xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision ad9f8794)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  *
29  * $FreeBSD: head/sys/dev/ath/if_ath.c 203751 2010-02-10 11:12:39Z rpaulo $");
30  */
31 
32 /*
33  * Driver for the Atheros Wireless LAN controller.
34  *
35  * This software is derived from work of Atsushi Onoe; his contribution
36  * is greatly appreciated.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ath.h"
41 #include "opt_wlan.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 #include <sys/priv.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 #include <net/if_arp.h>
66 #include <net/if_llc.h>
67 #include <net/ifq_var.h>
68 
69 #include <netproto/802_11/ieee80211_var.h>
70 #include <netproto/802_11/ieee80211_regdomain.h>
71 #ifdef IEEE80211_SUPPORT_SUPERG
72 #include <netproto/802_11/ieee80211_superg.h>
73 #endif
74 #ifdef IEEE80211_SUPPORT_TDMA
75 #include <netproto/802_11/ieee80211_tdma.h>
76 #endif
77 
78 #include <net/bpf.h>
79 
80 #ifdef INET
81 #include <netinet/in.h>
82 #include <netinet/if_ether.h>
83 #endif
84 
85 #include <dev/netif/ath/ath/if_athvar.h>
86 #include <dev/netif/ath/hal/ath_hal/ah_devid.h>		/* XXX for softled */
87 
88 #ifdef ATH_TX99_DIAG
89 #include <dev/netif/ath_tx99/ath_tx99.h>
90 #endif
91 
92 /*
93  * ATH_BCBUF determines the number of vap's that can transmit
94  * beacons and also (currently) the number of vap's that can
95  * have unique mac addresses/bssid.  When staggering beacons
96  * 4 is probably a good max as otherwise the beacons become
97  * very closely spaced and there is limited time for cab q traffic
98  * to go out.  You can burst beacons instead but that is not good
99  * for stations in power save and at some point you really want
100  * another radio (and channel).
101  *
102  * The limit on the number of mac addresses is tied to our use of
103  * the U/L bit and tracking addresses in a byte; it would be
104  * worthwhile to allow more for applications like proxy sta.
105  */
106 CTASSERT(ATH_BCBUF <= 8);
107 
108 /* unaligned little endian access */
109 #define LE_READ_2(p)							\
110 	((u_int16_t)							\
111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
112 #define LE_READ_4(p)							\
113 	((u_int32_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116 
117 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
118 		    const char name[IFNAMSIZ], int unit, int opmode,
119 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
120 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
121 static void	ath_vap_delete(struct ieee80211vap *);
122 static void	ath_init(void *);
123 static void	ath_stop_locked(struct ifnet *);
124 static void	ath_stop(struct ifnet *);
125 static void	ath_start(struct ifnet *);
126 static int	ath_reset(struct ifnet *);
127 static int	ath_reset_vap(struct ieee80211vap *, u_long);
128 static int	ath_media_change(struct ifnet *);
129 static void	ath_watchdog_callout(void *);
130 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
131 static void	ath_fatal_proc(void *, int);
132 static void	ath_bmiss_vap(struct ieee80211vap *);
133 static void	ath_bmiss_task(void *, int);
134 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
135 			struct ieee80211_node *);
136 static int	ath_key_alloc(struct ieee80211vap *,
137 			struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211vap *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211vap *);
144 static void	ath_key_update_end(struct ieee80211vap *);
145 static void	ath_update_mcast(struct ifnet *);
146 static void	ath_update_promisc(struct ifnet *);
147 static void	ath_mode_init(struct ath_softc *);
148 static void	ath_setslottime(struct ath_softc *);
149 static void	ath_updateslot(struct ifnet *);
150 static int	ath_beaconq_setup(struct ath_hal *);
151 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
152 static void	ath_beacon_update(struct ieee80211vap *, int item);
153 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
154 static void	ath_beacon_proc(void *, int);
155 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
156 			struct ieee80211vap *);
157 static void	ath_bstuck_task(void *, int);
158 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
159 static void	ath_beacon_free(struct ath_softc *);
160 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
161 static void	ath_descdma_cleanup(struct ath_softc *sc,
162 			struct ath_descdma *, ath_bufhead *);
163 static int	ath_desc_alloc(struct ath_softc *);
164 static void	ath_desc_free(struct ath_softc *);
165 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
166 			const uint8_t [IEEE80211_ADDR_LEN]);
167 static void	ath_node_free(struct ieee80211_node *);
168 static void	ath_node_getsignal(const struct ieee80211_node *,
169 			int8_t *, int8_t *);
170 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
171 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
172 			int subtype, int rssi, int nf);
173 static void	ath_setdefantenna(struct ath_softc *, u_int);
174 static void	ath_rx_task(void *, int);
175 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
176 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
177 static int	ath_tx_setup(struct ath_softc *, int, int);
178 static int	ath_wme_update(struct ieee80211com *);
179 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
180 static void	ath_tx_cleanup(struct ath_softc *);
181 static void	ath_freetx(struct mbuf *);
182 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
183 			     struct ath_buf *, struct mbuf *);
184 static void	ath_tx_task_q0(void *, int);
185 static void	ath_tx_task_q0123(void *, int);
186 static void	ath_tx_task(void *, int);
187 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
188 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_draintxq(struct ath_softc *);
190 static void	ath_stoprecv(struct ath_softc *);
191 static int	ath_startrecv(struct ath_softc *);
192 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
193 static void	ath_scan_start(struct ieee80211com *);
194 static void	ath_scan_end(struct ieee80211com *);
195 static void	ath_set_channel(struct ieee80211com *);
196 static void	ath_calibrate_callout(void *);
197 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	ath_setup_stationkey(struct ieee80211_node *);
199 static void	ath_newassoc(struct ieee80211_node *, int);
200 static int	ath_setregdomain(struct ieee80211com *,
201 		    struct ieee80211_regdomain *, int,
202 		    struct ieee80211_channel []);
203 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204 		    struct ieee80211_channel []);
205 static int	ath_getchannels(struct ath_softc *);
206 static void	ath_led_event(struct ath_softc *, int);
207 
208 static int	ath_rate_setup(struct ath_softc *, u_int mode);
209 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
210 
211 static void	ath_sysctlattach(struct ath_softc *);
212 static int	ath_raw_xmit(struct ieee80211_node *,
213 			struct mbuf *, const struct ieee80211_bpf_params *);
214 static void	ath_announce(struct ath_softc *);
215 static void	ath_sysctl_stats_attach(struct ath_softc *sc);
216 
217 #ifdef IEEE80211_SUPPORT_TDMA
218 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
219 		    u_int32_t bintval);
220 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
221 		    const struct ieee80211_tdma_state *tdma);
222 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
223 static void	ath_tdma_update(struct ieee80211_node *ni,
224 		    const struct ieee80211_tdma_param *tdma, int);
225 static void	ath_tdma_beacon_send(struct ath_softc *sc,
226 		    struct ieee80211vap *vap);
227 
228 static __inline void
229 ath_hal_setcca(struct ath_hal *ah, int ena)
230 {
231 	/*
232 	 * NB: fill me in; this is not provided by default because disabling
233 	 *     CCA in most locales violates regulatory.
234 	 */
235 }
236 
237 static __inline int
238 ath_hal_getcca(struct ath_hal *ah)
239 {
240 	u_int32_t diag;
241 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
242 		return 1;
243 	return ((diag & 0x500000) == 0);
244 }
245 
246 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
247 #define	TDMA_LPF_LEN		6
248 #define	TDMA_DUMMY_MARKER	0x127
249 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
250 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
251 #define	TDMA_LPF(x, y, len) \
252     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
253 #define	TDMA_SAMPLE(x, y) do {					\
254 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
255 } while (0)
256 #define	TDMA_EP_RND(x,mul) \
257 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
258 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
259 #endif /* IEEE80211_SUPPORT_TDMA */
260 
261 SYSCTL_DECL(_hw_ath);
262 
263 /* XXX validate sysctl values */
264 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
265 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
266 	    0, "long chip calibration interval (secs)");
267 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
268 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
269 	    0, "short chip calibration interval (msecs)");
270 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
271 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
272 	    0, "reset chip calibration results (secs)");
273 
274 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
275 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
276 	    0, "rx buffers allocated");
277 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
278 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
279 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
280 	    0, "tx buffers allocated");
281 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
282 
283 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
284 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
285 	    0, "max missed beacon xmits before chip reset");
286 
287 #ifdef ATH_DEBUG
288 enum {
289 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
290 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
291 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
292 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
293 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
294 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
295 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
296 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
297 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
298 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
299 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
300 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
301 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
302 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
303 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
304 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
305 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
306 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
307 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
308 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
309 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
310 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
311 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
312 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
313 	ATH_DEBUG_ANY		= 0xffffffff
314 };
315 static	int ath_debug = 0;
316 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
317 	    0, "control debugging printfs");
318 TUNABLE_INT("hw.ath.debug", &ath_debug);
319 
320 #define	IFF_DUMPPKTS(sc, m) \
321 	((sc->sc_debug & (m)) || \
322 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
323 #define	DPRINTF(sc, m, fmt, ...) do {				\
324 	if (sc->sc_debug & (m))					\
325 		kprintf(fmt, __VA_ARGS__);			\
326 } while (0)
327 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
328 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
329 		ath_keyprint(sc, __func__, ix, hk, mac);	\
330 } while (0)
331 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
332 	u_int ix, int);
333 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
334 	u_int qnum, u_int ix, int done);
335 #else
336 #define	IFF_DUMPPKTS(sc, m) \
337 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
338 #define	DPRINTF(sc, m, fmt, ...) do {				\
339 	(void) sc;						\
340 } while (0)
341 #define	KEYPRINTF(sc, k, ix, mac) do {				\
342 	(void) sc;						\
343 } while (0)
344 #endif
345 
346 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
347 
348 int
349 ath_attach(u_int16_t devid, struct ath_softc *sc)
350 {
351 	struct ifnet *ifp;
352 	struct ieee80211com *ic;
353 	struct ath_hal *ah = NULL;
354 	HAL_STATUS status;
355 	int error = 0, i;
356 	u_int wmodes;
357 	uint8_t macaddr[IEEE80211_ADDR_LEN];
358 
359 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
360 
361 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
362 	if (ifp == NULL) {
363 		device_printf(sc->sc_dev, "can not if_alloc()\n");
364 		error = ENOSPC;
365 		goto bad;
366 	}
367 	ic = ifp->if_l2com;
368 
369 	/* set these up early for if_printf use */
370 	if_initname(ifp, device_get_name(sc->sc_dev),
371 		device_get_unit(sc->sc_dev));
372 
373 	/* prepare sysctl tree for use in sub modules */
374 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
375 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
376 		SYSCTL_STATIC_CHILDREN(_hw),
377 		OID_AUTO,
378 		device_get_nameunit(sc->sc_dev),
379 		CTLFLAG_RD, 0, "");
380 
381 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
382 	if (ah == NULL) {
383 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
384 			status);
385 		error = ENXIO;
386 		goto bad;
387 	}
388 	sc->sc_ah = ah;
389 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
390 #ifdef	ATH_DEBUG
391 	sc->sc_debug = ath_debug;
392 #endif
393 
394 	/*
395 	 * Check if the MAC has multi-rate retry support.
396 	 * We do this by trying to setup a fake extended
397 	 * descriptor.  MAC's that don't have support will
398 	 * return false w/o doing anything.  MAC's that do
399 	 * support it will return true w/o doing anything.
400 	 */
401 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
402 
403 	/*
404 	 * Check if the device has hardware counters for PHY
405 	 * errors.  If so we need to enable the MIB interrupt
406 	 * so we can act on stat triggers.
407 	 */
408 	if (ath_hal_hwphycounters(ah))
409 		sc->sc_needmib = 1;
410 
411 	/*
412 	 * Get the hardware key cache size.
413 	 */
414 	sc->sc_keymax = ath_hal_keycachesize(ah);
415 	if (sc->sc_keymax > ATH_KEYMAX) {
416 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
417 			ATH_KEYMAX, sc->sc_keymax);
418 		sc->sc_keymax = ATH_KEYMAX;
419 	}
420 	/*
421 	 * Reset the key cache since some parts do not
422 	 * reset the contents on initial power up.
423 	 */
424 	for (i = 0; i < sc->sc_keymax; i++)
425 		ath_hal_keyreset(ah, i);
426 
427 	/*
428 	 * Collect the default channel list.
429 	 */
430 	error = ath_getchannels(sc);
431 	if (error != 0)
432 		goto bad;
433 
434 	/*
435 	 * Setup rate tables for all potential media types.
436 	 */
437 	ath_rate_setup(sc, IEEE80211_MODE_11A);
438 	ath_rate_setup(sc, IEEE80211_MODE_11B);
439 	ath_rate_setup(sc, IEEE80211_MODE_11G);
440 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
441 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
442 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
443 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
444 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
445 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
446 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
447 
448 	/* NB: setup here so ath_rate_update is happy */
449 	ath_setcurmode(sc, IEEE80211_MODE_11A);
450 
451 	/*
452 	 * Allocate tx+rx descriptors and populate the lists.
453 	 */
454 	wlan_assert_serialized();
455 	wlan_serialize_exit();
456 	error = ath_desc_alloc(sc);
457 	wlan_serialize_enter();
458 	if (error != 0) {
459 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
460 		goto bad;
461 	}
462 	callout_init(&sc->sc_cal_ch);
463 	callout_init(&sc->sc_wd_ch);
464 
465 	sc->sc_tq = taskqueue_create("ath_taskq", M_INTWAIT,
466 		taskqueue_thread_enqueue, &sc->sc_tq);
467 	taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
468 		"%s taskq", ifp->if_xname);
469 
470 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_task, sc);
471 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_task, sc);
472 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_task, sc);
473 
474 	/*
475 	 * Allocate hardware transmit queues: one queue for
476 	 * beacon frames and one data queue for each QoS
477 	 * priority.  Note that the hal handles reseting
478 	 * these queues at the needed time.
479 	 *
480 	 * XXX PS-Poll
481 	 */
482 	sc->sc_bhalq = ath_beaconq_setup(ah);
483 	if (sc->sc_bhalq == (u_int) -1) {
484 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
485 		error = EIO;
486 		goto bad2;
487 	}
488 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
489 	if (sc->sc_cabq == NULL) {
490 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
491 		error = EIO;
492 		goto bad2;
493 	}
494 	/* NB: insure BK queue is the lowest priority h/w queue */
495 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
496 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
497 			ieee80211_wme_acnames[WME_AC_BK]);
498 		error = EIO;
499 		goto bad2;
500 	}
501 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
502 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
503 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
504 		/*
505 		 * Not enough hardware tx queues to properly do WME;
506 		 * just punt and assign them all to the same h/w queue.
507 		 * We could do a better job of this if, for example,
508 		 * we allocate queues when we switch from station to
509 		 * AP mode.
510 		 */
511 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
512 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
513 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
514 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
515 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
516 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
517 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
518 	}
519 
520 	/*
521 	 * Special case certain configurations.  Note the
522 	 * CAB queue is handled by these specially so don't
523 	 * include them when checking the txq setup mask.
524 	 */
525 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
526 	case 0x01:
527 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task_q0, sc);
528 		break;
529 	case 0x0f:
530 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task_q0123, sc);
531 		break;
532 	default:
533 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task, sc);
534 		break;
535 	}
536 
537 	/*
538 	 * Setup rate control.  Some rate control modules
539 	 * call back to change the anntena state so expose
540 	 * the necessary entry points.
541 	 * XXX maybe belongs in struct ath_ratectrl?
542 	 */
543 	sc->sc_setdefantenna = ath_setdefantenna;
544 	sc->sc_rc = ath_rate_attach(sc);
545 	if (sc->sc_rc == NULL) {
546 		error = EIO;
547 		goto bad2;
548 	}
549 
550 	sc->sc_blinking = 0;
551 	sc->sc_ledstate = 1;
552 	sc->sc_ledon = 0;			/* low true */
553 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
554 	callout_init_mp(&sc->sc_ledtimer);
555 	/*
556 	 * Auto-enable soft led processing for IBM cards and for
557 	 * 5211 minipci cards.  Users can also manually enable/disable
558 	 * support with a sysctl.
559 	 */
560 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
561 	if (sc->sc_softled) {
562 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
563 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
564 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
565 	}
566 
567 	ifp->if_softc = sc;
568 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
569 	ifp->if_start = ath_start;
570 	ifp->if_ioctl = ath_ioctl;
571 	ifp->if_init = ath_init;
572 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
573 	ifq_set_ready(&ifp->if_snd);
574 
575 	ic->ic_ifp = ifp;
576 	/* XXX not right but it's not used anywhere important */
577 	ic->ic_phytype = IEEE80211_T_OFDM;
578 	ic->ic_opmode = IEEE80211_M_STA;
579 	ic->ic_caps =
580 		  IEEE80211_C_STA		/* station mode */
581 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
582 		| IEEE80211_C_HOSTAP		/* hostap mode */
583 		| IEEE80211_C_MONITOR		/* monitor mode */
584 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
585 		| IEEE80211_C_WDS		/* 4-address traffic works */
586 		| IEEE80211_C_MBSS		/* mesh point link mode */
587 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
588 		| IEEE80211_C_SHSLOT		/* short slot time supported */
589 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
590 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
591 		| IEEE80211_C_TXFRAG		/* handle tx frags */
592 		;
593 	/*
594 	 * Query the hal to figure out h/w crypto support.
595 	 */
596 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
597 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
598 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
599 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
600 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
601 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
602 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
603 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
604 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
605 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
606 		/*
607 		 * Check if h/w does the MIC and/or whether the
608 		 * separate key cache entries are required to
609 		 * handle both tx+rx MIC keys.
610 		 */
611 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
612 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
613 		/*
614 		 * If the h/w supports storing tx+rx MIC keys
615 		 * in one cache slot automatically enable use.
616 		 */
617 		if (ath_hal_hastkipsplit(ah) ||
618 		    !ath_hal_settkipsplit(ah, AH_FALSE))
619 			sc->sc_splitmic = 1;
620 		/*
621 		 * If the h/w can do TKIP MIC together with WME then
622 		 * we use it; otherwise we force the MIC to be done
623 		 * in software by the net80211 layer.
624 		 */
625 		if (ath_hal_haswmetkipmic(ah))
626 			sc->sc_wmetkipmic = 1;
627 	}
628 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
629 	/*
630 	 * Check for multicast key search support.
