xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision 896f2e3a)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #define CTLFLAG_RWTUN	CTLFLAG_RW
34 
35 /*
36  * Driver for the Atheros Wireless LAN controller.
37  *
38  * This software is derived from work of Atsushi Onoe; his contribution
39  * is greatly appreciated.
40  */
41 
42 #include "opt_inet.h"
43 #include "opt_ath.h"
44 /*
45  * This is needed for register operations which are performed
46  * by the driver - eg, calls to ath_hal_gettsf32().
47  *
48  * It's also required for any AH_DEBUG checks in here, eg the
49  * module dependencies.
50  */
51 #include "opt_ah.h"
52 #include "opt_wlan.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysctl.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/lock.h>
60 #include <sys/mutex.h>
61 #include <sys/kernel.h>
62 #include <sys/socket.h>
63 #include <sys/sockio.h>
64 #include <sys/errno.h>
65 #include <sys/callout.h>
66 #include <sys/bus.h>
67 #include <sys/endian.h>
68 #include <sys/kthread.h>
69 #include <sys/taskqueue.h>
70 #include <sys/priv.h>
71 #include <sys/module.h>
72 #include <sys/ktr.h>
73 
74 #include <net/if.h>
75 #include <net/if_var.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/ethernet.h>
81 #include <net/if_llc.h>
82 #include <net/ifq_var.h>
83 
84 #include <netproto/802_11/ieee80211_var.h>
85 #include <netproto/802_11/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <netproto/802_11/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <netproto/802_11/ieee80211_tdma.h>
91 #endif
92 
93 #include <net/bpf.h>
94 
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99 
100 #include <dev/netif/ath/ath/if_athvar.h>
101 #include <dev/netif/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102 #include <dev/netif/ath/ath_hal/ah_diagcodes.h>
103 
104 #include <dev/netif/ath/ath/if_ath_debug.h>
105 #include <dev/netif/ath/ath/if_ath_misc.h>
106 #include <dev/netif/ath/ath/if_ath_tsf.h>
107 #include <dev/netif/ath/ath/if_ath_tx.h>
108 #include <dev/netif/ath/ath/if_ath_sysctl.h>
109 #include <dev/netif/ath/ath/if_ath_led.h>
110 #include <dev/netif/ath/ath/if_ath_keycache.h>
111 #include <dev/netif/ath/ath/if_ath_rx.h>
112 #include <dev/netif/ath/ath/if_ath_rx_edma.h>
113 #include <dev/netif/ath/ath/if_ath_tx_edma.h>
114 #include <dev/netif/ath/ath/if_ath_beacon.h>
115 #include <dev/netif/ath/ath/if_ath_btcoex.h>
116 #include <dev/netif/ath/ath/if_ath_spectral.h>
117 #include <dev/netif/ath/ath/if_ath_lna_div.h>
118 #include <dev/netif/ath/ath/if_athdfs.h>
119 
120 #ifdef ATH_TX99_DIAG
121 #include <dev/netif/ath/ath/ath_tx99/ath_tx99.h>
122 #endif
123 
124 #ifdef	ATH_DEBUG_ALQ
125 #include <dev/netif/ath/ath/if_ath_alq.h>
126 #endif
127 
128 /*
129  * Only enable this if you're working on PS-POLL support.
130  */
131 #define	ATH_SW_PSQ
132 
133 /*
134  * ATH_BCBUF determines the number of vap's that can transmit
135  * beacons and also (currently) the number of vap's that can
136  * have unique mac addresses/bssid.  When staggering beacons
137  * 4 is probably a good max as otherwise the beacons become
138  * very closely spaced and there is limited time for cab q traffic
139  * to go out.  You can burst beacons instead but that is not good
140  * for stations in power save and at some point you really want
141  * another radio (and channel).
142  *
143  * The limit on the number of mac addresses is tied to our use of
144  * the U/L bit and tracking addresses in a byte; it would be
145  * worthwhile to allow more for applications like proxy sta.
146  */
147 CTASSERT(ATH_BCBUF <= 8);
148 
149 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
150 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151 		    const uint8_t [IEEE80211_ADDR_LEN],
152 		    const uint8_t [IEEE80211_ADDR_LEN]);
153 static void	ath_vap_delete(struct ieee80211vap *);
154 static void	ath_init(void *);
155 static void	ath_stop_locked(struct ifnet *);
156 static void	ath_stop(struct ifnet *);
157 static int	ath_reset_vap(struct ieee80211vap *, u_long);
158 static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
159 #if !defined(__DragonFly__)
160 static void	ath_qflush(struct ifnet *ifp);
161 #endif
162 static int	ath_media_change(struct ifnet *);
163 static void	ath_watchdog(void *);
164 #if defined(__DragonFly__)
165 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred * __unused);
166 #else
167 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
168 #endif
169 static void	ath_fatal_proc(void *, int);
170 static void	ath_bmiss_vap(struct ieee80211vap *);
171 static void	ath_bmiss_proc(void *, int);
172 static void	ath_key_update_begin(struct ieee80211vap *);
173 static void	ath_key_update_end(struct ieee80211vap *);
174 static void	ath_update_mcast_hw(struct ath_softc *);
175 static void	ath_update_mcast(struct ifnet *);
176 static void	ath_update_promisc(struct ifnet *);
177 static void	ath_updateslot(struct ifnet *);
178 static void	ath_bstuck_proc(void *, int);
179 static void	ath_reset_proc(void *, int);
180 static int	ath_desc_alloc(struct ath_softc *);
181 static void	ath_desc_free(struct ath_softc *);
182 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
183 			const uint8_t [IEEE80211_ADDR_LEN]);
184 static void	ath_node_cleanup(struct ieee80211_node *);
185 static void	ath_node_free(struct ieee80211_node *);
186 static void	ath_node_getsignal(const struct ieee80211_node *,
187 			int8_t *, int8_t *);
188 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
189 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
190 static int	ath_tx_setup(struct ath_softc *, int, int);
191 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
192 static void	ath_tx_cleanup(struct ath_softc *);
193 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
194 		    int dosched);
195 static void	ath_tx_proc_q0(void *, int);
196 static void	ath_tx_proc_q0123(void *, int);
197 static void	ath_tx_proc(void *, int);
198 static void	ath_txq_sched_tasklet(void *, int);
199 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
200 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
201 static void	ath_scan_start(struct ieee80211com *);
202 static void	ath_scan_end(struct ieee80211com *);
203 static void	ath_set_channel(struct ieee80211com *);
204 #ifdef	ATH_ENABLE_11N
205 static void	ath_update_chw(struct ieee80211com *);
206 #endif	/* ATH_ENABLE_11N */
207 static void	ath_calibrate(void *);
208 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
209 static void	ath_setup_stationkey(struct ieee80211_node *);
210 static void	ath_newassoc(struct ieee80211_node *, int);
211 static int	ath_setregdomain(struct ieee80211com *,
212 		    struct ieee80211_regdomain *, int,
213 		    struct ieee80211_channel []);
214 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
215 		    struct ieee80211_channel []);
216 static int	ath_getchannels(struct ath_softc *);
217 
218 static int	ath_rate_setup(struct ath_softc *, u_int mode);
219 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
220 
221 static void	ath_announce(struct ath_softc *);
222 
223 static void	ath_dfs_tasklet(void *, int);
224 static void	ath_node_powersave(struct ieee80211_node *, int);
225 static int	ath_node_set_tim(struct ieee80211_node *, int);
226 static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
227 
228 #if defined(__DragonFly__)
229 static void	ath_start(struct ifnet *ifp, struct ifaltq_subque *ifsq);
230 #endif
231 
232 #ifdef IEEE80211_SUPPORT_TDMA
233 #include <dev/netif/ath/ath/if_ath_tdma.h>
234 #endif
235 
236 extern	const char* ath_hal_ether_sprintf(const u_int8_t *mac);
237 
238 SYSCTL_DECL(_hw_ath);
239 
240 /* XXX validate sysctl values */
241 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
242 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
243 	    0, "long chip calibration interval (secs)");
244 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
245 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
246 	    0, "short chip calibration interval (msecs)");
247 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
248 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
249 	    0, "reset chip calibration results (secs)");
250 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
251 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
252 	    0, "ANI calibration (msecs)");
253 
254 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
255 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
256 	    0, "rx buffers allocated");
257 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
258 
259 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
260 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
261 	    0, "tx buffers allocated");
262 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
263 
264 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
265 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
266 	    0, "tx (mgmt) buffers allocated");
267 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
268 
269 int ath_bstuck_threshold = 4;		/* max missed beacons */
270 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
271 	    0, "max missed beacon xmits before chip reset");
272 
273 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
274 
275 void
276 ath_legacy_attach_comp_func(struct ath_softc *sc)
277 {
278 
279 	/*
280 	 * Special case certain configurations.  Note the
281 	 * CAB queue is handled by these specially so don't
282 	 * include them when checking the txq setup mask.
283 	 */
284 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
285 	case 0x01:
286 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
287 		break;
288 	case 0x0f:
289 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
290 		break;
291 	default:
292 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
293 		break;
294 	}
295 }
296 
297 /*
298  * Set the target power mode.
299  *
300  * If this is called during a point in time where
301  * the hardware is being programmed elsewhere, it will
302  * simply store it away and update it when all current
303  * uses of the hardware are completed.
304  */
305 void
306 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
307 {
308 	ATH_LOCK_ASSERT(sc);
309 
310 	sc->sc_target_powerstate = power_state;
311 
312 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
313 	    __func__,
314 	    file,
315 	    line,
316 	    power_state,
317 	    sc->sc_powersave_refcnt);
318 
319 	if (sc->sc_powersave_refcnt == 0 &&
320 	    power_state != sc->sc_cur_powerstate) {
321 		sc->sc_cur_powerstate = power_state;
322 		ath_hal_setpower(sc->sc_ah, power_state);
323 
324 		/*
325 		 * If the NIC is force-awake, then set the
326 		 * self-gen frame state appropriately.
327 		 *
328 		 * If the nic is in network sleep or full-sleep,
329 		 * we let the above call leave the self-gen
330 		 * state as "sleep".
331 		 */
332 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
333 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
334 			ath_hal_setselfgenpower(sc->sc_ah,
335 			    sc->sc_target_selfgen_state);
336 		}
337 	}
338 }
339 
340 /*
341  * Set the current self-generated frames state.
342  *
343  * This is separate from the target power mode.  The chip may be
344  * awake but the desired state is "sleep", so frames sent to the
345  * destination has PWRMGT=1 in the 802.11 header.  The NIC also
346  * needs to know to set PWRMGT=1 in self-generated frames.
347  */
348 void
349 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
350 {
351 
352 	ATH_LOCK_ASSERT(sc);
353 
354 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
355 	    __func__,
356 	    file,
357 	    line,
358 	    power_state,
359 	    sc->sc_target_selfgen_state);
360 
361 	sc->sc_target_selfgen_state = power_state;
362 
363 	/*
364 	 * If the NIC is force-awake, then set the power state.
365 	 * Network-state and full-sleep will already transition it to
366 	 * mark self-gen frames as sleeping - and we can't
367 	 * guarantee the NIC is awake to program the self-gen frame
368 	 * setting anyway.
369 	 */
370 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
371 		ath_hal_setselfgenpower(sc->sc_ah, power_state);
372 	}
373 }
374 
375 /*
376  * Set the hardware power mode and take a reference.
377  *
378  * This doesn't update the target power mode in the driver;
379  * it just updates the hardware power state.
380  *
381  * XXX it should only ever force the hardware awake; it should
382  * never be called to set it asleep.
383  */
384 void
385 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
386 {
387 	ATH_LOCK_ASSERT(sc);
388 
389 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
390 	    __func__,
391 	    file,
392 	    line,
393 	    power_state,
394 	    sc->sc_powersave_refcnt);
395 
396 	sc->sc_powersave_refcnt++;
397 
398 	if (power_state != sc->sc_cur_powerstate) {
399 		ath_hal_setpower(sc->sc_ah, power_state);
400 		sc->sc_cur_powerstate = power_state;
401 
402 		/*
403 		 * Adjust the self-gen powerstate if appropriate.
404 		 */
405 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
406 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
407 			ath_hal_setselfgenpower(sc->sc_ah,
408 			    sc->sc_target_selfgen_state);
409 		}
410 
411 	}
412 }
413 
414 /*
415  * Restore the power save mode to what it once was.
416  *
417  * This will decrement the reference counter and once it hits
418  * zero, it'll restore the powersave state.
419  */
420 void
421 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
422 {
423 
424 	ATH_LOCK_ASSERT(sc);
425 
426 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
427 	    __func__,
428 	    file,
429 	    line,
430 	    sc->sc_powersave_refcnt,
431 	    sc->sc_target_powerstate);
432 
433 	if (sc->sc_powersave_refcnt == 0)
434 		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
435 	else
436 		sc->sc_powersave_refcnt--;
437 
438 	if (sc->sc_powersave_refcnt == 0 &&
439 	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
440 		sc->sc_cur_powerstate = sc->sc_target_powerstate;
441 		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
442 	}
443 
444 	/*
445 	 * Adjust the self-gen powerstate if appropriate.
446 	 */
447 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
448 	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
449 		ath_hal_setselfgenpower(sc->sc_ah,
450 		    sc->sc_target_selfgen_state);
451 	}
452 
453 }
454 
455 /*
456  * Configure the initial HAL configuration values based on bus
457  * specific parameters.
458  *
459  * Some PCI IDs and other information may need tweaking.
460  *
461  * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
462  * if BT antenna diversity isn't enabled.
463  *
464  * So, let's also figure out how to enable BT diversity for AR9485.
465  */
466 static void
467 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
468 {
469 	/* XXX TODO: only for PCI devices? */
470 
471 	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
472 		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
473 		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
474 		ah_config->ath_hal_min_gainidx = AH_TRUE;
475 		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
476 		/* XXX low_rssi_thresh */
477 		/* XXX fast_div_bias */
478 		device_printf(sc->sc_dev, "configuring for %s\n",
479 		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
480 		    "CUS198" : "CUS230");
481 	}
482 
483 	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
484 		device_printf(sc->sc_dev, "CUS217 card detected\n");
485 
486 	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
487 		device_printf(sc->sc_dev, "CUS252 card detected\n");
488 
489 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
490 		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
491 
492 	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
493 		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
494 
495 	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
496 		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
497 
498 #if 0
499         /*
500          * Some WB335 cards do not support antenna diversity. Since
501          * we use a hardcoded value for AR9565 instead of using the
502          * EEPROM/OTP data, remove the combining feature from
503          * the HW capabilities bitmap.
504          */
505         if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
506                 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
507                         pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
508         }
509 
510         if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
511                 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
512                 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
513         }
514 #endif
515 
516         if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
517                 ah_config->ath_hal_pcie_waen = 0x0040473b;
518                 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
519         }
520 
521 #if 0
522         if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
523                 ah->config.no_pll_pwrsave = true;
524                 device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
525         }
526 #endif
527 
528 }
529 
530 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
531 #define	HAL_MODE_HT40 \
532 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
533 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
534 int
535 ath_attach(u_int16_t devid, struct ath_softc *sc)
536 {
537 	struct ifnet *ifp;
538 	struct ieee80211com *ic;
539 	struct ath_hal *ah = NULL;
540 	HAL_STATUS status;
541 	int error = 0, i;
542 	u_int wmodes;
543 	uint8_t macaddr[IEEE80211_ADDR_LEN];
544 	int rx_chainmask, tx_chainmask;
545 	HAL_OPS_CONFIG ah_config;
546 
547 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
548 
549 	wlan_serialize_enter();
550 	CURVNET_SET(vnet0);
551 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
552 	if (ifp == NULL) {
553 		device_printf(sc->sc_dev, "can not if_alloc()\n");
554 		error = ENOSPC;
555 		CURVNET_RESTORE();
556 		goto bad;
557 	}
558 	ic = ifp->if_l2com;
559 
560 	/* set these up early for if_printf use */
561 	if_initname(ifp, device_get_name(sc->sc_dev),
562 		device_get_unit(sc->sc_dev));
563 	CURVNET_RESTORE();
564 
565 	/*
566 	 * Configure the initial configuration data.
567 	 *
568 	 * This is stuff that may be needed early during attach
569 	 * rather than done via configuration calls later.
570 	 */
571 	bzero(&ah_config, sizeof(ah_config));
572 	ath_setup_hal_config(sc, &ah_config);
573 
574 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
575 	    sc->sc_eepromdata, &ah_config, &status);
576 	if (ah == NULL) {
577 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
578 			status);
579 		error = ENXIO;
580 		goto bad;
581 	}
582 	sc->sc_ah = ah;
583 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
584 #ifdef	ATH_DEBUG
585 	sc->sc_debug = ath_debug;
586 #endif
587 
588 	/*
589 	 * Setup the DMA/EDMA functions based on the current
590 	 * hardware support.
591 	 *
592 	 * This is required before the descriptors are allocated.
593 	 */
594 	if (ath_hal_hasedma(sc->sc_ah)) {
595 		sc->sc_isedma = 1;
596 		ath_recv_setup_edma(sc);
597 		ath_xmit_setup_edma(sc);
598 	} else {
599 		ath_recv_setup_legacy(sc);
600 		ath_xmit_setup_legacy(sc);
601 	}
602 
603 	if (ath_hal_hasmybeacon(sc->sc_ah)) {
604 		sc->sc_do_mybeacon = 1;
605 	}
606 
607 	/*
608 	 * Check if the MAC has multi-rate retry support.
609 	 * We do this by trying to setup a fake extended
610 	 * descriptor.  MAC's that don't have support will
611 	 * return false w/o doing anything.  MAC's that do
612 	 * support it will return true w/o doing anything.
613 	 */
614 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
615 
616 	/*
617 	 * Check if the device has hardware counters for PHY
618 	 * errors.  If so we need to enable the MIB interrupt
619 	 * so we can act on stat triggers.
620 	 */
621 	if (ath_hal_hwphycounters(ah))
622 		sc->sc_needmib = 1;
623 
624 	/*
625 	 * Get the hardware key cache size.
626 	 */
627 	sc->sc_keymax = ath_hal_keycachesize(ah);
628 	if (sc->sc_keymax > ATH_KEYMAX) {
629 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
630 			ATH_KEYMAX, sc->sc_keymax);
631 		sc->sc_keymax = ATH_KEYMAX;
632 	}
633 	/*
634 	 * Reset the key cache since some parts do not
635 	 * reset the contents on initial power up.
636 	 */
637 	for (i = 0; i < sc->sc_keymax; i++)
638 		ath_hal_keyreset(ah, i);
639 
640 	/*
641 	 * Collect the default channel list.
642 	 */
643 	error = ath_getchannels(sc);
644 	if (error != 0)
645 		goto bad;
646 
647 	/*
648 	 * Setup rate tables for all potential media types.
649 	 */
650 	ath_rate_setup(sc, IEEE80211_MODE_11A);
651 	ath_rate_setup(sc, IEEE80211_MODE_11B);
652 	ath_rate_setup(sc, IEEE80211_MODE_11G);
653 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
654 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
655 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
656 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
657 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
658 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
659 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
660 
661 	/* NB: setup here so ath_rate_update is happy */
662 	ath_setcurmode(sc, IEEE80211_MODE_11A);
663 
664 	/*
665 	 * Allocate TX descriptors and populate the lists.
666 	 */
667 	error = ath_desc_alloc(sc);
668 	if (error != 0) {
669 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
670 		    error);
671 		goto bad;
672 	}
673 	error = ath_txdma_setup(sc);
674 	if (error != 0) {
675 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
676 		    error);
677 		goto bad;
678 	}
679 
680 	/*
681 	 * Allocate RX descriptors and populate the lists.
682 	 */
683 	error = ath_rxdma_setup(sc);
684 	if (error != 0) {
685 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
686 		    error);
687 		goto bad;
688 	}
689 
690 	callout_init_lk(&sc->sc_cal_ch, &sc->sc_mtx);
691 	callout_init_lk(&sc->sc_wd_ch, &sc->sc_mtx);
692 
693 	ATH_TXBUF_LOCK_INIT(sc);
694 
695 	sc->sc_tq = taskqueue_create("ath_taskq", M_INTWAIT,
696 		taskqueue_thread_enqueue, &sc->sc_tq);
697 	taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
698 		"%s taskq", ifp->if_xname);
699 
700 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
701 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
702 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
703 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
704 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
705 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
706 
707 	/*
708 	 * Allocate hardware transmit queues: one queue for
709 	 * beacon frames and one data queue for each QoS
710 	 * priority.  Note that the hal handles resetting
711 	 * these queues at the needed time.
712 	 *
713 	 * XXX PS-Poll
714 	 */
715 	sc->sc_bhalq = ath_beaconq_setup(sc);
716 	if (sc->sc_bhalq == (u_int) -1) {
717 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
718 		error = EIO;
719 		goto bad2;
720 	}
721 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
722 	if (sc->sc_cabq == NULL) {
723 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
724 		error = EIO;
725 		goto bad2;
726 	}
727 	/* NB: insure BK queue is the lowest priority h/w queue */
728 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
729 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
730 			ieee80211_wme_acnames[WME_AC_BK]);
731 		error = EIO;
732 		goto bad2;
733 	}
734 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
735 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
736 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
737 		/*
738 		 * Not enough hardware tx queues to properly do WME;
739 		 * just punt and assign them all to the same h/w queue.
740 		 * We could do a better job of this if, for example,
741 		 * we allocate queues when we switch from station to
742 		 * AP mode.
743 		 */
744 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
745 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
746 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
747 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
748 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
749 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
750 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
751 	}
752 
753 	/*
754 	 * Attach the TX completion function.
755 	 *
756 	 * The non-EDMA chips may have some special case optimisations;
757 	 * this method gives everyone a chance to attach cleanly.
758 	 */
759 	sc->sc_tx.xmit_attach_comp_func(sc);
760 
761 	/*
762 	 * Setup rate control.  Some rate control modules
763 	 * call back to change the anntena state so expose
764 	 * the necessary entry points.
765 	 * XXX maybe belongs in struct ath_ratectrl?
766 	 */
767 	sc->sc_setdefantenna = ath_setdefantenna;
768 	sc->sc_rc = ath_rate_attach(sc);
769 	if (sc->sc_rc == NULL) {
770 		error = EIO;
771 		goto bad2;
772 	}
773 
774 	/* Attach DFS module */
775 	if (! ath_dfs_attach(sc)) {
776 		device_printf(sc->sc_dev,
777 		    "%s: unable to attach DFS\n", __func__);
778 		error = EIO;
779 		goto bad2;
780 	}
781 
782 	/* Attach spectral module */
783 	if (ath_spectral_attach(sc) < 0) {
784 		device_printf(sc->sc_dev,
785 		    "%s: unable to attach spectral\n", __func__);
786 		error = EIO;
787 		goto bad2;
788 	}
789 
790 	/* Attach bluetooth coexistence module */
791 	if (ath_btcoex_attach(sc) < 0) {
792 		device_printf(sc->sc_dev,
793 		    "%s: unable to attach bluetooth coexistence\n", __func__);
794 		error = EIO;
795 		goto bad2;
796 	}
797 
798 	/* Attach LNA diversity module */
799 	if (ath_lna_div_attach(sc) < 0) {
800 		device_printf(sc->sc_dev,
801 		    "%s: unable to attach LNA diversity\n", __func__);
802 		error = EIO;
803 		goto bad2;
804 	}
805 
806 	/* Start DFS processing tasklet */
807 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
808 
809 	/* Configure LED state */
810 	sc->sc_blinking = 0;
811 	sc->sc_ledstate = 1;
812 	sc->sc_ledon = 0;			/* low true */
813 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
814 	callout_init_mp(&sc->sc_ledtimer);
815 
816 	/*
817 	 * Don't setup hardware-based blinking.
818 	 *
819 	 * Although some NICs may have this configured in the
820 	 * default reset register values, the user may wish
821 	 * to alter which pins have which function.
822 	 *
823 	 * The reference driver attaches the MAC network LED to GPIO1 and
824 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
825 	 * NIC has these reversed.
826 	 */
827 	sc->sc_hardled = (1 == 0);
828 	sc->sc_led_net_pin = -1;
829 	sc->sc_led_pwr_pin = -1;
830 	/*
831 	 * Auto-enable soft led processing for IBM cards and for
832 	 * 5211 minipci cards.  Users can also manually enable/disable
833 	 * support with a sysctl.
834 	 */
835 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
836 	ath_led_config(sc);
837 	ath_hal_setledstate(ah, HAL_LED_INIT);
838 
839 	ifp->if_softc = sc;
840 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
841 #if defined(__DragonFly__)
842 	ifp->if_start = ath_start;
843 #else
844 	ifp->if_transmit = ath_transmit;
845 	ifp->if_qflush = ath_qflush;
846 #endif
847 	ifp->if_ioctl = ath_ioctl;
848 	ifp->if_init = ath_init;
849 #if defined(__DragonFly__)
850 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
851 #else
852 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
853 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
854 	IFQ_SET_READY(&ifp->if_snd);
855 #endif
856 
857 	ic->ic_ifp = ifp;
858 	/* XXX not right but it's not used anywhere important */
859 	ic->ic_phytype = IEEE80211_T_OFDM;
860 	ic->ic_opmode = IEEE80211_M_STA;
861 	ic->ic_caps =
862 		  IEEE80211_C_STA		/* station mode */
863 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
864 		| IEEE80211_C_HOSTAP		/* hostap mode */
865 		| IEEE80211_C_MONITOR		/* monitor mode */
866 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
867 		| IEEE80211_C_WDS		/* 4-address traffic works */
868 		| IEEE80211_C_MBSS		/* mesh point link mode */
869 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
870 		| IEEE80211_C_SHSLOT		/* short slot time supported */
871 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
872 #ifndef	ATH_ENABLE_11N
873 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
874 #endif
875 		| IEEE80211_C_TXFRAG		/* handle tx frags */
876 #ifdef	ATH_ENABLE_DFS
877 		| IEEE80211_C_DFS		/* Enable radar detection */
878 #endif
879 		| IEEE80211_C_PMGT		/* Station side power mgmt */
880 		| IEEE80211_C_SWSLEEP
881 		;
882 	/*
883 	 * Query the hal to figure out h/w crypto support.
884 	 */
885 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
886 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
887 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
888 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
889 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
890 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
891 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
892 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
893 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
894 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
895 		/*
896 		 * Check if h/w does the MIC and/or whether the
897 		 * separate key cache entries are required to
898 		 * handle both tx+rx MIC keys.
899 		 */
900 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
901 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
902 		/*
903 		 * If the h/w supports storing tx+rx MIC keys
904 		 * in one cache slot automatically enable use.
905 		 */
906 		if (ath_hal_hastkipsplit(ah) ||
907 		    !ath_hal_settkipsplit(ah, AH_FALSE))
908 			sc->sc_splitmic = 1;
909 		/*
910 		 * If the h/w can do TKIP MIC together with WME then
911 		 * we use it; otherwise we force the MIC to be done
912 		 * in software by the net80211 layer.
913 		 */
914 		if (ath_hal_haswmetkipmic(ah))
915 			sc->sc_wmetkipmic = 1;
916 	}
917 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
918 	/*
919 	 * Check for multicast key search support.
920 	 */
921 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
922 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
923 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
924 	}
925 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
926 	/*
927 	 * Mark key cache slots associated with global keys
928 	 * as in use.  If we knew TKIP was not to be used we
929 	 * could leave the +32, +64, and +32+64 slots free.
930 	 */
931 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
932 		setbit(sc->sc_keymap, i);
933 		setbit(sc->sc_keymap, i+64);
934 		if (sc->sc_splitmic) {
935 			setbit(sc->sc_keymap, i+32);
936 			setbit(sc->sc_keymap, i+32+64);
937 		}
938 	}
939 	/*
940 	 * TPC support can be done either with a global cap or
941 	 * per-packet support.  The latter is not available on
942 	 * all parts.  We're a bit pedantic here as all parts
943 	 * support a global cap.
944 	 */
945 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
946 		ic->ic_caps |= IEEE80211_C_TXPMGT;
947 
948 	/*
949 	 * Mark WME capability only if we have sufficient
950 	 * hardware queues to do proper priority scheduling.
951 	 */
952 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
953 		ic->ic_caps |= IEEE80211_C_WME;
954 	/*
955 	 * Check for misc other capabilities.
956 	 */
957 	if (ath_hal_hasbursting(ah))
958 		ic->ic_caps |= IEEE80211_C_BURST;
959 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
960 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
961 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
962 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
963 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
964 	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
965 	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
966 	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
967 
968 	if (ath_hal_hasfastframes(ah))
969 		ic->ic_caps |= IEEE80211_C_FF;
970 	wmodes = ath_hal_getwirelessmodes(ah);
971 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
972 		ic->ic_caps |= IEEE80211_C_TURBOP;
973 #ifdef IEEE80211_SUPPORT_TDMA
974 	if (ath_hal_macversion(ah) > 0x78) {
975 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
976 		ic->ic_tdma_update = ath_tdma_update;
977 	}
978 #endif
979 
980 	/*
981 	 * TODO: enforce that at least this many frames are available
982 	 * in the txbuf list before allowing data frames (raw or
983 	 * otherwise) to be transmitted.
984 	 */
985 	sc->sc_txq_data_minfree = 10;
986 	/*
987 	 * Leave this as default to maintain legacy behaviour.
988 	 * Shortening the cabq/mcastq may end up causing some
989 	 * undesirable behaviour.
990 	 */
991 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
992 
993 	/*
994 	 * How deep can the node software TX queue get whilst it's asleep.
995 	 */
996 	sc->sc_txq_node_psq_maxdepth = 16;
997 
998 	/*
999 	 * Default the maximum queue depth for a given node
1000 	 * to 1/4'th the TX buffers, or 64, whichever
1001 	 * is larger.
1002 	 */
1003 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
1004 
1005 	/* Enable CABQ by default */
1006 	sc->sc_cabq_enable = 1;
1007 
1008 	/*
1009 	 * Allow the TX and RX chainmasks to be overridden by
1010 	 * environment variables and/or device.hints.
