirement that
2634 		 * this buffer be cache-line-aligned and sized to be
2635 		 * multiple of the cache line size.  Not doing this
2636 		 * causes weird stuff to happen (for the 5210 at least).
2637 		 */
2638 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2639 		if (m == NULL) {
2640 			DPRINTF(sc, ATH_DEBUG_ANY,
2641 				"%s: no mbuf/cluster\n", __func__);
2642 			sc->sc_stats.ast_rx_nombuf++;
2643 			return ENOMEM;
2644 		}
2645 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2646 
2647 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2648 					     ath_dma_map_mbuf, bf,
2649 					     BUS_DMA_NOWAIT);
2650 		if (error != 0) {
2651 			DPRINTF(sc, ATH_DEBUG_ANY,
2652 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2653 			    __func__, error);
2654 			sc->sc_stats.ast_rx_busdma++;
2655 			m_freem(m);
2656 			return error;
2657 		}
2658 		KASSERT(bf->bf_nseg == 1,
2659 			("multi-segment packet; nseg %u", bf->bf_nseg));
2660 		bf->bf_m = m;
2661 	}
2662 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2663 
2664 	/*
2665 	 * Setup descriptors.  For receive we always terminate
2666 	 * the descriptor list with a self-linked entry so we'll
2667 	 * not get overrun under high load (as can happen with a
2668 	 * 5212 when ANI processing enables PHY error frames).
2669 	 *
2670 	 * To insure the last descriptor is self-linked we create
2671 	 * each descriptor as self-linked and add it to the end.  As
2672 	 * each additional descriptor is added the previous self-linked
2673 	 * entry is ``fixed'' naturally.  This should be safe even
2674 	 * if DMA is happening.  When processing RX interrupts we
2675 	 * never remove/process the last, self-linked, entry on the
2676 	 * descriptor list.  This insures the hardware always has
2677 	 * someplace to write a new frame.
2678 	 */
2679 	ds = bf->bf_desc;
2680 	ds->ds_link = bf->bf_daddr;	/* link to self */
2681 	ds->ds_data = bf->bf_segs[0].ds_addr;
2682 	ds->ds_vdata = mtod(m, void *);	/* for radar */
2683 	ath_hal_setuprxdesc(ah, ds
2684 		, m->m_len		/* buffer size */
2685 		, 0
2686 	);
2687 
2688 	if (sc->sc_rxlink != NULL)
2689 		*sc->sc_rxlink = bf->bf_daddr;
2690 	sc->sc_rxlink = &ds->ds_link;
2691 	return 0;
2692 }
2693 
2694 /*
2695  * Extend 15-bit time stamp from rx descriptor to
2696  * a full 64-bit TSF using the specified TSF.
2697  */
2698 static __inline uint64_t
2699 ath_extend_tsf(uint32_t rstamp, uint64_t tsf)
2700 {
2701 	if ((tsf & 0x7fff) < rstamp)
2702 		tsf -= 0x8000;
2703 	return ((tsf &~ 0x7fff) | rstamp);
2704 }
2705 
2706 /*
2707  * Intercept management frames to collect beacon rssi data
2708  * and to do ibss merges.
2709  */
2710 static void
2711 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2712 	struct ieee80211_node *ni,
2713 	int subtype, int rssi, uint32_t rstamp)
2714 {
2715 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2716 
2717 	/*
2718 	 * Call up first so subsequent work can use information
2719 	 * potentially stored in the node (e.g. for ibss merge).
2720 	 */
2721 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2722 	switch (subtype) {
2723 	case IEEE80211_FC0_SUBTYPE_BEACON:
2724 		/* update rssi statistics for use by the hal */
2725 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2726 		if (sc->sc_syncbeacon &&
2727 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2728 			/*
2729 			 * Resync beacon timers using the tsf of the beacon
2730 			 * frame we just received.
2731 			 */
2732 			ath_beacon_config(sc);
2733 		}
2734 		/* fall thru... */
2735 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2736 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2737 		    ic->ic_state == IEEE80211_S_RUN) {
2738 			uint64_t tsf = ath_extend_tsf(rstamp,
2739 				ath_hal_gettsf64(sc->sc_ah));
2740 			/*
2741 			 * Handle ibss merge as needed; check the tsf on the
2742 			 * frame before attempting the merge.  The 802.11 spec
2743 			 * says the station should change it's bssid to match
2744 			 * the oldest station with the same ssid, where oldest
2745 			 * is determined by the tsf.  Note that hardware
2746 			 * reconfiguration happens through callback to
2747 			 * ath_newstate as the state machine will go from
2748 			 * RUN -> RUN when this happens.
2749 			 */
2750 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2751 				DPRINTF(sc, ATH_DEBUG_STATE,
2752 				    "ibss merge, rstamp %u tsf %ju "
2753 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2754 				    (uintmax_t)ni->ni_tstamp.tsf);
2755 				ieee80211_ibss_merge(ni);
2756 			}
2757 		}
2758 		break;
2759 	}
2760 }
2761 
2762 /*
2763  * Set the default antenna.
2764  */
2765 static void
2766 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2767 {
2768 	struct ath_hal *ah = sc->sc_ah;
2769 
2770 	/* XXX block beacon interrupts */
2771 	ath_hal_setdefantenna(ah, antenna);
2772 	if (sc->sc_defant != antenna)
2773 		sc->sc_stats.ast_ant_defswitch++;
2774 	sc->sc_defant = antenna;
2775 	sc->sc_rxotherant = 0;
2776 }
2777 
2778 static int
2779 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2780 	const struct ath_desc *ds, uint64_t tsf, int16_t nf)
2781 {
2782 	uint8_t rix;
2783 
2784 	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2785 
2786 	/*
2787 	 * Discard anything shorter than an ack or cts.
2788 	 */
2789 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2790 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2791 			__func__, m->m_pkthdr.len);
2792 		sc->sc_stats.ast_rx_tooshort++;
2793 		return 0;
2794 	}
2795 	sc->sc_rx_th.wr_tsf = htole64(
2796 		ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
2797 	rix = ds->ds_rxstat.rs_rate;
2798 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2799 	if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2800 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2801 	/* XXX propagate other error flags from descriptor */
2802 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2803 	sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
2804 	sc->sc_rx_th.wr_antnoise = nf;
2805 	sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2806 
2807 	bpf_ptap(sc->sc_drvbpf, m, &sc->sc_rx_th, sc->sc_rx_th_len);
2808 
2809 	return 1;
2810 }
2811 
2812 static void
2813 ath_rx_proc(struct ath_softc *sc)
2814 {
2815 #define	PA2DESC(_sc, _pa) \
2816 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2817 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2818 	struct ath_buf *bf;
2819 	struct ieee80211com *ic = &sc->sc_ic;
2820 	struct ifnet *ifp = &ic->ic_if;
2821 	struct ath_hal *ah = sc->sc_ah;
2822 	struct ath_desc *ds;
2823 	struct mbuf *m;
2824 	struct ieee80211_node *ni;
2825 	struct ath_node *an;
2826 	int len, type, ngood;
2827 	u_int phyerr;
2828 	HAL_STATUS status;
2829 	int16_t nf;
2830 	uint64_t tsf;
2831 
2832 	ngood = 0;
2833 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2834 	tsf = ath_hal_gettsf64(ah);
2835 	do {
2836 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2837 		if (bf == NULL) {		/* NB: shouldn't happen */
2838 			if_printf(ifp, "%s: no buffer!\n", __func__);
2839 			break;
2840 		}
2841 		m = bf->bf_m;
2842 		if (m == NULL) {		/* NB: shouldn't happen */
2843 			/*
2844 			 * If mbuf allocation failed previously there
2845 			 * will be no mbuf; try again to re-populate it.
2846 			 */
2847 			/* XXX make debug msg */
2848 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2849 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2850 			goto rx_next;
2851 		}
2852 		ds = bf->bf_desc;
2853 		if (ds->ds_link == bf->bf_daddr) {
2854 			/* NB: never process the self-linked entry at the end */
2855 			break;
2856 		}
2857 		/* XXX sync descriptor memory */
2858 		/*
2859 		 * Must provide the virtual address of the current
2860 		 * descriptor, the physical address, and the virtual
2861 		 * address of the next descriptor in the h/w chain.
2862 		 * This allows the HAL to look ahead to see if the
2863 		 * hardware is done with a descriptor by checking the
2864 		 * done bit in the following descriptor and the address
2865 		 * of the current descriptor the DMA engine is working
2866 		 * on.  All this is necessary because of our use of
2867 		 * a self-linked list to avoid rx overruns.
2868 		 */
2869 		status = ath_hal_rxprocdesc(ah, ds,
2870 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2871 #ifdef ATH_DEBUG
2872 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2873 			ath_printrxbuf(bf, 0, status == HAL_OK);
2874 #endif
2875 		if (status == HAL_EINPROGRESS)
2876 			break;
2877 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2878 		if (ds->ds_rxstat.rs_more) {
2879 			/*
2880 			 * Frame spans multiple descriptors; this
2881 			 * cannot happen yet as we don't support
2882 			 * jumbograms.  If not in monitor mode,
2883 			 * discard the frame.
2884 			 */
2885 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2886 				sc->sc_stats.ast_rx_toobig++;
2887 				goto rx_next;
2888 			}
2889 			/* fall thru for monitor mode handling... */
2890 		} else if (ds->ds_rxstat.rs_status != 0) {
2891 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2892 				sc->sc_stats.ast_rx_crcerr++;
2893 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2894 				sc->sc_stats.ast_rx_fifoerr++;
2895 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2896 				sc->sc_stats.ast_rx_phyerr++;
2897 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2898 				sc->sc_stats.ast_rx_phy[phyerr]++;
2899 				goto rx_next;
2900 			}
2901 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2902 				/*
2903 				 * Decrypt error.  If the error occurred
2904 				 * because there was no hardware key, then
2905 				 * let the frame through so the upper layers
2906 				 * can process it.  This is necessary for 5210
2907 				 * parts which have no way to setup a ``clear''
2908 				 * key cache entry.
2909 				 *
2910 				 * XXX do key cache faulting
2911 				 */
2912 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2913 					goto rx_accept;
2914 				sc->sc_stats.ast_rx_badcrypt++;
2915 			}
2916 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2917 				sc->sc_stats.ast_rx_badmic++;
2918 				/*
2919 				 * Do minimal work required to hand off
2920 				 * the 802.11 header for notifcation.
2921 				 */
2922 				/* XXX frag's and qos frames */
2923 				len = ds->ds_rxstat.rs_datalen;
2924 				if (len >= sizeof (struct ieee80211_frame)) {
2925 					bus_dmamap_sync(sc->sc_dmat,
2926 					    bf->bf_dmamap,
2927 					    BUS_DMASYNC_POSTREAD);
2928 					ieee80211_notify_michael_failure(ic,
2929 					    mtod(m, struct ieee80211_frame *),
2930 					    sc->sc_splitmic ?
2931 					        ds->ds_rxstat.rs_keyix-32 :
2932 					        ds->ds_rxstat.rs_keyix
2933 					);
2934 				}
2935 			}
2936 			ifp->if_ierrors++;
2937 			/*
2938 			 * When a tap is present pass error frames
2939 			 * that have been requested.  By default we
2940 			 * pass decrypt+mic errors but others may be
2941 			 * interesting (e.g. crc).
2942 			 */
2943 			if (sc->sc_drvbpf != NULL &&
2944 			    (ds->ds_rxstat.rs_status & sc->sc_monpass)) {
2945 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2946 				    BUS_DMASYNC_POSTREAD);
2947 				/* NB: bpf needs the mbuf length setup */
2948 				len = ds->ds_rxstat.rs_datalen;
2949 				m->m_pkthdr.len = m->m_len = len;
2950 				ath_rx_tap(sc, m, ds, tsf, nf);
2951 			}
2952 			/* XXX pass MIC errors up for s/w reclaculation */
2953 			goto rx_next;
2954 		}
2955 rx_accept:
2956 		/*
2957 		 * Sync and unmap the frame.  At this point we're
2958 		 * committed to passing the mbuf somewhere so clear
2959 		 * bf_m; this means a new sk_buff must be allocated
2960 		 * when the rx descriptor is setup again to receive
2961 		 * another frame.
