xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision 82730a9c)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 
32 /*
33  * Driver for the Atheros Wireless LAN controller.
34  *
35  * This software is derived from work of Atsushi Onoe; his contribution
36  * is greatly appreciated.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ath.h"
41 /*
42  * This is needed for register operations which are performed
43  * by the driver - eg, calls to ath_hal_gettsf32().
44  *
45  * It's also required for any AH_DEBUG checks in here, eg the
46  * module dependencies.
47  */
48 #include "opt_ah.h"
49 #include "opt_wlan.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysctl.h>
54 #include <sys/mbuf.h>
55 #include <sys/malloc.h>
56 #include <sys/lock.h>
57 #include <sys/mutex.h>
58 #include <sys/kernel.h>
59 #include <sys/socket.h>
60 #include <sys/sockio.h>
61 #include <sys/errno.h>
62 #include <sys/callout.h>
63 #include <sys/bus.h>
64 #include <sys/endian.h>
65 #include <sys/kthread.h>
66 #include <sys/taskqueue.h>
67 #include <sys/priv.h>
68 #include <sys/module.h>
69 #include <sys/ktr.h>
70 
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 #include <net/if_arp.h>
77 #include <net/ethernet.h>
78 #include <net/if_llc.h>
79 #include <net/ifq_var.h>
80 
81 #include <netproto/802_11/ieee80211_var.h>
82 #include <netproto/802_11/ieee80211_regdomain.h>
83 #ifdef IEEE80211_SUPPORT_SUPERG
84 #include <netproto/802_11/ieee80211_superg.h>
85 #endif
86 #ifdef IEEE80211_SUPPORT_TDMA
87 #include <netproto/802_11/ieee80211_tdma.h>
88 #endif
89 
90 #include <net/bpf.h>
91 
92 #ifdef INET
93 #include <netinet/in.h>
94 #include <netinet/if_ether.h>
95 #endif
96 
97 #include <dev/netif/ath/ath/if_athvar.h>
98 #include <dev/netif/ath/ath_hal/ah_devid.h>		/* XXX for softled */
99 #include <dev/netif/ath/ath_hal/ah_diagcodes.h>
100 
101 #include <dev/netif/ath/ath/if_ath_debug.h>
102 #include <dev/netif/ath/ath/if_ath_misc.h>
103 #include <dev/netif/ath/ath/if_ath_tsf.h>
104 #include <dev/netif/ath/ath/if_ath_tx.h>
105 #include <dev/netif/ath/ath/if_ath_sysctl.h>
106 #include <dev/netif/ath/ath/if_ath_led.h>
107 #include <dev/netif/ath/ath/if_ath_keycache.h>
108 #include <dev/netif/ath/ath/if_ath_rx.h>
109 #include <dev/netif/ath/ath/if_ath_rx_edma.h>
110 #include <dev/netif/ath/ath/if_ath_tx_edma.h>
111 #include <dev/netif/ath/ath/if_ath_beacon.h>
112 #include <dev/netif/ath/ath/if_ath_btcoex.h>
113 #include <dev/netif/ath/ath/if_ath_spectral.h>
114 #include <dev/netif/ath/ath/if_ath_lna_div.h>
115 #include <dev/netif/ath/ath/if_athdfs.h>
116 
117 #ifdef ATH_TX99_DIAG
118 #include <dev/netif/ath/ath_tx99/ath_tx99.h>
119 #endif
120 
121 #ifdef	ATH_DEBUG_ALQ
122 #include <dev/netif/ath/ath/if_ath_alq.h>
123 #endif
124 
125 /*
126  * Only enable this if you're working on PS-POLL support.
127  */
128 #define	ATH_SW_PSQ
129 
130 #ifdef __DragonFly__
131 #define CURVNET_SET(name)
132 #define CURVNET_RESTORE()
133 #endif
134 
135 /*
136  * ATH_BCBUF determines the number of vap's that can transmit
137  * beacons and also (currently) the number of vap's that can
138  * have unique mac addresses/bssid.  When staggering beacons
139  * 4 is probably a good max as otherwise the beacons become
140  * very closely spaced and there is limited time for cab q traffic
141  * to go out.  You can burst beacons instead but that is not good
142  * for stations in power save and at some point you really want
143  * another radio (and channel).
144  *
145  * The limit on the number of mac addresses is tied to our use of
146  * the U/L bit and tracking addresses in a byte; it would be
147  * worthwhile to allow more for applications like proxy sta.
148  */
149 CTASSERT(ATH_BCBUF <= 8);
150 
151 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
152 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
153 		    const uint8_t [IEEE80211_ADDR_LEN],
154 		    const uint8_t [IEEE80211_ADDR_LEN]);
155 static void	ath_vap_delete(struct ieee80211vap *);
156 static void	ath_init(void *);
157 static void	ath_stop_locked(struct ifnet *);
158 static void	ath_stop(struct ifnet *);
159 static int	ath_reset_vap(struct ieee80211vap *, u_long);
160 static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
161 #if 0
162 static void	ath_qflush(struct ifnet *ifp);
163 #endif
164 static int	ath_media_change(struct ifnet *);
165 static void	ath_watchdog(void *);
166 static void	ath_start(struct ifnet *, struct ifaltq_subque *);
167 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
168 static void	ath_fatal_proc(void *, int);
169 static void	ath_bmiss_vap(struct ieee80211vap *);
170 static void	ath_bmiss_proc(void *, int);
171 static void	ath_key_update_begin(struct ieee80211vap *);
172 static void	ath_key_update_end(struct ieee80211vap *);
173 static void	ath_update_mcast(struct ifnet *);
174 static void	ath_update_promisc(struct ifnet *);
175 static void	ath_updateslot(struct ifnet *);
176 static void	ath_bstuck_proc(void *, int);
177 static void	ath_reset_proc(void *, int);
178 static int	ath_desc_alloc(struct ath_softc *);
179 static void	ath_desc_free(struct ath_softc *);
180 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
181 			const uint8_t [IEEE80211_ADDR_LEN]);
182 static void	ath_node_cleanup(struct ieee80211_node *);
183 static void	ath_node_free(struct ieee80211_node *);
184 static void	ath_node_getsignal(const struct ieee80211_node *,
185 			int8_t *, int8_t *);
186 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
187 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
188 static int	ath_tx_setup(struct ath_softc *, int, int);
189 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
190 static void	ath_tx_cleanup(struct ath_softc *);
191 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
192 		    int dosched);
193 static void	ath_tx_proc_q0(void *, int);
194 static void	ath_tx_proc_q0123(void *, int);
195 static void	ath_tx_proc(void *, int);
196 static void	ath_txq_sched_tasklet(void *, int);
197 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
198 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
199 static void	ath_scan_start(struct ieee80211com *);
200 static void	ath_scan_end(struct ieee80211com *);
201 static void	ath_set_channel(struct ieee80211com *);
202 #ifdef	ATH_ENABLE_11N
203 static void	ath_update_chw(struct ieee80211com *);
204 #endif	/* ATH_ENABLE_11N */
205 static void	ath_calibrate(void *);
206 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
207 static void	ath_setup_stationkey(struct ieee80211_node *);
208 static void	ath_newassoc(struct ieee80211_node *, int);
209 static int	ath_setregdomain(struct ieee80211com *,
210 		    struct ieee80211_regdomain *, int,
211 		    struct ieee80211_channel []);
212 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
213 		    struct ieee80211_channel []);
214 static int	ath_getchannels(struct ath_softc *);
215 
216 static int	ath_rate_setup(struct ath_softc *, u_int mode);
217 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
218 
219 static void	ath_announce(struct ath_softc *);
220 
221 static void	ath_dfs_tasklet(void *, int);
222 #if 0
223 static void	ath_node_powersave(struct ieee80211_node *, int);
224 static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
225 #endif
226 static int	ath_node_set_tim(struct ieee80211_node *, int);
227 
228 #ifdef IEEE80211_SUPPORT_TDMA
229 #include <dev/netif/ath/ath/if_ath_tdma.h>
230 #endif
231 
232 extern	const char* ath_hal_ether_sprintf(const u_int8_t *mac);
233 
234 SYSCTL_DECL(_hw_ath);
235 
236 /* XXX validate sysctl values */
237 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
238 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
239 	    0, "long chip calibration interval (secs)");
240 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
241 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
242 	    0, "short chip calibration interval (msecs)");
243 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
244 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
245 	    0, "reset chip calibration results (secs)");
246 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
247 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
248 	    0, "ANI calibration (msecs)");
249 
250 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
251 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
252 	    0, "rx buffers allocated");
253 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
254 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
255 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
256 	    0, "tx buffers allocated");
257 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
258 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
259 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
260 	    0, "tx (mgmt) buffers allocated");
261 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
262 
263 int ath_bstuck_threshold = 4;		/* max missed beacons */
264 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
265 	    0, "max missed beacon xmits before chip reset");
266 
267 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
268 
269 void
270 ath_legacy_attach_comp_func(struct ath_softc *sc)
271 {
272 
273 	/*
274 	 * Special case certain configurations.  Note the
275 	 * CAB queue is handled by these specially so don't
276 	 * include them when checking the txq setup mask.
277 	 */
278 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
279 	case 0x01:
280 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
281 		break;
282 	case 0x0f:
283 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
284 		break;
285 	default:
286 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
287 		break;
288 	}
289 }
290 
291 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
292 #define	HAL_MODE_HT40 \
293 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
294 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
295 int
296 ath_attach(u_int16_t devid, struct ath_softc *sc)
297 {
298 	struct ifnet *ifp;
299 	struct ieee80211com *ic;
300 	struct ath_hal *ah = NULL;
301 	HAL_STATUS status;
302 	int error = 0, i;
303 	u_int wmodes;
304 	uint8_t macaddr[IEEE80211_ADDR_LEN];
305 	int rx_chainmask, tx_chainmask;
306 
307 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
308 
309 	CURVNET_SET(vnet0);
310 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
311 	if (ifp == NULL) {
312 		device_printf(sc->sc_dev, "can not if_alloc()\n");
313 		error = ENOSPC;
314 		CURVNET_RESTORE();
315 		goto bad;
316 	}
317 	ic = ifp->if_l2com;
318 
319 	/* set these up early for if_printf use */
320 	if_initname(ifp, device_get_name(sc->sc_dev),
321 		device_get_unit(sc->sc_dev));
322 	CURVNET_RESTORE();
323 
324 	/* prepare sysctl tree for use in sub modules */
325 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
326 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
327 		SYSCTL_STATIC_CHILDREN(_hw),
328 		OID_AUTO,
329 		device_get_nameunit(sc->sc_dev),
330 		CTLFLAG_RD, 0, "");
331 
332 
333 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
334 	    sc->sc_eepromdata, &status);
335 	if (ah == NULL) {
336 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
337 			status);
338 		error = ENXIO;
339 		goto bad;
340 	}
341 	sc->sc_ah = ah;
342 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
343 #ifdef	ATH_DEBUG
344 	sc->sc_debug = ath_debug;
345 #endif
346 
347 	/*
348 	 * Setup the DMA/EDMA functions based on the current
349 	 * hardware support.
350 	 *
351 	 * This is required before the descriptors are allocated.
352 	 */
353 	if (ath_hal_hasedma(sc->sc_ah)) {
354 		sc->sc_isedma = 1;
355 		ath_recv_setup_edma(sc);
356 		ath_xmit_setup_edma(sc);
357 	} else {
358 		ath_recv_setup_legacy(sc);
359 		ath_xmit_setup_legacy(sc);
360 	}
361 
362 	/*
363 	 * Check if the MAC has multi-rate retry support.
364 	 * We do this by trying to setup a fake extended
365 	 * descriptor.  MAC's that don't have support will
366 	 * return false w/o doing anything.  MAC's that do
367 	 * support it will return true w/o doing anything.
368 	 */
369 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
370 
371 	/*
372 	 * Check if the device has hardware counters for PHY
373 	 * errors.  If so we need to enable the MIB interrupt
374 	 * so we can act on stat triggers.
375 	 */
376 	if (ath_hal_hwphycounters(ah))
377 		sc->sc_needmib = 1;
378 
379 	/*
380 	 * Get the hardware key cache size.
381 	 */
382 	sc->sc_keymax = ath_hal_keycachesize(ah);
383 	if (sc->sc_keymax > ATH_KEYMAX) {
384 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
385 			ATH_KEYMAX, sc->sc_keymax);
386 		sc->sc_keymax = ATH_KEYMAX;
387 	}
388 	/*
389 	 * Reset the key cache since some parts do not
390 	 * reset the contents on initial power up.
391 	 */
392 	for (i = 0; i < sc->sc_keymax; i++)
393 		ath_hal_keyreset(ah, i);
394 
395 	/*
396 	 * Collect the default channel list.
397 	 */
398 	error = ath_getchannels(sc);
399 	if (error != 0)
400 		goto bad;
401 
402 	/*
403 	 * Setup rate tables for all potential media types.
404 	 */
405 	ath_rate_setup(sc, IEEE80211_MODE_11A);
406 	ath_rate_setup(sc, IEEE80211_MODE_11B);
407 	ath_rate_setup(sc, IEEE80211_MODE_11G);
408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
409 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
410 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
411 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
412 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
413 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
414 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
415 
416 	/* NB: setup here so ath_rate_update is happy */
417 	ath_setcurmode(sc, IEEE80211_MODE_11A);
418 
419 	/*
420 	 * Allocate TX descriptors and populate the lists.
421 	 */
422 	wlan_assert_serialized();
423 	wlan_serialize_exit();
424 	error = ath_desc_alloc(sc);
425 	wlan_serialize_enter();
426 	if (error != 0) {
427 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
428 		    error);
429 		goto bad;
430 	}
431 	error = ath_txdma_setup(sc);
432 	if (error != 0) {
433 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
434 		    error);
435 		goto bad;
436 	}
437 
438 	/*
439 	 * Allocate RX descriptors and populate the lists.
440 	 */
441 	error = ath_rxdma_setup(sc);
442 	if (error != 0) {
443 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
444 		    error);
445 		goto bad;
446 	}
447 
448 	callout_init_mp(&sc->sc_cal_ch);
449 	callout_init_mp(&sc->sc_wd_ch);
450 
451 	ATH_TXBUF_LOCK_INIT(sc);
452 
453 	sc->sc_tq = taskqueue_create("ath_taskq", M_INTWAIT,
454 		taskqueue_thread_enqueue, &sc->sc_tq);
455 	taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
456 		"%s taskq", ifp->if_xname);
457 
458 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
459 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
460 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
461 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
462 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
463 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
464 
465 	/*
466 	 * Allocate hardware transmit queues: one queue for
467 	 * beacon frames and one data queue for each QoS
468 	 * priority.  Note that the hal handles resetting
469 	 * these queues at the needed time.
470 	 *
471 	 * XXX PS-Poll
472 	 */
473 	sc->sc_bhalq = ath_beaconq_setup(sc);
474 	if (sc->sc_bhalq == (u_int) -1) {
475 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
476 		error = EIO;
477 		goto bad2;
478 	}
479 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
480 	if (sc->sc_cabq == NULL) {
481 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
482 		error = EIO;
483 		goto bad2;
484 	}
485 	/* NB: insure BK queue is the lowest priority h/w queue */
486 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
487 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
488 			ieee80211_wme_acnames[WME_AC_BK]);
489 		error = EIO;
490 		goto bad2;
491 	}
492 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
493 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
494 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
495 		/*
496 		 * Not enough hardware tx queues to properly do WME;
497 		 * just punt and assign them all to the same h/w queue.
498 		 * We could do a better job of this if, for example,
499 		 * we allocate queues when we switch from station to
500 		 * AP mode.
501 		 */
502 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
503 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
504 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
505 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
506 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
507 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
508 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
509 	}
510 
511 	/*
512 	 * Attach the TX completion function.
513 	 *
514 	 * The non-EDMA chips may have some special case optimisations;
515 	 * this method gives everyone a chance to attach cleanly.
516 	 */
517 	sc->sc_tx.xmit_attach_comp_func(sc);
518 
519 	/*
520 	 * Setup rate control.  Some rate control modules
521 	 * call back to change the anntena state so expose
522 	 * the necessary entry points.
523 	 * XXX maybe belongs in struct ath_ratectrl?
524 	 */
525 	sc->sc_setdefantenna = ath_setdefantenna;
526 	sc->sc_rc = ath_rate_attach(sc);
527 	if (sc->sc_rc == NULL) {
528 		error = EIO;
529 		goto bad2;
530 	}
531 
532 	/* Attach DFS module */
533 	if (! ath_dfs_attach(sc)) {
534 		device_printf(sc->sc_dev,
535 		    "%s: unable to attach DFS\n", __func__);
536 		error = EIO;
537 		goto bad2;
538 	}
539 
540 	/* Attach spectral module */
541 	if (ath_spectral_attach(sc) < 0) {
542 		device_printf(sc->sc_dev,
543 		    "%s: unable to attach spectral\n", __func__);
544 		error = EIO;
545 		goto bad2;
546 	}
547 
548 	/* Attach bluetooth coexistence module */
549 	if (ath_btcoex_attach(sc) < 0) {
550 		device_printf(sc->sc_dev,
551 		    "%s: unable to attach bluetooth coexistence\n", __func__);
552 		error = EIO;
553 		goto bad2;
554 	}
555 
556 	/* Attach LNA diversity module */
557 	if (ath_lna_div_attach(sc) < 0) {
558 		device_printf(sc->sc_dev,
559 		    "%s: unable to attach LNA diversity\n", __func__);
560 		error = EIO;
561 		goto bad2;
562 	}
563 
564 	/* Start DFS processing tasklet */
565 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
566 
567 	/* Configure LED state */
568 	sc->sc_blinking = 0;
569 	sc->sc_ledstate = 1;
570 	sc->sc_ledon = 0;			/* low true */
571 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
572 	callout_init_mp(&sc->sc_ledtimer);
573 
574 	/*
575 	 * Don't setup hardware-based blinking.
576 	 *
577 	 * Although some NICs may have this configured in the
578 	 * default reset register values, the user may wish
579 	 * to alter which pins have which function.
580 	 *
581 	 * The reference driver attaches the MAC network LED to GPIO1 and
582 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
583 	 * NIC has these reversed.
584 	 */
585 	sc->sc_hardled = (1 == 0);
586 	sc->sc_led_net_pin = -1;
587 	sc->sc_led_pwr_pin = -1;
588 	/*
589 	 * Auto-enable soft led processing for IBM cards and for
590 	 * 5211 minipci cards.  Users can also manually enable/disable
591 	 * support with a sysctl.
592 	 */
593 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
594 	ath_led_config(sc);
595 	ath_hal_setledstate(ah, HAL_LED_INIT);
596 
597 	ifp->if_softc = sc;
598 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
599 #if 0
600 	ifp->if_transmit = ath_transmit;
601 	ifp->if_qflush = ath_qflush;
602 #endif
603 	ifp->if_start = ath_start;
604 	ifp->if_ioctl = ath_ioctl;
605 	ifp->if_init = ath_init;
606 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
607 #if 0
608 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
609 	IFQ_SET_READY(&ifp->if_snd);
610 #endif
611 
612 	ic->ic_ifp = ifp;
613 	/* XXX not right but it's not used anywhere important */
614 	ic->ic_phytype = IEEE80211_T_OFDM;
615 	ic->ic_opmode = IEEE80211_M_STA;
616 	ic->ic_caps =
617 		  IEEE80211_C_STA		/* station mode */
618 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
619 		| IEEE80211_C_HOSTAP		/* hostap mode */
620 		| IEEE80211_C_MONITOR		/* monitor mode */
621 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
622 		| IEEE80211_C_WDS		/* 4-address traffic works */
623 		| IEEE80211_C_MBSS		/* mesh point link mode */
624 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
625 		| IEEE80211_C_SHSLOT		/* short slot time supported */
626 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
627 #ifndef	ATH_ENABLE_11N
628 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
629 #endif
630 		| IEEE80211_C_TXFRAG		/* handle tx frags */
631 #ifdef	ATH_ENABLE_DFS
632 		| IEEE80211_C_DFS		/* Enable radar detection */
633 #endif
634 		;
635 	/*
636 	 * Query the hal to figure out h/w crypto support.
637 	 */
638 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
639 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
640 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
641 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
642 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
643 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
644 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
645 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
646 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
647 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
648 		/*
649 		 * Check if h/w does the MIC and/or whether the
650 		 * separate key cache entries are required to
651 		 * handle both tx+rx MIC keys.
652 		 */
653 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
654 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
655 		/*
656 		 * If the h/w supports storing tx+rx MIC keys
657 		 * in one cache slot automatically enable use.
658 		 */
659 		if (ath_hal_hastkipsplit(ah) ||
660 		    !ath_hal_settkipsplit(ah, AH_FALSE))
661 			sc->sc_splitmic = 1;
662 		/*
663 		 * If the h/w can do TKIP MIC together with WME then
664 		 * we use it; otherwise we force the MIC to be done
665 		 * in software by the net80211 layer.
666 		 */
667 		if (ath_hal_haswmetkipmic(ah))
668 			sc->sc_wmetkipmic = 1;
669 	}
670 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
671 	/*
672 	 * Check for multicast key search support.
673 	 */
674 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
675 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
676 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
677 	}
678 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
679 	/*
680 	 * Mark key cache slots associated with global keys
681 	 * as in use.  If we knew TKIP was not to be used we
682 	 * could leave the +32, +64, and +32+64 slots free.
683 	 */
684 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
685 		setbit(sc->sc_keymap, i);
686 		setbit(sc->sc_keymap, i+64);
687 		if (sc->sc_splitmic) {
688 			setbit(sc->sc_keymap, i+32);
689 			setbit(sc->sc_keymap, i+32+64);
690 		}
691 	}
692 	/*
693 	 * TPC support can be done either with a global cap or
694 	 * per-packet support.  The latter is not available on
695 	 * all parts.  We're a bit pedantic here as all parts
696 	 * support a global cap.
697 	 */
698 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
699 		ic->ic_caps |= IEEE80211_C_TXPMGT;
700 
701 	/*
702 	 * Mark WME capability only if we have sufficient
703 	 * hardware queues to do proper priority scheduling.
704 	 */
705 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
706 		ic->ic_caps |= IEEE80211_C_WME;
707 	/*
708 	 * Check for misc other capabilities.
709 	 */
710 	if (ath_hal_hasbursting(ah))
711 		ic->ic_caps |= IEEE80211_C_BURST;
712 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
713 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
714 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
715 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
716 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
717 	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
718 	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
719 	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
720 
721 	if (ath_hal_hasfastframes(ah))
722 		ic->ic_caps |= IEEE80211_C_FF;
723 	wmodes = ath_hal_getwirelessmodes(ah);
724 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
725 		ic->ic_caps |= IEEE80211_C_TURBOP;
726 #ifdef IEEE80211_SUPPORT_TDMA
727 	if (ath_hal_macversion(ah) > 0x78) {
728 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
729 		ic->ic_tdma_update = ath_tdma_update;
730 	}
731 #endif
732 
733 	/*
734 	 * TODO: enforce that at least this many frames are available
735 	 * in the txbuf list before allowing data frames (raw or
736 	 * otherwise) to be transmitted.
737 	 */
738 	sc->sc_txq_data_minfree = 10;
739 	/*
740 	 * Leave this as default to maintain legacy behaviour.
741 	 * Shortening the cabq/mcastq may end up causing some
742 	 * undesirable behaviour.
743 	 */
744 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
745 
746 	/*
747 	 * How deep can the node software TX queue get whilst it's asleep.
748 	 */
749 	sc->sc_txq_node_psq_maxdepth = 16;
750 
751 	/*
752 	 * Default the maximum queue depth for a given node
753 	 * to 1/4'th the TX buffers, or 64, whichever
754 	 * is larger.
755 	 */
756 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
757 
758 	/* Enable CABQ by default */
759 	sc->sc_cabq_enable = 1;
760 
761 	/*
762 	 * Allow the TX and RX chainmasks to be overridden by
763 	 * environment variables and/or device.hints.
764 	 *
765 	 * This must be done early - before the hardware is
766 	 * calibrated or before the 802.11n stream calculation
767 	 * is done.
768 	 */
769 	if (resource_int_value(device_get_name(sc->sc_dev),
770 	    device_get_unit(sc->sc_dev), "rx_chainmask",
771 	    &rx_chainmask) == 0) {
772 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
773 		    rx_chainmask);
774 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
775 	}
776 	if (resource_int_value(device_get_name(sc->sc_dev),
777 	    device_get_unit(sc->sc_dev), "tx_chainmask",
778 	    &tx_chainmask) == 0) {
779 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
780 		    tx_chainmask);
781 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
782 	}
783 
784 	/*
785 	 * Query the TX/RX chainmask configuration.
786 	 *
787 	 * This is only relevant for 11n devices.
788 	 */
789 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
790 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
791 
792 	/*
793 	 * Disable MRR with protected frames by default.
794 	 * Only 802.11n series NICs can handle this.
795 	 */
796 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
797 
798 	/*
799 	 * Query the enterprise mode information the HAL.
800 	 */
801 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
802 	    &sc->sc_ent_cfg) == HAL_OK)
803 		sc->sc_use_ent = 1;
804 
805 #ifdef	ATH_ENABLE_11N
806 	/*
807 	 * Query HT capabilities
808 	 */
809 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
810 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
811 		uint32_t rxs, txs;
812 
813 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
814 
815 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
816 
817 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
818 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
819 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
820 			    | IEEE80211_HTCAP_MAXAMSDU_3839
821 			    				/* max A-MSDU length */
822 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
823 
824 		/*
825 		 * Enable short-GI for HT20 only if the hardware
826 		 * advertises support.
827 		 * Notably, anything earlier than the AR9287 doesn't.
828 		 */
829 		if ((ath_hal_getcapability(ah,
830 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
831 		    (wmodes & HAL_MODE_HT20)) {
832 			device_printf(sc->sc_dev,
833 			    "[HT] enabling short-GI in 20MHz mode\n");
834 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
835 		}
836 
837 		if (wmodes & HAL_MODE_HT40)
838 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
839 			    |  IEEE80211_HTCAP_SHORTGI40;
840 
841 		/*
842 		 * TX/RX streams need to be taken into account when
843 		 * negotiating which MCS rates it'll receive and
844 		 * what MCS rates are available for TX.
845 		 */
846 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
847 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
848 		ic->ic_txstream = txs;
849 		ic->ic_rxstream = rxs;
850 
851 		/*
852 		 * Setup TX and RX STBC based on what the HAL allows and
853 		 * the currently configured chainmask set.
854 		 * Ie - don't enable STBC TX if only one chain is enabled.
855 		 * STBC RX is fine on a single RX chain; it just won't
856 		 * provide any real benefit.
857 		 */
858 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
859 		    NULL) == HAL_OK) {
860 			sc->sc_rx_stbc = 1;
861 			device_printf(sc->sc_dev,
862 			    "[HT] 1 stream STBC receive enabled\n");
863 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
864 		}
865 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
866 		    NULL) == HAL_OK) {
867 			sc->sc_tx_stbc = 1;
868 			device_printf(sc->sc_dev,
869 			    "[HT] 1 stream STBC transmit enabled\n");
870 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
871 		}
872 
873 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
874 		    &sc->sc_rts_aggr_limit);
875 		if (sc->sc_rts_aggr_limit != (64 * 1024))
876 			device_printf(sc->sc_dev,
877 			    "[HT] RTS aggregates limited to %d KiB\n",
878 			    sc->sc_rts_aggr_limit / 1024);
879 
880 		device_printf(sc->sc_dev,
881 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
882 	}
883 #endif
884 
885 	/*
886 	 * Initial aggregation settings.