1011 	 *
1012 	 * This must be done early - before the hardware is
1013 	 * calibrated or before the 802.11n stream calculation
1014 	 * is done.
1015 	 */
1016 	if (resource_int_value(device_get_name(sc->sc_dev),
1017 	    device_get_unit(sc->sc_dev), "rx_chainmask",
1018 	    &rx_chainmask) == 0) {
1019 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1020 		    rx_chainmask);
1021 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1022 	}
1023 	if (resource_int_value(device_get_name(sc->sc_dev),
1024 	    device_get_unit(sc->sc_dev), "tx_chainmask",
1025 	    &tx_chainmask) == 0) {
1026 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1027 		    tx_chainmask);
1028 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1029 	}
1030 
1031 	/*
1032 	 * Query the TX/RX chainmask configuration.
1033 	 *
1034 	 * This is only relevant for 11n devices.
1035 	 */
1036 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1037 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1038 
1039 	/*
1040 	 * Disable MRR with protected frames by default.
1041 	 * Only 802.11n series NICs can handle this.
1042 	 */
1043 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1044 
1045 	/*
1046 	 * Query the enterprise mode information the HAL.
1047 	 */
1048 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1049 	    &sc->sc_ent_cfg) == HAL_OK)
1050 		sc->sc_use_ent = 1;
1051 
1052 #ifdef	ATH_ENABLE_11N
1053 	/*
1054 	 * Query HT capabilities
1055 	 */
1056 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1057 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1058 		uint32_t rxs, txs;
1059 
1060 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1061 
1062 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1063 
1064 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1065 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1066 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1067 			    | IEEE80211_HTCAP_MAXAMSDU_3839
1068 			    				/* max A-MSDU length */
1069 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1070 			;
1071 
1072 		/*
1073 		 * Enable short-GI for HT20 only if the hardware
1074 		 * advertises support.
1075 		 * Notably, anything earlier than the AR9287 doesn't.
1076 		 */
1077 		if ((ath_hal_getcapability(ah,
1078 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1079 		    (wmodes & HAL_MODE_HT20)) {
1080 			device_printf(sc->sc_dev,
1081 			    "[HT] enabling short-GI in 20MHz mode\n");
1082 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1083 		}
1084 
1085 		if (wmodes & HAL_MODE_HT40)
1086 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1087 			    |  IEEE80211_HTCAP_SHORTGI40;
1088 
1089 		/*
1090 		 * TX/RX streams need to be taken into account when
1091 		 * negotiating which MCS rates it'll receive and
1092 		 * what MCS rates are available for TX.
1093 		 */
1094 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1095 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1096 		ic->ic_txstream = txs;
1097 		ic->ic_rxstream = rxs;
1098 
1099 		/*
1100 		 * Setup TX and RX STBC based on what the HAL allows and
1101 		 * the currently configured chainmask set.
1102 		 * Ie - don't enable STBC TX if only one chain is enabled.
1103 		 * STBC RX is fine on a single RX chain; it just won't
1104 		 * provide any real benefit.
1105 		 */
1106 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1107 		    NULL) == HAL_OK) {
1108 			sc->sc_rx_stbc = 1;
1109 			device_printf(sc->sc_dev,
1110 			    "[HT] 1 stream STBC receive enabled\n");
1111 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1112 		}
1113 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1114 		    NULL) == HAL_OK) {
1115 			sc->sc_tx_stbc = 1;
1116 			device_printf(sc->sc_dev,
1117 			    "[HT] 1 stream STBC transmit enabled\n");
1118 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1119 		}
1120 
1121 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1122 		    &sc->sc_rts_aggr_limit);
1123 		if (sc->sc_rts_aggr_limit != (64 * 1024))
1124 			device_printf(sc->sc_dev,
1125 			    "[HT] RTS aggregates limited to %d KiB\n",
1126 			    sc->sc_rts_aggr_limit / 1024);
1127 
1128 		device_printf(sc->sc_dev,
1129 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1130 	}
1131 #endif
1132 
1133 	/*
1134 	 * Initial aggregation settings.
1135 	 */
1136 	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1137 	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1138 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1139 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1140 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1141 	sc->sc_delim_min_pad = 0;
1142 
1143 	/*
1144 	 * Check if the hardware requires PCI register serialisation.
1145 	 * Some of the Owl based MACs require this.
1146 	 */
1147 	if (ncpus > 1 &&
1148 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1149 	     0, NULL) == HAL_OK) {
1150 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1151 		device_printf(sc->sc_dev,
1152 		    "Enabling register serialisation\n");
1153 	}
1154 
1155 	/*
1156 	 * Initialise the deferred completed RX buffer list.
1157 	 */
1158 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1159 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1160 
1161 	/*
1162 	 * Indicate we need the 802.11 header padded to a
1163 	 * 32-bit boundary for 4-address and QoS frames.
1164 	 */
1165 	ic->ic_flags |= IEEE80211_F_DATAPAD;
1166 
1167 	/*
1168 	 * Query the hal about antenna support.
1169 	 */
1170 	sc->sc_defant = ath_hal_getdefantenna(ah);
1171 
1172 	/*
1173 	 * Not all chips have the VEOL support we want to
1174 	 * use with IBSS beacons; check here for it.
1175 	 */
1176 	sc->sc_hasveol = ath_hal_hasveol(ah);
1177 
1178 	/* get mac address from hardware */
1179 	ath_hal_getmac(ah, macaddr);
1180 	if (sc->sc_hasbmask)
1181 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1182 
1183 	/* NB: used to size node table key mapping array */
1184 	ic->ic_max_keyix = sc->sc_keymax;
1185 	/* Call MI attach routine. */
1186 	ieee80211_ifattach(ic, macaddr);
1187 	ic->ic_setregdomain = ath_setregdomain;
1188 	ic->ic_getradiocaps = ath_getradiocaps;
1189 	sc->sc_opmode = HAL_M_STA;
1190 
1191 	/* override default methods */
1192 	ic->ic_newassoc = ath_newassoc;
1193 	ic->ic_updateslot = ath_updateslot;
1194 	ic->ic_wme.wme_update = ath_wme_update;
1195 	ic->ic_vap_create = ath_vap_create;
1196 	ic->ic_vap_delete = ath_vap_delete;
1197 	ic->ic_raw_xmit = ath_raw_xmit;
1198 	ic->ic_update_mcast = ath_update_mcast;
1199 	ic->ic_update_promisc = ath_update_promisc;
1200 	ic->ic_node_alloc = ath_node_alloc;
1201 	sc->sc_node_free = ic->ic_node_free;
1202 	ic->ic_node_free = ath_node_free;
1203 	sc->sc_node_cleanup = ic->ic_node_cleanup;
1204 	ic->ic_node_cleanup = ath_node_cleanup;
1205 	ic->ic_node_getsignal = ath_node_getsignal;
1206 	ic->ic_scan_start = ath_scan_start;
1207 	ic->ic_scan_end = ath_scan_end;
1208 	ic->ic_set_channel = ath_set_channel;
1209 #ifdef	ATH_ENABLE_11N
1210 	/* 802.11n specific - but just override anyway */
1211 	sc->sc_addba_request = ic->ic_addba_request;
1212 	sc->sc_addba_response = ic->ic_addba_response;
1213 	sc->sc_addba_stop = ic->ic_addba_stop;
1214 	sc->sc_bar_response = ic->ic_bar_response;
1215 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1216 
1217 	ic->ic_addba_request = ath_addba_request;
1218 	ic->ic_addba_response = ath_addba_response;
1219 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1220 	ic->ic_addba_stop = ath_addba_stop;
1221 	ic->ic_bar_response = ath_bar_response;
1222 
1223 	ic->ic_update_chw = ath_update_chw;
1224 #endif	/* ATH_ENABLE_11N */
1225 
1226 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1227 	/*
1228 	 * There's one vendor bitmap entry in the RX radiotap
1229 	 * header; make sure that's taken into account.
1230 	 */
1231 	ieee80211_radiotap_attachv(ic,
1232 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1233 		ATH_TX_RADIOTAP_PRESENT,
1234 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1235 		ATH_RX_RADIOTAP_PRESENT);
1236 #else
1237 	/*
1238 	 * No vendor bitmap/extensions are present.
1239 	 */
1240 	ieee80211_radiotap_attach(ic,
1241 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1242 		ATH_TX_RADIOTAP_PRESENT,
1243 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1244 		ATH_RX_RADIOTAP_PRESENT);
1245 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1246 
1247 	/*
1248 	 * Setup the ALQ logging if required
1249 	 */
1250 #ifdef	ATH_DEBUG_ALQ
1251 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1252 	if_ath_alq_setcfg(&sc->sc_alq,
1253 	    sc->sc_ah->ah_macVersion,
1254 	    sc->sc_ah->ah_macRev,
1255 	    sc->sc_ah->ah_phyRev,
1256 	    sc->sc_ah->ah_magic);
1257 #endif
1258 
1259 	/*
1260 	 * Setup dynamic sysctl's now that country code and
1261 	 * regdomain are available from the hal.
1262 	 */
1263 	ath_sysctlattach(sc);
1264 	ath_sysctl_stats_attach(sc);
1265 	ath_sysctl_hal_attach(sc);
1266 
1267 	if (bootverbose)
1268 		ieee80211_announce(ic);
1269 	ath_announce(sc);
1270 
1271 	/*
1272 	 * Put it to sleep for now.
1273 	 */
1274 	ATH_LOCK(sc);
1275 	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1276 	ATH_UNLOCK(sc);
1277 
1278 	wlan_serialize_exit();
1279 
1280 	return 0;
1281 bad2:
1282 	ath_tx_cleanup(sc);
1283 	ath_desc_free(sc);
1284 	ath_txdma_teardown(sc);
1285 	ath_rxdma_teardown(sc);
1286 bad:
1287 	if (ah)
1288 		ath_hal_detach(ah);
1289 
1290 	/*
1291 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1292 	 */
1293 #if !defined(__DragonFly__)
1294 	if (ifp != NULL && ifp->if_vnet) {
1295 		CURVNET_SET(ifp->if_vnet);
1296 		if_free(ifp);
1297 		CURVNET_RESTORE();
1298 	} else
1299 #endif
1300 	if (ifp != NULL)
1301 		if_free(ifp);
1302 	sc->sc_invalid = 1;
1303 	wlan_serialize_exit();
1304 
1305 	return error;
1306 }
1307 
1308 int
1309 ath_detach(struct ath_softc *sc)
1310 {
1311 	struct ifnet *ifp = sc->sc_ifp;
1312 
1313 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1314 		__func__, ifp->if_flags);
1315 
1316 	/*
1317 	 * NB: the order of these is important:
1318 	 * o stop the chip so no more interrupts will fire
1319 	 * o call the 802.11 layer before detaching the hal to
1320 	 *   insure callbacks into the driver to delete global
1321 	 *   key cache entries can be handled
1322 	 * o free the taskqueue which drains any pending tasks
1323 	 * o reclaim the tx queue data structures after calling
1324 	 *   the 802.11 layer as we'll get called back to reclaim
1325 	 *   node state and potentially want to use them
1326 	 * o to cleanup the tx queues the hal is called, so detach
1327 	 *   it last
1328 	 * Other than that, it's straightforward...
1329 	 */
1330 
1331 	/*
1332 	 * XXX Wake the hardware up first.  ath_stop() will still
1333 	 * wake it up first, but I'd rather do it here just to
1334 	 * ensure it's awake.
1335 	 */
1336 	ATH_LOCK(sc);
1337 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1338 	ath_power_setpower(sc, HAL_PM_AWAKE);
1339 	ATH_UNLOCK(sc);
1340 
1341 	/*
1342 	 * Stop things cleanly.
1343 	 */
1344 	ath_stop(ifp);
1345 
1346 	wlan_serialize_enter();
1347 	ieee80211_ifdetach(ifp->if_l2com);
1348 	wlan_serialize_exit();
1349 	taskqueue_free(sc->sc_tq);
1350 #ifdef ATH_TX99_DIAG
1351 	if (sc->sc_tx99 != NULL)
1352 		sc->sc_tx99->detach(sc->sc_tx99);
1353 #endif
1354 	ath_rate_detach(sc->sc_rc);
1355 #ifdef	ATH_DEBUG_ALQ
1356 	if_ath_alq_tidyup(&sc->sc_alq);
1357 #endif
1358 	ath_lna_div_detach(sc);
1359 	ath_btcoex_detach(sc);
1360 	ath_spectral_detach(sc);
1361 	ath_dfs_detach(sc);
1362 	ath_desc_free(sc);
1363 	ath_txdma_teardown(sc);
1364 	ath_rxdma_teardown(sc);
1365 	ath_tx_cleanup(sc);
1366 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1367 
1368 	CURVNET_SET(ifp->if_vnet);
1369 	if_free(ifp);
1370 	CURVNET_RESTORE();
1371 
1372 	return 0;
1373 }
1374 
1375 /*
1376  * MAC address handling for multiple BSS on the same radio.
1377  * The first vap uses the MAC address from the EEPROM.  For
1378  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1379  * address and use the next six bits as an index.
1380  */
1381 static void
1382 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1383 {
1384 	int i;
1385 
1386 	if (clone && sc->sc_hasbmask) {
1387 		/* NB: we only do this if h/w supports multiple bssid */
1388 		for (i = 0; i < 8; i++)
1389 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1390 				break;
1391 		if (i != 0)
1392 			mac[0] |= (i << 2)|0x2;
1393 	} else
1394 		i = 0;
1395 	sc->sc_bssidmask |= 1<<i;
1396 	sc->sc_hwbssidmask[0] &= ~mac[0];
1397 	if (i == 0)
1398 		sc->sc_nbssid0++;
1399 }
1400 
1401 static void
1402 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1403 {
1404 	int i = mac[0] >> 2;
1405 	uint8_t mask;
1406 
1407 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1408 		sc->sc_bssidmask &= ~(1<<i);
1409 		/* recalculate bssid mask from remaining addresses */
1410 		mask = 0xff;
1411 		for (i = 1; i < 8; i++)
1412 			if (sc->sc_bssidmask & (1<<i))
1413 				mask &= ~((i<<2)|0x2);
1414 		sc->sc_hwbssidmask[0] |= mask;
1415 	}
1416 }
1417 
1418 /*
1419  * Assign a beacon xmit slot.  We try to space out
1420  * assignments so when beacons are staggered the
1421  * traffic coming out of the cab q has maximal time
1422  * to go out before the next beacon is scheduled.
1423  */
1424 static int
1425 assign_bslot(struct ath_softc *sc)
1426 {
1427 	u_int slot, free;
1428 
1429 	free = 0;
1430 	for (slot = 0; slot < ATH_BCBUF; slot++)
1431 		if (sc->sc_bslot[slot] == NULL) {
1432 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1433 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1434 				return slot;
1435 			free = slot;
1436 			/* NB: keep looking for a double slot */
1437 		}
1438 	return free;
1439 }
1440 
1441 static struct ieee80211vap *
1442 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1443     enum ieee80211_opmode opmode, int flags,
1444     const uint8_t bssid[IEEE80211_ADDR_LEN],
1445     const uint8_t mac0[IEEE80211_ADDR_LEN])
1446 {
1447 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1448 	struct ath_vap *avp;
1449 	struct ieee80211vap *vap;
1450 	uint8_t mac[IEEE80211_ADDR_LEN];
1451 	int needbeacon, error;
1452 	enum ieee80211_opmode ic_opmode;
1453 
1454 	avp = kmalloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1455 	needbeacon = 0;
1456 	IEEE80211_ADDR_COPY(mac, mac0);
1457 
1458 	ATH_LOCK(sc);
1459 	ic_opmode = opmode;		/* default to opmode of new vap */
1460 	switch (opmode) {
1461 	case IEEE80211_M_STA:
1462 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1463 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1464 			goto bad;
1465 		}
1466 		if (sc->sc_nvaps) {
1467 			/*
1468 			 * With multiple vaps we must fall back
1469 			 * to s/w beacon miss handling.
1470 			 */
1471 			flags |= IEEE80211_CLONE_NOBEACONS;
1472 		}
1473 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1474 			/*
1475 			 * Station mode w/o beacons are implemented w/ AP mode.
1476 			 */
1477 			ic_opmode = IEEE80211_M_HOSTAP;
1478 		}
1479 		break;
1480 	case IEEE80211_M_IBSS:
1481 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1482 			device_printf(sc->sc_dev,
1483 			    "only 1 ibss vap supported\n");
1484 			goto bad;
1485 		}
1486 		needbeacon = 1;
1487 		break;
1488 	case IEEE80211_M_AHDEMO:
1489 #ifdef IEEE80211_SUPPORT_TDMA
1490 		if (flags & IEEE80211_CLONE_TDMA) {
1491 			if (sc->sc_nvaps != 0) {
1492 				device_printf(sc->sc_dev,
1493 				    "only 1 tdma vap supported\n");
1494 				goto bad;
1495 			}
1496 			needbeacon = 1;
1497 			flags |= IEEE80211_CLONE_NOBEACONS;
1498 		}
1499 		/* fall thru... */
1500 #endif
1501 	case IEEE80211_M_MONITOR:
1502 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1503 			/*
1504 			 * Adopt existing mode.  Adding a monitor or ahdemo
1505 			 * vap to an existing configuration is of dubious
1506 			 * value but should be ok.
1507 			 */
1508 			/* XXX not right for monitor mode */
1509 			ic_opmode = ic->ic_opmode;
1510 		}
1511 		break;
1512 	case IEEE80211_M_HOSTAP:
1513 	case IEEE80211_M_MBSS:
1514 		needbeacon = 1;
1515 		break;
1516 	case IEEE80211_M_WDS:
1517 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1518 			device_printf(sc->sc_dev,
1519 			    "wds not supported in sta mode\n");
1520 			goto bad;
1521 		}
1522 		/*
1523 		 * Silently remove any request for a unique
1524 		 * bssid; WDS vap's always share the local
1525 		 * mac address.
1526 		 */
1527 		flags &= ~IEEE80211_CLONE_BSSID;
1528 		if (sc->sc_nvaps == 0)
1529 			ic_opmode = IEEE80211_M_HOSTAP;
1530 		else
1531 			ic_opmode = ic->ic_opmode;
1532 		break;
1533 	default:
1534 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1535 		goto bad;
1536 	}
1537 	/*
1538 	 * Check that a beacon buffer is available; the code below assumes it.
1539 	 */
1540 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1541 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1542 		goto bad;
1543 	}
1544 
1545 	/* STA, AHDEMO? */
1546 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1547 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1548 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1549 	}
1550 
1551 	vap = &avp->av_vap;
1552 	/* XXX can't hold mutex across if_alloc */
1553 	ATH_UNLOCK(sc);
1554 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1555 	    bssid, mac);
1556 	ATH_LOCK(sc);
1557 	if (error != 0) {
1558 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1559 		    __func__, error);
1560 		goto bad2;
1561 	}
1562 
1563 	/* h/w crypto support */
1564 	vap->iv_key_alloc = ath_key_alloc;
1565 	vap->iv_key_delete = ath_key_delete;
1566 	vap->iv_key_set = ath_key_set;
1567 	vap->iv_key_update_begin = ath_key_update_begin;
1568 	vap->iv_key_update_end = ath_key_update_end;
1569 
1570 	/* override various methods */
1571 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1572 	vap->iv_recv_mgmt = ath_recv_mgmt;
1573 	vap->iv_reset = ath_reset_vap;
1574 	vap->iv_update_beacon = ath_beacon_update;
1575 	avp->av_newstate = vap->iv_newstate;
1576 	vap->iv_newstate = ath_newstate;
1577 	avp->av_bmiss = vap->iv_bmiss;
1578 	vap->iv_bmiss = ath_bmiss_vap;
1579 
1580 	avp->av_node_ps = vap->iv_node_ps;
1581 	vap->iv_node_ps = ath_node_powersave;
1582 
1583 	avp->av_set_tim = vap->iv_set_tim;
1584 	vap->iv_set_tim = ath_node_set_tim;
1585 
1586 	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1587 	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1588 
1589 	/* Set default parameters */
1590 
1591 	/*
1592 	 * Anything earlier than some AR9300 series MACs don't
1593 	 * support a smaller MPDU density.
1594 	 */
1595 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1596 	/*
1597 	 * All NICs can handle the maximum size, however
1598 	 * AR5416 based MACs can only TX aggregates w/ RTS
1599 	 * protection when the total aggregate size is <= 8k.
1600 	 * However, for now that's enforced by the TX path.
1601 	 */
1602 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1603 
1604 	avp->av_bslot = -1;
1605 	if (needbeacon) {
1606 		/*
1607 		 * Allocate beacon state and setup the q for buffered
1608 		 * multicast frames.  We know a beacon buffer is
1609 		 * available because we checked above.
1610 		 */
1611 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1612 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1613 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1614 			/*
1615 			 * Assign the vap to a beacon xmit slot.  As above
1616 			 * this cannot fail to find a free one.
1617 			 */
1618 			avp->av_bslot = assign_bslot(sc);
1619 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1620 			    ("beacon slot %u not empty", avp->av_bslot));
1621 			sc->sc_bslot[avp->av_bslot] = vap;
1622 			sc->sc_nbcnvaps++;
1623 		}
1624 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1625 			/*
1626 			 * Multple vaps are to transmit beacons and we
1627 			 * have h/w support for TSF adjusting; enable
1628 			 * use of staggered beacons.
1629 			 */
1630 			sc->sc_stagbeacons = 1;
1631 		}
1632 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1633 	}
1634 
1635 	ic->ic_opmode = ic_opmode;
1636 	if (opmode != IEEE80211_M_WDS) {
1637 		sc->sc_nvaps++;
1638 		if (opmode == IEEE80211_M_STA)
1639 			sc->sc_nstavaps++;
1640 		if (opmode == IEEE80211_M_MBSS)
1641 			sc->sc_nmeshvaps++;
1642 	}
1643 	switch (ic_opmode) {
1644 	case IEEE80211_M_IBSS:
1645 		sc->sc_opmode = HAL_M_IBSS;
1646 		break;
1647 	case IEEE80211_M_STA:
1648 		sc->sc_opmode = HAL_M_STA;
1649 		break;
1650 	case IEEE80211_M_AHDEMO:
1651 #ifdef IEEE80211_SUPPORT_TDMA
1652 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1653 			sc->sc_tdma = 1;
1654 			/* NB: disable tsf adjust */
1655 			sc->sc_stagbeacons = 0;
1656 		}
1657 		/*
1658 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1659 		 * just ap mode.
1660 		 */
1661 		/* fall thru... */
1662 #endif
1663 	case IEEE80211_M_HOSTAP:
1664 	case IEEE80211_M_MBSS:
1665 		sc->sc_opmode = HAL_M_HOSTAP;
1666 		break;
1667 	case IEEE80211_M_MONITOR:
1668 		sc->sc_opmode = HAL_M_MONITOR;
1669 		break;
1670 	default:
1671 		/* XXX should not happen */
1672 		break;
1673 	}
1674 	if (sc->sc_hastsfadd) {
1675 		/*
1676 		 * Configure whether or not TSF adjust should be done.
1677 		 */
1678 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1679 	}
1680 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1681 		/*
1682 		 * Enable s/w beacon miss handling.
1683 		 */
1684 		sc->sc_swbmiss = 1;
1685 	}
1686 	ATH_UNLOCK(sc);
1687 
1688 	/* complete setup */
1689 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1690 	return vap;
1691 bad2:
1692 	reclaim_address(sc, mac);
1693 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1694 bad:
1695 	kfree(avp, M_80211_VAP);
1696 	ATH_UNLOCK(sc);
1697 	return NULL;
1698 }
1699 
1700 static void
1701 ath_vap_delete(struct ieee80211vap *vap)
1702 {
1703 	struct ieee80211com *ic = vap->iv_ic;
1704 	struct ifnet *ifp = ic->ic_ifp;
1705 	struct ath_softc *sc = ifp->if_softc;
1706 	struct ath_hal *ah = sc->sc_ah;
1707 	struct ath_vap *avp = ATH_VAP(vap);
1708 
1709 	ATH_LOCK(sc);
1710 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1711 	ATH_UNLOCK(sc);
1712 
1713 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1714 	if (ifp->if_flags & IFF_RUNNING) {
1715 		/*
1716 		 * Quiesce the hardware while we remove the vap.  In
1717 		 * particular we need to reclaim all references to
1718 		 * the vap state by any frames pending on the tx queues.
1719 		 */
1720 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1721 		/* XXX Do all frames from all vaps/nodes need draining here? */
1722 		ath_stoprecv(sc, 1);		/* stop recv side */
1723 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1724 	}
1725 
1726 	/* .. leave the hardware awake for now. */
1727 
1728 	ieee80211_vap_detach(vap);
1729 
1730 	/*
1731 	 * XXX Danger Will Robinson! Danger!
1732 	 *
1733 	 * Because ieee80211_vap_detach() can queue a frame (the station
1734 	 * diassociate message?) after we've drained the TXQ and
1735 	 * flushed the software TXQ, we will end up with a frame queued
1736 	 * to a node whose vap is about to be freed.
1737 	 *
1738 	 * To work around this, flush the hardware/software again.
1739 	 * This may be racy - the ath task may be running and the packet
1740 	 * may be being scheduled between sw->hw txq. Tsk.
1741 	 *
1742 	 * TODO: figure out why a new node gets allocated somewhere around
1743 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1744 	 * call!)
1745 	 */
1746 
1747 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1748 
1749 	ATH_LOCK(sc);
1750 	/*
1751 	 * Reclaim beacon state.  Note this must be done before
1752 	 * the vap instance is reclaimed as we may have a reference
1753 	 * to it in the buffer for the beacon frame.
1754 	 */
1755 	if (avp->av_bcbuf != NULL) {
1756 		if (avp->av_bslot != -1) {
1757 			sc->sc_bslot[avp->av_bslot] = NULL;
1758 			sc->sc_nbcnvaps--;
1759 		}
1760 		ath_beacon_return(sc, avp->av_bcbuf);
1761 		avp->av_bcbuf = NULL;
1762 		if (sc->sc_nbcnvaps == 0) {
1763 			sc->sc_stagbeacons = 0;
1764 			if (sc->sc_hastsfadd)
1765 				ath_hal_settsfadjust(sc->sc_ah, 0);
1766 		}
1767 		/*
1768 		 * Reclaim any pending mcast frames for the vap.
1769 		 */
1770 		ath_tx_draintxq(sc, &avp->av_mcastq);
1771 	}
1772 	/*
1773 	 * Update bookkeeping.
1774 	 */
1775 	if (vap->iv_opmode == IEEE80211_M_STA) {
1776 		sc->sc_nstavaps--;
1777 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1778 			sc->sc_swbmiss = 0;
1779 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1780 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1781 		reclaim_address(sc, vap->iv_myaddr);
1782 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1783 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1784 			sc->sc_nmeshvaps--;
1785 	}
1786 	if (vap->iv_opmode != IEEE80211_M_WDS)
1787 		sc->sc_nvaps--;
1788 #ifdef IEEE80211_SUPPORT_TDMA
1789 	/* TDMA operation ceases when the last vap is destroyed */
1790 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1791 		sc->sc_tdma = 0;
1792 		sc->sc_swbmiss = 0;
1793 	}
1794 #endif
1795 	kfree(avp, M_80211_VAP);
1796 
1797 	if (ifp->if_flags & IFF_RUNNING) {
1798 		/*
1799 		 * Restart rx+tx machines if still running (RUNNING will
1800 		 * be reset if we just destroyed the last vap).
1801 		 */
1802 		if (ath_startrecv(sc) != 0)
1803 			if_printf(ifp, "%s: unable to restart recv logic\n",
1804 			    __func__);
1805 		if (sc->sc_beacons) {		/* restart beacons */
1806 #ifdef IEEE80211_SUPPORT_TDMA
1807 			if (sc->sc_tdma)
1808 				ath_tdma_config(sc, NULL);
1809 			else
1810 #endif
1811 				ath_beacon_config(sc, NULL);
1812 		}
1813 		ath_hal_intrset(ah, sc->sc_imask);
1814 	}
1815 
1816 	/* Ok, let the hardware asleep. */
1817 	ath_power_restore_power_state(sc);
1818 	ATH_UNLOCK(sc);
1819 }
1820 
1821 void
1822 ath_suspend(struct ath_softc *sc)
1823 {
1824 	struct ifnet *ifp = sc->sc_ifp;
1825 	struct ieee80211com *ic = ifp->if_l2com;
1826 
1827 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1828 		__func__, ifp->if_flags);
1829 
1830 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1831 
1832 	ieee80211_suspend_all(ic);
1833 	/*
1834 	 * NB: don't worry about putting the chip in low power
1835 	 * mode; pci will power off our socket on suspend and
1836 	 * CardBus detaches the device.
1837 	 *
1838 	 * XXX TODO: well, that's great, except for non-cardbus
1839 	 * devices!
1840 	 */
1841 
1842 	/*
1843 	 * XXX This doesn't wait until all pending taskqueue
1844 	 * items and parallel transmit/receive/other threads
1845 	 * are running!
1846 	 */
1847 	ath_hal_intrset(sc->sc_ah, 0);
1848 	taskqueue_block(sc->sc_tq);
1849 
1850 	ATH_LOCK(sc);
1851 	callout_stop_sync(&sc->sc_cal_ch);
1852 	ATH_UNLOCK(sc);
1853 
1854 	/*
1855 	 * XXX ensure sc_invalid is 1
1856 	 */
1857 
1858 	/* Disable the PCIe PHY, complete with workarounds */
1859 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1860 }
1861 
1862 /*
1863  * Reset the key cache since some parts do not reset the
1864  * contents on resume.  First we clear all entries, then
1865  * re-load keys that the 802.11 layer assumes are setup
1866  * in h/w.
1867  */
1868 static void
1869 ath_reset_keycache(struct ath_softc *sc)
1870 {
1871 	struct ifnet *ifp = sc->sc_ifp;
1872 	struct ieee80211com *ic = ifp->if_l2com;
1873 	struct ath_hal *ah = sc->sc_ah;
1874 	int i;
1875 
1876 	ATH_LOCK(sc);
1877 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1878 	for (i = 0; i < sc->sc_keymax; i++)
1879 		ath_hal_keyreset(ah, i);
1880 	ath_power_restore_power_state(sc);
1881 	ATH_UNLOCK(sc);
1882 	ieee80211_crypto_reload_keys(ic);
1883 }
1884 
1885 /*
1886  * Fetch the current chainmask configuration based on the current
1887  * operating channel and options.