2962 		 */
2963 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2964 		    BUS_DMASYNC_POSTREAD);
2965 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2966 		bf->bf_m = NULL;
2967 
2968 		m->m_pkthdr.rcvif = ifp;
2969 		len = ds->ds_rxstat.rs_datalen;
2970 		m->m_pkthdr.len = m->m_len = len;
2971 
2972 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2973 
2974 		if (sc->sc_drvbpf != NULL && !ath_rx_tap(sc, m, ds, tsf, nf)) {
2975 			m_freem(m);		/* XXX reclaim */
2976 			goto rx_next;
2977 		}
2978 
2979 		/*
2980 		 * From this point on we assume the frame is at least
2981 		 * as large as ieee80211_frame_min; verify that.
2982 		 */
2983 		if (len < IEEE80211_MIN_LEN) {
2984 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2985 				__func__, len);
2986 			sc->sc_stats.ast_rx_tooshort++;
2987 			m_freem(m);
2988 			goto rx_next;
2989 		}
2990 
2991 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2992 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2993 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2994 				   ds->ds_rxstat.rs_rssi);
2995 		}
2996 
2997 		m_adj(m, -IEEE80211_CRC_LEN);
2998 
2999 		/*
3000 		 * Locate the node for sender, track state, and then
3001 		 * pass the (referenced) node up to the 802.11 layer
3002 		 * for its use.
3003 		 */
3004 		ni = ieee80211_find_rxnode_withkey(ic,
3005 			mtod(m, const struct ieee80211_frame_min *),
3006 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3007 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3008 		/*
3009 		 * Track rx rssi and do any rx antenna management.
3010 		 */
3011 		an = ATH_NODE(ni);
3012 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3013 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3014 		/*
3015 		 * Send frame up for processing.
3016 		 */
3017 		type = ieee80211_input(ic, m, ni,
3018 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3019 		ieee80211_free_node(ni);
3020 		if (sc->sc_diversity) {
3021 			/*
3022 			 * When using fast diversity, change the default rx
3023 			 * antenna if diversity chooses the other antenna 3
3024 			 * times in a row.
3025 			 */
3026 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3027 				if (++sc->sc_rxotherant >= 3)
3028 					ath_setdefantenna(sc,
3029 						ds->ds_rxstat.rs_antenna);
3030 			} else
3031 				sc->sc_rxotherant = 0;
3032 		}
3033 		if (sc->sc_softled) {
3034 			/*
3035 			 * Blink for any data frame.  Otherwise do a
3036 			 * heartbeat-style blink when idle.  The latter
3037 			 * is mainly for station mode where we depend on
3038 			 * periodic beacon frames to trigger the poll event.
3039 			 */
3040 			if (type == IEEE80211_FC0_TYPE_DATA) {
3041 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3042 				ath_led_event(sc, ATH_LED_RX);
3043 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3044 				ath_led_event(sc, ATH_LED_POLL);
3045 		}
3046 		/*
3047 		 * Arrange to update the last rx timestamp only for
3048 		 * frames from our ap when operating in station mode.
3049 		 * This assumes the rx key is always setup when associated.
3050 		 */
3051 		if (ic->ic_opmode == IEEE80211_M_STA &&
3052 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3053 			ngood++;
3054 rx_next:
3055 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3056 	} while (ath_rxbuf_init(sc, bf) == 0);
3057 
3058 	/* rx signal state monitoring */
3059 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3060 	if (ath_hal_radar_event(ah))
3061 		ath_radar_proc(sc);
3062 	if (ngood)
3063 		sc->sc_lastrx = tsf;
3064 #undef PA2DESC
3065 }
3066 
3067 /*
3068  * Setup a h/w transmit queue.
3069  */
3070 static struct ath_txq *
3071 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3072 {
3073 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3074 	struct ath_hal *ah = sc->sc_ah;
3075 	HAL_TXQ_INFO qi;
3076 	int qnum;
3077 
3078 	memset(&qi, 0, sizeof(qi));
3079 	qi.tqi_subtype = subtype;
3080 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3081 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3082 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3083 	/*
3084 	 * Enable interrupts only for EOL and DESC conditions.
3085 	 * We mark tx descriptors to receive a DESC interrupt
3086 	 * when a tx queue gets deep; otherwise waiting for the
3087 	 * EOL to reap descriptors.  Note that this is done to
3088 	 * reduce interrupt load and this only defers reaping
3089 	 * descriptors, never transmitting frames.  Aside from
3090 	 * reducing interrupts this also permits more concurrency.
3091 	 * The only potential downside is if the tx queue backs
3092 	 * up in which case the top half of the kernel may backup
3093 	 * due to a lack of tx descriptors.
3094 	 */
3095 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3096 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3097 	if (qnum == -1) {
3098 		/*
3099 		 * NB: don't print a message, this happens
3100 		 * normally on parts with too few tx queues
3101 		 */
3102 		return NULL;
3103 	}
3104 	if (qnum >= N(sc->sc_txq)) {
3105 		device_printf(sc->sc_dev,
3106 			"hal qnum %u out of range, max %zu!\n",
3107 			qnum, N(sc->sc_txq));
3108 		ath_hal_releasetxqueue(ah, qnum);
3109 		return NULL;
3110 	}
3111 	if (!IS_ATH_TXQ_SETUP(sc, qnum)) {
3112 		struct ath_txq *txq = &sc->sc_txq[qnum];
3113 
3114 		txq->axq_qnum = qnum;
3115 		txq->axq_depth = 0;
3116 		txq->axq_intrcnt = 0;
3117 		txq->axq_link = NULL;
3118 		STAILQ_INIT(&txq->axq_q);
3119 		ATH_TXQ_SETUP(sc, qnum);
3120 	}
3121 	return &sc->sc_txq[qnum];
3122 #undef N
3123 }
3124 
3125 /*
3126  * Setup a hardware data transmit queue for the specified
3127  * access control.  The hal may not support all requested
3128  * queues in which case it will return a reference to a
3129  * previously setup queue.  We record the mapping from ac's
3130  * to h/w queues for use by ath_tx_start and also track
3131  * the set of h/w queues being used to optimize work in the
3132  * transmit interrupt handler and related routines.
3133  */
3134 static int
3135 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3136 {
3137 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3138 	struct ath_txq *txq;
3139 
3140 	if (ac >= N(sc->sc_ac2q)) {
3141 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3142 			ac, N(sc->sc_ac2q));
3143 		return 0;
3144 	}
3145 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3146 	if (txq != NULL) {
3147 		sc->sc_ac2q[ac] = txq;
3148 		return 1;
3149 	} else {
3150 		return 0;
3151 	}
3152 #undef N
3153 }
3154 
3155 /*
3156  * Update WME parameters for a transmit queue.
3157  */
3158 static int
3159 ath_txq_update(struct ath_softc *sc, int ac)
3160 {
3161 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3162 #define	ATH_TXOP_TO_US(v)		(v<<5)
3163 	struct ieee80211com *ic = &sc->sc_ic;
3164 	struct ath_txq *txq = sc->sc_ac2q[ac];
3165 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3166 	struct ath_hal *ah = sc->sc_ah;
3167 	HAL_TXQ_INFO qi;
3168 
3169 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3170 	qi.tqi_aifs = wmep->wmep_aifsn;
3171 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3172 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3173 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3174 
3175 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3176 		device_printf(sc->sc_dev, "unable to update hardware queue "
3177 			"parameters for %s traffic!\n",
3178 			ieee80211_wme_acnames[ac]);
3179 		return 0;
3180 	} else {
3181 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3182 		return 1;
3183 	}
3184 #undef ATH_TXOP_TO_US
3185 #undef ATH_EXPONENT_TO_VALUE
3186 }
3187 
3188 /*
3189  * Callback from the 802.11 layer to update WME parameters.
3190  */
3191 static int
3192 ath_wme_update(struct ieee80211com *ic)
3193 {
3194 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3195 
3196 	return !ath_txq_update(sc, WME_AC_BE) ||
3197 	    !ath_txq_update(sc, WME_AC_BK) ||
3198 	    !ath_txq_update(sc, WME_AC_VI) ||
3199 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3200 }
3201 
3202 /*
3203  * Reclaim resources for a setup queue.
3204  */
3205 static void
3206 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3207 {
3208 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3209 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3210 }
3211 
3212 /*
3213  * Reclaim all tx queue resources.
3214  */
3215 static void
3216 ath_tx_cleanup(struct ath_softc *sc)
3217 {
3218 	int i;
3219 
3220 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3221 		if (IS_ATH_TXQ_SETUP(sc, i))
3222 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3223 }
3224 
3225 /*
3226  * Defragment an mbuf chain, returning at most maxfrags separate
3227  * mbufs+clusters.  If this is not possible NULL is returned and
3228  * the original mbuf chain is left in it's present (potentially
3229  * modified) state.  We use two techniques: collapsing consecutive
3230  * mbufs and replacing consecutive mbufs by a cluster.
3231  */
3232 static struct mbuf *
3233 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3234 {
3235 	struct mbuf *m, *n, *n2, **prev;
3236 	u_int curfrags;
3237 
3238 	/*
3239 	 * Calculate the current number of frags.
3240 	 */
3241 	curfrags = 0;
3242 	for (m = m0; m != NULL; m = m->m_next)
3243 		curfrags++;
3244 	/*
3245 	 * First, try to collapse mbufs.  Note that we always collapse
3246 	 * towards the front so we don't need to deal with moving the
3247 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3248 	 * less data than the following.
3249 	 */
3250 	m = m0;
3251 again:
3252 	for (;;) {
3253 		n = m->m_next;
3254 		if (n == NULL)
3255 			break;
3256 		if (n->m_len < M_TRAILINGSPACE(m)) {
3257 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3258 			      n->m_len);
3259 			m->m_len += n->m_len;
3260 			m->m_next = n->m_next;
3261 			m_free(n);
3262 			if (--curfrags <= maxfrags)
3263 				return m0;
3264 		} else
3265 			m = n;
3266 	}
3267 	KASSERT(maxfrags > 1,
3268 		("maxfrags %u, but normal collapse failed", maxfrags));
3269 	/*
3270 	 * Collapse consecutive mbufs to a cluster.
3271 	 */
3272 	prev = &m0->m_next;		/* NB: not the first mbuf */
3273 	while ((n = *prev) != NULL) {
3274 		if ((n2 = n->m_next) != NULL &&
3275 		    n->m_len + n2->m_len < MCLBYTES) {
3276 			m = m_getcl(how, MT_DATA, 0);
3277 			if (m == NULL)
3278 				goto bad;
3279 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3280 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3281 				n2->m_len);
3282 			m->m_len = n->m_len + n2->m_len;
3283 			m->m_next = n2->m_next;
3284 			*prev = m;
3285 			m_free(n);
3286 			m_free(n2);
3287 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3288 				return m0;
3289 			/*
3290 			 * Still not there, try the normal collapse
3291 			 * again before we allocate another cluster.
3292 			 */
3293 			goto again;
3294 		}
3295 		prev = &n->m_next;
3296 	}
3297 	/*
3298 	 * No place where we can collapse to a cluster; punt.
3299 	 * This can occur if, for example, you request 2 frags
3300 	 * but the packet requires that both be clusters (we
3301 	 * never reallocate the first mbuf to avoid moving the
3302 	 * packet header).
3303 	 */
3304 bad:
3305 	return NULL;
3306 }
3307 
3308 /*
3309  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3310  */
3311 static int
3312 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3313 {
3314 	int i;
3315 
3316 	for (i = 0; i < rt->rateCount; i++)
3317 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3318 			return i;
3319 	return 0;		/* NB: lowest rate */
3320 }
3321 
3322 static int
3323 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
3324 	     struct ath_buf *bf, struct mbuf *m0)
3325 {
3326 	struct ieee80211com *ic = &sc->sc_ic;
3327 	struct ath_hal *ah = sc->sc_ah;
3328 	struct ifnet *ifp = &ic->ic_if;
3329 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3330 	int i, error, iswep, ismcast, ismrr;
3331 	int keyix, hdrlen, pktlen, try0;
3332 	uint8_t rix, txrate, ctsrate;
3333 	uint8_t cix = 0xff;		/* NB: silence compiler */
3334 	struct ath_desc *ds, *ds0;
3335 	struct ath_txq *txq;
3336 	struct ieee80211_frame *wh;
3337 	u_int subtype, flags, ctsduration;
3338 	HAL_PKT_TYPE atype;
3339 	const HAL_RATE_TABLE *rt;
3340 	HAL_BOOL shortPreamble;
3341 	struct ath_node *an;
3342 	struct mbuf *m;
3343 	u_int pri;
3344 
3345 	wh = mtod(m0, struct ieee80211_frame *);
3346 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3347 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3348 	hdrlen = ieee80211_anyhdrsize(wh);
3349 	/*
3350 	 * Packet length must not include any
3351 	 * pad bytes; deduct them here.