887 	 */
888 	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
889 	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
890 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
891 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
892 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
893 	sc->sc_delim_min_pad = 0;
894 
895 	/*
896 	 * Check if the hardware requires PCI register serialisation.
897 	 * Some of the Owl based MACs require this.
898 	 */
899 	if (ncpus > 1 &&
900 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
901 	     0, NULL) == HAL_OK) {
902 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
903 		device_printf(sc->sc_dev,
904 		    "Enabling register serialisation\n");
905 	}
906 
907 	/*
908 	 * Initialise the deferred completed RX buffer list.
909 	 */
910 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
911 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
912 
913 	/*
914 	 * Indicate we need the 802.11 header padded to a
915 	 * 32-bit boundary for 4-address and QoS frames.
916 	 */
917 	ic->ic_flags |= IEEE80211_F_DATAPAD;
918 
919 	/*
920 	 * Query the hal about antenna support.
921 	 */
922 	sc->sc_defant = ath_hal_getdefantenna(ah);
923 
924 	/*
925 	 * Not all chips have the VEOL support we want to
926 	 * use with IBSS beacons; check here for it.
927 	 */
928 	sc->sc_hasveol = ath_hal_hasveol(ah);
929 
930 	/* get mac address from hardware */
931 	ath_hal_getmac(ah, macaddr);
932 	if (sc->sc_hasbmask)
933 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
934 
935 	/* NB: used to size node table key mapping array */
936 	ic->ic_max_keyix = sc->sc_keymax;
937 	/* call MI attach routine. */
938 	ieee80211_ifattach(ic, macaddr);
939 	ic->ic_setregdomain = ath_setregdomain;
940 	ic->ic_getradiocaps = ath_getradiocaps;
941 	sc->sc_opmode = HAL_M_STA;
942 
943 	/* override default methods */
944 	ic->ic_newassoc = ath_newassoc;
945 	ic->ic_updateslot = ath_updateslot;
946 	ic->ic_wme.wme_update = ath_wme_update;
947 	ic->ic_vap_create = ath_vap_create;
948 	ic->ic_vap_delete = ath_vap_delete;
949 	ic->ic_raw_xmit = ath_raw_xmit;
950 	ic->ic_update_mcast = ath_update_mcast;
951 	ic->ic_update_promisc = ath_update_promisc;
952 	ic->ic_node_alloc = ath_node_alloc;
953 	sc->sc_node_free = ic->ic_node_free;
954 	ic->ic_node_free = ath_node_free;
955 	sc->sc_node_cleanup = ic->ic_node_cleanup;
956 	ic->ic_node_cleanup = ath_node_cleanup;
957 	ic->ic_node_getsignal = ath_node_getsignal;
958 	ic->ic_scan_start = ath_scan_start;
959 	ic->ic_scan_end = ath_scan_end;
960 	ic->ic_set_channel = ath_set_channel;
961 #ifdef	ATH_ENABLE_11N
962 	/* 802.11n specific - but just override anyway */
963 	sc->sc_addba_request = ic->ic_addba_request;
964 	sc->sc_addba_response = ic->ic_addba_response;
965 	sc->sc_addba_stop = ic->ic_addba_stop;
966 	sc->sc_bar_response = ic->ic_bar_response;
967 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
968 
969 	ic->ic_addba_request = ath_addba_request;
970 	ic->ic_addba_response = ath_addba_response;
971 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
972 	ic->ic_addba_stop = ath_addba_stop;
973 	ic->ic_bar_response = ath_bar_response;
974 
975 	ic->ic_update_chw = ath_update_chw;
976 #endif	/* ATH_ENABLE_11N */
977 
978 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
979 	/*
980 	 * There's one vendor bitmap entry in the RX radiotap
981 	 * header; make sure that's taken into account.
982 	 */
983 	ieee80211_radiotap_attachv(ic,
984 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
985 		ATH_TX_RADIOTAP_PRESENT,
986 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
987 		ATH_RX_RADIOTAP_PRESENT);
988 #else
989 	/*
990 	 * No vendor bitmap/extensions are present.
991 	 */
992 	ieee80211_radiotap_attach(ic,
993 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
994 		ATH_TX_RADIOTAP_PRESENT,
995 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
996 		ATH_RX_RADIOTAP_PRESENT);
997 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
998 
999 	/*
1000 	 * Setup the ALQ logging if required
1001 	 */
1002 #ifdef	ATH_DEBUG_ALQ
1003 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1004 	if_ath_alq_setcfg(&sc->sc_alq,
1005 	    sc->sc_ah->ah_macVersion,
1006 	    sc->sc_ah->ah_macRev,
1007 	    sc->sc_ah->ah_phyRev,
1008 	    sc->sc_ah->ah_magic);
1009 #endif
1010 
1011 	/*
1012 	 * Setup dynamic sysctl's now that country code and
1013 	 * regdomain are available from the hal.
1014 	 */
1015 	ath_sysctlattach(sc);
1016 	ath_sysctl_stats_attach(sc);
1017 	ath_sysctl_hal_attach(sc);
1018 
1019 	if (bootverbose)
1020 		ieee80211_announce(ic);
1021 	ath_announce(sc);
1022 	return 0;
1023 bad2:
1024 	ath_tx_cleanup(sc);
1025 	ath_desc_free(sc);
1026 	ath_txdma_teardown(sc);
1027 	ath_rxdma_teardown(sc);
1028 bad:
1029 	if (ah)
1030 		ath_hal_detach(ah);
1031 
1032 	/*
1033 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1034 	 */
1035 #if !defined(__DragonFly__)
1036 	if (ifp != NULL && ifp->if_vnet) {
1037 		CURVNET_SET(ifp->if_vnet);
1038 		if_free(ifp);
1039 		CURVNET_RESTORE();
1040 	} else
1041 #endif
1042 	if (ifp != NULL)
1043 		if_free(ifp);
1044 	sc->sc_invalid = 1;
1045 	return error;
1046 }
1047 
1048 int
1049 ath_detach(struct ath_softc *sc)
1050 {
1051 	struct ifnet *ifp = sc->sc_ifp;
1052 
1053 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1054 		__func__, ifp->if_flags);
1055 
1056 	/*
1057 	 * NB: the order of these is important:
1058 	 * o stop the chip so no more interrupts will fire
1059 	 * o call the 802.11 layer before detaching the hal to
1060 	 *   insure callbacks into the driver to delete global
1061 	 *   key cache entries can be handled
1062 	 * o free the taskqueue which drains any pending tasks
1063 	 * o reclaim the tx queue data structures after calling
1064 	 *   the 802.11 layer as we'll get called back to reclaim
1065 	 *   node state and potentially want to use them
1066 	 * o to cleanup the tx queues the hal is called, so detach
1067 	 *   it last
1068 	 * Other than that, it's straightforward...
1069 	 */
1070 	ath_stop(ifp);
1071 	ieee80211_ifdetach(ifp->if_l2com);
1072 	taskqueue_free(sc->sc_tq);
1073 #ifdef ATH_TX99_DIAG
1074 	if (sc->sc_tx99 != NULL)
1075 		sc->sc_tx99->detach(sc->sc_tx99);
1076 #endif
1077 	ath_rate_detach(sc->sc_rc);
1078 #ifdef	ATH_DEBUG_ALQ
1079 	if_ath_alq_tidyup(&sc->sc_alq);
1080 #endif
1081 	ath_lna_div_detach(sc);
1082 	ath_btcoex_detach(sc);
1083 	ath_spectral_detach(sc);
1084 	ath_dfs_detach(sc);
1085 	ath_desc_free(sc);
1086 	ath_txdma_teardown(sc);
1087 	ath_rxdma_teardown(sc);
1088 	ath_tx_cleanup(sc);
1089 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1090 
1091 	CURVNET_SET(ifp->if_vnet);
1092 	if_free(ifp);
1093 	CURVNET_RESTORE();
1094 
1095 	if (sc->sc_sysctl_tree) {
1096 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
1097 		sc->sc_sysctl_tree = NULL;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /*
1104  * MAC address handling for multiple BSS on the same radio.
1105  * The first vap uses the MAC address from the EEPROM.  For
1106  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1107  * address and use the next six bits as an index.
1108  */
1109 static void
1110 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1111 {
1112 	int i;
1113 
1114 	if (clone && sc->sc_hasbmask) {
1115 		/* NB: we only do this if h/w supports multiple bssid */
1116 		for (i = 0; i < 8; i++)
1117 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1118 				break;
1119 		if (i != 0)
1120 			mac[0] |= (i << 2)|0x2;
1121 	} else
1122 		i = 0;
1123 	sc->sc_bssidmask |= 1<<i;
1124 	sc->sc_hwbssidmask[0] &= ~mac[0];
1125 	if (i == 0)
1126 		sc->sc_nbssid0++;
1127 }
1128 
1129 static void
1130 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1131 {
1132 	int i = mac[0] >> 2;
1133 	uint8_t mask;
1134 
1135 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1136 		sc->sc_bssidmask &= ~(1<<i);
1137 		/* recalculate bssid mask from remaining addresses */
1138 		mask = 0xff;
1139 		for (i = 1; i < 8; i++)
1140 			if (sc->sc_bssidmask & (1<<i))
1141 				mask &= ~((i<<2)|0x2);
1142 		sc->sc_hwbssidmask[0] |= mask;
1143 	}
1144 }
1145 
1146 /*
1147  * Assign a beacon xmit slot.  We try to space out
1148  * assignments so when beacons are staggered the
1149  * traffic coming out of the cab q has maximal time
1150  * to go out before the next beacon is scheduled.
1151  */
1152 static int
1153 assign_bslot(struct ath_softc *sc)
1154 {
1155 	u_int slot, free;
1156 
1157 	free = 0;
1158 	for (slot = 0; slot < ATH_BCBUF; slot++)
1159 		if (sc->sc_bslot[slot] == NULL) {
1160 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1161 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1162 				return slot;
1163 			free = slot;
1164 			/* NB: keep looking for a double slot */
1165 		}
1166 	return free;
1167 }
1168 
1169 static struct ieee80211vap *
1170 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1171     enum ieee80211_opmode opmode, int flags,
1172     const uint8_t bssid[IEEE80211_ADDR_LEN],
1173     const uint8_t mac0[IEEE80211_ADDR_LEN])
1174 {
1175 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1176 	struct ath_vap *avp;
1177 	struct ieee80211vap *vap;
1178 	uint8_t mac[IEEE80211_ADDR_LEN];
1179 	int needbeacon, error;
1180 	enum ieee80211_opmode ic_opmode;
1181 
1182 	avp = (struct ath_vap *) kmalloc(sizeof(struct ath_vap),
1183 	    M_80211_VAP, M_WAITOK | M_ZERO);
1184 	needbeacon = 0;
1185 	IEEE80211_ADDR_COPY(mac, mac0);
1186 
1187 	ATH_LOCK(sc);
1188 	ic_opmode = opmode;		/* default to opmode of new vap */
1189 	switch (opmode) {
1190 	case IEEE80211_M_STA:
1191 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1192 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1193 			goto bad;
1194 		}
1195 		if (sc->sc_nvaps) {
1196 			/*
1197 			 * With multiple vaps we must fall back
1198 			 * to s/w beacon miss handling.
1199 			 */
1200 			flags |= IEEE80211_CLONE_NOBEACONS;
1201 		}
1202 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1203 			/*
1204 			 * Station mode w/o beacons are implemented w/ AP mode.
1205 			 */
1206 			ic_opmode = IEEE80211_M_HOSTAP;
1207 		}
1208 		break;
1209 	case IEEE80211_M_IBSS:
1210 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1211 			device_printf(sc->sc_dev,
1212 			    "only 1 ibss vap supported\n");
1213 			goto bad;
1214 		}
1215 		needbeacon = 1;
1216 		break;
1217 	case IEEE80211_M_AHDEMO:
1218 #ifdef IEEE80211_SUPPORT_TDMA
1219 		if (flags & IEEE80211_CLONE_TDMA) {
1220 			if (sc->sc_nvaps != 0) {
1221 				device_printf(sc->sc_dev,
1222 				    "only 1 tdma vap supported\n");
1223 				goto bad;
1224 			}
1225 			needbeacon = 1;
1226 			flags |= IEEE80211_CLONE_NOBEACONS;
1227 		}
1228 		/* fall thru... */
1229 #endif
1230 	case IEEE80211_M_MONITOR:
1231 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1232 			/*
1233 			 * Adopt existing mode.  Adding a monitor or ahdemo
1234 			 * vap to an existing configuration is of dubious
1235 			 * value but should be ok.
1236 			 */
1237 			/* XXX not right for monitor mode */
1238 			ic_opmode = ic->ic_opmode;
1239 		}
1240 		break;
1241 	case IEEE80211_M_HOSTAP:
1242 	case IEEE80211_M_MBSS:
1243 		needbeacon = 1;
1244 		break;
1245 	case IEEE80211_M_WDS:
1246 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1247 			device_printf(sc->sc_dev,
1248 			    "wds not supported in sta mode\n");
1249 			goto bad;
1250 		}
1251 		/*
1252 		 * Silently remove any request for a unique
1253 		 * bssid; WDS vap's always share the local
1254 		 * mac address.
1255 		 */
1256 		flags &= ~IEEE80211_CLONE_BSSID;
1257 		if (sc->sc_nvaps == 0)
1258 			ic_opmode = IEEE80211_M_HOSTAP;
1259 		else
1260 			ic_opmode = ic->ic_opmode;
1261 		break;
1262 	default:
1263 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1264 		goto bad;
1265 	}
1266 	/*
1267 	 * Check that a beacon buffer is available; the code below assumes it.
1268 	 */
1269 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1270 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1271 		goto bad;
1272 	}
1273 
1274 	/* STA, AHDEMO? */
1275 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1276 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1277 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1278 	}
1279 
1280 	vap = &avp->av_vap;
1281 	/* XXX can't hold mutex across if_alloc */
1282 	ATH_UNLOCK(sc);
1283 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1284 	    bssid, mac);
1285 	ATH_LOCK(sc);
1286 	if (error != 0) {
1287 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1288 		    __func__, error);
1289 		goto bad2;
1290 	}
1291 
1292 	/* h/w crypto support */
1293 	vap->iv_key_alloc = ath_key_alloc;
1294 	vap->iv_key_delete = ath_key_delete;
1295 	vap->iv_key_set = ath_key_set;
1296 	vap->iv_key_update_begin = ath_key_update_begin;
1297 	vap->iv_key_update_end = ath_key_update_end;
1298 
1299 	/* override various methods */
1300 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1301 	vap->iv_recv_mgmt = ath_recv_mgmt;
1302 	vap->iv_reset = ath_reset_vap;
1303 	vap->iv_update_beacon = ath_beacon_update;
1304 	avp->av_newstate = vap->iv_newstate;
1305 	vap->iv_newstate = ath_newstate;
1306 	avp->av_bmiss = vap->iv_bmiss;
1307 	vap->iv_bmiss = ath_bmiss_vap;
1308 
1309 #if 0
1310 	avp->av_node_ps = vap->iv_node_ps;
1311 	vap->iv_node_ps = ath_node_powersave;
1312 #endif
1313 
1314 	avp->av_set_tim = vap->iv_set_tim;
1315 	vap->iv_set_tim = ath_node_set_tim;
1316 
1317 #if 0
1318 	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1319 	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1320 #endif
1321 
1322 	/* Set default parameters */
1323 
1324 	/*
1325 	 * Anything earlier than some AR9300 series MACs don't
1326 	 * support a smaller MPDU density.
1327 	 */
1328 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1329 	/*
1330 	 * All NICs can handle the maximum size, however
1331 	 * AR5416 based MACs can only TX aggregates w/ RTS
1332 	 * protection when the total aggregate size is <= 8k.
1333 	 * However, for now that's enforced by the TX path.
1334 	 */
1335 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1336 
1337 	avp->av_bslot = -1;
1338 	if (needbeacon) {
1339 		/*
1340 		 * Allocate beacon state and setup the q for buffered
1341 		 * multicast frames.  We know a beacon buffer is
1342 		 * available because we checked above.
1343 		 */
1344 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1345 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1346 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1347 			/*
1348 			 * Assign the vap to a beacon xmit slot.  As above
1349 			 * this cannot fail to find a free one.
1350 			 */
1351 			avp->av_bslot = assign_bslot(sc);
1352 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1353 			    ("beacon slot %u not empty", avp->av_bslot));
1354 			sc->sc_bslot[avp->av_bslot] = vap;
1355 			sc->sc_nbcnvaps++;
1356 		}
1357 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1358 			/*
1359 			 * Multple vaps are to transmit beacons and we
1360 			 * have h/w support for TSF adjusting; enable
1361 			 * use of staggered beacons.
1362 			 */
1363 			sc->sc_stagbeacons = 1;
1364 		}
1365 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1366 	}
1367 
1368 	ic->ic_opmode = ic_opmode;
1369 	if (opmode != IEEE80211_M_WDS) {
1370 		sc->sc_nvaps++;
1371 		if (opmode == IEEE80211_M_STA)
1372 			sc->sc_nstavaps++;
1373 		if (opmode == IEEE80211_M_MBSS)
1374 			sc->sc_nmeshvaps++;
1375 	}
1376 	switch (ic_opmode) {
1377 	case IEEE80211_M_IBSS:
1378 		sc->sc_opmode = HAL_M_IBSS;
1379 		break;
1380 	case IEEE80211_M_STA:
1381 		sc->sc_opmode = HAL_M_STA;
1382 		break;
1383 	case IEEE80211_M_AHDEMO:
1384 #ifdef IEEE80211_SUPPORT_TDMA
1385 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1386 			sc->sc_tdma = 1;
1387 			/* NB: disable tsf adjust */
1388 			sc->sc_stagbeacons = 0;
1389 		}
1390 		/*
1391 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1392 		 * just ap mode.
1393 		 */
1394 		/* fall thru... */
1395 #endif
1396 	case IEEE80211_M_HOSTAP:
1397 	case IEEE80211_M_MBSS:
1398 		sc->sc_opmode = HAL_M_HOSTAP;
1399 		break;
1400 	case IEEE80211_M_MONITOR:
1401 		sc->sc_opmode = HAL_M_MONITOR;
1402 		break;
1403 	default:
1404 		/* XXX should not happen */
1405 		break;
1406 	}
1407 	if (sc->sc_hastsfadd) {
1408 		/*
1409 		 * Configure whether or not TSF adjust should be done.
1410 		 */
1411 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1412 	}
1413 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1414 		/*
1415 		 * Enable s/w beacon miss handling.
1416 		 */
1417 		sc->sc_swbmiss = 1;
1418 	}
1419 	ATH_UNLOCK(sc);
1420 
1421 	/* complete setup */
1422 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1423 	return vap;
1424 bad2:
1425 	reclaim_address(sc, mac);
1426 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1427 bad:
1428 	kfree(avp, M_80211_VAP);
1429 	ATH_UNLOCK(sc);
1430 	return NULL;
1431 }
1432 
1433 static void
1434 ath_vap_delete(struct ieee80211vap *vap)
1435 {
1436 	struct ieee80211com *ic = vap->iv_ic;
1437 	struct ifnet *ifp = ic->ic_ifp;
1438 	struct ath_softc *sc = ifp->if_softc;
1439 	struct ath_hal *ah = sc->sc_ah;
1440 	struct ath_vap *avp = ATH_VAP(vap);
1441 
1442 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1443 	if (ifp->if_flags & IFF_RUNNING) {
1444 		/*
1445 		 * Quiesce the hardware while we remove the vap.  In
1446 		 * particular we need to reclaim all references to
1447 		 * the vap state by any frames pending on the tx queues.
1448 		 */
1449 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1450 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1451 		/* XXX Do all frames from all vaps/nodes need draining here? */
1452 		ath_stoprecv(sc, 1);		/* stop recv side */
1453 	}
1454 
1455 	ieee80211_vap_detach(vap);
1456 
1457 	/*
1458 	 * XXX Danger Will Robinson! Danger!
1459 	 *
1460 	 * Because ieee80211_vap_detach() can queue a frame (the station
1461 	 * diassociate message?) after we've drained the TXQ and
1462 	 * flushed the software TXQ, we will end up with a frame queued
1463 	 * to a node whose vap is about to be freed.
1464 	 *
1465 	 * To work around this, flush the hardware/software again.
1466 	 * This may be racy - the ath task may be running and the packet
1467 	 * may be being scheduled between sw->hw txq. Tsk.
1468 	 *
1469 	 * TODO: figure out why a new node gets allocated somewhere around
1470 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1471 	 * call!)
1472 	 */
1473 
1474 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1475 
1476 	ATH_LOCK(sc);
1477 	/*
1478 	 * Reclaim beacon state.  Note this must be done before
1479 	 * the vap instance is reclaimed as we may have a reference
1480 	 * to it in the buffer for the beacon frame.
1481 	 */
1482 	if (avp->av_bcbuf != NULL) {
1483 		if (avp->av_bslot != -1) {
1484 			sc->sc_bslot[avp->av_bslot] = NULL;
1485 			sc->sc_nbcnvaps--;
1486 		}
1487 		ath_beacon_return(sc, avp->av_bcbuf);
1488 		avp->av_bcbuf = NULL;
1489 		if (sc->sc_nbcnvaps == 0) {
1490 			sc->sc_stagbeacons = 0;
1491 			if (sc->sc_hastsfadd)
1492 				ath_hal_settsfadjust(sc->sc_ah, 0);
1493 		}
1494 		/*
1495 		 * Reclaim any pending mcast frames for the vap.
1496 		 */
1497 		ath_tx_draintxq(sc, &avp->av_mcastq);
1498 	}
1499 	/*
1500 	 * Update bookkeeping.
1501 	 */
1502 	if (vap->iv_opmode == IEEE80211_M_STA) {
1503 		sc->sc_nstavaps--;
1504 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1505 			sc->sc_swbmiss = 0;
1506 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1507 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1508 		reclaim_address(sc, vap->iv_myaddr);
1509 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1510 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1511 			sc->sc_nmeshvaps--;
1512 	}
1513 	if (vap->iv_opmode != IEEE80211_M_WDS)
1514 		sc->sc_nvaps--;
1515 #ifdef IEEE80211_SUPPORT_TDMA
1516 	/* TDMA operation ceases when the last vap is destroyed */
1517 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1518 		sc->sc_tdma = 0;
1519 		sc->sc_swbmiss = 0;
1520 	}
1521 #endif
1522 	kfree(avp, M_80211_VAP);
1523 
1524 	if (ifp->if_flags & IFF_RUNNING) {
1525 		/*
1526 		 * Restart rx+tx machines if still running (RUNNING will
1527 		 * be reset if we just destroyed the last vap).
1528 		 */
1529 		if (ath_startrecv(sc) != 0)
1530 			if_printf(ifp, "%s: unable to restart recv logic\n",
1531 			    __func__);
1532 		if (sc->sc_beacons) {		/* restart beacons */
1533 #ifdef IEEE80211_SUPPORT_TDMA
1534 			if (sc->sc_tdma)
1535 				ath_tdma_config(sc, NULL);
1536 			else
1537 #endif
1538 				ath_beacon_config(sc, NULL);
1539 		}
1540 		ath_hal_intrset(ah, sc->sc_imask);
1541 	}
1542 	ATH_UNLOCK(sc);
1543 }
1544 
1545 void
1546 ath_suspend(struct ath_softc *sc)
1547 {
1548 	struct ifnet *ifp = sc->sc_ifp;
1549 	struct ieee80211com *ic = ifp->if_l2com;
1550 
1551 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1552 		__func__, ifp->if_flags);
1553 
1554 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1555 
1556 	ieee80211_suspend_all(ic);
1557 	/*
1558 	 * NB: don't worry about putting the chip in low power
1559 	 * mode; pci will power off our socket on suspend and
1560 	 * CardBus detaches the device.
1561 	 */
1562 
1563 	/*
1564 	 * XXX ensure none of the taskqueues are running
1565 	 * XXX ensure sc_invalid is 1
1566 	 * XXX ensure the calibration callout is disabled
1567 	 */
1568 
1569 	/* Disable the PCIe PHY, complete with workarounds */
1570 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1571 }
1572 
1573 /*
1574  * Reset the key cache since some parts do not reset the
1575  * contents on resume.  First we clear all entries, then
1576  * re-load keys that the 802.11 layer assumes are setup
1577  * in h/w.
1578  */
1579 static void
1580 ath_reset_keycache(struct ath_softc *sc)
1581 {
1582 	struct ifnet *ifp = sc->sc_ifp;
1583 	struct ieee80211com *ic = ifp->if_l2com;
1584 	struct ath_hal *ah = sc->sc_ah;
1585 	int i;
1586 
1587 	for (i = 0; i < sc->sc_keymax; i++)
1588 		ath_hal_keyreset(ah, i);
1589 	ieee80211_crypto_reload_keys(ic);
1590 }
1591 
1592 /*
1593  * Fetch the current chainmask configuration based on the current
1594  * operating channel and options.
1595  */
1596 static void
1597 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1598 {
1599 
1600 	/*
1601 	 * Set TX chainmask to the currently configured chainmask;
1602 	 * the TX chainmask depends upon the current operating mode.
1603 	 */
1604 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1605 	if (IEEE80211_IS_CHAN_HT(chan)) {
1606 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1607 	} else {
1608 		sc->sc_cur_txchainmask = 1;
1609 	}
1610 
1611 	DPRINTF(sc, ATH_DEBUG_RESET,
1612 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1613 	    __func__,
1614 	    sc->sc_cur_txchainmask,
1615 	    sc->sc_cur_rxchainmask);
1616 }
1617 
1618 void
1619 ath_resume(struct ath_softc *sc)
1620 {
1621 	struct ifnet *ifp = sc->sc_ifp;
1622 	struct ieee80211com *ic = ifp->if_l2com;
1623 	struct ath_hal *ah = sc->sc_ah;
1624 	HAL_STATUS status;
1625 
1626 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1627 		__func__, ifp->if_flags);
1628 
1629 	/* Re-enable PCIe, re-enable the PCIe bus */
1630 	ath_hal_enablepcie(ah, 0, 0);
1631 
1632 	/*
1633 	 * Must reset the chip before we reload the
1634 	 * keycache as we were powered down on suspend.
1635 	 */
1636 	ath_update_chainmasks(sc,
1637 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1638 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1639 	    sc->sc_cur_rxchainmask);
1640 	ath_hal_reset(ah, sc->sc_opmode,
1641 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1642 	    AH_FALSE, &status);
1643 	ath_reset_keycache(sc);
1644 
1645 	/* Let DFS at it in case it's a DFS channel */
1646 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1647 
1648 	/* Let spectral at in case spectral is enabled */
1649 	ath_spectral_enable(sc, ic->ic_curchan);
1650 
1651 	/*
1652 	 * Let bluetooth coexistence at in case it's needed for this channel
1653 	 */
1654 	ath_btcoex_enable(sc, ic->ic_curchan);
1655 
1656 	/*
1657 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1658 	 * support it.