1888  */
1889 static void
1890 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1891 {
1892 
1893 	/*
1894 	 * Set TX chainmask to the currently configured chainmask;
1895 	 * the TX chainmask depends upon the current operating mode.
1896 	 */
1897 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1898 	if (IEEE80211_IS_CHAN_HT(chan)) {
1899 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1900 	} else {
1901 		sc->sc_cur_txchainmask = 1;
1902 	}
1903 
1904 	DPRINTF(sc, ATH_DEBUG_RESET,
1905 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1906 	    __func__,
1907 	    sc->sc_cur_txchainmask,
1908 	    sc->sc_cur_rxchainmask);
1909 }
1910 
1911 void
1912 ath_resume(struct ath_softc *sc)
1913 {
1914 	struct ifnet *ifp = sc->sc_ifp;
1915 	struct ieee80211com *ic = ifp->if_l2com;
1916 	struct ath_hal *ah = sc->sc_ah;
1917 	HAL_STATUS status;
1918 
1919 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1920 		__func__, ifp->if_flags);
1921 
1922 	/* Re-enable PCIe, re-enable the PCIe bus */
1923 	ath_hal_enablepcie(ah, 0, 0);
1924 
1925 	/*
1926 	 * Must reset the chip before we reload the
1927 	 * keycache as we were powered down on suspend.
1928 	 */
1929 	ath_update_chainmasks(sc,
1930 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1931 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1932 	    sc->sc_cur_rxchainmask);
1933 
1934 	/* Ensure we set the current power state to on */
1935 	ATH_LOCK(sc);
1936 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1937 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1938 	ath_power_setpower(sc, HAL_PM_AWAKE);
1939 	ATH_UNLOCK(sc);
1940 
1941 	ath_hal_reset(ah, sc->sc_opmode,
1942 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1943 	    AH_FALSE, &status);
1944 	ath_reset_keycache(sc);
1945 
1946 	ATH_RX_LOCK(sc);
1947 	sc->sc_rx_stopped = 1;
1948 	sc->sc_rx_resetted = 1;
1949 	ATH_RX_UNLOCK(sc);
1950 
1951 	/* Let DFS at it in case it's a DFS channel */
1952 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1953 
1954 	/* Let spectral at in case spectral is enabled */
1955 	ath_spectral_enable(sc, ic->ic_curchan);
1956 
1957 	/*
1958 	 * Let bluetooth coexistence at in case it's needed for this channel
1959 	 */
1960 	ath_btcoex_enable(sc, ic->ic_curchan);
1961 
1962 	/*
1963 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1964 	 * support it.
1965 	 */
1966 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1967 		ath_hal_setenforcetxop(sc->sc_ah, 1);
1968 	else
1969 		ath_hal_setenforcetxop(sc->sc_ah, 0);
1970 
1971 	/* Restore the LED configuration */
1972 	ath_led_config(sc);
1973 	ath_hal_setledstate(ah, HAL_LED_INIT);
1974 
1975 	if (sc->sc_resume_up)
1976 		ieee80211_resume_all(ic);
1977 
1978 	ATH_LOCK(sc);
1979 	ath_power_restore_power_state(sc);
1980 	ATH_UNLOCK(sc);
1981 
1982 	/* XXX beacons ? */
1983 }
1984 
1985 void
1986 ath_shutdown(struct ath_softc *sc)
1987 {
1988 	struct ifnet *ifp = sc->sc_ifp;
1989 
1990 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1991 		__func__, ifp->if_flags);
1992 
1993 	ath_stop(ifp);
1994 	/* NB: no point powering down chip as we're about to reboot */
1995 }
1996 
1997 /*
1998  * Interrupt handler.  Most of the actual processing is deferred.
1999  */
2000 void
2001 ath_intr(void *arg)
2002 {
2003 	struct ath_softc *sc = arg;
2004 	struct ifnet *ifp = sc->sc_ifp;
2005 	struct ath_hal *ah = sc->sc_ah;
2006 	HAL_INT status = 0;
2007 	uint32_t txqs;
2008 
2009 	/*
2010 	 * If we're inside a reset path, just print a warning and
2011 	 * clear the ISR. The reset routine will finish it for us.
2012 	 */
2013 	ATH_PCU_LOCK(sc);
2014 	if (sc->sc_inreset_cnt) {
2015 		HAL_INT status;
2016 		ath_hal_getisr(ah, &status);	/* clear ISR */
2017 		ath_hal_intrset(ah, 0);		/* disable further intr's */
2018 		DPRINTF(sc, ATH_DEBUG_ANY,
2019 		    "%s: in reset, ignoring: status=0x%x\n",
2020 		    __func__, status);
2021 		ATH_PCU_UNLOCK(sc);
2022 		return;
2023 	}
2024 
2025 	if (sc->sc_invalid) {
2026 		/*
2027 		 * The hardware is not ready/present, don't touch anything.
2028 		 * Note this can happen early on if the IRQ is shared.
2029 		 */
2030 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2031 		ATH_PCU_UNLOCK(sc);
2032 		return;
2033 	}
2034 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2035 		ATH_PCU_UNLOCK(sc);
2036 		return;
2037 	}
2038 
2039 	ATH_LOCK(sc);
2040 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2041 	ATH_UNLOCK(sc);
2042 
2043 	if ((ifp->if_flags & IFF_UP) == 0 ||
2044 	    (ifp->if_flags & IFF_RUNNING) == 0) {
2045 		HAL_INT status;
2046 
2047 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2048 			__func__, ifp->if_flags);
2049 		ath_hal_getisr(ah, &status);	/* clear ISR */
2050 		ath_hal_intrset(ah, 0);		/* disable further intr's */
2051 		ATH_PCU_UNLOCK(sc);
2052 
2053 		ATH_LOCK(sc);
2054 		ath_power_restore_power_state(sc);
2055 		ATH_UNLOCK(sc);
2056 		return;
2057 	}
2058 
2059 	/*
2060 	 * Figure out the reason(s) for the interrupt.  Note
2061 	 * that the hal returns a pseudo-ISR that may include
2062 	 * bits we haven't explicitly enabled so we mask the
2063 	 * value to insure we only process bits we requested.
2064 	 */
2065 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2066 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2067 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2068 #ifdef	ATH_DEBUG_ALQ
2069 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2070 	    ah->ah_syncstate);
2071 #endif	/* ATH_DEBUG_ALQ */
2072 #ifdef	ATH_KTR_INTR_DEBUG
2073 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2074 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2075 	    ah->ah_intrstate[0],
2076 	    ah->ah_intrstate[1],
2077 	    ah->ah_intrstate[2],
2078 	    ah->ah_intrstate[3],
2079 	    ah->ah_intrstate[6]);
2080 #endif
2081 
2082 	/* Squirrel away SYNC interrupt debugging */
2083 	if (ah->ah_syncstate != 0) {
2084 		int i;
2085 		for (i = 0; i < 32; i++)
2086 			if (ah->ah_syncstate & (i << i))
2087 				sc->sc_intr_stats.sync_intr[i]++;
2088 	}
2089 
2090 	status &= sc->sc_imask;			/* discard unasked for bits */
2091 
2092 	/* Short-circuit un-handled interrupts */
2093 	if (status == 0x0) {
2094 		ATH_PCU_UNLOCK(sc);
2095 
2096 		ATH_LOCK(sc);
2097 		ath_power_restore_power_state(sc);
2098 		ATH_UNLOCK(sc);
2099 
2100 		return;
2101 	}
2102 
2103 	/*
2104 	 * Take a note that we're inside the interrupt handler, so
2105 	 * the reset routines know to wait.
2106 	 */
2107 	sc->sc_intr_cnt++;
2108 	ATH_PCU_UNLOCK(sc);
2109 
2110 	/*
2111 	 * Handle the interrupt. We won't run concurrent with the reset
2112 	 * or channel change routines as they'll wait for sc_intr_cnt
2113 	 * to be 0 before continuing.
2114 	 */
2115 	if (status & HAL_INT_FATAL) {
2116 		sc->sc_stats.ast_hardware++;
2117 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2118 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2119 	} else {
2120 		if (status & HAL_INT_SWBA) {
2121 			/*
2122 			 * Software beacon alert--time to send a beacon.
2123 			 * Handle beacon transmission directly; deferring
2124 			 * this is too slow to meet timing constraints
2125 			 * under load.
2126 			 */
2127 #ifdef IEEE80211_SUPPORT_TDMA
2128 			if (sc->sc_tdma) {
2129 				if (sc->sc_tdmaswba == 0) {
2130 					struct ieee80211com *ic = ifp->if_l2com;
2131 					struct ieee80211vap *vap =
2132 					    TAILQ_FIRST(&ic->ic_vaps);
2133 					ath_tdma_beacon_send(sc, vap);
2134 					sc->sc_tdmaswba =
2135 					    vap->iv_tdma->tdma_bintval;
2136 				} else
2137 					sc->sc_tdmaswba--;
2138 			} else
2139 #endif
2140 			{
2141 				ath_beacon_proc(sc, 0);
2142 #ifdef IEEE80211_SUPPORT_SUPERG
2143 				/*
2144 				 * Schedule the rx taskq in case there's no
2145 				 * traffic so any frames held on the staging
2146 				 * queue are aged and potentially flushed.
2147 				 */
2148 				sc->sc_rx.recv_sched(sc, 1);
2149 #endif
2150 			}
2151 		}
2152 		if (status & HAL_INT_RXEOL) {
2153 			int imask;
2154 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2155 			if (! sc->sc_isedma) {
2156 				ATH_PCU_LOCK(sc);
2157 				/*
2158 				 * NB: the hardware should re-read the link when
2159 				 *     RXE bit is written, but it doesn't work at
2160 				 *     least on older hardware revs.
2161 				 */
2162 				sc->sc_stats.ast_rxeol++;
2163 				/*
2164 				 * Disable RXEOL/RXORN - prevent an interrupt
2165 				 * storm until the PCU logic can be reset.
2166 				 * In case the interface is reset some other
2167 				 * way before "sc_kickpcu" is called, don't
2168 				 * modify sc_imask - that way if it is reset
2169 				 * by a call to ath_reset() somehow, the
2170 				 * interrupt mask will be correctly reprogrammed.
2171 				 */
2172 				imask = sc->sc_imask;
2173 				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2174 				ath_hal_intrset(ah, imask);
2175 				/*
2176 				 * Only blank sc_rxlink if we've not yet kicked
2177 				 * the PCU.
2178 				 *
2179 				 * This isn't entirely correct - the correct solution
2180 				 * would be to have a PCU lock and engage that for
2181 				 * the duration of the PCU fiddling; which would include
2182 				 * running the RX process. Otherwise we could end up
2183 				 * messing up the RX descriptor chain and making the
2184 				 * RX desc list much shorter.
2185 				 */
2186 				if (! sc->sc_kickpcu)
2187 					sc->sc_rxlink = NULL;
2188 				sc->sc_kickpcu = 1;
2189 				ATH_PCU_UNLOCK(sc);
2190 			}
2191 			/*
2192 			 * Enqueue an RX proc to handle whatever
2193 			 * is in the RX queue.
2194 			 * This will then kick the PCU if required.
2195 			 */
2196 			sc->sc_rx.recv_sched(sc, 1);
2197 		}
2198 		if (status & HAL_INT_TXURN) {
2199 			sc->sc_stats.ast_txurn++;
2200 			/* bump tx trigger level */
2201 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2202 		}
2203 		/*
2204 		 * Handle both the legacy and RX EDMA interrupt bits.
2205 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2206 		 */
2207 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2208 			sc->sc_stats.ast_rx_intr++;
2209 			sc->sc_rx.recv_sched(sc, 1);
2210 		}
2211 		if (status & HAL_INT_TX) {
2212 			sc->sc_stats.ast_tx_intr++;
2213 			/*
2214 			 * Grab all the currently set bits in the HAL txq bitmap
2215 			 * and blank them. This is the only place we should be
2216 			 * doing this.
2217 			 */
2218 			if (! sc->sc_isedma) {
2219 				ATH_PCU_LOCK(sc);
2220 				txqs = 0xffffffff;
2221 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2222 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2223 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2224 				    txqs,
2225 				    sc->sc_txq_active,
2226 				    sc->sc_txq_active | txqs);
2227 				sc->sc_txq_active |= txqs;
2228 				ATH_PCU_UNLOCK(sc);
2229 			}
2230 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2231 		}
2232 		if (status & HAL_INT_BMISS) {
2233 			sc->sc_stats.ast_bmiss++;
2234 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2235 		}
2236 		if (status & HAL_INT_GTT)
2237 			sc->sc_stats.ast_tx_timeout++;
2238 		if (status & HAL_INT_CST)
2239 			sc->sc_stats.ast_tx_cst++;
2240 		if (status & HAL_INT_MIB) {
2241 			sc->sc_stats.ast_mib++;
2242 			ATH_PCU_LOCK(sc);
2243 			/*
2244 			 * Disable interrupts until we service the MIB
2245 			 * interrupt; otherwise it will continue to fire.
2246 			 */
2247 			ath_hal_intrset(ah, 0);
2248 			/*
2249 			 * Let the hal handle the event.  We assume it will
2250 			 * clear whatever condition caused the interrupt.
2251 			 */
2252 			ath_hal_mibevent(ah, &sc->sc_halstats);
2253 			/*
2254 			 * Don't reset the interrupt if we've just
2255 			 * kicked the PCU, or we may get a nested
2256 			 * RXEOL before the rxproc has had a chance
2257 			 * to run.
2258 			 */
2259 			if (sc->sc_kickpcu == 0)
2260 				ath_hal_intrset(ah, sc->sc_imask);
2261 			ATH_PCU_UNLOCK(sc);
2262 		}
2263 		if (status & HAL_INT_RXORN) {
2264 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2265 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2266 			sc->sc_stats.ast_rxorn++;
2267 		}
2268 		if (status & HAL_INT_TSFOOR) {
2269 			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2270 			sc->sc_syncbeacon = 1;
2271 		}
2272 	}
2273 	ATH_PCU_LOCK(sc);
2274 	sc->sc_intr_cnt--;
2275 	ATH_PCU_UNLOCK(sc);
2276 
2277 	ATH_LOCK(sc);
2278 	ath_power_restore_power_state(sc);
2279 	ATH_UNLOCK(sc);
2280 }
2281 
2282 static void
2283 ath_fatal_proc(void *arg, int pending)
2284 {
2285 	struct ath_softc *sc = arg;
2286 	struct ifnet *ifp = sc->sc_ifp;
2287 	u_int32_t *state;
2288 	u_int32_t len;
2289 	void *sp;
2290 
2291 	if_printf(ifp, "hardware error; resetting\n");
2292 	/*
2293 	 * Fatal errors are unrecoverable.  Typically these
2294 	 * are caused by DMA errors.  Collect h/w state from
2295 	 * the hal so we can diagnose what's going on.
2296 	 */
2297 	wlan_serialize_enter();
2298 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2299 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2300 		state = sp;
2301 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
2302 		    state[0], state[1] , state[2], state[3],
2303 		    state[4], state[5]);
2304 	}
2305 	ath_reset(ifp, ATH_RESET_NOLOSS);
2306 	wlan_serialize_exit();
2307 }
2308 
2309 static void
2310 ath_bmiss_vap(struct ieee80211vap *vap)
2311 {
2312 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2313 
2314 	/*
2315 	 * Workaround phantom bmiss interrupts by sanity-checking
2316 	 * the time of our last rx'd frame.  If it is within the
2317 	 * beacon miss interval then ignore the interrupt.  If it's
2318 	 * truly a bmiss we'll get another interrupt soon and that'll
2319 	 * be dispatched up for processing.  Note this applies only
2320 	 * for h/w beacon miss events.
2321 	 */
2322 
2323 	/*
2324 	 * XXX TODO: Just read the TSF during the interrupt path;
2325 	 * that way we don't have to wake up again just to read it
2326 	 * again.
2327 	 */
2328 	ATH_LOCK(sc);
2329 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2330 	ATH_UNLOCK(sc);
2331 
2332 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2333 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
2334 		struct ath_softc *sc = ifp->if_softc;
2335 		u_int64_t lastrx = sc->sc_lastrx;
2336 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2337 		/* XXX should take a locked ref to iv_bss */
2338 		u_int bmisstimeout =
2339 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2340 
2341 		DPRINTF(sc, ATH_DEBUG_BEACON,
2342 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2343 		    __func__, (unsigned long long) tsf,
2344 		    (unsigned long long)(tsf - lastrx),
2345 		    (unsigned long long) lastrx, bmisstimeout);
2346 
2347 		if (tsf - lastrx <= bmisstimeout) {
2348 			sc->sc_stats.ast_bmiss_phantom++;
2349 
2350 			ATH_LOCK(sc);
2351 			ath_power_restore_power_state(sc);
2352 			ATH_UNLOCK(sc);
2353 
2354 			return;
2355 		}
2356 	}
2357 
2358 	/*
2359 	 * There's no need to keep the hardware awake during the call
2360 	 * to av_bmiss().
2361 	 */
2362 	ATH_LOCK(sc);
2363 	ath_power_restore_power_state(sc);
2364 	ATH_UNLOCK(sc);
2365 
2366 	/*
2367 	 * Attempt to force a beacon resync.
2368 	 */
2369 	sc->sc_syncbeacon = 1;
2370 
2371 	ATH_VAP(vap)->av_bmiss(vap);
2372 }
2373 
2374 /* XXX this needs a force wakeup! */
2375 int
2376 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2377 {
2378 	uint32_t rsize;
2379 	void *sp;
2380 
2381 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2382 		return 0;
2383 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2384 	*hangs = *(uint32_t *)sp;
2385 	return 1;
2386 }
2387 
2388 static void
2389 ath_bmiss_proc(void *arg, int pending)
2390 {
2391 	struct ath_softc *sc = arg;
2392 	struct ifnet *ifp = sc->sc_ifp;
2393 	uint32_t hangs;
2394 
2395 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2396 
2397 	ATH_LOCK(sc);
2398 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2399 	ATH_UNLOCK(sc);
2400 
2401 	ath_beacon_miss(sc);
2402 
2403 	/*
2404 	 * Do a reset upon any becaon miss event.
2405 	 *
2406 	 * It may be a non-recognised RX clear hang which needs a reset
2407 	 * to clear.
2408 	 */
2409 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2410 		ath_reset(ifp, ATH_RESET_NOLOSS);
2411 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2412 	} else {
2413 		ath_reset(ifp, ATH_RESET_NOLOSS);
2414 		ieee80211_beacon_miss(ifp->if_l2com);
2415 	}
2416 
2417 	/* Force a beacon resync, in case they've drifted */
2418 	sc->sc_syncbeacon = 1;
2419 
2420 	ATH_LOCK(sc);
2421 	ath_power_restore_power_state(sc);
2422 	ATH_UNLOCK(sc);
2423 }
2424 
2425 /*
2426  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2427  * calcs together with WME.  If necessary disable the crypto
2428  * hardware and mark the 802.11 state so keys will be setup
2429  * with the MIC work done in software.
2430  */
2431 static void
2432 ath_settkipmic(struct ath_softc *sc)
2433 {
2434 	struct ifnet *ifp = sc->sc_ifp;
2435 	struct ieee80211com *ic = ifp->if_l2com;
2436 
2437 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2438 		if (ic->ic_flags & IEEE80211_F_WME) {
2439 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2440 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2441 		} else {
2442 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2443 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2444 		}
2445 	}
2446 }
2447 
2448 static void
2449 ath_init(void *arg)
2450 {
2451 	struct ath_softc *sc = (struct ath_softc *) arg;
2452 	struct ifnet *ifp = sc->sc_ifp;
2453 	struct ieee80211com *ic = ifp->if_l2com;
2454 	struct ath_hal *ah = sc->sc_ah;
2455 	HAL_STATUS status;
2456 
2457 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2458 		__func__, ifp->if_flags);
2459 
2460 	ATH_LOCK(sc);
2461 	/*
2462 	 * Force the sleep state awake.
2463 	 */
2464 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2465 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2466 	ath_power_setpower(sc, HAL_PM_AWAKE);
2467 
2468 	/*
2469 	 * Stop anything previously setup.  This is safe
2470 	 * whether this is the first time through or not.
2471 	 */
2472 	ath_stop_locked(ifp);
2473 
2474 	/*
2475 	 * The basic interface to setting the hardware in a good
2476 	 * state is ``reset''.  On return the hardware is known to
2477 	 * be powered up and with interrupts disabled.  This must
2478 	 * be followed by initialization of the appropriate bits
2479 	 * and then setup of the interrupt mask.
2480 	 */
2481 	ath_settkipmic(sc);
2482 	ath_update_chainmasks(sc, ic->ic_curchan);
2483 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2484 	    sc->sc_cur_rxchainmask);
2485 
2486 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2487 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2488 			status);
2489 		ATH_UNLOCK(sc);
2490 		return;
2491 	}
2492 
2493 	ATH_RX_LOCK(sc);
2494 	sc->sc_rx_stopped = 1;
2495 	sc->sc_rx_resetted = 1;
2496 	ATH_RX_UNLOCK(sc);
2497 
2498 	ath_chan_change(sc, ic->ic_curchan);
2499 
2500 	/* Let DFS at it in case it's a DFS channel */
2501 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2502 
2503 	/* Let spectral at in case spectral is enabled */
2504 	ath_spectral_enable(sc, ic->ic_curchan);
2505 
2506 	/*
2507 	 * Let bluetooth coexistence at in case it's needed for this channel
2508 	 */
2509 	ath_btcoex_enable(sc, ic->ic_curchan);
2510 
2511 	/*
2512 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2513 	 * support it.
2514 	 */
2515 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2516 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2517 	else
2518 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2519 
2520 	/*
2521 	 * Likewise this is set during reset so update
2522 	 * state cached in the driver.
2523 	 */
2524 	sc->sc_diversity = ath_hal_getdiversity(ah);
2525 	sc->sc_lastlongcal = 0;
2526 	sc->sc_resetcal = 1;
2527 	sc->sc_lastcalreset = 0;
2528 	sc->sc_lastani = 0;
2529 	sc->sc_lastshortcal = 0;
2530 	sc->sc_doresetcal = AH_FALSE;
2531 	/*
2532 	 * Beacon timers were cleared here; give ath_newstate()
2533 	 * a hint that the beacon timers should be poked when
2534 	 * things transition to the RUN state.
2535 	 */
2536 	sc->sc_beacons = 0;
2537 
2538 	/*
2539 	 * Setup the hardware after reset: the key cache
2540 	 * is filled as needed and the receive engine is
2541 	 * set going.  Frame transmit is handled entirely
2542 	 * in the frame output path; there's nothing to do
2543 	 * here except setup the interrupt mask.
2544 	 */
2545 	if (ath_startrecv(sc) != 0) {
2546 		if_printf(ifp, "unable to start recv logic\n");
2547 		ath_power_restore_power_state(sc);
2548 		ATH_UNLOCK(sc);
2549 		return;
2550 	}
2551 
2552 	/*
2553 	 * Enable interrupts.
2554 	 */
2555 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2556 		  | HAL_INT_RXORN | HAL_INT_TXURN
2557 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2558 
2559 	/*
2560 	 * Enable RX EDMA bits.  Note these overlap with
2561 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2562 	 */
2563 	if (sc->sc_isedma)
2564 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2565 
2566 	/*
2567 	 * If we're an EDMA NIC, we don't care about RXEOL.
2568 	 * Writing a new descriptor in will simply restart
2569 	 * RX DMA.
2570 	 */
2571 	if (! sc->sc_isedma)
2572 		sc->sc_imask |= HAL_INT_RXEOL;
2573 
2574 	/*
2575 	 * Enable MIB interrupts when there are hardware phy counters.
2576 	 * Note we only do this (at the moment) for station mode.
2577 	 */
2578 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2579 		sc->sc_imask |= HAL_INT_MIB;
2580 
2581 	/*
2582 	 * XXX add capability for this.
2583 	 *
2584 	 * If we're in STA mode (and maybe IBSS?) then register for
2585 	 * TSFOOR interrupts.
2586 	 */
2587 	if (ic->ic_opmode == IEEE80211_M_STA)
2588 		sc->sc_imask |= HAL_INT_TSFOOR;
2589 
2590 	/* Enable global TX timeout and carrier sense timeout if available */
2591 	if (ath_hal_gtxto_supported(ah))
2592 		sc->sc_imask |= HAL_INT_GTT;
2593 
2594 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2595 		__func__, sc->sc_imask);
2596 
2597 	ifp->if_flags |= IFF_RUNNING;
2598 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2599 	ath_hal_intrset(ah, sc->sc_imask);
2600 
2601 	ath_power_restore_power_state(sc);
2602 	ATH_UNLOCK(sc);
2603 
2604 #ifdef ATH_TX99_DIAG
2605 	if (sc->sc_tx99 != NULL)
2606 		sc->sc_tx99->start(sc->sc_tx99);
2607 	else
2608 #endif
2609 	ieee80211_start_all(ic);		/* start all vap's */
2610 }
2611 
2612 static void
2613 ath_stop_locked(struct ifnet *ifp)
2614 {
2615 	struct ath_softc *sc = ifp->if_softc;
2616 	struct ath_hal *ah = sc->sc_ah;
2617 
2618 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2619 		__func__, sc->sc_invalid, ifp->if_flags);
2620 
2621 	ATH_LOCK_ASSERT(sc);
2622 
2623 	/*
2624 	 * Wake the hardware up before fiddling with it.
2625 	 */
2626 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2627 
2628 	if (ifp->if_flags & IFF_RUNNING) {
2629 		/*
2630 		 * Shutdown the hardware and driver:
2631 		 *    reset 802.11 state machine
2632 		 *    turn off timers
2633 		 *    disable interrupts
2634 		 *    turn off the radio
2635 		 *    clear transmit machinery
2636 		 *    clear receive machinery
2637 		 *    drain and release tx queues
2638 		 *    reclaim beacon resources
2639 		 *    power down hardware
2640 		 *
2641 		 * Note that some of this work is not possible if the
2642 		 * hardware is gone (invalid).
2643 		 */
2644 #ifdef ATH_TX99_DIAG
2645 		if (sc->sc_tx99 != NULL)
2646 			sc->sc_tx99->stop(sc->sc_tx99);
2647 #endif
2648 		callout_stop_sync(&sc->sc_wd_ch);
2649 		sc->sc_wd_timer = 0;
2650 		ifp->if_flags &= ~IFF_RUNNING;
2651 		if (!sc->sc_invalid) {
2652 			if (sc->sc_softled) {
2653 				callout_stop_sync(&sc->sc_ledtimer);
2654 				ath_hal_gpioset(ah, sc->sc_ledpin,
2655 					!sc->sc_ledon);
2656 				sc->sc_blinking = 0;
2657 			}
2658 			ath_hal_intrset(ah, 0);
2659 		}
2660 		/* XXX we should stop RX regardless of whether it's valid */
2661 		if (!sc->sc_invalid) {
2662 			ath_stoprecv(sc, 1);
2663 			ath_hal_phydisable(ah);
2664 		} else
2665 			sc->sc_rxlink = NULL;
2666 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2667 		ath_beacon_free(sc);	/* XXX not needed */
2668 	}
2669 
2670 	/* And now, restore the current power state */
2671 	ath_power_restore_power_state(sc);
2672 }
2673 
2674 /*
2675  * Wait until all pending TX/RX has completed.
2676  *
2677  * This waits until all existing transmit, receive and interrupts
2678  * have completed.  It's assumed that the caller has first
2679  * grabbed the reset lock so it doesn't try to do overlapping
2680  * chip resets.
2681  */
2682 #define	MAX_TXRX_ITERATIONS	100
2683 static void
2684 ath_txrx_stop_locked(struct ath_softc *sc)
2685 {
2686 	int i = MAX_TXRX_ITERATIONS;
2687 
2688 	ATH_UNLOCK_ASSERT(sc);
2689 	ATH_PCU_LOCK_ASSERT(sc);
2690 
2691 	/*
2692 	 * Sleep until all the pending operations have completed.
2693 	 *
2694 	 * The caller must ensure that reset has been incremented
2695 	 * or the pending operations may continue being queued.
2696 	 */
2697 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2698 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2699 		if (i <= 0)
2700 			break;
2701 		if (wlan_is_serialized()) {
2702 			wlan_serialize_exit();
2703 			lksleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2704 				msecs_to_ticks(10));
2705 			wlan_serialize_enter();
2706 		} else {
2707 			lksleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2708 				msecs_to_ticks(10));
2709 		}
2710 		i--;
2711 	}
2712 
2713 	if (i <= 0)
2714 		device_printf(sc->sc_dev,
2715 		    "%s: didn't finish after %d iterations\n",
2716 		    __func__, MAX_TXRX_ITERATIONS);
2717 }
2718 #undef	MAX_TXRX_ITERATIONS
2719 
2720 #if 0
2721 static void
2722 ath_txrx_stop(struct ath_softc *sc)
2723 {
2724 	ATH_UNLOCK_ASSERT(sc);
2725 	ATH_PCU_UNLOCK_ASSERT(sc);
2726 
2727 	ATH_PCU_LOCK(sc);
2728 	ath_txrx_stop_locked(sc);
2729 	ATH_PCU_UNLOCK(sc);
2730 }
2731 #endif
2732 
2733 static void
2734 ath_txrx_start(struct ath_softc *sc)
2735 {
2736 
2737 	taskqueue_unblock(sc->sc_tq);
2738 }
2739 
2740 /*
2741  * Grab the reset lock, and wait around until noone else
2742  * is trying to do anything with it.
2743  *
2744  * This is totally horrible but we can't hold this lock for
2745  * long enough to do TX/RX or we end up with net80211/ip stack
2746  * LORs and eventual deadlock.