3352 	 */
3353 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3354 
3355 	if (iswep) {
3356 		const struct ieee80211_cipher *cip;
3357 		struct ieee80211_key *k;
3358 
3359 		/*
3360 		 * Construct the 802.11 header+trailer for an encrypted
3361 		 * frame. The only reason this can fail is because of an
3362 		 * unknown or unsupported cipher/key type.
3363 		 */
3364 		k = ieee80211_crypto_encap(ic, ni, m0);
3365 		if (k == NULL) {
3366 			/*
3367 			 * This can happen when the key is yanked after the
3368 			 * frame was queued.  Just discard the frame; the
3369 			 * 802.11 layer counts failures and provides
3370 			 * debugging/diagnostics.
3371 			 */
3372 			m_freem(m0);
3373 			return EIO;
3374 		}
3375 		/*
3376 		 * Adjust the packet + header lengths for the crypto
3377 		 * additions and calculate the h/w key index.  When
3378 		 * a s/w mic is done the frame will have had any mic
3379 		 * added to it prior to entry so m0->m_pkthdr.len above will
3380 		 * account for it. Otherwise we need to add it to the
3381 		 * packet length.
3382 		 */
3383 		cip = k->wk_cipher;
3384 		hdrlen += cip->ic_header;
3385 		pktlen += cip->ic_header + cip->ic_trailer;
3386 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3387 			pktlen += cip->ic_miclen;
3388 		keyix = k->wk_keyix;
3389 
3390 		/* packet header may have moved, reset our local pointer */
3391 		wh = mtod(m0, struct ieee80211_frame *);
3392 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3393 		/*
3394 		 * Use station key cache slot, if assigned.
3395 		 */
3396 		keyix = ni->ni_ucastkey.wk_keyix;
3397 		if (keyix == IEEE80211_KEYIX_NONE)
3398 			keyix = HAL_TXKEYIX_INVALID;
3399 	} else
3400 		keyix = HAL_TXKEYIX_INVALID;
3401 
3402 	pktlen += IEEE80211_CRC_LEN;
3403 
3404 	/*
3405 	 * Load the DMA map so any coalescing is done.  This
3406 	 * also calculates the number of descriptors we need.
3407 	 */
3408 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3409 				     ath_dma_map_mbuf, bf, BUS_DMA_NOWAIT);
3410 	if (error == EFBIG) {
3411 		/* XXX packet requires too many descriptors */
3412 		bf->bf_nseg = ATH_TXDESC+1;
3413 	} else if (error != 0) {
3414 		sc->sc_stats.ast_tx_busdma++;
3415 		m_freem(m0);
3416 		return error;
3417 	}
3418 	/*
3419 	 * Discard null packets and check for packets that
3420 	 * require too many TX descriptors.  We try to convert
3421 	 * the latter to a cluster.
3422 	 */
3423 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3424 		sc->sc_stats.ast_tx_linear++;
3425 		m = ath_defrag(m0, MB_DONTWAIT, ATH_TXDESC);
3426 		if (m == NULL) {
3427 			m_freem(m0);
3428 			sc->sc_stats.ast_tx_nombuf++;
3429 			return ENOMEM;
3430 		}
3431 		m0 = m;
3432 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3433 					     ath_dma_map_mbuf, bf,
3434 					     BUS_DMA_NOWAIT);
3435 		if (error != 0) {
3436 			sc->sc_stats.ast_tx_busdma++;
3437 			m_freem(m0);
3438 			return error;
3439 		}
3440 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3441 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3442 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3443 		sc->sc_stats.ast_tx_nodata++;
3444 		m_freem(m0);
3445 		return EIO;
3446 	}
3447 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3448 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3449 	bf->bf_m = m0;
3450 	bf->bf_node = ni;			/* NB: held reference */
3451 
3452 	/* setup descriptors */
3453 	ds = bf->bf_desc;
3454 	rt = sc->sc_currates;
3455 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3456 
3457 	/*
3458 	 * NB: the 802.11 layer marks whether or not we should
3459 	 * use short preamble based on the current mode and
3460 	 * negotiated parameters.
3461 	 */
3462 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3463 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3464 		shortPreamble = AH_TRUE;
3465 		sc->sc_stats.ast_tx_shortpre++;
3466 	} else {
3467 		shortPreamble = AH_FALSE;
3468 	}
3469 
3470 	an = ATH_NODE(ni);
3471 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3472 	ismrr = 0;				/* default no multi-rate retry*/
3473 	/*
3474 	 * Calculate Atheros packet type from IEEE80211 packet header,
3475 	 * setup for rate calculations, and select h/w transmit queue.
3476 	 */
3477 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3478 	case IEEE80211_FC0_TYPE_MGT:
3479 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3480 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3481 			atype = HAL_PKT_TYPE_BEACON;
3482 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3483 			atype = HAL_PKT_TYPE_PROBE_RESP;
3484 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3485 			atype = HAL_PKT_TYPE_ATIM;
3486 		else
3487 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3488 		rix = sc->sc_minrateix;
3489 		txrate = rt->info[rix].rateCode;
3490 		if (shortPreamble)
3491 			txrate |= rt->info[rix].shortPreamble;
3492 		try0 = ATH_TXMGTTRY;
3493 		/* NB: force all management frames to highest queue */
3494 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3495 			/* NB: force all management frames to highest queue */
3496 			pri = WME_AC_VO;
3497 		} else
3498 			pri = WME_AC_BE;
3499 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3500 		break;
3501 	case IEEE80211_FC0_TYPE_CTL:
3502 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3503 		rix = sc->sc_minrateix;
3504 		txrate = rt->info[rix].rateCode;
3505 		if (shortPreamble)
3506 			txrate |= rt->info[rix].shortPreamble;
3507 		try0 = ATH_TXMGTTRY;
3508 		/* NB: force all ctl frames to highest queue */
3509 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3510 			/* NB: force all ctl frames to highest queue */
3511 			pri = WME_AC_VO;
3512 		} else
3513 			pri = WME_AC_BE;
3514 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3515 		break;
3516 	case IEEE80211_FC0_TYPE_DATA:
3517 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3518 		/*
3519 		 * Data frames: multicast frames go out at a fixed rate,
3520 		 * otherwise consult the rate control module for the
3521 		 * rate to use.
3522 		 */
3523 		if (ismcast) {
3524 			/*
3525 			 * Check mcast rate setting in case it's changed.
3526 			 * XXX move out of fastpath
3527 			 */
3528 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3529 				sc->sc_mcastrix =
3530 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3531 				sc->sc_mcastrate = ic->ic_mcast_rate;
3532 			}
3533 			rix = sc->sc_mcastrix;
3534 			txrate = rt->info[rix].rateCode;
3535 			if (shortPreamble)
3536 				txrate |= rt->info[rix].shortPreamble;
3537 			try0 = 1;
3538 		} else {
3539 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3540 				&rix, &try0, &txrate);
3541 			sc->sc_txrate = txrate;		/* for LED blinking */
3542 			if (try0 != ATH_TXMAXTRY)
3543 				ismrr = 1;
3544 		}
3545 		pri = M_WME_GETAC(m0);
3546 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3547 			flags |= HAL_TXDESC_NOACK;
3548 		break;
3549 	default:
3550 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3551 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3552 		/* XXX statistic */
3553 		m_freem(m0);
3554 		return EIO;
3555 	}
3556 	txq = sc->sc_ac2q[pri];
3557 
3558 	/*
3559 	 * When servicing one or more stations in power-save mode
3560 	 * multicast frames must be buffered until after the beacon.
3561 	 * We use the CAB queue for that.
3562 	 */
3563 	if (ismcast && ic->ic_ps_sta) {
3564 		txq = sc->sc_cabq;
3565 		/* XXX? more bit in 802.11 frame header */
3566 	}
3567 
3568 	/*
3569 	 * Calculate miscellaneous flags.
3570 	 */
3571 	if (ismcast) {
3572 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3573 	} else if (pktlen > ic->ic_rtsthreshold) {
3574 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3575 		cix = rt->info[rix].controlRate;
3576 		sc->sc_stats.ast_tx_rts++;
3577 	}
3578 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3579 		sc->sc_stats.ast_tx_noack++;
3580 
3581 	/*
3582 	 * If 802.11g protection is enabled, determine whether
3583 	 * to use RTS/CTS or just CTS.  Note that this is only
3584 	 * done for OFDM unicast frames.
3585 	 */
3586 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3587 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3588 	    (flags & HAL_TXDESC_NOACK) == 0) {
3589 		/* XXX fragments must use CCK rates w/ protection */
3590 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3591 			flags |= HAL_TXDESC_RTSENA;
3592 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3593 			flags |= HAL_TXDESC_CTSENA;
3594 		cix = rt->info[sc->sc_protrix].controlRate;
3595 		sc->sc_stats.ast_tx_protect++;
3596 	}
3597 
3598 	/*
3599 	 * Calculate duration.  This logically belongs in the 802.11
3600 	 * layer but it lacks sufficient information to calculate it.
3601 	 */
3602 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3603 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3604 		uint16_t dur;
3605 		/*
3606 		 * XXX not right with fragmentation.
3607 		 */
3608 		if (shortPreamble)
3609 			dur = rt->info[rix].spAckDuration;
3610 		else
3611 			dur = rt->info[rix].lpAckDuration;
3612 		*(uint16_t *)wh->i_dur = htole16(dur);
3613 	}
3614 
3615 	/*
3616 	 * Calculate RTS/CTS rate and duration if needed.
3617 	 */
3618 	ctsduration = 0;
3619 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3620 		/*
3621 		 * CTS transmit rate is derived from the transmit rate
3622 		 * by looking in the h/w rate table.  We must also factor
3623 		 * in whether or not a short preamble is to be used.
3624 		 */
3625 		/* NB: cix is set above where RTS/CTS is enabled */
3626 		KASSERT(cix != 0xff, ("cix not setup"));
3627 		ctsrate = rt->info[cix].rateCode;
3628 		/*
3629 		 * Compute the transmit duration based on the frame
3630 		 * size and the size of an ACK frame.  We call into the
3631 		 * HAL to do the computation since it depends on the
3632 		 * characteristics of the actual PHY being used.
3633 		 *
3634 		 * NB: CTS is assumed the same size as an ACK so we can
3635 		 *     use the precalculated ACK durations.
3636 		 */
3637 		if (shortPreamble) {
3638 			ctsrate |= rt->info[cix].shortPreamble;
3639 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3640 				ctsduration += rt->info[cix].spAckDuration;
3641 			ctsduration += ath_hal_computetxtime(ah,
3642 				rt, pktlen, rix, AH_TRUE);
3643 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3644 				ctsduration += rt->info[rix].spAckDuration;
3645 		} else {
3646 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3647 				ctsduration += rt->info[cix].lpAckDuration;
3648 			ctsduration += ath_hal_computetxtime(ah,
3649 				rt, pktlen, rix, AH_FALSE);
3650 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3651 				ctsduration += rt->info[rix].lpAckDuration;
3652 		}
3653 		/*
3654 		 * Must disable multi-rate retry when using RTS/CTS.
3655 		 */
3656 		ismrr = 0;
3657 		try0 = ATH_TXMGTTRY;		/* XXX */
3658 	} else
3659 		ctsrate = 0;
3660 
3661 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3662 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3663 			sc->sc_hwmap[txrate].ieeerate, -1);
3664 
3665 	if (ic->ic_rawbpf)
3666 		bpf_mtap(ic->ic_rawbpf, m0);
3667 	if (sc->sc_drvbpf) {
3668 		uint64_t tsf = ath_hal_gettsf64(ah);
3669 
3670 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3671 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3672 		if (iswep)
3673 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3674 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3675 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3676 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3677 
3678 		bpf_ptap(sc->sc_drvbpf, m0, &sc->sc_tx_th, sc->sc_tx_th_len);
3679 	}
3680 
3681 	/*
3682 	 * Determine if a tx interrupt should be generated for
3683 	 * this descriptor.  We take a tx interrupt to reap
3684 	 * descriptors when the h/w hits an EOL condition or
3685 	 * when the descriptor is specifically marked to generate
3686 	 * an interrupt.  We periodically mark descriptors in this
3687 	 * way to insure timely replenishing of the supply needed
3688 	 * for sending frames.  Defering interrupts reduces system
3689 	 * load and potentially allows more concurrent work to be
3690 	 * done but if done to aggressively can cause senders to
3691 	 * backup.