1659 	 */
1660 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1661 		ath_hal_setenforcetxop(sc->sc_ah, 1);
1662 	else
1663 		ath_hal_setenforcetxop(sc->sc_ah, 0);
1664 
1665 	/* Restore the LED configuration */
1666 	ath_led_config(sc);
1667 	ath_hal_setledstate(ah, HAL_LED_INIT);
1668 
1669 	if (sc->sc_resume_up)
1670 		ieee80211_resume_all(ic);
1671 
1672 	/* XXX beacons ? */
1673 }
1674 
1675 void
1676 ath_shutdown(struct ath_softc *sc)
1677 {
1678 	struct ifnet *ifp = sc->sc_ifp;
1679 
1680 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1681 		__func__, ifp->if_flags);
1682 
1683 	ath_stop(ifp);
1684 	/* NB: no point powering down chip as we're about to reboot */
1685 }
1686 
1687 /*
1688  * Interrupt handler.  Most of the actual processing is deferred.
1689  */
1690 void
1691 ath_intr(void *arg)
1692 {
1693 	struct ath_softc *sc = arg;
1694 	struct ifnet *ifp = sc->sc_ifp;
1695 	struct ath_hal *ah = sc->sc_ah;
1696 	HAL_INT status = 0;
1697 	uint32_t txqs;
1698 
1699 	/*
1700 	 * If we're inside a reset path, just print a warning and
1701 	 * clear the ISR. The reset routine will finish it for us.
1702 	 */
1703 	ATH_PCU_LOCK(sc);
1704 	if (sc->sc_inreset_cnt) {
1705 		HAL_INT status;
1706 		ath_hal_getisr(ah, &status);	/* clear ISR */
1707 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1708 		DPRINTF(sc, ATH_DEBUG_ANY,
1709 		    "%s: in reset, ignoring: status=0x%x\n",
1710 		    __func__, status);
1711 		ATH_PCU_UNLOCK(sc);
1712 		return;
1713 	}
1714 
1715 	if (sc->sc_invalid) {
1716 		/*
1717 		 * The hardware is not ready/present, don't touch anything.
1718 		 * Note this can happen early on if the IRQ is shared.
1719 		 */
1720 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1721 		ATH_PCU_UNLOCK(sc);
1722 		return;
1723 	}
1724 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1725 		ATH_PCU_UNLOCK(sc);
1726 		return;
1727 	}
1728 
1729 	if ((ifp->if_flags & IFF_UP) == 0 ||
1730 	    (ifp->if_flags & IFF_RUNNING) == 0) {
1731 		HAL_INT status;
1732 
1733 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1734 			__func__, ifp->if_flags);
1735 		ath_hal_getisr(ah, &status);	/* clear ISR */
1736 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1737 		ATH_PCU_UNLOCK(sc);
1738 		return;
1739 	}
1740 
1741 	/*
1742 	 * Figure out the reason(s) for the interrupt.  Note
1743 	 * that the hal returns a pseudo-ISR that may include
1744 	 * bits we haven't explicitly enabled so we mask the
1745 	 * value to insure we only process bits we requested.
1746 	 */
1747 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1748 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1749 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1750 #ifdef	ATH_DEBUG_ALQ
1751 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1752 	    ah->ah_syncstate);
1753 #endif	/* ATH_DEBUG_ALQ */
1754 #ifdef	ATH_KTR_INTR_DEBUG
1755 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1756 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1757 	    ah->ah_intrstate[0],
1758 	    ah->ah_intrstate[1],
1759 	    ah->ah_intrstate[2],
1760 	    ah->ah_intrstate[3],
1761 	    ah->ah_intrstate[6]);
1762 #endif
1763 
1764 	/* Squirrel away SYNC interrupt debugging */
1765 	if (ah->ah_syncstate != 0) {
1766 		int i;
1767 		for (i = 0; i < 32; i++)
1768 			if (ah->ah_syncstate & (i << i))
1769 				sc->sc_intr_stats.sync_intr[i]++;
1770 	}
1771 
1772 	status &= sc->sc_imask;			/* discard unasked for bits */
1773 
1774 	/* Short-circuit un-handled interrupts */
1775 	if (status == 0x0) {
1776 		ATH_PCU_UNLOCK(sc);
1777 		return;
1778 	}
1779 
1780 	/*
1781 	 * Take a note that we're inside the interrupt handler, so
1782 	 * the reset routines know to wait.
1783 	 */
1784 	sc->sc_intr_cnt++;
1785 	ATH_PCU_UNLOCK(sc);
1786 
1787 	/*
1788 	 * Handle the interrupt. We won't run concurrent with the reset
1789 	 * or channel change routines as they'll wait for sc_intr_cnt
1790 	 * to be 0 before continuing.
1791 	 */
1792 	if (status & HAL_INT_FATAL) {
1793 		sc->sc_stats.ast_hardware++;
1794 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1795 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1796 	} else {
1797 		if (status & HAL_INT_SWBA) {
1798 			/*
1799 			 * Software beacon alert--time to send a beacon.
1800 			 * Handle beacon transmission directly; deferring
1801 			 * this is too slow to meet timing constraints
1802 			 * under load.
1803 			 */
1804 #ifdef IEEE80211_SUPPORT_TDMA
1805 			if (sc->sc_tdma) {
1806 				if (sc->sc_tdmaswba == 0) {
1807 					struct ieee80211com *ic = ifp->if_l2com;
1808 					struct ieee80211vap *vap =
1809 					    TAILQ_FIRST(&ic->ic_vaps);
1810 					ath_tdma_beacon_send(sc, vap);
1811 					sc->sc_tdmaswba =
1812 					    vap->iv_tdma->tdma_bintval;
1813 				} else
1814 					sc->sc_tdmaswba--;
1815 			} else
1816 #endif
1817 			{
1818 				ath_beacon_proc(sc, 0);
1819 #ifdef IEEE80211_SUPPORT_SUPERG
1820 				/*
1821 				 * Schedule the rx taskq in case there's no
1822 				 * traffic so any frames held on the staging
1823 				 * queue are aged and potentially flushed.
1824 				 */
1825 				sc->sc_rx.recv_sched(sc, 1);
1826 #endif
1827 			}
1828 		}
1829 		if (status & HAL_INT_RXEOL) {
1830 			int imask;
1831 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1832 			ATH_PCU_LOCK(sc);
1833 			/*
1834 			 * NB: the hardware should re-read the link when
1835 			 *     RXE bit is written, but it doesn't work at
1836 			 *     least on older hardware revs.
1837 			 */
1838 			sc->sc_stats.ast_rxeol++;
1839 			/*
1840 			 * Disable RXEOL/RXORN - prevent an interrupt
1841 			 * storm until the PCU logic can be reset.
1842 			 * In case the interface is reset some other
1843 			 * way before "sc_kickpcu" is called, don't
1844 			 * modify sc_imask - that way if it is reset
1845 			 * by a call to ath_reset() somehow, the
1846 			 * interrupt mask will be correctly reprogrammed.
1847 			 */
1848 			imask = sc->sc_imask;
1849 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1850 			ath_hal_intrset(ah, imask);
1851 			/*
1852 			 * Only blank sc_rxlink if we've not yet kicked
1853 			 * the PCU.
1854 			 *
1855 			 * This isn't entirely correct - the correct solution
1856 			 * would be to have a PCU lock and engage that for
1857 			 * the duration of the PCU fiddling; which would include
1858 			 * running the RX process. Otherwise we could end up
1859 			 * messing up the RX descriptor chain and making the
1860 			 * RX desc list much shorter.
1861 			 */
1862 			if (! sc->sc_kickpcu)
1863 				sc->sc_rxlink = NULL;
1864 			sc->sc_kickpcu = 1;
1865 			ATH_PCU_UNLOCK(sc);
1866 			/*
1867 			 * Enqueue an RX proc, to handled whatever
1868 			 * is in the RX queue.
1869 			 * This will then kick the PCU.
1870 			 */
1871 			sc->sc_rx.recv_sched(sc, 1);
1872 		}
1873 		if (status & HAL_INT_TXURN) {
1874 			sc->sc_stats.ast_txurn++;
1875 			/* bump tx trigger level */
1876 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1877 		}
1878 		/*
1879 		 * Handle both the legacy and RX EDMA interrupt bits.
1880 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1881 		 */
1882 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1883 			sc->sc_stats.ast_rx_intr++;
1884 			sc->sc_rx.recv_sched(sc, 1);
1885 		}
1886 		if (status & HAL_INT_TX) {
1887 			sc->sc_stats.ast_tx_intr++;
1888 			/*
1889 			 * Grab all the currently set bits in the HAL txq bitmap
1890 			 * and blank them. This is the only place we should be
1891 			 * doing this.
1892 			 */
1893 			if (! sc->sc_isedma) {
1894 				ATH_PCU_LOCK(sc);
1895 				txqs = 0xffffffff;
1896 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1897 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1898 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1899 				    txqs,
1900 				    sc->sc_txq_active,
1901 				    sc->sc_txq_active | txqs);
1902 				sc->sc_txq_active |= txqs;
1903 				ATH_PCU_UNLOCK(sc);
1904 			}
1905 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1906 		}
1907 		if (status & HAL_INT_BMISS) {
1908 			sc->sc_stats.ast_bmiss++;
1909 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1910 		}
1911 		if (status & HAL_INT_GTT)
1912 			sc->sc_stats.ast_tx_timeout++;
1913 		if (status & HAL_INT_CST)
1914 			sc->sc_stats.ast_tx_cst++;
1915 		if (status & HAL_INT_MIB) {
1916 			sc->sc_stats.ast_mib++;
1917 			ATH_PCU_LOCK(sc);
1918 			/*
1919 			 * Disable interrupts until we service the MIB
1920 			 * interrupt; otherwise it will continue to fire.
1921 			 */
1922 			ath_hal_intrset(ah, 0);
1923 			/*
1924 			 * Let the hal handle the event.  We assume it will
1925 			 * clear whatever condition caused the interrupt.
1926 			 */
1927 			ath_hal_mibevent(ah, &sc->sc_halstats);
1928 			/*
1929 			 * Don't reset the interrupt if we've just
1930 			 * kicked the PCU, or we may get a nested
1931 			 * RXEOL before the rxproc has had a chance
1932 			 * to run.
1933 			 */
1934 			if (sc->sc_kickpcu == 0)
1935 				ath_hal_intrset(ah, sc->sc_imask);
1936 			ATH_PCU_UNLOCK(sc);
1937 		}
1938 		if (status & HAL_INT_RXORN) {
1939 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1940 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1941 			sc->sc_stats.ast_rxorn++;
1942 		}
1943 	}
1944 	ATH_PCU_LOCK(sc);
1945 	sc->sc_intr_cnt--;
1946 	ATH_PCU_UNLOCK(sc);
1947 }
1948 
1949 static void
1950 ath_fatal_proc(void *arg, int pending)
1951 {
1952 	struct ath_softc *sc = arg;
1953 	struct ifnet *ifp = sc->sc_ifp;
1954 	u_int32_t *state;
1955 	u_int32_t len;
1956 	void *sp;
1957 
1958 	if_printf(ifp, "hardware error; resetting\n");
1959 	/*
1960 	 * Fatal errors are unrecoverable.  Typically these
1961 	 * are caused by DMA errors.  Collect h/w state from
1962 	 * the hal so we can diagnose what's going on.
1963 	 */
1964 	wlan_serialize_enter();
1965 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1966 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1967 		state = sp;
1968 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1969 		    state[0], state[1] , state[2], state[3],
1970 		    state[4], state[5]);
1971 	}
1972 	ath_reset(ifp, ATH_RESET_NOLOSS);
1973 	wlan_serialize_exit();
1974 }
1975 
1976 static void
1977 ath_bmiss_vap(struct ieee80211vap *vap)
1978 {
1979 	/*
1980 	 * Workaround phantom bmiss interrupts by sanity-checking
1981 	 * the time of our last rx'd frame.  If it is within the
1982 	 * beacon miss interval then ignore the interrupt.  If it's
1983 	 * truly a bmiss we'll get another interrupt soon and that'll
1984 	 * be dispatched up for processing.  Note this applies only
1985 	 * for h/w beacon miss events.
1986 	 */
1987 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1988 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1989 		struct ath_softc *sc = ifp->if_softc;
1990 		u_int64_t lastrx = sc->sc_lastrx;
1991 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1992 		/* XXX should take a locked ref to iv_bss */
1993 		u_int bmisstimeout =
1994 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1995 
1996 		DPRINTF(sc, ATH_DEBUG_BEACON,
1997 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1998 		    __func__, (unsigned long long) tsf,
1999 		    (unsigned long long)(tsf - lastrx),
2000 		    (unsigned long long) lastrx, bmisstimeout);
2001 
2002 		if (tsf - lastrx <= bmisstimeout) {
2003 			sc->sc_stats.ast_bmiss_phantom++;
2004 			return;
2005 		}
2006 	}
2007 	ATH_VAP(vap)->av_bmiss(vap);
2008 }
2009 
2010 int
2011 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2012 {
2013 	uint32_t rsize;
2014 	void *sp;
2015 
2016 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2017 		return 0;
2018 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2019 	*hangs = *(uint32_t *)sp;
2020 	return 1;
2021 }
2022 
2023 static void
2024 ath_bmiss_proc(void *arg, int pending)
2025 {
2026 	struct ath_softc *sc = arg;
2027 	struct ifnet *ifp = sc->sc_ifp;
2028 	uint32_t hangs;
2029 
2030 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2031 
2032 	/*
2033 	 * Do a reset upon any becaon miss event.
2034 	 *
2035 	 * It may be a non-recognised RX clear hang which needs a reset
2036 	 * to clear.
2037 	 */
2038 	wlan_serialize_enter();
2039 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2040 		ath_reset(ifp, ATH_RESET_NOLOSS);
2041 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2042 	} else {
2043 		ath_reset(ifp, ATH_RESET_NOLOSS);
2044 		ieee80211_beacon_miss(ifp->if_l2com);
2045 	}
2046 	wlan_serialize_exit();
2047 }
2048 
2049 /*
2050  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2051  * calcs together with WME.  If necessary disable the crypto
2052  * hardware and mark the 802.11 state so keys will be setup
2053  * with the MIC work done in software.
2054  */
2055 static void
2056 ath_settkipmic(struct ath_softc *sc)
2057 {
2058 	struct ifnet *ifp = sc->sc_ifp;
2059 	struct ieee80211com *ic = ifp->if_l2com;
2060 
2061 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2062 		if (ic->ic_flags & IEEE80211_F_WME) {
2063 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2064 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2065 		} else {
2066 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2067 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2068 		}
2069 	}
2070 }
2071 
2072 static void
2073 ath_init(void *arg)
2074 {
2075 	struct ath_softc *sc = (struct ath_softc *) arg;
2076 	struct ifnet *ifp = sc->sc_ifp;
2077 	struct ieee80211com *ic = ifp->if_l2com;
2078 	struct ath_hal *ah = sc->sc_ah;
2079 	HAL_STATUS status;
2080 
2081 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2082 		__func__, ifp->if_flags);
2083 
2084 	ATH_LOCK(sc);
2085 	/*
2086 	 * Stop anything previously setup.  This is safe
2087 	 * whether this is the first time through or not.
2088 	 */
2089 	ath_stop_locked(ifp);
2090 
2091 	/*
2092 	 * The basic interface to setting the hardware in a good
2093 	 * state is ``reset''.  On return the hardware is known to
2094 	 * be powered up and with interrupts disabled.  This must
2095 	 * be followed by initialization of the appropriate bits
2096 	 * and then setup of the interrupt mask.
2097 	 */
2098 	ath_settkipmic(sc);
2099 	ath_update_chainmasks(sc, ic->ic_curchan);
2100 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2101 	    sc->sc_cur_rxchainmask);
2102 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2103 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2104 			status);
2105 		ATH_UNLOCK(sc);
2106 		return;
2107 	}
2108 	ath_chan_change(sc, ic->ic_curchan);
2109 
2110 	/* Let DFS at it in case it's a DFS channel */
2111 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2112 
2113 	/* Let spectral at in case spectral is enabled */
2114 	ath_spectral_enable(sc, ic->ic_curchan);
2115 
2116 	/*
2117 	 * Let bluetooth coexistence at in case it's needed for this channel
2118 	 */
2119 	ath_btcoex_enable(sc, ic->ic_curchan);
2120 
2121 	/*
2122 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2123 	 * support it.
2124 	 */
2125 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2126 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2127 	else
2128 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2129 
2130 	/*
2131 	 * Likewise this is set during reset so update
2132 	 * state cached in the driver.
2133 	 */
2134 	sc->sc_diversity = ath_hal_getdiversity(ah);
2135 	sc->sc_lastlongcal = 0;
2136 	sc->sc_resetcal = 1;
2137 	sc->sc_lastcalreset = 0;
2138 	sc->sc_lastani = 0;
2139 	sc->sc_lastshortcal = 0;
2140 	sc->sc_doresetcal = AH_FALSE;
2141 	/*
2142 	 * Beacon timers were cleared here; give ath_newstate()
2143 	 * a hint that the beacon timers should be poked when
2144 	 * things transition to the RUN state.
2145 	 */
2146 	sc->sc_beacons = 0;
2147 
2148 	/*
2149 	 * Setup the hardware after reset: the key cache
2150 	 * is filled as needed and the receive engine is
2151 	 * set going.  Frame transmit is handled entirely
2152 	 * in the frame output path; there's nothing to do
2153 	 * here except setup the interrupt mask.
2154 	 */
2155 	if (ath_startrecv(sc) != 0) {
2156 		if_printf(ifp, "unable to start recv logic\n");
2157 		ATH_UNLOCK(sc);
2158 		return;
2159 	}
2160 
2161 	/*
2162 	 * Enable interrupts.
2163 	 */
2164 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2165 		  | HAL_INT_RXEOL | HAL_INT_RXORN
2166 		  | HAL_INT_TXURN
2167 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2168 
2169 	/*
2170 	 * Enable RX EDMA bits.  Note these overlap with
2171 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2172 	 */
2173 	if (sc->sc_isedma)
2174 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2175 
2176 	/*
2177 	 * Enable MIB interrupts when there are hardware phy counters.
2178 	 * Note we only do this (at the moment) for station mode.
2179 	 */
2180 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2181 		sc->sc_imask |= HAL_INT_MIB;
2182 
2183 	/* Enable global TX timeout and carrier sense timeout if available */
2184 	if (ath_hal_gtxto_supported(ah))
2185 		sc->sc_imask |= HAL_INT_GTT;
2186 
2187 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2188 		__func__, sc->sc_imask);
2189 
2190 	ifp->if_flags |= IFF_RUNNING;
2191 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2192 	ath_hal_intrset(ah, sc->sc_imask);
2193 
2194 	ATH_UNLOCK(sc);
2195 
2196 #ifdef ATH_TX99_DIAG
2197 	if (sc->sc_tx99 != NULL)
2198 		sc->sc_tx99->start(sc->sc_tx99);
2199 	else
2200 #endif
2201 	ieee80211_start_all(ic);		/* start all vap's */
2202 }
2203 
2204 static void
2205 ath_stop_locked(struct ifnet *ifp)
2206 {
2207 	struct ath_softc *sc = ifp->if_softc;
2208 	struct ath_hal *ah = sc->sc_ah;
2209 
2210 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2211 		__func__, sc->sc_invalid, ifp->if_flags);
2212 
2213 	ATH_LOCK_ASSERT(sc);
2214 	if (ifp->if_flags & IFF_RUNNING) {
2215 		/*
2216 		 * Shutdown the hardware and driver:
2217 		 *    reset 802.11 state machine
2218 		 *    turn off timers
2219 		 *    disable interrupts
2220 		 *    turn off the radio
2221 		 *    clear transmit machinery
2222 		 *    clear receive machinery
2223 		 *    drain and release tx queues
2224 		 *    reclaim beacon resources
2225 		 *    power down hardware
2226 		 *
2227 		 * Note that some of this work is not possible if the
2228 		 * hardware is gone (invalid).
2229 		 */
2230 #ifdef ATH_TX99_DIAG
2231 		if (sc->sc_tx99 != NULL)
2232 			sc->sc_tx99->stop(sc->sc_tx99);
2233 #endif
2234 		callout_stop(&sc->sc_wd_ch);
2235 		sc->sc_wd_timer = 0;
2236 		ifp->if_flags &= ~IFF_RUNNING;
2237 		if (!sc->sc_invalid) {
2238 			if (sc->sc_softled) {
2239 				callout_stop(&sc->sc_ledtimer);
2240 				ath_hal_gpioset(ah, sc->sc_ledpin,
2241 					!sc->sc_ledon);
2242 				sc->sc_blinking = 0;
2243 			}
2244 			ath_hal_intrset(ah, 0);
2245 		}
2246 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2247 		if (!sc->sc_invalid) {
2248 			ath_stoprecv(sc, 1);
2249 			ath_hal_phydisable(ah);
2250 		} else
2251 			sc->sc_rxlink = NULL;
2252 		ath_beacon_free(sc);	/* XXX not needed */
2253 	}
2254 }
2255 
2256 #define	MAX_TXRX_ITERATIONS	1000
2257 static void
2258 ath_txrx_stop_locked(struct ath_softc *sc)
2259 {
2260 	int i = MAX_TXRX_ITERATIONS;
2261 
2262 	ATH_UNLOCK_ASSERT(sc);
2263 	ATH_PCU_LOCK_ASSERT(sc);
2264 
2265 	/*
2266 	 * Sleep until all the pending operations have completed.
2267 	 *
2268 	 * The caller must ensure that reset has been incremented
2269 	 * or the pending operations may continue being queued.
2270 	 */
2271 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2272 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2273 		if (i <= 0)
2274 			break;
2275 		wlan_serialize_sleep(sc, 0, "ath_txrx_stop", 1);
2276 		i--;
2277 	}
2278 
2279 	if (i <= 0)
2280 		device_printf(sc->sc_dev,
2281 		    "%s: didn't finish after %d iterations\n",
2282 		    __func__, MAX_TXRX_ITERATIONS);
2283 }
2284 #undef	MAX_TXRX_ITERATIONS
2285 
2286 #if 0
2287 static void
2288 ath_txrx_stop(struct ath_softc *sc)
2289 {
2290 	ATH_UNLOCK_ASSERT(sc);
2291 	ATH_PCU_UNLOCK_ASSERT(sc);
2292 
2293 	ATH_PCU_LOCK(sc);
2294 	ath_txrx_stop_locked(sc);
2295 	ATH_PCU_UNLOCK(sc);
2296 }
2297 #endif
2298 
2299 static void
2300 ath_txrx_start(struct ath_softc *sc)
2301 {
2302 
2303 	taskqueue_unblock(sc->sc_tq);
2304 }
2305 
2306 /*
2307  * Grab the reset lock, and wait around until noone else
2308  * is trying to do anything with it.
2309  *
2310  * This is totally horrible but we can't hold this lock for
2311  * long enough to do TX/RX or we end up with net80211/ip stack
2312  * LORs and eventual deadlock.
2313  *
2314  * "dowait" signals whether to spin, waiting for the reset
2315  * lock count to reach 0. This should (for now) only be used
2316  * during the reset path, as the rest of the code may not
2317  * be locking-reentrant enough to behave correctly.
2318  *
2319  * Another, cleaner way should be found to serialise all of
2320  * these operations.
2321  */
2322 #define	MAX_RESET_ITERATIONS	10
2323 static int
2324 ath_reset_grablock(struct ath_softc *sc, int dowait)
2325 {
2326 	int w = 0;
2327 	int i = MAX_RESET_ITERATIONS;
2328 
2329 	ATH_PCU_LOCK_ASSERT(sc);
2330 	do {
2331 		if (sc->sc_inreset_cnt == 0) {
2332 			w = 1;
2333 			break;
2334 		}
2335 		if (dowait == 0) {
2336 			w = 0;
2337 			break;
2338 		}
2339 		ATH_PCU_UNLOCK(sc);
2340 		wlan_serialize_sleep(sc, 0, "ath_reset_grablock", 1);
2341 		i--;
2342 		ATH_PCU_LOCK(sc);
2343 	} while (i > 0);
2344 
2345 	/*
2346 	 * We always increment the refcounter, regardless
2347 	 * of whether we succeeded to get it in an exclusive
2348 	 * way.
2349 	 */
2350 	sc->sc_inreset_cnt++;
2351 
2352 	if (i <= 0)
2353 		device_printf(sc->sc_dev,
2354 		    "%s: didn't finish after %d iterations\n",
2355 		    __func__, MAX_RESET_ITERATIONS);
2356 
2357 	if (w == 0)
2358 		device_printf(sc->sc_dev,
2359 		    "%s: warning, recursive reset path!\n",
2360 		    __func__);
2361 
2362 	return w;
2363 }
2364 #undef MAX_RESET_ITERATIONS
2365 
2366 /*
2367  * XXX TODO: write ath_reset_releaselock
2368  */
2369 
2370 static void
2371 ath_stop(struct ifnet *ifp)
2372 {
2373 	struct ath_softc *sc __unused = ifp->if_softc;
2374 
2375 	ATH_LOCK(sc);
2376 	ath_stop_locked(ifp);
2377 	ATH_UNLOCK(sc);
2378 }
2379 
2380 /*
2381  * Reset the hardware w/o losing operational state.  This is
2382  * basically a more efficient way of doing ath_stop, ath_init,
2383  * followed by state transitions to the current 802.11
2384  * operational state.  Used to recover from various errors and
2385  * to reset or reload hardware state.
2386  */
2387 int
2388 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2389 {
2390 	struct ath_softc *sc = ifp->if_softc;
2391 	struct ieee80211com *ic = ifp->if_l2com;
2392 	struct ath_hal *ah = sc->sc_ah;
2393 	HAL_STATUS status;
2394 	int i;
2395 
2396 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2397 
2398 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2399 	ATH_PCU_UNLOCK_ASSERT(sc);
2400 	ATH_UNLOCK_ASSERT(sc);
2401 
2402 	/* Try to (stop any further TX/RX from occuring */
2403 	taskqueue_block(sc->sc_tq);
2404 
2405 	ATH_PCU_LOCK(sc);
2406 
2407 	/*
2408 	 * Grab the reset lock before TX/RX is stopped.
2409 	 *
2410 	 * This is needed to ensure that when the TX/RX actually does finish,
2411 	 * no further TX/RX/reset runs in parallel with this.
2412 	 */
2413 	if (ath_reset_grablock(sc, 1) == 0) {
2414 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2415 		    __func__);
2416 	}
2417 
2418 	/* disable interrupts */
2419 	ath_hal_intrset(ah, 0);
2420 
2421 	/*
2422 	 * Now, ensure that any in progress TX/RX completes before we
2423 	 * continue.
2424 	 */
2425 	ath_txrx_stop_locked(sc);
2426 
2427 	ATH_PCU_UNLOCK(sc);
2428 
2429 	/*
2430 	 * Should now wait for pending TX/RX to complete
2431 	 * and block future ones from occuring. This needs to be
2432 	 * done before the TX queue is drained.
2433 	 */
2434 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2435 
2436 	/*
2437 	 * Regardless of whether we're doing a no-loss flush or
2438 	 * not, stop the PCU and handle what's in the RX queue.
2439 	 * That way frames aren't dropped which shouldn't be.