631 	 */
632 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
633 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
634 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
635 	}
636 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
637 	/*
638 	 * Mark key cache slots associated with global keys
639 	 * as in use.  If we knew TKIP was not to be used we
640 	 * could leave the +32, +64, and +32+64 slots free.
641 	 */
642 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
643 		setbit(sc->sc_keymap, i);
644 		setbit(sc->sc_keymap, i+64);
645 		if (sc->sc_splitmic) {
646 			setbit(sc->sc_keymap, i+32);
647 			setbit(sc->sc_keymap, i+32+64);
648 		}
649 	}
650 	/*
651 	 * TPC support can be done either with a global cap or
652 	 * per-packet support.  The latter is not available on
653 	 * all parts.  We're a bit pedantic here as all parts
654 	 * support a global cap.
655 	 */
656 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
657 		ic->ic_caps |= IEEE80211_C_TXPMGT;
658 
659 	/*
660 	 * Mark WME capability only if we have sufficient
661 	 * hardware queues to do proper priority scheduling.
662 	 */
663 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
664 		ic->ic_caps |= IEEE80211_C_WME;
665 	/*
666 	 * Check for misc other capabilities.
667 	 */
668 	if (ath_hal_hasbursting(ah))
669 		ic->ic_caps |= IEEE80211_C_BURST;
670 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
671 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
672 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
673 	if (ath_hal_hasfastframes(ah))
674 		ic->ic_caps |= IEEE80211_C_FF;
675 	wmodes = ath_hal_getwirelessmodes(ah);
676 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
677 		ic->ic_caps |= IEEE80211_C_TURBOP;
678 #ifdef IEEE80211_SUPPORT_TDMA
679 	if (ath_hal_macversion(ah) > 0x78) {
680 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
681 		ic->ic_tdma_update = ath_tdma_update;
682 	}
683 #endif
684 	/*
685 	 * Indicate we need the 802.11 header padded to a
686 	 * 32-bit boundary for 4-address and QoS frames.
687 	 */
688 	ic->ic_flags |= IEEE80211_F_DATAPAD;
689 
690 	/*
691 	 * Query the hal about antenna support.
692 	 */
693 	sc->sc_defant = ath_hal_getdefantenna(ah);
694 
695 	/*
696 	 * Not all chips have the VEOL support we want to
697 	 * use with IBSS beacons; check here for it.
698 	 */
699 	sc->sc_hasveol = ath_hal_hasveol(ah);
700 
701 	/* get mac address from hardware */
702 	ath_hal_getmac(ah, macaddr);
703 	if (sc->sc_hasbmask)
704 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
705 
706 	/* NB: used to size node table key mapping array */
707 	ic->ic_max_keyix = sc->sc_keymax;
708 	/* call MI attach routine. */
709 	ieee80211_ifattach(ic, macaddr);
710 	ic->ic_setregdomain = ath_setregdomain;
711 	ic->ic_getradiocaps = ath_getradiocaps;
712 	sc->sc_opmode = HAL_M_STA;
713 
714 	/* override default methods */
715 	ic->ic_newassoc = ath_newassoc;
716 	ic->ic_updateslot = ath_updateslot;
717 	ic->ic_wme.wme_update = ath_wme_update;
718 	ic->ic_vap_create = ath_vap_create;
719 	ic->ic_vap_delete = ath_vap_delete;
720 	ic->ic_raw_xmit = ath_raw_xmit;
721 	ic->ic_update_mcast = ath_update_mcast;
722 	ic->ic_update_promisc = ath_update_promisc;
723 	ic->ic_node_alloc = ath_node_alloc;
724 	sc->sc_node_free = ic->ic_node_free;
725 	ic->ic_node_free = ath_node_free;
726 	ic->ic_node_getsignal = ath_node_getsignal;
727 	ic->ic_scan_start = ath_scan_start;
728 	ic->ic_scan_end = ath_scan_end;
729 	ic->ic_set_channel = ath_set_channel;
730 
731 	ieee80211_radiotap_attach(ic,
732 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
733 		ATH_TX_RADIOTAP_PRESENT,
734 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
735 		ATH_RX_RADIOTAP_PRESENT);
736 
737 	/*
738 	 * Setup dynamic sysctl's now that country code and
739 	 * regdomain are available from the hal.
740 	 */
741 	ath_sysctlattach(sc);
742 	ath_sysctl_stats_attach(sc);
743 
744 	if (bootverbose)
745 		ieee80211_announce(ic);
746 	ath_announce(sc);
747 	return 0;
748 bad2:
749 	ath_tx_cleanup(sc);
750 	ath_desc_free(sc);
751 bad:
752 	if (ah)
753 		ath_hal_detach(ah);
754 	if (ifp != NULL)
755 		if_free(ifp);
756 	sc->sc_invalid = 1;
757 	return error;
758 }
759 
760 int
761 ath_detach(struct ath_softc *sc)
762 {
763 	struct ifnet *ifp = sc->sc_ifp;
764 
765 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
766 		__func__, ifp->if_flags);
767 
768 	/*
769 	 * NB: the order of these is important:
770 	 * o stop the chip so no more interrupts will fire
771 	 * o call the 802.11 layer before detaching the hal to
772 	 *   insure callbacks into the driver to delete global
773 	 *   key cache entries can be handled
774 	 * o free the taskqueue which drains any pending tasks
775 	 * o reclaim the tx queue data structures after calling
776 	 *   the 802.11 layer as we'll get called back to reclaim
777 	 *   node state and potentially want to use them
778 	 * o to cleanup the tx queues the hal is called, so detach
779 	 *   it last
780 	 * Other than that, it's straightforward...
781 	 */
782 	ath_stop(ifp);
783 	ieee80211_ifdetach(ifp->if_l2com);
784 	taskqueue_free(sc->sc_tq);
785 #ifdef ATH_TX99_DIAG
786 	if (sc->sc_tx99 != NULL)
787 		sc->sc_tx99->detach(sc->sc_tx99);
788 #endif
789 	ath_rate_detach(sc->sc_rc);
790 	ath_desc_free(sc);
791 	ath_tx_cleanup(sc);
792 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
793 	if (sc->sc_sysctl_tree) {
794 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
795 		sc->sc_sysctl_tree = NULL;
796 	}
797 	if_free(ifp);
798 
799 	return 0;
800 }
801 
802 /*
803  * MAC address handling for multiple BSS on the same radio.
804  * The first vap uses the MAC address from the EEPROM.  For
805  * subsequent vap's we set the U/L bit (bit 1) in the MAC
806  * address and use the next six bits as an index.
807  */
808 static void
809 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
810 {
811 	int i;
812 
813 	if (clone && sc->sc_hasbmask) {
814 		/* NB: we only do this if h/w supports multiple bssid */
815 		for (i = 0; i < 8; i++)
816 			if ((sc->sc_bssidmask & (1<<i)) == 0)
817 				break;
818 		if (i != 0)
819 			mac[0] |= (i << 2)|0x2;
820 	} else
821 		i = 0;
822 	sc->sc_bssidmask |= 1<<i;
823 	sc->sc_hwbssidmask[0] &= ~mac[0];
824 	if (i == 0)
825 		sc->sc_nbssid0++;
826 }
827 
828 static void
829 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
830 {
831 	int i = mac[0] >> 2;
832 	uint8_t mask;
833 
834 	if (i != 0 || --sc->sc_nbssid0 == 0) {
835 		sc->sc_bssidmask &= ~(1<<i);
836 		/* recalculate bssid mask from remaining addresses */
837 		mask = 0xff;
838 		for (i = 1; i < 8; i++)
839 			if (sc->sc_bssidmask & (1<<i))
840 				mask &= ~((i<<2)|0x2);
841 		sc->sc_hwbssidmask[0] |= mask;
842 	}
843 }
844 
845 /*
846  * Assign a beacon xmit slot.  We try to space out
847  * assignments so when beacons are staggered the
848  * traffic coming out of the cab q has maximal time
849  * to go out before the next beacon is scheduled.
850  */
851 static int
852 assign_bslot(struct ath_softc *sc)
853 {
854 	u_int slot, free;
855 
856 	free = 0;
857 	for (slot = 0; slot < ATH_BCBUF; slot++)
858 		if (sc->sc_bslot[slot] == NULL) {
859 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
860 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
861 				return slot;
862 			free = slot;
863 			/* NB: keep looking for a double slot */
864 		}
865 	return free;
866 }
867 
868 static struct ieee80211vap *
869 ath_vap_create(struct ieee80211com *ic,
870 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
871 	const uint8_t bssid[IEEE80211_ADDR_LEN],
872 	const uint8_t mac0[IEEE80211_ADDR_LEN])
873 {
874 	struct ath_softc *sc = ic->ic_ifp->if_softc;
875 	struct ath_vap *avp;
876 	struct ieee80211vap *vap;
877 	uint8_t mac[IEEE80211_ADDR_LEN];
878 	int ic_opmode, needbeacon, error;
879 
880 	avp = (struct ath_vap *) kmalloc(sizeof(struct ath_vap),
881 	    M_80211_VAP, M_WAITOK | M_ZERO);
882 	needbeacon = 0;
883 	IEEE80211_ADDR_COPY(mac, mac0);
884 
885 	ic_opmode = opmode;		/* default to opmode of new vap */
886 	switch (opmode) {
887 	case IEEE80211_M_STA:
888 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
889 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
890 			goto bad;
891 		}
892 		if (sc->sc_nvaps) {
893 			/*
894 			 * With multiple vaps we must fall back
895 			 * to s/w beacon miss handling.
896 			 */
897 			flags |= IEEE80211_CLONE_NOBEACONS;
898 		}
899 		if (flags & IEEE80211_CLONE_NOBEACONS) {
900 			/*
901 			 * Station mode w/o beacons are implemented w/ AP mode.
902 			 */
903 			ic_opmode = IEEE80211_M_HOSTAP;
904 		}
905 		break;
906 	case IEEE80211_M_IBSS:
907 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
908 			device_printf(sc->sc_dev,
909 			    "only 1 ibss vap supported\n");
910 			goto bad;
911 		}
912 		needbeacon = 1;
913 		break;
914 	case IEEE80211_M_AHDEMO:
915 #ifdef IEEE80211_SUPPORT_TDMA
916 		if (flags & IEEE80211_CLONE_TDMA) {
917 			if (sc->sc_nvaps != 0) {
918 				device_printf(sc->sc_dev,
919 				    "only 1 tdma vap supported\n");
920 				goto bad;
921 			}
922 			needbeacon = 1;
923 			flags |= IEEE80211_CLONE_NOBEACONS;
924 		}
925 		/* fall thru... */
926 #endif
927 	case IEEE80211_M_MONITOR:
928 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
929 			/*
930 			 * Adopt existing mode.  Adding a monitor or ahdemo
931 			 * vap to an existing configuration is of dubious
932 			 * value but should be ok.
933 			 */
934 			/* XXX not right for monitor mode */
935 			ic_opmode = ic->ic_opmode;
936 		}
937 		break;
938 	case IEEE80211_M_HOSTAP:
939 	case IEEE80211_M_MBSS:
940 		needbeacon = 1;
941 		break;
942 	case IEEE80211_M_WDS:
943 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
944 			device_printf(sc->sc_dev,
945 			    "wds not supported in sta mode\n");
946 			goto bad;
947 		}
948 		/*
949 		 * Silently remove any request for a unique
950 		 * bssid; WDS vap's always share the local
951 		 * mac address.
952 		 */
953 		flags &= ~IEEE80211_CLONE_BSSID;
954 		if (sc->sc_nvaps == 0)
955 			ic_opmode = IEEE80211_M_HOSTAP;
956 		else
957 			ic_opmode = ic->ic_opmode;
958 		break;
959 	default:
960 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
961 		goto bad;
962 	}
963 	/*
964 	 * Check that a beacon buffer is available; the code below assumes it.
965 	 */
966 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
967 		device_printf(sc->sc_dev, "no beacon buffer available\n");
968 		goto bad;
969 	}
970 
971 	/* STA, AHDEMO? */
972 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
973 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
974 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
975 	}
976 
977 	vap = &avp->av_vap;
978 	/* XXX can't hold mutex across if_alloc */
979 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
980 	    bssid, mac);
981 	if (error != 0) {
982 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
983 		    __func__, error);
984 		goto bad2;
985 	}
986 
987 	/* h/w crypto support */
988 	vap->iv_key_alloc = ath_key_alloc;
989 	vap->iv_key_delete = ath_key_delete;
990 	vap->iv_key_set = ath_key_set;
991 	vap->iv_key_update_begin = ath_key_update_begin;
992 	vap->iv_key_update_end = ath_key_update_end;
993 
994 	/* override various methods */
995 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
996 	vap->iv_recv_mgmt = ath_recv_mgmt;
997 	vap->iv_reset = ath_reset_vap;
998 	vap->iv_update_beacon = ath_beacon_update;
999 	avp->av_newstate = vap->iv_newstate;
1000 	vap->iv_newstate = ath_newstate;
1001 	avp->av_bmiss = vap->iv_bmiss;
1002 	vap->iv_bmiss = ath_bmiss_vap;
1003 
1004 	avp->av_bslot = -1;
1005 	if (needbeacon) {
1006 		/*
1007 		 * Allocate beacon state and setup the q for buffered
1008 		 * multicast frames.  We know a beacon buffer is
1009 		 * available because we checked above.
1010 		 */
1011 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1012 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1013 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1014 			/*
1015 			 * Assign the vap to a beacon xmit slot.  As above
1016 			 * this cannot fail to find a free one.
1017 			 */
1018 			avp->av_bslot = assign_bslot(sc);
1019 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1020 			    ("beacon slot %u not empty", avp->av_bslot));
1021 			sc->sc_bslot[avp->av_bslot] = vap;
1022 			sc->sc_nbcnvaps++;
1023 		}
1024 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1025 			/*
1026 			 * Multple vaps are to transmit beacons and we
1027 			 * have h/w support for TSF adjusting; enable
1028 			 * use of staggered beacons.
1029 			 */
1030 			sc->sc_stagbeacons = 1;
1031 		}
1032 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1033 	}
1034 
1035 	ic->ic_opmode = ic_opmode;
1036 	if (opmode != IEEE80211_M_WDS) {
1037 		sc->sc_nvaps++;
1038 		if (opmode == IEEE80211_M_STA)
1039 			sc->sc_nstavaps++;
1040 		if (opmode == IEEE80211_M_MBSS)
1041 			sc->sc_nmeshvaps++;
1042 	}
1043 	switch (ic_opmode) {
1044 	case IEEE80211_M_IBSS:
1045 		sc->sc_opmode = HAL_M_IBSS;
1046 		break;
1047 	case IEEE80211_M_STA:
1048 		sc->sc_opmode = HAL_M_STA;
1049 		break;
1050 	case IEEE80211_M_AHDEMO:
1051 #ifdef IEEE80211_SUPPORT_TDMA
1052 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1053 			sc->sc_tdma = 1;
1054 			/* NB: disable tsf adjust */
1055 			sc->sc_stagbeacons = 0;
1056 		}
1057 		/*
1058 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1059 		 * just ap mode.
1060 		 */
1061 		/* fall thru... */
1062 #endif
1063 	case IEEE80211_M_HOSTAP:
1064 	case IEEE80211_M_MBSS:
1065 		sc->sc_opmode = HAL_M_HOSTAP;
1066 		break;
1067 	case IEEE80211_M_MONITOR:
1068 		sc->sc_opmode = HAL_M_MONITOR;
1069 		break;
1070 	default:
1071 		/* XXX should not happen */
1072 		break;
1073 	}
1074 	if (sc->sc_hastsfadd) {
1075 		/*
1076 		 * Configure whether or not TSF adjust should be done.
1077 		 */
1078 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1079 	}
1080 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1081 		/*
1082 		 * Enable s/w beacon miss handling.
1083 		 */
1084 		sc->sc_swbmiss = 1;
1085 	}
1086 
1087 	/* complete setup */
1088 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1089 	return vap;
1090 bad2:
1091 	reclaim_address(sc, mac);
1092 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1093 bad:
1094 	kfree(avp, M_80211_VAP);
1095 	return NULL;
1096 }
1097 
1098 static void
1099 ath_vap_delete(struct ieee80211vap *vap)
1100 {
1101 	struct ieee80211com *ic = vap->iv_ic;
1102 	struct ifnet *ifp = ic->ic_ifp;
1103 	struct ath_softc *sc = ifp->if_softc;
1104 	struct ath_hal *ah = sc->sc_ah;
1105 	struct ath_vap *avp = ATH_VAP(vap);
1106 
1107 	if (ifp->if_flags & IFF_RUNNING) {
1108 		/*
1109 		 * Quiesce the hardware while we remove the vap.  In
1110 		 * particular we need to reclaim all references to
1111 		 * the vap state by any frames pending on the tx queues.
1112 		 */
1113 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1114 		ath_draintxq(sc);		/* stop xmit side */
1115 		ath_stoprecv(sc);		/* stop recv side */
1116 	}
1117 
1118 	ieee80211_vap_detach(vap);
1119 	/*
1120 	 * Reclaim beacon state.  Note this must be done before
1121 	 * the vap instance is reclaimed as we may have a reference
1122 	 * to it in the buffer for the beacon frame.
1123 	 */
1124 	if (avp->av_bcbuf != NULL) {
1125 		if (avp->av_bslot != -1) {
1126 			sc->sc_bslot[avp->av_bslot] = NULL;
1127 			sc->sc_nbcnvaps--;
1128 		}
1129 		ath_beacon_return(sc, avp->av_bcbuf);
1130 		avp->av_bcbuf = NULL;
1131 		if (sc->sc_nbcnvaps == 0) {
1132 			sc->sc_stagbeacons = 0;
1133 			if (sc->sc_hastsfadd)
1134 				ath_hal_settsfadjust(sc->sc_ah, 0);
1135 		}
1136 		/*
1137 		 * Reclaim any pending mcast frames for the vap.
1138 		 */
1139 		ath_tx_draintxq(sc, &avp->av_mcastq);
1140 	}
1141 	/*
1142 	 * Update bookkeeping.
1143 	 */
1144 	if (vap->iv_opmode == IEEE80211_M_STA) {
1145 		sc->sc_nstavaps--;
1146 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1147 			sc->sc_swbmiss = 0;
1148 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1149 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1150 		reclaim_address(sc, vap->iv_myaddr);
1151 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1152 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1153 			sc->sc_nmeshvaps--;
1154 	}
1155 	if (vap->iv_opmode != IEEE80211_M_WDS)
1156 		sc->sc_nvaps--;
1157 #ifdef IEEE80211_SUPPORT_TDMA
1158 	/* TDMA operation ceases when the last vap is destroyed */
1159 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1160 		sc->sc_tdma = 0;
1161 		sc->sc_swbmiss = 0;
1162 	}
1163 #endif
1164 	kfree(avp, M_80211_VAP);
1165 
1166 	if (ifp->if_flags & IFF_RUNNING) {
1167 		/*
1168 		 * Restart rx+tx machines if still running (RUNNING will
1169 		 * be reset if we just destroyed the last vap).