2747  *
2748  * "dowait" signals whether to spin, waiting for the reset
2749  * lock count to reach 0. This should (for now) only be used
2750  * during the reset path, as the rest of the code may not
2751  * be locking-reentrant enough to behave correctly.
2752  *
2753  * Another, cleaner way should be found to serialise all of
2754  * these operations.
2755  */
2756 #define	MAX_RESET_ITERATIONS	25
2757 static int
2758 ath_reset_grablock(struct ath_softc *sc, int dowait)
2759 {
2760 	int w = 0;
2761 	int i = MAX_RESET_ITERATIONS;
2762 
2763 	ATH_PCU_LOCK_ASSERT(sc);
2764 	do {
2765 		if (sc->sc_inreset_cnt == 0) {
2766 			w = 1;
2767 			break;
2768 		}
2769 		if (dowait == 0) {
2770 			w = 0;
2771 			break;
2772 		}
2773 		ATH_PCU_UNLOCK(sc);
2774 
2775 		/*
2776 		 * 1 tick is likely not enough time for long calibrations
2777 		 * to complete.  So we should wait quite a while.
2778 		 */
2779 #if defined(__DragonFly__)
2780 		tsleep(&sc->sc_inreset_cnt, 0,
2781 		       "ath_reset_grablock", (hz + 99) / 100);
2782 #else
2783 		pause("ath_reset_grablock", msecs_to_ticks(100));
2784 #endif
2785 		i--;
2786 		ATH_PCU_LOCK(sc);
2787 	} while (i > 0);
2788 
2789 	/*
2790 	 * We always increment the refcounter, regardless
2791 	 * of whether we succeeded to get it in an exclusive
2792 	 * way.
2793 	 */
2794 	sc->sc_inreset_cnt++;
2795 
2796 	if (i <= 0)
2797 		device_printf(sc->sc_dev,
2798 		    "%s: didn't finish after %d iterations\n",
2799 		    __func__, MAX_RESET_ITERATIONS);
2800 
2801 	if (w == 0)
2802 		device_printf(sc->sc_dev,
2803 		    "%s: warning, recursive reset path!\n",
2804 		    __func__);
2805 
2806 	return w;
2807 }
2808 #undef MAX_RESET_ITERATIONS
2809 
2810 /*
2811  * XXX TODO: write ath_reset_releaselock
2812  */
2813 
2814 static void
2815 ath_stop(struct ifnet *ifp)
2816 {
2817 	struct ath_softc *sc = ifp->if_softc;
2818 
2819 	ATH_LOCK(sc);
2820 	ath_stop_locked(ifp);
2821 	ATH_UNLOCK(sc);
2822 }
2823 
2824 /*
2825  * Reset the hardware w/o losing operational state.  This is
2826  * basically a more efficient way of doing ath_stop, ath_init,
2827  * followed by state transitions to the current 802.11
2828  * operational state.  Used to recover from various errors and
2829  * to reset or reload hardware state.
2830  */
2831 int
2832 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2833 {
2834 	struct ath_softc *sc = ifp->if_softc;
2835 	struct ieee80211com *ic = ifp->if_l2com;
2836 	struct ath_hal *ah = sc->sc_ah;
2837 	HAL_STATUS status;
2838 	int i;
2839 
2840 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2841 
2842 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2843 	ATH_PCU_UNLOCK_ASSERT(sc);
2844 	ATH_UNLOCK_ASSERT(sc);
2845 
2846 	/* Try to (stop any further TX/RX from occuring */
2847 	taskqueue_block(sc->sc_tq);
2848 
2849 	/*
2850 	 * Wake the hardware up.
2851 	 */
2852 	ATH_LOCK(sc);
2853 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2854 	ATH_UNLOCK(sc);
2855 
2856 	ATH_PCU_LOCK(sc);
2857 
2858 	/*
2859 	 * Grab the reset lock before TX/RX is stopped.
2860 	 *
2861 	 * This is needed to ensure that when the TX/RX actually does finish,
2862 	 * no further TX/RX/reset runs in parallel with this.
2863 	 */
2864 	if (ath_reset_grablock(sc, 1) == 0) {
2865 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2866 		    __func__);
2867 	}
2868 
2869 	/* disable interrupts */
2870 	ath_hal_intrset(ah, 0);
2871 
2872 	/*
2873 	 * Now, ensure that any in progress TX/RX completes before we
2874 	 * continue.
2875 	 */
2876 	ath_txrx_stop_locked(sc);
2877 
2878 	ATH_PCU_UNLOCK(sc);
2879 
2880 	/*
2881 	 * Regardless of whether we're doing a no-loss flush or
2882 	 * not, stop the PCU and handle what's in the RX queue.
2883 	 * That way frames aren't dropped which shouldn't be.
2884 	 */
2885 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2886 	ath_rx_flush(sc);
2887 
2888 	/*
2889 	 * Should now wait for pending TX/RX to complete
2890 	 * and block future ones from occuring. This needs to be
2891 	 * done before the TX queue is drained.
2892 	 */
2893 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2894 
2895 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2896 	/* NB: indicate channel change so we do a full reset */
2897 	ath_update_chainmasks(sc, ic->ic_curchan);
2898 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2899 	    sc->sc_cur_rxchainmask);
2900 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2901 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2902 			__func__, status);
2903 	sc->sc_diversity = ath_hal_getdiversity(ah);
2904 
2905 	ATH_RX_LOCK(sc);
2906 	sc->sc_rx_stopped = 1;
2907 	sc->sc_rx_resetted = 1;
2908 	ATH_RX_UNLOCK(sc);
2909 
2910 	/* Let DFS at it in case it's a DFS channel */
2911 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2912 
2913 	/* Let spectral at in case spectral is enabled */
2914 	ath_spectral_enable(sc, ic->ic_curchan);
2915 
2916 	/*
2917 	 * Let bluetooth coexistence at in case it's needed for this channel
2918 	 */
2919 	ath_btcoex_enable(sc, ic->ic_curchan);
2920 
2921 	/*
2922 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2923 	 * support it.
2924 	 */
2925 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2926 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2927 	else
2928 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2929 
2930 	if (ath_startrecv(sc) != 0)	/* restart recv */
2931 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2932 	/*
2933 	 * We may be doing a reset in response to an ioctl
2934 	 * that changes the channel so update any state that
2935 	 * might change as a result.
2936 	 */
2937 	ath_chan_change(sc, ic->ic_curchan);
2938 	if (sc->sc_beacons) {		/* restart beacons */
2939 #ifdef IEEE80211_SUPPORT_TDMA
2940 		if (sc->sc_tdma)
2941 			ath_tdma_config(sc, NULL);
2942 		else
2943 #endif
2944 			ath_beacon_config(sc, NULL);
2945 	}
2946 
2947 	/*
2948 	 * Release the reset lock and re-enable interrupts here.
2949 	 * If an interrupt was being processed in ath_intr(),
2950 	 * it would disable interrupts at this point. So we have
2951 	 * to atomically enable interrupts and decrement the
2952 	 * reset counter - this way ath_intr() doesn't end up
2953 	 * disabling interrupts without a corresponding enable
2954 	 * in the rest or channel change path.
2955 	 *
2956 	 * Grab the TX reference in case we need to transmit.
2957 	 * That way a parallel transmit doesn't.
2958 	 */
2959 	ATH_PCU_LOCK(sc);
2960 	sc->sc_inreset_cnt--;
2961 	sc->sc_txstart_cnt++;
2962 	/* XXX only do this if sc_inreset_cnt == 0? */
2963 	ath_hal_intrset(ah, sc->sc_imask);
2964 	ATH_PCU_UNLOCK(sc);
2965 
2966 	/*
2967 	 * TX and RX can be started here. If it were started with
2968 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2969 	 * Thus if this is a nested call through the reset or
2970 	 * channel change code, TX completion will occur but
2971 	 * RX completion and ath_start / ath_tx_start will not
2972 	 * run.
2973 	 */
2974 
2975 	/* Restart TX/RX as needed */
2976 	ath_txrx_start(sc);
2977 
2978 	/* XXX TODO: we need to hold the tx refcount here! */
2979 
2980 	/* Restart TX completion and pending TX */
2981 	if (reset_type == ATH_RESET_NOLOSS) {
2982 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2983 			if (ATH_TXQ_SETUP(sc, i)) {
2984 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2985 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2986 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2987 
2988 				ATH_TX_LOCK(sc);
2989 				ath_txq_sched(sc, &sc->sc_txq[i]);
2990 				ATH_TX_UNLOCK(sc);
2991 			}
2992 		}
2993 	}
2994 
2995 	/*
2996 	 * This may have been set during an ath_start() call which
2997 	 * set this once it detected a concurrent TX was going on.
2998 	 * So, clear it.
2999 	 */
3000 	IF_LOCK(&ifp->if_snd);
3001 #if defined(__DragonFly__)
3002 	ifq_clr_oactive(&ifp->if_snd);
3003 #else
3004 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3005 #endif
3006 	IF_UNLOCK(&ifp->if_snd);
3007 
3008 	ATH_LOCK(sc);
3009 	ath_power_restore_power_state(sc);
3010 	ATH_UNLOCK(sc);
3011 
3012 	ATH_PCU_LOCK(sc);
3013 	sc->sc_txstart_cnt--;
3014 	ATH_PCU_UNLOCK(sc);
3015 
3016 	/* Handle any frames in the TX queue */
3017 	/*
3018 	 * XXX should this be done by the caller, rather than
3019 	 * ath_reset() ?
3020 	 */
3021 	ath_tx_kick(sc);		/* restart xmit */
3022 	return 0;
3023 }
3024 
3025 static int
3026 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
3027 {
3028 	struct ieee80211com *ic = vap->iv_ic;
3029 	struct ifnet *ifp = ic->ic_ifp;
3030 	struct ath_softc *sc = ifp->if_softc;
3031 	struct ath_hal *ah = sc->sc_ah;
3032 
3033 	switch (cmd) {
3034 	case IEEE80211_IOC_TXPOWER:
3035 		/*
3036 		 * If per-packet TPC is enabled, then we have nothing
3037 		 * to do; otherwise we need to force the global limit.
3038 		 * All this can happen directly; no need to reset.
3039 		 */
3040 		if (!ath_hal_gettpc(ah))
3041 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
3042 		return 0;
3043 	}
3044 	/* XXX? Full or NOLOSS? */
3045 	return ath_reset(ifp, ATH_RESET_FULL);
3046 }
3047 
3048 struct ath_buf *
3049 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
3050 {
3051 	struct ath_buf *bf;
3052 
3053 	ATH_TXBUF_LOCK_ASSERT(sc);
3054 
3055 	if (btype == ATH_BUFTYPE_MGMT)
3056 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3057 	else
3058 		bf = TAILQ_FIRST(&sc->sc_txbuf);
3059 
3060 	if (bf == NULL) {
3061 		sc->sc_stats.ast_tx_getnobuf++;
3062 	} else {
3063 		if (bf->bf_flags & ATH_BUF_BUSY) {
3064 			sc->sc_stats.ast_tx_getbusybuf++;
3065 			bf = NULL;
3066 		}
3067 	}
3068 
3069 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3070 		if (btype == ATH_BUFTYPE_MGMT)
3071 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3072 		else {
3073 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3074 			sc->sc_txbuf_cnt--;
3075 
3076 			/*
3077 			 * This shuldn't happen; however just to be
3078 			 * safe print a warning and fudge the txbuf
3079 			 * count.
3080 			 */
3081 			if (sc->sc_txbuf_cnt < 0) {
3082 				device_printf(sc->sc_dev,
3083 				    "%s: sc_txbuf_cnt < 0?\n",
3084 				    __func__);
3085 				sc->sc_txbuf_cnt = 0;
3086 			}
3087 		}
3088 	} else
3089 		bf = NULL;
3090 
3091 	if (bf == NULL) {
3092 		/* XXX should check which list, mgmt or otherwise */
3093 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3094 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3095 			"out of xmit buffers" : "xmit buffer busy");
3096 		return NULL;
3097 	}
3098 
3099 	/* XXX TODO: should do this at buffer list initialisation */
3100 	/* XXX (then, ensure the buffer has the right flag set) */
3101 	bf->bf_flags = 0;
3102 	if (btype == ATH_BUFTYPE_MGMT)
3103 		bf->bf_flags |= ATH_BUF_MGMT;
3104 	else
3105 		bf->bf_flags &= (~ATH_BUF_MGMT);
3106 
3107 	/* Valid bf here; clear some basic fields */
3108 	bf->bf_next = NULL;	/* XXX just to be sure */
3109 	bf->bf_last = NULL;	/* XXX again, just to be sure */
3110 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3111 	bzero(&bf->bf_state, sizeof(bf->bf_state));
3112 
3113 	/*
3114 	 * Track the descriptor ID only if doing EDMA
3115 	 */
3116 	if (sc->sc_isedma) {
3117 		bf->bf_descid = sc->sc_txbuf_descid;
3118 		sc->sc_txbuf_descid++;
3119 	}
3120 
3121 	return bf;
3122 }
3123 
3124 /*
3125  * When retrying a software frame, buffers marked ATH_BUF_BUSY
3126  * can't be thrown back on the queue as they could still be
3127  * in use by the hardware.
3128  *
3129  * This duplicates the buffer, or returns NULL.
3130  *
3131  * The descriptor is also copied but the link pointers and
3132  * the DMA segments aren't copied; this frame should thus
3133  * be again passed through the descriptor setup/chain routines
3134  * so the link is correct.
3135  *
3136  * The caller must free the buffer using ath_freebuf().
3137  */
3138 struct ath_buf *
3139 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3140 {
3141 	struct ath_buf *tbf;
3142 
3143 	tbf = ath_getbuf(sc,
3144 	    (bf->bf_flags & ATH_BUF_MGMT) ?
3145 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3146 	if (tbf == NULL)
3147 		return NULL;	/* XXX failure? Why? */
3148 
3149 	/* Copy basics */
3150 	tbf->bf_next = NULL;
3151 	tbf->bf_nseg = bf->bf_nseg;
3152 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3153 	tbf->bf_status = bf->bf_status;
3154 	tbf->bf_m = bf->bf_m;
3155 	tbf->bf_node = bf->bf_node;
3156 	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3157 	/* will be setup by the chain/setup function */
3158 	tbf->bf_lastds = NULL;
3159 	/* for now, last == self */
3160 	tbf->bf_last = tbf;
3161 	tbf->bf_comp = bf->bf_comp;
3162 
3163 	/* NOTE: DMA segments will be setup by the setup/chain functions */
3164 
3165 	/* The caller has to re-init the descriptor + links */
3166 
3167 	/*
3168 	 * Free the DMA mapping here, before we NULL the mbuf.
3169 	 * We must only call bus_dmamap_unload() once per mbuf chain
3170 	 * or behaviour is undefined.
3171 	 */
3172 	if (bf->bf_m != NULL) {
3173 		/*
3174 		 * XXX is this POSTWRITE call required?
3175 		 */
3176 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3177 		    BUS_DMASYNC_POSTWRITE);
3178 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3179 	}
3180 
3181 	bf->bf_m = NULL;
3182 	bf->bf_node = NULL;
3183 
3184 	/* Copy state */
3185 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3186 
3187 	return tbf;
3188 }
3189 
3190 struct ath_buf *
3191 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3192 {
3193 	struct ath_buf *bf;
3194 
3195 	ATH_TXBUF_LOCK(sc);
3196 	bf = _ath_getbuf_locked(sc, btype);
3197 	/*
3198 	 * If a mgmt buffer was requested but we're out of those,
3199 	 * try requesting a normal one.
3200 	 */
3201 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3202 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3203 	ATH_TXBUF_UNLOCK(sc);
3204 	if (bf == NULL) {
3205 		struct ifnet *ifp = sc->sc_ifp;
3206 
3207 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3208 		sc->sc_stats.ast_tx_qstop++;
3209 		IF_LOCK(&ifp->if_snd);
3210 #if defined(__DragonFly__)
3211 		ifq_set_oactive(&ifp->if_snd);
3212 #else
3213 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3214 #endif
3215 		IF_UNLOCK(&ifp->if_snd);
3216 	}
3217 	return bf;
3218 }
3219 
3220 #if !defined(__DragonFly__)
3221 
3222 static void
3223 ath_qflush(struct ifnet *ifp)
3224 {
3225 
3226 	/* XXX TODO */
3227 }
3228 
3229 #endif
3230 
3231 /*
3232  * Transmit a single frame.
3233  *
3234  * net80211 will free the node reference if the transmit
3235  * fails, so don't free the node reference here.
3236  */
3237 static int
3238 ath_transmit(struct ifnet *ifp, struct mbuf *m)
3239 {
3240 	struct ieee80211com *ic = ifp->if_l2com;
3241 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3242 	struct ieee80211_node *ni;
3243 	struct mbuf *next;
3244 	struct ath_buf *bf;
3245 	ath_bufhead frags;
3246 	int retval = 0;
3247 
3248 	/*
3249 	 * Tell the reset path that we're currently transmitting.
3250 	 */
3251 	ATH_PCU_LOCK(sc);
3252 	if (sc->sc_inreset_cnt > 0) {
3253 		DPRINTF(sc, ATH_DEBUG_XMIT,
3254 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3255 		ATH_PCU_UNLOCK(sc);
3256 		IF_LOCK(&ifp->if_snd);
3257 		sc->sc_stats.ast_tx_qstop++;
3258 #if defined(__DragonFly__)
3259 		/* removed, DragonFly uses OACTIVE to control if_start calls */
3260 		/*ifq_set_oactive(&ifp->if_snd);*/
3261 #else
3262 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3263 #endif
3264 		IF_UNLOCK(&ifp->if_snd);
3265 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3266 #if defined(__DragonFly__)
3267 		m_freem(m);
3268 		m = NULL;
3269 #endif
3270 		return (ENOBUFS);	/* XXX should be EINVAL or? */
3271 	}
3272 	sc->sc_txstart_cnt++;
3273 	ATH_PCU_UNLOCK(sc);
3274 
3275 	/* Wake the hardware up already */
3276 	ATH_LOCK(sc);
3277 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3278 	ATH_UNLOCK(sc);
3279 
3280 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3281 	/*
3282 	 * Grab the TX lock - it's ok to do this here; we haven't
3283 	 * yet started transmitting.
3284 	 */
3285 	ATH_TX_LOCK(sc);
3286 
3287 	/*
3288 	 * Node reference, if there's one.
3289 	 */
3290 	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3291 
3292 	/*
3293 	 * Enforce how deep a node queue can get.
3294 	 *
3295 	 * XXX it would be nicer if we kept an mbuf queue per
3296 	 * node and only whacked them into ath_bufs when we
3297 	 * are ready to schedule some traffic from them.
3298 	 * .. that may come later.
3299 	 *
3300 	 * XXX we should also track the per-node hardware queue
3301 	 * depth so it is easy to limit the _SUM_ of the swq and
3302 	 * hwq frames.  Since we only schedule two HWQ frames
3303 	 * at a time, this should be OK for now.
3304 	 */
3305 	if ((!(m->m_flags & M_EAPOL)) &&
3306 	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3307 		sc->sc_stats.ast_tx_nodeq_overflow++;
3308 		m_freem(m);
3309 		m = NULL;
3310 		retval = ENOBUFS;
3311 		goto finish;
3312 	}
3313 
3314 	/*
3315 	 * Check how many TX buffers are available.
3316 	 *
3317 	 * If this is for non-EAPOL traffic, just leave some
3318 	 * space free in order for buffer cloning and raw
3319 	 * frame transmission to occur.
3320 	 *
3321 	 * If it's for EAPOL traffic, ignore this for now.
3322 	 * Management traffic will be sent via the raw transmit
3323 	 * method which bypasses this check.
3324 	 *
3325 	 * This is needed to ensure that EAPOL frames during
3326 	 * (re) keying have a chance to go out.
3327 	 *
3328 	 * See kern/138379 for more information.
3329 	 */
3330 	if ((!(m->m_flags & M_EAPOL)) &&
3331 	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3332 		sc->sc_stats.ast_tx_nobuf++;
3333 		m_freem(m);
3334 		m = NULL;
3335 		retval = ENOBUFS;
3336 		goto finish;
3337 	}
3338 
3339 	/*
3340 	 * Grab a TX buffer and associated resources.
3341 	 *
3342 	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3343 	 * That way even with temporary buffer exhaustion due to
3344 	 * the data path doesn't leave us without the ability
3345 	 * to transmit management frames.
3346 	 *
3347 	 * Otherwise allocate a normal buffer.
3348 	 */
3349 	if (m->m_flags & M_EAPOL)
3350 		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3351 	else
3352 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3353 
3354 	if (bf == NULL) {
3355 		/*
3356 		 * If we failed to allocate a buffer, fail.
3357 		 *
3358 		 * We shouldn't fail normally, due to the check
3359 		 * above.
3360 		 */
3361 		sc->sc_stats.ast_tx_nobuf++;
3362 		IF_LOCK(&ifp->if_snd);
3363 #if defined(__DragonFly__)
3364 		/* removed, DragonFly uses OACTIVE to control if_start calls */
3365 		/*ifq_set_oactive(&ifp->if_snd);*/
3366 #else
3367 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3368 #endif
3369 		IF_UNLOCK(&ifp->if_snd);
3370 		m_freem(m);
3371 		m = NULL;
3372 		retval = ENOBUFS;
3373 		goto finish;
3374 	}
3375 
3376 	/*
3377 	 * At this point we have a buffer; so we need to free it
3378 	 * if we hit any error conditions.
3379 	 */
3380 
3381 	/*
3382 	 * Check for fragmentation.  If this frame
3383 	 * has been broken up verify we have enough
3384 	 * buffers to send all the fragments so all
3385 	 * go out or none...
3386 	 */
3387 	TAILQ_INIT(&frags);
3388 	if ((m->m_flags & M_FRAG) &&
3389 	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3390 		DPRINTF(sc, ATH_DEBUG_XMIT,
3391 		    "%s: out of txfrag buffers\n", __func__);
3392 		sc->sc_stats.ast_tx_nofrag++;
3393 #if defined(__DragonFly__)
3394 		++ifp->if_oerrors;
3395 #else
3396 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3397 #endif
3398 		ath_freetx(m);
3399 		goto bad;
3400 	}
3401 
3402 	/*
3403 	 * At this point if we have any TX fragments, then we will
3404 	 * have bumped the node reference once for each of those.
3405 	 */
3406 
3407 	/*
3408 	 * XXX Is there anything actually _enforcing_ that the
3409 	 * fragments are being transmitted in one hit, rather than
3410 	 * being interleaved with other transmissions on that
3411 	 * hardware queue?
3412 	 *
3413 	 * The ATH TX output lock is the only thing serialising this
3414 	 * right now.
3415 	 */
3416 
3417 	/*
3418 	 * Calculate the "next fragment" length field in ath_buf
3419 	 * in order to let the transmit path know enough about
3420 	 * what to next write to the hardware.
3421 	 */
3422 	if (m->m_flags & M_FRAG) {
3423 		struct ath_buf *fbf = bf;
3424 		struct ath_buf *n_fbf = NULL;
3425 		struct mbuf *fm = m->m_nextpkt;
3426 
3427 		/*
3428 		 * We need to walk the list of fragments and set
3429 		 * the next size to the following buffer.
3430 		 * However, the first buffer isn't in the frag
3431 		 * list, so we have to do some gymnastics here.
3432 		 */
3433 		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3434 			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3435 			fbf = n_fbf;
3436 			fm = fm->m_nextpkt;
3437 		}
3438 	}
3439 
3440 	/*
3441 	 * Bump the ifp output counter.
3442 	 *
3443 	 * XXX should use atomics?
3444 	 */
3445 #if defined(__DragonFly__)
3446 	++ifp->if_opackets;
3447 #else
3448 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3449 #endif
3450 nextfrag:
3451 	/*
3452 	 * Pass the frame to the h/w for transmission.
3453 	 * Fragmented frames have each frag chained together
3454 	 * with m_nextpkt.  We know there are sufficient ath_buf's
3455 	 * to send all the frags because of work done by
3456 	 * ath_txfrag_setup.  We leave m_nextpkt set while
3457 	 * calling ath_tx_start so it can use it to extend the
3458 	 * the tx duration to cover the subsequent frag and
3459 	 * so it can reclaim all the mbufs in case of an error;
3460 	 * ath_tx_start clears m_nextpkt once it commits to
3461 	 * handing the frame to the hardware.
3462 	 *
3463 	 * Note: if this fails, then the mbufs are freed but
3464 	 * not the node reference.
3465 	 */
3466 	next = m->m_nextpkt;
3467 	if (ath_tx_start(sc, ni, bf, m)) {
3468 bad:
3469 #if defined(__DragonFly__)
3470 		++ifp->if_oerrors;
3471 #else
3472 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3473 #endif
3474 reclaim:
3475 		bf->bf_m = NULL;
3476 		bf->bf_node = NULL;
3477 		ATH_TXBUF_LOCK(sc);
3478 		ath_returnbuf_head(sc, bf);
3479 		/*
3480 		 * Free the rest of the node references and
3481 		 * buffers for the fragment list.
3482 		 */
3483 		ath_txfrag_cleanup(sc, &frags, ni);
3484 		ATH_TXBUF_UNLOCK(sc);
3485 		retval = ENOBUFS;
3486 		goto finish;
3487 	}
3488 
3489 	/*
3490 	 * Check here if the node is in power save state.
3491 	 */
3492 	ath_tx_update_tim(sc, ni, 1);
3493 
3494 	if (next != NULL) {
3495 		/*
3496 		 * Beware of state changing between frags.
3497 		 * XXX check sta power-save state?
3498 		 */
3499 		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3500 			DPRINTF(sc, ATH_DEBUG_XMIT,
3501 			    "%s: flush fragmented packet, state %s\n",
3502 			    __func__,
3503 			    ieee80211_state_name[ni->ni_vap->iv_state]);
3504 			/* XXX dmamap */
3505 			ath_freetx(next);
3506 			goto reclaim;
3507 		}
3508 		m = next;
3509 		bf = TAILQ_FIRST(&frags);
3510 		KASSERT(bf != NULL, ("no buf for txfrag"));
3511 		TAILQ_REMOVE(&frags, bf, bf_list);
3512 		goto nextfrag;
3513 	}
3514 
3515 	/*
3516 	 * Bump watchdog timer.
3517 	 */
3518 	sc->sc_wd_timer = 5;
3519 
3520 finish:
3521 	ATH_TX_UNLOCK(sc);
3522 
3523 	/*
3524 	 * Finished transmitting!
3525 	 */
3526 	ATH_PCU_LOCK(sc);
3527 	sc->sc_txstart_cnt--;
3528 	ATH_PCU_UNLOCK(sc);
3529 
3530 	/* Sleep the hardware if required */
3531 	ATH_LOCK(sc);
3532 	ath_power_restore_power_state(sc);
3533 	ATH_UNLOCK(sc);
3534 
3535 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3536 
3537 	return (retval);
3538 }
3539 
3540 static int
3541 ath_media_change(struct ifnet *ifp)
3542 {
3543 	int error = ieee80211_media_change(ifp);
3544 	/* NB: only the fixed rate can change and that doesn't need a reset */
3545 	return (error == ENETRESET ? 0 : error);
3546 }
3547 
3548 /*
3549  * Block/unblock tx+rx processing while a key change is done.
3550  * We assume the caller serializes key management operations
3551  * so we only need to worry about synchronization with other
3552  * uses that originate in the driver.
3553  */
3554 static void
3555 ath_key_update_begin(struct ieee80211vap *vap)
3556 {
3557 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3558 	struct ath_softc *sc = ifp->if_softc;
3559 
3560 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3561 	taskqueue_block(sc->sc_tq);
3562 }
3563 
3564 static void
3565 ath_key_update_end(struct ieee80211vap *vap)
3566 {
3567 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3568 	struct ath_softc *sc = ifp->if_softc;
3569 
3570 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3571 	taskqueue_unblock(sc->sc_tq);
3572 }
3573 
3574 static void
3575 ath_update_promisc(struct ifnet *ifp)
3576 {
3577 	struct ath_softc *sc = ifp->if_softc;
3578 	u_int32_t rfilt;
3579 
3580 	/* configure rx filter */
3581 	ATH_LOCK(sc);
3582 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3583 	rfilt = ath_calcrxfilter(sc);
3584 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3585 	ath_power_restore_power_state(sc);
3586 	ATH_UNLOCK(sc);
3587 
3588 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3589 }
3590 
3591 /*
3592  * Driver-internal mcast update call.
3593  *
3594  * Assumes the hardware is already awake.
3595  */
3596 static void
3597 ath_update_mcast_hw(struct ath_softc *sc)
3598 {
3599 	struct ifnet *ifp = sc->sc_ifp;
3600 	u_int32_t mfilt[2];
3601 
3602 	/* calculate and install multicast filter */
3603 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3604 		struct ifmultiaddr *ifma;
3605 		/*
3606 		 * Merge multicast addresses to form the hardware filter.
3607 		 */
3608 		mfilt[0] = mfilt[1] = 0;
3609 #if defined(__DragonFly__)
3610 		/* nothing */
3611 #else
3612 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3613 #endif
3614 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3615 			caddr_t dl;
3616 			u_int32_t val;
3617 			u_int8_t pos;
3618 
3619 			/* calculate XOR of eight 6bit values */
3620 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3621 			val = LE_READ_4(dl + 0);
3622 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3623 			val = LE_READ_4(dl + 3);
3624 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3625 			pos &= 0x3f;
3626 			mfilt[pos / 32] |= (1 << (pos % 32));
3627 		}
3628 #if defined(__DragonFly__)
3629 		/* nothing */
3630 #else
3631 		if_maddr_runlock(ifp);
3632 #endif
3633 	} else
3634 		mfilt[0] = mfilt[1] = ~0;
3635 
3636 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3637 
3638 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3639 		__func__, mfilt[0], mfilt[1]);
3640 }
3641 
3642 /*
3643  * Called from the net80211 layer - force the hardware
3644  * awake before operating.