2440 	 */
2441 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2442 	ath_rx_flush(sc);
2443 
2444 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2445 	/* NB: indicate channel change so we do a full reset */
2446 	ath_update_chainmasks(sc, ic->ic_curchan);
2447 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2448 	    sc->sc_cur_rxchainmask);
2449 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2450 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2451 			__func__, status);
2452 	sc->sc_diversity = ath_hal_getdiversity(ah);
2453 
2454 	/* Let DFS at it in case it's a DFS channel */
2455 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2456 
2457 	/* Let spectral at in case spectral is enabled */
2458 	ath_spectral_enable(sc, ic->ic_curchan);
2459 
2460 	/*
2461 	 * Let bluetooth coexistence at in case it's needed for this channel
2462 	 */
2463 	ath_btcoex_enable(sc, ic->ic_curchan);
2464 
2465 	/*
2466 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2467 	 * support it.
2468 	 */
2469 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2470 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2471 	else
2472 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2473 
2474 	if (ath_startrecv(sc) != 0)	/* restart recv */
2475 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2476 	/*
2477 	 * We may be doing a reset in response to an ioctl
2478 	 * that changes the channel so update any state that
2479 	 * might change as a result.
2480 	 */
2481 	ath_chan_change(sc, ic->ic_curchan);
2482 	if (sc->sc_beacons) {		/* restart beacons */
2483 #ifdef IEEE80211_SUPPORT_TDMA
2484 		if (sc->sc_tdma)
2485 			ath_tdma_config(sc, NULL);
2486 		else
2487 #endif
2488 			ath_beacon_config(sc, NULL);
2489 	}
2490 
2491 	/*
2492 	 * Release the reset lock and re-enable interrupts here.
2493 	 * If an interrupt was being processed in ath_intr(),
2494 	 * it would disable interrupts at this point. So we have
2495 	 * to atomically enable interrupts and decrement the
2496 	 * reset counter - this way ath_intr() doesn't end up
2497 	 * disabling interrupts without a corresponding enable
2498 	 * in the rest or channel change path.
2499 	 */
2500 	ATH_PCU_LOCK(sc);
2501 	sc->sc_inreset_cnt--;
2502 	/* XXX only do this if sc_inreset_cnt == 0? */
2503 	ath_hal_intrset(ah, sc->sc_imask);
2504 	ATH_PCU_UNLOCK(sc);
2505 
2506 	/*
2507 	 * TX and RX can be started here. If it were started with
2508 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2509 	 * Thus if this is a nested call through the reset or
2510 	 * channel change code, TX completion will occur but
2511 	 * RX completion and ath_start / ath_tx_start will not
2512 	 * run.
2513 	 */
2514 
2515 	/* Restart TX/RX as needed */
2516 	ath_txrx_start(sc);
2517 
2518 	/* Restart TX completion and pending TX */
2519 	if (reset_type == ATH_RESET_NOLOSS) {
2520 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2521 			if (ATH_TXQ_SETUP(sc, i)) {
2522 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2523 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2524 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2525 
2526 				ATH_TX_LOCK(sc);
2527 				ath_txq_sched(sc, &sc->sc_txq[i]);
2528 				ATH_TX_UNLOCK(sc);
2529 			}
2530 		}
2531 	}
2532 
2533 #if 0
2534 	/* remove, DragonFly uses OACTIVE to control if_start calls */
2535 	/*
2536 	 * This may have been set during an ath_start() call which
2537 	 * set this once it detected a concurrent TX was going on.
2538 	 * So, clear it.
2539 	 */
2540 	IF_LOCK(&ifp->if_snd);
2541 	ifq_clr_oactive(&ifp->if_snd);
2542 	IF_UNLOCK(&ifp->if_snd);
2543 #endif
2544 
2545 	/* Handle any frames in the TX queue */
2546 	/*
2547 	 * XXX should this be done by the caller, rather than
2548 	 * ath_reset() ?
2549 	 */
2550 	ath_tx_kick(sc);		/* restart xmit */
2551 	return 0;
2552 }
2553 
2554 static int
2555 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2556 {
2557 	struct ieee80211com *ic = vap->iv_ic;
2558 	struct ifnet *ifp = ic->ic_ifp;
2559 	struct ath_softc *sc = ifp->if_softc;
2560 	struct ath_hal *ah = sc->sc_ah;
2561 
2562 	switch (cmd) {
2563 	case IEEE80211_IOC_TXPOWER:
2564 		/*
2565 		 * If per-packet TPC is enabled, then we have nothing
2566 		 * to do; otherwise we need to force the global limit.
2567 		 * All this can happen directly; no need to reset.
2568 		 */
2569 		if (!ath_hal_gettpc(ah))
2570 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2571 		return 0;
2572 	}
2573 	/* XXX? Full or NOLOSS? */
2574 	return ath_reset(ifp, ATH_RESET_FULL);
2575 }
2576 
2577 struct ath_buf *
2578 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2579 {
2580 	struct ath_buf *bf;
2581 
2582 	ATH_TXBUF_LOCK_ASSERT(sc);
2583 
2584 	if (btype == ATH_BUFTYPE_MGMT)
2585 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2586 	else
2587 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2588 
2589 	if (bf == NULL) {
2590 		sc->sc_stats.ast_tx_getnobuf++;
2591 	} else {
2592 		if (bf->bf_flags & ATH_BUF_BUSY) {
2593 			sc->sc_stats.ast_tx_getbusybuf++;
2594 			bf = NULL;
2595 		}
2596 	}
2597 
2598 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2599 		if (btype == ATH_BUFTYPE_MGMT)
2600 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2601 		else {
2602 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2603 			sc->sc_txbuf_cnt--;
2604 
2605 			/*
2606 			 * This shuldn't happen; however just to be
2607 			 * safe print a warning and fudge the txbuf
2608 			 * count.
2609 			 */
2610 			if (sc->sc_txbuf_cnt < 0) {
2611 				device_printf(sc->sc_dev,
2612 				    "%s: sc_txbuf_cnt < 0?\n",
2613 				    __func__);
2614 				sc->sc_txbuf_cnt = 0;
2615 			}
2616 		}
2617 	} else
2618 		bf = NULL;
2619 
2620 	if (bf == NULL) {
2621 		/* XXX should check which list, mgmt or otherwise */
2622 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2623 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2624 			"out of xmit buffers" : "xmit buffer busy");
2625 		return NULL;
2626 	}
2627 
2628 	/* XXX TODO: should do this at buffer list initialisation */
2629 	/* XXX (then, ensure the buffer has the right flag set) */
2630 	bf->bf_flags = 0;
2631 	if (btype == ATH_BUFTYPE_MGMT)
2632 		bf->bf_flags |= ATH_BUF_MGMT;
2633 	else
2634 		bf->bf_flags &= (~ATH_BUF_MGMT);
2635 
2636 	/* Valid bf here; clear some basic fields */
2637 	bf->bf_next = NULL;	/* XXX just to be sure */
2638 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2639 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2640 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2641 
2642 	/*
2643 	 * Track the descriptor ID only if doing EDMA
2644 	 */
2645 	if (sc->sc_isedma) {
2646 		bf->bf_descid = sc->sc_txbuf_descid;
2647 		sc->sc_txbuf_descid++;
2648 	}
2649 
2650 	return bf;
2651 }
2652 
2653 /*
2654  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2655  * can't be thrown back on the queue as they could still be
2656  * in use by the hardware.
2657  *
2658  * This duplicates the buffer, or returns NULL.
2659  *
2660  * The descriptor is also copied but the link pointers and
2661  * the DMA segments aren't copied; this frame should thus
2662  * be again passed through the descriptor setup/chain routines
2663  * so the link is correct.
2664  *
2665  * The caller must free the buffer using ath_freebuf().
2666  */
2667 struct ath_buf *
2668 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2669 {
2670 	struct ath_buf *tbf;
2671 
2672 	tbf = ath_getbuf(sc,
2673 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2674 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2675 	if (tbf == NULL)
2676 		return NULL;	/* XXX failure? Why? */
2677 
2678 	/* Copy basics */
2679 	tbf->bf_next = NULL;
2680 	tbf->bf_nseg = bf->bf_nseg;
2681 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2682 	tbf->bf_status = bf->bf_status;
2683 	tbf->bf_m = bf->bf_m;
2684 	tbf->bf_node = bf->bf_node;
2685 	/* will be setup by the chain/setup function */
2686 	tbf->bf_lastds = NULL;
2687 	/* for now, last == self */
2688 	tbf->bf_last = tbf;
2689 	tbf->bf_comp = bf->bf_comp;
2690 
2691 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2692 
2693 	/* The caller has to re-init the descriptor + links */
2694 
2695 	/*
2696 	 * Free the DMA mapping here, before we NULL the mbuf.
2697 	 * We must only call bus_dmamap_unload() once per mbuf chain
2698 	 * or behaviour is undefined.
2699 	 */
2700 	if (bf->bf_m != NULL) {
2701 		/*
2702 		 * XXX is this POSTWRITE call required?
2703 		 */
2704 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2705 		    BUS_DMASYNC_POSTWRITE);
2706 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2707 	}
2708 
2709 	bf->bf_m = NULL;
2710 	bf->bf_node = NULL;
2711 
2712 	/* Copy state */
2713 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2714 
2715 	return tbf;
2716 }
2717 
2718 struct ath_buf *
2719 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2720 {
2721 	struct ath_buf *bf;
2722 
2723 	ATH_TXBUF_LOCK(sc);
2724 	bf = _ath_getbuf_locked(sc, btype);
2725 	/*
2726 	 * If a mgmt buffer was requested but we're out of those,
2727 	 * try requesting a normal one.
2728 	 */
2729 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2730 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2731 	ATH_TXBUF_UNLOCK(sc);
2732 	if (bf == NULL) {
2733 #if 0
2734 		struct ifnet *ifp = sc->sc_ifp;
2735 #endif
2736 
2737 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2738 		sc->sc_stats.ast_tx_qstop++;
2739 #if 0
2740 		/* remove, DragonFly uses OACTIVE to control if_start calls */
2741 		IF_LOCK(&ifp->if_snd);
2742 		ifq_set_oactive(&ifp->if_snd);
2743 		IF_UNLOCK(&ifp->if_snd);
2744 #endif
2745 	}
2746 	return bf;
2747 }
2748 
2749 #if 0
2750 
2751 static void
2752 ath_qflush(struct ifnet *ifp)
2753 {
2754 
2755 	/* XXX TODO */
2756 }
2757 
2758 #endif
2759 
2760 /*
2761  * Transmit a single frame.
2762  *
2763  * net80211 will free the node reference if the transmit
2764  * fails, so don't free the node reference here.
2765  */
2766 static int
2767 ath_transmit(struct ifnet *ifp, struct mbuf *m)
2768 {
2769 	struct ieee80211com *ic = ifp->if_l2com;
2770 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2771 	struct ieee80211_node *ni;
2772 	struct mbuf *next;
2773 	struct ath_buf *bf;
2774 	ath_bufhead frags;
2775 	int retval = 0;
2776 
2777 	/*
2778 	 * Tell the reset path that we're currently transmitting.
2779 	 */
2780 	ATH_PCU_LOCK(sc);
2781 	if (sc->sc_inreset_cnt > 0) {
2782 		DPRINTF(sc, ATH_DEBUG_XMIT,
2783 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2784 		ATH_PCU_UNLOCK(sc);
2785 		IF_LOCK(&ifp->if_snd);
2786 		sc->sc_stats.ast_tx_qstop++;
2787 #if 0
2788 		/* remove, DragonFly uses OACTIVE to control if_start calls */
2789 		ifq_set_oactive(&ifp->if_snd);
2790 #endif
2791 		IF_UNLOCK(&ifp->if_snd);
2792 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2793 		m_freem(m);
2794 		m = NULL;
2795 		return (ENOBUFS);	/* XXX should be EINVAL or? */
2796 	}
2797 	sc->sc_txstart_cnt++;
2798 	ATH_PCU_UNLOCK(sc);
2799 
2800 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
2801 	/*
2802 	 * Grab the TX lock - it's ok to do this here; we haven't
2803 	 * yet started transmitting.
2804 	 */
2805 	ATH_TX_LOCK(sc);
2806 
2807 	/*
2808 	 * Node reference, if there's one.
2809 	 */
2810 	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2811 
2812 	/*
2813 	 * Enforce how deep a node queue can get.
2814 	 *
2815 	 * XXX it would be nicer if we kept an mbuf queue per
2816 	 * node and only whacked them into ath_bufs when we
2817 	 * are ready to schedule some traffic from them.
2818 	 * .. that may come later.
2819 	 *
2820 	 * XXX we should also track the per-node hardware queue
2821 	 * depth so it is easy to limit the _SUM_ of the swq and
2822 	 * hwq frames.  Since we only schedule two HWQ frames
2823 	 * at a time, this should be OK for now.
2824 	 */
2825 	if ((!(m->m_flags & M_EAPOL)) &&
2826 	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
2827 		sc->sc_stats.ast_tx_nodeq_overflow++;
2828 		m_freem(m);
2829 		m = NULL;
2830 		retval = ENOBUFS;
2831 		goto finish;
2832 	}
2833 
2834 	/*
2835 	 * Check how many TX buffers are available.
2836 	 *
2837 	 * If this is for non-EAPOL traffic, just leave some
2838 	 * space free in order for buffer cloning and raw
2839 	 * frame transmission to occur.
2840 	 *
2841 	 * If it's for EAPOL traffic, ignore this for now.
2842 	 * Management traffic will be sent via the raw transmit
2843 	 * method which bypasses this check.
2844 	 *
2845 	 * This is needed to ensure that EAPOL frames during
2846 	 * (re) keying have a chance to go out.
2847 	 *
2848 	 * See kern/138379 for more information.
2849 	 */
2850 	if ((!(m->m_flags & M_EAPOL)) &&
2851 	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
2852 		sc->sc_stats.ast_tx_nobuf++;
2853 		m_freem(m);
2854 		m = NULL;
2855 		retval = ENOBUFS;
2856 		goto finish;
2857 	}
2858 
2859 	/*
2860 	 * Grab a TX buffer and associated resources.
2861 	 *
2862 	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
2863 	 * That way even with temporary buffer exhaustion due to
2864 	 * the data path doesn't leave us without the ability
2865 	 * to transmit management frames.
2866 	 *
2867 	 * Otherwise allocate a normal buffer.
2868 	 */
2869 	if (m->m_flags & M_EAPOL)
2870 		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2871 	else
2872 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2873 
2874 	if (bf == NULL) {
2875 		/*
2876 		 * If we failed to allocate a buffer, fail.
2877 		 *
2878 		 * We shouldn't fail normally, due to the check
2879 		 * above.
2880 		 */
2881 		sc->sc_stats.ast_tx_nobuf++;
2882 #if 0
2883 		/* remove, DragonFly uses OACTIVE to control if_start calls */
2884 		IF_LOCK(&ifp->if_snd);
2885 		ifq_set_oactive(&ifp->if_snd);
2886 		IF_UNLOCK(&ifp->if_snd);
2887 #endif
2888 		m_freem(m);
2889 		m = NULL;
2890 		retval = ENOBUFS;
2891 		goto finish;
2892 	}
2893 
2894 	/*
2895 	 * At this point we have a buffer; so we need to free it
2896 	 * if we hit any error conditions.
2897 	 */
2898 
2899 	/*
2900 	 * Check for fragmentation.  If this frame
2901 	 * has been broken up verify we have enough
2902 	 * buffers to send all the fragments so all
2903 	 * go out or none...
2904 	 */
2905 	TAILQ_INIT(&frags);
2906 	if ((m->m_flags & M_FRAG) &&
2907 	    !ath_txfrag_setup(sc, &frags, m, ni)) {
2908 		DPRINTF(sc, ATH_DEBUG_XMIT,
2909 		    "%s: out of txfrag buffers\n", __func__);
2910 		sc->sc_stats.ast_tx_nofrag++;
2911 		ifp->if_oerrors++;
2912 		ath_freetx(m);
2913 		goto bad;
2914 	}
2915 
2916 	/*
2917 	 * At this point if we have any TX fragments, then we will
2918 	 * have bumped the node reference once for each of those.
2919 	 */
2920 
2921 	/*
2922 	 * XXX Is there anything actually _enforcing_ that the
2923 	 * fragments are being transmitted in one hit, rather than
2924 	 * being interleaved with other transmissions on that
2925 	 * hardware queue?
2926 	 *
2927 	 * The ATH TX output lock is the only thing serialising this
2928 	 * right now.
2929 	 */
2930 
2931 	/*
2932 	 * Calculate the "next fragment" length field in ath_buf
2933 	 * in order to let the transmit path know enough about
2934 	 * what to next write to the hardware.
2935 	 */
2936 	if (m->m_flags & M_FRAG) {
2937 		struct ath_buf *fbf = bf;
2938 		struct ath_buf *n_fbf = NULL;
2939 		struct mbuf *fm = m->m_nextpkt;
2940 
2941 		/*
2942 		 * We need to walk the list of fragments and set
2943 		 * the next size to the following buffer.
2944 		 * However, the first buffer isn't in the frag
2945 		 * list, so we have to do some gymnastics here.
2946 		 */
2947 		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
2948 			fbf->bf_nextfraglen = fm->m_pkthdr.len;
2949 			fbf = n_fbf;
2950 			fm = fm->m_nextpkt;
2951 		}
2952 	}
2953 
2954 	/*
2955 	 * Bump the ifp output counter.
2956 	 *
2957 	 * XXX should use atomics?
2958 	 */
2959 	ifp->if_opackets++;
2960 nextfrag:
2961 	/*
2962 	 * Pass the frame to the h/w for transmission.
2963 	 * Fragmented frames have each frag chained together
2964 	 * with m_nextpkt.  We know there are sufficient ath_buf's
2965 	 * to send all the frags because of work done by
2966 	 * ath_txfrag_setup.  We leave m_nextpkt set while
2967 	 * calling ath_tx_start so it can use it to extend the
2968 	 * the tx duration to cover the subsequent frag and
2969 	 * so it can reclaim all the mbufs in case of an error;
2970 	 * ath_tx_start clears m_nextpkt once it commits to
2971 	 * handing the frame to the hardware.
2972 	 *
2973 	 * Note: if this fails, then the mbufs are freed but
2974 	 * not the node reference.
2975 	 */
2976 	next = m->m_nextpkt;
2977 	if (ath_tx_start(sc, ni, bf, m)) {
2978 bad:
2979 		ifp->if_oerrors++;
2980 reclaim:
2981 		bf->bf_m = NULL;
2982 		bf->bf_node = NULL;
2983 		ATH_TXBUF_LOCK(sc);
2984 		ath_returnbuf_head(sc, bf);
2985 		/*
2986 		 * Free the rest of the node references and
2987 		 * buffers for the fragment list.
2988 		 */
2989 		ath_txfrag_cleanup(sc, &frags, ni);
2990 		ATH_TXBUF_UNLOCK(sc);
2991 		retval = ENOBUFS;
2992 		goto finish;
2993 	}
2994 
2995 	/*
2996 	 * Check here if the node is in power save state.
2997 	 */
2998 	ath_tx_update_tim(sc, ni, 1);
2999 
3000 	if (next != NULL) {
3001 		/*
3002 		 * Beware of state changing between frags.
3003 		 * XXX check sta power-save state?
3004 		 */
3005 		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3006 			DPRINTF(sc, ATH_DEBUG_XMIT,
3007 			    "%s: flush fragmented packet, state %s\n",
3008 			    __func__,
3009 			    ieee80211_state_name[ni->ni_vap->iv_state]);
3010 			/* XXX dmamap */
3011 			ath_freetx(next);
3012 			goto reclaim;
3013 		}
3014 		m = next;
3015 		bf = TAILQ_FIRST(&frags);
3016 		KASSERT(bf != NULL, ("no buf for txfrag"));
3017 		TAILQ_REMOVE(&frags, bf, bf_list);
3018 		goto nextfrag;
3019 	}
3020 
3021 	/*
3022 	 * Bump watchdog timer.
3023 	 */
3024 	sc->sc_wd_timer = 5;
3025 
3026 finish:
3027 	ATH_TX_UNLOCK(sc);
3028 
3029 	/*
3030 	 * Finished transmitting!
3031 	 */
3032 	ATH_PCU_LOCK(sc);
3033 	sc->sc_txstart_cnt--;
3034 	ATH_PCU_UNLOCK(sc);
3035 
3036 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3037 
3038 	return (retval);
3039 }
3040 
3041 static int
3042 ath_media_change(struct ifnet *ifp)
3043 {
3044 	int error = ieee80211_media_change(ifp);
3045 	/* NB: only the fixed rate can change and that doesn't need a reset */
3046 	return (error == ENETRESET ? 0 : error);
3047 }
3048 
3049 /*
3050  * Block/unblock tx+rx processing while a key change is done.
3051  * We assume the caller serializes key management operations
3052  * so we only need to worry about synchronization with other
3053  * uses that originate in the driver.
3054  */
3055 static void
3056 ath_key_update_begin(struct ieee80211vap *vap)
3057 {
3058 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3059 	struct ath_softc *sc = ifp->if_softc;
3060 
3061 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3062 	taskqueue_block(sc->sc_tq);
3063 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
3064 }
3065 
3066 static void
3067 ath_key_update_end(struct ieee80211vap *vap)
3068 {
3069 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3070 	struct ath_softc *sc = ifp->if_softc;
3071 
3072 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3073 	IF_UNLOCK(&ifp->if_snd);
3074 	taskqueue_unblock(sc->sc_tq);
3075 }
3076 
3077 static void
3078 ath_update_promisc(struct ifnet *ifp)
3079 {
3080 	struct ath_softc *sc = ifp->if_softc;
3081 	u_int32_t rfilt;
3082 
3083 	/* configure rx filter */
3084 	rfilt = ath_calcrxfilter(sc);
3085 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3086 
3087 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3088 }
3089 
3090 static void
3091 ath_update_mcast(struct ifnet *ifp)
3092 {
3093 	struct ath_softc *sc = ifp->if_softc;
3094 	u_int32_t mfilt[2];
3095 
3096 	/* calculate and install multicast filter */
3097 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3098 		struct ifmultiaddr *ifma;
3099 		/*
3100 		 * Merge multicast addresses to form the hardware filter.
3101 		 */
3102 		mfilt[0] = mfilt[1] = 0;
3103 #if 0
3104 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3105 #endif
3106 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3107 			caddr_t dl;
3108 			u_int32_t val;
3109 			u_int8_t pos;
3110 
3111 			/* calculate XOR of eight 6bit values */
3112 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3113 			val = LE_READ_4(dl + 0);
3114 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3115 			val = LE_READ_4(dl + 3);
3116 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3117 			pos &= 0x3f;
3118 			mfilt[pos / 32] |= (1 << (pos % 32));
3119 		}
3120 #if 0
3121 		if_maddr_runlock(ifp);
3122 #endif
3123 	} else
3124 		mfilt[0] = mfilt[1] = ~0;
3125 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3126 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3127 		__func__, mfilt[0], mfilt[1]);
3128 }
3129 
3130 void
3131 ath_mode_init(struct ath_softc *sc)
3132 {
3133 	struct ifnet *ifp = sc->sc_ifp;
3134 	struct ath_hal *ah = sc->sc_ah;
3135 	u_int32_t rfilt;
3136 
3137 	/* configure rx filter */
3138 	rfilt = ath_calcrxfilter(sc);
3139 	ath_hal_setrxfilter(ah, rfilt);
3140 
3141 	/* configure operational mode */
3142 	ath_hal_setopmode(ah);
3143 
3144 #if 0
3145 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3146 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3147 	    __func__,
3148 	    ah,
3149 	    ifp,
3150 	    (ifp == NULL) ? NULL : ifp->if_addr);
3151 #endif
3152 
3153 	/* handle any link-level address change */
3154 	ath_hal_setmac(ah, IF_LLADDR(ifp));
3155 
3156 	/* calculate and install multicast filter */
3157 	ath_update_mcast(ifp);
3158 }
3159 
3160 /*
3161  * Set the slot time based on the current setting.
3162  */
3163 void
3164 ath_setslottime(struct ath_softc *sc)
3165 {
3166 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3167 	struct ath_hal *ah = sc->sc_ah;
3168 	u_int usec;
3169 
3170 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3171 		usec = 13;
3172 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3173 		usec = 21;
3174 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3175 		/* honor short/long slot time only in 11g */
3176 		/* XXX shouldn't honor on pure g or turbo g channel */
3177 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3178 			usec = HAL_SLOT_TIME_9;
3179 		else
3180 			usec = HAL_SLOT_TIME_20;
3181 	} else
3182 		usec = HAL_SLOT_TIME_9;
3183 
3184 	DPRINTF(sc, ATH_DEBUG_RESET,
3185 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3186 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3187 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3188 
3189 	ath_hal_setslottime(ah, usec);
3190 	sc->sc_updateslot = OK;
3191 }
3192 
3193 /*
3194  * Callback from the 802.11 layer to update the
3195  * slot time based on the current setting.
3196  */
3197 static void
3198 ath_updateslot(struct ifnet *ifp)
3199 {
3200 	struct ath_softc *sc = ifp->if_softc;
3201 	struct ieee80211com *ic = ifp->if_l2com;
3202 
3203 	/*
3204 	 * When not coordinating the BSS, change the hardware
3205 	 * immediately.  For other operation we defer the change
3206 	 * until beacon updates have propagated to the stations.
3207 	 */
3208 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3209 	    ic->ic_opmode == IEEE80211_M_MBSS)
3210 		sc->sc_updateslot = UPDATE;
3211 	else
3212 		ath_setslottime(sc);
3213 }
3214 
3215 /*
3216  * Append the contents of src to dst; both queues
3217  * are assumed to be locked.
3218  */
3219 void
3220 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3221 {
3222 
3223 	ATH_TXQ_LOCK_ASSERT(src);
3224 	ATH_TXQ_LOCK_ASSERT(dst);
3225 
3226 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3227 	dst->axq_link = src->axq_link;
3228 	src->axq_link = NULL;
3229 	dst->axq_depth += src->axq_depth;
3230 	dst->axq_aggr_depth += src->axq_aggr_depth;
3231 	src->axq_depth = 0;
3232 	src->axq_aggr_depth = 0;
3233 }
3234 
3235 /*
3236  * Reset the hardware, with no loss.
3237  *
3238  * This can't be used for a general case reset.
3239  */
3240 static void
3241 ath_reset_proc(void *arg, int pending)
3242 {
3243 	struct ath_softc *sc = arg;
3244 	struct ifnet *ifp = sc->sc_ifp;
3245 
3246 #if 0
3247 	if_printf(ifp, "%s: resetting\n", __func__);
3248 #endif
3249 	wlan_serialize_enter();
3250 	ath_reset(ifp, ATH_RESET_NOLOSS);
3251 	wlan_serialize_exit();
3252 }
3253 
3254 /*
3255  * Reset the hardware after detecting beacons have stopped.
3256  */
3257 static void
3258 ath_bstuck_proc(void *arg, int pending)
3259 {
3260 	struct ath_softc *sc = arg;
3261 	struct ifnet *ifp = sc->sc_ifp;
3262 	uint32_t hangs = 0;
3263 
3264 	wlan_serialize_enter();
3265 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3266 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3267 
3268 #ifdef	ATH_DEBUG_ALQ
3269 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3270 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3271 #endif
3272 
3273 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3274 		sc->sc_bmisscount);
3275 	sc->sc_stats.ast_bstuck++;
3276 	/*
3277 	 * This assumes that there's no simultaneous channel mode change
3278 	 * occuring.