1170 		 */
1171 		if (ath_startrecv(sc) != 0)
1172 			if_printf(ifp, "%s: unable to restart recv logic\n",
1173 			    __func__);
1174 		if (sc->sc_beacons) {		/* restart beacons */
1175 #ifdef IEEE80211_SUPPORT_TDMA
1176 			if (sc->sc_tdma)
1177 				ath_tdma_config(sc, NULL);
1178 			else
1179 #endif
1180 				ath_beacon_config(sc, NULL);
1181 		}
1182 		ath_hal_intrset(ah, sc->sc_imask);
1183 	}
1184 }
1185 
1186 void
1187 ath_suspend(struct ath_softc *sc)
1188 {
1189 	struct ifnet *ifp = sc->sc_ifp;
1190 	struct ieee80211com *ic = ifp->if_l2com;
1191 
1192 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1193 		__func__, ifp->if_flags);
1194 
1195 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1196 	if (ic->ic_opmode == IEEE80211_M_STA)
1197 		ath_stop(ifp);
1198 	else
1199 		ieee80211_suspend_all(ic);
1200 	/*
1201 	 * NB: don't worry about putting the chip in low power
1202 	 * mode; pci will power off our socket on suspend and
1203 	 * CardBus detaches the device.
1204 	 */
1205 }
1206 
1207 /*
1208  * Reset the key cache since some parts do not reset the
1209  * contents on resume.  First we clear all entries, then
1210  * re-load keys that the 802.11 layer assumes are setup
1211  * in h/w.
1212  */
1213 static void
1214 ath_reset_keycache(struct ath_softc *sc)
1215 {
1216 	struct ifnet *ifp = sc->sc_ifp;
1217 	struct ieee80211com *ic = ifp->if_l2com;
1218 	struct ath_hal *ah = sc->sc_ah;
1219 	int i;
1220 
1221 	for (i = 0; i < sc->sc_keymax; i++)
1222 		ath_hal_keyreset(ah, i);
1223 	ieee80211_crypto_reload_keys(ic);
1224 }
1225 
1226 void
1227 ath_resume(struct ath_softc *sc)
1228 {
1229 	struct ifnet *ifp = sc->sc_ifp;
1230 	struct ieee80211com *ic = ifp->if_l2com;
1231 	struct ath_hal *ah = sc->sc_ah;
1232 	HAL_STATUS status;
1233 
1234 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1235 		__func__, ifp->if_flags);
1236 
1237 	/*
1238 	 * Must reset the chip before we reload the
1239 	 * keycache as we were powered down on suspend.
1240 	 */
1241 	ath_hal_reset(ah, sc->sc_opmode,
1242 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1243 	    AH_FALSE, &status);
1244 	ath_reset_keycache(sc);
1245 	if (sc->sc_resume_up) {
1246 		if (ic->ic_opmode == IEEE80211_M_STA) {
1247 			ath_init(sc);
1248 			/*
1249 			 * Program the beacon registers using the last rx'd
1250 			 * beacon frame and enable sync on the next beacon
1251 			 * we see.  This should handle the case where we
1252 			 * wakeup and find the same AP and also the case where
1253 			 * we wakeup and need to roam.  For the latter we
1254 			 * should get bmiss events that trigger a roam.
1255 			 */
1256 			ath_beacon_config(sc, NULL);
1257 			sc->sc_syncbeacon = 1;
1258 		} else
1259 			ieee80211_resume_all(ic);
1260 	}
1261 	if (sc->sc_softled) {
1262 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1263 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1264 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1265 	}
1266 }
1267 
1268 void
1269 ath_shutdown(struct ath_softc *sc)
1270 {
1271 	struct ifnet *ifp = sc->sc_ifp;
1272 
1273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1274 		__func__, ifp->if_flags);
1275 
1276 	ath_stop(ifp);
1277 	/* NB: no point powering down chip as we're about to reboot */
1278 }
1279 
1280 /*
1281  * Interrupt handler.  Most of the actual processing is deferred.
1282  */
1283 void
1284 ath_intr(void *arg)
1285 {
1286 	struct ath_softc *sc = arg;
1287 	struct ifnet *ifp = sc->sc_ifp;
1288 	struct ath_hal *ah = sc->sc_ah;
1289 	HAL_INT status;
1290 	HAL_INT ostatus;
1291 
1292 	if (sc->sc_invalid) {
1293 		/*
1294 		 * The hardware is not ready/present, don't touch anything.
1295 		 * Note this can happen early on if the IRQ is shared.
1296 		 */
1297 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1298 		return;
1299 	}
1300 
1301 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1302 		return;
1303 	if ((ifp->if_flags & IFF_UP) == 0 ||
1304 	    (ifp->if_flags & IFF_RUNNING) == 0) {
1305 		HAL_INT status;
1306 
1307 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1308 			__func__, ifp->if_flags);
1309 		ath_hal_getisr(ah, &status);	/* clear ISR */
1310 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1311 		return;
1312 	}
1313 	/*
1314 	 * Figure out the reason(s) for the interrupt.  Note
1315 	 * that the hal returns a pseudo-ISR that may include
1316 	 * bits we haven't explicitly enabled so we mask the
1317 	 * value to insure we only process bits we requested.
1318 	 */
1319 	ath_hal_getisr(ah, &ostatus);		/* NB: clears ISR too */
1320 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, ostatus);
1321 	status = ostatus & sc->sc_imask;	/* discard unasked for bits */
1322 	if (status & HAL_INT_FATAL) {
1323 		sc->sc_stats.ast_hardware++;
1324 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1325 		ath_fatal_proc(sc, 0);
1326 	} else {
1327 		if (status & HAL_INT_SWBA) {
1328 			/*
1329 			 * Software beacon alert--time to send a beacon.
1330 			 * Handle beacon transmission directly; deferring
1331 			 * this is too slow to meet timing constraints
1332 			 * under load.
1333 			 */
1334 #ifdef IEEE80211_SUPPORT_TDMA
1335 			if (sc->sc_tdma) {
1336 				if (sc->sc_tdmaswba == 0) {
1337 					struct ieee80211com *ic = ifp->if_l2com;
1338 					struct ieee80211vap *vap =
1339 					    TAILQ_FIRST(&ic->ic_vaps);
1340 					ath_tdma_beacon_send(sc, vap);
1341 					sc->sc_tdmaswba =
1342 					    vap->iv_tdma->tdma_bintval;
1343 				} else
1344 					sc->sc_tdmaswba--;
1345 			} else
1346 #endif
1347 			{
1348 				ath_beacon_proc(sc, 0);
1349 #ifdef IEEE80211_SUPPORT_SUPERG
1350 				/*
1351 				 * Schedule the rx taskq in case there's no
1352 				 * traffic so any frames held on the staging
1353 				 * queue are aged and potentially flushed.
1354 				 */
1355 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1356 #endif
1357 			}
1358 		}
1359 
1360 		/*
1361 		 * NB: The hardware should re-read the link when the RXE
1362 		 *     bit is written, but it doesn't work at least on
1363 		 *     older chipsets.
1364 		 */
1365 		if (status & HAL_INT_RXEOL) {
1366 			sc->sc_stats.ast_rxeol++;
1367 			sc->sc_rxlink = NULL;
1368 		}
1369 
1370 		if (status & HAL_INT_TXURN) {
1371 			sc->sc_stats.ast_txurn++;
1372 			/* bump tx trigger level */
1373 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1374 		}
1375 
1376 		if (status & HAL_INT_RX)
1377 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1378 
1379 		if (status & HAL_INT_TX)
1380 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1381 
1382 		if (status & HAL_INT_BMISS) {
1383 			sc->sc_stats.ast_bmiss++;
1384 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1385 		}
1386 
1387 		if (status & HAL_INT_MIB) {
1388 			sc->sc_stats.ast_mib++;
1389 			/*
1390 			 * Disable interrupts until we service the MIB
1391 			 * interrupt; otherwise it will continue to fire.
1392 			 */
1393 			ath_hal_intrset(ah, 0);
1394 			/*
1395 			 * Let the hal handle the event.  We assume it will
1396 			 * clear whatever condition caused the interrupt.
1397 			 */
1398 			ath_hal_mibevent(ah, &sc->sc_halstats);
1399 			ath_hal_intrset(ah, sc->sc_imask);
1400 		}
1401 
1402 		if (status & HAL_INT_RXORN) {
1403 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1404 			sc->sc_stats.ast_rxorn++;
1405 		}
1406 	}
1407 }
1408 
1409 static void
1410 ath_fatal_proc(void *arg, int pending)
1411 {
1412 	struct ath_softc *sc = arg;
1413 	struct ifnet *ifp = sc->sc_ifp;
1414 	u_int32_t *state;
1415 	u_int32_t len;
1416 	void *sp;
1417 
1418 	if_printf(ifp, "hardware error; resetting\n");
1419 	/*
1420 	 * Fatal errors are unrecoverable.  Typically these
1421 	 * are caused by DMA errors.  Collect h/w state from
1422 	 * the hal so we can diagnose what's going on.
1423 	 */
1424 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1425 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1426 		state = sp;
1427 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1428 		    state[0], state[1] , state[2], state[3],
1429 		    state[4], state[5]);
1430 	}
1431 	ath_reset(ifp);
1432 }
1433 
1434 static void
1435 ath_bmiss_vap(struct ieee80211vap *vap)
1436 {
1437 	/*
1438 	 * Workaround phantom bmiss interrupts by sanity-checking
1439 	 * the time of our last rx'd frame.  If it is within the
1440 	 * beacon miss interval then ignore the interrupt.  If it's
1441 	 * truly a bmiss we'll get another interrupt soon and that'll
1442 	 * be dispatched up for processing.  Note this applies only
1443 	 * for h/w beacon miss events.
1444 	 */
1445 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1446 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1447 		struct ath_softc *sc = ifp->if_softc;
1448 		u_int64_t lastrx = sc->sc_lastrx;
1449 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1450 		u_int bmisstimeout =
1451 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1452 
1453 		DPRINTF(sc, ATH_DEBUG_BEACON,
1454 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1455 		    __func__, (unsigned long long) tsf,
1456 		    (unsigned long long)(tsf - lastrx),
1457 		    (unsigned long long) lastrx, bmisstimeout);
1458 
1459 		if (tsf - lastrx <= bmisstimeout) {
1460 			sc->sc_stats.ast_bmiss_phantom++;
1461 			return;
1462 		}
1463 	}
1464 	ATH_VAP(vap)->av_bmiss(vap);
1465 }
1466 
1467 static int
1468 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1469 {
1470 	uint32_t rsize;
1471 	void *sp;
1472 
1473 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(mask), &sp, &rsize))
1474 		return 0;
1475 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1476 	*hangs = *(uint32_t *)sp;
1477 	return 1;
1478 }
1479 
1480 static void
1481 ath_bmiss_task(void *arg, int pending)
1482 {
1483 	struct ath_softc *sc = arg;
1484 	struct ifnet *ifp = sc->sc_ifp;
1485 	uint32_t hangs;
1486 
1487 	wlan_serialize_enter();
1488 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1489 
1490 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1491 		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1492 		ath_reset(ifp);
1493 	} else {
1494 		ieee80211_beacon_miss(ifp->if_l2com);
1495 	}
1496 	wlan_serialize_exit();
1497 }
1498 
1499 /*
1500  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1501  * calcs together with WME.  If necessary disable the crypto
1502  * hardware and mark the 802.11 state so keys will be setup
1503  * with the MIC work done in software.
1504  */
1505 static void
1506 ath_settkipmic(struct ath_softc *sc)
1507 {
1508 	struct ifnet *ifp = sc->sc_ifp;
1509 	struct ieee80211com *ic = ifp->if_l2com;
1510 
1511 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1512 		if (ic->ic_flags & IEEE80211_F_WME) {
1513 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1514 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1515 		} else {
1516 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1517 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1518 		}
1519 	}
1520 }
1521 
1522 static void
1523 ath_init(void *arg)
1524 {
1525 	struct ath_softc *sc = (struct ath_softc *) arg;
1526 	struct ifnet *ifp = sc->sc_ifp;
1527 	struct ieee80211com *ic = ifp->if_l2com;
1528 	struct ath_hal *ah = sc->sc_ah;
1529 	HAL_STATUS status;
1530 
1531 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1532 		__func__, ifp->if_flags);
1533 
1534 	/*
1535 	 * Stop anything previously setup.  This is safe
1536 	 * whether this is the first time through or not.
1537 	 */
1538 	ath_stop_locked(ifp);
1539 
1540 	/*
1541 	 * The basic interface to setting the hardware in a good
1542 	 * state is ``reset''.  On return the hardware is known to
1543 	 * be powered up and with interrupts disabled.  This must
1544 	 * be followed by initialization of the appropriate bits
1545 	 * and then setup of the interrupt mask.
1546 	 */
1547 	ath_settkipmic(sc);
1548 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1549 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1550 			status);
1551 		return;
1552 	}
1553 	ath_chan_change(sc, ic->ic_curchan);
1554 
1555 	/*
1556 	 * Likewise this is set during reset so update
1557 	 * state cached in the driver.
1558 	 */
1559 	sc->sc_diversity = ath_hal_getdiversity(ah);
1560 	sc->sc_lastlongcal = 0;
1561 	sc->sc_resetcal = 1;
1562 	sc->sc_lastcalreset = 0;
1563 
1564 	/*
1565 	 * Setup the hardware after reset: the key cache
1566 	 * is filled as needed and the receive engine is
1567 	 * set going.  Frame transmit is handled entirely
1568 	 * in the frame output path; there's nothing to do
1569 	 * here except setup the interrupt mask.
1570 	 */
1571 	if (ath_startrecv(sc) != 0) {
1572 		if_printf(ifp, "unable to start recv logic\n");
1573 		return;
1574 	}
1575 
1576 	/*
1577 	 * Enable interrupts.
1578 	 */
1579 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1580 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1581 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1582 	/*
1583 	 * Enable MIB interrupts when there are hardware phy counters.
1584 	 * Note we only do this (at the moment) for station mode.
1585 	 */
1586 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1587 		sc->sc_imask |= HAL_INT_MIB;
1588 
1589 	ifp->if_flags |= IFF_RUNNING;
1590 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog_callout, sc);
1591 	ath_hal_intrset(ah, sc->sc_imask);
1592 
1593 
1594 #ifdef ATH_TX99_DIAG
1595 	if (sc->sc_tx99 != NULL)
1596 		sc->sc_tx99->start(sc->sc_tx99);
1597 	else
1598 #endif
1599 	ieee80211_start_all(ic);		/* start all vap's */
1600 }
1601 
1602 static void
1603 ath_stop_locked(struct ifnet *ifp)
1604 {
1605 	struct ath_softc *sc = ifp->if_softc;
1606 	struct ath_hal *ah = sc->sc_ah;
1607 
1608 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1609 		__func__, sc->sc_invalid, ifp->if_flags);
1610 
1611 	if (ifp->if_flags & IFF_RUNNING) {
1612 		/*
1613 		 * Shutdown the hardware and driver:
1614 		 *    reset 802.11 state machine
1615 		 *    turn off timers
1616 		 *    disable interrupts
1617 		 *    turn off the radio
1618 		 *    clear transmit machinery
1619 		 *    clear receive machinery
1620 		 *    drain and release tx queues
1621 		 *    reclaim beacon resources
1622 		 *    power down hardware
1623 		 *
1624 		 * Note that some of this work is not possible if the
1625 		 * hardware is gone (invalid).
1626 		 */
1627 #ifdef ATH_TX99_DIAG
1628 		if (sc->sc_tx99 != NULL)
1629 			sc->sc_tx99->stop(sc->sc_tx99);
1630 #endif
1631 		callout_stop(&sc->sc_wd_ch);
1632 		sc->sc_wd_timer = 0;
1633 		ifp->if_flags &= ~IFF_RUNNING;
1634 		if (!sc->sc_invalid) {
1635 			if (sc->sc_softled) {
1636 				callout_stop(&sc->sc_ledtimer);
1637 				ath_hal_gpioset(ah, sc->sc_ledpin,
1638 					!sc->sc_ledon);
1639 				sc->sc_blinking = 0;
1640 			}
1641 			ath_hal_intrset(ah, 0);
1642 		}
1643 		ath_draintxq(sc);
1644 		if (!sc->sc_invalid) {
1645 			ath_stoprecv(sc);
1646 			ath_hal_phydisable(ah);
1647 		} else
1648 			sc->sc_rxlink = NULL;
1649 		ath_beacon_free(sc);	/* XXX not needed */
1650 	}
1651 }
1652 
1653 static void
1654 ath_stop(struct ifnet *ifp)
1655 {
1656 	struct ath_softc *sc __unused = ifp->if_softc;
1657 
1658 	ath_stop_locked(ifp);
1659 }
1660 
1661 /*
1662  * Reset the hardware w/o losing operational state.  This is
1663  * basically a more efficient way of doing ath_stop, ath_init,
1664  * followed by state transitions to the current 802.11
1665  * operational state.  Used to recover from various errors and
1666  * to reset or reload hardware state.
1667  */
1668 static int
1669 ath_reset(struct ifnet *ifp)
1670 {
1671 	struct ath_softc *sc = ifp->if_softc;
1672 	struct ieee80211com *ic = ifp->if_l2com;
1673 	struct ath_hal *ah = sc->sc_ah;
1674 	HAL_STATUS status;
1675 
1676 	kprintf("ath_reset\n");
1677 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1678 	ath_draintxq(sc);		/* stop xmit side */
1679 	ath_stoprecv(sc);		/* stop recv side */
1680 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1681 	/* NB: indicate channel change so we do a full reset */
1682 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1683 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1684 			__func__, status);
1685 	sc->sc_diversity = ath_hal_getdiversity(ah);
1686 	if (ath_startrecv(sc) != 0)	/* restart recv */
1687 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1688 	/*
1689 	 * We may be doing a reset in response to an ioctl
1690 	 * that changes the channel so update any state that
1691 	 * might change as a result.