3692 	 *
3693 	 * NB: use >= to deal with sc_txintrperiod changing
3694 	 *     dynamically through sysctl.
3695 	 */
3696 	if (flags & HAL_TXDESC_INTREQ) {
3697 		txq->axq_intrcnt = 0;
3698 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3699 		flags |= HAL_TXDESC_INTREQ;
3700 		txq->axq_intrcnt = 0;
3701 	}
3702 
3703 	/*
3704 	 * Formulate first tx descriptor with tx controls.
3705 	 */
3706 	/* XXX check return value? */
3707 	ath_hal_setuptxdesc(ah, ds
3708 		, pktlen		/* packet length */
3709 		, hdrlen		/* header length */
3710 		, atype			/* Atheros packet type */
3711 		, ni->ni_txpower	/* txpower */
3712 		, txrate, try0		/* series 0 rate/tries */
3713 		, keyix			/* key cache index */
3714 		, sc->sc_txantenna	/* antenna mode */
3715 		, flags			/* flags */
3716 		, ctsrate		/* rts/cts rate */
3717 		, ctsduration		/* rts/cts duration */
3718 	);
3719 	bf->bf_flags = flags;
3720 	/*
3721 	 * Setup the multi-rate retry state only when we're
3722 	 * going to use it.  This assumes ath_hal_setuptxdesc
3723 	 * initializes the descriptors (so we don't have to)
3724 	 * when the hardware supports multi-rate retry and
3725 	 * we don't use it.
3726 	 */
3727 	if (ismrr)
3728 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3729 
3730 	/*
3731 	 * Fillin the remainder of the descriptor info.
3732 	 */
3733 	ds0 = ds;
3734 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3735 		ds->ds_data = bf->bf_segs[i].ds_addr;
3736 		if (i == bf->bf_nseg - 1)
3737 			ds->ds_link = 0;
3738 		else
3739 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3740 		ath_hal_filltxdesc(ah, ds
3741 			, bf->bf_segs[i].ds_len	/* segment length */
3742 			, i == 0		/* first segment */
3743 			, i == bf->bf_nseg - 1	/* last segment */
3744 			, ds0			/* first descriptor */
3745 		);
3746 		DPRINTF(sc, ATH_DEBUG_XMIT,
3747 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3748 			__func__, i, ds->ds_link, ds->ds_data,
3749 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3750 	}
3751 	/*
3752 	 * Insert the frame on the outbound list and
3753 	 * pass it on to the hardware.
3754 	 */
3755 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3756 	if (txq->axq_link == NULL) {
3757 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3758 		DPRINTF(sc, ATH_DEBUG_XMIT,
3759 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3760 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3761 			txq->axq_depth);
3762 	} else {
3763 		*txq->axq_link = bf->bf_daddr;
3764 		DPRINTF(sc, ATH_DEBUG_XMIT,
3765 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3766 			txq->axq_qnum, txq->axq_link,
3767 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3768 	}
3769 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3770 	/*
3771 	 * The CAB queue is started from the SWBA handler since
3772 	 * frames only go out on DTIM and to avoid possible races.
3773 	 */
3774 	if (txq != sc->sc_cabq)
3775 		ath_hal_txstart(ah, txq->axq_qnum);
3776 
3777 	return 0;
3778 }
3779 
3780 /*
3781  * Process completed xmit descriptors from the specified queue.
3782  */
3783 static int
3784 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3785 {
3786 	struct ath_hal *ah = sc->sc_ah;
3787 	struct ieee80211com *ic = &sc->sc_ic;
3788 	struct ath_buf *bf;
3789 	struct ath_desc *ds, *ds0;
3790 	struct ieee80211_node *ni;
3791 	struct ath_node *an;
3792 	int sr, lr, pri, nacked;
3793 	HAL_STATUS status;
3794 
3795 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3796 		__func__, txq->axq_qnum,
3797 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3798 		txq->axq_link);
3799 	nacked = 0;
3800 	for (;;) {
3801 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3802 		bf = STAILQ_FIRST(&txq->axq_q);
3803 		if (bf == NULL)
3804 			break;
3805 		ds0 = &bf->bf_desc[0];
3806 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3807 		status = ath_hal_txprocdesc(ah, ds);
3808 #ifdef ATH_DEBUG
3809 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3810 			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
3811 #endif
3812 		if (status == HAL_EINPROGRESS)
3813 			break;
3814 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3815 		if (txq->axq_depth == 0)
3816 			txq->axq_link = NULL;
3817 
3818 		ni = bf->bf_node;
3819 		if (ni != NULL) {
3820 			an = ATH_NODE(ni);
3821 			if (ds->ds_txstat.ts_status == 0) {
3822 				uint8_t txant = ds->ds_txstat.ts_antenna;
3823 				sc->sc_stats.ast_ant_tx[txant]++;
3824 				sc->sc_ant_tx[txant]++;
3825 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3826 					sc->sc_stats.ast_tx_altrate++;
3827 				sc->sc_stats.ast_tx_rssi =
3828 					ds->ds_txstat.ts_rssi;
3829 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3830 					ds->ds_txstat.ts_rssi);
3831 				pri = M_WME_GETAC(bf->bf_m);
3832 				if (pri >= WME_AC_VO)
3833 					ic->ic_wme.wme_hipri_traffic++;
3834 				ni->ni_inact = ni->ni_inact_reload;
3835 			} else {
3836 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3837 					sc->sc_stats.ast_tx_xretries++;
3838 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3839 					sc->sc_stats.ast_tx_fifoerr++;
3840 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3841 					sc->sc_stats.ast_tx_filtered++;
3842 			}
3843 			sr = ds->ds_txstat.ts_shortretry;
3844 			lr = ds->ds_txstat.ts_longretry;
3845 			sc->sc_stats.ast_tx_shortretry += sr;
3846 			sc->sc_stats.ast_tx_longretry += lr;
3847 			/*
3848 			 * Hand the descriptor to the rate control algorithm.
3849 			 */
3850 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3851 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3852 				/*
3853 				 * If frame was ack'd update the last rx time
3854 				 * used to workaround phantom bmiss interrupts.
3855 				 */
3856 				if (ds->ds_txstat.ts_status == 0)
3857 					nacked++;
3858 				ath_rate_tx_complete(sc, an, ds, ds0);
3859 			}
3860 			/*
3861 			 * Reclaim reference to node.
3862 			 *
3863 			 * NB: the node may be reclaimed here if, for example
3864 			 *     this is a DEAUTH message that was sent and the
3865 			 *     node was timed out due to inactivity.
3866 			 */
3867 			ieee80211_free_node(ni);
3868 		}
3869 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3870 		    BUS_DMASYNC_POSTWRITE);
3871 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3872 		m_freem(bf->bf_m);
3873 		bf->bf_m = NULL;
3874 		bf->bf_node = NULL;
3875 
3876 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3877 	}
3878 	return nacked;
3879 }
3880 
3881 static __inline int
3882 txqactive(struct ath_hal *ah, int qnum)
3883 {
3884 	uint32_t txqs = 1<<qnum;
3885 	ath_hal_gettxintrtxqs(ah, &txqs);
3886 	return (txqs & (1<<qnum));
3887 }
3888 
3889 /*
3890  * Deferred processing of transmit interrupt; special-cased
3891  * for a single hardware transmit queue (e.g. 5210 and 5211).
3892  */
3893 static void
3894 ath_tx_proc_q0(struct ath_softc *sc)
3895 {
3896 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3897 
3898 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
3899 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3900 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3901 		ath_tx_processq(sc, sc->sc_cabq);
3902 	ifp->if_flags &= ~IFF_OACTIVE;
3903 	sc->sc_tx_timer = 0;
3904 
3905 	if (sc->sc_softled)
3906 		ath_led_event(sc, ATH_LED_TX);
3907 
3908 	ath_start(ifp);
3909 }
3910 
3911 /*
3912  * Deferred processing of transmit interrupt; special-cased
3913  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3914  */
3915 static void
3916 ath_tx_proc_q0123(struct ath_softc *sc)
3917 {
3918 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3919 	int nacked;
3920 
3921 	/*
3922 	 * Process each active queue.
3923 	 */
3924 	nacked = 0;
3925 	if (txqactive(sc->sc_ah, 0))
3926 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
3927 	if (txqactive(sc->sc_ah, 1))
3928 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
3929 	if (txqactive(sc->sc_ah, 2))
3930 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
3931 	if (txqactive(sc->sc_ah, 3))
3932 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
3933 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3934 		ath_tx_processq(sc, sc->sc_cabq);
3935 	if (nacked)
3936 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3937 
3938 	ifp->if_flags &= ~IFF_OACTIVE;
3939 	sc->sc_tx_timer = 0;
3940 
3941 	if (sc->sc_softled)
3942 		ath_led_event(sc, ATH_LED_TX);
3943 
3944 	ath_start(ifp);
3945 }
3946 
3947 /*
3948  * Deferred processing of transmit interrupt.
3949  */
3950 static void
3951 ath_tx_proc(struct ath_softc *sc)
3952 {
3953 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3954 	int i, nacked;
3955 
3956 	/*
3957 	 * Process each active queue.
3958 	 */
3959 	nacked = 0;
3960 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3961 		if (IS_ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
3962 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
3963 	if (nacked)
3964 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3965 
3966 	ifp->if_flags &= ~IFF_OACTIVE;
3967 	sc->sc_tx_timer = 0;
3968 
3969 	if (sc->sc_softled)
3970 		ath_led_event(sc, ATH_LED_TX);
3971 
3972 	ath_start(ifp);
3973 }
3974 
3975 static void
3976 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3977 {
3978 #ifdef ATH_DEBUG
3979 	struct ath_hal *ah = sc->sc_ah;
3980 #endif
3981 	struct ieee80211_node *ni;
3982 	struct ath_buf *bf;
3983 	u_int ix;
3984 
3985 	/*
3986 	 * NB: this assumes output has been stopped and
3987 	 *     we do not need to block ath_tx_tasklet
3988 	 */
3989 	for (ix = 0;; ix++) {
3990 		bf = STAILQ_FIRST(&txq->axq_q);
3991 		if (bf == NULL) {
3992 			txq->axq_link = NULL;
3993 			break;
3994 		}
3995 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3996 #ifdef ATH_DEBUG
3997 		if (sc->sc_debug & ATH_DEBUG_RESET)
3998 			ath_printtxbuf(bf, txq->axq_qnum, ix,
3999 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4000 #endif /* ATH_DEBUG */
4001 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4002 		m_freem(bf->bf_m);
4003 		bf->bf_m = NULL;
4004 		ni = bf->bf_node;
4005 		bf->bf_node = NULL;
4006 		if (ni != NULL) {
4007 			/*
4008 			 * Reclaim node reference.
4009 			 */
4010 			ieee80211_free_node(ni);
4011 		}
4012 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4013 	}
4014 }
4015 
4016 static void
4017 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4018 {
4019 	struct ath_hal *ah = sc->sc_ah;
4020 
4021 	ath_hal_stoptxdma(ah, txq->axq_qnum);
4022 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4023 	    __func__, txq->axq_qnum,
4024 	    (caddr_t)(uintptr_t)ath_hal_gettxbuf(ah, txq->axq_qnum),
4025 	    txq->axq_link);
4026 }
4027 
4028 /*
4029  * Drain the transmit queues and reclaim resources.