3279 	 */
3280 	ath_reset(ifp, ATH_RESET_NOLOSS);
3281 	wlan_serialize_exit();
3282 }
3283 
3284 static void
3285 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3286 {
3287 	bus_addr_t *paddr = (bus_addr_t*) arg;
3288 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3289 	*paddr = segs->ds_addr;
3290 }
3291 
3292 /*
3293  * Allocate the descriptors and appropriate DMA tag/setup.
3294  *
3295  * For some situations (eg EDMA TX completion), there isn't a requirement
3296  * for the ath_buf entries to be allocated.
3297  */
3298 int
3299 ath_descdma_alloc_desc(struct ath_softc *sc,
3300 	struct ath_descdma *dd, ath_bufhead *head,
3301 	const char *name, int ds_size, int ndesc)
3302 {
3303 #define	DS2PHYS(_dd, _ds) \
3304 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3305 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3306 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3307 	struct ifnet *ifp = sc->sc_ifp;
3308 	int error;
3309 
3310 	dd->dd_descsize = ds_size;
3311 
3312 	DPRINTF(sc, ATH_DEBUG_RESET,
3313 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3314 	    __func__, name, ndesc, dd->dd_descsize);
3315 
3316 	dd->dd_name = name;
3317 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3318 
3319 	/*
3320 	 * Merlin work-around:
3321 	 * Descriptors that cross the 4KB boundary can't be used.
3322 	 * Assume one skipped descriptor per 4KB page.
3323 	 */
3324 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3325 		int numpages = dd->dd_desc_len / 4096;
3326 		dd->dd_desc_len += ds_size * numpages;
3327 	}
3328 
3329 	/*
3330 	 * Setup DMA descriptor area.
3331 	 *
3332 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3333 	 * buffers for the descriptors themselves.
3334 	 */
3335 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3336 		       PAGE_SIZE, 0,		/* alignment, bounds */
3337 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3338 		       BUS_SPACE_MAXADDR,	/* highaddr */
3339 		       NULL, NULL,		/* filter, filterarg */
3340 		       dd->dd_desc_len,		/* maxsize */
3341 		       1,			/* nsegments */
3342 		       dd->dd_desc_len,		/* maxsegsize */
3343 		       0,			/* flags */
3344 		       &dd->dd_dmat);
3345 	if (error != 0) {
3346 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3347 		return error;
3348 	}
3349 
3350 	/* allocate descriptors */
3351 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3352 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3353 				 &dd->dd_dmamap);
3354 	if (error != 0) {
3355 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3356 			"error %u\n", ndesc, dd->dd_name, error);
3357 		goto fail1;
3358 	}
3359 
3360 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3361 				dd->dd_desc, dd->dd_desc_len,
3362 				ath_load_cb, &dd->dd_desc_paddr,
3363 				BUS_DMA_NOWAIT);
3364 	if (error != 0) {
3365 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3366 			dd->dd_name, error);
3367 		goto fail2;
3368 	}
3369 
3370 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3371 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3372 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3373 	    /*XXX*/ (u_long) dd->dd_desc_len);
3374 
3375 	return (0);
3376 
3377 fail2:
3378 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3379 fail1:
3380 	bus_dma_tag_destroy(dd->dd_dmat);
3381 	memset(dd, 0, sizeof(*dd));
3382 	return error;
3383 #undef DS2PHYS
3384 #undef ATH_DESC_4KB_BOUND_CHECK
3385 }
3386 
3387 int
3388 ath_descdma_setup(struct ath_softc *sc,
3389 	struct ath_descdma *dd, ath_bufhead *head,
3390 	const char *name, int ds_size, int nbuf, int ndesc)
3391 {
3392 #define	DS2PHYS(_dd, _ds) \
3393 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3394 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3395 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3396 	struct ifnet *ifp = sc->sc_ifp;
3397 	uint8_t *ds;
3398 	struct ath_buf *bf;
3399 	int i, bsize, error;
3400 
3401 	/* Allocate descriptors */
3402 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3403 	    nbuf * ndesc);
3404 
3405 	/* Assume any errors during allocation were dealt with */
3406 	if (error != 0) {
3407 		return (error);
3408 	}
3409 
3410 	ds = (uint8_t *) dd->dd_desc;
3411 
3412 	/* allocate rx buffers */
3413 	bsize = sizeof(struct ath_buf) * nbuf;
3414 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT|M_ZERO);
3415 	if (bf == NULL) {
3416 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3417 			dd->dd_name, bsize);
3418 		goto fail3;
3419 	}
3420 	dd->dd_bufptr = bf;
3421 
3422 	TAILQ_INIT(head);
3423 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3424 		bf->bf_desc = (struct ath_desc *) ds;
3425 		bf->bf_daddr = DS2PHYS(dd, ds);
3426 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3427 			/*
3428 			 * Merlin WAR: Skip descriptor addresses which
3429 			 * cause 4KB boundary crossing along any point
3430 			 * in the descriptor.
3431 			 */
3432 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3433 			     dd->dd_descsize)) {
3434 				/* Start at the next page */
3435 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3436 				bf->bf_desc = (struct ath_desc *) ds;
3437 				bf->bf_daddr = DS2PHYS(dd, ds);
3438 			}
3439 		}
3440 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3441 				&bf->bf_dmamap);
3442 		if (error != 0) {
3443 			if_printf(ifp, "unable to create dmamap for %s "
3444 				"buffer %u, error %u\n", dd->dd_name, i, error);
3445 			ath_descdma_cleanup(sc, dd, head);
3446 			return error;
3447 		}
3448 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3449 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3450 	}
3451 
3452 	/*
3453 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3454 	 * allocation otherwise weird stuff will occur and crash your
3455 	 * machine.
3456 	 */
3457 	return 0;
3458 	/* XXX this should likely just call ath_descdma_cleanup() */
3459 fail3:
3460 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3461 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3462 	bus_dma_tag_destroy(dd->dd_dmat);
3463 	memset(dd, 0, sizeof(*dd));
3464 	return error;
3465 #undef DS2PHYS
3466 #undef ATH_DESC_4KB_BOUND_CHECK
3467 }
3468 
3469 /*
3470  * Allocate ath_buf entries but no descriptor contents.
3471  *
3472  * This is for RX EDMA where the descriptors are the header part of
3473  * the RX buffer.
3474  */
3475 int
3476 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3477 	struct ath_descdma *dd, ath_bufhead *head,
3478 	const char *name, int nbuf, int rx_status_len)
3479 {
3480 	struct ifnet *ifp = sc->sc_ifp;
3481 	struct ath_buf *bf;
3482 	int i, bsize, error;
3483 
3484 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3485 	    __func__, name, nbuf);
3486 
3487 	dd->dd_name = name;
3488 	/*
3489 	 * This is (mostly) purely for show.  We're not allocating any actual
3490 	 * descriptors here as EDMA RX has the descriptor be part
3491 	 * of the RX buffer.
3492 	 *
3493 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3494 	 * whether we have already freed this DMA mapping.
3495 	 */
3496 	dd->dd_desc_len = rx_status_len * nbuf;
3497 	dd->dd_descsize = rx_status_len;
3498 
3499 	/* allocate rx buffers */
3500 	bsize = sizeof(struct ath_buf) * nbuf;
3501 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
3502 	if (bf == NULL) {
3503 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3504 			dd->dd_name, bsize);
3505 		error = ENOMEM;
3506 		goto fail3;
3507 	}
3508 	dd->dd_bufptr = bf;
3509 
3510 	TAILQ_INIT(head);
3511 	for (i = 0; i < nbuf; i++, bf++) {
3512 		bf->bf_desc = NULL;
3513 		bf->bf_daddr = 0;
3514 		bf->bf_lastds = NULL;	/* Just an initial value */
3515 
3516 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3517 				&bf->bf_dmamap);
3518 		if (error != 0) {
3519 			if_printf(ifp, "unable to create dmamap for %s "
3520 				"buffer %u, error %u\n", dd->dd_name, i, error);
3521 			ath_descdma_cleanup(sc, dd, head);
3522 			return error;
3523 		}
3524 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3525 	}
3526 	return 0;
3527 fail3:
3528 	memset(dd, 0, sizeof(*dd));
3529 	return error;
3530 }
3531 
3532 void
3533 ath_descdma_cleanup(struct ath_softc *sc,
3534 	struct ath_descdma *dd, ath_bufhead *head)
3535 {
3536 	struct ath_buf *bf;
3537 	struct ieee80211_node *ni;
3538 	int do_warning = 0;
3539 
3540 	if (dd->dd_dmamap != 0) {
3541 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3542 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3543 		bus_dma_tag_destroy(dd->dd_dmat);
3544 	}
3545 
3546 	if (head != NULL) {
3547 		TAILQ_FOREACH(bf, head, bf_list) {
3548 			if (bf->bf_m) {
3549 				/*
3550 				 * XXX warn if there's buffers here.
3551 				 * XXX it should have been freed by the
3552 				 * owner!
3553 				 */
3554 
3555 				if (do_warning == 0) {
3556 					do_warning = 1;
3557 					device_printf(sc->sc_dev,
3558 					    "%s: %s: mbuf should've been"
3559 					    " unmapped/freed!\n",
3560 					    __func__,
3561 					    dd->dd_name);
3562 				}
3563 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3564 				    BUS_DMASYNC_POSTREAD);
3565 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3566 				m_freem(bf->bf_m);
3567 				bf->bf_m = NULL;
3568 			}
3569 			if (bf->bf_dmamap != NULL) {
3570 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3571 				bf->bf_dmamap = NULL;
3572 			}
3573 			ni = bf->bf_node;
3574 			bf->bf_node = NULL;
3575 			if (ni != NULL) {
3576 				/*
3577 				 * Reclaim node reference.
3578 				 */
3579 				ieee80211_free_node(ni);
3580 			}
3581 		}
3582 	}
3583 
3584 	if (head != NULL)
3585 		TAILQ_INIT(head);
3586 
3587 	if (dd->dd_bufptr != NULL)
3588 		kfree(dd->dd_bufptr, M_ATHDEV);
3589 	memset(dd, 0, sizeof(*dd));
3590 }
3591 
3592 static int
3593 ath_desc_alloc(struct ath_softc *sc)
3594 {
3595 	int error;
3596 
3597 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3598 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3599 	if (error != 0) {
3600 		return error;
3601 	}
3602 	sc->sc_txbuf_cnt = ath_txbuf;
3603 
3604 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3605 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3606 		    ATH_TXDESC);
3607 	if (error != 0) {
3608 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3609 		return error;
3610 	}
3611 
3612 	/*
3613 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3614 	 * flag doesn't have to be set in ath_getbuf_locked().
3615 	 */
3616 
3617 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3618 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3619 	if (error != 0) {
3620 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3621 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3622 		    &sc->sc_txbuf_mgmt);
3623 		return error;
3624 	}
3625 	return 0;
3626 }
3627 
3628 static void
3629 ath_desc_free(struct ath_softc *sc)
3630 {
3631 
3632 	if (sc->sc_bdma.dd_desc_len != 0)
3633 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3634 	if (sc->sc_txdma.dd_desc_len != 0)
3635 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3636 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3637 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3638 		    &sc->sc_txbuf_mgmt);
3639 }
3640 
3641 static struct ieee80211_node *
3642 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3643 {
3644 	struct ieee80211com *ic = vap->iv_ic;
3645 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3646 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3647 	struct ath_node *an;
3648 
3649 	an = kmalloc(space, M_80211_NODE, M_INTWAIT|M_ZERO);
3650 	if (an == NULL) {
3651 		/* XXX stat+msg */
3652 		return NULL;
3653 	}
3654 	ath_rate_node_init(sc, an);
3655 
3656 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3657 	ksnprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3658 	    device_get_nameunit(sc->sc_dev), an);
3659 #if 0
3660 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3661 #endif
3662 
3663 	/* XXX setup ath_tid */
3664 	ath_tx_tid_init(sc, an);
3665 
3666 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
3667 	    ath_hal_ether_sprintf(mac), an);
3668 	return &an->an_node;
3669 }
3670 
3671 static void
3672 ath_node_cleanup(struct ieee80211_node *ni)
3673 {
3674 	struct ieee80211com *ic = ni->ni_ic;
3675 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3676 
3677 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
3678 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
3679 
3680 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3681 	ath_tx_node_flush(sc, ATH_NODE(ni));
3682 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3683 	sc->sc_node_cleanup(ni);
3684 }
3685 
3686 static void
3687 ath_node_free(struct ieee80211_node *ni)
3688 {
3689 	struct ieee80211com *ic = ni->ni_ic;
3690 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3691 
3692 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
3693 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
3694 #if 0
3695 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3696 #endif
3697 	sc->sc_node_free(ni);
3698 }
3699 
3700 static void
3701 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3702 {
3703 	struct ieee80211com *ic = ni->ni_ic;
3704 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3705 	struct ath_hal *ah = sc->sc_ah;
3706 
3707 	*rssi = ic->ic_node_getrssi(ni);
3708 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3709 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3710 	else
3711 		*noise = -95;		/* nominally correct */
3712 }
3713 
3714 /*
3715  * Set the default antenna.
3716  */
3717 void
3718 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3719 {
3720 	struct ath_hal *ah = sc->sc_ah;
3721 
3722 	/* XXX block beacon interrupts */
3723 	ath_hal_setdefantenna(ah, antenna);
3724 	if (sc->sc_defant != antenna)
3725 		sc->sc_stats.ast_ant_defswitch++;
3726 	sc->sc_defant = antenna;
3727 	sc->sc_rxotherant = 0;
3728 }
3729 
3730 static void
3731 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3732 {
3733 	txq->axq_qnum = qnum;
3734 	txq->axq_ac = 0;
3735 	txq->axq_depth = 0;
3736 	txq->axq_aggr_depth = 0;
3737 	txq->axq_intrcnt = 0;
3738 	txq->axq_link = NULL;
3739 	txq->axq_softc = sc;
3740 	TAILQ_INIT(&txq->axq_q);
3741 	TAILQ_INIT(&txq->axq_tidq);
3742 	TAILQ_INIT(&txq->fifo.axq_q);
3743 	ATH_TXQ_LOCK_INIT(sc, txq);
3744 }
3745 
3746 /*
3747  * Setup a h/w transmit queue.
3748  */
3749 static struct ath_txq *
3750 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3751 {
3752 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3753 	struct ath_hal *ah = sc->sc_ah;
3754 	HAL_TXQ_INFO qi;
3755 	int qnum;
3756 
3757 	memset(&qi, 0, sizeof(qi));
3758 	qi.tqi_subtype = subtype;
3759 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3760 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3761 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3762 	/*
3763 	 * Enable interrupts only for EOL and DESC conditions.
3764 	 * We mark tx descriptors to receive a DESC interrupt
3765 	 * when a tx queue gets deep; otherwise waiting for the
3766 	 * EOL to reap descriptors.  Note that this is done to
3767 	 * reduce interrupt load and this only defers reaping
3768 	 * descriptors, never transmitting frames.  Aside from
3769 	 * reducing interrupts this also permits more concurrency.
3770 	 * The only potential downside is if the tx queue backs
3771 	 * up in which case the top half of the kernel may backup
3772 	 * due to a lack of tx descriptors.
3773 	 */
3774 	if (sc->sc_isedma)
3775 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3776 		    HAL_TXQ_TXOKINT_ENABLE;
3777 	else
3778 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3779 		    HAL_TXQ_TXDESCINT_ENABLE;
3780 
3781 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3782 	if (qnum == -1) {
3783 		/*
3784 		 * NB: don't print a message, this happens
3785 		 * normally on parts with too few tx queues
3786 		 */
3787 		return NULL;
3788 	}
3789 	if (qnum >= N(sc->sc_txq)) {
3790 		device_printf(sc->sc_dev,
3791 			"hal qnum %u out of range, max %zu!\n",
3792 			qnum, N(sc->sc_txq));
3793 		ath_hal_releasetxqueue(ah, qnum);
3794 		return NULL;
3795 	}
3796 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3797 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3798 		sc->sc_txqsetup |= 1<<qnum;
3799 	}
3800 	return &sc->sc_txq[qnum];
3801 #undef N
3802 }
3803 
3804 /*
3805  * Setup a hardware data transmit queue for the specified
3806  * access control.  The hal may not support all requested
3807  * queues in which case it will return a reference to a
3808  * previously setup queue.  We record the mapping from ac's
3809  * to h/w queues for use by ath_tx_start and also track
3810  * the set of h/w queues being used to optimize work in the
3811  * transmit interrupt handler and related routines.
3812  */
3813 static int
3814 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3815 {
3816 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3817 	struct ath_txq *txq;
3818 
3819 	if (ac >= N(sc->sc_ac2q)) {
3820 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3821 			ac, N(sc->sc_ac2q));
3822 		return 0;
3823 	}
3824 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3825 	if (txq != NULL) {
3826 		txq->axq_ac = ac;
3827 		sc->sc_ac2q[ac] = txq;
3828 		return 1;
3829 	} else
3830 		return 0;
3831 #undef N
3832 }
3833 
3834 /*
3835  * Update WME parameters for a transmit queue.
3836  */
3837 static int
3838 ath_txq_update(struct ath_softc *sc, int ac)
3839 {
3840 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3841 #define	ATH_TXOP_TO_US(v)		(v<<5)
3842 	struct ifnet *ifp = sc->sc_ifp;
3843 	struct ieee80211com *ic = ifp->if_l2com;
3844 	struct ath_txq *txq = sc->sc_ac2q[ac];
3845 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3846 	struct ath_hal *ah = sc->sc_ah;
3847 	HAL_TXQ_INFO qi;
3848 
3849 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3850 #ifdef IEEE80211_SUPPORT_TDMA
3851 	if (sc->sc_tdma) {
3852 		/*
3853 		 * AIFS is zero so there's no pre-transmit wait.  The
3854 		 * burst time defines the slot duration and is configured
3855 		 * through net80211.  The QCU is setup to not do post-xmit
3856 		 * back off, lockout all lower-priority QCU's, and fire
3857 		 * off the DMA beacon alert timer which is setup based
3858 		 * on the slot configuration.
3859 		 */
3860 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3861 			      | HAL_TXQ_TXERRINT_ENABLE
3862 			      | HAL_TXQ_TXURNINT_ENABLE
3863 			      | HAL_TXQ_TXEOLINT_ENABLE
3864 			      | HAL_TXQ_DBA_GATED
3865 			      | HAL_TXQ_BACKOFF_DISABLE
3866 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3867 			      ;
3868 		qi.tqi_aifs = 0;
3869 		/* XXX +dbaprep? */
3870 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3871 		qi.tqi_burstTime = qi.tqi_readyTime;
3872 	} else {
3873 #endif
3874 		/*
3875 		 * XXX shouldn't this just use the default flags
3876 		 * used in the previous queue setup?
3877 		 */
3878 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3879 			      | HAL_TXQ_TXERRINT_ENABLE
3880 			      | HAL_TXQ_TXDESCINT_ENABLE
3881 			      | HAL_TXQ_TXURNINT_ENABLE
3882 			      | HAL_TXQ_TXEOLINT_ENABLE
3883 			      ;
3884 		qi.tqi_aifs = wmep->wmep_aifsn;
3885 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3886 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3887 		qi.tqi_readyTime = 0;
3888 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3889 #ifdef IEEE80211_SUPPORT_TDMA
3890 	}
3891 #endif
3892 
3893 	DPRINTF(sc, ATH_DEBUG_RESET,
3894 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3895 	    __func__, txq->axq_qnum, qi.tqi_qflags,
3896 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3897 
3898 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3899 		if_printf(ifp, "unable to update hardware queue "
3900 			"parameters for %s traffic!\n",
3901 			ieee80211_wme_acnames[ac]);
3902 		return 0;
3903 	} else {
3904 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3905 		return 1;
3906 	}
3907 #undef ATH_TXOP_TO_US
3908 #undef ATH_EXPONENT_TO_VALUE
3909 }
3910 
3911 /*
3912  * Callback from the 802.11 layer to update WME parameters.
3913  */
3914 int
3915 ath_wme_update(struct ieee80211com *ic)
3916 {
3917 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3918 
3919 	return !ath_txq_update(sc, WME_AC_BE) ||
3920 	    !ath_txq_update(sc, WME_AC_BK) ||
3921 	    !ath_txq_update(sc, WME_AC_VI) ||
3922 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3923 }
3924 
3925 /*
3926  * Reclaim resources for a setup queue.
3927  */
3928 static void
3929 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3930 {
3931 
3932 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3933 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3934 	ATH_TXQ_LOCK_DESTROY(txq);
3935 }
3936 
3937 /*
3938  * Reclaim all tx queue resources.
3939  */
3940 static void
3941 ath_tx_cleanup(struct ath_softc *sc)
3942 {
3943 	int i;
3944 
3945 	ATH_TXBUF_LOCK_DESTROY(sc);
3946 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3947 		if (ATH_TXQ_SETUP(sc, i))
3948 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3949 }
3950 
3951 /*
3952  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3953  * using the current rates in sc_rixmap.
3954  */
3955 int
3956 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3957 {
3958 	int rix = sc->sc_rixmap[rate];
3959 	/* NB: return lowest rix for invalid rate */
3960 	return (rix == 0xff ? 0 : rix);
3961 }
3962 
3963 static void
3964 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3965     struct ath_buf *bf)
3966 {
3967 	struct ieee80211_node *ni = bf->bf_node;
3968 	struct ifnet *ifp = sc->sc_ifp;
3969 	struct ieee80211com *ic = ifp->if_l2com;
3970 	int sr, lr, pri;
3971 
3972 	if (ts->ts_status == 0) {
3973 		u_int8_t txant = ts->ts_antenna;
3974 		sc->sc_stats.ast_ant_tx[txant]++;
3975 		sc->sc_ant_tx[txant]++;
3976 		if (ts->ts_finaltsi != 0)
3977 			sc->sc_stats.ast_tx_altrate++;
3978 		pri = M_WME_GETAC(bf->bf_m);
3979 		if (pri >= WME_AC_VO)
3980 			ic->ic_wme.wme_hipri_traffic++;
3981 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3982 			ni->ni_inact = ni->ni_inact_reload;
3983 	} else {
3984 		if (ts->ts_status & HAL_TXERR_XRETRY)
3985 			sc->sc_stats.ast_tx_xretries++;
3986 		if (ts->ts_status & HAL_TXERR_FIFO)
3987 			sc->sc_stats.ast_tx_fifoerr++;
3988 		if (ts->ts_status & HAL_TXERR_FILT)
3989 			sc->sc_stats.ast_tx_filtered++;
3990 		if (ts->ts_status & HAL_TXERR_XTXOP)
3991 			sc->sc_stats.ast_tx_xtxop++;
3992 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3993 			sc->sc_stats.ast_tx_timerexpired++;
3994 
3995 		if (bf->bf_m->m_flags & M_FF)
3996 			sc->sc_stats.ast_ff_txerr++;
3997 	}
3998 	/* XXX when is this valid? */
3999 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4000 		sc->sc_stats.ast_tx_desccfgerr++;
4001 	/*
4002 	 * This can be valid for successful frame transmission!
4003 	 * If there's a TX FIFO underrun during aggregate transmission,
4004 	 * the MAC will pad the rest of the aggregate with delimiters.
4005 	 * If a BA is returned, the frame is marked as "OK" and it's up
4006 	 * to the TX completion code to notice which frames weren't
4007 	 * successfully transmitted.
4008 	 */
4009 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4010 		sc->sc_stats.ast_tx_data_underrun++;
4011 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4012 		sc->sc_stats.ast_tx_delim_underrun++;
4013 
4014 	sr = ts->ts_shortretry;
4015 	lr = ts->ts_longretry;
4016 	sc->sc_stats.ast_tx_shortretry += sr;
4017 	sc->sc_stats.ast_tx_longretry += lr;
4018 
4019 }
4020 
4021 /*
4022  * The default completion. If fail is 1, this means
4023  * "please don't retry the frame, and just return -1 status
4024  * to the net80211 stack.
4025  */
4026 void
4027 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4028 {
4029 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4030 	int st;
4031 
4032 	if (fail == 1)
4033 		st = -1;
4034 	else
4035 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4036 		    ts->ts_status : HAL_TXERR_XRETRY;
4037 
4038 #if 0
4039 	if (bf->bf_state.bfs_dobaw)
4040 		device_printf(sc->sc_dev,
4041 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4042 		    __func__,
4043 		    bf,
4044 		    SEQNO(bf->bf_state.bfs_seqno));
4045 #endif
4046 	if (bf->bf_next != NULL)
4047 		device_printf(sc->sc_dev,
4048 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4049 		    __func__,
4050 		    bf,
4051 		    SEQNO(bf->bf_state.bfs_seqno));
4052 
4053 	/*
4054 	 * Check if the node software queue is empty; if so
4055 	 * then clear the TIM.
4056 	 *
4057 	 * This needs to be done before the buffer is freed as
4058 	 * otherwise the node reference will have been released
4059 	 * and the node may not actually exist any longer.
4060 	 *
4061 	 * XXX I don't like this belonging here, but it's cleaner
4062 	 * to do it here right now then all the other places
4063 	 * where ath_tx_default_comp() is called.
4064 	 *
4065 	 * XXX TODO: during drain, ensure that the callback is
4066 	 * being called so we get a chance to update the TIM.
4067 	 */
4068 	if (bf->bf_node) {
4069 		ATH_TX_LOCK(sc);
4070 		ath_tx_update_tim(sc, bf->bf_node, 0);
4071 		ATH_TX_UNLOCK(sc);
4072 	}
4073 
4074 	/*
4075 	 * Do any tx complete callback.  Note this must
4076 	 * be done before releasing the node reference.
4077 	 * This will free the mbuf, release the net80211
4078 	 * node and recycle the ath_buf.
4079 	 */
4080 	ath_tx_freebuf(sc, bf, st);
4081 }
4082 
4083 /*
4084  * Update rate control with the given completion status.
4085  */
4086 void
4087 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4088     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4089     int nframes, int nbad)
4090 {
4091 	struct ath_node *an;
4092 
4093 	/* Only for unicast frames */
4094 	if (ni == NULL)
4095 		return;
4096 
4097 	an = ATH_NODE(ni);
4098 	ATH_NODE_UNLOCK_ASSERT(an);
4099 
4100 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4101 		ATH_NODE_LOCK(an);
4102 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4103 		ATH_NODE_UNLOCK(an);
4104 	}
4105 }
4106 
4107 /*
4108  * Process the completion of the given buffer.
4109  *
4110  * This calls the rate control update and then the buffer completion.
4111  * This will either free the buffer or requeue it.  In any case, the
4112  * bf pointer should be treated as invalid after this function is called.
4113  */
4114 void
4115 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4116     struct ath_tx_status *ts, struct ath_buf *bf)
4117 {
4118 	struct ieee80211_node *ni = bf->bf_node;
4119 	struct ath_node *an = NULL;
4120 
4121 	ATH_TX_UNLOCK_ASSERT(sc);
4122 	ATH_TXQ_UNLOCK_ASSERT(txq);
4123 
4124 	/* If unicast frame, update general statistics */
4125 	if (ni != NULL) {
4126 		an = ATH_NODE(ni);
4127 		/* update statistics */
4128 		ath_tx_update_stats(sc, ts, bf);
4129 	}
4130 
4131 	/*
4132 	 * Call the completion handler.
4133 	 * The completion handler is responsible for
4134 	 * calling the rate control code.
4135 	 *
4136 	 * Frames with no completion handler get the
4137 	 * rate control code called here.
4138 	 */
4139 	if (bf->bf_comp == NULL) {
4140 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4141 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4142 			/*
4143 			 * XXX assume this isn't an aggregate
4144 			 * frame.