1692 	 */
1693 	ath_chan_change(sc, ic->ic_curchan);
1694 	if (sc->sc_beacons) {		/* restart beacons */
1695 #ifdef IEEE80211_SUPPORT_TDMA
1696 		if (sc->sc_tdma)
1697 			ath_tdma_config(sc, NULL);
1698 		else
1699 #endif
1700 			ath_beacon_config(sc, NULL);
1701 	}
1702 	ath_hal_intrset(ah, sc->sc_imask);
1703 
1704 	ath_start(ifp);			/* restart xmit */
1705 	return 0;
1706 }
1707 
1708 static int
1709 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1710 {
1711 	struct ieee80211com *ic = vap->iv_ic;
1712 	struct ifnet *ifp = ic->ic_ifp;
1713 	struct ath_softc *sc = ifp->if_softc;
1714 	struct ath_hal *ah = sc->sc_ah;
1715 
1716 	switch (cmd) {
1717 	case IEEE80211_IOC_TXPOWER:
1718 		/*
1719 		 * If per-packet TPC is enabled, then we have nothing
1720 		 * to do; otherwise we need to force the global limit.
1721 		 * All this can happen directly; no need to reset.
1722 		 */
1723 		if (!ath_hal_gettpc(ah))
1724 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1725 		return 0;
1726 	}
1727 	return ath_reset(ifp);
1728 }
1729 
1730 static struct ath_buf *
1731 _ath_getbuf_locked(struct ath_softc *sc)
1732 {
1733 	struct ath_buf *bf;
1734 
1735 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1736 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1737 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1738 	else
1739 		bf = NULL;
1740 	if (bf == NULL) {
1741 		kprintf("ath: ran out of descriptors\n");
1742 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1743 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1744 			"out of xmit buffers" : "xmit buffer busy");
1745 	}
1746 	return bf;
1747 }
1748 
1749 static struct ath_buf *
1750 ath_getbuf(struct ath_softc *sc)
1751 {
1752 	struct ath_buf *bf;
1753 
1754 	bf = _ath_getbuf_locked(sc);
1755 	if (bf == NULL) {
1756 		struct ifnet *ifp = sc->sc_ifp;
1757 
1758 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1759 		sc->sc_stats.ast_tx_qstop++;
1760 		ifp->if_flags |= IFF_OACTIVE;
1761 	}
1762 	return bf;
1763 }
1764 
1765 /*
1766  * Cleanup driver resources when we run out of buffers
1767  * while processing fragments; return the tx buffers
1768  * allocated and drop node references.
1769  */
1770 static void
1771 ath_txfrag_cleanup(struct ath_softc *sc,
1772 	ath_bufhead *frags, struct ieee80211_node *ni)
1773 {
1774 	struct ath_buf *bf, *next;
1775 
1776 	STAILQ_FOREACH_MUTABLE(bf, frags, bf_list, next) {
1777 		/* NB: bf assumed clean */
1778 		STAILQ_REMOVE_HEAD(frags, bf_list);
1779 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1780 		ieee80211_node_decref(ni);
1781 	}
1782 }
1783 
1784 /*
1785  * Setup xmit of a fragmented frame.  Allocate a buffer
1786  * for each frag and bump the node reference count to
1787  * reflect the held reference to be setup by ath_tx_start.
1788  */
1789 static int
1790 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1791 	struct mbuf *m0, struct ieee80211_node *ni)
1792 {
1793 	struct mbuf *m;
1794 	struct ath_buf *bf;
1795 
1796 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1797 		bf = _ath_getbuf_locked(sc);
1798 		if (bf == NULL) {	/* out of buffers, cleanup */
1799 			ath_txfrag_cleanup(sc, frags, ni);
1800 			break;
1801 		}
1802 		ieee80211_node_incref(ni);
1803 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1804 	}
1805 
1806 	return !STAILQ_EMPTY(frags);
1807 }
1808 
1809 static void
1810 ath_start(struct ifnet *ifp)
1811 {
1812 	struct ath_softc *sc = ifp->if_softc;
1813 	struct ieee80211_node *ni;
1814 	struct ath_buf *bf;
1815 	struct mbuf *m, *next;
1816 	ath_bufhead frags;
1817 
1818 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
1819 		ifq_purge(&ifp->if_snd);
1820 		return;
1821 	}
1822 	for (;;) {
1823 		/*
1824 		 * Grab a TX buffer and associated resources.
1825 		 */
1826 		bf = ath_getbuf(sc);
1827 		if (bf == NULL)
1828 			break;
1829 
1830 		IF_DEQUEUE(&ifp->if_snd, m);
1831 		if (m == NULL) {
1832 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1833 			break;
1834 		}
1835 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1836 		/*
1837 		 * Check for fragmentation.  If this frame
1838 		 * has been broken up verify we have enough
1839 		 * buffers to send all the fragments so all
1840 		 * go out or none...
1841 		 */
1842 		STAILQ_INIT(&frags);
1843 		if ((m->m_flags & M_FRAG) &&
1844 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1845 			DPRINTF(sc, ATH_DEBUG_XMIT,
1846 			    "%s: out of txfrag buffers\n", __func__);
1847 			sc->sc_stats.ast_tx_nofrag++;
1848 			ifp->if_oerrors++;
1849 			ath_freetx(m);
1850 			goto bad;
1851 		}
1852 		ifp->if_opackets++;
1853 	nextfrag:
1854 		/*
1855 		 * Pass the frame to the h/w for transmission.
1856 		 * Fragmented frames have each frag chained together
1857 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1858 		 * to send all the frags because of work done by
1859 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1860 		 * calling ath_tx_start so it can use it to extend the
1861 		 * the tx duration to cover the subsequent frag and
1862 		 * so it can reclaim all the mbufs in case of an error;
1863 		 * ath_tx_start clears m_nextpkt once it commits to
1864 		 * handing the frame to the hardware.
1865 		 */
1866 		next = m->m_nextpkt;
1867 		if (ath_tx_start(sc, ni, bf, m)) {
1868 	bad:
1869 			ifp->if_oerrors++;
1870 	reclaim:
1871 			bf->bf_m = NULL;
1872 			bf->bf_node = NULL;
1873 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1874 			ath_txfrag_cleanup(sc, &frags, ni);
1875 			if (ni != NULL)
1876 				ieee80211_free_node(ni);
1877 			continue;
1878 		}
1879 		if (next != NULL) {
1880 			/*
1881 			 * Beware of state changing between frags.
1882 			 * XXX check sta power-save state?
1883 			 */
1884 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1885 				DPRINTF(sc, ATH_DEBUG_XMIT,
1886 				    "%s: flush fragmented packet, state %s\n",
1887 				    __func__,
1888 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1889 				ath_freetx(next);
1890 				goto reclaim;
1891 			}
1892 			m = next;
1893 			bf = STAILQ_FIRST(&frags);
1894 			KASSERT(bf != NULL, ("no buf for txfrag"));
1895 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1896 			goto nextfrag;
1897 		}
1898 
1899 		sc->sc_wd_timer = 5;
1900 	}
1901 }
1902 
1903 static int
1904 ath_media_change(struct ifnet *ifp)
1905 {
1906 	int error = ieee80211_media_change(ifp);
1907 	/* NB: only the fixed rate can change and that doesn't need a reset */
1908 	return (error == ENETRESET ? 0 : error);
1909 }
1910 
1911 #ifdef ATH_DEBUG
1912 static void
1913 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1914 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1915 {
1916 	static const char *ciphers[] = {
1917 		"WEP",
1918 		"AES-OCB",
1919 		"AES-CCM",
1920 		"CKIP",
1921 		"TKIP",
1922 		"CLR",
1923 	};
1924 	int i, n;
1925 
1926 	kprintf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1927 	for (i = 0, n = hk->kv_len; i < n; i++)
1928 		kprintf("%02x", hk->kv_val[i]);
1929 	kprintf(" mac %6D", mac, ":");
1930 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1931 		kprintf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1932 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1933 			kprintf("%02x", hk->kv_mic[i]);
1934 		if (!sc->sc_splitmic) {
1935 			kprintf(" txmic ");
1936 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1937 				kprintf("%02x", hk->kv_txmic[i]);
1938 		}
1939 	}
1940 	kprintf("\n");
1941 }
1942 #endif
1943 
1944 /*
1945  * Set a TKIP key into the hardware.  This handles the
1946  * potential distribution of key state to multiple key
1947  * cache slots for TKIP.
1948  */
1949 static int
1950 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1951 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1952 {
1953 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1954 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1955 	struct ath_hal *ah = sc->sc_ah;
1956 
1957 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1958 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1959 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1960 		if (sc->sc_splitmic) {
1961 			/*
1962 			 * TX key goes at first index, RX key at the rx index.
1963 			 * The hal handles the MIC keys at index+64.
1964 			 */
1965 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1966 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1967 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1968 				return 0;
1969 
1970 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1971 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1972 			/* XXX delete tx key on failure? */
1973 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1974 		} else {
1975 			/*
1976 			 * Room for both TX+RX MIC keys in one key cache
1977 			 * slot, just set key at the first index; the hal
1978 			 * will handle the rest.
1979 			 */
1980 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1981 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1982 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1983 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1984 		}
1985 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1986 		if (sc->sc_splitmic) {
1987 			/*
1988 			 * NB: must pass MIC key in expected location when
1989 			 * the keycache only holds one MIC key per entry.
1990 			 */
1991 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1992 		} else
1993 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1994 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1995 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1996 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1997 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1998 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1999 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2000 	}
2001 	return 0;
2002 #undef IEEE80211_KEY_XR
2003 }
2004 
2005 /*
2006  * Set a net80211 key into the hardware.  This handles the
2007  * potential distribution of key state to multiple key
2008  * cache slots for TKIP with hardware MIC support.
2009  */
2010 static int
2011 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2012 	struct ieee80211_node *bss)
2013 {
2014 	static const u_int8_t ciphermap[] = {
2015 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2016 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2017 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2018 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2019 		(u_int8_t) -1,		/* 4 is not allocated */
2020 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2021 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2022 	};
2023 	struct ath_hal *ah = sc->sc_ah;
2024 	const struct ieee80211_cipher *cip = k->wk_cipher;
2025 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2026 	const u_int8_t *mac;
2027 	HAL_KEYVAL hk;
2028 
2029 	memset(&hk, 0, sizeof(hk));
2030 	/*
2031 	 * Software crypto uses a "clear key" so non-crypto
2032 	 * state kept in the key cache are maintained and
2033 	 * so that rx frames have an entry to match.
2034 	 */
2035 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2036 		KASSERT(cip->ic_cipher < NELEM(ciphermap),
2037 			("invalid cipher type %u", cip->ic_cipher));
2038 		hk.kv_type = ciphermap[cip->ic_cipher];
2039 		hk.kv_len = k->wk_keylen;
2040 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2041 	} else
2042 		hk.kv_type = HAL_CIPHER_CLR;
2043 
2044 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2045 		/*
2046 		 * Group keys on hardware that supports multicast frame
2047 		 * key search use a MAC that is the sender's address with
2048 		 * the high bit set instead of the app-specified address.
2049 		 */
2050 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2051 		gmac[0] |= 0x80;
2052 		mac = gmac;
2053 	} else
2054 		mac = k->wk_macaddr;
2055 
2056 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2057 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2058 		return ath_keyset_tkip(sc, k, &hk, mac);
2059 	} else {
2060 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2061 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2062 	}
2063 }
2064 
2065 /*
2066  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2067  * each key, one for decrypt/encrypt and the other for the MIC.
2068  */
2069 static u_int16_t
2070 key_alloc_2pair(struct ath_softc *sc,
2071 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2072 {
2073 	u_int i, keyix;
2074 
2075 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2076 	/* XXX could optimize */
2077 	for (i = 0; i < NELEM(sc->sc_keymap)/4; i++) {
2078 		u_int8_t b = sc->sc_keymap[i];
2079 		if (b != 0xff) {
2080 			/*
2081 			 * One or more slots in this byte are free.
2082 			 */
2083 			keyix = i*NBBY;
2084 			while (b & 1) {
2085 		again:
2086 				keyix++;
2087 				b >>= 1;
2088 			}
2089 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2090 			if (isset(sc->sc_keymap, keyix+32) ||
2091 			    isset(sc->sc_keymap, keyix+64) ||
2092 			    isset(sc->sc_keymap, keyix+32+64)) {
2093 				/* full pair unavailable */
2094 				/* XXX statistic */
2095 				if (keyix == (i+1)*NBBY) {
2096 					/* no slots were appropriate, advance */
2097 					continue;
2098 				}
2099 				goto again;
2100 			}
2101 			setbit(sc->sc_keymap, keyix);
2102 			setbit(sc->sc_keymap, keyix+64);
2103 			setbit(sc->sc_keymap, keyix+32);
2104 			setbit(sc->sc_keymap, keyix+32+64);
2105 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2106 				"%s: key pair %u,%u %u,%u\n",
2107 				__func__, keyix, keyix+64,
2108 				keyix+32, keyix+32+64);
2109 			*txkeyix = keyix;
2110 			*rxkeyix = keyix+32;
2111 			return 1;
2112 		}
2113 	}
2114 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2115 	return 0;
2116 }
2117 
2118 /*
2119  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2120  * each key, one for decrypt/encrypt and the other for the MIC.
2121  */
2122 static u_int16_t
2123 key_alloc_pair(struct ath_softc *sc,
2124 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2125 {
2126 	u_int i, keyix;
2127 
2128 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2129 	/* XXX could optimize */
2130 	for (i = 0; i < NELEM(sc->sc_keymap)/4; i++) {
2131 		u_int8_t b = sc->sc_keymap[i];
2132 		if (b != 0xff) {
2133 			/*
2134 			 * One or more slots in this byte are free.
2135 			 */
2136 			keyix = i*NBBY;
2137 			while (b & 1) {
2138 		again:
2139 				keyix++;
2140 				b >>= 1;
2141 			}
2142 			if (isset(sc->sc_keymap, keyix+64)) {
2143 				/* full pair unavailable */
2144 				/* XXX statistic */
2145 				if (keyix == (i+1)*NBBY) {
2146 					/* no slots were appropriate, advance */
2147 					continue;
2148 				}
2149 				goto again;
2150 			}
2151 			setbit(sc->sc_keymap, keyix);
2152 			setbit(sc->sc_keymap, keyix+64);
2153 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2154 				"%s: key pair %u,%u\n",
2155 				__func__, keyix, keyix+64);
2156 			*txkeyix = *rxkeyix = keyix;
2157 			return 1;
2158 		}
2159 	}
2160 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2161 	return 0;
2162 }
2163 
2164 /*
2165  * Allocate a single key cache slot.
2166  */
2167 static int
2168 key_alloc_single(struct ath_softc *sc,
2169 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2170 {
2171 	u_int i, keyix;
2172 
2173 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2174 	for (i = 0; i < NELEM(sc->sc_keymap); i++) {
2175 		u_int8_t b = sc->sc_keymap[i];
2176 		if (b != 0xff) {
2177 			/*
2178 			 * One or more slots are free.
2179 			 */
2180 			keyix = i*NBBY;
2181 			while (b & 1)
2182 				keyix++, b >>= 1;
2183 			setbit(sc->sc_keymap, keyix);
2184 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2185 				__func__, keyix);
2186 			*txkeyix = *rxkeyix = keyix;
2187 			return 1;
2188 		}
2189 	}
2190 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2191 	return 0;
2192 }
2193 
2194 /*
2195  * Allocate one or more key cache slots for a uniacst key.  The
2196  * key itself is needed only to identify the cipher.  For hardware
2197  * TKIP with split cipher+MIC keys we allocate two key cache slot
2198  * pairs so that we can setup separate TX and RX MIC keys.  Note
2199  * that the MIC key for a TKIP key at slot i is assumed by the
2200  * hardware to be at slot i+64.  This limits TKIP keys to the first
2201  * 64 entries.
2202  */
2203 static int
2204 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2205 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2206 {
2207 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2208 
2209 	/*
2210 	 * Group key allocation must be handled specially for
2211 	 * parts that do not support multicast key cache search
2212 	 * functionality.  For those parts the key id must match
2213 	 * the h/w key index so lookups find the right key.  On
2214 	 * parts w/ the key search facility we install the sender's
2215 	 * mac address (with the high bit set) and let the hardware
2216 	 * find the key w/o using the key id.  This is preferred as
2217 	 * it permits us to support multiple users for adhoc and/or
2218 	 * multi-station operation.
2219 	 */
2220 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
2221 		/*
2222 		 * Only global keys should have key index assigned.
2223 		 */
2224 		if (!(&vap->iv_nw_keys[0] <= k &&
2225 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2226 			/* should not happen */
2227 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2228 				"%s: bogus group key\n", __func__);
2229 			return 0;
2230 		}
2231 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
2232 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
2233 		    !sc->sc_mcastkey) {
2234 			/*
2235 			 * XXX we pre-allocate the global keys so
2236 			 * have no way to check if they've already
2237 			 * been allocated.
2238 			 */
2239 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
2240 			return 1;
2241 		}
2242 		/*
2243 		 * Group key and device supports multicast key search.
2244 		 */
2245 		k->wk_keyix = IEEE80211_KEYIX_NONE;
2246 	}
2247 
2248 	/*
2249 	 * We allocate two pair for TKIP when using the h/w to do
2250 	 * the MIC.  For everything else, including software crypto,
2251 	 * we allocate a single entry.  Note that s/w crypto requires
2252 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2253 	 * not support pass-through cache entries and we map all
2254 	 * those requests to slot 0.
2255 	 */
2256 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2257 		return key_alloc_single(sc, keyix, rxkeyix);
2258 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2259 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2260 		if (sc->sc_splitmic)
2261 			return key_alloc_2pair(sc, keyix, rxkeyix);
2262 		else
2263 			return key_alloc_pair(sc, keyix, rxkeyix);
2264 	} else {
2265 		return key_alloc_single(sc, keyix, rxkeyix);
2266 	}
2267 }
2268 
2269 /*
2270  * Delete an entry in the key cache allocated by ath_key_alloc.
2271  */
2272 static int
2273 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2274 {
2275 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2276 	struct ath_hal *ah = sc->sc_ah;
2277 	const struct ieee80211_cipher *cip = k->wk_cipher;
2278 	u_int keyix = k->wk_keyix;
2279 
2280 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2281 
2282 	ath_hal_keyreset(ah, keyix);
2283 	/*
2284 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2285 	 */
2286 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2287 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2288 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2289 	if (keyix >= IEEE80211_WEP_NKID) {
2290 		/*
2291 		 * Don't touch keymap entries for global keys so
2292 		 * they are never considered for dynamic allocation.