4030  */
4031 static void
4032 ath_draintxq(struct ath_softc *sc)
4033 {
4034 	struct ath_hal *ah = sc->sc_ah;
4035 	struct ifnet *ifp = &sc->sc_ic.ic_if;
4036 	int i;
4037 
4038 	ASSERT_SERIALIZED(ifp->if_serializer);
4039 
4040 	/* XXX return value */
4041 	if (!sc->sc_invalid) {
4042 		/* don't touch the hardware if marked invalid */
4043 		ath_hal_stoptxdma(ah, sc->sc_bhalq);
4044 		DPRINTF(sc, ATH_DEBUG_RESET,
4045 		    "%s: beacon queue %p\n", __func__,
4046 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4047 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4048 			if (IS_ATH_TXQ_SETUP(sc, i))
4049 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4050 	}
4051 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4052 		if (IS_ATH_TXQ_SETUP(sc, i))
4053 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4054 	ifp->if_flags &= ~IFF_OACTIVE;
4055 	sc->sc_tx_timer = 0;
4056 }
4057 
4058 /*
4059  * Disable the receive h/w in preparation for a reset.
4060  */
4061 static void
4062 ath_stoprecv(struct ath_softc *sc)
4063 {
4064 #define	PA2DESC(_sc, _pa) \
4065 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4066 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4067 	struct ath_hal *ah = sc->sc_ah;
4068 
4069 	ASSERT_SERIALIZED(sc->sc_ic.ic_if.if_serializer);
4070 
4071 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4072 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4073 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4074 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4075 #ifdef ATH_DEBUG
4076 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4077 		struct ath_buf *bf;
4078 		u_int ix;
4079 
4080 		printf("%s: rx queue %p, link %p\n", __func__,
4081 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah),
4082 			sc->sc_rxlink);
4083 		ix = 0;
4084 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4085 			struct ath_desc *ds = bf->bf_desc;
4086 			HAL_STATUS status;
4087 
4088 			status = ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
4089 						    PA2DESC(sc, ds->ds_link));
4090 			if (status == HAL_OK ||
4091 			    (sc->sc_debug & ATH_DEBUG_FATAL))
4092 				ath_printrxbuf(bf, ix, status == HAL_OK);
4093 			ix++;
4094 		}
4095 	}
4096 #endif
4097 	sc->sc_rxlink = NULL;		/* just in case */
4098 #undef PA2DESC
4099 }
4100 
4101 /*
4102  * Enable the receive h/w following a reset.
4103  */
4104 static int
4105 ath_startrecv(struct ath_softc *sc)
4106 {
4107 	struct ath_hal *ah = sc->sc_ah;
4108 	struct ath_buf *bf;
4109 
4110 	ASSERT_SERIALIZED(sc->sc_ic.ic_if.if_serializer);
4111 
4112 	sc->sc_rxlink = NULL;
4113 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4114 		int error = ath_rxbuf_init(sc, bf);
4115 		if (error != 0) {
4116 			DPRINTF(sc, ATH_DEBUG_RECV,
4117 				"%s: ath_rxbuf_init failed %d\n",
4118 				__func__, error);
4119 			return error;
4120 		}
4121 	}
4122 
4123 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4124 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4125 	ath_hal_rxena(ah);		/* enable recv descriptors */
4126 	ath_mode_init(sc);		/* set filters, etc. */
4127 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4128 	return 0;
4129 }
4130 
4131 /*
4132  * Update internal state after a channel change.
4133  */
4134 static void
4135 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4136 {
4137 	struct ieee80211com *ic = &sc->sc_ic;
4138 	enum ieee80211_phymode mode;
4139 	uint16_t flags;
4140 
4141 	/*
4142 	 * Change channels and update the h/w rate map
4143 	 * if we're switching; e.g. 11a to 11b/g.
4144 	 */
4145 	mode = ieee80211_chan2mode(ic, chan);
4146 	if (mode != sc->sc_curmode)
4147 		ath_setcurmode(sc, mode);
4148 	/*
4149 	 * Update BPF state.  NB: ethereal et. al. don't handle
4150 	 * merged flags well so pick a unique mode for their use.
4151 	 */
4152 	if (IEEE80211_IS_CHAN_A(chan))
4153 		flags = IEEE80211_CHAN_A;
4154 	/* XXX 11g schizophrenia */
4155 	else if (IEEE80211_IS_CHAN_G(chan) ||
4156 	    IEEE80211_IS_CHAN_PUREG(chan))
4157 		flags = IEEE80211_CHAN_G;
4158 	else
4159 		flags = IEEE80211_CHAN_B;
4160 	if (IEEE80211_IS_CHAN_T(chan))
4161 		flags |= IEEE80211_CHAN_TURBO;
4162 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4163 		htole16(chan->ic_freq);
4164 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4165 		htole16(flags);
4166 }
4167 
4168 /*
4169  * Poll for a channel clear indication; this is required
4170  * for channels requiring DFS and not previously visited
4171  * and/or with a recent radar detection.
4172  */
4173 static void
4174 ath_dfswait(void *arg)
4175 {
4176 	struct ath_softc *sc = arg;
4177 	struct ath_hal *ah = sc->sc_ah;
4178 	struct ifnet *ifp = &sc->sc_ic.ic_if;
4179 	HAL_CHANNEL hchan;
4180 
4181 	lwkt_serialize_enter(ifp->if_serializer);
4182 
4183 	ath_hal_radar_wait(ah, &hchan);
4184 	DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
4185 	    __func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
4186 
4187 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4188 		if_printf(ifp, "channel %u/0x%x/0x%x has interference\n",
4189 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4190 		goto back;
4191 	}
4192 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4193 		/* XXX should not happen */
4194 		goto back;
4195 	}
4196 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4197 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4198 		ifp->if_flags &= ~IFF_OACTIVE;
4199 		if_printf(ifp, "channel %u/0x%x/0x%x marked clear\n",
4200 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4201 	} else {
4202 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4203 	}
4204 
4205 back:
4206 	lwkt_serialize_exit(ifp->if_serializer);
4207 }
4208 
4209 /*
4210  * Set/change channels.  If the channel is really being changed,
4211  * it's done by reseting the chip.  To accomplish this we must
4212  * first cleanup any pending DMA, then restart stuff after a la
4213  * ath_init.
4214  */
4215 static int
4216 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4217 {
4218 	struct ath_hal *ah = sc->sc_ah;
4219 	struct ieee80211com *ic = &sc->sc_ic;
4220 	struct ifnet *ifp = &ic->ic_if;
4221 	HAL_CHANNEL hchan;
4222 
4223 	/*
4224 	 * Convert to a HAL channel description with
4225 	 * the flags constrained to reflect the current
4226 	 * operating mode.
4227 	 */
4228 	hchan.channel = chan->ic_freq;
4229 	hchan.channelFlags = ath_chan2flags(ic, chan);
4230 
4231 	DPRINTF(sc, ATH_DEBUG_RESET,
4232 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4233 	    __func__,
4234 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4235 		sc->sc_curchan.channelFlags),
4236 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4237 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4238 	        hchan.channel, hchan.channelFlags);
4239 	if (hchan.channel != sc->sc_curchan.channel ||
4240 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4241 		HAL_STATUS status;
4242 
4243 		/*
4244 		 * To switch channels clear any pending DMA operations;
4245 		 * wait long enough for the RX fifo to drain, reset the
4246 		 * hardware at the new frequency, and then re-enable
4247 		 * the relevant bits of the h/w.
4248 		 */
4249 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4250 		ath_draintxq(sc);		/* clear pending tx frames */
4251 		ath_stoprecv(sc);		/* turn off frame recv */
4252 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
4253 			if_printf(ifp, "%s: unable to reset "
4254 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
4255 			    __func__, ieee80211_chan2ieee(ic, chan),
4256 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4257 			return EIO;
4258 		}
4259 		sc->sc_curchan = hchan;
4260 		ath_update_txpow(sc);		/* update tx power state */
4261 		sc->sc_diversity = ath_hal_getdiversity(ah);
4262 		sc->sc_calinterval = 1;
4263 		sc->sc_caltries = 0;
4264 
4265 		/*
4266 		 * Re-enable rx framework.
4267 		 */
4268 		if (ath_startrecv(sc) != 0) {
4269 			if_printf(ic->ic_ifp,
4270 				"%s: unable to restart recv logic\n", __func__);
4271 			return EIO;
4272 		}
4273 
4274 		/*
4275 		 * Change channels and update the h/w rate map
4276 		 * if we're switching; e.g. 11a to 11b/g.
4277 		 */
4278 		ic->ic_ibss_chan = chan;
4279 		ath_chan_change(sc, chan);
4280 
4281 		/*
4282 		 * Handle DFS required waiting period to determine
4283 		 * if channel is clear of radar traffic.
4284 		 */
4285 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4286 #define	DFS_AND_NOT_CLEAR(_c) \
4287 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4288 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4289 				if_printf(ifp,
4290 					"wait for DFS clear channel signal\n");
4291 				/* XXX stop sndq */
4292 				ifp->if_flags |= IFF_OACTIVE;
4293 				callout_reset(&sc->sc_dfs_ch,
4294 					2 * hz, ath_dfswait, sc);
4295 			} else {
4296 				callout_stop(&sc->sc_dfs_ch);
4297 			}
4298 #undef DFS_NOT_CLEAR
4299 		}
4300 
4301 		/*
4302 		 * Re-enable interrupts.
4303 		 */
4304 		ath_hal_intrset(ah, sc->sc_imask);
4305 	}
4306 	return 0;
4307 }
4308 
4309 static void
4310 ath_next_scan(void *arg)
4311 {
4312 	struct ath_softc *sc = arg;
4313 	struct ieee80211com *ic = &sc->sc_ic;
4314 	struct ifnet *ifp = &ic->ic_if;
4315 
4316 	lwkt_serialize_enter(ifp->if_serializer);
4317 
4318 	if (ic->ic_state == IEEE80211_S_SCAN)
4319 		ieee80211_next_scan(ic);
4320 
4321 	lwkt_serialize_exit(ifp->if_serializer);
4322 }
4323 
4324 /*
4325  * Periodically recalibrate the PHY to account
4326  * for temperature/environment changes.
4327  */
4328 static void
4329 ath_calibrate(void *arg)
4330 {
4331 	struct ath_softc *sc = arg;
4332 	struct ath_hal *ah = sc->sc_ah;
4333 	struct ifnet *ifp = &sc->sc_ic.ic_if;
4334 	HAL_BOOL iqCalDone;
4335 
4336 	lwkt_serialize_enter(ifp->if_serializer);
4337 
4338 	sc->sc_stats.ast_per_cal++;
4339 
4340 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4341 		/*
4342 		 * Rfgain is out of bounds, reset the chip
4343 		 * to load new gain values.
4344 		 */
4345 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4346 			"%s: rfgain change\n", __func__);
4347 		sc->sc_stats.ast_per_rfgain++;
4348 		ath_reset(&sc->sc_ic.ic_if);
4349 	}
4350 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4351 		DPRINTF(sc, ATH_DEBUG_ANY,
4352 			"%s: calibration of channel %u failed\n",
4353 			__func__, sc->sc_curchan.channel);
4354 		sc->sc_stats.ast_per_calfail++;
4355 	}
4356 	/*
4357 	 * Calibrate noise floor data again in case of change.
4358 	 */
4359 	ath_hal_process_noisefloor(ah);
4360 	/*
4361 	 * Poll more frequently when the IQ calibration is in
4362 	 * progress to speedup loading the final settings.
4363 	 * We temper this aggressive polling with an exponential
4364 	 * back off after 4 tries up to ath_calinterval.
4365 	 */
4366 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4367 		sc->sc_caltries = 0;
4368 		sc->sc_calinterval = ath_calinterval;
4369 	} else if (sc->sc_caltries > 4) {
4370 		sc->sc_caltries = 0;
4371 		sc->sc_calinterval <<= 1;
4372 		if (sc->sc_calinterval > ath_calinterval)
4373 			sc->sc_calinterval = ath_calinterval;
4374 	}
4375 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4376 		("bad calibration interval %u", sc->sc_calinterval));
4377 
4378 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4379 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4380 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4381 	sc->sc_caltries++;
4382 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4383 		ath_calibrate, sc);
4384 
4385 	lwkt_serialize_exit(ifp->if_serializer);
4386 }
4387 
4388 static int
4389 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4390 {
4391 	struct ifnet *ifp = ic->ic_ifp;
4392 	struct ath_softc *sc = ifp->if_softc;
4393 	struct ath_hal *ah = sc->sc_ah;
4394 	struct ieee80211_node *ni;
4395 	int i, error;
4396 	const uint8_t *bssid;
4397 	uint32_t rfilt;
4398 	static const HAL_LED_STATE leds[] = {
4399 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4400 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4401 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4402 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4403 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4404 	};
4405 
4406 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4407 		ieee80211_state_name[ic->ic_state],
4408 		ieee80211_state_name[nstate]);
4409 
4410 	callout_stop(&sc->sc_scan_ch);
4411 	callout_stop(&sc->sc_cal_ch);
4412 	callout_stop(&sc->sc_dfs_ch);
4413 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4414 
4415 	if (nstate == IEEE80211_S_INIT) {
4416 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4417 		/*
4418 		 * NB: disable interrupts so we don't rx frames.