4145 			 */
4146 			ath_tx_update_ratectrl(sc, ni,
4147 			     bf->bf_state.bfs_rc, ts,
4148 			    bf->bf_state.bfs_pktlen, 1,
4149 			    (ts->ts_status == 0 ? 0 : 1));
4150 		}
4151 		ath_tx_default_comp(sc, bf, 0);
4152 	} else
4153 		bf->bf_comp(sc, bf, 0);
4154 }
4155 
4156 
4157 
4158 /*
4159  * Process completed xmit descriptors from the specified queue.
4160  * Kick the packet scheduler if needed. This can occur from this
4161  * particular task.
4162  */
4163 static int
4164 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4165 {
4166 	struct ath_hal *ah = sc->sc_ah;
4167 	struct ath_buf *bf;
4168 	struct ath_desc *ds;
4169 	struct ath_tx_status *ts;
4170 	struct ieee80211_node *ni;
4171 #ifdef	IEEE80211_SUPPORT_SUPERG
4172 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4173 #endif	/* IEEE80211_SUPPORT_SUPERG */
4174 	int nacked;
4175 	HAL_STATUS status;
4176 
4177 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4178 		__func__, txq->axq_qnum,
4179 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4180 		txq->axq_link);
4181 
4182 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4183 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4184 	    txq->axq_qnum,
4185 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4186 	    txq->axq_link,
4187 	    txq->axq_depth);
4188 
4189 	nacked = 0;
4190 	for (;;) {
4191 		ATH_TXQ_LOCK(txq);
4192 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4193 		bf = TAILQ_FIRST(&txq->axq_q);
4194 		if (bf == NULL) {
4195 			ATH_TXQ_UNLOCK(txq);
4196 			break;
4197 		}
4198 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4199 		ts = &bf->bf_status.ds_txstat;
4200 
4201 		status = ath_hal_txprocdesc(ah, ds, ts);
4202 #ifdef ATH_DEBUG
4203 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4204 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4205 			    status == HAL_OK);
4206 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4207 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4208 			    status == HAL_OK);
4209 #endif
4210 #ifdef	ATH_DEBUG_ALQ
4211 		if (if_ath_alq_checkdebug(&sc->sc_alq,
4212 		    ATH_ALQ_EDMA_TXSTATUS)) {
4213 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4214 			sc->sc_tx_statuslen,
4215 			(char *) ds);
4216 		}
4217 #endif
4218 
4219 		if (status == HAL_EINPROGRESS) {
4220 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4221 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4222 			    txq->axq_qnum, bf, ds);
4223 			ATH_TXQ_UNLOCK(txq);
4224 			break;
4225 		}
4226 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4227 
4228 		/*
4229 		 * Sanity check.
4230 		 */
4231 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4232 			device_printf(sc->sc_dev,
4233 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4234 			    __func__,
4235 			    txq->axq_qnum,
4236 			    bf,
4237 			    bf->bf_state.bfs_tx_queue);
4238 		}
4239 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4240 			device_printf(sc->sc_dev,
4241 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4242 			    __func__,
4243 			    txq->axq_qnum,
4244 			    bf->bf_last,
4245 			    bf->bf_last->bf_state.bfs_tx_queue);
4246 		}
4247 
4248 #if 0
4249 		if (txq->axq_depth > 0) {
4250 			/*
4251 			 * More frames follow.  Mark the buffer busy
4252 			 * so it's not re-used while the hardware may
4253 			 * still re-read the link field in the descriptor.
4254 			 *
4255 			 * Use the last buffer in an aggregate as that
4256 			 * is where the hardware may be - intermediate
4257 			 * descriptors won't be "busy".
4258 			 */
4259 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4260 		} else
4261 			txq->axq_link = NULL;
4262 #else
4263 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4264 #endif
4265 		if (bf->bf_state.bfs_aggr)
4266 			txq->axq_aggr_depth--;
4267 
4268 		ni = bf->bf_node;
4269 
4270 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4271 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4272 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4273 		/*
4274 		 * If unicast frame was ack'd update RSSI,
4275 		 * including the last rx time used to
4276 		 * workaround phantom bmiss interrupts.
4277 		 */
4278 		if (ni != NULL && ts->ts_status == 0 &&
4279 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4280 			nacked++;
4281 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4282 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4283 				ts->ts_rssi);
4284 		}
4285 		ATH_TXQ_UNLOCK(txq);
4286 
4287 		/*
4288 		 * Update statistics and call completion
4289 		 */
4290 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4291 
4292 		/* XXX at this point, bf and ni may be totally invalid */
4293 	}
4294 #ifdef IEEE80211_SUPPORT_SUPERG
4295 	/*
4296 	 * Flush fast-frame staging queue when traffic slows.
4297 	 */
4298 	if (txq->axq_depth <= 1)
4299 		ieee80211_ff_flush(ic, txq->axq_ac);
4300 #endif
4301 
4302 	/* Kick the software TXQ scheduler */
4303 	if (dosched) {
4304 		ATH_TX_LOCK(sc);
4305 		ath_txq_sched(sc, txq);
4306 		ATH_TX_UNLOCK(sc);
4307 	}
4308 
4309 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4310 	    "ath_tx_processq: txq=%u: done",
4311 	    txq->axq_qnum);
4312 
4313 	return nacked;
4314 }
4315 
4316 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4317 
4318 /*
4319  * Deferred processing of transmit interrupt; special-cased
4320  * for a single hardware transmit queue (e.g. 5210 and 5211).
4321  */
4322 static void
4323 ath_tx_proc_q0(void *arg, int npending)
4324 {
4325 	struct ath_softc *sc = arg;
4326 #if 0
4327 	struct ifnet *ifp = sc->sc_ifp;
4328 #endif
4329 	uint32_t txqs;
4330 
4331 	wlan_serialize_enter();
4332 	ATH_PCU_LOCK(sc);
4333 	sc->sc_txproc_cnt++;
4334 	txqs = sc->sc_txq_active;
4335 	sc->sc_txq_active &= ~txqs;
4336 	ATH_PCU_UNLOCK(sc);
4337 
4338 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4339 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4340 
4341 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4342 		/* XXX why is lastrx updated in tx code? */
4343 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4344 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4345 		ath_tx_processq(sc, sc->sc_cabq, 1);
4346 #if 0
4347 	/* remove, DragonFly uses OACTIVE to control if_start calls */
4348 	IF_LOCK(&ifp->if_snd);
4349 	ifq_clr_oactive(&ifp->if_snd);
4350 	IF_UNLOCK(&ifp->if_snd);
4351 #endif
4352 	sc->sc_wd_timer = 0;
4353 
4354 	if (sc->sc_softled)
4355 		ath_led_event(sc, sc->sc_txrix);
4356 
4357 	ATH_PCU_LOCK(sc);
4358 	sc->sc_txproc_cnt--;
4359 	ATH_PCU_UNLOCK(sc);
4360 
4361 	ath_tx_kick(sc);
4362 	wlan_serialize_exit();
4363 }
4364 
4365 /*
4366  * Deferred processing of transmit interrupt; special-cased
4367  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4368  */
4369 static void
4370 ath_tx_proc_q0123(void *arg, int npending)
4371 {
4372 	struct ath_softc *sc = arg;
4373 #if 0
4374 	struct ifnet *ifp = sc->sc_ifp;
4375 #endif
4376 	int nacked;
4377 	uint32_t txqs;
4378 
4379 	wlan_serialize_enter();
4380 	ATH_PCU_LOCK(sc);
4381 	sc->sc_txproc_cnt++;
4382 	txqs = sc->sc_txq_active;
4383 	sc->sc_txq_active &= ~txqs;
4384 	ATH_PCU_UNLOCK(sc);
4385 
4386 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4387 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4388 
4389 	/*
4390 	 * Process each active queue.
4391 	 */
4392 	nacked = 0;
4393 	if (TXQACTIVE(txqs, 0))
4394 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4395 	if (TXQACTIVE(txqs, 1))
4396 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4397 	if (TXQACTIVE(txqs, 2))
4398 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4399 	if (TXQACTIVE(txqs, 3))
4400 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4401 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4402 		ath_tx_processq(sc, sc->sc_cabq, 1);
4403 	if (nacked)
4404 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4405 
4406 #if 0
4407 	/* remove, DragonFly uses OACTIVE to control if_start calls */
4408 	IF_LOCK(&ifp->if_snd);
4409 	ifq_clr_oactive(&ifp->if_snd);
4410 	IF_UNLOCK(&ifp->if_snd);
4411 #endif
4412 	sc->sc_wd_timer = 0;
4413 
4414 	if (sc->sc_softled)
4415 		ath_led_event(sc, sc->sc_txrix);
4416 
4417 	ATH_PCU_LOCK(sc);
4418 	sc->sc_txproc_cnt--;
4419 	ATH_PCU_UNLOCK(sc);
4420 
4421 	ath_tx_kick(sc);
4422 	wlan_serialize_exit();
4423 }
4424 
4425 /*
4426  * Deferred processing of transmit interrupt.
4427  */
4428 static void
4429 ath_tx_proc(void *arg, int npending)
4430 {
4431 	struct ath_softc *sc = arg;
4432 #if 0
4433 	struct ifnet *ifp = sc->sc_ifp;
4434 #endif
4435 	int i, nacked;
4436 	uint32_t txqs;
4437 
4438 	wlan_serialize_enter();
4439 	ATH_PCU_LOCK(sc);
4440 	sc->sc_txproc_cnt++;
4441 	txqs = sc->sc_txq_active;
4442 	sc->sc_txq_active &= ~txqs;
4443 	ATH_PCU_UNLOCK(sc);
4444 
4445 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4446 
4447 	/*
4448 	 * Process each active queue.
4449 	 */
4450 	nacked = 0;
4451 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4452 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4453 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4454 	if (nacked)
4455 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4456 
4457 #if 0
4458 	/* remove, DragonFly uses OACTIVE to control if_start calls */
4459 	/* XXX check this inside of IF_LOCK? */
4460 	IF_LOCK(&ifp->if_snd);
4461 	ifq_clr_oactive(&ifp->if_snd);
4462 	IF_UNLOCK(&ifp->if_snd);
4463 #endif
4464 	sc->sc_wd_timer = 0;
4465 
4466 	if (sc->sc_softled)
4467 		ath_led_event(sc, sc->sc_txrix);
4468 
4469 	ATH_PCU_LOCK(sc);
4470 	sc->sc_txproc_cnt--;
4471 	ATH_PCU_UNLOCK(sc);
4472 
4473 	ath_tx_kick(sc);
4474 	wlan_serialize_exit();
4475 }
4476 #undef	TXQACTIVE
4477 
4478 /*
4479  * Deferred processing of TXQ rescheduling.
4480  */
4481 static void
4482 ath_txq_sched_tasklet(void *arg, int npending)
4483 {
4484 	struct ath_softc *sc = arg;
4485 	int i;
4486 
4487 	wlan_serialize_enter();
4488 
4489 	/* XXX is skipping ok? */
4490 	ATH_PCU_LOCK(sc);
4491 #if 0
4492 	if (sc->sc_inreset_cnt > 0) {
4493 		device_printf(sc->sc_dev,
4494 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4495 		ATH_PCU_UNLOCK(sc);
4496 		wlan_serialize_exit();
4497 		return;
4498 	}
4499 #endif
4500 	sc->sc_txproc_cnt++;
4501 	ATH_PCU_UNLOCK(sc);
4502 
4503 	ATH_TX_LOCK(sc);
4504 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4505 		if (ATH_TXQ_SETUP(sc, i)) {
4506 			ath_txq_sched(sc, &sc->sc_txq[i]);
4507 		}
4508 	}
4509 	ATH_TX_UNLOCK(sc);
4510 
4511 	ATH_PCU_LOCK(sc);
4512 	sc->sc_txproc_cnt--;
4513 	ATH_PCU_UNLOCK(sc);
4514 	wlan_serialize_exit();
4515 }
4516 
4517 void
4518 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4519 {
4520 
4521 	ATH_TXBUF_LOCK_ASSERT(sc);
4522 
4523 	if (bf->bf_flags & ATH_BUF_MGMT)
4524 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4525 	else {
4526 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4527 		sc->sc_txbuf_cnt++;
4528 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4529 			device_printf(sc->sc_dev,
4530 			    "%s: sc_txbuf_cnt > %d?\n",
4531 			    __func__,
4532 			    ath_txbuf);
4533 			sc->sc_txbuf_cnt = ath_txbuf;
4534 		}
4535 	}
4536 }
4537 
4538 void
4539 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4540 {
4541 
4542 	ATH_TXBUF_LOCK_ASSERT(sc);
4543 
4544 	if (bf->bf_flags & ATH_BUF_MGMT)
4545 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4546 	else {
4547 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4548 		sc->sc_txbuf_cnt++;
4549 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4550 			device_printf(sc->sc_dev,
4551 			    "%s: sc_txbuf_cnt > %d?\n",
4552 			    __func__,
4553 			    ATH_TXBUF);
4554 			sc->sc_txbuf_cnt = ATH_TXBUF;
4555 		}
4556 	}
4557 }
4558 
4559 /*
4560  * Free the holding buffer if it exists
4561  */
4562 void
4563 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4564 {
4565 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4566 	ATH_TXQ_LOCK_ASSERT(txq);
4567 
4568 	if (txq->axq_holdingbf == NULL)
4569 		return;
4570 
4571 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4572 
4573 	ATH_TXBUF_LOCK(sc);
4574 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4575 	ATH_TXBUF_UNLOCK(sc);
4576 
4577 	txq->axq_holdingbf = NULL;
4578 }
4579 
4580 /*
4581  * Add this buffer to the holding queue, freeing the previous
4582  * one if it exists.
4583  */
4584 static void
4585 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4586 {
4587 	struct ath_txq *txq;
4588 
4589 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4590 
4591 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4592 	ATH_TXQ_LOCK_ASSERT(txq);
4593 
4594 	/* XXX assert ATH_BUF_BUSY is set */
4595 
4596 	/* XXX assert the tx queue is under the max number */
4597 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4598 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4599 		    __func__,
4600 		    bf,
4601 		    bf->bf_state.bfs_tx_queue);
4602 		bf->bf_flags &= ~ATH_BUF_BUSY;
4603 		ath_returnbuf_tail(sc, bf);
4604 		return;
4605 	}
4606 	ath_txq_freeholdingbuf(sc, txq);
4607 	txq->axq_holdingbf = bf;
4608 }
4609 
4610 /*
4611  * Return a buffer to the pool and update the 'busy' flag on the
4612  * previous 'tail' entry.
4613  *
4614  * This _must_ only be called when the buffer is involved in a completed
4615  * TX. The logic is that if it was part of an active TX, the previous
4616  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4617  * for restart (eg for TDMA.)
4618  *
4619  * The caller must free the mbuf and recycle the node reference.
4620  *
4621  * XXX This method of handling busy / holding buffers is insanely stupid.
4622  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4623  * be much nicer if buffers in the processq() methods would instead be
4624  * always completed there (pushed onto a txq or ath_bufhead) so we knew
4625  * exactly what hardware queue they came from in the first place.
4626  */
4627 void
4628 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4629 {
4630 	struct ath_txq *txq;
4631 
4632 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4633 
4634 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4635 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4636 
4637 	/*
4638 	 * If this buffer is busy, push it onto the holding queue.
4639 	 */
4640 	if (bf->bf_flags & ATH_BUF_BUSY) {
4641 		ATH_TXQ_LOCK(txq);
4642 		ath_txq_addholdingbuf(sc, bf);
4643 		ATH_TXQ_UNLOCK(txq);
4644 		return;
4645 	}
4646 
4647 	/*
4648 	 * Not a busy buffer, so free normally
4649 	 */
4650 	ATH_TXBUF_LOCK(sc);
4651 	ath_returnbuf_tail(sc, bf);
4652 	ATH_TXBUF_UNLOCK(sc);
4653 }
4654 
4655 /*
4656  * This is currently used by ath_tx_draintxq() and
4657  * ath_tx_tid_free_pkts().
4658  *
4659  * It recycles a single ath_buf.
4660  */
4661 void
4662 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4663 {
4664 	struct ieee80211_node *ni = bf->bf_node;
4665 	struct mbuf *m0 = bf->bf_m;
4666 
4667 	/*
4668 	 * Make sure that we only sync/unload if there's an mbuf.
4669 	 * If not (eg we cloned a buffer), the unload will have already
4670 	 * occured.
4671 	 */
4672 	if (bf->bf_m != NULL) {
4673 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4674 		    BUS_DMASYNC_POSTWRITE);
4675 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4676 	}
4677 
4678 	bf->bf_node = NULL;
4679 	bf->bf_m = NULL;
4680 
4681 	/* Free the buffer, it's not needed any longer */
4682 	ath_freebuf(sc, bf);
4683 
4684 	/* Pass the buffer back to net80211 - completing it */
4685 	ieee80211_tx_complete(ni, m0, status);
4686 }
4687 
4688 static struct ath_buf *
4689 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4690 {
4691 	struct ath_buf *bf;
4692 
4693 	ATH_TXQ_LOCK_ASSERT(txq);
4694 
4695 	/*
4696 	 * Drain the FIFO queue first, then if it's
4697 	 * empty, move to the normal frame queue.
4698 	 */
4699 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4700 	if (bf != NULL) {
4701 		/*
4702 		 * Is it the last buffer in this set?
4703 		 * Decrement the FIFO counter.
4704 		 */
4705 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4706 			if (txq->axq_fifo_depth == 0) {
4707 				device_printf(sc->sc_dev,
4708 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4709 				    __func__,
4710 				    txq->axq_qnum,
4711 				    txq->fifo.axq_depth);
4712 			} else
4713 				txq->axq_fifo_depth--;
4714 		}
4715 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4716 		return (bf);
4717 	}
4718 
4719 	/*
4720 	 * Debugging!
4721 	 */
4722 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4723 		device_printf(sc->sc_dev,
4724 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4725 		    __func__,
4726 		    txq->axq_qnum,
4727 		    txq->axq_fifo_depth,
4728 		    txq->fifo.axq_depth);
4729 	}
4730 
4731 	/*
4732 	 * Now drain the pending queue.
4733 	 */
4734 	bf = TAILQ_FIRST(&txq->axq_q);
4735 	if (bf == NULL) {
4736 		txq->axq_link = NULL;
4737 		return (NULL);
4738 	}
4739 	ATH_TXQ_REMOVE(txq, bf, bf_list);
4740 	return (bf);
4741 }
4742 
4743 void
4744 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4745 {
4746 #ifdef ATH_DEBUG
4747 	struct ath_hal *ah = sc->sc_ah;
4748 #endif
4749 	struct ath_buf *bf;
4750 	u_int ix;
4751 
4752 	/*
4753 	 * NB: this assumes output has been stopped and
4754 	 *     we do not need to block ath_tx_proc
4755 	 */
4756 	for (ix = 0;; ix++) {
4757 		ATH_TXQ_LOCK(txq);
4758 		bf = ath_tx_draintxq_get_one(sc, txq);
4759 		if (bf == NULL) {
4760 			ATH_TXQ_UNLOCK(txq);
4761 			break;
4762 		}
4763 		if (bf->bf_state.bfs_aggr)
4764 			txq->axq_aggr_depth--;
4765 #ifdef ATH_DEBUG
4766 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4767 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4768 			int status = 0;
4769 
4770 			/*
4771 			 * EDMA operation has a TX completion FIFO
4772 			 * separate from the TX descriptor, so this
4773 			 * method of checking the "completion" status
4774 			 * is wrong.
4775 			 */
4776 			if (! sc->sc_isedma) {
4777 				status = (ath_hal_txprocdesc(ah,
4778 				    bf->bf_lastds,
4779 				    &bf->bf_status.ds_txstat) == HAL_OK);
4780 			}
4781 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4782 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4783 			    bf->bf_m->m_len, 0, -1);
4784 		}
4785 #endif /* ATH_DEBUG */
4786 		/*
4787 		 * Since we're now doing magic in the completion
4788 		 * functions, we -must- call it for aggregation
4789 		 * destinations or BAW tracking will get upset.
4790 		 */
4791 		/*
4792 		 * Clear ATH_BUF_BUSY; the completion handler
4793 		 * will free the buffer.
4794 		 */
4795 		ATH_TXQ_UNLOCK(txq);
4796 		bf->bf_flags &= ~ATH_BUF_BUSY;
4797 		if (bf->bf_comp)
4798 			bf->bf_comp(sc, bf, 1);
4799 		else
4800 			ath_tx_default_comp(sc, bf, 1);
4801 	}
4802 
4803 	/*
4804 	 * Free the holding buffer if it exists
4805 	 */
4806 	ATH_TXQ_LOCK(txq);
4807 	ath_txq_freeholdingbuf(sc, txq);
4808 	ATH_TXQ_UNLOCK(txq);
4809 
4810 	/*
4811 	 * Drain software queued frames which are on
4812 	 * active TIDs.
4813 	 */
4814 	ath_tx_txq_drain(sc, txq);
4815 }
4816 
4817 static void
4818 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4819 {
4820 	struct ath_hal *ah = sc->sc_ah;
4821 
4822 	ATH_TXQ_LOCK_ASSERT(txq);
4823 
4824 	DPRINTF(sc, ATH_DEBUG_RESET,
4825 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
4826 	    "link %p, holdingbf=%p\n",
4827 	    __func__,
4828 	    txq->axq_qnum,
4829 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4830 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
4831 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
4832 	    txq->axq_flags,
4833 	    txq->axq_link,
4834 	    txq->axq_holdingbf);
4835 
4836 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4837 	/* We've stopped TX DMA, so mark this as stopped. */
4838 	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
4839 
4840 #ifdef	ATH_DEBUG
4841 	if ((sc->sc_debug & ATH_DEBUG_RESET)
4842 	    && (txq->axq_holdingbf != NULL)) {
4843 		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
4844 	}
4845 #endif
4846 }
4847 
4848 int
4849 ath_stoptxdma(struct ath_softc *sc)
4850 {
4851 	struct ath_hal *ah = sc->sc_ah;
4852 	int i;
4853 
4854 	/* XXX return value */
4855 	if (sc->sc_invalid)
4856 		return 0;
4857 
4858 	if (!sc->sc_invalid) {
4859 		/* don't touch the hardware if marked invalid */
4860 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4861 		    __func__, sc->sc_bhalq,
4862 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4863 		    NULL);
4864 
4865 		/* stop the beacon queue */
4866 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4867 
4868 		/* Stop the data queues */
4869 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4870 			if (ATH_TXQ_SETUP(sc, i)) {
4871 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4872 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4873 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4874 			}
4875 		}
4876 	}
4877 
4878 	return 1;
4879 }
4880 
4881 #ifdef	ATH_DEBUG
4882 void
4883 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
4884 {
4885 	struct ath_hal *ah = sc->sc_ah;
4886 	struct ath_buf *bf;
4887 	int i = 0;
4888 
4889 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
4890 		return;
4891 
4892 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
4893 	    __func__, txq->axq_qnum);
4894 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
4895 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
4896 			ath_hal_txprocdesc(ah, bf->bf_lastds,
4897 			    &bf->bf_status.ds_txstat) == HAL_OK);
4898 		i++;
4899 	}
4900 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
4901 	    __func__, txq->axq_qnum);
4902 }
4903 #endif /* ATH_DEBUG */
4904 
4905 /*
4906  * Drain the transmit queues and reclaim resources.
4907  */
4908 void
4909 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4910 {
4911 	struct ath_hal *ah = sc->sc_ah;
4912 #ifdef ATH_DEBUG
4913 	struct ifnet *ifp = sc->sc_ifp;
4914 #endif
4915 	int i;
4916 	struct ath_buf *bf_last;
4917 
4918 	(void) ath_stoptxdma(sc);
4919 
4920 	/*
4921 	 * Dump the queue contents
4922 	 */
4923 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4924 		/*
4925 		 * XXX TODO: should we just handle the completed TX frames
4926 		 * here, whether or not the reset is a full one or not?
4927 		 */
4928 		if (ATH_TXQ_SETUP(sc, i)) {
4929 #ifdef	ATH_DEBUG
4930 			if (sc->sc_debug & ATH_DEBUG_RESET)
4931 				ath_tx_dump(sc, &sc->sc_txq[i]);
4932 #endif	/* ATH_DEBUG */
4933 			if (reset_type == ATH_RESET_NOLOSS) {
4934 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4935 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4936 				/*
4937 				 * Free the holding buffer; DMA is now
4938 				 * stopped.
4939 				 */
4940 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
4941 				/*
4942 				 * Setup the link pointer to be the
4943 				 * _last_ buffer/descriptor in the list.
4944 				 * If there's nothing in the list, set it
4945 				 * to NULL.
4946 				 */
4947 				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
4948 				    axq_q_s);
4949 				if (bf_last != NULL) {
4950 					ath_hal_gettxdesclinkptr(ah,
4951 					    bf_last->bf_lastds,
4952 					    &sc->sc_txq[i].axq_link);
4953 				} else {
4954 					sc->sc_txq[i].axq_link = NULL;
4955 				}
4956 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4957 			} else
4958 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4959 		}
4960 	}
4961 #ifdef ATH_DEBUG
4962 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4963 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4964 		if (bf != NULL && bf->bf_m != NULL) {
4965 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4966 				ath_hal_txprocdesc(ah, bf->bf_lastds,
4967 				    &bf->bf_status.ds_txstat) == HAL_OK);
4968 			ieee80211_dump_pkt(ifp->if_l2com,
4969 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4970 			    0, -1);
4971 		}
4972 	}
4973 #endif /* ATH_DEBUG */
4974 #if 0
4975 	/* remove, DragonFly uses OACTIVE to control if_start calls */
4976 	IF_LOCK(&ifp->if_snd);
4977 	ifq_clr_oactive(&ifp->if_snd);
4978 	IF_UNLOCK(&ifp->if_snd);
4979 #endif
4980 	sc->sc_wd_timer = 0;
4981 }
4982 
4983 /*
4984  * Update internal state after a channel change.
4985  */
4986 static void
4987 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4988 {
4989 	enum ieee80211_phymode mode;
4990 
4991 	/*
4992 	 * Change channels and update the h/w rate map
4993 	 * if we're switching; e.g. 11a to 11b/g.
4994 	 */
4995 	mode = ieee80211_chan2mode(chan);
4996 	if (mode != sc->sc_curmode)
4997 		ath_setcurmode(sc, mode);
4998 	sc->sc_curchan = chan;
4999 }
5000 
5001 /*
5002  * Set/change channels.  If the channel is really being changed,
5003  * it's done by resetting the chip.  To accomplish this we must
5004  * first cleanup any pending DMA, then restart stuff after a la
5005  * ath_init.