2293 		 */
2294 		clrbit(sc->sc_keymap, keyix);
2295 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2296 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2297 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2298 			if (sc->sc_splitmic) {
2299 				/* +32 for RX key, +32+64 for RX key MIC */
2300 				clrbit(sc->sc_keymap, keyix+32);
2301 				clrbit(sc->sc_keymap, keyix+32+64);
2302 			}
2303 		}
2304 	}
2305 	return 1;
2306 }
2307 
2308 /*
2309  * Set the key cache contents for the specified key.  Key cache
2310  * slot(s) must already have been allocated by ath_key_alloc.
2311  */
2312 static int
2313 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2314 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2315 {
2316 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2317 
2318 	return ath_keyset(sc, k, vap->iv_bss);
2319 }
2320 
2321 /*
2322  * Block/unblock tx+rx processing while a key change is done.
2323  * We assume the caller serializes key management operations
2324  * so we only need to worry about synchronization with other
2325  * uses that originate in the driver.
2326  */
2327 static void
2328 ath_key_update_begin(struct ieee80211vap *vap)
2329 {
2330 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2331 	struct ath_softc *sc = ifp->if_softc;
2332 
2333 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2334 	taskqueue_block(sc->sc_tq);
2335 }
2336 
2337 static void
2338 ath_key_update_end(struct ieee80211vap *vap)
2339 {
2340 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2341 	struct ath_softc *sc = ifp->if_softc;
2342 
2343 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2344 	taskqueue_unblock(sc->sc_tq);
2345 }
2346 
2347 /*
2348  * Calculate the receive filter according to the
2349  * operating mode and state:
2350  *
2351  * o always accept unicast, broadcast, and multicast traffic
2352  * o accept PHY error frames when hardware doesn't have MIB support
2353  *   to count and we need them for ANI (sta mode only until recently)
2354  *   and we are not scanning (ANI is disabled)
2355  *   NB: older hal's add rx filter bits out of sight and we need to
2356  *	 blindly preserve them
2357  * o probe request frames are accepted only when operating in
2358  *   hostap, adhoc, mesh, or monitor modes
2359  * o enable promiscuous mode
2360  *   - when in monitor mode
2361  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2362  * o accept beacons:
2363  *   - when operating in station mode for collecting rssi data when
2364  *     the station is otherwise quiet, or
2365  *   - when operating in adhoc mode so the 802.11 layer creates
2366  *     node table entries for peers,
2367  *   - when scanning
2368  *   - when doing s/w beacon miss (e.g. for ap+sta)
2369  *   - when operating in ap mode in 11g to detect overlapping bss that
2370  *     require protection
2371  *   - when operating in mesh mode to detect neighbors
2372  * o accept control frames:
2373  *   - when in monitor mode
2374  * XXX BAR frames for 11n
2375  * XXX HT protection for 11n
2376  */
2377 static u_int32_t
2378 ath_calcrxfilter(struct ath_softc *sc)
2379 {
2380 	struct ifnet *ifp = sc->sc_ifp;
2381 	struct ieee80211com *ic = ifp->if_l2com;
2382 	u_int32_t rfilt;
2383 
2384 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2385 	if (!sc->sc_needmib && !sc->sc_scanning)
2386 		rfilt |= HAL_RX_FILTER_PHYERR;
2387 	if (ic->ic_opmode != IEEE80211_M_STA)
2388 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2389 	/* XXX ic->ic_monvaps != 0? */
2390 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2391 		rfilt |= HAL_RX_FILTER_PROM;
2392 	if (ic->ic_opmode == IEEE80211_M_STA ||
2393 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2394 	    sc->sc_swbmiss || sc->sc_scanning)
2395 		rfilt |= HAL_RX_FILTER_BEACON;
2396 	/*
2397 	 * NB: We don't recalculate the rx filter when
2398 	 * ic_protmode changes; otherwise we could do
2399 	 * this only when ic_protmode != NONE.
2400 	 */
2401 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2402 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2403 		rfilt |= HAL_RX_FILTER_BEACON;
2404 	if (sc->sc_nmeshvaps) {
2405 		rfilt |= HAL_RX_FILTER_BEACON;
2406 		if (sc->sc_hasbmatch)
2407 			rfilt |= HAL_RX_FILTER_BSSID;
2408 		else
2409 			rfilt |= HAL_RX_FILTER_PROM;
2410 	}
2411 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2412 		rfilt |= HAL_RX_FILTER_CONTROL;
2413 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2414 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2415 	return rfilt;
2416 }
2417 
2418 static void
2419 ath_update_promisc(struct ifnet *ifp)
2420 {
2421 	struct ath_softc *sc = ifp->if_softc;
2422 	u_int32_t rfilt;
2423 
2424 	/* configure rx filter */
2425 	rfilt = ath_calcrxfilter(sc);
2426 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2427 
2428 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2429 }
2430 
2431 static void
2432 ath_update_mcast(struct ifnet *ifp)
2433 {
2434 	struct ath_softc *sc = ifp->if_softc;
2435 	u_int32_t mfilt[2];
2436 
2437 	/* calculate and install multicast filter */
2438 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2439 		struct ifmultiaddr *ifma;
2440 		/*
2441 		 * Merge multicast addresses to form the hardware filter.
2442 		 */
2443 		mfilt[0] = mfilt[1] = 0;
2444 #ifdef __FreeBSD__
2445 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2446 #endif
2447 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2448 			caddr_t dl;
2449 			u_int32_t val;
2450 			u_int8_t pos;
2451 
2452 			/* calculate XOR of eight 6bit values */
2453 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2454 			val = LE_READ_4(dl + 0);
2455 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2456 			val = LE_READ_4(dl + 3);
2457 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2458 			pos &= 0x3f;
2459 			mfilt[pos / 32] |= (1 << (pos % 32));
2460 		}
2461 #ifdef __FreeBSD__
2462 		if_maddr_runlock(ifp);
2463 #endif
2464 	} else
2465 		mfilt[0] = mfilt[1] = ~0;
2466 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2467 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2468 		__func__, mfilt[0], mfilt[1]);
2469 }
2470 
2471 static void
2472 ath_mode_init(struct ath_softc *sc)
2473 {
2474 	struct ifnet *ifp = sc->sc_ifp;
2475 	struct ath_hal *ah = sc->sc_ah;
2476 	u_int32_t rfilt;
2477 
2478 	/* configure rx filter */
2479 	rfilt = ath_calcrxfilter(sc);
2480 	ath_hal_setrxfilter(ah, rfilt);
2481 
2482 	/* configure operational mode */
2483 	ath_hal_setopmode(ah);
2484 
2485 	/* handle any link-level address change */
2486 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2487 
2488 	/* calculate and install multicast filter */
2489 	ath_update_mcast(ifp);
2490 }
2491 
2492 /*
2493  * Set the slot time based on the current setting.
2494  */
2495 static void
2496 ath_setslottime(struct ath_softc *sc)
2497 {
2498 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2499 	struct ath_hal *ah = sc->sc_ah;
2500 	u_int usec;
2501 
2502 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2503 		usec = 13;
2504 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2505 		usec = 21;
2506 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2507 		/* honor short/long slot time only in 11g */
2508 		/* XXX shouldn't honor on pure g or turbo g channel */
2509 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2510 			usec = HAL_SLOT_TIME_9;
2511 		else
2512 			usec = HAL_SLOT_TIME_20;
2513 	} else
2514 		usec = HAL_SLOT_TIME_9;
2515 
2516 	DPRINTF(sc, ATH_DEBUG_RESET,
2517 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2518 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2519 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2520 
2521 	ath_hal_setslottime(ah, usec);
2522 	sc->sc_updateslot = OK;
2523 }
2524 
2525 /*
2526  * Callback from the 802.11 layer to update the
2527  * slot time based on the current setting.
2528  */
2529 static void
2530 ath_updateslot(struct ifnet *ifp)
2531 {
2532 	struct ath_softc *sc = ifp->if_softc;
2533 	struct ieee80211com *ic = ifp->if_l2com;
2534 
2535 	/*
2536 	 * When not coordinating the BSS, change the hardware
2537 	 * immediately.  For other operation we defer the change
2538 	 * until beacon updates have propagated to the stations.
2539 	 */
2540 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2541 	    ic->ic_opmode == IEEE80211_M_MBSS)
2542 		sc->sc_updateslot = UPDATE;
2543 	else
2544 		ath_setslottime(sc);
2545 }
2546 
2547 /*
2548  * Setup a h/w transmit queue for beacons.
2549  */
2550 static int
2551 ath_beaconq_setup(struct ath_hal *ah)
2552 {
2553 	HAL_TXQ_INFO qi;
2554 
2555 	memset(&qi, 0, sizeof(qi));
2556 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2557 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2558 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2559 	/* NB: for dynamic turbo, don't enable any other interrupts */
2560 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2561 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2562 }
2563 
2564 /*
2565  * Setup the transmit queue parameters for the beacon queue.
2566  */
2567 static int
2568 ath_beaconq_config(struct ath_softc *sc)
2569 {
2570 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2571 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2572 	struct ath_hal *ah = sc->sc_ah;
2573 	HAL_TXQ_INFO qi;
2574 
2575 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2576 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2577 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2578 		/*
2579 		 * Always burst out beacon and CAB traffic.
2580 		 */
2581 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2582 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2583 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2584 	} else {
2585 		struct wmeParams *wmep =
2586 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2587 		/*
2588 		 * Adhoc mode; important thing is to use 2x cwmin.
2589 		 */
2590 		qi.tqi_aifs = wmep->wmep_aifsn;
2591 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2592 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2593 	}
2594 
2595 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2596 		device_printf(sc->sc_dev, "unable to update parameters for "
2597 			"beacon hardware queue!\n");
2598 		return 0;
2599 	} else {
2600 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2601 		return 1;
2602 	}
2603 #undef ATH_EXPONENT_TO_VALUE
2604 }
2605 
2606 /*
2607  * Allocate and setup an initial beacon frame.
2608  */
2609 static int
2610 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2611 {
2612 	struct ieee80211vap *vap = ni->ni_vap;
2613 	struct ath_vap *avp = ATH_VAP(vap);
2614 	struct ath_buf *bf;
2615 	struct mbuf *m;
2616 	int error;
2617 
2618 	bf = avp->av_bcbuf;
2619 	if (bf->bf_m != NULL) {
2620 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2621 		m_freem(bf->bf_m);
2622 		bf->bf_m = NULL;
2623 	}
2624 	if (bf->bf_node != NULL) {
2625 		ieee80211_free_node(bf->bf_node);
2626 		bf->bf_node = NULL;
2627 	}
2628 
2629 	/*
2630 	 * NB: the beacon data buffer must be 32-bit aligned;
2631 	 * we assume the mbuf routines will return us something
2632 	 * with this alignment (perhaps should assert).
2633 	 */
2634 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2635 	if (m == NULL) {
2636 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2637 		sc->sc_stats.ast_be_nombuf++;
2638 		return ENOMEM;
2639 	}
2640 	error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
2641 				     bf->bf_segs, 1, &bf->bf_nseg,
2642 				     BUS_DMA_NOWAIT);
2643 	if (error != 0) {
2644 		device_printf(sc->sc_dev,
2645 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_segment returns %d\n",
2646 		    __func__, error);
2647 		m_freem(m);
2648 		return error;
2649 	}
2650 
2651 	/*
2652 	 * Calculate a TSF adjustment factor required for staggered
2653 	 * beacons.  Note that we assume the format of the beacon
2654 	 * frame leaves the tstamp field immediately following the
2655 	 * header.
2656 	 */
2657 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2658 		uint64_t tsfadjust;
2659 		struct ieee80211_frame *wh;
2660 
2661 		/*
2662 		 * The beacon interval is in TU's; the TSF is in usecs.
2663 		 * We figure out how many TU's to add to align the timestamp
2664 		 * then convert to TSF units and handle byte swapping before
2665 		 * inserting it in the frame.  The hardware will then add this
2666 		 * each time a beacon frame is sent.  Note that we align vap's
2667 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2668 		 * timestamp in one beacon interval while the others get a
2669 		 * timstamp aligned to the next interval.
2670 		 */
2671 		tsfadjust = ni->ni_intval *
2672 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2673 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2674 
2675 		DPRINTF(sc, ATH_DEBUG_BEACON,
2676 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2677 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2678 		    avp->av_bslot, ni->ni_intval,
2679 		    (long long unsigned) le64toh(tsfadjust));
2680 
2681 		wh = mtod(m, struct ieee80211_frame *);
2682 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2683 	}
2684 	bf->bf_m = m;
2685 	bf->bf_node = ieee80211_ref_node(ni);
2686 
2687 	return 0;
2688 }
2689 
2690 /*
2691  * Setup the beacon frame for transmit.
2692  */
2693 static void
2694 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2695 {
2696 #define	USE_SHPREAMBLE(_ic) \
2697 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2698 		== IEEE80211_F_SHPREAMBLE)
2699 	struct ieee80211_node *ni = bf->bf_node;
2700 	struct ieee80211com *ic = ni->ni_ic;
2701 	struct mbuf *m = bf->bf_m;
2702 	struct ath_hal *ah = sc->sc_ah;
2703 	struct ath_desc *ds;
2704 	int flags, antenna;
2705 	const HAL_RATE_TABLE *rt;
2706 	u_int8_t rix, rate;
2707 
2708 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2709 		__func__, m, m->m_len);
2710 
2711 	/* setup descriptors */
2712 	ds = bf->bf_desc;
2713 
2714 	flags = HAL_TXDESC_NOACK;
2715 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2716 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2717 		flags |= HAL_TXDESC_VEOL;
2718 		/*
2719 		 * Let hardware handle antenna switching.
2720 		 */
2721 		antenna = sc->sc_txantenna;
2722 	} else {
2723 		ds->ds_link = 0;
2724 		/*
2725 		 * Switch antenna every 4 beacons.
2726 		 * XXX assumes two antenna
2727 		 */
2728 		if (sc->sc_txantenna != 0)
2729 			antenna = sc->sc_txantenna;
2730 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2731 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2732 		else
2733 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2734 	}
2735 
2736 	KASSERT(bf->bf_nseg == 1,
2737 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2738 	ds->ds_data = bf->bf_segs[0].ds_addr;
2739 	/*
2740 	 * Calculate rate code.
2741 	 * XXX everything at min xmit rate
2742 	 */
2743 	rix = 0;
2744 	rt = sc->sc_currates;
2745 	rate = rt->info[rix].rateCode;
2746 	if (USE_SHPREAMBLE(ic))
2747 		rate |= rt->info[rix].shortPreamble;
2748 	ath_hal_setuptxdesc(ah, ds
2749 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2750 		, sizeof(struct ieee80211_frame)/* header length */
2751 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2752 		, ni->ni_txpower		/* txpower XXX */
2753 		, rate, 1			/* series 0 rate/tries */
2754 		, HAL_TXKEYIX_INVALID		/* no encryption */
2755 		, antenna			/* antenna mode */
2756 		, flags				/* no ack, veol for beacons */
2757 		, 0				/* rts/cts rate */
2758 		, 0				/* rts/cts duration */
2759 	);
2760 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2761 	ath_hal_filltxdesc(ah, ds
2762 		, roundup(m->m_len, 4)		/* buffer length */
2763 		, AH_TRUE			/* first segment */
2764 		, AH_TRUE			/* last segment */
2765 		, ds				/* first descriptor */
2766 	);
2767 #if 0
2768 	ath_desc_swap(ds);
2769 #endif
2770 #undef USE_SHPREAMBLE
2771 }
2772 
2773 static void
2774 ath_beacon_update(struct ieee80211vap *vap, int item)
2775 {
2776 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2777 
2778 	setbit(bo->bo_flags, item);
2779 }
2780 
2781 /*
2782  * Append the contents of src to dst; both queues
2783  * are assumed to be locked.
2784  */
2785 static void
2786 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2787 {
2788 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2789 	if (src->axq_depth)
2790 		dst->axq_link = src->axq_link;
2791 	src->axq_link = NULL;
2792 	dst->axq_depth += src->axq_depth;
2793 	src->axq_depth = 0;
2794 }
2795 
2796 /*
2797  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2798  * frame contents are done as needed and the slot time is
2799  * also adjusted based on current state.
2800  */
2801 static void
2802 ath_beacon_proc(void *arg, int pending)
2803 {
2804 	struct ath_softc *sc = arg;
2805 	struct ath_hal *ah = sc->sc_ah;
2806 	struct ieee80211vap *vap;
2807 	struct ath_buf *bf;
2808 	int slot, otherant;
2809 	uint32_t bfaddr;
2810 
2811 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2812 		__func__, pending);
2813 	/*
2814 	 * Check if the previous beacon has gone out.  If
2815 	 * not don't try to post another, skip this period
2816 	 * and wait for the next.  Missed beacons indicate
2817 	 * a problem and should not occur.  If we miss too
2818 	 * many consecutive beacons reset the device.
2819 	 */
2820 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2821 		sc->sc_bmisscount++;
2822 		DPRINTF(sc, ATH_DEBUG_BEACON,
2823 			"%s: missed %u consecutive beacons\n",
2824 			__func__, sc->sc_bmisscount);
2825 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2826 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2827 		return;
2828 	}
2829 	if (sc->sc_bmisscount != 0) {
2830 		DPRINTF(sc, ATH_DEBUG_BEACON,
2831 			"%s: resume beacon xmit after %u misses\n",
2832 			__func__, sc->sc_bmisscount);
2833 		sc->sc_bmisscount = 0;
2834 	}
2835 
2836 	/*
2837 	 * Stop any current dma before messing with the beacon linkages.
2838 	 */
2839 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2840 		DPRINTF(sc, ATH_DEBUG_ANY,
2841 			"%s: beacon queue %u did not stop?\n",
2842 			__func__, sc->sc_bhalq);
2843 	}
2844 
2845 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2846 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2847 		uint32_t tsftu;
2848 
2849 		tsftu = ath_hal_gettsf32(ah) >> 10;
2850 		/* XXX lintval */
2851 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2852 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2853 		bfaddr = 0;
2854 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2855 			bf = ath_beacon_generate(sc, vap);
2856 			if (bf != NULL)
2857 				bfaddr = bf->bf_daddr;
2858 		}
2859 	} else {					/* burst'd beacons */
2860 		uint32_t *bflink = &bfaddr;
2861 
2862 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2863 			vap = sc->sc_bslot[slot];
2864 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2865 				bf = ath_beacon_generate(sc, vap);
2866 				if (bf != NULL) {
2867 					*bflink = bf->bf_daddr;
2868 					bflink = &bf->bf_desc->ds_link;
2869 				}
2870 			}
2871 		}
2872 		*bflink = 0;				/* terminate list */
2873 	}
2874 
2875 	/*
2876 	 * Handle slot time change when a non-ERP station joins/leaves
2877 	 * an 11g network.  The 802.11 layer notifies us via callback,
2878 	 * we mark updateslot, then wait one beacon before effecting
2879 	 * the change.  This gives associated stations at least one
2880 	 * beacon interval to note the state change.