3645  */
3646 static void
3647 ath_update_mcast(struct ifnet *ifp)
3648 {
3649 	struct ath_softc *sc = ifp->if_softc;
3650 
3651 	ATH_LOCK(sc);
3652 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3653 	ATH_UNLOCK(sc);
3654 
3655 	ath_update_mcast_hw(sc);
3656 
3657 	ATH_LOCK(sc);
3658 	ath_power_restore_power_state(sc);
3659 	ATH_UNLOCK(sc);
3660 }
3661 
3662 void
3663 ath_mode_init(struct ath_softc *sc)
3664 {
3665 	struct ifnet *ifp = sc->sc_ifp;
3666 	struct ath_hal *ah = sc->sc_ah;
3667 	u_int32_t rfilt;
3668 
3669 	/* configure rx filter */
3670 	rfilt = ath_calcrxfilter(sc);
3671 	ath_hal_setrxfilter(ah, rfilt);
3672 
3673 	/* configure operational mode */
3674 	ath_hal_setopmode(ah);
3675 
3676 #if !defined(__DragonFly__)
3677 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3678 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3679 	    __func__,
3680 	    ah,
3681 	    ifp,
3682 	    (ifp == NULL) ? NULL : ifp->if_addr);
3683 #endif
3684 
3685 	/* handle any link-level address change */
3686 	ath_hal_setmac(ah, IF_LLADDR(ifp));
3687 
3688 	/* calculate and install multicast filter */
3689 	ath_update_mcast_hw(sc);
3690 }
3691 
3692 /*
3693  * Set the slot time based on the current setting.
3694  */
3695 void
3696 ath_setslottime(struct ath_softc *sc)
3697 {
3698 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3699 	struct ath_hal *ah = sc->sc_ah;
3700 	u_int usec;
3701 
3702 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3703 		usec = 13;
3704 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3705 		usec = 21;
3706 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3707 		/* honor short/long slot time only in 11g */
3708 		/* XXX shouldn't honor on pure g or turbo g channel */
3709 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3710 			usec = HAL_SLOT_TIME_9;
3711 		else
3712 			usec = HAL_SLOT_TIME_20;
3713 	} else
3714 		usec = HAL_SLOT_TIME_9;
3715 
3716 	DPRINTF(sc, ATH_DEBUG_RESET,
3717 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3718 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3719 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3720 
3721 	/* Wake up the hardware first before updating the slot time */
3722 	ATH_LOCK(sc);
3723 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3724 	ath_hal_setslottime(ah, usec);
3725 	ath_power_restore_power_state(sc);
3726 	sc->sc_updateslot = OK;
3727 	ATH_UNLOCK(sc);
3728 }
3729 
3730 /*
3731  * Callback from the 802.11 layer to update the
3732  * slot time based on the current setting.
3733  */
3734 static void
3735 ath_updateslot(struct ifnet *ifp)
3736 {
3737 	struct ath_softc *sc = ifp->if_softc;
3738 	struct ieee80211com *ic = ifp->if_l2com;
3739 
3740 	/*
3741 	 * When not coordinating the BSS, change the hardware
3742 	 * immediately.  For other operation we defer the change
3743 	 * until beacon updates have propagated to the stations.
3744 	 *
3745 	 * XXX sc_updateslot isn't changed behind a lock?
3746 	 */
3747 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3748 	    ic->ic_opmode == IEEE80211_M_MBSS)
3749 		sc->sc_updateslot = UPDATE;
3750 	else
3751 		ath_setslottime(sc);
3752 }
3753 
3754 /*
3755  * Append the contents of src to dst; both queues
3756  * are assumed to be locked.
3757  */
3758 void
3759 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3760 {
3761 
3762 	ATH_TXQ_LOCK_ASSERT(src);
3763 	ATH_TXQ_LOCK_ASSERT(dst);
3764 
3765 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3766 	dst->axq_link = src->axq_link;
3767 	src->axq_link = NULL;
3768 	dst->axq_depth += src->axq_depth;
3769 	dst->axq_aggr_depth += src->axq_aggr_depth;
3770 	src->axq_depth = 0;
3771 	src->axq_aggr_depth = 0;
3772 }
3773 
3774 /*
3775  * Reset the hardware, with no loss.
3776  *
3777  * This can't be used for a general case reset.
3778  */
3779 static void
3780 ath_reset_proc(void *arg, int pending)
3781 {
3782 	struct ath_softc *sc = arg;
3783 	struct ifnet *ifp = sc->sc_ifp;
3784 
3785 #if 0
3786 	if_printf(ifp, "%s: resetting\n", __func__);
3787 #endif
3788 	wlan_serialize_enter();
3789 	ath_reset(ifp, ATH_RESET_NOLOSS);
3790 	wlan_serialize_exit();
3791 }
3792 
3793 /*
3794  * Reset the hardware after detecting beacons have stopped.
3795  */
3796 static void
3797 ath_bstuck_proc(void *arg, int pending)
3798 {
3799 	struct ath_softc *sc = arg;
3800 	struct ifnet *ifp = sc->sc_ifp;
3801 	uint32_t hangs = 0;
3802 
3803 	wlan_serialize_enter();
3804 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3805 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3806 
3807 #ifdef	ATH_DEBUG_ALQ
3808 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3809 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3810 #endif
3811 
3812 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3813 		sc->sc_bmisscount);
3814 	sc->sc_stats.ast_bstuck++;
3815 	/*
3816 	 * This assumes that there's no simultaneous channel mode change
3817 	 * occuring.
3818 	 */
3819 	ath_reset(ifp, ATH_RESET_NOLOSS);
3820 	wlan_serialize_exit();
3821 }
3822 
3823 static void
3824 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3825 {
3826 	bus_addr_t *paddr = (bus_addr_t*) arg;
3827 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3828 	*paddr = segs->ds_addr;
3829 }
3830 
3831 /*
3832  * Allocate the descriptors and appropriate DMA tag/setup.
3833  *
3834  * For some situations (eg EDMA TX completion), there isn't a requirement
3835  * for the ath_buf entries to be allocated.
3836  */
3837 int
3838 ath_descdma_alloc_desc(struct ath_softc *sc,
3839 	struct ath_descdma *dd, ath_bufhead *head,
3840 	const char *name, int ds_size, int ndesc)
3841 {
3842 #define	DS2PHYS(_dd, _ds) \
3843 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3844 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3845 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3846 	struct ifnet *ifp = sc->sc_ifp;
3847 	int error;
3848 
3849 	dd->dd_descsize = ds_size;
3850 
3851 	DPRINTF(sc, ATH_DEBUG_RESET,
3852 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3853 	    __func__, name, ndesc, dd->dd_descsize);
3854 
3855 	dd->dd_name = name;
3856 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3857 
3858 	/*
3859 	 * Merlin work-around:
3860 	 * Descriptors that cross the 4KB boundary can't be used.
3861 	 * Assume one skipped descriptor per 4KB page.
3862 	 */
3863 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3864 		int numpages = dd->dd_desc_len / 4096;
3865 		dd->dd_desc_len += ds_size * numpages;
3866 	}
3867 
3868 	/*
3869 	 * Setup DMA descriptor area.
3870 	 *
3871 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3872 	 * buffers for the descriptors themselves.
3873 	 */
3874 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3875 		       PAGE_SIZE, 0,		/* alignment, bounds */
3876 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3877 		       BUS_SPACE_MAXADDR,	/* highaddr */
3878 		       NULL, NULL,		/* filter, filterarg */
3879 		       dd->dd_desc_len,		/* maxsize */
3880 		       1,			/* nsegments */
3881 		       dd->dd_desc_len,		/* maxsegsize */
3882 		       0,			/* flags */
3883 #if !defined(__DragonFly__)
3884 		       NULL,			/* lockfunc */
3885 		       NULL,			/* lockarg */
3886 #endif
3887 		       &dd->dd_dmat);
3888 	if (error != 0) {
3889 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3890 		return error;
3891 	}
3892 
3893 	/* allocate descriptors */
3894 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3895 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3896 				 &dd->dd_dmamap);
3897 	if (error != 0) {
3898 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3899 			"error %u\n", ndesc, dd->dd_name, error);
3900 		goto fail1;
3901 	}
3902 
3903 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3904 				dd->dd_desc, dd->dd_desc_len,
3905 				ath_load_cb, &dd->dd_desc_paddr,
3906 				BUS_DMA_NOWAIT);
3907 	if (error != 0) {
3908 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3909 			dd->dd_name, error);
3910 		goto fail2;
3911 	}
3912 
3913 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3914 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3915 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3916 	    /*XXX*/ (u_long) dd->dd_desc_len);
3917 
3918 	return (0);
3919 
3920 fail2:
3921 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3922 fail1:
3923 	bus_dma_tag_destroy(dd->dd_dmat);
3924 	memset(dd, 0, sizeof(*dd));
3925 	return error;
3926 #undef DS2PHYS
3927 #undef ATH_DESC_4KB_BOUND_CHECK
3928 }
3929 
3930 int
3931 ath_descdma_setup(struct ath_softc *sc,
3932 	struct ath_descdma *dd, ath_bufhead *head,
3933 	const char *name, int ds_size, int nbuf, int ndesc)
3934 {
3935 #define	DS2PHYS(_dd, _ds) \
3936 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3937 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3938 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3939 	struct ifnet *ifp = sc->sc_ifp;
3940 	uint8_t *ds;
3941 	struct ath_buf *bf;
3942 	int i, bsize, error;
3943 
3944 	/* Allocate descriptors */
3945 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3946 	    nbuf * ndesc);
3947 
3948 	/* Assume any errors during allocation were dealt with */
3949 	if (error != 0) {
3950 		return (error);
3951 	}
3952 
3953 	ds = (uint8_t *) dd->dd_desc;
3954 
3955 	/* allocate rx buffers */
3956 	bsize = sizeof(struct ath_buf) * nbuf;
3957 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
3958 	if (bf == NULL) {
3959 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3960 			dd->dd_name, bsize);
3961 		goto fail3;
3962 	}
3963 	dd->dd_bufptr = bf;
3964 
3965 	TAILQ_INIT(head);
3966 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3967 		bf->bf_desc = (struct ath_desc *) ds;
3968 		bf->bf_daddr = DS2PHYS(dd, ds);
3969 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3970 			/*
3971 			 * Merlin WAR: Skip descriptor addresses which
3972 			 * cause 4KB boundary crossing along any point
3973 			 * in the descriptor.
3974 			 */
3975 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3976 			     dd->dd_descsize)) {
3977 				/* Start at the next page */
3978 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3979 				bf->bf_desc = (struct ath_desc *) ds;
3980 				bf->bf_daddr = DS2PHYS(dd, ds);
3981 			}
3982 		}
3983 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3984 				&bf->bf_dmamap);
3985 		if (error != 0) {
3986 			if_printf(ifp, "unable to create dmamap for %s "
3987 				"buffer %u, error %u\n", dd->dd_name, i, error);
3988 			ath_descdma_cleanup(sc, dd, head);
3989 			return error;
3990 		}
3991 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3992 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3993 	}
3994 
3995 	/*
3996 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3997 	 * allocation otherwise weird stuff will occur and crash your
3998 	 * machine.
3999 	 */
4000 	return 0;
4001 	/* XXX this should likely just call ath_descdma_cleanup() */
4002 fail3:
4003 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
4004 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
4005 	bus_dma_tag_destroy(dd->dd_dmat);
4006 	memset(dd, 0, sizeof(*dd));
4007 	return error;
4008 #undef DS2PHYS
4009 #undef ATH_DESC_4KB_BOUND_CHECK
4010 }
4011 
4012 /*
4013  * Allocate ath_buf entries but no descriptor contents.
4014  *
4015  * This is for RX EDMA where the descriptors are the header part of
4016  * the RX buffer.
4017  */
4018 int
4019 ath_descdma_setup_rx_edma(struct ath_softc *sc,
4020 	struct ath_descdma *dd, ath_bufhead *head,
4021 	const char *name, int nbuf, int rx_status_len)
4022 {
4023 	struct ifnet *ifp = sc->sc_ifp;
4024 	struct ath_buf *bf;
4025 	int i, bsize, error;
4026 
4027 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
4028 	    __func__, name, nbuf);
4029 
4030 	dd->dd_name = name;
4031 	/*
4032 	 * This is (mostly) purely for show.  We're not allocating any actual
4033 	 * descriptors here as EDMA RX has the descriptor be part
4034 	 * of the RX buffer.
4035 	 *
4036 	 * However, dd_desc_len is used by ath_descdma_free() to determine
4037 	 * whether we have already freed this DMA mapping.
4038 	 */
4039 	dd->dd_desc_len = rx_status_len * nbuf;
4040 	dd->dd_descsize = rx_status_len;
4041 
4042 	/* allocate rx buffers */
4043 	bsize = sizeof(struct ath_buf) * nbuf;
4044 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
4045 	if (bf == NULL) {
4046 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
4047 			dd->dd_name, bsize);
4048 		error = ENOMEM;
4049 		goto fail3;
4050 	}
4051 	dd->dd_bufptr = bf;
4052 
4053 	TAILQ_INIT(head);
4054 	for (i = 0; i < nbuf; i++, bf++) {
4055 		bf->bf_desc = NULL;
4056 		bf->bf_daddr = 0;
4057 		bf->bf_lastds = NULL;	/* Just an initial value */
4058 
4059 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
4060 				&bf->bf_dmamap);
4061 		if (error != 0) {
4062 			if_printf(ifp, "unable to create dmamap for %s "
4063 				"buffer %u, error %u\n", dd->dd_name, i, error);
4064 			ath_descdma_cleanup(sc, dd, head);
4065 			return error;
4066 		}
4067 		TAILQ_INSERT_TAIL(head, bf, bf_list);
4068 	}
4069 	return 0;
4070 fail3:
4071 	memset(dd, 0, sizeof(*dd));
4072 	return error;
4073 }
4074 
4075 void
4076 ath_descdma_cleanup(struct ath_softc *sc,
4077 	struct ath_descdma *dd, ath_bufhead *head)
4078 {
4079 	struct ath_buf *bf;
4080 	struct ieee80211_node *ni;
4081 	int do_warning = 0;
4082 
4083 	if (dd->dd_dmamap != 0) {
4084 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
4085 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
4086 		bus_dma_tag_destroy(dd->dd_dmat);
4087 	}
4088 
4089 	if (head != NULL) {
4090 		TAILQ_FOREACH(bf, head, bf_list) {
4091 			if (bf->bf_m) {
4092 				/*
4093 				 * XXX warn if there's buffers here.
4094 				 * XXX it should have been freed by the
4095 				 * owner!
4096 				 */
4097 
4098 				if (do_warning == 0) {
4099 					do_warning = 1;
4100 					device_printf(sc->sc_dev,
4101 					    "%s: %s: mbuf should've been"
4102 					    " unmapped/freed!\n",
4103 					    __func__,
4104 					    dd->dd_name);
4105 				}
4106 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4107 				    BUS_DMASYNC_POSTREAD);
4108 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4109 				m_freem(bf->bf_m);
4110 				bf->bf_m = NULL;
4111 			}
4112 			if (bf->bf_dmamap != NULL) {
4113 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
4114 				bf->bf_dmamap = NULL;
4115 			}
4116 			ni = bf->bf_node;
4117 			bf->bf_node = NULL;
4118 			if (ni != NULL) {
4119 				/*
4120 				 * Reclaim node reference.
4121 				 */
4122 				ieee80211_free_node(ni);
4123 			}
4124 		}
4125 	}
4126 
4127 	if (head != NULL)
4128 		TAILQ_INIT(head);
4129 
4130 	if (dd->dd_bufptr != NULL)
4131 		kfree(dd->dd_bufptr, M_ATHDEV);
4132 	memset(dd, 0, sizeof(*dd));
4133 }
4134 
4135 static int
4136 ath_desc_alloc(struct ath_softc *sc)
4137 {
4138 	int error;
4139 
4140 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
4141 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
4142 	if (error != 0) {
4143 		return error;
4144 	}
4145 	sc->sc_txbuf_cnt = ath_txbuf;
4146 
4147 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
4148 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
4149 		    ATH_TXDESC);
4150 	if (error != 0) {
4151 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4152 		return error;
4153 	}
4154 
4155 	/*
4156 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
4157 	 * flag doesn't have to be set in ath_getbuf_locked().
4158 	 */
4159 
4160 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
4161 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
4162 	if (error != 0) {
4163 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4164 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4165 		    &sc->sc_txbuf_mgmt);
4166 		return error;
4167 	}
4168 	return 0;
4169 }
4170 
4171 static void
4172 ath_desc_free(struct ath_softc *sc)
4173 {
4174 
4175 	if (sc->sc_bdma.dd_desc_len != 0)
4176 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
4177 	if (sc->sc_txdma.dd_desc_len != 0)
4178 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4179 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
4180 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4181 		    &sc->sc_txbuf_mgmt);
4182 }
4183 
4184 static struct ieee80211_node *
4185 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4186 {
4187 	struct ieee80211com *ic = vap->iv_ic;
4188 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4189 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
4190 	struct ath_node *an;
4191 
4192 	an = kmalloc(space, M_80211_NODE, M_INTWAIT | M_ZERO);
4193 	if (an == NULL) {
4194 		/* XXX stat+msg */
4195 		return NULL;
4196 	}
4197 	ath_rate_node_init(sc, an);
4198 
4199 	/* Setup the mutex - there's no associd yet so set the name to NULL */
4200 	ksnprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
4201 	    device_get_nameunit(sc->sc_dev), an);
4202 	lockinit(&an->an_mtx, an->an_name, 0, 0);
4203 
4204 	/* XXX setup ath_tid */
4205 	ath_tx_tid_init(sc, an);
4206 
4207 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
4208 	    ath_hal_ether_sprintf(mac), an);
4209 	return &an->an_node;
4210 }
4211 
4212 static void
4213 ath_node_cleanup(struct ieee80211_node *ni)
4214 {
4215 	struct ieee80211com *ic = ni->ni_ic;
4216 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4217 
4218 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
4219 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
4220 
4221 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
4222 	ath_tx_node_flush(sc, ATH_NODE(ni));
4223 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
4224 	sc->sc_node_cleanup(ni);
4225 }
4226 
4227 static void
4228 ath_node_free(struct ieee80211_node *ni)
4229 {
4230 	struct ieee80211com *ic = ni->ni_ic;
4231 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4232 
4233 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
4234 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
4235 	lockuninit(&ATH_NODE(ni)->an_mtx);
4236 	sc->sc_node_free(ni);
4237 }
4238 
4239 static void
4240 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4241 {
4242 	struct ieee80211com *ic = ni->ni_ic;
4243 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4244 	struct ath_hal *ah = sc->sc_ah;
4245 
4246 	*rssi = ic->ic_node_getrssi(ni);
4247 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4248 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4249 	else
4250 		*noise = -95;		/* nominally correct */
4251 }
4252 
4253 /*
4254  * Set the default antenna.
4255  */
4256 void
4257 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4258 {
4259 	struct ath_hal *ah = sc->sc_ah;
4260 
4261 	/* XXX block beacon interrupts */
4262 	ath_hal_setdefantenna(ah, antenna);
4263 	if (sc->sc_defant != antenna)
4264 		sc->sc_stats.ast_ant_defswitch++;
4265 	sc->sc_defant = antenna;
4266 	sc->sc_rxotherant = 0;
4267 }
4268 
4269 static void
4270 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4271 {
4272 	txq->axq_qnum = qnum;
4273 	txq->axq_ac = 0;
4274 	txq->axq_depth = 0;
4275 	txq->axq_aggr_depth = 0;
4276 	txq->axq_intrcnt = 0;
4277 	txq->axq_link = NULL;
4278 	txq->axq_softc = sc;
4279 	TAILQ_INIT(&txq->axq_q);
4280 	TAILQ_INIT(&txq->axq_tidq);
4281 	TAILQ_INIT(&txq->fifo.axq_q);
4282 	ATH_TXQ_LOCK_INIT(sc, txq);
4283 }
4284 
4285 /*
4286  * Setup a h/w transmit queue.
4287  */
4288 static struct ath_txq *
4289 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4290 {
4291 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4292 	struct ath_hal *ah = sc->sc_ah;
4293 	HAL_TXQ_INFO qi;
4294 	int qnum;
4295 
4296 	memset(&qi, 0, sizeof(qi));
4297 	qi.tqi_subtype = subtype;
4298 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4299 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4300 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4301 	/*
4302 	 * Enable interrupts only for EOL and DESC conditions.
4303 	 * We mark tx descriptors to receive a DESC interrupt
4304 	 * when a tx queue gets deep; otherwise waiting for the
4305 	 * EOL to reap descriptors.  Note that this is done to
4306 	 * reduce interrupt load and this only defers reaping
4307 	 * descriptors, never transmitting frames.  Aside from
4308 	 * reducing interrupts this also permits more concurrency.
4309 	 * The only potential downside is if the tx queue backs
4310 	 * up in which case the top half of the kernel may backup
4311 	 * due to a lack of tx descriptors.
4312 	 */
4313 	if (sc->sc_isedma)
4314 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4315 		    HAL_TXQ_TXOKINT_ENABLE;
4316 	else
4317 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4318 		    HAL_TXQ_TXDESCINT_ENABLE;
4319 
4320 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4321 	if (qnum == -1) {
4322 		/*
4323 		 * NB: don't print a message, this happens
4324 		 * normally on parts with too few tx queues
4325 		 */
4326 		return NULL;
4327 	}
4328 	if (qnum >= N(sc->sc_txq)) {
4329 		device_printf(sc->sc_dev,
4330 			"hal qnum %u out of range, max %zu!\n",
4331 			qnum, N(sc->sc_txq));
4332 		ath_hal_releasetxqueue(ah, qnum);
4333 		return NULL;
4334 	}
4335 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4336 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4337 		sc->sc_txqsetup |= 1<<qnum;
4338 	}
4339 	return &sc->sc_txq[qnum];
4340 #undef N
4341 }
4342 
4343 /*
4344  * Setup a hardware data transmit queue for the specified
4345  * access control.  The hal may not support all requested
4346  * queues in which case it will return a reference to a
4347  * previously setup queue.  We record the mapping from ac's
4348  * to h/w queues for use by ath_tx_start and also track
4349  * the set of h/w queues being used to optimize work in the
4350  * transmit interrupt handler and related routines.
4351  */
4352 static int
4353 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4354 {
4355 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4356 	struct ath_txq *txq;
4357 
4358 	if (ac >= N(sc->sc_ac2q)) {
4359 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4360 			ac, N(sc->sc_ac2q));
4361 		return 0;
4362 	}
4363 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4364 	if (txq != NULL) {
4365 		txq->axq_ac = ac;
4366 		sc->sc_ac2q[ac] = txq;
4367 		return 1;
4368 	} else
4369 		return 0;
4370 #undef N
4371 }
4372 
4373 /*
4374  * Update WME parameters for a transmit queue.
4375  */
4376 static int
4377 ath_txq_update(struct ath_softc *sc, int ac)
4378 {
4379 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4380 #define	ATH_TXOP_TO_US(v)		(v<<5)
4381 	struct ifnet *ifp = sc->sc_ifp;
4382 	struct ieee80211com *ic = ifp->if_l2com;
4383 	struct ath_txq *txq = sc->sc_ac2q[ac];
4384 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4385 	struct ath_hal *ah = sc->sc_ah;
4386 	HAL_TXQ_INFO qi;
4387 
4388 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4389 #ifdef IEEE80211_SUPPORT_TDMA
4390 	if (sc->sc_tdma) {
4391 		/*
4392 		 * AIFS is zero so there's no pre-transmit wait.  The
4393 		 * burst time defines the slot duration and is configured
4394 		 * through net80211.  The QCU is setup to not do post-xmit
4395 		 * back off, lockout all lower-priority QCU's, and fire
4396 		 * off the DMA beacon alert timer which is setup based
4397 		 * on the slot configuration.
4398 		 */
4399 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4400 			      | HAL_TXQ_TXERRINT_ENABLE
4401 			      | HAL_TXQ_TXURNINT_ENABLE
4402 			      | HAL_TXQ_TXEOLINT_ENABLE
4403 			      | HAL_TXQ_DBA_GATED
4404 			      | HAL_TXQ_BACKOFF_DISABLE
4405 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4406 			      ;
4407 		qi.tqi_aifs = 0;
4408 		/* XXX +dbaprep? */
4409 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4410 		qi.tqi_burstTime = qi.tqi_readyTime;
4411 	} else {
4412 #endif
4413 		/*
4414 		 * XXX shouldn't this just use the default flags
4415 		 * used in the previous queue setup?
4416 		 */
4417 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4418 			      | HAL_TXQ_TXERRINT_ENABLE
4419 			      | HAL_TXQ_TXDESCINT_ENABLE
4420 			      | HAL_TXQ_TXURNINT_ENABLE
4421 			      | HAL_TXQ_TXEOLINT_ENABLE
4422 			      ;
4423 		qi.tqi_aifs = wmep->wmep_aifsn;
4424 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4425 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4426 		qi.tqi_readyTime = 0;
4427 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4428 #ifdef IEEE80211_SUPPORT_TDMA
4429 	}
4430 #endif
4431 
4432 	DPRINTF(sc, ATH_DEBUG_RESET,
4433 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4434 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4435 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4436 
4437 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4438 		if_printf(ifp, "unable to update hardware queue "
4439 			"parameters for %s traffic!\n",
4440 			ieee80211_wme_acnames[ac]);
4441 		return 0;
4442 	} else {
4443 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4444 		return 1;
4445 	}
4446 #undef ATH_TXOP_TO_US
4447 #undef ATH_EXPONENT_TO_VALUE
4448 }
4449 
4450 /*
4451  * Callback from the 802.11 layer to update WME parameters.
4452  */
4453 int
4454 ath_wme_update(struct ieee80211com *ic)
4455 {
4456 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4457 
4458 	return !ath_txq_update(sc, WME_AC_BE) ||
4459 	    !ath_txq_update(sc, WME_AC_BK) ||
4460 	    !ath_txq_update(sc, WME_AC_VI) ||
4461 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4462 }
4463 
4464 /*
4465  * Reclaim resources for a setup queue.
4466  */
4467 static void
4468 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4469 {
4470 
4471 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4472 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4473 	ATH_TXQ_LOCK_DESTROY(txq);
4474 }
4475 
4476 /*
4477  * Reclaim all tx queue resources.
4478  */
4479 static void
4480 ath_tx_cleanup(struct ath_softc *sc)
4481 {
4482 	int i;
4483 
4484 	ATH_TXBUF_LOCK_DESTROY(sc);
4485 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4486 		if (ATH_TXQ_SETUP(sc, i))
4487 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4488 }
4489 
4490 /*
4491  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4492  * using the current rates in sc_rixmap.
4493  */
4494 int
4495 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4496 {
4497 	int rix = sc->sc_rixmap[rate];
4498 	/* NB: return lowest rix for invalid rate */
4499 	return (rix == 0xff ? 0 : rix);
4500 }
4501 
4502 static void
4503 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4504     struct ath_buf *bf)
4505 {
4506 	struct ieee80211_node *ni = bf->bf_node;
4507 	struct ifnet *ifp = sc->sc_ifp;
4508 	struct ieee80211com *ic = ifp->if_l2com;
4509 	int sr, lr, pri;
4510 
4511 	if (ts->ts_status == 0) {
4512 		u_int8_t txant = ts->ts_antenna;
4513 		sc->sc_stats.ast_ant_tx[txant]++;
4514 		sc->sc_ant_tx[txant]++;
4515 		if (ts->ts_finaltsi != 0)
4516 			sc->sc_stats.ast_tx_altrate++;
4517 		pri = M_WME_GETAC(bf->bf_m);
4518 		if (pri >= WME_AC_VO)
4519 			ic->ic_wme.wme_hipri_traffic++;
4520 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4521 			ni->ni_inact = ni->ni_inact_reload;
4522 	} else {
4523 		if (ts->ts_status & HAL_TXERR_XRETRY)
4524 			sc->sc_stats.ast_tx_xretries++;
4525 		if (ts->ts_status & HAL_TXERR_FIFO)
4526 			sc->sc_stats.ast_tx_fifoerr++;
4527 		if (ts->ts_status & HAL_TXERR_FILT)
4528 			sc->sc_stats.ast_tx_filtered++;
4529 		if (ts->ts_status & HAL_TXERR_XTXOP)
4530 			sc->sc_stats.ast_tx_xtxop++;
4531 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4532 			sc->sc_stats.ast_tx_timerexpired++;
4533 
4534 		if (bf->bf_m->m_flags & M_FF)
4535 			sc->sc_stats.ast_ff_txerr++;
4536 	}
4537 	/* XXX when is this valid? */
4538 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4539 		sc->sc_stats.ast_tx_desccfgerr++;
4540 	/*
4541 	 * This can be valid for successful frame transmission!
4542 	 * If there's a TX FIFO underrun during aggregate transmission,
4543 	 * the MAC will pad the rest of the aggregate with delimiters.
4544 	 * If a BA is returned, the frame is marked as "OK" and it's up
4545 	 * to the TX completion code to notice which frames weren't
4546 	 * successfully transmitted.
4547 	 */
4548 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4549 		sc->sc_stats.ast_tx_data_underrun++;
4550 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4551 		sc->sc_stats.ast_tx_delim_underrun++;
4552 
4553 	sr = ts->ts_shortretry;
4554 	lr = ts->ts_longretry;
4555 	sc->sc_stats.ast_tx_shortretry += sr;
4556 	sc->sc_stats.ast_tx_longretry += lr;
4557 
4558 }
4559 
4560 /*
4561  * The default completion. If fail is 1, this means
4562  * "please don't retry the frame, and just return -1 status
4563  * to the net80211 stack.
4564  */
4565 void
4566 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4567 {
4568 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4569 	int st;
4570 
4571 	if (fail == 1)
4572 		st = -1;
4573 	else
4574 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4575 		    ts->ts_status : HAL_TXERR_XRETRY;
4576 
4577 #if 0
4578 	if (bf->bf_state.bfs_dobaw)
4579 		device_printf(sc->sc_dev,
4580 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4581 		    __func__,
4582 		    bf,
4583 		    SEQNO(bf->bf_state.bfs_seqno));
4584 #endif
4585 	if (bf->bf_next != NULL)
4586 		device_printf(sc->sc_dev,
4587 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4588 		    __func__,
4589 		    bf,
4590 		    SEQNO(bf->bf_state.bfs_seqno));
4591 
4592 	/*
4593 	 * Check if the node software queue is empty; if so
4594 	 * then clear the TIM.