5006  */
5007 static int
5008 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5009 {
5010 	struct ifnet *ifp = sc->sc_ifp;
5011 	struct ieee80211com *ic = ifp->if_l2com;
5012 	struct ath_hal *ah = sc->sc_ah;
5013 	int ret = 0;
5014 
5015 	/* Treat this as an interface reset */
5016 	ATH_PCU_UNLOCK_ASSERT(sc);
5017 	ATH_UNLOCK_ASSERT(sc);
5018 
5019 	/* (Try to) stop TX/RX from occuring */
5020 	taskqueue_block(sc->sc_tq);
5021 
5022 	ATH_PCU_LOCK(sc);
5023 
5024 	/* Stop new RX/TX/interrupt completion */
5025 	if (ath_reset_grablock(sc, 1) == 0) {
5026 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5027 		    __func__);
5028 	}
5029 
5030 	ath_hal_intrset(ah, 0);
5031 
5032 	/* Stop pending RX/TX completion */
5033 	ath_txrx_stop_locked(sc);
5034 
5035 	ATH_PCU_UNLOCK(sc);
5036 
5037 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5038 	    __func__, ieee80211_chan2ieee(ic, chan),
5039 	    chan->ic_freq, chan->ic_flags);
5040 	if (chan != sc->sc_curchan) {
5041 		HAL_STATUS status;
5042 		/*
5043 		 * To switch channels clear any pending DMA operations;
5044 		 * wait long enough for the RX fifo to drain, reset the
5045 		 * hardware at the new frequency, and then re-enable
5046 		 * the relevant bits of the h/w.
5047 		 */
5048 #if 0
5049 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5050 #endif
5051 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5052 		/*
5053 		 * First, handle completed TX/RX frames.
5054 		 */
5055 		ath_rx_flush(sc);
5056 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5057 		/*
5058 		 * Next, flush the non-scheduled frames.
5059 		 */
5060 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5061 
5062 		ath_update_chainmasks(sc, chan);
5063 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5064 		    sc->sc_cur_rxchainmask);
5065 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5066 			if_printf(ifp, "%s: unable to reset "
5067 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5068 			    __func__, ieee80211_chan2ieee(ic, chan),
5069 			    chan->ic_freq, chan->ic_flags, status);
5070 			ret = EIO;
5071 			goto finish;
5072 		}
5073 		sc->sc_diversity = ath_hal_getdiversity(ah);
5074 
5075 		/* Let DFS at it in case it's a DFS channel */
5076 		ath_dfs_radar_enable(sc, chan);
5077 
5078 		/* Let spectral at in case spectral is enabled */
5079 		ath_spectral_enable(sc, chan);
5080 
5081 		/*
5082 		 * Let bluetooth coexistence at in case it's needed for this
5083 		 * channel
5084 		 */
5085 		ath_btcoex_enable(sc, ic->ic_curchan);
5086 
5087 		/*
5088 		 * If we're doing TDMA, enforce the TXOP limitation for chips
5089 		 * that support it.
5090 		 */
5091 		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5092 			ath_hal_setenforcetxop(sc->sc_ah, 1);
5093 		else
5094 			ath_hal_setenforcetxop(sc->sc_ah, 0);
5095 
5096 		/*
5097 		 * Re-enable rx framework.
5098 		 */
5099 		if (ath_startrecv(sc) != 0) {
5100 			if_printf(ifp, "%s: unable to restart recv logic\n",
5101 			    __func__);
5102 			ret = EIO;
5103 			goto finish;
5104 		}
5105 
5106 		/*
5107 		 * Change channels and update the h/w rate map
5108 		 * if we're switching; e.g. 11a to 11b/g.
5109 		 */
5110 		ath_chan_change(sc, chan);
5111 
5112 		/*
5113 		 * Reset clears the beacon timers; reset them
5114 		 * here if needed.
5115 		 */
5116 		if (sc->sc_beacons) {		/* restart beacons */
5117 #ifdef IEEE80211_SUPPORT_TDMA
5118 			if (sc->sc_tdma)
5119 				ath_tdma_config(sc, NULL);
5120 			else
5121 #endif
5122 			ath_beacon_config(sc, NULL);
5123 		}
5124 
5125 		/*
5126 		 * Re-enable interrupts.
5127 		 */
5128 #if 0
5129 		ath_hal_intrset(ah, sc->sc_imask);
5130 #endif
5131 	}
5132 
5133 finish:
5134 	ATH_PCU_LOCK(sc);
5135 	sc->sc_inreset_cnt--;
5136 	/* XXX only do this if sc_inreset_cnt == 0? */
5137 	ath_hal_intrset(ah, sc->sc_imask);
5138 	ATH_PCU_UNLOCK(sc);
5139 
5140 #if 0
5141 	/* remove, DragonFly uses OACTIVE to control if_start calls */
5142 	IF_LOCK(&ifp->if_snd);
5143 	ifq_clr_oactive(&ifp->if_snd);
5144 	IF_UNLOCK(&ifp->if_snd);
5145 #endif
5146 	ath_txrx_start(sc);
5147 	/* XXX ath_start? */
5148 
5149 	return ret;
5150 }
5151 
5152 /*
5153  * Periodically recalibrate the PHY to account
5154  * for temperature/environment changes.
5155  */
5156 static void
5157 ath_calibrate(void *arg)
5158 {
5159 	struct ath_softc *sc = arg;
5160 	struct ath_hal *ah = sc->sc_ah;
5161 	struct ifnet *ifp = sc->sc_ifp;
5162 	struct ieee80211com *ic = ifp->if_l2com;
5163 	HAL_BOOL longCal, isCalDone = AH_TRUE;
5164 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5165 	int nextcal;
5166 
5167 	wlan_serialize_enter();
5168 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5169 		goto restart;
5170 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5171 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5172 	if (sc->sc_doresetcal)
5173 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5174 
5175 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5176 	if (aniCal) {
5177 		sc->sc_stats.ast_ani_cal++;
5178 		sc->sc_lastani = ticks;
5179 		ath_hal_ani_poll(ah, sc->sc_curchan);
5180 	}
5181 
5182 	if (longCal) {
5183 		sc->sc_stats.ast_per_cal++;
5184 		sc->sc_lastlongcal = ticks;
5185 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5186 			/*
5187 			 * Rfgain is out of bounds, reset the chip
5188 			 * to load new gain values.
5189 			 */
5190 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5191 				"%s: rfgain change\n", __func__);
5192 			sc->sc_stats.ast_per_rfgain++;
5193 			sc->sc_resetcal = 0;
5194 			sc->sc_doresetcal = AH_TRUE;
5195 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5196 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5197 			goto done;
5198 		}
5199 		/*
5200 		 * If this long cal is after an idle period, then
5201 		 * reset the data collection state so we start fresh.
5202 		 */
5203 		if (sc->sc_resetcal) {
5204 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5205 			sc->sc_lastcalreset = ticks;
5206 			sc->sc_lastshortcal = ticks;
5207 			sc->sc_resetcal = 0;
5208 			sc->sc_doresetcal = AH_TRUE;
5209 		}
5210 	}
5211 
5212 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5213 	if (shortCal || longCal) {
5214 		isCalDone = AH_FALSE;
5215 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5216 			if (longCal) {
5217 				/*
5218 				 * Calibrate noise floor data again in case of change.
5219 				 */
5220 				ath_hal_process_noisefloor(ah);
5221 			}
5222 		} else {
5223 			DPRINTF(sc, ATH_DEBUG_ANY,
5224 				"%s: calibration of channel %u failed\n",
5225 				__func__, sc->sc_curchan->ic_freq);
5226 			sc->sc_stats.ast_per_calfail++;
5227 		}
5228 		if (shortCal)
5229 			sc->sc_lastshortcal = ticks;
5230 	}
5231 	if (!isCalDone) {
5232 restart:
5233 		/*
5234 		 * Use a shorter interval to potentially collect multiple
5235 		 * data samples required to complete calibration.  Once
5236 		 * we're told the work is done we drop back to a longer
5237 		 * interval between requests.  We're more aggressive doing
5238 		 * work when operating as an AP to improve operation right
5239 		 * after startup.
5240 		 */
5241 		sc->sc_lastshortcal = ticks;
5242 		nextcal = ath_shortcalinterval*hz/1000;
5243 		if (sc->sc_opmode != HAL_M_HOSTAP)
5244 			nextcal *= 10;
5245 		sc->sc_doresetcal = AH_TRUE;
5246 	} else {
5247 		/* nextcal should be the shortest time for next event */
5248 		nextcal = ath_longcalinterval*hz;
5249 		if (sc->sc_lastcalreset == 0)
5250 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5251 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5252 			sc->sc_resetcal = 1;	/* setup reset next trip */
5253 		sc->sc_doresetcal = AH_FALSE;
5254 	}
5255 	/* ANI calibration may occur more often than short/long/resetcal */
5256 	if (ath_anicalinterval > 0)
5257 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5258 
5259 	if (nextcal != 0) {
5260 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5261 		    __func__, nextcal, isCalDone ? "" : "!");
5262 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5263 	} else {
5264 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5265 		    __func__);
5266 		/* NB: don't rearm timer */
5267 	}
5268 done:
5269 	wlan_serialize_exit();
5270 }
5271 
5272 static void
5273 ath_scan_start(struct ieee80211com *ic)
5274 {
5275 	struct ifnet *ifp = ic->ic_ifp;
5276 	struct ath_softc *sc = ifp->if_softc;
5277 	struct ath_hal *ah = sc->sc_ah;
5278 	u_int32_t rfilt;
5279 
5280 	/* XXX calibration timer? */
5281 
5282 	ATH_LOCK(sc);
5283 	sc->sc_scanning = 1;
5284 	sc->sc_syncbeacon = 0;
5285 	rfilt = ath_calcrxfilter(sc);
5286 	ATH_UNLOCK(sc);
5287 
5288 	ATH_PCU_LOCK(sc);
5289 	ath_hal_setrxfilter(ah, rfilt);
5290 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5291 	ATH_PCU_UNLOCK(sc);
5292 
5293 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5294 		 __func__, rfilt, ath_hal_ether_sprintf(ifp->if_broadcastaddr));
5295 }
5296 
5297 static void
5298 ath_scan_end(struct ieee80211com *ic)
5299 {
5300 	struct ifnet *ifp = ic->ic_ifp;
5301 	struct ath_softc *sc = ifp->if_softc;
5302 	struct ath_hal *ah = sc->sc_ah;
5303 	u_int32_t rfilt;
5304 
5305 	ATH_LOCK(sc);
5306 	sc->sc_scanning = 0;
5307 	rfilt = ath_calcrxfilter(sc);
5308 	ATH_UNLOCK(sc);
5309 
5310 	ATH_PCU_LOCK(sc);
5311 	ath_hal_setrxfilter(ah, rfilt);
5312 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5313 
5314 	ath_hal_process_noisefloor(ah);
5315 	ATH_PCU_UNLOCK(sc);
5316 
5317 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5318 		 __func__, rfilt, ath_hal_ether_sprintf(sc->sc_curbssid),
5319 		 sc->sc_curaid);
5320 }
5321 
5322 #ifdef	ATH_ENABLE_11N
5323 /*
5324  * For now, just do a channel change.
5325  *
5326  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5327  * control state and resetting the hardware without dropping frames out
5328  * of the queue.
5329  *
5330  * The unfortunate trouble here is making absolutely sure that the
5331  * channel width change has propagated enough so the hardware
5332  * absolutely isn't handed bogus frames for it's current operating
5333  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5334  * does occur in parallel, we need to make certain we've blocked
5335  * any further ongoing TX (and RX, that can cause raw TX)
5336  * before we do this.
5337  */
5338 static void
5339 ath_update_chw(struct ieee80211com *ic)
5340 {
5341 	struct ifnet *ifp = ic->ic_ifp;
5342 	struct ath_softc *sc = ifp->if_softc;
5343 
5344 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5345 	ath_set_channel(ic);
5346 }
5347 #endif	/* ATH_ENABLE_11N */
5348 
5349 static void
5350 ath_set_channel(struct ieee80211com *ic)
5351 {
5352 	struct ifnet *ifp = ic->ic_ifp;
5353 	struct ath_softc *sc = ifp->if_softc;
5354 
5355 	(void) ath_chan_set(sc, ic->ic_curchan);
5356 	/*
5357 	 * If we are returning to our bss channel then mark state
5358 	 * so the next recv'd beacon's tsf will be used to sync the
5359 	 * beacon timers.  Note that since we only hear beacons in
5360 	 * sta/ibss mode this has no effect in other operating modes.
5361 	 */
5362 	ATH_LOCK(sc);
5363 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5364 		sc->sc_syncbeacon = 1;
5365 	ATH_UNLOCK(sc);
5366 }
5367 
5368 /*
5369  * Walk the vap list and check if there any vap's in RUN state.
5370  */
5371 static int
5372 ath_isanyrunningvaps(struct ieee80211vap *this)
5373 {
5374 	struct ieee80211com *ic = this->iv_ic;
5375 	struct ieee80211vap *vap;
5376 
5377 	IEEE80211_LOCK_ASSERT(ic);
5378 
5379 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5380 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5381 			return 1;
5382 	}
5383 	return 0;
5384 }
5385 
5386 static int
5387 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5388 {
5389 	struct ieee80211com *ic = vap->iv_ic;
5390 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5391 	struct ath_vap *avp = ATH_VAP(vap);
5392 	struct ath_hal *ah = sc->sc_ah;
5393 	struct ieee80211_node *ni = NULL;
5394 	int i, error, stamode;
5395 	u_int32_t rfilt;
5396 	int csa_run_transition = 0;
5397 
5398 	static const HAL_LED_STATE leds[] = {
5399 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5400 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5401 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5402 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5403 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5404 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5405 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5406 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5407 	};
5408 
5409 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5410 		ieee80211_state_name[vap->iv_state],
5411 		ieee80211_state_name[nstate]);
5412 
5413 	/*
5414 	 * net80211 _should_ have the comlock asserted at this point.
5415 	 * There are some comments around the calls to vap->iv_newstate
5416 	 * which indicate that it (newstate) may end up dropping the
5417 	 * lock.  This and the subsequent lock assert check after newstate
5418 	 * are an attempt to catch these and figure out how/why.
5419 	 */
5420 	IEEE80211_LOCK_ASSERT(ic);
5421 
5422 	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5423 		csa_run_transition = 1;
5424 
5425 	wlan_serialize_exit();
5426 	callout_drain(&sc->sc_cal_ch);
5427 	wlan_serialize_enter();
5428 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5429 
5430 	if (nstate == IEEE80211_S_SCAN) {
5431 		/*
5432 		 * Scanning: turn off beacon miss and don't beacon.
5433 		 * Mark beacon state so when we reach RUN state we'll
5434 		 * [re]setup beacons.  Unblock the task q thread so
5435 		 * deferred interrupt processing is done.
5436 		 */
5437 		ath_hal_intrset(ah,
5438 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5439 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5440 		sc->sc_beacons = 0;
5441 		taskqueue_unblock(sc->sc_tq);
5442 	}
5443 
5444 	ni = ieee80211_ref_node(vap->iv_bss);
5445 	rfilt = ath_calcrxfilter(sc);
5446 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5447 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5448 		   vap->iv_opmode == IEEE80211_M_IBSS);
5449 	if (stamode && nstate == IEEE80211_S_RUN) {
5450 		sc->sc_curaid = ni->ni_associd;
5451 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5452 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5453 	}
5454 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5455 	   __func__, rfilt,
5456 	   ath_hal_ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5457 	ath_hal_setrxfilter(ah, rfilt);
5458 
5459 	/* XXX is this to restore keycache on resume? */
5460 	if (vap->iv_opmode != IEEE80211_M_STA &&
5461 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5462 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5463 			if (ath_hal_keyisvalid(ah, i))
5464 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5465 	}
5466 
5467 	/*
5468 	 * Invoke the parent method to do net80211 work.
5469 	 */
5470 	error = avp->av_newstate(vap, nstate, arg);
5471 	if (error != 0)
5472 		goto bad;
5473 
5474 	/*
5475 	 * See above: ensure av_newstate() doesn't drop the lock
5476 	 * on us.
5477 	 */
5478 	IEEE80211_LOCK_ASSERT(ic);
5479 
5480 	if (nstate == IEEE80211_S_RUN) {
5481 		/* NB: collect bss node again, it may have changed */
5482 		ieee80211_free_node(ni);
5483 		ni = ieee80211_ref_node(vap->iv_bss);
5484 
5485 		DPRINTF(sc, ATH_DEBUG_STATE,
5486 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5487 		    "capinfo 0x%04x chan %d\n", __func__,
5488 		    vap->iv_flags, ni->ni_intval,
5489 		    ath_hal_ether_sprintf(ni->ni_bssid),
5490 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5491 
5492 		switch (vap->iv_opmode) {
5493 #ifdef IEEE80211_SUPPORT_TDMA
5494 		case IEEE80211_M_AHDEMO:
5495 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5496 				break;
5497 			/* fall thru... */
5498 #endif
5499 		case IEEE80211_M_HOSTAP:
5500 		case IEEE80211_M_IBSS:
5501 		case IEEE80211_M_MBSS:
5502 			/*
5503 			 * Allocate and setup the beacon frame.
5504 			 *
5505 			 * Stop any previous beacon DMA.  This may be
5506 			 * necessary, for example, when an ibss merge
5507 			 * causes reconfiguration; there will be a state
5508 			 * transition from RUN->RUN that means we may
5509 			 * be called with beacon transmission active.
5510 			 */
5511 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5512 
5513 			error = ath_beacon_alloc(sc, ni);
5514 			if (error != 0)
5515 				goto bad;
5516 			/*
5517 			 * If joining an adhoc network defer beacon timer
5518 			 * configuration to the next beacon frame so we
5519 			 * have a current TSF to use.  Otherwise we're
5520 			 * starting an ibss/bss so there's no need to delay;
5521 			 * if this is the first vap moving to RUN state, then
5522 			 * beacon state needs to be [re]configured.
5523 			 */
5524 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5525 			    ni->ni_tstamp.tsf != 0) {
5526 				sc->sc_syncbeacon = 1;
5527 			} else if (!sc->sc_beacons) {
5528 #ifdef IEEE80211_SUPPORT_TDMA
5529 				if (vap->iv_caps & IEEE80211_C_TDMA)
5530 					ath_tdma_config(sc, vap);
5531 				else
5532 #endif
5533 					ath_beacon_config(sc, vap);
5534 				sc->sc_beacons = 1;
5535 			}
5536 			break;
5537 		case IEEE80211_M_STA:
5538 			/*
5539 			 * Defer beacon timer configuration to the next
5540 			 * beacon frame so we have a current TSF to use
5541 			 * (any TSF collected when scanning is likely old).
5542 			 * However if it's due to a CSA -> RUN transition,
5543 			 * force a beacon update so we pick up a lack of
5544 			 * beacons from an AP in CAC and thus force a
5545 			 * scan.
5546 			 *
5547 			 * And, there's also corner cases here where
5548 			 * after a scan, the AP may have disappeared.
5549 			 * In that case, we may not receive an actual
5550 			 * beacon to update the beacon timer and thus we
5551 			 * won't get notified of the missing beacons.
5552 			 */
5553 			sc->sc_syncbeacon = 1;
5554 #if 0
5555 			if (csa_run_transition)
5556 #endif
5557 				ath_beacon_config(sc, vap);
5558 
5559 			/*
5560 			 * PR: kern/175227
5561 			 *
5562 			 * Reconfigure beacons during reset; as otherwise
5563 			 * we won't get the beacon timers reprogrammed
5564 			 * after a reset and thus we won't pick up a
5565 			 * beacon miss interrupt.
5566 			 *
5567 			 * Hopefully we'll see a beacon before the BMISS
5568 			 * timer fires (too often), leading to a STA
5569 			 * disassociation.
5570 			 */
5571 			sc->sc_beacons = 1;
5572 			break;
5573 		case IEEE80211_M_MONITOR:
5574 			/*
5575 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5576 			 * transitions so we must re-enable interrupts here to
5577 			 * handle the case of a single monitor mode vap.
5578 			 */
5579 			ath_hal_intrset(ah, sc->sc_imask);
5580 			break;
5581 		case IEEE80211_M_WDS:
5582 			break;
5583 		default:
5584 			break;
5585 		}
5586 		/*
5587 		 * Let the hal process statistics collected during a
5588 		 * scan so it can provide calibrated noise floor data.
5589 		 */
5590 		ath_hal_process_noisefloor(ah);
5591 		/*
5592 		 * Reset rssi stats; maybe not the best place...
5593 		 */
5594 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5595 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5596 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5597 		/*
5598 		 * Finally, start any timers and the task q thread
5599 		 * (in case we didn't go through SCAN state).
5600 		 */
5601 		if (ath_longcalinterval != 0) {
5602 			/* start periodic recalibration timer */
5603 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5604 		} else {
5605 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5606 			    "%s: calibration disabled\n", __func__);
5607 		}
5608 		taskqueue_unblock(sc->sc_tq);
5609 	} else if (nstate == IEEE80211_S_INIT) {
5610 		/*
5611 		 * If there are no vaps left in RUN state then
5612 		 * shutdown host/driver operation:
5613 		 * o disable interrupts
5614 		 * o disable the task queue thread
5615 		 * o mark beacon processing as stopped
5616 		 */
5617 		if (!ath_isanyrunningvaps(vap)) {
5618 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5619 			/* disable interrupts  */
5620 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5621 			taskqueue_block(sc->sc_tq);
5622 			sc->sc_beacons = 0;
5623 		}
5624 #ifdef IEEE80211_SUPPORT_TDMA
5625 		ath_hal_setcca(ah, AH_TRUE);
5626 #endif
5627 	}
5628 bad:
5629 	ieee80211_free_node(ni);
5630 	return error;
5631 }
5632 
5633 /*
5634  * Allocate a key cache slot to the station so we can
5635  * setup a mapping from key index to node. The key cache
5636  * slot is needed for managing antenna state and for
5637  * compression when stations do not use crypto.  We do
5638  * it uniliaterally here; if crypto is employed this slot
5639  * will be reassigned.
5640  */
5641 static void
5642 ath_setup_stationkey(struct ieee80211_node *ni)
5643 {
5644 	struct ieee80211vap *vap = ni->ni_vap;
5645 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5646 	ieee80211_keyix keyix, rxkeyix;
5647 
5648 	/* XXX should take a locked ref to vap->iv_bss */
5649 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5650 		/*
5651 		 * Key cache is full; we'll fall back to doing
5652 		 * the more expensive lookup in software.  Note
5653 		 * this also means no h/w compression.
5654 		 */
5655 		/* XXX msg+statistic */
5656 	} else {
5657 		/* XXX locking? */
5658 		ni->ni_ucastkey.wk_keyix = keyix;
5659 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5660 		/* NB: must mark device key to get called back on delete */
5661 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5662 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5663 		/* NB: this will create a pass-thru key entry */
5664 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5665 	}
5666 }
5667 
5668 /*
5669  * Setup driver-specific state for a newly associated node.
5670  * Note that we're called also on a re-associate, the isnew
5671  * param tells us if this is the first time or not.
5672  */
5673 static void
5674 ath_newassoc(struct ieee80211_node *ni, int isnew)
5675 {
5676 	struct ath_node *an = ATH_NODE(ni);
5677 	struct ieee80211vap *vap = ni->ni_vap;
5678 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5679 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5680 
5681 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5682 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5683 
5684 	ath_rate_newassoc(sc, an, isnew);
5685 
5686 	if (isnew &&
5687 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5688 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5689 		ath_setup_stationkey(ni);
5690 
5691 	/*
5692 	 * If we're reassociating, make sure that any paused queues
5693 	 * get unpaused.
5694 	 *
5695 	 * Now, we may hvae frames in the hardware queue for this node.
5696 	 * So if we are reassociating and there are frames in the queue,
5697 	 * we need to go through the cleanup path to ensure that they're
5698 	 * marked as non-aggregate.
5699 	 */
5700 	if (! isnew) {
5701 		DPRINTF(sc, ATH_DEBUG_NODE,
5702 		    "%s: %s: reassoc; is_powersave=%d\n",
5703 		    __func__,
5704 		    ath_hal_ether_sprintf(ni->ni_macaddr),
5705 		    an->an_is_powersave);
5706 
5707 		/* XXX for now, we can't hold the lock across assoc */
5708 		ath_tx_node_reassoc(sc, an);
5709 
5710 		/* XXX for now, we can't hold the lock across wakeup */
5711 		if (an->an_is_powersave)
5712 			ath_tx_node_wakeup(sc, an);
5713 	}
5714 }
5715 
5716 static int
5717 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5718 	int nchans, struct ieee80211_channel chans[])
5719 {
5720 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5721 	struct ath_hal *ah = sc->sc_ah;
5722 	HAL_STATUS status;
5723 
5724 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5725 	    "%s: rd %u cc %u location %c%s\n",
5726 	    __func__, reg->regdomain, reg->country, reg->location,
5727 	    reg->ecm ? " ecm" : "");
5728 
5729 	status = ath_hal_set_channels(ah, chans, nchans,
5730 	    reg->country, reg->regdomain);
5731 	if (status != HAL_OK) {
5732 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5733 		    __func__, status);
5734 		return EINVAL;		/* XXX */
5735 	}
5736 
5737 	return 0;
5738 }
5739 
5740 static void
5741 ath_getradiocaps(struct ieee80211com *ic,
5742 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5743 {
5744 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5745 	struct ath_hal *ah = sc->sc_ah;
5746 
5747 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5748 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5749 
5750 	/* XXX check return */
5751 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5752 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5753 
5754 }
5755 
5756 static int
5757 ath_getchannels(struct ath_softc *sc)
5758 {
5759 	struct ifnet *ifp = sc->sc_ifp;
5760 	struct ieee80211com *ic = ifp->if_l2com;
5761 	struct ath_hal *ah = sc->sc_ah;
5762 	HAL_STATUS status;
5763 
5764 	/*
5765 	 * Collect channel set based on EEPROM contents.
5766 	 */
5767 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5768 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5769 	if (status != HAL_OK) {
5770 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5771 		    "status %d\n", __func__, status);
5772 		return EINVAL;
5773 	}
5774 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5775 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5776 	/* XXX map Atheros sku's to net80211 SKU's */
5777 	/* XXX net80211 types too small */
5778 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5779 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5780 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5781 	ic->ic_regdomain.isocc[1] = ' ';
5782 
5783 	ic->ic_regdomain.ecm = 1;
5784 	ic->ic_regdomain.location = 'I';
5785 
5786 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5787 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5788 	    __func__, sc->sc_eerd, sc->sc_eecc,
5789 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5790 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5791 	return 0;
5792 }
5793 
5794 static int
5795 ath_rate_setup(struct ath_softc *sc, u_int mode)
5796 {
5797 	struct ath_hal *ah = sc->sc_ah;
5798 	const HAL_RATE_TABLE *rt;
5799 
5800 	switch (mode) {
5801 	case IEEE80211_MODE_11A:
5802 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5803 		break;
5804 	case IEEE80211_MODE_HALF:
5805 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5806 		break;
5807 	case IEEE80211_MODE_QUARTER:
5808 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5809 		break;
5810 	case IEEE80211_MODE_11B:
5811 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5812 		break;
5813 	case IEEE80211_MODE_11G:
5814 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5815 		break;
5816 	case IEEE80211_MODE_TURBO_A:
5817 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5818 		break;
5819 	case IEEE80211_MODE_TURBO_G:
5820 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5821 		break;
5822 	case IEEE80211_MODE_STURBO_A:
5823 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5824 		break;
5825 	case IEEE80211_MODE_11NA:
5826 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5827 		break;
5828 	case IEEE80211_MODE_11NG:
5829 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5830 		break;
5831 	default:
5832 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5833 			__func__, mode);
5834 		return 0;
5835 	}
5836 	sc->sc_rates[mode] = rt;
5837 	return (rt != NULL);
5838 }
5839 
5840 static void
5841 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5842 {
5843 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5844 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5845 	static const struct {
5846 		u_int		rate;		/* tx/rx 802.11 rate */
5847 		u_int16_t	timeOn;		/* LED on time (ms) */
5848 		u_int16_t	timeOff;	/* LED off time (ms) */
5849 	} blinkrates[] = {
5850 		{ 108,  40,  10 },
5851 		{  96,  44,  11 },
5852 		{  72,  50,  13 },
5853 		{  48,  57,  14 },
5854 		{  36,  67,  16 },
5855 		{  24,  80,  20 },
5856 		{  22, 100,  25 },
5857 		{  18, 133,  34 },
5858 		{  12, 160,  40 },
5859 		{  10, 200,  50 },
5860 		{   6, 240,  58 },
5861 		{   4, 267,  66 },
5862 		{   2, 400, 100 },
5863 		{   0, 500, 130 },
5864 		/* XXX half/quarter rates */
5865 	};
5866 	const HAL_RATE_TABLE *rt;
5867 	int i, j;
5868 
5869 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5870 	rt = sc->sc_rates[mode];
5871 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5872 	for (i = 0; i < rt->rateCount; i++) {
5873 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5874 		if (rt->info[i].phy != IEEE80211_T_HT)
5875 			sc->sc_rixmap[ieeerate] = i;
5876 		else
5877 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5878 	}
5879 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5880 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5881 		if (i >= rt->rateCount) {
5882 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5883 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5884 			continue;
5885 		}
5886 		sc->sc_hwmap[i].ieeerate =
5887 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5888 		if (rt->info[i].phy == IEEE80211_T_HT)
5889 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5890 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5891 		if (rt->info[i].shortPreamble ||
5892 		    rt->info[i].phy == IEEE80211_T_OFDM)
5893 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5894 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5895 		for (j = 0; j < N(blinkrates)-1; j++)
5896 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5897 				break;
5898 		/* NB: this uses the last entry if the rate isn't found */
5899 		/* XXX beware of overlow */
5900 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5901 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5902 	}
5903 	sc->sc_currates = rt;
5904 	sc->sc_curmode = mode;
5905 	/*
5906 	 * All protection frames are transmited at 2Mb/s for
5907 	 * 11g, otherwise at 1Mb/s.