2881 	 */
2882 	/* XXX locking */
2883 	if (sc->sc_updateslot == UPDATE) {
2884 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2885 		sc->sc_slotupdate = slot;
2886 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2887 		ath_setslottime(sc);		/* commit change to h/w */
2888 
2889 	/*
2890 	 * Check recent per-antenna transmit statistics and flip
2891 	 * the default antenna if noticeably more frames went out
2892 	 * on the non-default antenna.
2893 	 * XXX assumes 2 anntenae
2894 	 */
2895 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2896 		otherant = sc->sc_defant & 1 ? 2 : 1;
2897 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2898 			ath_setdefantenna(sc, otherant);
2899 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2900 	}
2901 
2902 	if (bfaddr != 0) {
2903 		/* NB: cabq traffic should already be queued and primed */
2904 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2905 		sc->sc_stats.ast_be_xmit++;
2906 		ath_hal_txstart(ah, sc->sc_bhalq);
2907 	}
2908 	/* else no beacon will be generated */
2909 }
2910 
2911 static struct ath_buf *
2912 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2913 {
2914 	struct ath_vap *avp = ATH_VAP(vap);
2915 	struct ath_txq *cabq = sc->sc_cabq;
2916 	struct ath_buf *bf;
2917 	struct mbuf *m;
2918 	int nmcastq, error;
2919 
2920 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2921 	    ("not running, state %d", vap->iv_state));
2922 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2923 
2924 	/*
2925 	 * Update dynamic beacon contents.  If this returns
2926 	 * non-zero then we need to remap the memory because
2927 	 * the beacon frame changed size (probably because
2928 	 * of the TIM bitmap).
2929 	 */
2930 	bf = avp->av_bcbuf;
2931 	m = bf->bf_m;
2932 	nmcastq = avp->av_mcastq.axq_depth;
2933 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2934 		/* XXX too conservative? */
2935 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2936 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
2937 					     bf->bf_segs, 1, &bf->bf_nseg,
2938 					     BUS_DMA_NOWAIT);
2939 		if (error != 0) {
2940 			if_printf(vap->iv_ifp,
2941 			    "%s: bus_dmamap_load_mbuf_segment failed, error %u\n",
2942 			    __func__, error);
2943 			return NULL;
2944 		}
2945 	}
2946 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2947 		DPRINTF(sc, ATH_DEBUG_BEACON,
2948 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2949 		    __func__, nmcastq, cabq->axq_depth);
2950 		sc->sc_stats.ast_cabq_busy++;
2951 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2952 			/*
2953 			 * CABQ traffic from a previous vap is still pending.
2954 			 * We must drain the q before this beacon frame goes
2955 			 * out as otherwise this vap's stations will get cab
2956 			 * frames from a different vap.
2957 			 * XXX could be slow causing us to miss DBA
2958 			 */
2959 			ath_tx_draintxq(sc, cabq);
2960 		}
2961 	}
2962 	ath_beacon_setup(sc, bf);
2963 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2964 
2965 	/*
2966 	 * Enable the CAB queue before the beacon queue to
2967 	 * insure cab frames are triggered by this beacon.
2968 	 */
2969 	if (avp->av_boff.bo_tim[4] & 1) {
2970 		struct ath_hal *ah = sc->sc_ah;
2971 
2972 		/* NB: only at DTIM */
2973 		if (nmcastq) {
2974 			struct ath_buf *bfm;
2975 			int qbusy;
2976 
2977 			/*
2978 			 * Move frames from the s/w mcast q to the h/w cab q.
2979 			 * XXX MORE_DATA bit
2980 			 */
2981 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2982 			qbusy = ath_hal_txqenabled(ah, cabq->axq_qnum);
2983 			if (qbusy == 0) {
2984 				if (cabq->axq_link != NULL) {
2985 					cpu_sfence();
2986 					*cabq->axq_link = bfm->bf_daddr;
2987 					cabq->axq_flags |= ATH_TXQ_PUTPENDING;
2988 				} else {
2989 					cpu_sfence();
2990 					ath_hal_puttxbuf(ah, cabq->axq_qnum,
2991 						bfm->bf_daddr);
2992 				}
2993 			} else {
2994 				if (cabq->axq_link != NULL) {
2995 					cpu_sfence();
2996 					*cabq->axq_link = bfm->bf_daddr;
2997 				}
2998 				cabq->axq_flags |= ATH_TXQ_PUTPENDING;
2999 			}
3000 			ath_txqmove(cabq, &avp->av_mcastq);
3001 
3002 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3003 		}
3004 		/* NB: gated by beacon so safe to start here */
3005 		ath_hal_txstart(ah, cabq->axq_qnum);
3006 	}
3007 	return bf;
3008 }
3009 
3010 static void
3011 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3012 {
3013 	struct ath_vap *avp = ATH_VAP(vap);
3014 	struct ath_hal *ah = sc->sc_ah;
3015 	struct ath_buf *bf;
3016 	struct mbuf *m;
3017 	int error;
3018 
3019 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3020 
3021 	/*
3022 	 * Update dynamic beacon contents.  If this returns
3023 	 * non-zero then we need to remap the memory because
3024 	 * the beacon frame changed size (probably because
3025 	 * of the TIM bitmap).
3026 	 */
3027 	bf = avp->av_bcbuf;
3028 	m = bf->bf_m;
3029 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3030 		/* XXX too conservative? */
3031 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3032 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
3033 					     bf->bf_segs, 1, &bf->bf_nseg,
3034 					     BUS_DMA_NOWAIT);
3035 		if (error != 0) {
3036 			if_printf(vap->iv_ifp,
3037 			    "%s: bus_dmamap_load_mbuf_segment failed, error %u\n",
3038 			    __func__, error);
3039 			return;
3040 		}
3041 	}
3042 	ath_beacon_setup(sc, bf);
3043 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3044 
3045 	/* NB: caller is known to have already stopped tx dma */
3046 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3047 	ath_hal_txstart(ah, sc->sc_bhalq);
3048 }
3049 
3050 /*
3051  * Reset the hardware after detecting beacons have stopped.
3052  */
3053 static void
3054 ath_bstuck_task(void *arg, int pending)
3055 {
3056 	struct ath_softc *sc = arg;
3057 	struct ifnet *ifp = sc->sc_ifp;
3058 
3059 	wlan_serialize_enter();
3060 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3061 		  sc->sc_bmisscount);
3062 	sc->sc_stats.ast_bstuck++;
3063 	ath_reset(ifp);
3064 	wlan_serialize_exit();
3065 }
3066 
3067 /*
3068  * Reclaim beacon resources and return buffer to the pool.
3069  */
3070 static void
3071 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3072 {
3073 
3074 	if (bf->bf_m != NULL) {
3075 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3076 		m_freem(bf->bf_m);
3077 		bf->bf_m = NULL;
3078 	}
3079 	if (bf->bf_node != NULL) {
3080 		ieee80211_free_node(bf->bf_node);
3081 		bf->bf_node = NULL;
3082 	}
3083 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3084 }
3085 
3086 /*
3087  * Reclaim beacon resources.
3088  */
3089 static void
3090 ath_beacon_free(struct ath_softc *sc)
3091 {
3092 	struct ath_buf *bf;
3093 
3094 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3095 		if (bf->bf_m != NULL) {
3096 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3097 			m_freem(bf->bf_m);
3098 			bf->bf_m = NULL;
3099 		}
3100 		if (bf->bf_node != NULL) {
3101 			ieee80211_free_node(bf->bf_node);
3102 			bf->bf_node = NULL;
3103 		}
3104 	}
3105 }
3106 
3107 /*
3108  * Configure the beacon and sleep timers.
3109  *
3110  * When operating as an AP this resets the TSF and sets
3111  * up the hardware to notify us when we need to issue beacons.
3112  *
3113  * When operating in station mode this sets up the beacon
3114  * timers according to the timestamp of the last received
3115  * beacon and the current TSF, configures PCF and DTIM
3116  * handling, programs the sleep registers so the hardware
3117  * will wakeup in time to receive beacons, and configures
3118  * the beacon miss handling so we'll receive a BMISS
3119  * interrupt when we stop seeing beacons from the AP
3120  * we've associated with.
3121  */
3122 static void
3123 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3124 {
3125 #define	TSF_TO_TU(_h,_l) \
3126 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3127 #define	FUDGE	2
3128 	struct ath_hal *ah = sc->sc_ah;
3129 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3130 	struct ieee80211_node *ni;
3131 	u_int32_t nexttbtt, intval, tsftu;
3132 	u_int64_t tsf;
3133 
3134 	if (vap == NULL)
3135 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3136 	ni = vap->iv_bss;
3137 
3138 	/* extract tstamp from last beacon and convert to TU */
3139 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3140 			     LE_READ_4(ni->ni_tstamp.data));
3141 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3142 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3143 		/*
3144 		 * For multi-bss ap/mesh support beacons are either staggered
3145 		 * evenly over N slots or burst together.  For the former
3146 		 * arrange for the SWBA to be delivered for each slot.
3147 		 * Slots that are not occupied will generate nothing.
3148 		 */
3149 		/* NB: the beacon interval is kept internally in TU's */
3150 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3151 		if (sc->sc_stagbeacons)
3152 			intval /= ATH_BCBUF;
3153 	} else {
3154 		/* NB: the beacon interval is kept internally in TU's */
3155 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3156 	}
3157 	if (nexttbtt == 0)		/* e.g. for ap mode */
3158 		nexttbtt = intval;
3159 	else if (intval)		/* NB: can be 0 for monitor mode */
3160 		nexttbtt = roundup(nexttbtt, intval);
3161 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3162 		__func__, nexttbtt, intval, ni->ni_intval);
3163 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3164 		HAL_BEACON_STATE bs;
3165 		int dtimperiod, dtimcount;
3166 		int cfpperiod, cfpcount;
3167 
3168 		/*
3169 		 * Setup dtim and cfp parameters according to
3170 		 * last beacon we received (which may be none).
3171 		 */
3172 		dtimperiod = ni->ni_dtim_period;
3173 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3174 			dtimperiod = 1;
3175 		dtimcount = ni->ni_dtim_count;
3176 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3177 			dtimcount = 0;		/* XXX? */
3178 		cfpperiod = 1;			/* NB: no PCF support yet */
3179 		cfpcount = 0;
3180 		/*
3181 		 * Pull nexttbtt forward to reflect the current
3182 		 * TSF and calculate dtim+cfp state for the result.
3183 		 */
3184 		tsf = ath_hal_gettsf64(ah);
3185 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3186 		do {
3187 			nexttbtt += intval;
3188 			if (--dtimcount < 0) {
3189 				dtimcount = dtimperiod - 1;
3190 				if (--cfpcount < 0)
3191 					cfpcount = cfpperiod - 1;
3192 			}
3193 		} while (nexttbtt < tsftu);
3194 		memset(&bs, 0, sizeof(bs));
3195 		bs.bs_intval = intval;
3196 		bs.bs_nexttbtt = nexttbtt;
3197 		bs.bs_dtimperiod = dtimperiod*intval;
3198 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3199 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3200 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3201 		bs.bs_cfpmaxduration = 0;
3202 #if 0
3203 		/*
3204 		 * The 802.11 layer records the offset to the DTIM
3205 		 * bitmap while receiving beacons; use it here to
3206 		 * enable h/w detection of our AID being marked in
3207 		 * the bitmap vector (to indicate frames for us are
3208 		 * pending at the AP).
3209 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3210 		 * XXX enable based on h/w rev for newer chips
3211 		 */
3212 		bs.bs_timoffset = ni->ni_timoff;
3213 #endif
3214 		/*
3215 		 * Calculate the number of consecutive beacons to miss
3216 		 * before taking a BMISS interrupt.
3217 		 * Note that we clamp the result to at most 10 beacons.
3218 		 */
3219 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3220 		if (bs.bs_bmissthreshold > 10)
3221 			bs.bs_bmissthreshold = 10;
3222 		else if (bs.bs_bmissthreshold <= 0)
3223 			bs.bs_bmissthreshold = 1;
3224 
3225 		/*
3226 		 * Calculate sleep duration.  The configuration is
3227 		 * given in ms.  We insure a multiple of the beacon
3228 		 * period is used.  Also, if the sleep duration is
3229 		 * greater than the DTIM period then it makes senses
3230 		 * to make it a multiple of that.
3231 		 *
3232 		 * XXX fixed at 100ms
3233 		 */
3234 		bs.bs_sleepduration =
3235 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3236 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3237 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3238 
3239 		DPRINTF(sc, ATH_DEBUG_BEACON,
3240 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3241 			, __func__
3242 			, tsf, tsftu
3243 			, bs.bs_intval
3244 			, bs.bs_nexttbtt
3245 			, bs.bs_dtimperiod
3246 			, bs.bs_nextdtim
3247 			, bs.bs_bmissthreshold
3248 			, bs.bs_sleepduration
3249 			, bs.bs_cfpperiod
3250 			, bs.bs_cfpmaxduration
3251 			, bs.bs_cfpnext
3252 			, bs.bs_timoffset
3253 		);
3254 		ath_hal_intrset(ah, 0);
3255 		ath_hal_beacontimers(ah, &bs);
3256 		sc->sc_imask |= HAL_INT_BMISS;
3257 		ath_hal_intrset(ah, sc->sc_imask);
3258 	} else {
3259 		ath_hal_intrset(ah, 0);
3260 		if (nexttbtt == intval)
3261 			intval |= HAL_BEACON_RESET_TSF;
3262 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3263 			/*
3264 			 * In IBSS mode enable the beacon timers but only
3265 			 * enable SWBA interrupts if we need to manually
3266 			 * prepare beacon frames.  Otherwise we use a
3267 			 * self-linked tx descriptor and let the hardware
3268 			 * deal with things.
3269 			 */
3270 			intval |= HAL_BEACON_ENA;
3271 			if (!sc->sc_hasveol)
3272 				sc->sc_imask |= HAL_INT_SWBA;
3273 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3274 				/*
3275 				 * Pull nexttbtt forward to reflect
3276 				 * the current TSF.
3277 				 */
3278 				tsf = ath_hal_gettsf64(ah);
3279 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3280 				do {
3281 					nexttbtt += intval;
3282 				} while (nexttbtt < tsftu);
3283 			}
3284 			ath_beaconq_config(sc);
3285 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3286 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3287 			/*
3288 			 * In AP/mesh mode we enable the beacon timers
3289 			 * and SWBA interrupts to prepare beacon frames.
3290 			 */
3291 			intval |= HAL_BEACON_ENA;
3292 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3293 			ath_beaconq_config(sc);
3294 		}
3295 		ath_hal_beaconinit(ah, nexttbtt, intval);
3296 		sc->sc_bmisscount = 0;
3297 		ath_hal_intrset(ah, sc->sc_imask);
3298 		/*
3299 		 * When using a self-linked beacon descriptor in
3300 		 * ibss mode load it once here.
3301 		 */
3302 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3303 			ath_beacon_start_adhoc(sc, vap);
3304 	}
3305 	sc->sc_syncbeacon = 0;
3306 #undef FUDGE
3307 #undef TSF_TO_TU
3308 }
3309 
3310 static void
3311 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3312 {
3313 	bus_addr_t *paddr = (bus_addr_t*) arg;
3314 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3315 	*paddr = segs->ds_addr;
3316 }
3317 
3318 static int
3319 ath_descdma_setup(struct ath_softc *sc,
3320 	struct ath_descdma *dd, ath_bufhead *head,
3321 	const char *name, int nbuf, int ndesc)
3322 {
3323 #define	DS2PHYS(_dd, _ds) \
3324 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3325 	struct ifnet *ifp = sc->sc_ifp;
3326 	struct ath_desc *ds;
3327 	struct ath_buf *bf;
3328 	int i, bsize, error;
3329 
3330 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3331 	    __func__, name, nbuf, ndesc);
3332 
3333 	dd->dd_name = name;
3334 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3335 
3336 	/*
3337 	 * Setup DMA descriptor area.
3338 	 */
3339 	error = bus_dma_tag_create(dd->dd_dmat,	/* parent */
3340 		       PAGE_SIZE, 0,		/* alignment, bounds */
3341 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3342 		       BUS_SPACE_MAXADDR,	/* highaddr */
3343 		       NULL, NULL,		/* filter, filterarg */
3344 		       dd->dd_desc_len,		/* maxsize */
3345 		       1,			/* nsegments */
3346 		       dd->dd_desc_len,		/* maxsegsize */
3347 		       BUS_DMA_ALLOCNOW,	/* flags */
3348 		       &dd->dd_dmat);
3349 	if (error != 0) {
3350 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3351 		return error;
3352 	}
3353 
3354 	/* allocate descriptors */
3355 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3356 	if (error != 0) {
3357 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3358 			"error %u\n", dd->dd_name, error);
3359 		goto fail0;
3360 	}
3361 
3362 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3363 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3364 				 &dd->dd_dmamap);
3365 	if (error != 0) {
3366 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3367 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3368 		goto fail1;
3369 	}
3370 
3371 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3372 				dd->dd_desc, dd->dd_desc_len,
3373 				ath_load_cb, &dd->dd_desc_paddr,
3374 				BUS_DMA_NOWAIT);
3375 	if (error != 0) {
3376 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3377 			dd->dd_name, error);
3378 		goto fail2;
3379 	}
3380 
3381 	ds = dd->dd_desc;
3382 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3383 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3384 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3385 
3386 	/* allocate rx buffers */
3387 	bsize = sizeof(struct ath_buf) * nbuf;
3388 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
3389 	if (bf == NULL) {
3390 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3391 			dd->dd_name, bsize);
3392 		goto fail3;
3393 	}
3394 	dd->dd_bufptr = bf;
3395 
3396 	STAILQ_INIT(head);
3397 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3398 		bf->bf_desc = ds;
3399 		bf->bf_daddr = DS2PHYS(dd, ds);
3400 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3401 				&bf->bf_dmamap);
3402 		if (error != 0) {
3403 			if_printf(ifp, "unable to create dmamap for %s "
3404 				"buffer %u, error %u\n", dd->dd_name, i, error);
3405 			ath_descdma_cleanup(sc, dd, head);
3406 			return error;
3407 		}
3408 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3409 	}
3410 	return 0;
3411 fail3:
3412 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3413 fail2:
3414 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3415 fail1:
3416 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3417 fail0:
3418 	bus_dma_tag_destroy(dd->dd_dmat);
3419 	memset(dd, 0, sizeof(*dd));
3420 	return error;
3421 #undef DS2PHYS
3422 }
3423 
3424 static void
3425 ath_descdma_cleanup(struct ath_softc *sc,
3426 	struct ath_descdma *dd, ath_bufhead *head)
3427 {
3428 	struct ath_buf *bf;
3429 	struct ieee80211_node *ni;
3430 
3431 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3432 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3433 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3434 	bus_dma_tag_destroy(dd->dd_dmat);
3435 
3436 	STAILQ_FOREACH(bf, head, bf_list) {
3437 		if (bf->bf_m) {
3438 			m_freem(bf->bf_m);
3439 			bf->bf_m = NULL;
3440 		}
3441 		if (bf->bf_dmamap != NULL) {
3442 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3443 			bf->bf_dmamap = NULL;
3444 		}
3445 		ni = bf->bf_node;
3446 		bf->bf_node = NULL;
3447 		if (ni != NULL) {
3448 			/*
3449 			 * Reclaim node reference.