4595 	 *
4596 	 * This needs to be done before the buffer is freed as
4597 	 * otherwise the node reference will have been released
4598 	 * and the node may not actually exist any longer.
4599 	 *
4600 	 * XXX I don't like this belonging here, but it's cleaner
4601 	 * to do it here right now then all the other places
4602 	 * where ath_tx_default_comp() is called.
4603 	 *
4604 	 * XXX TODO: during drain, ensure that the callback is
4605 	 * being called so we get a chance to update the TIM.
4606 	 */
4607 	if (bf->bf_node) {
4608 		ATH_TX_LOCK(sc);
4609 		ath_tx_update_tim(sc, bf->bf_node, 0);
4610 		ATH_TX_UNLOCK(sc);
4611 	}
4612 
4613 	/*
4614 	 * Do any tx complete callback.  Note this must
4615 	 * be done before releasing the node reference.
4616 	 * This will free the mbuf, release the net80211
4617 	 * node and recycle the ath_buf.
4618 	 */
4619 	ath_tx_freebuf(sc, bf, st);
4620 }
4621 
4622 /*
4623  * Update rate control with the given completion status.
4624  */
4625 void
4626 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4627     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4628     int nframes, int nbad)
4629 {
4630 	struct ath_node *an;
4631 
4632 	/* Only for unicast frames */
4633 	if (ni == NULL)
4634 		return;
4635 
4636 	an = ATH_NODE(ni);
4637 	ATH_NODE_UNLOCK_ASSERT(an);
4638 
4639 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4640 		ATH_NODE_LOCK(an);
4641 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4642 		ATH_NODE_UNLOCK(an);
4643 	}
4644 }
4645 
4646 /*
4647  * Process the completion of the given buffer.
4648  *
4649  * This calls the rate control update and then the buffer completion.
4650  * This will either free the buffer or requeue it.  In any case, the
4651  * bf pointer should be treated as invalid after this function is called.
4652  */
4653 void
4654 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4655     struct ath_tx_status *ts, struct ath_buf *bf)
4656 {
4657 	struct ieee80211_node *ni = bf->bf_node;
4658 
4659 	ATH_TX_UNLOCK_ASSERT(sc);
4660 	ATH_TXQ_UNLOCK_ASSERT(txq);
4661 
4662 	/* If unicast frame, update general statistics */
4663 	if (ni != NULL) {
4664 		/* update statistics */
4665 		ath_tx_update_stats(sc, ts, bf);
4666 	}
4667 
4668 	/*
4669 	 * Call the completion handler.
4670 	 * The completion handler is responsible for
4671 	 * calling the rate control code.
4672 	 *
4673 	 * Frames with no completion handler get the
4674 	 * rate control code called here.
4675 	 */
4676 	if (bf->bf_comp == NULL) {
4677 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4678 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4679 			/*
4680 			 * XXX assume this isn't an aggregate
4681 			 * frame.
4682 			 */
4683 			ath_tx_update_ratectrl(sc, ni,
4684 			     bf->bf_state.bfs_rc, ts,
4685 			    bf->bf_state.bfs_pktlen, 1,
4686 			    (ts->ts_status == 0 ? 0 : 1));
4687 		}
4688 		ath_tx_default_comp(sc, bf, 0);
4689 	} else
4690 		bf->bf_comp(sc, bf, 0);
4691 }
4692 
4693 
4694 
4695 /*
4696  * Process completed xmit descriptors from the specified queue.
4697  * Kick the packet scheduler if needed. This can occur from this
4698  * particular task.
4699  */
4700 static int
4701 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4702 {
4703 	struct ath_hal *ah = sc->sc_ah;
4704 	struct ath_buf *bf;
4705 	struct ath_desc *ds;
4706 	struct ath_tx_status *ts;
4707 	struct ieee80211_node *ni;
4708 #ifdef	IEEE80211_SUPPORT_SUPERG
4709 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4710 #endif	/* IEEE80211_SUPPORT_SUPERG */
4711 	int nacked;
4712 	HAL_STATUS status;
4713 
4714 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4715 		__func__, txq->axq_qnum,
4716 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4717 		txq->axq_link);
4718 
4719 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4720 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4721 	    txq->axq_qnum,
4722 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4723 	    txq->axq_link,
4724 	    txq->axq_depth);
4725 
4726 	nacked = 0;
4727 	for (;;) {
4728 		ATH_TXQ_LOCK(txq);
4729 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4730 		bf = TAILQ_FIRST(&txq->axq_q);
4731 		if (bf == NULL) {
4732 			ATH_TXQ_UNLOCK(txq);
4733 			break;
4734 		}
4735 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4736 		ts = &bf->bf_status.ds_txstat;
4737 
4738 		status = ath_hal_txprocdesc(ah, ds, ts);
4739 #ifdef ATH_DEBUG
4740 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4741 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4742 			    status == HAL_OK);
4743 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4744 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4745 			    status == HAL_OK);
4746 #endif
4747 #ifdef	ATH_DEBUG_ALQ
4748 		if (if_ath_alq_checkdebug(&sc->sc_alq,
4749 		    ATH_ALQ_EDMA_TXSTATUS)) {
4750 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4751 			sc->sc_tx_statuslen,
4752 			(char *) ds);
4753 		}
4754 #endif
4755 
4756 		if (status == HAL_EINPROGRESS) {
4757 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4758 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4759 			    txq->axq_qnum, bf, ds);
4760 			ATH_TXQ_UNLOCK(txq);
4761 			break;
4762 		}
4763 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4764 
4765 		/*
4766 		 * Sanity check.
4767 		 */
4768 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4769 			device_printf(sc->sc_dev,
4770 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4771 			    __func__,
4772 			    txq->axq_qnum,
4773 			    bf,
4774 			    bf->bf_state.bfs_tx_queue);
4775 		}
4776 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4777 			device_printf(sc->sc_dev,
4778 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4779 			    __func__,
4780 			    txq->axq_qnum,
4781 			    bf->bf_last,
4782 			    bf->bf_last->bf_state.bfs_tx_queue);
4783 		}
4784 
4785 #if 0
4786 		if (txq->axq_depth > 0) {
4787 			/*
4788 			 * More frames follow.  Mark the buffer busy
4789 			 * so it's not re-used while the hardware may
4790 			 * still re-read the link field in the descriptor.
4791 			 *
4792 			 * Use the last buffer in an aggregate as that
4793 			 * is where the hardware may be - intermediate
4794 			 * descriptors won't be "busy".
4795 			 */
4796 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4797 		} else
4798 			txq->axq_link = NULL;
4799 #else
4800 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4801 #endif
4802 		if (bf->bf_state.bfs_aggr)
4803 			txq->axq_aggr_depth--;
4804 
4805 		ni = bf->bf_node;
4806 
4807 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4808 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4809 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4810 		/*
4811 		 * If unicast frame was ack'd update RSSI,
4812 		 * including the last rx time used to
4813 		 * workaround phantom bmiss interrupts.
4814 		 */
4815 		if (ni != NULL && ts->ts_status == 0 &&
4816 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4817 			nacked++;
4818 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4819 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4820 				ts->ts_rssi);
4821 		}
4822 		ATH_TXQ_UNLOCK(txq);
4823 
4824 		/*
4825 		 * Update statistics and call completion
4826 		 */
4827 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4828 
4829 		/* XXX at this point, bf and ni may be totally invalid */
4830 	}
4831 #ifdef IEEE80211_SUPPORT_SUPERG
4832 	/*
4833 	 * Flush fast-frame staging queue when traffic slows.
4834 	 */
4835 	if (txq->axq_depth <= 1)
4836 		ieee80211_ff_flush(ic, txq->axq_ac);
4837 #endif
4838 
4839 	/* Kick the software TXQ scheduler */
4840 	if (dosched) {
4841 		ATH_TX_LOCK(sc);
4842 		ath_txq_sched(sc, txq);
4843 		ATH_TX_UNLOCK(sc);
4844 	}
4845 
4846 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4847 	    "ath_tx_processq: txq=%u: done",
4848 	    txq->axq_qnum);
4849 
4850 	return nacked;
4851 }
4852 
4853 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4854 
4855 /*
4856  * Deferred processing of transmit interrupt; special-cased
4857  * for a single hardware transmit queue (e.g. 5210 and 5211).
4858  */
4859 static void
4860 ath_tx_proc_q0(void *arg, int npending)
4861 {
4862 	struct ath_softc *sc = arg;
4863 	struct ifnet *ifp = sc->sc_ifp;
4864 	uint32_t txqs;
4865 
4866 	ATH_PCU_LOCK(sc);
4867 	sc->sc_txproc_cnt++;
4868 	txqs = sc->sc_txq_active;
4869 	sc->sc_txq_active &= ~txqs;
4870 	ATH_PCU_UNLOCK(sc);
4871 
4872 	ATH_LOCK(sc);
4873 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4874 	ATH_UNLOCK(sc);
4875 
4876 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4877 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4878 
4879 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4880 		/* XXX why is lastrx updated in tx code? */
4881 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4882 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4883 		ath_tx_processq(sc, sc->sc_cabq, 1);
4884 	IF_LOCK(&ifp->if_snd);
4885 #if defined(__DragonFly__)
4886 	ifq_clr_oactive(&ifp->if_snd);
4887 #else
4888 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4889 #endif
4890 	IF_UNLOCK(&ifp->if_snd);
4891 	sc->sc_wd_timer = 0;
4892 
4893 	if (sc->sc_softled)
4894 		ath_led_event(sc, sc->sc_txrix);
4895 
4896 	ATH_PCU_LOCK(sc);
4897 	sc->sc_txproc_cnt--;
4898 	ATH_PCU_UNLOCK(sc);
4899 
4900 	ATH_LOCK(sc);
4901 	ath_power_restore_power_state(sc);
4902 	ATH_UNLOCK(sc);
4903 
4904 	ath_tx_kick(sc);
4905 }
4906 
4907 /*
4908  * Deferred processing of transmit interrupt; special-cased
4909  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4910  */
4911 static void
4912 ath_tx_proc_q0123(void *arg, int npending)
4913 {
4914 	struct ath_softc *sc = arg;
4915 	struct ifnet *ifp = sc->sc_ifp;
4916 	int nacked;
4917 	uint32_t txqs;
4918 
4919 	ATH_PCU_LOCK(sc);
4920 	sc->sc_txproc_cnt++;
4921 	txqs = sc->sc_txq_active;
4922 	sc->sc_txq_active &= ~txqs;
4923 	ATH_PCU_UNLOCK(sc);
4924 
4925 	ATH_LOCK(sc);
4926 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4927 	ATH_UNLOCK(sc);
4928 
4929 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4930 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4931 
4932 	/*
4933 	 * Process each active queue.
4934 	 */
4935 	nacked = 0;
4936 	if (TXQACTIVE(txqs, 0))
4937 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4938 	if (TXQACTIVE(txqs, 1))
4939 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4940 	if (TXQACTIVE(txqs, 2))
4941 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4942 	if (TXQACTIVE(txqs, 3))
4943 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4944 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4945 		ath_tx_processq(sc, sc->sc_cabq, 1);
4946 	if (nacked)
4947 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4948 
4949 	IF_LOCK(&ifp->if_snd);
4950 #if defined(__DragonFly__)
4951 	ifq_clr_oactive(&ifp->if_snd);
4952 #else
4953 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4954 #endif
4955 	IF_UNLOCK(&ifp->if_snd);
4956 	sc->sc_wd_timer = 0;
4957 
4958 	if (sc->sc_softled)
4959 		ath_led_event(sc, sc->sc_txrix);
4960 
4961 	ATH_PCU_LOCK(sc);
4962 	sc->sc_txproc_cnt--;
4963 	ATH_PCU_UNLOCK(sc);
4964 
4965 	ATH_LOCK(sc);
4966 	ath_power_restore_power_state(sc);
4967 	ATH_UNLOCK(sc);
4968 
4969 	ath_tx_kick(sc);
4970 }
4971 
4972 /*
4973  * Deferred processing of transmit interrupt.
4974  */
4975 static void
4976 ath_tx_proc(void *arg, int npending)
4977 {
4978 	struct ath_softc *sc = arg;
4979 	struct ifnet *ifp = sc->sc_ifp;
4980 	int i, nacked;
4981 	uint32_t txqs;
4982 
4983 	ATH_PCU_LOCK(sc);
4984 	sc->sc_txproc_cnt++;
4985 	txqs = sc->sc_txq_active;
4986 	sc->sc_txq_active &= ~txqs;
4987 	ATH_PCU_UNLOCK(sc);
4988 
4989 	ATH_LOCK(sc);
4990 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4991 	ATH_UNLOCK(sc);
4992 
4993 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4994 
4995 	/*
4996 	 * Process each active queue.
4997 	 */
4998 	nacked = 0;
4999 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5000 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
5001 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
5002 	if (nacked)
5003 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5004 
5005 	/* XXX check this inside of IF_LOCK? */
5006 	IF_LOCK(&ifp->if_snd);
5007 #if defined(__DragonFly__)
5008 	ifq_clr_oactive(&ifp->if_snd);
5009 #else
5010 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5011 #endif
5012 	IF_UNLOCK(&ifp->if_snd);
5013 	sc->sc_wd_timer = 0;
5014 
5015 	if (sc->sc_softled)
5016 		ath_led_event(sc, sc->sc_txrix);
5017 
5018 	ATH_PCU_LOCK(sc);
5019 	sc->sc_txproc_cnt--;
5020 	ATH_PCU_UNLOCK(sc);
5021 
5022 	ATH_LOCK(sc);
5023 	ath_power_restore_power_state(sc);
5024 	ATH_UNLOCK(sc);
5025 
5026 	ath_tx_kick(sc);
5027 }
5028 #undef	TXQACTIVE
5029 
5030 /*
5031  * Deferred processing of TXQ rescheduling.
5032  */
5033 static void
5034 ath_txq_sched_tasklet(void *arg, int npending)
5035 {
5036 	struct ath_softc *sc = arg;
5037 	int i;
5038 
5039 	/* XXX is skipping ok? */
5040 	ATH_PCU_LOCK(sc);
5041 #if 0
5042 	if (sc->sc_inreset_cnt > 0) {
5043 		device_printf(sc->sc_dev,
5044 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
5045 		ATH_PCU_UNLOCK(sc);
5046 		return;
5047 	}
5048 #endif
5049 	sc->sc_txproc_cnt++;
5050 	ATH_PCU_UNLOCK(sc);
5051 
5052 	ATH_LOCK(sc);
5053 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5054 	ATH_UNLOCK(sc);
5055 
5056 	ATH_TX_LOCK(sc);
5057 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5058 		if (ATH_TXQ_SETUP(sc, i)) {
5059 			ath_txq_sched(sc, &sc->sc_txq[i]);
5060 		}
5061 	}
5062 	ATH_TX_UNLOCK(sc);
5063 
5064 	ATH_LOCK(sc);
5065 	ath_power_restore_power_state(sc);
5066 	ATH_UNLOCK(sc);
5067 
5068 	ATH_PCU_LOCK(sc);
5069 	sc->sc_txproc_cnt--;
5070 	ATH_PCU_UNLOCK(sc);
5071 }
5072 
5073 void
5074 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
5075 {
5076 
5077 	ATH_TXBUF_LOCK_ASSERT(sc);
5078 
5079 	if (bf->bf_flags & ATH_BUF_MGMT)
5080 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
5081 	else {
5082 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5083 		sc->sc_txbuf_cnt++;
5084 		if (sc->sc_txbuf_cnt > ath_txbuf) {
5085 			device_printf(sc->sc_dev,
5086 			    "%s: sc_txbuf_cnt > %d?\n",
5087 			    __func__,
5088 			    ath_txbuf);
5089 			sc->sc_txbuf_cnt = ath_txbuf;
5090 		}
5091 	}
5092 }
5093 
5094 void
5095 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
5096 {
5097 
5098 	ATH_TXBUF_LOCK_ASSERT(sc);
5099 
5100 	if (bf->bf_flags & ATH_BUF_MGMT)
5101 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
5102 	else {
5103 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
5104 		sc->sc_txbuf_cnt++;
5105 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
5106 			device_printf(sc->sc_dev,
5107 			    "%s: sc_txbuf_cnt > %d?\n",
5108 			    __func__,
5109 			    ATH_TXBUF);
5110 			sc->sc_txbuf_cnt = ATH_TXBUF;
5111 		}
5112 	}
5113 }
5114 
5115 /*
5116  * Free the holding buffer if it exists
5117  */
5118 void
5119 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
5120 {
5121 	ATH_TXBUF_UNLOCK_ASSERT(sc);
5122 	ATH_TXQ_LOCK_ASSERT(txq);
5123 
5124 	if (txq->axq_holdingbf == NULL)
5125 		return;
5126 
5127 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
5128 
5129 	ATH_TXBUF_LOCK(sc);
5130 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
5131 	ATH_TXBUF_UNLOCK(sc);
5132 
5133 	txq->axq_holdingbf = NULL;
5134 }
5135 
5136 /*
5137  * Add this buffer to the holding queue, freeing the previous
5138  * one if it exists.
5139  */
5140 static void
5141 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
5142 {
5143 	struct ath_txq *txq;
5144 
5145 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5146 
5147 	ATH_TXBUF_UNLOCK_ASSERT(sc);
5148 	ATH_TXQ_LOCK_ASSERT(txq);
5149 
5150 	/* XXX assert ATH_BUF_BUSY is set */
5151 
5152 	/* XXX assert the tx queue is under the max number */
5153 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
5154 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
5155 		    __func__,
5156 		    bf,
5157 		    bf->bf_state.bfs_tx_queue);
5158 		bf->bf_flags &= ~ATH_BUF_BUSY;
5159 		ath_returnbuf_tail(sc, bf);
5160 		return;
5161 	}
5162 	ath_txq_freeholdingbuf(sc, txq);
5163 	txq->axq_holdingbf = bf;
5164 }
5165 
5166 /*
5167  * Return a buffer to the pool and update the 'busy' flag on the
5168  * previous 'tail' entry.
5169  *
5170  * This _must_ only be called when the buffer is involved in a completed
5171  * TX. The logic is that if it was part of an active TX, the previous
5172  * buffer on the list is now not involved in a halted TX DMA queue, waiting
5173  * for restart (eg for TDMA.)
5174  *
5175  * The caller must free the mbuf and recycle the node reference.
5176  *
5177  * XXX This method of handling busy / holding buffers is insanely stupid.
5178  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
5179  * be much nicer if buffers in the processq() methods would instead be
5180  * always completed there (pushed onto a txq or ath_bufhead) so we knew
5181  * exactly what hardware queue they came from in the first place.
5182  */
5183 void
5184 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5185 {
5186 	struct ath_txq *txq;
5187 
5188 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5189 
5190 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5191 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5192 
5193 	/*
5194 	 * If this buffer is busy, push it onto the holding queue.
5195 	 */
5196 	if (bf->bf_flags & ATH_BUF_BUSY) {
5197 		ATH_TXQ_LOCK(txq);
5198 		ath_txq_addholdingbuf(sc, bf);
5199 		ATH_TXQ_UNLOCK(txq);
5200 		return;
5201 	}
5202 
5203 	/*
5204 	 * Not a busy buffer, so free normally
5205 	 */
5206 	ATH_TXBUF_LOCK(sc);
5207 	ath_returnbuf_tail(sc, bf);
5208 	ATH_TXBUF_UNLOCK(sc);
5209 }
5210 
5211 /*
5212  * This is currently used by ath_tx_draintxq() and
5213  * ath_tx_tid_free_pkts().
5214  *
5215  * It recycles a single ath_buf.
5216  */
5217 void
5218 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5219 {
5220 	struct ieee80211_node *ni = bf->bf_node;
5221 	struct mbuf *m0 = bf->bf_m;
5222 
5223 	/*
5224 	 * Make sure that we only sync/unload if there's an mbuf.
5225 	 * If not (eg we cloned a buffer), the unload will have already
5226 	 * occured.
5227 	 */
5228 	if (bf->bf_m != NULL) {
5229 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5230 		    BUS_DMASYNC_POSTWRITE);
5231 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5232 	}
5233 
5234 	bf->bf_node = NULL;
5235 	bf->bf_m = NULL;
5236 
5237 	/* Free the buffer, it's not needed any longer */
5238 	ath_freebuf(sc, bf);
5239 
5240 	/* Pass the buffer back to net80211 - completing it */
5241 	ieee80211_tx_complete(ni, m0, status);
5242 }
5243 
5244 static struct ath_buf *
5245 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5246 {
5247 	struct ath_buf *bf;
5248 
5249 	ATH_TXQ_LOCK_ASSERT(txq);
5250 
5251 	/*
5252 	 * Drain the FIFO queue first, then if it's
5253 	 * empty, move to the normal frame queue.
5254 	 */
5255 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5256 	if (bf != NULL) {
5257 		/*
5258 		 * Is it the last buffer in this set?
5259 		 * Decrement the FIFO counter.
5260 		 */
5261 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5262 			if (txq->axq_fifo_depth == 0) {
5263 				device_printf(sc->sc_dev,
5264 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5265 				    __func__,
5266 				    txq->axq_qnum,
5267 				    txq->fifo.axq_depth);
5268 			} else
5269 				txq->axq_fifo_depth--;
5270 		}
5271 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5272 		return (bf);
5273 	}
5274 
5275 	/*
5276 	 * Debugging!
5277 	 */
5278 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5279 		device_printf(sc->sc_dev,
5280 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5281 		    __func__,
5282 		    txq->axq_qnum,
5283 		    txq->axq_fifo_depth,
5284 		    txq->fifo.axq_depth);
5285 	}
5286 
5287 	/*
5288 	 * Now drain the pending queue.
5289 	 */
5290 	bf = TAILQ_FIRST(&txq->axq_q);
5291 	if (bf == NULL) {
5292 		txq->axq_link = NULL;
5293 		return (NULL);
5294 	}
5295 	ATH_TXQ_REMOVE(txq, bf, bf_list);
5296 	return (bf);
5297 }
5298 
5299 void
5300 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5301 {
5302 #ifdef ATH_DEBUG
5303 	struct ath_hal *ah = sc->sc_ah;
5304 #endif
5305 	struct ath_buf *bf;
5306 	u_int ix;
5307 
5308 	/*
5309 	 * NB: this assumes output has been stopped and
5310 	 *     we do not need to block ath_tx_proc
5311 	 */
5312 	for (ix = 0;; ix++) {
5313 		ATH_TXQ_LOCK(txq);
5314 		bf = ath_tx_draintxq_get_one(sc, txq);
5315 		if (bf == NULL) {
5316 			ATH_TXQ_UNLOCK(txq);
5317 			break;
5318 		}
5319 		if (bf->bf_state.bfs_aggr)
5320 			txq->axq_aggr_depth--;
5321 #ifdef ATH_DEBUG
5322 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5323 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5324 			int status = 0;
5325 
5326 			/*
5327 			 * EDMA operation has a TX completion FIFO
5328 			 * separate from the TX descriptor, so this
5329 			 * method of checking the "completion" status
5330 			 * is wrong.
5331 			 */
5332 			if (! sc->sc_isedma) {
5333 				status = (ath_hal_txprocdesc(ah,
5334 				    bf->bf_lastds,
5335 				    &bf->bf_status.ds_txstat) == HAL_OK);
5336 			}
5337 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5338 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5339 			    bf->bf_m->m_len, 0, -1);
5340 		}
5341 #endif /* ATH_DEBUG */
5342 		/*
5343 		 * Since we're now doing magic in the completion
5344 		 * functions, we -must- call it for aggregation
5345 		 * destinations or BAW tracking will get upset.
5346 		 */
5347 		/*
5348 		 * Clear ATH_BUF_BUSY; the completion handler
5349 		 * will free the buffer.
5350 		 */
5351 		ATH_TXQ_UNLOCK(txq);
5352 		bf->bf_flags &= ~ATH_BUF_BUSY;
5353 		if (bf->bf_comp)
5354 			bf->bf_comp(sc, bf, 1);
5355 		else
5356 			ath_tx_default_comp(sc, bf, 1);
5357 	}
5358 
5359 	/*
5360 	 * Free the holding buffer if it exists
5361 	 */
5362 	ATH_TXQ_LOCK(txq);
5363 	ath_txq_freeholdingbuf(sc, txq);
5364 	ATH_TXQ_UNLOCK(txq);
5365 
5366 	/*
5367 	 * Drain software queued frames which are on
5368 	 * active TIDs.
5369 	 */
5370 	ath_tx_txq_drain(sc, txq);
5371 }
5372 
5373 static void
5374 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5375 {
5376 	struct ath_hal *ah = sc->sc_ah;
5377 
5378 	ATH_TXQ_LOCK_ASSERT(txq);
5379 
5380 	DPRINTF(sc, ATH_DEBUG_RESET,
5381 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5382 	    "link %p, holdingbf=%p\n",
5383 	    __func__,
5384 	    txq->axq_qnum,
5385 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5386 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5387 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5388 	    txq->axq_flags,
5389 	    txq->axq_link,
5390 	    txq->axq_holdingbf);
5391 
5392 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5393 	/* We've stopped TX DMA, so mark this as stopped. */
5394 	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5395 
5396 #ifdef	ATH_DEBUG
5397 	if ((sc->sc_debug & ATH_DEBUG_RESET)
5398 	    && (txq->axq_holdingbf != NULL)) {
5399 		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5400 	}
5401 #endif
5402 }
5403 
5404 int
5405 ath_stoptxdma(struct ath_softc *sc)
5406 {
5407 	struct ath_hal *ah = sc->sc_ah;
5408 	int i;
5409 
5410 	/* XXX return value */
5411 	if (sc->sc_invalid)
5412 		return 0;
5413 
5414 	if (!sc->sc_invalid) {
5415 		/* don't touch the hardware if marked invalid */
5416 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5417 		    __func__, sc->sc_bhalq,
5418 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5419 		    NULL);
5420 
5421 		/* stop the beacon queue */
5422 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5423 
5424 		/* Stop the data queues */
5425 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5426 			if (ATH_TXQ_SETUP(sc, i)) {
5427 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5428 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5429 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5430 			}
5431 		}
5432 	}
5433 
5434 	return 1;
5435 }
5436 
5437 #ifdef	ATH_DEBUG
5438 void
5439 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5440 {
5441 	struct ath_hal *ah = sc->sc_ah;
5442 	struct ath_buf *bf;
5443 	int i = 0;
5444 
5445 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5446 		return;
5447 
5448 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5449 	    __func__, txq->axq_qnum);
5450 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5451 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5452 			ath_hal_txprocdesc(ah, bf->bf_lastds,
5453 			    &bf->bf_status.ds_txstat) == HAL_OK);
5454 		i++;
5455 	}
5456 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5457 	    __func__, txq->axq_qnum);
5458 }
5459 #endif /* ATH_DEBUG */
5460 
5461 /*
5462  * Drain the transmit queues and reclaim resources.
5463  */
5464 void
5465 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5466 {
5467 	struct ath_hal *ah = sc->sc_ah;
5468 	struct ifnet *ifp = sc->sc_ifp;
5469 	int i;
5470 	struct ath_buf *bf_last;
5471 
5472 	(void) ath_stoptxdma(sc);
5473 
5474 	/*
5475 	 * Dump the queue contents
5476 	 */
5477 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5478 		/*
5479 		 * XXX TODO: should we just handle the completed TX frames
5480 		 * here, whether or not the reset is a full one or not?
5481 		 */
5482 		if (ATH_TXQ_SETUP(sc, i)) {
5483 #ifdef	ATH_DEBUG
5484 			if (sc->sc_debug & ATH_DEBUG_RESET)
5485 				ath_tx_dump(sc, &sc->sc_txq[i]);
5486 #endif	/* ATH_DEBUG */
5487 			if (reset_type == ATH_RESET_NOLOSS) {
5488 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5489 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5490 				/*
5491 				 * Free the holding buffer; DMA is now
5492 				 * stopped.
5493 				 */
5494 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5495 				/*
5496 				 * Setup the link pointer to be the
5497 				 * _last_ buffer/descriptor in the list.
5498 				 * If there's nothing in the list, set it
5499 				 * to NULL.
5500 				 */
5501 				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5502 				    axq_q_s);
5503 				if (bf_last != NULL) {
5504 					ath_hal_gettxdesclinkptr(ah,
5505 					    bf_last->bf_lastds,
5506 					    &sc->sc_txq[i].axq_link);
5507 				} else {
5508 					sc->sc_txq[i].axq_link = NULL;
5509 				}
5510 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5511 			} else
5512 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5513 		}
5514 	}
5515 #ifdef ATH_DEBUG
5516 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5517 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5518 		if (bf != NULL && bf->bf_m != NULL) {
5519 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5520 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5521 				    &bf->bf_status.ds_txstat) == HAL_OK);
5522 			ieee80211_dump_pkt(ifp->if_l2com,
5523 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5524 			    0, -1);
5525 		}
5526 	}
5527 #endif /* ATH_DEBUG */
5528 	IF_LOCK(&ifp->if_snd);
5529 #if defined(__DragonFly__)
5530 	ifq_clr_oactive(&ifp->if_snd);
5531 #else
5532 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5533 #endif
5534 	IF_UNLOCK(&ifp->if_snd);
5535 	sc->sc_wd_timer = 0;
5536 }
5537 
5538 /*
5539  * Update internal state after a channel change.
5540  */
5541 static void
5542 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5543 {
5544 	enum ieee80211_phymode mode;
5545 
5546 	/*
5547 	 * Change channels and update the h/w rate map
5548 	 * if we're switching; e.g. 11a to 11b/g.
5549 	 */
5550 	mode = ieee80211_chan2mode(chan);
5551 	if (mode != sc->sc_curmode)
5552 		ath_setcurmode(sc, mode);
5553 	sc->sc_curchan = chan;
5554 }
5555 
5556 /*
5557  * Set/change channels.  If the channel is really being changed,
5558  * it's done by resetting the chip.  To accomplish this we must
5559  * first cleanup any pending DMA, then restart stuff after a la
5560  * ath_init.