5908 	 */
5909 	if (mode == IEEE80211_MODE_11G)
5910 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5911 	else
5912 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5913 	/* NB: caller is responsible for resetting rate control state */
5914 #undef N
5915 }
5916 
5917 static void
5918 ath_watchdog(void *arg)
5919 {
5920 	struct ath_softc *sc = arg;
5921 	int do_reset = 0;
5922 
5923 	wlan_serialize_enter();
5924 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5925 		struct ifnet *ifp = sc->sc_ifp;
5926 		uint32_t hangs;
5927 
5928 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5929 		    hangs != 0) {
5930 			if_printf(ifp, "%s hang detected (0x%x)\n",
5931 			    hangs & 0xff ? "bb" : "mac", hangs);
5932 		} else
5933 			if_printf(ifp, "device timeout\n");
5934 		do_reset = 1;
5935 		ifp->if_oerrors++;
5936 		sc->sc_stats.ast_watchdog++;
5937 	}
5938 
5939 	/*
5940 	 * We can't hold the lock across the ath_reset() call.
5941 	 *
5942 	 * And since this routine can't hold a lock and sleep,
5943 	 * do the reset deferred.
5944 	 */
5945 	if (do_reset) {
5946 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5947 	}
5948 
5949 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
5950 	wlan_serialize_exit();
5951 }
5952 
5953 /*
5954  * (DragonFly network start)
5955  */
5956 static void
5957 ath_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
5958 {
5959 	struct ath_softc *sc = ifp->if_softc;
5960 	struct mbuf *m;
5961 
5962 	wlan_assert_serialized();
5963 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
5964 
5965 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
5966 		ifq_purge(&ifp->if_snd);
5967 		return;
5968 	}
5969 	ifq_set_oactive(&ifp->if_snd);
5970 	for (;;) {
5971 		m = ifq_dequeue(&ifp->if_snd);
5972 		if (m == NULL)
5973 			break;
5974 		ath_transmit(ifp, m);
5975 	}
5976 	ifq_clr_oactive(&ifp->if_snd);
5977 }
5978 
5979 /*
5980  * Fetch the rate control statistics for the given node.
5981  */
5982 static int
5983 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5984 {
5985 	struct ath_node *an;
5986 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5987 	struct ieee80211_node *ni;
5988 	int error = 0;
5989 
5990 	/* Perform a lookup on the given node */
5991 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5992 	if (ni == NULL) {
5993 		error = EINVAL;
5994 		goto bad;
5995 	}
5996 
5997 	/* Lock the ath_node */
5998 	an = ATH_NODE(ni);
5999 	ATH_NODE_LOCK(an);
6000 
6001 	/* Fetch the rate control stats for this node */
6002 	error = ath_rate_fetch_node_stats(sc, an, rs);
6003 
6004 	/* No matter what happens here, just drop through */
6005 
6006 	/* Unlock the ath_node */
6007 	ATH_NODE_UNLOCK(an);
6008 
6009 	/* Unref the node */
6010 	ieee80211_node_decref(ni);
6011 
6012 bad:
6013 	return (error);
6014 }
6015 
6016 #ifdef ATH_DIAGAPI
6017 /*
6018  * Diagnostic interface to the HAL.  This is used by various
6019  * tools to do things like retrieve register contents for
6020  * debugging.  The mechanism is intentionally opaque so that
6021  * it can change frequently w/o concern for compatiblity.
6022  */
6023 static int
6024 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6025 {
6026 	struct ath_hal *ah = sc->sc_ah;
6027 	u_int id = ad->ad_id & ATH_DIAG_ID;
6028 	void *indata = NULL;
6029 	void *outdata = NULL;
6030 	u_int32_t insize = ad->ad_in_size;
6031 	u_int32_t outsize = ad->ad_out_size;
6032 	int error = 0;
6033 
6034 	if (ad->ad_id & ATH_DIAG_IN) {
6035 		/*
6036 		 * Copy in data.
6037 		 */
6038 		indata = kmalloc(insize, M_TEMP, M_INTWAIT);
6039 		if (indata == NULL) {
6040 			error = ENOMEM;
6041 			goto bad;
6042 		}
6043 		error = copyin(ad->ad_in_data, indata, insize);
6044 		if (error)
6045 			goto bad;
6046 	}
6047 	if (ad->ad_id & ATH_DIAG_DYN) {
6048 		/*
6049 		 * Allocate a buffer for the results (otherwise the HAL
6050 		 * returns a pointer to a buffer where we can read the
6051 		 * results).  Note that we depend on the HAL leaving this
6052 		 * pointer for us to use below in reclaiming the buffer;
6053 		 * may want to be more defensive.
6054 		 */
6055 		outdata = kmalloc(outsize, M_TEMP, M_INTWAIT);
6056 		if (outdata == NULL) {
6057 			error = ENOMEM;
6058 			goto bad;
6059 		}
6060 	}
6061 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6062 		if (outsize < ad->ad_out_size)
6063 			ad->ad_out_size = outsize;
6064 		if (outdata != NULL)
6065 			error = copyout(outdata, ad->ad_out_data,
6066 					ad->ad_out_size);
6067 	} else {
6068 		error = EINVAL;
6069 	}
6070 bad:
6071 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6072 		kfree(indata, M_TEMP);
6073 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6074 		kfree(outdata, M_TEMP);
6075 	return error;
6076 }
6077 #endif /* ATH_DIAGAPI */
6078 
6079 static int
6080 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
6081 	  struct ucred *cr __unused)
6082 {
6083 #define	IS_RUNNING(ifp) \
6084 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
6085 	struct ath_softc *sc = ifp->if_softc;
6086 	struct ieee80211com *ic = ifp->if_l2com;
6087 	struct ifreq *ifr = (struct ifreq *)data;
6088 	const HAL_RATE_TABLE *rt;
6089 	int error = 0;
6090 
6091 	switch (cmd) {
6092 	case SIOCSIFFLAGS:
6093 		ATH_LOCK(sc);
6094 		if (IS_RUNNING(ifp)) {
6095 			/*
6096 			 * To avoid rescanning another access point,
6097 			 * do not call ath_init() here.  Instead,
6098 			 * only reflect promisc mode settings.
6099 			 */
6100 			ath_mode_init(sc);
6101 		} else if (ifp->if_flags & IFF_UP) {
6102 			/*
6103 			 * Beware of being called during attach/detach
6104 			 * to reset promiscuous mode.  In that case we
6105 			 * will still be marked UP but not RUNNING.
6106 			 * However trying to re-init the interface
6107 			 * is the wrong thing to do as we've already
6108 			 * torn down much of our state.  There's
6109 			 * probably a better way to deal with this.
6110 			 */
6111 			if (!sc->sc_invalid)
6112 				ath_init(sc);	/* XXX lose error */
6113 		} else {
6114 			ath_stop_locked(ifp);
6115 #ifdef notyet
6116 			/* XXX must wakeup in places like ath_vap_delete */
6117 			if (!sc->sc_invalid)
6118 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6119 #endif
6120 		}
6121 		ATH_UNLOCK(sc);
6122 		break;
6123 	case SIOCGIFMEDIA:
6124 	case SIOCSIFMEDIA:
6125 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6126 		break;
6127 	case SIOCGATHSTATS:
6128 		/* NB: embed these numbers to get a consistent view */
6129 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6130 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6131 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6132 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6133 #ifdef IEEE80211_SUPPORT_TDMA
6134 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6135 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6136 #endif
6137 		rt = sc->sc_currates;
6138 		sc->sc_stats.ast_tx_rate =
6139 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6140 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6141 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6142 		return copyout(&sc->sc_stats,
6143 		    ifr->ifr_data, sizeof (sc->sc_stats));
6144 	case SIOCGATHAGSTATS:
6145 		return copyout(&sc->sc_aggr_stats,
6146 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6147 	case SIOCZATHSTATS:
6148 		error = priv_check(curthread, PRIV_DRIVER);
6149 		if (error == 0) {
6150 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6151 			memset(&sc->sc_aggr_stats, 0,
6152 			    sizeof(sc->sc_aggr_stats));
6153 			memset(&sc->sc_intr_stats, 0,
6154 			    sizeof(sc->sc_intr_stats));
6155 		}
6156 		break;
6157 #ifdef ATH_DIAGAPI
6158 	case SIOCGATHDIAG:
6159 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6160 		break;
6161 	case SIOCGATHPHYERR:
6162 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6163 		break;
6164 #endif
6165 	case SIOCGATHSPECTRAL:
6166 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6167 		break;
6168 	case SIOCGATHNODERATESTATS:
6169 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6170 		break;
6171 	case SIOCGIFADDR:
6172 		error = ether_ioctl(ifp, cmd, data);
6173 		break;
6174 	default:
6175 		error = EINVAL;
6176 		break;
6177 	}
6178 	return error;
6179 #undef IS_RUNNING
6180 }
6181 
6182 /*
6183  * Announce various information on device/driver attach.
6184  */
6185 static void
6186 ath_announce(struct ath_softc *sc)
6187 {
6188 	struct ifnet *ifp = sc->sc_ifp;
6189 	struct ath_hal *ah = sc->sc_ah;
6190 
6191 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6192 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6193 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6194 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6195 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6196 	if (bootverbose) {
6197 		int i;
6198 		for (i = 0; i <= WME_AC_VO; i++) {
6199 			struct ath_txq *txq = sc->sc_ac2q[i];
6200 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6201 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6202 		}
6203 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6204 			sc->sc_cabq->axq_qnum);
6205 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6206 	}
6207 	if (ath_rxbuf != ATH_RXBUF)
6208 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6209 	if (ath_txbuf != ATH_TXBUF)
6210 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6211 	if (sc->sc_mcastkey && bootverbose)
6212 		if_printf(ifp, "using multicast key search\n");
6213 }
6214 
6215 static void
6216 ath_dfs_tasklet(void *p, int npending)
6217 {
6218 	struct ath_softc *sc = (struct ath_softc *) p;
6219 	struct ifnet *ifp = sc->sc_ifp;
6220 	struct ieee80211com *ic = ifp->if_l2com;
6221 
6222 	/*
6223 	 * If previous processing has found a radar event,
6224 	 * signal this to the net80211 layer to begin DFS
6225 	 * processing.
6226 	 */
6227 	wlan_serialize_enter();
6228 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6229 		/* DFS event found, initiate channel change */
6230 		/*
6231 		 * XXX doesn't currently tell us whether the event
6232 		 * XXX was found in the primary or extension
6233 		 * XXX channel!
6234 		 */
6235 		IEEE80211_LOCK(ic);
6236 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6237 		IEEE80211_UNLOCK(ic);
6238 	}
6239 	wlan_serialize_exit();
6240 }
6241 
6242 #if 0
6243 /*
6244  * Enable/disable power save.  This must be called with
6245  * no TX driver locks currently held, so it should only
6246  * be called from the RX path (which doesn't hold any
6247  * TX driver locks.)
6248  */
6249 static void
6250 ath_node_powersave(struct ieee80211_node *ni, int enable)
6251 {
6252 #ifdef	ATH_SW_PSQ
6253 	struct ath_node *an = ATH_NODE(ni);
6254 	struct ieee80211com *ic = ni->ni_ic;
6255 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6256 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6257 
6258 	/* XXX and no TXQ locks should be held here */
6259 
6260 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6s: enable=%d\n",
6261 	    __func__,
6262 	    ath_hal_ether_sprintf(ni->ni_macaddr),
6263 	    !! enable);
6264 
6265 	/* Suspend or resume software queue handling */
6266 	if (enable)
6267 		ath_tx_node_sleep(sc, an);
6268 	else
6269 		ath_tx_node_wakeup(sc, an);
6270 
6271 	/* Update net80211 state */
6272 	if (avp->av_node_ps)
6273 		avp->av_node_ps(ni, enable);
6274 #else
6275 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6276 
6277 	/* Update net80211 state */
6278 	if (avp->av_node_ps)
6279 		avp->av_node_ps(ni, enable);
6280 #endif/* ATH_SW_PSQ */
6281 }
6282 
6283 #endif
6284 
6285 /*
6286  * Notification from net80211 that the powersave queue state has
6287  * changed.
6288  *
6289  * Since the software queue also may have some frames:
6290  *
6291  * + if the node software queue has frames and the TID state
6292  *   is 0, we set the TIM;
6293  * + if the node and the stack are both empty, we clear the TIM bit.
6294  * + If the stack tries to set the bit, always set it.
6295  * + If the stack tries to clear the bit, only clear it if the
6296  *   software queue in question is also cleared.
6297  *
6298  * TODO: this is called during node teardown; so let's ensure this
6299  * is all correctly handled and that the TIM bit is cleared.
6300  * It may be that the node flush is called _AFTER_ the net80211
6301  * stack clears the TIM.
6302  *
6303  * Here is the racy part.  Since it's possible >1 concurrent,
6304  * overlapping TXes will appear complete with a TX completion in
6305  * another thread, it's possible that the concurrent TIM calls will
6306  * clash.  We can't hold the node lock here because setting the
6307  * TIM grabs the net80211 comlock and this may cause a LOR.
6308  * The solution is either to totally serialise _everything_ at
6309  * this point (ie, all TX, completion and any reset/flush go into
6310  * one taskqueue) or a new "ath TIM lock" needs to be created that
6311  * just wraps the driver state change and this call to avp->av_set_tim().
6312  *
6313  * The same race exists in the net80211 power save queue handling
6314  * as well.  Since multiple transmitting threads may queue frames
6315  * into the driver, as well as ps-poll and the driver transmitting
6316  * frames (and thus clearing the psq), it's quite possible that
6317  * a packet entering the PSQ and a ps-poll being handled will
6318  * race, causing the TIM to be cleared and not re-set.
6319  */
6320 static int
6321 ath_node_set_tim(struct ieee80211_node *ni, int enable)
6322 {
6323 #ifdef	ATH_SW_PSQ
6324 	struct ieee80211com *ic = ni->ni_ic;
6325 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6326 	struct ath_node *an = ATH_NODE(ni);
6327 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6328 	int changed = 0;
6329 
6330 	ATH_TX_LOCK(sc);
6331 	an->an_stack_psq = enable;
6332 
6333 	/*
6334 	 * This will get called for all operating modes,
6335 	 * even if avp->av_set_tim is unset.
6336 	 * It's currently set for hostap/ibss modes; but
6337 	 * the same infrastructure is used for both STA
6338 	 * and AP/IBSS node power save.
6339 	 */
6340 	if (avp->av_set_tim == NULL) {
6341 		ATH_TX_UNLOCK(sc);
6342 		return (0);
6343 	}
6344 
6345 	/*
6346 	 * If setting the bit, always set it here.
6347 	 * If clearing the bit, only clear it if the
6348 	 * software queue is also empty.
6349 	 *
6350 	 * If the node has left power save, just clear the TIM
6351 	 * bit regardless of the state of the power save queue.
6352 	 *
6353 	 * XXX TODO: although atomics are used, it's quite possible
6354 	 * that a race will occur between this and setting/clearing
6355 	 * in another thread.  TX completion will occur always in
6356 	 * one thread, however setting/clearing the TIM bit can come
6357 	 * from a variety of different process contexts!
6358 	 */
6359 	if (enable && an->an_tim_set == 1) {
6360 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6361 		    "%s: %s: enable=%d, tim_set=1, ignoring\n",
6362 		    __func__,
6363 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6364 		    enable);
6365 		ATH_TX_UNLOCK(sc);
6366 	} else if (enable) {
6367 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6368 		    "%s: %s: enable=%d, enabling TIM\n",
6369 		    __func__,
6370 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6371 		    enable);
6372 		an->an_tim_set = 1;
6373 		ATH_TX_UNLOCK(sc);
6374 		changed = avp->av_set_tim(ni, enable);
6375 	} else if (an->an_swq_depth == 0) {
6376 		/* disable */
6377 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6378 		    "%s: %s: enable=%d, an_swq_depth == 0, disabling\n",
6379 		    __func__,
6380 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6381 		    enable);
6382 		an->an_tim_set = 0;
6383 		ATH_TX_UNLOCK(sc);
6384 		changed = avp->av_set_tim(ni, enable);
6385 	} else if (! an->an_is_powersave) {
6386 		/*
6387 		 * disable regardless; the node isn't in powersave now
6388 		 */
6389 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6390 		    "%s: %s: enable=%d, an_pwrsave=0, disabling\n",
6391 		    __func__,
6392 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6393 		    enable);
6394 		an->an_tim_set = 0;
6395 		ATH_TX_UNLOCK(sc);
6396 		changed = avp->av_set_tim(ni, enable);
6397 	} else {
6398 		/*
6399 		 * psq disable, node is currently in powersave, node
6400 		 * software queue isn't empty, so don't clear the TIM bit
6401 		 * for now.
6402 		 */
6403 		ATH_TX_UNLOCK(sc);
6404 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6405 		    "%s: %s: enable=%d, an_swq_depth > 0, ignoring\n",
6406 		    __func__,
6407 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6408 		    enable);
6409 		changed = 0;
6410 	}
6411 
6412 	return (changed);
6413 #else
6414 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6415 
6416 	/*
6417 	 * Some operating modes don't set av_set_tim(), so don't
6418 	 * update it here.
6419 	 */
6420 	if (avp->av_set_tim == NULL)
6421 		return (0);
6422 
6423 	return (avp->av_set_tim(ni, enable));
6424 #endif /* ATH_SW_PSQ */
6425 }
6426 
6427 /*
6428  * Set or update the TIM from the software queue.
6429  *
6430  * Check the software queue depth before attempting to do lock
6431  * anything; that avoids trying to obtain the lock.  Then,
6432  * re-check afterwards to ensure nothing has changed in the
6433  * meantime.
6434  *
6435  * set:   This is designed to be called from the TX path, after
6436  *        a frame has been queued; to see if the swq > 0.
6437  *
6438  * clear: This is designed to be called from the buffer completion point
6439  *        (right now it's ath_tx_default_comp()) where the state of
6440  *        a software queue has changed.
6441  *
6442  * It makes sense to place it at buffer free / completion rather
6443  * than after each software queue operation, as there's no real
6444  * point in churning the TIM bit as the last frames in the software
6445  * queue are transmitted.  If they fail and we retry them, we'd
6446  * just be setting the TIM bit again anyway.
6447  */
6448 void
6449 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6450      int enable)
6451 {
6452 #ifdef	ATH_SW_PSQ
6453 	struct ath_node *an;
6454 	struct ath_vap *avp;
6455 
6456 	/* Don't do this for broadcast/etc frames */
6457 	if (ni == NULL)
6458 		return;
6459 
6460 	an = ATH_NODE(ni);
6461 	avp = ATH_VAP(ni->ni_vap);
6462 
6463 	/*
6464 	 * And for operating modes without the TIM handler set, let's
6465 	 * just skip those.
6466 	 */
6467 	if (avp->av_set_tim == NULL)
6468 		return;
6469 
6470 	ATH_TX_LOCK_ASSERT(sc);
6471 
6472 	if (enable) {
6473 		if (an->an_is_powersave &&
6474 		    an->an_tim_set == 0 &&
6475 		    an->an_swq_depth != 0) {
6476 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6477 			    "%s: %s: swq_depth>0, tim_set=0, set!\n",
6478 			    __func__,
6479 			    ath_hal_ether_sprintf(ni->ni_macaddr));
6480 			an->an_tim_set = 1;
6481 			(void) avp->av_set_tim(ni, 1);
6482 		}
6483 	} else {
6484 		/*
6485 		 * Don't bother grabbing the lock unless the queue is empty.
6486 		 */
6487 		if (&an->an_swq_depth != 0)
6488 			return;
6489 
6490 		if (an->an_is_powersave &&
6491 		    an->an_stack_psq == 0 &&
6492 		    an->an_tim_set == 1 &&
6493 		    an->an_swq_depth == 0) {
6494 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6495 			    "%s: %s: swq_depth=0, tim_set=1, psq_set=0,"
6496 			    " clear!\n",
6497 			    __func__,
6498 			    ath_hal_ether_sprintf(ni->ni_macaddr));
6499 			an->an_tim_set = 0;
6500 			(void) avp->av_set_tim(ni, 0);
6501 		}
6502 	}
6503 #else
6504 	return;
6505 #endif	/* ATH_SW_PSQ */
6506 }
6507 
6508 #if 0
6509 /*
6510  * Received a ps-poll frame from net80211.
6511  *
6512  * Here we get a chance to serve out a software-queued frame ourselves
6513  * before we punt it to net80211 to transmit us one itself - either
6514  * because there's traffic in the net80211 psq, or a NULL frame to
6515  * indicate there's nothing else.
6516  */
6517 static void
6518 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6519 {
6520 #ifdef	ATH_SW_PSQ
6521 	struct ath_node *an;
6522 	struct ath_vap *avp;
6523 	struct ieee80211com *ic = ni->ni_ic;
6524 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6525 	int tid;
6526 
6527 	/* Just paranoia */
6528 	if (ni == NULL)
6529 		return;
6530 
6531 	/*
6532 	 * Unassociated (temporary node) station.
6533 	 */
6534 	if (ni->ni_associd == 0)
6535 		return;
6536 
6537 	/*
6538 	 * We do have an active node, so let's begin looking into it.
6539 	 */
6540 	an = ATH_NODE(ni);
6541 	avp = ATH_VAP(ni->ni_vap);
6542 
6543 	/*
6544 	 * For now, we just call the original ps-poll method.
6545 	 * Once we're ready to flip this on:
6546 	 *
6547 	 * + Set leak to 1, as no matter what we're going to have
6548 	 *   to send a frame;
6549 	 * + Check the software queue and if there's something in it,
6550 	 *   schedule the highest TID thas has traffic from this node.
6551 	 *   Then make sure we schedule the software scheduler to
6552 	 *   run so it picks up said frame.
6553 	 *
6554 	 * That way whatever happens, we'll at least send _a_ frame
6555 	 * to the given node.
6556 	 *
6557 	 * Again, yes, it's crappy QoS if the node has multiple
6558 	 * TIDs worth of traffic - but let's get it working first
6559 	 * before we optimise it.
6560 	 *
6561 	 * Also yes, there's definitely latency here - we're not
6562 	 * direct dispatching to the hardware in this path (and
6563 	 * we're likely being called from the packet receive path,
6564 	 * so going back into TX may be a little hairy!) but again
6565 	 * I'd like to get this working first before optimising
6566 	 * turn-around time.
6567 	 */
6568 
6569 	ATH_TX_LOCK(sc);
6570 
6571 	/*
6572 	 * Legacy - we're called and the node isn't asleep.
6573 	 * Immediately punt.
6574 	 */
6575 	if (! an->an_is_powersave) {
6576 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6577 		    "%s: %6D: not in powersave?\n",
6578 		    __func__,
6579 		    ni->ni_macaddr,
6580 		    ":");
6581 		ATH_TX_UNLOCK(sc);
6582 		if (avp->av_recv_pspoll)
6583 			avp->av_recv_pspoll(ni, m);
6584 		return;
6585 	}
6586 
6587 	/*
6588 	 * We're in powersave.
6589 	 *
6590 	 * Leak a frame.
6591 	 */
6592 	an->an_leak_count = 1;
6593 
6594 	/*
6595 	 * Now, if there's no frames in the node, just punt to
6596 	 * recv_pspoll.
6597 	 *
6598 	 * Don't bother checking if the TIM bit is set, we really
6599 	 * only care if there are any frames here!
6600 	 */
6601 	if (an->an_swq_depth == 0) {
6602 		ATH_TX_UNLOCK(sc);
6603 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6604 		    "%s: %6D: SWQ empty; punting to net80211\n",
6605 		    __func__,
6606 		    ni->ni_macaddr,
6607 		    ":");
6608 		if (avp->av_recv_pspoll)
6609 			avp->av_recv_pspoll(ni, m);
6610 		return;
6611 	}
6612 
6613 	/*
6614 	 * Ok, let's schedule the highest TID that has traffic
6615 	 * and then schedule something.
6616 	 */
6617 	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
6618 		struct ath_tid *atid = &an->an_tid[tid];
6619 		/*
6620 		 * No frames? Skip.
6621 		 */
6622 		if (atid->axq_depth == 0)
6623 			continue;
6624 		ath_tx_tid_sched(sc, atid);
6625 		/*
6626 		 * XXX we could do a direct call to the TXQ
6627 		 * scheduler code here to optimise latency
6628 		 * at the expense of a REALLY deep callstack.
6629 		 */
6630 		ATH_TX_UNLOCK(sc);
6631 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
6632 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6633 		    "%s: %6D: leaking frame to TID %d\n",
6634 		    __func__,
6635 		    ni->ni_macaddr,
6636 		    ":",
6637 		    tid);
6638 		return;
6639 	}
6640 
6641 	ATH_TX_UNLOCK(sc);
6642 
6643 	/*
6644 	 * XXX nothing in the TIDs at this point? Eek.
6645 	 */
6646 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6647 	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
6648 	    __func__,
6649 	    ni->ni_macaddr,
6650 	    ":");
6651 	if (avp->av_recv_pspoll)
6652 		avp->av_recv_pspoll(ni, m);
6653 #else
6654 	if (avp->av_recv_pspoll)
6655 		avp->av_recv_pspoll(ni, m);
6656 #endif	/* ATH_SW_PSQ */
6657 }
6658 
6659 #endif
6660 
6661 MODULE_VERSION(if_ath, 1);
6662 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6663 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
6664 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6665 #endif
6666