4419 		 */
4420 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4421 		/*
4422 		 * Notify the rate control algorithm.
4423 		 */
4424 		ath_rate_newstate(sc, nstate);
4425 		goto done;
4426 	}
4427 	ni = ic->ic_bss;
4428 	error = ath_chan_set(sc, ic->ic_curchan);
4429 	if (error != 0)
4430 		goto bad;
4431 	rfilt = ath_calcrxfilter(sc, nstate);
4432 	if (nstate == IEEE80211_S_SCAN)
4433 		bssid = ifp->if_broadcastaddr;
4434 	else
4435 		bssid = ni->ni_bssid;
4436 	ath_hal_setrxfilter(ah, rfilt);
4437 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D\n",
4438 		 __func__, rfilt, bssid, ":");
4439 
4440 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4441 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4442 	else
4443 		ath_hal_setassocid(ah, bssid, 0);
4444 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4445 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4446 			if (ath_hal_keyisvalid(ah, i))
4447 				ath_hal_keysetmac(ah, i, bssid);
4448 	}
4449 
4450 	/*
4451 	 * Notify the rate control algorithm so rates
4452 	 * are setup should ath_beacon_alloc be called.
4453 	 */
4454 	ath_rate_newstate(sc, nstate);
4455 
4456 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4457 		/* nothing to do */;
4458 	} else if (nstate == IEEE80211_S_RUN) {
4459 		DPRINTF(sc, ATH_DEBUG_STATE,
4460 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%6D "
4461 			"capinfo=0x%04x chan=%d\n"
4462 			 , __func__
4463 			 , ic->ic_flags
4464 			 , ni->ni_intval
4465 			 , ni->ni_bssid, ":"
4466 			 , ni->ni_capinfo
4467 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4468 
4469 		switch (ic->ic_opmode) {
4470 		case IEEE80211_M_HOSTAP:
4471 		case IEEE80211_M_IBSS:
4472 			/*
4473 			 * Allocate and setup the beacon frame.
4474 			 *
4475 			 * Stop any previous beacon DMA.  This may be
4476 			 * necessary, for example, when an ibss merge
4477 			 * causes reconfiguration; there will be a state
4478 			 * transition from RUN->RUN that means we may
4479 			 * be called with beacon transmission active.
4480 			 */
4481 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4482 			ath_beacon_free(sc);
4483 			error = ath_beacon_alloc(sc, ni);
4484 			if (error != 0)
4485 				goto bad;
4486 			/*
4487 			 * If joining an adhoc network defer beacon timer
4488 			 * configuration to the next beacon frame so we
4489 			 * have a current TSF to use.  Otherwise we're
4490 			 * starting an ibss/bss so there's no need to delay.
4491 			 */
4492 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4493 			    ic->ic_bss->ni_tstamp.tsf != 0)
4494 				sc->sc_syncbeacon = 1;
4495 			else
4496 				ath_beacon_config(sc);
4497 			break;
4498 		case IEEE80211_M_STA:
4499 			/*
4500 			 * Allocate a key cache slot to the station.
4501 			 */
4502 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4503 			    sc->sc_hasclrkey &&
4504 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4505 				ath_setup_stationkey(ni);
4506 			/*
4507 			 * Defer beacon timer configuration to the next
4508 			 * beacon frame so we have a current TSF to use
4509 			 * (any TSF collected when scanning is likely old).
4510 			 */
4511 			sc->sc_syncbeacon = 1;
4512 			break;
4513 		default:
4514 			break;
4515 		}
4516 
4517 		/*
4518 		 * Let the hal process statistics collected during a
4519 		 * scan so it can provide calibrated noise floor data.
4520 		 */
4521 		ath_hal_process_noisefloor(ah);
4522 		/*
4523 		 * Reset rssi stats; maybe not the best place...
4524 		 */
4525 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4526 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4527 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4528 	} else {
4529 		ath_hal_intrset(ah,
4530 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4531 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4532 	}
4533 done:
4534 	/*
4535 	 * Invoke the parent method to complete the work.
4536 	 */
4537 	error = sc->sc_newstate(ic, nstate, arg);
4538 	/*
4539 	 * Finally, start any timers.
4540 	 */
4541 	if (nstate == IEEE80211_S_RUN) {
4542 		/* start periodic recalibration timer */
4543 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4544 			ath_calibrate, sc);
4545 	} else if (nstate == IEEE80211_S_SCAN) {
4546 		/* start ap/neighbor scan timer */
4547 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4548 			ath_next_scan, sc);
4549 	}
4550 bad:
4551 	return error;
4552 }
4553 
4554 /*
4555  * Allocate a key cache slot to the station so we can
4556  * setup a mapping from key index to node. The key cache
4557  * slot is needed for managing antenna state and for
4558  * compression when stations do not use crypto.  We do
4559  * it uniliaterally here; if crypto is employed this slot
4560  * will be reassigned.
4561  */
4562 static void
4563 ath_setup_stationkey(struct ieee80211_node *ni)
4564 {
4565 	struct ieee80211com *ic = ni->ni_ic;
4566 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4567 	ieee80211_keyix keyix, rxkeyix;
4568 
4569 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4570 		/*
4571 		 * Key cache is full; we'll fall back to doing
4572 		 * the more expensive lookup in software.  Note
4573 		 * this also means no h/w compression.
4574 		 */
4575 		/* XXX msg+statistic */
4576 	} else {
4577 		/* XXX locking? */
4578 		ni->ni_ucastkey.wk_keyix = keyix;
4579 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4580 		/* NB: this will create a pass-thru key entry */
4581 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4582 	}
4583 }
4584 
4585 /*
4586  * Setup driver-specific state for a newly associated node.
4587  * Note that we're called also on a re-associate, the isnew
4588  * param tells us if this is the first time or not.
4589  */
4590 static void
4591 ath_newassoc(struct ieee80211_node *ni, int isnew)
4592 {
4593 	struct ieee80211com *ic = ni->ni_ic;
4594 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4595 
4596 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4597 	if (isnew &&
4598 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4599 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4600 		    ("new assoc with a unicast key already setup (keyix %u)",
4601 		    ni->ni_ucastkey.wk_keyix));
4602 		ath_setup_stationkey(ni);
4603 	}
4604 }
4605 
4606 static int
4607 ath_getchannels(struct ath_softc *sc, u_int cc,
4608 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4609 {
4610 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4611 	struct ieee80211com *ic = &sc->sc_ic;
4612 	struct ifnet *ifp = &ic->ic_if;
4613 	struct ath_hal *ah = sc->sc_ah;
4614 	HAL_CHANNEL *chans;
4615 	int i, ix, nchan;
4616 
4617 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), M_TEMP,
4618 		       M_WAITOK);
4619 
4620 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4621 	    NULL, 0, NULL,
4622 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4623 		uint32_t rd;
4624 
4625 		ath_hal_getregdomain(ah, &rd);
4626 		if_printf(ifp, "unable to collect channel list from hal; "
4627 			"regdomain likely %u country code %u\n", rd, cc);
4628 		free(chans, M_TEMP);
4629 		return EINVAL;
4630 	}
4631 
4632 	/*
4633 	 * Convert HAL channels to ieee80211 ones and insert
4634 	 * them in the table according to their channel number.
4635 	 */
4636 	for (i = 0; i < nchan; i++) {
4637 		HAL_CHANNEL *c = &chans[i];
4638 		uint16_t flags;
4639 
4640 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4641 		if (ix > IEEE80211_CHAN_MAX) {
4642 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4643 				ix, c->channel, c->channelFlags);
4644 			continue;
4645 		}
4646 		if (ix < 0) {
4647 			/* XXX can't handle stuff <2400 right now */
4648 			if (bootverbose)
4649 				if_printf(ifp, "hal channel %d (%u/%x) "
4650 				    "cannot be handled; ignored\n",
4651 				    ix, c->channel, c->channelFlags);
4652 			continue;
4653 		}
4654 		/*
4655 		 * Calculate net80211 flags; most are compatible
4656 		 * but some need massaging.  Note the static turbo
4657 		 * conversion can be removed once net80211 is updated
4658 		 * to understand static vs. dynamic turbo.
4659 		 */
4660 		flags = c->channelFlags & COMPAT;
4661 		if (c->channelFlags & CHANNEL_STURBO)
4662 			flags |= IEEE80211_CHAN_TURBO;
4663 		if (ic->ic_channels[ix].ic_freq == 0) {
4664 			ic->ic_channels[ix].ic_freq = c->channel;
4665 			ic->ic_channels[ix].ic_flags = flags;
4666 		} else {
4667 			/* channels overlap; e.g. 11g and 11b */
4668 			ic->ic_channels[ix].ic_flags |= flags;
4669 		}
4670 	}
4671 	free(chans, M_TEMP);
4672 	return 0;
4673 #undef COMPAT
4674 }
4675 
4676 static void
4677 ath_led_done(void *arg)
4678 {
4679 	struct ath_softc *sc = arg;
4680 
4681 	sc->sc_blinking = 0;
4682 }
4683 
4684 /*
4685  * Turn the LED off: flip the pin and then set a timer so no
4686  * update will happen for the specified duration.
4687  */
4688 static void
4689 ath_led_off(void *arg)
4690 {
4691 	struct ath_softc *sc = arg;
4692 
4693 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4694 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4695 }
4696 
4697 /*
4698  * Blink the LED according to the specified on/off times.
4699  */
4700 static void
4701 ath_led_blink(struct ath_softc *sc, int on, int off)
4702 {
4703 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4704 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4705 	sc->sc_blinking = 1;
4706 	sc->sc_ledoff = off;
4707 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4708 }
4709 
4710 static void
4711 ath_led_event(struct ath_softc *sc, int event)
4712 {
4713 
4714 	sc->sc_ledevent = ticks;	/* time of last event */
4715 	if (sc->sc_blinking)		/* don't interrupt active blink */
4716 		return;
4717 	switch (event) {
4718 	case ATH_LED_POLL:
4719 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4720 			sc->sc_hwmap[0].ledoff);
4721 		break;
4722 	case ATH_LED_TX:
4723 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4724 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4725 		break;
4726 	case ATH_LED_RX:
4727 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4728 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4729 		break;
4730 	}
4731 }
4732 
4733 static void
4734 ath_update_txpow(struct ath_softc *sc)
4735 {
4736 	struct ieee80211com *ic = &sc->sc_ic;
4737 	struct ath_hal *ah = sc->sc_ah;
4738 	uint32_t txpow;
4739 
4740 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4741 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4742 		/* read back in case value is clamped */
4743 		ath_hal_gettxpowlimit(ah, &txpow);
4744 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4745 	}
4746 	/*
4747 	 * Fetch max tx power level for status requests.