5561  */
5562 static int
5563 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5564 {
5565 	struct ifnet *ifp = sc->sc_ifp;
5566 	struct ieee80211com *ic = ifp->if_l2com;
5567 	struct ath_hal *ah = sc->sc_ah;
5568 	int ret = 0;
5569 
5570 	/* Treat this as an interface reset */
5571 	ATH_PCU_UNLOCK_ASSERT(sc);
5572 	ATH_UNLOCK_ASSERT(sc);
5573 
5574 	/* (Try to) stop TX/RX from occuring */
5575 	taskqueue_block(sc->sc_tq);
5576 
5577 	ATH_PCU_LOCK(sc);
5578 
5579 	/* Disable interrupts */
5580 	ath_hal_intrset(ah, 0);
5581 
5582 	/* Stop new RX/TX/interrupt completion */
5583 	if (ath_reset_grablock(sc, 1) == 0) {
5584 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5585 		    __func__);
5586 	}
5587 
5588 	/* Stop pending RX/TX completion */
5589 	ath_txrx_stop_locked(sc);
5590 
5591 	ATH_PCU_UNLOCK(sc);
5592 
5593 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5594 	    __func__, ieee80211_chan2ieee(ic, chan),
5595 	    chan->ic_freq, chan->ic_flags);
5596 	if (chan != sc->sc_curchan) {
5597 		HAL_STATUS status;
5598 		/*
5599 		 * To switch channels clear any pending DMA operations;
5600 		 * wait long enough for the RX fifo to drain, reset the
5601 		 * hardware at the new frequency, and then re-enable
5602 		 * the relevant bits of the h/w.
5603 		 */
5604 #if 0
5605 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5606 #endif
5607 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5608 		/*
5609 		 * First, handle completed TX/RX frames.
5610 		 */
5611 		ath_rx_flush(sc);
5612 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5613 		/*
5614 		 * Next, flush the non-scheduled frames.
5615 		 */
5616 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5617 
5618 		ath_update_chainmasks(sc, chan);
5619 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5620 		    sc->sc_cur_rxchainmask);
5621 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5622 			if_printf(ifp, "%s: unable to reset "
5623 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5624 			    __func__, ieee80211_chan2ieee(ic, chan),
5625 			    chan->ic_freq, chan->ic_flags, status);
5626 			ret = EIO;
5627 			goto finish;
5628 		}
5629 		sc->sc_diversity = ath_hal_getdiversity(ah);
5630 
5631 		ATH_RX_LOCK(sc);
5632 		sc->sc_rx_stopped = 1;
5633 		sc->sc_rx_resetted = 1;
5634 		ATH_RX_UNLOCK(sc);
5635 
5636 		/* Let DFS at it in case it's a DFS channel */
5637 		ath_dfs_radar_enable(sc, chan);
5638 
5639 		/* Let spectral at in case spectral is enabled */
5640 		ath_spectral_enable(sc, chan);
5641 
5642 		/*
5643 		 * Let bluetooth coexistence at in case it's needed for this
5644 		 * channel
5645 		 */
5646 		ath_btcoex_enable(sc, ic->ic_curchan);
5647 
5648 		/*
5649 		 * If we're doing TDMA, enforce the TXOP limitation for chips
5650 		 * that support it.
5651 		 */
5652 		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5653 			ath_hal_setenforcetxop(sc->sc_ah, 1);
5654 		else
5655 			ath_hal_setenforcetxop(sc->sc_ah, 0);
5656 
5657 		/*
5658 		 * Re-enable rx framework.
5659 		 */
5660 		if (ath_startrecv(sc) != 0) {
5661 			if_printf(ifp, "%s: unable to restart recv logic\n",
5662 			    __func__);
5663 			ret = EIO;
5664 			goto finish;
5665 		}
5666 
5667 		/*
5668 		 * Change channels and update the h/w rate map
5669 		 * if we're switching; e.g. 11a to 11b/g.
5670 		 */
5671 		ath_chan_change(sc, chan);
5672 
5673 		/*
5674 		 * Reset clears the beacon timers; reset them
5675 		 * here if needed.
5676 		 */
5677 		if (sc->sc_beacons) {		/* restart beacons */
5678 #ifdef IEEE80211_SUPPORT_TDMA
5679 			if (sc->sc_tdma)
5680 				ath_tdma_config(sc, NULL);
5681 			else
5682 #endif
5683 			ath_beacon_config(sc, NULL);
5684 		}
5685 
5686 		/*
5687 		 * Re-enable interrupts.
5688 		 */
5689 #if 0
5690 		ath_hal_intrset(ah, sc->sc_imask);
5691 #endif
5692 	}
5693 
5694 finish:
5695 	ATH_PCU_LOCK(sc);
5696 	sc->sc_inreset_cnt--;
5697 	/* XXX only do this if sc_inreset_cnt == 0? */
5698 	ath_hal_intrset(ah, sc->sc_imask);
5699 	ATH_PCU_UNLOCK(sc);
5700 
5701 	IF_LOCK(&ifp->if_snd);
5702 #if defined(__DragonFly__)
5703 	ifq_clr_oactive(&ifp->if_snd);
5704 #else
5705 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5706 #endif
5707 	IF_UNLOCK(&ifp->if_snd);
5708 	ath_txrx_start(sc);
5709 	/* XXX ath_start? */
5710 
5711 	return ret;
5712 }
5713 
5714 /*
5715  * Periodically recalibrate the PHY to account
5716  * for temperature/environment changes.
5717  */
5718 static void
5719 ath_calibrate(void *arg)
5720 {
5721 	struct ath_softc *sc = arg;
5722 	struct ath_hal *ah = sc->sc_ah;
5723 	struct ifnet *ifp = sc->sc_ifp;
5724 	struct ieee80211com *ic = ifp->if_l2com;
5725 	HAL_BOOL longCal, isCalDone = AH_TRUE;
5726 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5727 	int nextcal;
5728 
5729 	ATH_LOCK_ASSERT(sc);
5730 
5731 	/*
5732 	 * Force the hardware awake for ANI work.
5733 	 */
5734 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5735 
5736 	/* Skip trying to do this if we're in reset */
5737 	if (sc->sc_inreset_cnt)
5738 		goto restart;
5739 
5740 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5741 		goto restart;
5742 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5743 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5744 	if (sc->sc_doresetcal)
5745 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5746 
5747 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5748 	if (aniCal) {
5749 		sc->sc_stats.ast_ani_cal++;
5750 		sc->sc_lastani = ticks;
5751 		ath_hal_ani_poll(ah, sc->sc_curchan);
5752 	}
5753 
5754 	if (longCal) {
5755 		sc->sc_stats.ast_per_cal++;
5756 		sc->sc_lastlongcal = ticks;
5757 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5758 			/*
5759 			 * Rfgain is out of bounds, reset the chip
5760 			 * to load new gain values.
5761 			 */
5762 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5763 				"%s: rfgain change\n", __func__);
5764 			sc->sc_stats.ast_per_rfgain++;
5765 			sc->sc_resetcal = 0;
5766 			sc->sc_doresetcal = AH_TRUE;
5767 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5768 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5769 			ath_power_restore_power_state(sc);
5770 			return;
5771 		}
5772 		/*
5773 		 * If this long cal is after an idle period, then
5774 		 * reset the data collection state so we start fresh.
5775 		 */
5776 		if (sc->sc_resetcal) {
5777 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5778 			sc->sc_lastcalreset = ticks;
5779 			sc->sc_lastshortcal = ticks;
5780 			sc->sc_resetcal = 0;
5781 			sc->sc_doresetcal = AH_TRUE;
5782 		}
5783 	}
5784 
5785 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5786 	if (shortCal || longCal) {
5787 		isCalDone = AH_FALSE;
5788 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5789 			if (longCal) {
5790 				/*
5791 				 * Calibrate noise floor data again in case of change.
5792 				 */
5793 				ath_hal_process_noisefloor(ah);
5794 			}
5795 		} else {
5796 			DPRINTF(sc, ATH_DEBUG_ANY,
5797 				"%s: calibration of channel %u failed\n",
5798 				__func__, sc->sc_curchan->ic_freq);
5799 			sc->sc_stats.ast_per_calfail++;
5800 		}
5801 		if (shortCal)
5802 			sc->sc_lastshortcal = ticks;
5803 	}
5804 	if (!isCalDone) {
5805 restart:
5806 		/*
5807 		 * Use a shorter interval to potentially collect multiple
5808 		 * data samples required to complete calibration.  Once
5809 		 * we're told the work is done we drop back to a longer
5810 		 * interval between requests.  We're more aggressive doing
5811 		 * work when operating as an AP to improve operation right
5812 		 * after startup.
5813 		 */
5814 		sc->sc_lastshortcal = ticks;
5815 		nextcal = ath_shortcalinterval*hz/1000;
5816 		if (sc->sc_opmode != HAL_M_HOSTAP)
5817 			nextcal *= 10;
5818 		sc->sc_doresetcal = AH_TRUE;
5819 	} else {
5820 		/* nextcal should be the shortest time for next event */
5821 		nextcal = ath_longcalinterval*hz;
5822 		if (sc->sc_lastcalreset == 0)
5823 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5824 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5825 			sc->sc_resetcal = 1;	/* setup reset next trip */
5826 		sc->sc_doresetcal = AH_FALSE;
5827 	}
5828 	/* ANI calibration may occur more often than short/long/resetcal */
5829 	if (ath_anicalinterval > 0)
5830 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5831 
5832 	if (nextcal != 0) {
5833 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5834 		    __func__, nextcal, isCalDone ? "" : "!");
5835 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5836 	} else {
5837 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5838 		    __func__);
5839 		/* NB: don't rearm timer */
5840 	}
5841 	/*
5842 	 * Restore power state now that we're done.
5843 	 */
5844 	ath_power_restore_power_state(sc);
5845 }
5846 
5847 static void
5848 ath_scan_start(struct ieee80211com *ic)
5849 {
5850 	struct ifnet *ifp = ic->ic_ifp;
5851 	struct ath_softc *sc = ifp->if_softc;
5852 	struct ath_hal *ah = sc->sc_ah;
5853 	u_int32_t rfilt;
5854 
5855 	/* XXX calibration timer? */
5856 
5857 	ATH_LOCK(sc);
5858 	sc->sc_scanning = 1;
5859 	sc->sc_syncbeacon = 0;
5860 	rfilt = ath_calcrxfilter(sc);
5861 	ATH_UNLOCK(sc);
5862 
5863 	ATH_PCU_LOCK(sc);
5864 	ath_hal_setrxfilter(ah, rfilt);
5865 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5866 	ATH_PCU_UNLOCK(sc);
5867 
5868 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5869 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5870 }
5871 
5872 static void
5873 ath_scan_end(struct ieee80211com *ic)
5874 {
5875 	struct ifnet *ifp = ic->ic_ifp;
5876 	struct ath_softc *sc = ifp->if_softc;
5877 	struct ath_hal *ah = sc->sc_ah;
5878 	u_int32_t rfilt;
5879 
5880 	ATH_LOCK(sc);
5881 	sc->sc_scanning = 0;
5882 	rfilt = ath_calcrxfilter(sc);
5883 	ATH_UNLOCK(sc);
5884 
5885 	ATH_PCU_LOCK(sc);
5886 	ath_hal_setrxfilter(ah, rfilt);
5887 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5888 
5889 	ath_hal_process_noisefloor(ah);
5890 	ATH_PCU_UNLOCK(sc);
5891 
5892 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5893 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5894 		 sc->sc_curaid);
5895 }
5896 
5897 #ifdef	ATH_ENABLE_11N
5898 /*
5899  * For now, just do a channel change.
5900  *
5901  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5902  * control state and resetting the hardware without dropping frames out
5903  * of the queue.
5904  *
5905  * The unfortunate trouble here is making absolutely sure that the
5906  * channel width change has propagated enough so the hardware
5907  * absolutely isn't handed bogus frames for it's current operating
5908  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5909  * does occur in parallel, we need to make certain we've blocked
5910  * any further ongoing TX (and RX, that can cause raw TX)
5911  * before we do this.
5912  */
5913 static void
5914 ath_update_chw(struct ieee80211com *ic)
5915 {
5916 	struct ifnet *ifp = ic->ic_ifp;
5917 	struct ath_softc *sc = ifp->if_softc;
5918 
5919 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5920 	ath_set_channel(ic);
5921 }
5922 #endif	/* ATH_ENABLE_11N */
5923 
5924 static void
5925 ath_set_channel(struct ieee80211com *ic)
5926 {
5927 	struct ifnet *ifp = ic->ic_ifp;
5928 	struct ath_softc *sc = ifp->if_softc;
5929 
5930 	ATH_LOCK(sc);
5931 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5932 	ATH_UNLOCK(sc);
5933 
5934 	(void) ath_chan_set(sc, ic->ic_curchan);
5935 	/*
5936 	 * If we are returning to our bss channel then mark state
5937 	 * so the next recv'd beacon's tsf will be used to sync the
5938 	 * beacon timers.  Note that since we only hear beacons in
5939 	 * sta/ibss mode this has no effect in other operating modes.
5940 	 */
5941 	ATH_LOCK(sc);
5942 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5943 		sc->sc_syncbeacon = 1;
5944 	ath_power_restore_power_state(sc);
5945 	ATH_UNLOCK(sc);
5946 }
5947 
5948 /*
5949  * Walk the vap list and check if there any vap's in RUN state.
5950  */
5951 static int
5952 ath_isanyrunningvaps(struct ieee80211vap *this)
5953 {
5954 	struct ieee80211com *ic = this->iv_ic;
5955 	struct ieee80211vap *vap;
5956 
5957 	IEEE80211_LOCK_ASSERT(ic);
5958 
5959 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5960 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5961 			return 1;
5962 	}
5963 	return 0;
5964 }
5965 
5966 static int
5967 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5968 {
5969 	struct ieee80211com *ic = vap->iv_ic;
5970 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5971 	struct ath_vap *avp = ATH_VAP(vap);
5972 	struct ath_hal *ah = sc->sc_ah;
5973 	struct ieee80211_node *ni = NULL;
5974 	int i, error, stamode;
5975 	u_int32_t rfilt;
5976 	int csa_run_transition = 0;
5977 	enum ieee80211_state ostate = vap->iv_state;
5978 
5979 	static const HAL_LED_STATE leds[] = {
5980 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5981 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5982 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5983 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5984 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5985 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5986 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5987 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5988 	};
5989 
5990 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5991 		ieee80211_state_name[ostate],
5992 		ieee80211_state_name[nstate]);
5993 
5994 	/*
5995 	 * net80211 _should_ have the comlock asserted at this point.
5996 	 * There are some comments around the calls to vap->iv_newstate
5997 	 * which indicate that it (newstate) may end up dropping the
5998 	 * lock.  This and the subsequent lock assert check after newstate
5999 	 * are an attempt to catch these and figure out how/why.
6000 	 */
6001 	IEEE80211_LOCK_ASSERT(ic);
6002 
6003 	/* Before we touch the hardware - wake it up */
6004 	ATH_LOCK(sc);
6005 	/*
6006 	 * If the NIC is in anything other than SLEEP state,
6007 	 * we need to ensure that self-generated frames are
6008 	 * set for PWRMGT=0.  Otherwise we may end up with
6009 	 * strange situations.
6010 	 *
6011 	 * XXX TODO: is this actually the case? :-)
6012 	 */
6013 	if (nstate != IEEE80211_S_SLEEP)
6014 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6015 
6016 	/*
6017 	 * Now, wake the thing up.
6018 	 */
6019 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
6020 
6021 	/*
6022 	 * And stop the calibration callout whilst we have
6023 	 * ATH_LOCK held.
6024 	 */
6025 	callout_stop_sync(&sc->sc_cal_ch);
6026 	ATH_UNLOCK(sc);
6027 
6028 	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
6029 		csa_run_transition = 1;
6030 
6031 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
6032 
6033 	if (nstate == IEEE80211_S_SCAN) {
6034 		/*
6035 		 * Scanning: turn off beacon miss and don't beacon.
6036 		 * Mark beacon state so when we reach RUN state we'll
6037 		 * [re]setup beacons.  Unblock the task q thread so
6038 		 * deferred interrupt processing is done.
6039 		 */
6040 
6041 		/* Ensure we stay awake during scan */
6042 		ATH_LOCK(sc);
6043 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6044 		ath_power_setpower(sc, HAL_PM_AWAKE);
6045 		ATH_UNLOCK(sc);
6046 
6047 		ath_hal_intrset(ah,
6048 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
6049 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6050 		sc->sc_beacons = 0;
6051 		taskqueue_unblock(sc->sc_tq);
6052 	}
6053 
6054 	ni = ieee80211_ref_node(vap->iv_bss);
6055 	rfilt = ath_calcrxfilter(sc);
6056 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
6057 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
6058 		   vap->iv_opmode == IEEE80211_M_IBSS);
6059 
6060 	/*
6061 	 * XXX Dont need to do this (and others) if we've transitioned
6062 	 * from SLEEP->RUN.
6063 	 */
6064 	if (stamode && nstate == IEEE80211_S_RUN) {
6065 		sc->sc_curaid = ni->ni_associd;
6066 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
6067 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
6068 	}
6069 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
6070 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
6071 	ath_hal_setrxfilter(ah, rfilt);
6072 
6073 	/* XXX is this to restore keycache on resume? */
6074 	if (vap->iv_opmode != IEEE80211_M_STA &&
6075 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
6076 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
6077 			if (ath_hal_keyisvalid(ah, i))
6078 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
6079 	}
6080 
6081 	/*
6082 	 * Invoke the parent method to do net80211 work.
6083 	 */
6084 	error = avp->av_newstate(vap, nstate, arg);
6085 	if (error != 0)
6086 		goto bad;
6087 
6088 	/*
6089 	 * See above: ensure av_newstate() doesn't drop the lock
6090 	 * on us.
6091 	 */
6092 	IEEE80211_LOCK_ASSERT(ic);
6093 
6094 	if (nstate == IEEE80211_S_RUN) {
6095 		/* NB: collect bss node again, it may have changed */
6096 		ieee80211_free_node(ni);
6097 		ni = ieee80211_ref_node(vap->iv_bss);
6098 
6099 		DPRINTF(sc, ATH_DEBUG_STATE,
6100 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
6101 		    "capinfo 0x%04x chan %d\n", __func__,
6102 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
6103 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
6104 
6105 		switch (vap->iv_opmode) {
6106 #ifdef IEEE80211_SUPPORT_TDMA
6107 		case IEEE80211_M_AHDEMO:
6108 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
6109 				break;
6110 			/* fall thru... */
6111 #endif
6112 		case IEEE80211_M_HOSTAP:
6113 		case IEEE80211_M_IBSS:
6114 		case IEEE80211_M_MBSS:
6115 			/*
6116 			 * Allocate and setup the beacon frame.
6117 			 *
6118 			 * Stop any previous beacon DMA.  This may be
6119 			 * necessary, for example, when an ibss merge
6120 			 * causes reconfiguration; there will be a state
6121 			 * transition from RUN->RUN that means we may
6122 			 * be called with beacon transmission active.
6123 			 */
6124 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
6125 
6126 			error = ath_beacon_alloc(sc, ni);
6127 			if (error != 0)
6128 				goto bad;
6129 			/*
6130 			 * If joining an adhoc network defer beacon timer
6131 			 * configuration to the next beacon frame so we
6132 			 * have a current TSF to use.  Otherwise we're
6133 			 * starting an ibss/bss so there's no need to delay;
6134 			 * if this is the first vap moving to RUN state, then
6135 			 * beacon state needs to be [re]configured.
6136 			 */
6137 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
6138 			    ni->ni_tstamp.tsf != 0) {
6139 				sc->sc_syncbeacon = 1;
6140 			} else if (!sc->sc_beacons) {
6141 #ifdef IEEE80211_SUPPORT_TDMA
6142 				if (vap->iv_caps & IEEE80211_C_TDMA)
6143 					ath_tdma_config(sc, vap);
6144 				else
6145 #endif
6146 					ath_beacon_config(sc, vap);
6147 				sc->sc_beacons = 1;
6148 			}
6149 			break;
6150 		case IEEE80211_M_STA:
6151 			/*
6152 			 * Defer beacon timer configuration to the next
6153 			 * beacon frame so we have a current TSF to use
6154 			 * (any TSF collected when scanning is likely old).
6155 			 * However if it's due to a CSA -> RUN transition,
6156 			 * force a beacon update so we pick up a lack of
6157 			 * beacons from an AP in CAC and thus force a
6158 			 * scan.
6159 			 *
6160 			 * And, there's also corner cases here where
6161 			 * after a scan, the AP may have disappeared.
6162 			 * In that case, we may not receive an actual
6163 			 * beacon to update the beacon timer and thus we
6164 			 * won't get notified of the missing beacons.
6165 			 */
6166 			if (ostate != IEEE80211_S_RUN &&
6167 			    ostate != IEEE80211_S_SLEEP) {
6168 				DPRINTF(sc, ATH_DEBUG_BEACON,
6169 				    "%s: STA; syncbeacon=1\n", __func__);
6170 				sc->sc_syncbeacon = 1;
6171 
6172 				if (csa_run_transition)
6173 					ath_beacon_config(sc, vap);
6174 
6175 			/*
6176 			 * PR: kern/175227
6177 			 *
6178 			 * Reconfigure beacons during reset; as otherwise
6179 			 * we won't get the beacon timers reprogrammed
6180 			 * after a reset and thus we won't pick up a
6181 			 * beacon miss interrupt.
6182 			 *
6183 			 * Hopefully we'll see a beacon before the BMISS
6184 			 * timer fires (too often), leading to a STA
6185 			 * disassociation.
6186 			 */
6187 				sc->sc_beacons = 1;
6188 			}
6189 			break;
6190 		case IEEE80211_M_MONITOR:
6191 			/*
6192 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6193 			 * transitions so we must re-enable interrupts here to
6194 			 * handle the case of a single monitor mode vap.
6195 			 */
6196 			ath_hal_intrset(ah, sc->sc_imask);
6197 			break;
6198 		case IEEE80211_M_WDS:
6199 			break;
6200 		default:
6201 			break;
6202 		}
6203 		/*
6204 		 * Let the hal process statistics collected during a
6205 		 * scan so it can provide calibrated noise floor data.
6206 		 */
6207 		ath_hal_process_noisefloor(ah);
6208 		/*
6209 		 * Reset rssi stats; maybe not the best place...
6210 		 */
6211 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6212 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6213 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6214 
6215 		/*
6216 		 * Force awake for RUN mode.
6217 		 */
6218 		ATH_LOCK(sc);
6219 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6220 		ath_power_setpower(sc, HAL_PM_AWAKE);
6221 
6222 		/*
6223 		 * Finally, start any timers and the task q thread
6224 		 * (in case we didn't go through SCAN state).
6225 		 */
6226 		if (ath_longcalinterval != 0) {
6227 			/* start periodic recalibration timer */
6228 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6229 		} else {
6230 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6231 			    "%s: calibration disabled\n", __func__);
6232 		}
6233 		ATH_UNLOCK(sc);
6234 
6235 		taskqueue_unblock(sc->sc_tq);
6236 	} else if (nstate == IEEE80211_S_INIT) {
6237 		/*
6238 		 * If there are no vaps left in RUN state then
6239 		 * shutdown host/driver operation:
6240 		 * o disable interrupts
6241 		 * o disable the task queue thread
6242 		 * o mark beacon processing as stopped
6243 		 */
6244 		if (!ath_isanyrunningvaps(vap)) {
6245 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6246 			/* disable interrupts  */
6247 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6248 			taskqueue_block(sc->sc_tq);
6249 			sc->sc_beacons = 0;
6250 		}
6251 #ifdef IEEE80211_SUPPORT_TDMA
6252 		ath_hal_setcca(ah, AH_TRUE);
6253 #endif
6254 	} else if (nstate == IEEE80211_S_SLEEP) {
6255 		/* We're going to sleep, so transition appropriately */
6256 		/* For now, only do this if we're a single STA vap */
6257 		if (sc->sc_nvaps == 1 &&
6258 		    vap->iv_opmode == IEEE80211_M_STA) {
6259 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6260 			ATH_LOCK(sc);
6261 			/*
6262 			 * Always at least set the self-generated
6263 			 * frame config to set PWRMGT=1.
6264 			 */
6265 			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6266 
6267 			/*
6268 			 * If we're not syncing beacons, transition
6269 			 * to NETWORK_SLEEP.
6270 			 *
6271 			 * We stay awake if syncbeacon > 0 in case
6272 			 * we need to listen for some beacons otherwise
6273 			 * our beacon timer config may be wrong.
6274 			 */
6275 			if (sc->sc_syncbeacon == 0) {
6276 				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6277 			}
6278 			ATH_UNLOCK(sc);
6279 		}
6280 	}
6281 bad:
6282 	ieee80211_free_node(ni);
6283 
6284 	/*
6285 	 * Restore the power state - either to what it was, or
6286 	 * to network_sleep if it's alright.
6287 	 */
6288 	ATH_LOCK(sc);
6289 	ath_power_restore_power_state(sc);
6290 	ATH_UNLOCK(sc);
6291 	return error;
6292 }
6293 
6294 /*
6295  * Allocate a key cache slot to the station so we can
6296  * setup a mapping from key index to node. The key cache
6297  * slot is needed for managing antenna state and for
6298  * compression when stations do not use crypto.  We do
6299  * it uniliaterally here; if crypto is employed this slot
6300  * will be reassigned.
6301  */
6302 static void
6303 ath_setup_stationkey(struct ieee80211_node *ni)
6304 {
6305 	struct ieee80211vap *vap = ni->ni_vap;
6306 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6307 	ieee80211_keyix keyix, rxkeyix;
6308 
6309 	/* XXX should take a locked ref to vap->iv_bss */
6310 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6311 		/*
6312 		 * Key cache is full; we'll fall back to doing
6313 		 * the more expensive lookup in software.  Note
6314 		 * this also means no h/w compression.
6315 		 */
6316 		/* XXX msg+statistic */
6317 	} else {
6318 		/* XXX locking? */
6319 		ni->ni_ucastkey.wk_keyix = keyix;
6320 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6321 		/* NB: must mark device key to get called back on delete */
6322 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6323 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6324 		/* NB: this will create a pass-thru key entry */
6325 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6326 	}
6327 }
6328 
6329 /*
6330  * Setup driver-specific state for a newly associated node.
6331  * Note that we're called also on a re-associate, the isnew
6332  * param tells us if this is the first time or not.
6333  */
6334 static void
6335 ath_newassoc(struct ieee80211_node *ni, int isnew)
6336 {
6337 	struct ath_node *an = ATH_NODE(ni);
6338 	struct ieee80211vap *vap = ni->ni_vap;
6339 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6340 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6341 
6342 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6343 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6344 
6345 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: reassoc; isnew=%d, is_powersave=%d\n",
6346 	    __func__,
6347 	    ath_hal_ether_sprintf(ni->ni_macaddr),
6348 	    isnew,
6349 	    an->an_is_powersave);
6350 
6351 	ATH_NODE_LOCK(an);
6352 	ath_rate_newassoc(sc, an, isnew);
6353 	ATH_NODE_UNLOCK(an);
6354 
6355 	if (isnew &&
6356 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6357 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6358 		ath_setup_stationkey(ni);
6359 
6360 	/*
6361 	 * If we're reassociating, make sure that any paused queues
6362 	 * get unpaused.
6363 	 *
6364 	 * Now, we may hvae frames in the hardware queue for this node.
6365 	 * So if we are reassociating and there are frames in the queue,
6366 	 * we need to go through the cleanup path to ensure that they're
6367 	 * marked as non-aggregate.
6368 	 */
6369 	if (! isnew) {
6370 		DPRINTF(sc, ATH_DEBUG_NODE,
6371 		    "%s: %s: reassoc; is_powersave=%d\n",
6372 		    __func__,
6373 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6374 		    an->an_is_powersave);
6375 
6376 		/* XXX for now, we can't hold the lock across assoc */
6377 		ath_tx_node_reassoc(sc, an);
6378 
6379 		/* XXX for now, we can't hold the lock across wakeup */
6380 		if (an->an_is_powersave)
6381 			ath_tx_node_wakeup(sc, an);
6382 	}
6383 }
6384 
6385 static int
6386 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6387 	int nchans, struct ieee80211_channel chans[])
6388 {
6389 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6390 	struct ath_hal *ah = sc->sc_ah;
6391 	HAL_STATUS status;
6392 
6393 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6394 	    "%s: rd %u cc %u location %c%s\n",
6395 	    __func__, reg->regdomain, reg->country, reg->location,
6396 	    reg->ecm ? " ecm" : "");
6397 
6398 	status = ath_hal_set_channels(ah, chans, nchans,
6399 	    reg->country, reg->regdomain);
6400 	if (status != HAL_OK) {
6401 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6402 		    __func__, status);
6403 		return EINVAL;		/* XXX */
6404 	}
6405 
6406 	return 0;
6407 }
6408 
6409 static void
6410 ath_getradiocaps(struct ieee80211com *ic,
6411 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6412 {
6413 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6414 	struct ath_hal *ah = sc->sc_ah;
6415 
6416 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6417 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6418 
6419 	/* XXX check return */
6420 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6421 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6422 
6423 }
6424 
6425 static int
6426 ath_getchannels(struct ath_softc *sc)
6427 {
6428 	struct ifnet *ifp = sc->sc_ifp;
6429 	struct ieee80211com *ic = ifp->if_l2com;
6430 	struct ath_hal *ah = sc->sc_ah;
6431 	HAL_STATUS status;
6432 
6433 	/*
6434 	 * Collect channel set based on EEPROM contents.