3450 			 */
3451 			ieee80211_free_node(ni);
3452 		}
3453 	}
3454 
3455 	STAILQ_INIT(head);
3456 	kfree(dd->dd_bufptr, M_ATHDEV);
3457 	memset(dd, 0, sizeof(*dd));
3458 }
3459 
3460 static int
3461 ath_desc_alloc(struct ath_softc *sc)
3462 {
3463 	int error;
3464 
3465 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3466 			"rx", ath_rxbuf, 1);
3467 	if (error != 0)
3468 		return error;
3469 
3470 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3471 			"tx", ath_txbuf, ATH_TXDESC);
3472 	if (error != 0) {
3473 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3474 		return error;
3475 	}
3476 
3477 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3478 			"beacon", ATH_BCBUF, 1);
3479 	if (error != 0) {
3480 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3481 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3482 		return error;
3483 	}
3484 	return 0;
3485 }
3486 
3487 static void
3488 ath_desc_free(struct ath_softc *sc)
3489 {
3490 
3491 	if (sc->sc_bdma.dd_desc_len != 0)
3492 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3493 	if (sc->sc_txdma.dd_desc_len != 0)
3494 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3495 	if (sc->sc_rxdma.dd_desc_len != 0)
3496 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3497 }
3498 
3499 static struct ieee80211_node *
3500 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3501 {
3502 	struct ieee80211com *ic = vap->iv_ic;
3503 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3504 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3505 	struct ath_node *an;
3506 
3507 	an = kmalloc(space, M_80211_NODE, M_INTWAIT|M_ZERO);
3508 	if (an == NULL) {
3509 		/* XXX stat+msg */
3510 		return NULL;
3511 	}
3512 	ath_rate_node_init(sc, an);
3513 
3514 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3515 	return &an->an_node;
3516 }
3517 
3518 static void
3519 ath_node_free(struct ieee80211_node *ni)
3520 {
3521 	struct ieee80211com *ic = ni->ni_ic;
3522         struct ath_softc *sc = ic->ic_ifp->if_softc;
3523 
3524 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3525 
3526 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3527 	sc->sc_node_free(ni);
3528 }
3529 
3530 static void
3531 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3532 {
3533 	struct ieee80211com *ic = ni->ni_ic;
3534 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3535 	struct ath_hal *ah = sc->sc_ah;
3536 
3537 	*rssi = ic->ic_node_getrssi(ni);
3538 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3539 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3540 	else
3541 		*noise = -95;		/* nominally correct */
3542 }
3543 
3544 static int
3545 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3546 {
3547 	struct ath_hal *ah = sc->sc_ah;
3548 	int error;
3549 	struct mbuf *m;
3550 	struct ath_desc *ds;
3551 
3552 	m = bf->bf_m;
3553 	if (m == NULL) {
3554 		/*
3555 		 * NB: by assigning a page to the rx dma buffer we
3556 		 * implicitly satisfy the Atheros requirement that
3557 		 * this buffer be cache-line-aligned and sized to be
3558 		 * multiple of the cache line size.  Not doing this
3559 		 * causes weird stuff to happen (for the 5210 at least).
3560 		 */
3561 		m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
3562 		if (m == NULL) {
3563 			kprintf("ath_rxbuf_init: no mbuf\n");
3564 			DPRINTF(sc, ATH_DEBUG_ANY,
3565 				"%s: no mbuf/cluster\n", __func__);
3566 			sc->sc_stats.ast_rx_nombuf++;
3567 			return ENOMEM;
3568 		}
3569 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3570 
3571 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat,
3572 					     bf->bf_dmamap, m,
3573 					     bf->bf_segs, 1, &bf->bf_nseg,
3574 					     BUS_DMA_NOWAIT);
3575 		if (error != 0) {
3576 			DPRINTF(sc, ATH_DEBUG_ANY,
3577 			    "%s: bus_dmamap_load_mbuf_segment failed; error %d\n",
3578 			    __func__, error);
3579 			sc->sc_stats.ast_rx_busdma++;
3580 			m_freem(m);
3581 			return error;
3582 		}
3583 		KASSERT(bf->bf_nseg == 1,
3584 			("multi-segment packet; nseg %u", bf->bf_nseg));
3585 		bf->bf_m = m;
3586 	}
3587 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3588 
3589 	/*
3590 	 * Setup descriptors.  For receive we always terminate
3591 	 * the descriptor list with a self-linked entry so we'll
3592 	 * not get overrun under high load (as can happen with a
3593 	 * 5212 when ANI processing enables PHY error frames).
3594 	 *
3595 	 * To insure the last descriptor is self-linked we create
3596 	 * each descriptor as self-linked and add it to the end.  As
3597 	 * each additional descriptor is added the previous self-linked
3598 	 * entry is ``fixed'' naturally.  This should be safe even
3599 	 * if DMA is happening.  When processing RX interrupts we
3600 	 * never remove/process the last, self-linked, entry on the
3601 	 * descriptor list.  This insures the hardware always has
3602 	 * someplace to write a new frame.
3603 	 */
3604 	ds = bf->bf_desc;
3605 	ds->ds_link = bf->bf_daddr;	/* link to self */
3606 	ds->ds_data = bf->bf_segs[0].ds_addr;
3607 	ath_hal_setuprxdesc(ah, ds
3608 		, m->m_len		/* buffer size */
3609 		, 0
3610 	);
3611 
3612 	if (sc->sc_rxlink != NULL)
3613 		*sc->sc_rxlink = bf->bf_daddr;
3614 	sc->sc_rxlink = &ds->ds_link;
3615 	return 0;
3616 }
3617 
3618 /*
3619  * Extend 15-bit time stamp from rx descriptor to
3620  * a full 64-bit TSF using the specified TSF.
3621  */
3622 static __inline u_int64_t
3623 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3624 {
3625 	if ((tsf & 0x7fff) < rstamp)
3626 		tsf -= 0x8000;
3627 	return ((tsf &~ 0x7fff) | rstamp);
3628 }
3629 
3630 /*
3631  * Intercept management frames to collect beacon rssi data
3632  * and to do ibss merges.
3633  */
3634 static void
3635 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3636 	int subtype, int rssi, int nf)
3637 {
3638 	struct ieee80211vap *vap = ni->ni_vap;
3639 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3640 
3641 	/*
3642 	 * Call up first so subsequent work can use information
3643 	 * potentially stored in the node (e.g. for ibss merge).
3644 	 */
3645 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3646 	switch (subtype) {
3647 	case IEEE80211_FC0_SUBTYPE_BEACON:
3648 		/* update rssi statistics for use by the hal */
3649 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3650 		if (sc->sc_syncbeacon &&
3651 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3652 			/*
3653 			 * Resync beacon timers using the tsf of the beacon
3654 			 * frame we just received.
3655 			 */
3656 			ath_beacon_config(sc, vap);
3657 		}
3658 		/* fall thru... */
3659 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3660 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3661 		    vap->iv_state == IEEE80211_S_RUN) {
3662 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3663 			u_int64_t tsf = ath_extend_tsf(rstamp,
3664 				ath_hal_gettsf64(sc->sc_ah));
3665 			/*
3666 			 * Handle ibss merge as needed; check the tsf on the
3667 			 * frame before attempting the merge.  The 802.11 spec
3668 			 * says the station should change it's bssid to match
3669 			 * the oldest station with the same ssid, where oldest
3670 			 * is determined by the tsf.  Note that hardware
3671 			 * reconfiguration happens through callback to
3672 			 * ath_newstate as the state machine will go from
3673 			 * RUN -> RUN when this happens.
3674 			 */
3675 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3676 				DPRINTF(sc, ATH_DEBUG_STATE,
3677 				    "ibss merge, rstamp %u tsf %ju "
3678 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3679 				    (uintmax_t)ni->ni_tstamp.tsf);
3680 				(void) ieee80211_ibss_merge(ni);
3681 			}
3682 		}
3683 		break;
3684 	}
3685 }
3686 
3687 /*
3688  * Set the default antenna.
3689  */
3690 static void
3691 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3692 {
3693 	struct ath_hal *ah = sc->sc_ah;
3694 
3695 	/* XXX block beacon interrupts */
3696 	ath_hal_setdefantenna(ah, antenna);
3697 	if (sc->sc_defant != antenna)
3698 		sc->sc_stats.ast_ant_defswitch++;
3699 	sc->sc_defant = antenna;
3700 	sc->sc_rxotherant = 0;
3701 }
3702 
3703 static void
3704 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3705 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3706 {
3707 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3708 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3709 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3710 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3711 	struct ath_softc *sc = ifp->if_softc;
3712 	const HAL_RATE_TABLE *rt;
3713 	uint8_t rix;
3714 
3715 	rt = sc->sc_currates;
3716 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3717 	rix = rt->rateCodeToIndex[rs->rs_rate];
3718 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3719 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3720 #ifdef AH_SUPPORT_AR5416
3721 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3722 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3723 		struct ieee80211com *ic = ifp->if_l2com;
3724 
3725 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3726 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3727 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3728 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3729 		else
3730 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3731 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3732 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3733 	}
3734 #endif
3735 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3736 	if (rs->rs_status & HAL_RXERR_CRC)
3737 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3738 	/* XXX propagate other error flags from descriptor */
3739 	sc->sc_rx_th.wr_antnoise = nf;
3740 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3741 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3742 #undef CHAN_HT
3743 #undef CHAN_HT20
3744 #undef CHAN_HT40U
3745 #undef CHAN_HT40D
3746 }
3747 
3748 static void
3749 ath_handle_micerror(struct ieee80211com *ic,
3750 	struct ieee80211_frame *wh, int keyix)
3751 {
3752 	struct ieee80211_node *ni;
3753 
3754 	/* XXX recheck MIC to deal w/ chips that lie */
3755 	/* XXX discard MIC errors on !data frames */
3756 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3757 	if (ni != NULL) {
3758 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3759 		ieee80211_free_node(ni);
3760 	}
3761 }
3762 
3763 static void
3764 ath_rx_task(void *arg, int npending)
3765 {
3766 #define	PA2DESC(_sc, _pa) \
3767 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3768 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3769 	struct ath_softc *sc = arg;
3770 	struct ath_buf *bf;
3771 	struct ifnet *ifp;
3772 	struct ieee80211com *ic;
3773 	struct ath_hal *ah;
3774 	struct ath_desc *ds;
3775 	struct ath_rx_status *rs;
3776 	struct mbuf *m;
3777 	struct ieee80211_node *ni;
3778 	int len, type, ngood;
3779 	u_int phyerr;
3780 	HAL_STATUS status;
3781 	int16_t nf;
3782 	u_int64_t tsf;
3783 
3784 	wlan_serialize_enter();
3785 	ifp = sc->sc_ifp;
3786 	ic = ifp->if_l2com;
3787 	ah = sc->sc_ah;
3788 
3789 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3790 	ngood = 0;
3791 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3792 	sc->sc_stats.ast_rx_noise = nf;
3793 	tsf = ath_hal_gettsf64(ah);
3794 	do {
3795 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3796 		if (bf == NULL) {		/* NB: shouldn't happen */
3797 			if_printf(ifp, "%s: no buffer!\n", __func__);
3798 			break;
3799 		}
3800 		m = bf->bf_m;
3801 		if (m == NULL) {		/* NB: shouldn't happen */
3802 			/*
3803 			 * If mbuf allocation failed previously there
3804 			 * will be no mbuf; try again to re-populate it.
3805 			 */
3806 			/* XXX make debug msg */
3807 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3808 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3809 			goto rx_next;
3810 		}
3811 		ds = bf->bf_desc;
3812 		if (ds->ds_link == bf->bf_daddr) {
3813 			/* NB: never process the self-linked entry at the end */
3814 			break;
3815 		}
3816 		/* XXX sync descriptor memory */
3817 		/*
3818 		 * Must provide the virtual address of the current
3819 		 * descriptor, the physical address, and the virtual
3820 		 * address of the next descriptor in the h/w chain.
3821 		 * This allows the HAL to look ahead to see if the
3822 		 * hardware is done with a descriptor by checking the
3823 		 * done bit in the following descriptor and the address
3824 		 * of the current descriptor the DMA engine is working
3825 		 * on.  All this is necessary because of our use of
3826 		 * a self-linked list to avoid rx overruns.
3827 		 */
3828 		rs = &bf->bf_status.ds_rxstat;
3829 		status = ath_hal_rxprocdesc(ah, ds,
3830 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3831 #ifdef ATH_DEBUG
3832 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3833 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3834 #endif
3835 		if (status == HAL_EINPROGRESS)
3836 			break;
3837 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3838 		if (rs->rs_status != 0) {
3839 			if (rs->rs_status & HAL_RXERR_CRC)
3840 				sc->sc_stats.ast_rx_crcerr++;
3841 			if (rs->rs_status & HAL_RXERR_FIFO)
3842 				sc->sc_stats.ast_rx_fifoerr++;
3843 			if (rs->rs_status & HAL_RXERR_PHY) {
3844 				sc->sc_stats.ast_rx_phyerr++;
3845 				phyerr = rs->rs_phyerr & 0x1f;
3846 				sc->sc_stats.ast_rx_phy[phyerr]++;
3847 				goto rx_error;	/* NB: don't count in ierrors */
3848 			}
3849 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3850 				/*
3851 				 * Decrypt error.  If the error occurred
3852 				 * because there was no hardware key, then
3853 				 * let the frame through so the upper layers
3854 				 * can process it.  This is necessary for 5210
3855 				 * parts which have no way to setup a ``clear''
3856 				 * key cache entry.
3857 				 *
3858 				 * XXX do key cache faulting
3859 				 */
3860 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3861 					goto rx_accept;
3862 				sc->sc_stats.ast_rx_badcrypt++;
3863 			}
3864 			if (rs->rs_status & HAL_RXERR_MIC) {
3865 				sc->sc_stats.ast_rx_badmic++;
3866 				/*
3867 				 * Do minimal work required to hand off
3868 				 * the 802.11 header for notification.
3869 				 */
3870 				/* XXX frag's and qos frames */
3871 				len = rs->rs_datalen;
3872 				if (len >= sizeof (struct ieee80211_frame)) {
3873 					bus_dmamap_sync(sc->sc_dmat,
3874 					    bf->bf_dmamap,
3875 					    BUS_DMASYNC_POSTREAD);
3876 					ath_handle_micerror(ic,
3877 					    mtod(m, struct ieee80211_frame *),
3878 					    sc->sc_splitmic ?
3879 						rs->rs_keyix-32 : rs->rs_keyix);
3880 				}
3881 			}
3882 			ifp->if_ierrors++;
3883 rx_error:
3884 			/*
3885 			 * Cleanup any pending partial frame.
3886 			 */
3887 			if (sc->sc_rxpending != NULL) {
3888 				m_freem(sc->sc_rxpending);
3889 				sc->sc_rxpending = NULL;
3890 			}
3891 			/*
3892 			 * When a tap is present pass error frames
3893 			 * that have been requested.  By default we
3894 			 * pass decrypt+mic errors but others may be
3895 			 * interesting (e.g. crc).
3896 			 */
3897 			if (ieee80211_radiotap_active(ic) &&
3898 			    (rs->rs_status & sc->sc_monpass)) {
3899 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3900 				    BUS_DMASYNC_POSTREAD);
3901 				/* NB: bpf needs the mbuf length setup */
3902 				len = rs->rs_datalen;
3903 				m->m_pkthdr.len = m->m_len = len;
3904 				ath_rx_tap(ifp, m, rs, tsf, nf);
3905 				ieee80211_radiotap_rx_all(ic, m);
3906 			}
3907 			/* XXX pass MIC errors up for s/w reclaculation */
3908 			goto rx_next;
3909 		}
3910 rx_accept:
3911 		/*
3912 		 * Sync and unmap the frame.  At this point we're
3913 		 * committed to passing the mbuf somewhere so clear
3914 		 * bf_m; this means a new mbuf must be allocated
3915 		 * when the rx descriptor is setup again to receive
3916 		 * another frame.
3917 		 */
3918 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3919 		    BUS_DMASYNC_POSTREAD);
3920 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3921 		bf->bf_m = NULL;
3922 
3923 		len = rs->rs_datalen;
3924 		m->m_len = len;
3925 
3926 		if (rs->rs_more) {
3927 			/*
3928 			 * Frame spans multiple descriptors; save
3929 			 * it for the next completed descriptor, it
3930 			 * will be used to construct a jumbogram.
3931 			 */
3932 			if (sc->sc_rxpending != NULL) {
3933 				/* NB: max frame size is currently 2 clusters */
3934 				sc->sc_stats.ast_rx_toobig++;
3935 				m_freem(sc->sc_rxpending);
3936 			}
3937 			m->m_pkthdr.rcvif = ifp;
3938 			m->m_pkthdr.len = len;
3939 			sc->sc_rxpending = m;
3940 			goto rx_next;
3941 		} else if (sc->sc_rxpending != NULL) {
3942 			/*
3943 			 * This is the second part of a jumbogram,
3944 			 * chain it to the first mbuf, adjust the
3945 			 * frame length, and clear the rxpending state.
3946 			 */
3947 			sc->sc_rxpending->m_next = m;
3948 			sc->sc_rxpending->m_pkthdr.len += len;
3949 			m = sc->sc_rxpending;
3950 			sc->sc_rxpending = NULL;
3951 		} else {
3952 			/*
3953 			 * Normal single-descriptor receive; setup
3954 			 * the rcvif and packet length.