4748 	 */
4749 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4750 	ic->ic_bss->ni_txpower = txpow;
4751 }
4752 
4753 static void
4754 rate_setup(struct ath_softc *sc,
4755 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4756 {
4757 	int i, maxrates;
4758 
4759 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4760 		DPRINTF(sc, ATH_DEBUG_ANY,
4761 			"%s: rate table too small (%u > %u)\n",
4762 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4763 		maxrates = IEEE80211_RATE_MAXSIZE;
4764 	} else
4765 		maxrates = rt->rateCount;
4766 	for (i = 0; i < maxrates; i++)
4767 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4768 	rs->rs_nrates = maxrates;
4769 }
4770 
4771 static int
4772 ath_rate_setup(struct ath_softc *sc, u_int mode)
4773 {
4774 	struct ath_hal *ah = sc->sc_ah;
4775 	struct ieee80211com *ic = &sc->sc_ic;
4776 	const HAL_RATE_TABLE *rt;
4777 
4778 	switch (mode) {
4779 	case IEEE80211_MODE_11A:
4780 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4781 		break;
4782 	case IEEE80211_MODE_11B:
4783 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4784 		break;
4785 	case IEEE80211_MODE_11G:
4786 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4787 		break;
4788 	case IEEE80211_MODE_TURBO_A:
4789 		/* XXX until static/dynamic turbo is fixed */
4790 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4791 		break;
4792 	case IEEE80211_MODE_TURBO_G:
4793 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4794 		break;
4795 	default:
4796 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4797 			__func__, mode);
4798 		return 0;
4799 	}
4800 	sc->sc_rates[mode] = rt;
4801 	if (rt != NULL) {
4802 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4803 		return 1;
4804 	} else
4805 		return 0;
4806 }
4807 
4808 static void
4809 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4810 {
4811 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4812 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4813 	static const struct {
4814 		u_int		rate;		/* tx/rx 802.11 rate */
4815 		uint16_t	timeOn;		/* LED on time (ms) */
4816 		uint16_t	timeOff;	/* LED off time (ms) */
4817 	} blinkrates[] = {
4818 		{ 108,  40,  10 },
4819 		{  96,  44,  11 },
4820 		{  72,  50,  13 },
4821 		{  48,  57,  14 },
4822 		{  36,  67,  16 },
4823 		{  24,  80,  20 },
4824 		{  22, 100,  25 },
4825 		{  18, 133,  34 },
4826 		{  12, 160,  40 },
4827 		{  10, 200,  50 },
4828 		{   6, 240,  58 },
4829 		{   4, 267,  66 },
4830 		{   2, 400, 100 },
4831 		{   0, 500, 130 },
4832 	};
4833 	const HAL_RATE_TABLE *rt;
4834 	int i, j;
4835 
4836 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4837 	rt = sc->sc_rates[mode];
4838 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4839 	for (i = 0; i < rt->rateCount; i++)
4840 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4841 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4842 	for (i = 0; i < 32; i++) {
4843 		uint8_t ix = rt->rateCodeToIndex[i];
4844 		if (ix == 0xff) {
4845 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4846 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4847 			continue;
4848 		}
4849 		sc->sc_hwmap[i].ieeerate =
4850 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4851 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4852 		if (rt->info[ix].shortPreamble ||
4853 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4854 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4855 		/* NB: receive frames include FCS */
4856 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4857 			IEEE80211_RADIOTAP_F_FCS;
4858 		/* setup blink rate table to avoid per-packet lookup */
4859 		for (j = 0; j < N(blinkrates)-1; j++)
4860 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4861 				break;
4862 		/* NB: this uses the last entry if the rate isn't found */
4863 		/* XXX beware of overlow */
4864 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4865 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4866 	}
4867 	sc->sc_currates = rt;
4868 	sc->sc_curmode = mode;
4869 	/*
4870 	 * All protection frames are transmited at 2Mb/s for
4871 	 * 11g, otherwise at 1Mb/s.
4872 	 */
4873 	if (mode == IEEE80211_MODE_11G)
4874 		sc->sc_protrix = ath_tx_findrix(rt, 2 * 2);
4875 	else
4876 		sc->sc_protrix = ath_tx_findrix(rt, 2 * 1);
4877 	/* rate index used to send management frames */
4878 	sc->sc_minrateix = 0;
4879 	/*
4880 	 * Setup multicast rate state.
4881 	 */
4882 	/* XXX layering violation */
4883 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4884 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4885 	/* NB: caller is responsible for reseting rate control state */
4886 #undef N
4887 }
4888 
4889 #ifdef ATH_DEBUG
4890 static void
4891 ath_printrxbuf(struct ath_buf *bf, u_int ix, int done)
4892 {
4893 	struct ath_desc *ds;
4894 	int i;
4895 
4896 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4897 		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
4898 		       "      %08x %08x %08x %08x\n",
4899 		    ix, ds, (struct ath_desc *)bf->bf_daddr + i,
4900 		    ds->ds_link, ds->ds_data,
4901 		    !done ? "" : (ds->ds_rxstat.rs_status == 0) ? " *" : " !",
4902 		    ds->ds_ctl0, ds->ds_ctl1,
4903 		    ds->ds_hw[0], ds->ds_hw[1]);
4904 	}
4905 }
4906 
4907 static void
4908 ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done)
4909 {
4910 	struct ath_desc *ds;
4911 	int i;
4912 
4913 	printf("Q%u[%3u]", qnum, ix);
4914 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4915 		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
4916 		       "        %08x %08x %08x %08x %08x %08x\n",
4917 		    ds, (struct ath_desc *)bf->bf_daddr + i,
4918 		    ds->ds_link, ds->ds_data, bf->bf_flags,
4919 		    !done ? "" : (ds->ds_txstat.ts_status == 0) ? " *" : " !",
4920 		    ds->ds_ctl0, ds->ds_ctl1,
4921 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
4922 	}
4923 }
4924 #endif /* ATH_DEBUG */
4925 
4926 static void
4927 ath_watchdog(struct ifnet *ifp)
4928 {
4929 	struct ath_softc *sc = ifp->if_softc;
4930 	struct ieee80211com *ic = &sc->sc_ic;
4931 
4932 	ifp->if_timer = 0;
4933 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4934 		return;
4935 	if (sc->sc_tx_timer) {
4936 		if (--sc->sc_tx_timer == 0) {
4937 			if_printf(ifp, "device timeout\n");
4938 			ath_reset(ifp);
4939 			ifp->if_oerrors++;
4940 			sc->sc_stats.ast_watchdog++;
4941 		} else
4942 			ifp->if_timer = 1;
4943 	}
4944 	ieee80211_watchdog(ic);
4945 }
4946 
4947 #ifdef ATH_DIAGAPI
4948 /*
4949  * Diagnostic interface to the HAL.  This is used by various
4950  * tools to do things like retrieve register contents for
4951  * debugging.  The mechanism is intentionally opaque so that
4952  * it can change frequently w/o concern for compatiblity.
4953  */
4954 static int
4955 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4956 {
4957 	struct ath_hal *ah = sc->sc_ah;
4958 	u_int id = ad->ad_id & ATH_DIAG_ID;
4959 	void *indata = NULL;
4960 	void *outdata = NULL;
4961 	uint32_t insize = ad->ad_in_size;
4962 	uint32_t outsize = ad->ad_out_size;
4963 	int error = 0;
4964 
4965 	if (ad->ad_id & ATH_DIAG_IN) {
4966 		/*
4967 		 * Copy in data.
4968 		 */
4969 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4970 		if (indata == NULL) {
4971 			error = ENOMEM;
4972 			goto bad;
4973 		}
4974 		error = copyin(ad->ad_in_data, indata, insize);
4975 		if (error)
4976 			goto bad;
4977 	}
4978 	if (ad->ad_id & ATH_DIAG_DYN) {
4979 		/*
4980 		 * Allocate a buffer for the results (otherwise the HAL
4981 		 * returns a pointer to a buffer where we can read the
4982 		 * results).  Note that we depend on the HAL leaving this
4983 		 * pointer for us to use below in reclaiming the buffer;
4984 		 * may want to be more defensive.
4985 		 */
4986 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4987 		if (outdata == NULL) {
4988 			error = ENOMEM;
4989 			goto bad;
4990 		}
4991 	}
4992 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4993 		if (outsize < ad->ad_out_size)
4994 			ad->ad_out_size = outsize;
4995 		if (outdata != NULL)
4996 			error = copyout(outdata, ad->ad_out_data,
4997 					ad->ad_out_size);
4998 	} else {
4999 		error = EINVAL;
5000 	}
5001 bad:
5002 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5003 		free(indata, M_TEMP);
5004 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5005 		free(outdata, M_TEMP);
5006 	return error;
5007 }
5008 #endif /* ATH_DIAGAPI */
5009 
5010 static int
5011 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
5012 {
5013 #define	IS_RUNNING(ifp) \
5014 	((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
5015 	struct ath_softc *sc = ifp->if_softc;
5016 	struct ieee80211com *ic = &sc->sc_ic;
5017 	struct ifreq *ifr = (struct ifreq *)data;
5018 	int error = 0;
5019 
5020 	ASSERT_SERIALIZED(ifp->if_serializer);
5021 
5022 	switch (cmd) {
5023 	case SIOCSIFFLAGS:
5024 		if (IS_RUNNING(ifp)) {
5025 			/*
5026 			 * To avoid rescanning another access point,
5027 			 * do not call ath_init() here.  Instead,
5028 			 * only reflect promisc mode settings.
5029 			 */
5030 			ath_mode_init(sc);
5031 		} else if (ifp->if_flags & IFF_UP) {
5032 			/*
5033 			 * Beware of being called during attach/detach
5034 			 * to reset promiscuous mode.  In that case we
5035 			 * will still be marked UP but not RUNNING.
5036 			 * However trying to re-init the interface
5037 			 * is the wrong thing to do as we've already
5038 			 * torn down much of our state.  There's
5039 			 * probably a better way to deal with this.
5040 			 */
5041 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5042 				ath_init(sc);	/* XXX lose error */
5043 		} else
5044 			ath_stop_no_pwchg(ifp);
5045 		break;
5046 	case SIOCADDMULTI:
5047 	case SIOCDELMULTI:
5048 		/*
5049 		 * The upper layer has already installed/removed
5050 		 * the multicast address(es), just recalculate the
5051 		 * multicast filter for the card.
5052 		 */
5053 		if (ifp->if_flags & IFF_RUNNING)
5054 			ath_mode_init(sc);
5055 		break;
5056 	case SIOCGATHSTATS:
5057 		/* NB: embed these numbers to get a consistent view */
5058 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5059 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5060 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5061 		/*
5062 		 * NB: Drop the softc lock in case of a page fault;
5063 		 * we'll accept any potential inconsisentcy in the
5064 		 * statistics.  The alternative is to copy the data
5065 		 * to a local structure.