6435 	 */
6436 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6437 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6438 	if (status != HAL_OK) {
6439 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6440 		    "status %d\n", __func__, status);
6441 		return EINVAL;
6442 	}
6443 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6444 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6445 	/* XXX map Atheros sku's to net80211 SKU's */
6446 	/* XXX net80211 types too small */
6447 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6448 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6449 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6450 	ic->ic_regdomain.isocc[1] = ' ';
6451 
6452 	ic->ic_regdomain.ecm = 1;
6453 	ic->ic_regdomain.location = 'I';
6454 
6455 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6456 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6457 	    __func__, sc->sc_eerd, sc->sc_eecc,
6458 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6459 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6460 	return 0;
6461 }
6462 
6463 static int
6464 ath_rate_setup(struct ath_softc *sc, u_int mode)
6465 {
6466 	struct ath_hal *ah = sc->sc_ah;
6467 	const HAL_RATE_TABLE *rt;
6468 
6469 	switch (mode) {
6470 	case IEEE80211_MODE_11A:
6471 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6472 		break;
6473 	case IEEE80211_MODE_HALF:
6474 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6475 		break;
6476 	case IEEE80211_MODE_QUARTER:
6477 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6478 		break;
6479 	case IEEE80211_MODE_11B:
6480 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6481 		break;
6482 	case IEEE80211_MODE_11G:
6483 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6484 		break;
6485 	case IEEE80211_MODE_TURBO_A:
6486 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6487 		break;
6488 	case IEEE80211_MODE_TURBO_G:
6489 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6490 		break;
6491 	case IEEE80211_MODE_STURBO_A:
6492 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6493 		break;
6494 	case IEEE80211_MODE_11NA:
6495 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6496 		break;
6497 	case IEEE80211_MODE_11NG:
6498 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6499 		break;
6500 	default:
6501 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6502 			__func__, mode);
6503 		return 0;
6504 	}
6505 	sc->sc_rates[mode] = rt;
6506 	return (rt != NULL);
6507 }
6508 
6509 static void
6510 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6511 {
6512 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6513 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6514 	static const struct {
6515 		u_int		rate;		/* tx/rx 802.11 rate */
6516 		u_int16_t	timeOn;		/* LED on time (ms) */
6517 		u_int16_t	timeOff;	/* LED off time (ms) */
6518 	} blinkrates[] = {
6519 		{ 108,  40,  10 },
6520 		{  96,  44,  11 },
6521 		{  72,  50,  13 },
6522 		{  48,  57,  14 },
6523 		{  36,  67,  16 },
6524 		{  24,  80,  20 },
6525 		{  22, 100,  25 },
6526 		{  18, 133,  34 },
6527 		{  12, 160,  40 },
6528 		{  10, 200,  50 },
6529 		{   6, 240,  58 },
6530 		{   4, 267,  66 },
6531 		{   2, 400, 100 },
6532 		{   0, 500, 130 },
6533 		/* XXX half/quarter rates */
6534 	};
6535 	const HAL_RATE_TABLE *rt;
6536 	int i, j;
6537 
6538 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6539 	rt = sc->sc_rates[mode];
6540 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6541 	for (i = 0; i < rt->rateCount; i++) {
6542 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6543 		if (rt->info[i].phy != IEEE80211_T_HT)
6544 			sc->sc_rixmap[ieeerate] = i;
6545 		else
6546 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6547 	}
6548 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6549 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6550 		if (i >= rt->rateCount) {
6551 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6552 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6553 			continue;
6554 		}
6555 		sc->sc_hwmap[i].ieeerate =
6556 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6557 		if (rt->info[i].phy == IEEE80211_T_HT)
6558 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6559 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6560 		if (rt->info[i].shortPreamble ||
6561 		    rt->info[i].phy == IEEE80211_T_OFDM)
6562 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6563 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6564 		for (j = 0; j < N(blinkrates)-1; j++)
6565 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6566 				break;
6567 		/* NB: this uses the last entry if the rate isn't found */
6568 		/* XXX beware of overlow */
6569 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6570 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6571 	}
6572 	sc->sc_currates = rt;
6573 	sc->sc_curmode = mode;
6574 	/*
6575 	 * All protection frames are transmited at 2Mb/s for
6576 	 * 11g, otherwise at 1Mb/s.
6577 	 */
6578 	if (mode == IEEE80211_MODE_11G)
6579 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6580 	else
6581 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6582 	/* NB: caller is responsible for resetting rate control state */
6583 #undef N
6584 }
6585 
6586 static void
6587 ath_watchdog(void *arg)
6588 {
6589 	struct ath_softc *sc = arg;
6590 	int do_reset = 0;
6591 
6592 	ATH_LOCK_ASSERT(sc);
6593 
6594 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6595 		struct ifnet *ifp = sc->sc_ifp;
6596 		uint32_t hangs;
6597 
6598 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6599 
6600 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6601 		    hangs != 0) {
6602 			if_printf(ifp, "%s hang detected (0x%x)\n",
6603 			    hangs & 0xff ? "bb" : "mac", hangs);
6604 		} else
6605 			if_printf(ifp, "device timeout\n");
6606 		do_reset = 1;
6607 #if defined(__DragonFly__)
6608 		++ifp->if_oerrors;
6609 #else
6610 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6611 #endif
6612 		sc->sc_stats.ast_watchdog++;
6613 
6614 		ath_power_restore_power_state(sc);
6615 	}
6616 
6617 	/*
6618 	 * We can't hold the lock across the ath_reset() call.
6619 	 *
6620 	 * And since this routine can't hold a lock and sleep,
6621 	 * do the reset deferred.
6622 	 */
6623 	if (do_reset) {
6624 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6625 	}
6626 
6627 #if defined(__DragonFly__)
6628 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
6629 #else
6630 	callout_schedule(&sc->sc_wd_ch, hz);
6631 #endif
6632 }
6633 
6634 #if defined(__DragonFly__)
6635 
6636 /*
6637  * (DragonFly network start)
6638  */
6639 static void
6640 ath_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
6641 {
6642        struct ath_softc *sc = ifp->if_softc;
6643        struct mbuf *m;
6644        int wst;
6645 
6646        ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
6647        wst = wlan_serialize_push();
6648 
6649        if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
6650                ifq_purge(&ifp->if_snd);
6651                wlan_serialize_pop(wst);
6652                return;
6653        }
6654        ifq_set_oactive(&ifp->if_snd);
6655        for (;;) {
6656                m = ifq_dequeue(&ifp->if_snd);
6657                if (m == NULL)
6658                        break;
6659                ath_transmit(ifp, m);
6660        }
6661        ifq_clr_oactive(&ifp->if_snd);
6662        wlan_serialize_pop(wst);
6663 }
6664 
6665 #endif
6666 
6667 /*
6668  * Fetch the rate control statistics for the given node.
6669  */
6670 static int
6671 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6672 {
6673 	struct ath_node *an;
6674 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6675 	struct ieee80211_node *ni;
6676 	int error = 0;
6677 
6678 	/* Perform a lookup on the given node */
6679 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6680 	if (ni == NULL) {
6681 		error = EINVAL;
6682 		goto bad;
6683 	}
6684 
6685 	/* Lock the ath_node */
6686 	an = ATH_NODE(ni);
6687 	ATH_NODE_LOCK(an);
6688 
6689 	/* Fetch the rate control stats for this node */
6690 	error = ath_rate_fetch_node_stats(sc, an, rs);
6691 
6692 	/* No matter what happens here, just drop through */
6693 
6694 	/* Unlock the ath_node */
6695 	ATH_NODE_UNLOCK(an);
6696 
6697 	/* Unref the node */
6698 	ieee80211_node_decref(ni);
6699 
6700 bad:
6701 	return (error);
6702 }
6703 
6704 #ifdef ATH_DIAGAPI
6705 /*
6706  * Diagnostic interface to the HAL.  This is used by various
6707  * tools to do things like retrieve register contents for
6708  * debugging.  The mechanism is intentionally opaque so that
6709  * it can change frequently w/o concern for compatiblity.
6710  */
6711 static int
6712 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6713 {
6714 	struct ath_hal *ah = sc->sc_ah;
6715 	u_int id = ad->ad_id & ATH_DIAG_ID;
6716 	void *indata = NULL;
6717 	void *outdata = NULL;
6718 	u_int32_t insize = ad->ad_in_size;
6719 	u_int32_t outsize = ad->ad_out_size;
6720 	int error = 0;
6721 
6722 	if (ad->ad_id & ATH_DIAG_IN) {
6723 		/*
6724 		 * Copy in data.
6725 		 */
6726 		indata = kmalloc(insize, M_TEMP, M_INTWAIT);
6727 		if (indata == NULL) {
6728 			error = ENOMEM;
6729 			goto bad;
6730 		}
6731 		error = copyin(ad->ad_in_data, indata, insize);
6732 		if (error)
6733 			goto bad;
6734 	}
6735 	if (ad->ad_id & ATH_DIAG_DYN) {
6736 		/*
6737 		 * Allocate a buffer for the results (otherwise the HAL
6738 		 * returns a pointer to a buffer where we can read the
6739 		 * results).  Note that we depend on the HAL leaving this
6740 		 * pointer for us to use below in reclaiming the buffer;
6741 		 * may want to be more defensive.
6742 		 */
6743 		outdata = kmalloc(outsize, M_TEMP, M_INTWAIT);
6744 		if (outdata == NULL) {
6745 			error = ENOMEM;
6746 			goto bad;
6747 		}
6748 	}
6749 
6750 
6751 	ATH_LOCK(sc);
6752 	if (id != HAL_DIAG_REGS)
6753 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6754 	ATH_UNLOCK(sc);
6755 
6756 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6757 		if (outsize < ad->ad_out_size)
6758 			ad->ad_out_size = outsize;
6759 		if (outdata != NULL)
6760 			error = copyout(outdata, ad->ad_out_data,
6761 					ad->ad_out_size);
6762 	} else {
6763 		error = EINVAL;
6764 	}
6765 
6766 	ATH_LOCK(sc);
6767 	if (id != HAL_DIAG_REGS)
6768 		ath_power_restore_power_state(sc);
6769 	ATH_UNLOCK(sc);
6770 
6771 bad:
6772 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6773 		kfree(indata, M_TEMP);
6774 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6775 		kfree(outdata, M_TEMP);
6776 	return error;
6777 }
6778 #endif /* ATH_DIAGAPI */
6779 
6780 #if defined(__DragonFly__)
6781 
6782 static int
6783 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
6784 	  struct ucred *cred __unused)
6785 
6786 #else
6787 
6788 static int
6789 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6790 
6791 #endif
6792 {
6793 #define	IS_RUNNING(ifp) \
6794 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
6795 	struct ath_softc *sc = ifp->if_softc;
6796 	struct ieee80211com *ic = ifp->if_l2com;
6797 	struct ifreq *ifr = (struct ifreq *)data;
6798 	const HAL_RATE_TABLE *rt;
6799 	int error = 0;
6800 
6801 	switch (cmd) {
6802 	case SIOCSIFFLAGS:
6803 		if (IS_RUNNING(ifp)) {
6804 			/*
6805 			 * To avoid rescanning another access point,
6806 			 * do not call ath_init() here.  Instead,
6807 			 * only reflect promisc mode settings.
6808 			 */
6809 			ATH_LOCK(sc);
6810 			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6811 			ath_mode_init(sc);
6812 			ath_power_restore_power_state(sc);
6813 			ATH_UNLOCK(sc);
6814 		} else if (ifp->if_flags & IFF_UP) {
6815 			/*
6816 			 * Beware of being called during attach/detach
6817 			 * to reset promiscuous mode.  In that case we
6818 			 * will still be marked UP but not RUNNING.
6819 			 * However trying to re-init the interface
6820 			 * is the wrong thing to do as we've already
6821 			 * torn down much of our state.  There's
6822 			 * probably a better way to deal with this.
6823 			 */
6824 			if (!sc->sc_invalid)
6825 				ath_init(sc);	/* XXX lose error */
6826 		} else {
6827 			ATH_LOCK(sc);
6828 			ath_stop_locked(ifp);
6829 			if (!sc->sc_invalid)
6830 				ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6831 			ATH_UNLOCK(sc);
6832 		}
6833 		break;
6834 	case SIOCGIFMEDIA:
6835 	case SIOCSIFMEDIA:
6836 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6837 		break;
6838 	case SIOCGATHSTATS:
6839 		/* NB: embed these numbers to get a consistent view */
6840 #if defined(__DragonFly__)
6841 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6842 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6843 #else
6844 		sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp,
6845 		    IFCOUNTER_OPACKETS);
6846 		sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp,
6847 		    IFCOUNTER_IPACKETS);
6848 #endif
6849 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6850 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6851 #ifdef IEEE80211_SUPPORT_TDMA
6852 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6853 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6854 #endif
6855 		rt = sc->sc_currates;
6856 		sc->sc_stats.ast_tx_rate =
6857 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6858 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6859 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6860 		error = copyout(&sc->sc_stats,
6861 		    ifr->ifr_data, sizeof (sc->sc_stats));
6862 		break;
6863 	case SIOCGATHAGSTATS:
6864 		error = copyout(&sc->sc_aggr_stats,
6865 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6866 		break;
6867 	case SIOCZATHSTATS:
6868 		error = priv_check(curthread, PRIV_DRIVER);
6869 		if (error == 0) {
6870 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6871 			memset(&sc->sc_aggr_stats, 0,
6872 			    sizeof(sc->sc_aggr_stats));
6873 			memset(&sc->sc_intr_stats, 0,
6874 			    sizeof(sc->sc_intr_stats));
6875 		}
6876 		break;
6877 #ifdef ATH_DIAGAPI
6878 	case SIOCGATHDIAG:
6879 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6880 		break;
6881 	case SIOCGATHPHYERR:
6882 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6883 		break;
6884 #endif
6885 	case SIOCGATHSPECTRAL:
6886 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6887 		break;
6888 	case SIOCGATHNODERATESTATS:
6889 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6890 		break;
6891 	case SIOCGIFADDR:
6892 		error = ether_ioctl(ifp, cmd, data);
6893 		break;
6894 	default:
6895 		error = EINVAL;
6896 		break;
6897 	}
6898 	return error;
6899 #undef IS_RUNNING
6900 }
6901 
6902 /*
6903  * Announce various information on device/driver attach.
6904  */
6905 static void
6906 ath_announce(struct ath_softc *sc)
6907 {
6908 	struct ifnet *ifp = sc->sc_ifp;
6909 	struct ath_hal *ah = sc->sc_ah;
6910 
6911 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6912 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6913 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6914 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6915 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6916 	if (bootverbose) {
6917 		int i;
6918 		for (i = 0; i <= WME_AC_VO; i++) {
6919 			struct ath_txq *txq = sc->sc_ac2q[i];
6920 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6921 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6922 		}
6923 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6924 			sc->sc_cabq->axq_qnum);
6925 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6926 	}
6927 	if (ath_rxbuf != ATH_RXBUF)
6928 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6929 	if (ath_txbuf != ATH_TXBUF)
6930 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6931 	if (sc->sc_mcastkey && bootverbose)
6932 		if_printf(ifp, "using multicast key search\n");
6933 }
6934 
6935 static void
6936 ath_dfs_tasklet(void *p, int npending)
6937 {
6938 	struct ath_softc *sc = (struct ath_softc *) p;
6939 	struct ifnet *ifp = sc->sc_ifp;
6940 	struct ieee80211com *ic = ifp->if_l2com;
6941 
6942 	/*
6943 	 * If previous processing has found a radar event,
6944 	 * signal this to the net80211 layer to begin DFS
6945 	 * processing.
6946 	 */
6947 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6948 		/* DFS event found, initiate channel change */
6949 		/*
6950 		 * XXX doesn't currently tell us whether the event
6951 		 * XXX was found in the primary or extension
6952 		 * XXX channel!
6953 		 */
6954 		IEEE80211_LOCK(ic);
6955 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6956 		IEEE80211_UNLOCK(ic);
6957 	}
6958 }
6959 
6960 /*
6961  * Enable/disable power save.  This must be called with
6962  * no TX driver locks currently held, so it should only
6963  * be called from the RX path (which doesn't hold any
6964  * TX driver locks.)
6965  */
6966 static void
6967 ath_node_powersave(struct ieee80211_node *ni, int enable)
6968 {
6969 #ifdef	ATH_SW_PSQ
6970 	struct ath_node *an = ATH_NODE(ni);
6971 	struct ieee80211com *ic = ni->ni_ic;
6972 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6973 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6974 
6975 	/* XXX and no TXQ locks should be held here */
6976 
6977 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6s: enable=%d\n",
6978 	    __func__,
6979 	    ath_hal_ether_sprintf(ni->ni_macaddr),
6980 	    !! enable);
6981 
6982 	/* Suspend or resume software queue handling */
6983 	if (enable)
6984 		ath_tx_node_sleep(sc, an);
6985 	else
6986 		ath_tx_node_wakeup(sc, an);
6987 
6988 	/* Update net80211 state */
6989 	avp->av_node_ps(ni, enable);
6990 #else
6991 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6992 
6993 	/* Update net80211 state */
6994 	avp->av_node_ps(ni, enable);
6995 #endif/* ATH_SW_PSQ */
6996 }
6997 
6998 /*
6999  * Notification from net80211 that the powersave queue state has
7000  * changed.
7001  *
7002  * Since the software queue also may have some frames:
7003  *
7004  * + if the node software queue has frames and the TID state
7005  *   is 0, we set the TIM;
7006  * + if the node and the stack are both empty, we clear the TIM bit.
7007  * + If the stack tries to set the bit, always set it.
7008  * + If the stack tries to clear the bit, only clear it if the
7009  *   software queue in question is also cleared.
7010  *
7011  * TODO: this is called during node teardown; so let's ensure this
7012  * is all correctly handled and that the TIM bit is cleared.
7013  * It may be that the node flush is called _AFTER_ the net80211
7014  * stack clears the TIM.
7015  *
7016  * Here is the racy part.  Since it's possible >1 concurrent,
7017  * overlapping TXes will appear complete with a TX completion in
7018  * another thread, it's possible that the concurrent TIM calls will
7019  * clash.  We can't hold the node lock here because setting the
7020  * TIM grabs the net80211 comlock and this may cause a LOR.
7021  * The solution is either to totally serialise _everything_ at
7022  * this point (ie, all TX, completion and any reset/flush go into
7023  * one taskqueue) or a new "ath TIM lock" needs to be created that
7024  * just wraps the driver state change and this call to avp->av_set_tim().
7025  *
7026  * The same race exists in the net80211 power save queue handling
7027  * as well.  Since multiple transmitting threads may queue frames
7028  * into the driver, as well as ps-poll and the driver transmitting
7029  * frames (and thus clearing the psq), it's quite possible that
7030  * a packet entering the PSQ and a ps-poll being handled will
7031  * race, causing the TIM to be cleared and not re-set.
7032  */
7033 static int
7034 ath_node_set_tim(struct ieee80211_node *ni, int enable)
7035 {
7036 #ifdef	ATH_SW_PSQ
7037 	struct ieee80211com *ic = ni->ni_ic;
7038 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7039 	struct ath_node *an = ATH_NODE(ni);
7040 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
7041 	int changed = 0;
7042 
7043 	ATH_TX_LOCK(sc);
7044 	an->an_stack_psq = enable;
7045 
7046 	/*
7047 	 * This will get called for all operating modes,
7048 	 * even if avp->av_set_tim is unset.
7049 	 * It's currently set for hostap/ibss modes; but
7050 	 * the same infrastructure is used for both STA
7051 	 * and AP/IBSS node power save.
7052 	 */
7053 	if (avp->av_set_tim == NULL) {
7054 		ATH_TX_UNLOCK(sc);
7055 		return (0);
7056 	}
7057 
7058 	/*
7059 	 * If setting the bit, always set it here.
7060 	 * If clearing the bit, only clear it if the
7061 	 * software queue is also empty.
7062 	 *
7063 	 * If the node has left power save, just clear the TIM
7064 	 * bit regardless of the state of the power save queue.
7065 	 *
7066 	 * XXX TODO: although atomics are used, it's quite possible
7067 	 * that a race will occur between this and setting/clearing
7068 	 * in another thread.  TX completion will occur always in
7069 	 * one thread, however setting/clearing the TIM bit can come
7070 	 * from a variety of different process contexts!
7071 	 */
7072 	if (enable && an->an_tim_set == 1) {
7073 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7074 		    "%s: %s: enable=%d, tim_set=1, ignoring\n",
7075 		    __func__,
7076 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7077 		    enable);
7078 		ATH_TX_UNLOCK(sc);
7079 	} else if (enable) {
7080 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7081 		    "%s: %s: enable=%d, enabling TIM\n",
7082 		    __func__,
7083 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7084 		    enable);
7085 		an->an_tim_set = 1;
7086 		ATH_TX_UNLOCK(sc);
7087 		changed = avp->av_set_tim(ni, enable);
7088 	} else if (an->an_swq_depth == 0) {
7089 		/* disable */
7090 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7091 		    "%s: %s: enable=%d, an_swq_depth == 0, disabling\n",
7092 		    __func__,
7093 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7094 		    enable);
7095 		an->an_tim_set = 0;
7096 		ATH_TX_UNLOCK(sc);
7097 		changed = avp->av_set_tim(ni, enable);
7098 	} else if (! an->an_is_powersave) {
7099 		/*
7100 		 * disable regardless; the node isn't in powersave now
7101 		 */
7102 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7103 		    "%s: %s: enable=%d, an_pwrsave=0, disabling\n",
7104 		    __func__,
7105 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7106 		    enable);
7107 		an->an_tim_set = 0;
7108 		ATH_TX_UNLOCK(sc);
7109 		changed = avp->av_set_tim(ni, enable);
7110 	} else {
7111 		/*
7112 		 * psq disable, node is currently in powersave, node
7113 		 * software queue isn't empty, so don't clear the TIM bit
7114 		 * for now.
7115 		 */
7116 		ATH_TX_UNLOCK(sc);
7117 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7118 		    "%s: %s: enable=%d, an_swq_depth > 0, ignoring\n",
7119 		    __func__,
7120 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7121 		    enable);
7122 		changed = 0;
7123 	}
7124 
7125 	return (changed);
7126 #else
7127 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
7128 
7129 	/*
7130 	 * Some operating modes don't set av_set_tim(), so don't
7131 	 * update it here.
7132 	 */
7133 	if (avp->av_set_tim == NULL)
7134 		return (0);
7135 
7136 	return (avp->av_set_tim(ni, enable));
7137 #endif /* ATH_SW_PSQ */
7138 }
7139 
7140 /*
7141  * Set or update the TIM from the software queue.
7142  *
7143  * Check the software queue depth before attempting to do lock
7144  * anything; that avoids trying to obtain the lock.  Then,
7145  * re-check afterwards to ensure nothing has changed in the
7146  * meantime.
7147  *
7148  * set:   This is designed to be called from the TX path, after
7149  *        a frame has been queued; to see if the swq > 0.
7150  *
7151  * clear: This is designed to be called from the buffer completion point
7152  *        (right now it's ath_tx_default_comp()) where the state of
7153  *        a software queue has changed.
7154  *
7155  * It makes sense to place it at buffer free / completion rather
7156  * than after each software queue operation, as there's no real
7157  * point in churning the TIM bit as the last frames in the software
7158  * queue are transmitted.  If they fail and we retry them, we'd
7159  * just be setting the TIM bit again anyway.
7160  */
7161 void
7162 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
7163      int enable)
7164 {
7165 #ifdef	ATH_SW_PSQ
7166 	struct ath_node *an;
7167 	struct ath_vap *avp;
7168 
7169 	/* Don't do this for broadcast/etc frames */
7170 	if (ni == NULL)
7171 		return;
7172 
7173 	an = ATH_NODE(ni);
7174 	avp = ATH_VAP(ni->ni_vap);
7175 
7176 	/*
7177 	 * And for operating modes without the TIM handler set, let's
7178 	 * just skip those.
7179 	 */
7180 	if (avp->av_set_tim == NULL)
7181 		return;
7182 
7183 	ATH_TX_LOCK_ASSERT(sc);
7184 
7185 	if (enable) {
7186 		if (an->an_is_powersave &&
7187 		    an->an_tim_set == 0 &&
7188 		    an->an_swq_depth != 0) {
7189 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7190 			    "%s: %s: swq_depth>0, tim_set=0, set!\n",
7191 			    __func__,
7192 			    ath_hal_ether_sprintf(ni->ni_macaddr));
7193 			an->an_tim_set = 1;
7194 			(void) avp->av_set_tim(ni, 1);
7195 		}
7196 	} else {
7197 		/*
7198 		 * Don't bother grabbing the lock unless the queue is empty.
7199 		 */
7200 		if (an->an_swq_depth != 0)
7201 			return;
7202 
7203 		if (an->an_is_powersave &&
7204 		    an->an_stack_psq == 0 &&
7205 		    an->an_tim_set == 1 &&
7206 		    an->an_swq_depth == 0) {
7207 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7208 			    "%s: %s: swq_depth=0, tim_set=1, psq_set=0,"
7209 			    " clear!\n",
7210 			    __func__,
7211 			    ath_hal_ether_sprintf(ni->ni_macaddr));
7212 			an->an_tim_set = 0;
7213 			(void) avp->av_set_tim(ni, 0);
7214 		}
7215 	}
7216 #else
7217 	return;
7218 #endif	/* ATH_SW_PSQ */
7219 }
7220 
7221 /*
7222  * Received a ps-poll frame from net80211.
7223  *
7224  * Here we get a chance to serve out a software-queued frame ourselves
7225  * before we punt it to net80211 to transmit us one itself - either
7226  * because there's traffic in the net80211 psq, or a NULL frame to
7227  * indicate there's nothing else.
7228  */
7229 static void
7230 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
7231 {
7232 #ifdef	ATH_SW_PSQ
7233 	struct ath_node *an;
7234 	struct ath_vap *avp;
7235 	struct ieee80211com *ic = ni->ni_ic;
7236 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7237 	int tid;
7238 
7239 	/* Just paranoia */
7240 	if (ni == NULL)
7241 		return;
7242 
7243 	/*
7244 	 * Unassociated (temporary node) station.
7245 	 */
7246 	if (ni->ni_associd == 0)
7247 		return;
7248 
7249 	/*
7250 	 * We do have an active node, so let's begin looking into it.
7251 	 */
7252 	an = ATH_NODE(ni);
7253 	avp = ATH_VAP(ni->ni_vap);
7254 
7255 	/*
7256 	 * For now, we just call the original ps-poll method.
7257 	 * Once we're ready to flip this on:
7258 	 *
7259 	 * + Set leak to 1, as no matter what we're going to have
7260 	 *   to send a frame;
7261 	 * + Check the software queue and if there's something in it,
7262 	 *   schedule the highest TID thas has traffic from this node.
7263 	 *   Then make sure we schedule the software scheduler to
7264 	 *   run so it picks up said frame.
7265 	 *
7266 	 * That way whatever happens, we'll at least send _a_ frame
7267 	 * to the given node.
7268 	 *
7269 	 * Again, yes, it's crappy QoS if the node has multiple
7270 	 * TIDs worth of traffic - but let's get it working first
7271 	 * before we optimise it.
7272 	 *
7273 	 * Also yes, there's definitely latency here - we're not
7274 	 * direct dispatching to the hardware in this path (and
7275 	 * we're likely being called from the packet receive path,
7276 	 * so going back into TX may be a little hairy!) but again
7277 	 * I'd like to get this working first before optimising
7278 	 * turn-around time.
7279 	 */
7280 
7281 	ATH_TX_LOCK(sc);
7282 
7283 	/*
7284 	 * Legacy - we're called and the node isn't asleep.
7285 	 * Immediately punt.
7286 	 */
7287 	if (! an->an_is_powersave) {
7288 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7289 		    "%s: %s: not in powersave?\n",
7290 		    __func__,
7291 		    ath_hal_ether_sprintf(ni->ni_macaddr));
7292 		ATH_TX_UNLOCK(sc);
7293 		avp->av_recv_pspoll(ni, m);
7294 		return;
7295 	}
7296 
7297 	/*
7298 	 * We're in powersave.
7299 	 *
7300 	 * Leak a frame.
7301 	 */
7302 	an->an_leak_count = 1;
7303 
7304 	/*
7305 	 * Now, if there's no frames in the node, just punt to
7306 	 * recv_pspoll.
7307 	 *
7308 	 * Don't bother checking if the TIM bit is set, we really
7309 	 * only care if there are any frames here!
7310 	 */
7311 	if (an->an_swq_depth == 0) {
7312 		ATH_TX_UNLOCK(sc);
7313 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7314 		    "%s: %s: SWQ empty; punting to net80211\n",
7315 		    __func__,
7316 		    ath_hal_ether_sprintf(ni->ni_macaddr));
7317 		avp->av_recv_pspoll(ni, m);
7318 		return;
7319 	}
7320 
7321 	/*
7322 	 * Ok, let's schedule the highest TID that has traffic
7323 	 * and then schedule something.
7324 	 */
7325 	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7326 		struct ath_tid *atid = &an->an_tid[tid];
7327 		/*
7328 		 * No frames? Skip.
7329 		 */
7330 		if (atid->axq_depth == 0)
7331 			continue;
7332 		ath_tx_tid_sched(sc, atid);
7333 		/*
7334 		 * XXX we could do a direct call to the TXQ
7335 		 * scheduler code here to optimise latency
7336 		 * at the expense of a REALLY deep callstack.
7337 		 */
7338 		ATH_TX_UNLOCK(sc);
7339 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7340 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7341 		    "%s: %s: leaking frame to TID %d\n",
7342 		    __func__,
7343 		    ath_hal_ether_sprintf(ni->ni_macaddr),
7344 		    tid);
7345 		return;
7346 	}
7347 
7348 	ATH_TX_UNLOCK(sc);
7349 
7350 	/*
7351 	 * XXX nothing in the TIDs at this point? Eek.
7352 	 */
7353 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7354 	    "%s: %s: TIDs empty, but ath_node showed traffic?!\n",
7355 	    __func__,
7356 	    ath_hal_ether_sprintf(ni->ni_macaddr));
7357 	avp->av_recv_pspoll(ni, m);
7358 #else
7359 	avp->av_recv_pspoll(ni, m);
7360 #endif	/* ATH_SW_PSQ */
7361 }
7362 
7363 MODULE_VERSION(if_ath, 1);
7364 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7365 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7366 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7367 #endif
7368