5066 		 */
5067 		return copyout(&sc->sc_stats,
5068 				ifr->ifr_data, sizeof (sc->sc_stats));
5069 #ifdef ATH_DIAGAPI
5070 	case SIOCGATHDIAG:
5071 		error = ath_ioctl_diag(sc, (struct ath_diag *)ifr);
5072 		break;
5073 #endif
5074 	default:
5075 		error = ieee80211_ioctl(ic, cmd, data, cr);
5076 		if (error == ENETRESET) {
5077 			if (IS_RUNNING(ifp) &&
5078 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5079 				ath_init(sc);	/* XXX lose error */
5080 			error = 0;
5081 		}
5082 		if (error == ERESTART)
5083 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5084 		break;
5085 	}
5086 	return error;
5087 #undef IS_RUNNING
5088 }
5089 
5090 static int
5091 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
5092 {
5093 	struct ath_softc *sc = arg1;
5094 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5095 	u_int slottime;
5096 	int error;
5097 
5098 	lwkt_serialize_enter(ifp->if_serializer);
5099 
5100 	slottime = ath_hal_getslottime(sc->sc_ah);
5101 	error = sysctl_handle_int(oidp, &slottime, 0, req);
5102 	if (error || !req->newptr)
5103 		goto back;
5104 	error = !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
5105 back:
5106 	lwkt_serialize_exit(ifp->if_serializer);
5107 	return error;
5108 }
5109 
5110 static int
5111 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
5112 {
5113 	struct ath_softc *sc = arg1;
5114 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5115 	u_int acktimeout;
5116 	int error;
5117 
5118 	lwkt_serialize_enter(ifp->if_serializer);
5119 
5120 	acktimeout = ath_hal_getacktimeout(sc->sc_ah);
5121 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
5122 	if (error || !req->newptr)
5123 		goto back;
5124 	error = !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
5125 back:
5126 	lwkt_serialize_exit(ifp->if_serializer);
5127 	return error;
5128 }
5129 
5130 static int
5131 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
5132 {
5133 	struct ath_softc *sc = arg1;
5134 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5135 	u_int ctstimeout;
5136 	int error;
5137 
5138 	lwkt_serialize_enter(ifp->if_serializer);
5139 
5140 	ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
5141 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
5142 	if (error || !req->newptr)
5143 		goto back;
5144 	error = !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
5145 back:
5146 	lwkt_serialize_exit(ifp->if_serializer);
5147 	return error;
5148 }
5149 
5150 static int
5151 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
5152 {
5153 	struct ath_softc *sc = arg1;
5154 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5155 	int softled;
5156 	int error;
5157 
5158 	lwkt_serialize_enter(ifp->if_serializer);
5159 
5160 	softled = sc->sc_softled;
5161 	error = sysctl_handle_int(oidp, &softled, 0, req);
5162 	if (error || !req->newptr)
5163 		goto back;
5164 	softled = (softled != 0);
5165 	if (softled != sc->sc_softled) {
5166 		if (softled) {
5167 			/* NB: handle any sc_ledpin change */
5168 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5169 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5170 				!sc->sc_ledon);
5171 		}
5172 		sc->sc_softled = softled;
5173 	}
5174 back:
5175 	lwkt_serialize_exit(ifp->if_serializer);
5176 	return error;
5177 }
5178 
5179 static int
5180 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
5181 {
5182 	struct ath_softc *sc = arg1;
5183 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5184 	u_int defantenna;
5185 	int error;
5186 
5187 	lwkt_serialize_enter(ifp->if_serializer);
5188 
5189 	defantenna = ath_hal_getdefantenna(sc->sc_ah);
5190 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
5191 	if (!error && req->newptr)
5192 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
5193 
5194 	lwkt_serialize_exit(ifp->if_serializer);
5195 	return error;
5196 }
5197 
5198 static int
5199 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
5200 {
5201 	struct ath_softc *sc = arg1;
5202 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5203 	u_int diversity;
5204 	int error;
5205 
5206 	lwkt_serialize_enter(ifp->if_serializer);
5207 
5208 	diversity = ath_hal_getdiversity(sc->sc_ah);
5209 	error = sysctl_handle_int(oidp, &diversity, 0, req);
5210 	if (error || !req->newptr)
5211 		goto back;
5212 	if (!ath_hal_setdiversity(sc->sc_ah, diversity)) {
5213 		error = EINVAL;
5214 		goto back;
5215 	}
5216 	sc->sc_diversity = diversity;
5217 	error = 0;
5218 back:
5219 	lwkt_serialize_exit(ifp->if_serializer);
5220 	return error;
5221 }
5222 
5223 static int
5224 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
5225 {
5226 	struct ath_softc *sc = arg1;
5227 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5228 	uint32_t diag;
5229 	int error;
5230 
5231 	lwkt_serialize_enter(ifp->if_serializer);
5232 
5233 	if (!ath_hal_getdiag(sc->sc_ah, &diag)) {
5234 		error = EINVAL;
5235 		goto back;
5236 	}
5237 	error = sysctl_handle_int(oidp, &diag, 0, req);
5238 	if (error || !req->newptr)
5239 		goto back;
5240 	error = !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
5241 back:
5242 	lwkt_serialize_exit(ifp->if_serializer);
5243 	return error;
5244 }
5245 
5246 static int
5247 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
5248 {
5249 	struct ath_softc *sc = arg1;
5250 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5251 	uint32_t scale;
5252 	int error;
5253 
5254 	lwkt_serialize_enter(ifp->if_serializer);
5255 
5256 	ath_hal_gettpscale(sc->sc_ah, &scale);
5257 	error = sysctl_handle_int(oidp, &scale, 0, req);
5258 	if (error || !req->newptr)
5259 		goto back;
5260 	error = !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
5261 back:
5262 	lwkt_serialize_exit(ifp->if_serializer);
5263 	return error;
5264 }
5265 
5266 static int
5267 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
5268 {
5269 	struct ath_softc *sc = arg1;
5270 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5271 	u_int tpc;
5272 	int error;
5273 
5274 	lwkt_serialize_enter(ifp->if_serializer);
5275 
5276 	tpc = ath_hal_gettpc(sc->sc_ah);
5277 	error = sysctl_handle_int(oidp, &tpc, 0, req);
5278 	if (error || !req->newptr)
5279 		goto back;
5280 	error = !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
5281 back:
5282 	lwkt_serialize_exit(ifp->if_serializer);
5283 	return error;
5284 }
5285 
5286 static int
5287 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
5288 {
5289 	struct ath_softc *sc = arg1;
5290 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5291 	struct ath_hal *ah = sc->sc_ah;
5292 	u_int rfkill;
5293 	int error;
5294 
5295 	lwkt_serialize_enter(ifp->if_serializer);
5296 
5297 	rfkill = ath_hal_getrfkill(ah);
5298 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
5299 	if (error || !req->newptr)
5300 		goto back;
5301 
5302 	error = 0;
5303 
5304 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
5305 		goto back;
5306 
5307 	if (!ath_hal_setrfkill(ah, rfkill) || ath_reset(&sc->sc_ic.ic_if) != 0)
5308 		error = EINVAL;
5309 back:
5310 	lwkt_serialize_exit(ifp->if_serializer);
5311 	return error;
5312 }
5313 
5314 static int
5315 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
5316 {
5317 	struct ath_softc *sc = arg1;
5318 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5319 	u_int rfsilent;
5320 	int error;
5321 
5322 	lwkt_serialize_enter(ifp->if_serializer);
5323 
5324 	ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
5325 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
5326 	if (error || !req->newptr)
5327 		goto back;
5328 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) {
5329 		error = EINVAL;
5330 		goto back;
5331 	}
5332 	sc->sc_rfsilentpin = rfsilent & 0x1c;
5333 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
5334 	error = 0;
5335 back:
5336 	lwkt_serialize_exit(ifp->if_serializer);
5337 	return error;
5338 }
5339 
5340 static int
5341 ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
5342 {
5343 	struct ath_softc *sc = arg1;
5344 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5345 	uint32_t rd;
5346 	int error;
5347 
5348 	lwkt_serialize_enter(ifp->if_serializer);
5349 
5350 	if (!ath_hal_getregdomain(sc->sc_ah, &rd)) {
5351 		error = EINVAL;
5352 		goto back;
5353 	}
5354 	error = sysctl_handle_int(oidp, &rd, 0, req);
5355 	if (error || !req->newptr)
5356 		goto back;
5357 	error = !ath_hal_setregdomain(sc->sc_ah, rd) ? EINVAL : 0;
5358 back:
5359 	lwkt_serialize_exit(ifp->if_serializer);
5360 	return error;
5361 }
5362 
5363 static int
5364 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
5365 {
5366 	struct ath_softc *sc = arg1;
5367 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5368 	uint32_t tpack;
5369 	int error;
5370 
5371 	lwkt_serialize_enter(ifp->if_serializer);
5372 
5373 	ath_hal_gettpack(sc->sc_ah, &tpack);
5374 	error = sysctl_handle_int(oidp, &tpack, 0, req);
5375 	if (error || !req->newptr)
5376 		goto back;
5377 	error = !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
5378 back:
5379 	lwkt_serialize_exit(ifp->if_serializer);
5380 	return error;
5381 }
5382 
5383 static int
5384 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
5385 {
5386 	struct ath_softc *sc = arg1;
5387 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5388 	uint32_t tpcts;
5389 	int error;
5390 
5391 	lwkt_serialize_enter(ifp->if_serializer);
5392 
5393 	ath_hal_gettpcts(sc->sc_ah, &tpcts);
5394 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
5395 	if (error || !req->newptr)
5396 		goto back;
5397 	error = !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
5398 back:
5399 	lwkt_serialize_exit(ifp->if_serializer);
5400 	return error;
5401 }
5402 
5403 static void
5404 ath_sysctlattach(struct ath_softc *sc)
5405 {
5406 	struct sysctl_ctx_list *ctx = &sc->sc_sysctl_ctx;
5407 	struct sysctl_oid *tree = sc->sc_sysctl_tree;
5408 	struct ath_hal *ah = sc->sc_ah;
5409 
5410 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
5411 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5412 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
5413 		"EEPROM country code");
5414 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5415 		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5416 		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
5417 #ifdef	ATH_DEBUG
5418 	sc->sc_debug = ath_debug;
5419 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5420 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
5421 		"control debugging printfs");
5422 #endif
5423 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5424 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5425 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
5426 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5427 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5428 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
5429 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5430 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5431 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
5432 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5433 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5434 		ath_sysctl_softled, "I", "enable/disable software LED support");
5435 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5436 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
5437 		"GPIO pin connected to LED");
5438 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5439 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
5440 		"setting to turn LED on");
5441 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5442 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
5443 		"idle time for inactivity LED (ticks)");
5444 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5445 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
5446 		"tx antenna (0=auto)");
5447 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5448 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5449 		ath_sysctl_rxantenna, "I", "default/rx antenna");
5450 	if (ath_hal_hasdiversity(ah))
5451 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5452 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5453 			ath_sysctl_diversity, "I", "antenna diversity");
5454 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
5455 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5456 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
5457 		"tx descriptor batching");
5458 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5459 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5460 		ath_sysctl_diag, "I", "h/w diagnostic control");
5461 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5462 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5463 		ath_sysctl_tpscale, "I", "tx power scaling");
5464 	if (ath_hal_hastpc(ah)) {
5465 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5466 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5467 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
5468 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5469 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5470 			ath_sysctl_tpack, "I", "tx power for ack frames");
5471 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5472 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5473 			ath_sysctl_tpcts, "I", "tx power for cts frames");
5474 	}
5475 	if (ath_hal_hasrfsilent(ah)) {
5476 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5477 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5478 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
5479 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5480 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5481 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
5482 	}
5483 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
5484 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5485 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
5486 		"mask of error frames to pass when monitoring");
5487 }
5488 
5489 static void
5490 ath_bpfattach(struct ath_softc *sc)
5491 {
5492 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5493 
5494 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
5495 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5496 		&sc->sc_drvbpf);
5497 	/*
5498 	 * Initialize constant fields.
5499 	 * XXX make header lengths a multiple of 32-bits so subsequent
5500 	 *     headers are properly aligned; this is a kludge to keep
5501 	 *     certain applications happy.
5502 	 *
5503 	 * NB: the channel is setup each time we transition to the
5504 	 *     RUN state to avoid filling it in for each frame.
5505 	 */
5506 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(uint32_t));
5507 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5508 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5509 
5510 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(uint32_t));
5511 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5512 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5513 }
5514 
5515 /*
5516  * Announce various information on device/driver attach.
5517  */
5518 static void
5519 ath_announce(struct ath_softc *sc)
5520 {
5521 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5522 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5523 	struct ath_hal *ah = sc->sc_ah;
5524 	u_int modes, cc;
5525 
5526 	if_printf(ifp, "mac %d.%d phy %d.%d",
5527 		ah->ah_macVersion, ah->ah_macRev,
5528 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5529 	/*
5530 	 * Print radio revision(s).  We check the wireless modes
5531 	 * to avoid falsely printing revs for inoperable parts.
5532 	 * Dual-band radio revs are returned in the 5Ghz rev number.
5533 	 */
5534 	ath_hal_getcountrycode(ah, &cc);
5535 	modes = ath_hal_getwirelessmodes(ah, cc);
5536 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5537 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5538 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
5539 				ah->ah_analog5GhzRev >> 4,
5540 				ah->ah_analog5GhzRev & 0xf,
5541 				ah->ah_analog2GhzRev >> 4,
5542 				ah->ah_analog2GhzRev & 0xf);
5543 		else
5544 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5545 				ah->ah_analog5GhzRev & 0xf);
5546 	} else
5547 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5548 			ah->ah_analog5GhzRev & 0xf);
5549 	printf("\n");
5550 	if (bootverbose) {
5551 		int i;
5552 		for (i = 0; i <= WME_AC_VO; i++) {
5553 			struct ath_txq *txq = sc->sc_ac2q[i];
5554 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5555 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5556 		}
5557 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5558 			sc->sc_cabq->axq_qnum);
5559 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5560 	}
5561 	if (ath_rxbuf != ATH_RXBUF)
5562 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5563 	if (ath_txbuf != ATH_TXBUF)
5564 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5565 #undef HAL_MODE_DUALBAND
5566 }
5567 
5568 static void
5569 ath_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nseg,
5570 		 bus_size_t mapsize, int error)
5571 {
5572 	struct ath_buf *bf = arg;
5573 
5574 	if (error)
5575 		return;
5576 
5577 	KASSERT(nseg <= ATH_MAX_SCATTER, ("too many DMA segments"));
5578 	bcopy(segs, bf->bf_segs, nseg * sizeof(bus_dma_segment_t));
5579 	bf->bf_nseg = nseg;
5580 }
5581