3955 			 */
3956 			m->m_pkthdr.rcvif = ifp;
3957 			m->m_pkthdr.len = len;
3958 		}
3959 
3960 		ifp->if_ipackets++;
3961 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3962 
3963 		/*
3964 		 * Populate the rx status block.  When there are bpf
3965 		 * listeners we do the additional work to provide
3966 		 * complete status.  Otherwise we fill in only the
3967 		 * material required by ieee80211_input.  Note that
3968 		 * noise setting is filled in above.
3969 		 */
3970 		if (ieee80211_radiotap_active(ic))
3971 			ath_rx_tap(ifp, m, rs, tsf, nf);
3972 
3973 		/*
3974 		 * From this point on we assume the frame is at least
3975 		 * as large as ieee80211_frame_min; verify that.
3976 		 */
3977 		if (len < IEEE80211_MIN_LEN) {
3978 			if (!ieee80211_radiotap_active(ic)) {
3979 				DPRINTF(sc, ATH_DEBUG_RECV,
3980 				    "%s: short packet %d\n", __func__, len);
3981 				sc->sc_stats.ast_rx_tooshort++;
3982 			} else {
3983 				/* NB: in particular this captures ack's */
3984 				ieee80211_radiotap_rx_all(ic, m);
3985 			}
3986 			m_freem(m);
3987 			goto rx_next;
3988 		}
3989 
3990 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3991 			const HAL_RATE_TABLE *rt = sc->sc_currates;
3992 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3993 
3994 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3995 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3996 		}
3997 
3998 		m_adj(m, -IEEE80211_CRC_LEN);
3999 
4000 		/*
4001 		 * Locate the node for sender, track state, and then
4002 		 * pass the (referenced) node up to the 802.11 layer
4003 		 * for its use.
4004 		 */
4005 		ni = ieee80211_find_rxnode_withkey(ic,
4006 			mtod(m, const struct ieee80211_frame_min *),
4007 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4008 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4009 		if (ni != NULL) {
4010 			/*
4011 			 * Sending station is known, dispatch directly.
4012 			 */
4013 			sc->sc_lastrs = rs;
4014 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4015 			ieee80211_free_node(ni);
4016 			/*
4017 			 * Arrange to update the last rx timestamp only for
4018 			 * frames from our ap when operating in station mode.
4019 			 * This assumes the rx key is always setup when
4020 			 * associated.
4021 			 */
4022 			if (ic->ic_opmode == IEEE80211_M_STA &&
4023 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4024 				ngood++;
4025 		} else {
4026 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4027 		}
4028 		/*
4029 		 * Track rx rssi and do any rx antenna management.
4030 		 */
4031 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4032 		if (sc->sc_diversity) {
4033 			/*
4034 			 * When using fast diversity, change the default rx
4035 			 * antenna if diversity chooses the other antenna 3
4036 			 * times in a row.
4037 			 */
4038 			if (sc->sc_defant != rs->rs_antenna) {
4039 				if (++sc->sc_rxotherant >= 3)
4040 					ath_setdefantenna(sc, rs->rs_antenna);
4041 			} else
4042 				sc->sc_rxotherant = 0;
4043 		}
4044 		if (sc->sc_softled) {
4045 			/*
4046 			 * Blink for any data frame.  Otherwise do a
4047 			 * heartbeat-style blink when idle.  The latter
4048 			 * is mainly for station mode where we depend on
4049 			 * periodic beacon frames to trigger the poll event.
4050 			 */
4051 			if (type == IEEE80211_FC0_TYPE_DATA) {
4052 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4053 				ath_led_event(sc,
4054 				    rt->rateCodeToIndex[rs->rs_rate]);
4055 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4056 				ath_led_event(sc, 0);
4057 		}
4058 rx_next:
4059 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4060 	} while (ath_rxbuf_init(sc, bf) == 0);
4061 
4062 	/* rx signal state monitoring */
4063 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4064 	if (ngood)
4065 		sc->sc_lastrx = tsf;
4066 
4067 	if ((ifp->if_flags & IFF_OACTIVE) == 0) {
4068 #ifdef IEEE80211_SUPPORT_SUPERG
4069 		ieee80211_ff_age_all(ic, 100);
4070 #endif
4071 		if (!ifq_is_empty(&ifp->if_snd))
4072 			ath_start(ifp);
4073 	}
4074 	wlan_serialize_exit();
4075 #undef PA2DESC
4076 }
4077 
4078 static void
4079 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4080 {
4081 	txq->axq_qnum = qnum;
4082 	txq->axq_ac = 0;
4083 	txq->axq_depth = 0;
4084 	txq->axq_intrcnt = 0;
4085 	txq->axq_link = NULL;
4086 	STAILQ_INIT(&txq->axq_q);
4087 }
4088 
4089 /*
4090  * Setup a h/w transmit queue.
4091  */
4092 static struct ath_txq *
4093 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4094 {
4095 	struct ath_hal *ah = sc->sc_ah;
4096 	HAL_TXQ_INFO qi;
4097 	int qnum;
4098 
4099 	memset(&qi, 0, sizeof(qi));
4100 	qi.tqi_subtype = subtype;
4101 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4102 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4103 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4104 	/*
4105 	 * Enable interrupts only for EOL and DESC conditions.
4106 	 * We mark tx descriptors to receive a DESC interrupt
4107 	 * when a tx queue gets deep; otherwise waiting for the
4108 	 * EOL to reap descriptors.  Note that this is done to
4109 	 * reduce interrupt load and this only defers reaping
4110 	 * descriptors, never transmitting frames.  Aside from
4111 	 * reducing interrupts this also permits more concurrency.
4112 	 * The only potential downside is if the tx queue backs
4113 	 * up in which case the top half of the kernel may backup
4114 	 * due to a lack of tx descriptors.
4115 	 */
4116 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4117 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4118 	if (qnum == -1) {
4119 		/*
4120 		 * NB: don't print a message, this happens
4121 		 * normally on parts with too few tx queues
4122 		 */
4123 		return NULL;
4124 	}
4125 	if (qnum >= NELEM(sc->sc_txq)) {
4126 		device_printf(sc->sc_dev,
4127 			"hal qnum %u out of range, max %zu!\n",
4128 			qnum, NELEM(sc->sc_txq));
4129 		ath_hal_releasetxqueue(ah, qnum);
4130 		return NULL;
4131 	}
4132 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4133 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4134 		sc->sc_txqsetup |= 1<<qnum;
4135 	}
4136 	return &sc->sc_txq[qnum];
4137 }
4138 
4139 /*
4140  * Setup a hardware data transmit queue for the specified
4141  * access control.  The hal may not support all requested
4142  * queues in which case it will return a reference to a
4143  * previously setup queue.  We record the mapping from ac's
4144  * to h/w queues for use by ath_tx_start and also track
4145  * the set of h/w queues being used to optimize work in the
4146  * transmit interrupt handler and related routines.
4147  */
4148 static int
4149 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4150 {
4151 	struct ath_txq *txq;
4152 
4153 	if (ac >= NELEM(sc->sc_ac2q)) {
4154 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4155 			ac, NELEM(sc->sc_ac2q));
4156 		return 0;
4157 	}
4158 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4159 	if (txq != NULL) {
4160 		txq->axq_ac = ac;
4161 		sc->sc_ac2q[ac] = txq;
4162 		return 1;
4163 	} else
4164 		return 0;
4165 }
4166 
4167 /*
4168  * Update WME parameters for a transmit queue.
4169  */
4170 static int
4171 ath_txq_update(struct ath_softc *sc, int ac)
4172 {
4173 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4174 #define	ATH_TXOP_TO_US(v)		(v<<5)
4175 	struct ifnet *ifp = sc->sc_ifp;
4176 	struct ieee80211com *ic = ifp->if_l2com;
4177 	struct ath_txq *txq = sc->sc_ac2q[ac];
4178 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4179 	struct ath_hal *ah = sc->sc_ah;
4180 	HAL_TXQ_INFO qi;
4181 
4182 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4183 #ifdef IEEE80211_SUPPORT_TDMA
4184 	if (sc->sc_tdma) {
4185 		/*
4186 		 * AIFS is zero so there's no pre-transmit wait.  The
4187 		 * burst time defines the slot duration and is configured
4188 		 * through net80211.  The QCU is setup to not do post-xmit
4189 		 * back off, lockout all lower-priority QCU's, and fire
4190 		 * off the DMA beacon alert timer which is setup based
4191 		 * on the slot configuration.
4192 		 */
4193 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4194 			      | HAL_TXQ_TXERRINT_ENABLE
4195 			      | HAL_TXQ_TXURNINT_ENABLE
4196 			      | HAL_TXQ_TXEOLINT_ENABLE
4197 			      | HAL_TXQ_DBA_GATED
4198 			      | HAL_TXQ_BACKOFF_DISABLE
4199 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4200 			      ;
4201 		qi.tqi_aifs = 0;
4202 		/* XXX +dbaprep? */
4203 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4204 		qi.tqi_burstTime = qi.tqi_readyTime;
4205 	} else {
4206 #endif
4207 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4208 			      | HAL_TXQ_TXERRINT_ENABLE
4209 			      | HAL_TXQ_TXDESCINT_ENABLE
4210 			      | HAL_TXQ_TXURNINT_ENABLE
4211 			      ;
4212 		qi.tqi_aifs = wmep->wmep_aifsn;
4213 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4214 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4215 		qi.tqi_readyTime = 0;
4216 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4217 #ifdef IEEE80211_SUPPORT_TDMA
4218 	}
4219 #endif
4220 
4221 	DPRINTF(sc, ATH_DEBUG_RESET,
4222 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4223 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4224 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4225 
4226 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4227 		if_printf(ifp, "unable to update hardware queue "
4228 			"parameters for %s traffic!\n",
4229 			ieee80211_wme_acnames[ac]);
4230 		return 0;
4231 	} else {
4232 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4233 		return 1;
4234 	}
4235 #undef ATH_TXOP_TO_US
4236 #undef ATH_EXPONENT_TO_VALUE
4237 }
4238 
4239 /*
4240  * Callback from the 802.11 layer to update WME parameters.
4241  */
4242 static int
4243 ath_wme_update(struct ieee80211com *ic)
4244 {
4245 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4246 
4247 	return !ath_txq_update(sc, WME_AC_BE) ||
4248 	    !ath_txq_update(sc, WME_AC_BK) ||
4249 	    !ath_txq_update(sc, WME_AC_VI) ||
4250 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4251 }
4252 
4253 /*
4254  * Reclaim resources for a setup queue.
4255  */
4256 static void
4257 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4258 {
4259 
4260 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4261 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4262 }
4263 
4264 /*
4265  * Reclaim all tx queue resources.
4266  */
4267 static void
4268 ath_tx_cleanup(struct ath_softc *sc)
4269 {
4270 	int i;
4271 
4272 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4273 		if (ATH_TXQ_SETUP(sc, i))
4274 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4275 }
4276 
4277 /*
4278  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4279  * using the current rates in sc_rixmap.
4280  */
4281 static __inline int
4282 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4283 {
4284 	int rix = sc->sc_rixmap[rate];
4285 	/* NB: return lowest rix for invalid rate */
4286 	return (rix == 0xff ? 0 : rix);
4287 }
4288 
4289 /*
4290  * Reclaim mbuf resources.  For fragmented frames we
4291  * need to claim each frag chained with m_nextpkt.
4292  */
4293 static void
4294 ath_freetx(struct mbuf *m)
4295 {
4296 	struct mbuf *next;
4297 
4298 	do {
4299 		next = m->m_nextpkt;
4300 		m->m_nextpkt = NULL;
4301 		m_freem(m);
4302 	} while ((m = next) != NULL);
4303 }
4304 
4305 static int
4306 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4307 {
4308 	int error;
4309 
4310 	/*
4311 	 *
4312 	 * Load the DMA map so any coalescing is done.  This
4313 	 * also calculates the number of descriptors we need.
4314 	 */
4315 	error = bus_dmamap_load_mbuf_defrag(sc->sc_dmat, bf->bf_dmamap, &m0,
4316 				     bf->bf_segs, ATH_TXDESC,
4317 				     &bf->bf_nseg, BUS_DMA_NOWAIT);
4318 	if (error != 0) {
4319 		sc->sc_stats.ast_tx_busdma++;
4320 		ath_freetx(m0);
4321 		return error;
4322 	}
4323 
4324 	/*
4325 	 * Discard null packets.
4326 	 */
4327 	if (bf->bf_nseg == 0) {		/* null packet, discard */
4328 		sc->sc_stats.ast_tx_nodata++;
4329 		ath_freetx(m0);
4330 		return EIO;
4331 	}
4332 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4333 		__func__, m0, m0->m_pkthdr.len);
4334 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4335 	bf->bf_m = m0;
4336 
4337 	return 0;
4338 }
4339 
4340 static void
4341 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4342 {
4343 	struct ath_hal *ah = sc->sc_ah;
4344 	struct ath_desc *ds, *ds0;
4345 	int i;
4346 
4347 	/*
4348 	 * Fillin the remainder of the descriptor info.
4349 	 */
4350 	ds0 = ds = bf->bf_desc;
4351 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4352 		ds->ds_data = bf->bf_segs[i].ds_addr;
4353 		if (i == bf->bf_nseg - 1)
4354 			ds->ds_link = 0;
4355 		else
4356 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4357 		ath_hal_filltxdesc(ah, ds
4358 			, bf->bf_segs[i].ds_len	/* segment length */
4359 			, i == 0		/* first segment */
4360 			, i == bf->bf_nseg - 1	/* last segment */
4361 			, ds0			/* first descriptor */
4362 		);
4363 		DPRINTF(sc, ATH_DEBUG_XMIT,
4364 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4365 			__func__, i, ds->ds_link, ds->ds_data,
4366 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4367 	}
4368 	/*
4369 	 * Insert the frame on the outbound list and pass it on
4370 	 * to the hardware.  Multicast frames buffered for power
4371 	 * save stations and transmit from the CAB queue are stored
4372 	 * on a s/w only queue and loaded on to the CAB queue in
4373 	 * the SWBA handler since frames only go out on DTIM and
4374 	 * to avoid possible races.
4375 	 */
4376 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4377 	     ("busy status 0x%x", bf->bf_flags));
4378 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4379 #ifdef IEEE80211_SUPPORT_TDMA
4380 		/*
4381 		 * Supporting transmit dma.  If the queue is busy it is
4382 		 * impossible to determine if we've won the race against
4383 		 * the chipset checking the link field or not, so we don't
4384 		 * try.  Instead we let the TX interrupt detect the case
4385 		 * and restart the transmitter.
4386 		 *
4387 		 * If the queue is not busy we can start things rolling
4388 		 * right here.
4389 		 */
4390 		int qbusy;
4391 
4392 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4393 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4394 
4395 		if (qbusy == 0) {
4396 			if (txq->axq_link != NULL) {
4397 				/*
4398 				 * We had already started one previously but
4399 				 * not yet processed the TX interrupt.  Don't
4400 				 * try to race a restart because we do not
4401 				 * know where it stopped, let the TX interrupt
4402 				 * restart us when it figures out where we
4403 				 * stopped.
4404 				 */
4405 				cpu_sfence();
4406 				*txq->axq_link = bf->bf_daddr;
4407 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4408 			} else {
4409 				/*
4410 				 * We are first in line, we can safely start
4411 				 * at this address.
4412 				 */
4413 				cpu_sfence();
4414 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4415 						 bf->bf_daddr);
4416 			}
4417 		} else {
4418 			/*
4419 			 * The queue is busy, go ahead and link us in but
4420 			 * do not try to start/restart the tx.  We just
4421 			 * don't know whether it will pick up our link
4422 			 * or not and we don't want to double-xmit.
4423 			 */
4424 			if (txq->axq_link != NULL) {
4425 				cpu_sfence();
4426 				*txq->axq_link = bf->bf_daddr;
4427 			}
4428 			txq->axq_flags |= ATH_TXQ_PUTPENDING;
4429 		}
4430 #if 0
4431 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4432 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4433 #endif
4434 #else
4435 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4436 		if (txq->axq_link == NULL) {
4437 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4438 			DPRINTF(sc, ATH_DEBUG_XMIT,
4439 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4440 			    __func__, txq->axq_qnum,
4441 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4442 			    txq->axq_depth);
4443 		} else {
4444 			*txq->axq_link = bf->bf_daddr;
4445 			DPRINTF(sc, ATH_DEBUG_XMIT,
4446 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4447 			    txq->axq_qnum, txq->axq_link,
4448 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4449 		}
4450 #endif /* IEEE80211_SUPPORT_TDMA */
4451 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4452 		ath_hal_txstart(ah, txq->axq_qnum);
4453 	} else {
4454 		if (txq->axq_link != NULL) {
4455 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4456 			struct ieee80211_frame *wh;
4457 
4458 			/* mark previous frame */
4459 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4460 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4461 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4462 			    BUS_DMASYNC_PREWRITE);
4463 
4464 			/* link descriptor */
4465 			*txq->axq_link = bf->bf_daddr;
4466 		}
4467 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4468 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4469 	}
4470 }
4471 
4472 static int
4473 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4474     struct mbuf *m0)
4475 {
4476 	struct ieee80211vap *vap = ni->ni_vap;
4477 	struct ath_vap *avp = ATH_VAP(vap);
4478 	struct ath_hal *ah = sc->sc_ah;
4479 	struct ifnet *ifp = sc->sc_ifp;
4480 	struct ieee80211com *ic = ifp->if_l2com;
4481 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4482 	int error, iswep, ismcast, isfrag, ismrr;
4483 	int keyix, hdrlen, pktlen, try0;
4484 	u_int8_t rix, txrate, ctsrate;
4485 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4486 	struct ath_desc *ds;
4487 	struct ath_txq *txq;
4488 	struct ieee80211_frame *wh;
4489 	u_int subtype, flags, ctsduration;
4490 	HAL_PKT_TYPE atype;
4491 	const HAL_RATE_TABLE *rt;
4492 	HAL_BOOL shortPreamble;
4493 	struct ath_node *an;
4494 	u_int pri;
4495 
4496 	wh = mtod(m0, struct ieee80211_frame *);
4497 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4498 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4499 	isfrag = m0->m_flags & M_FRAG;
4500 	hdrlen = ieee80211_anyhdrsize(wh);
4501 	/*
4502 	 * Packet length must not include any
4503 	 * pad bytes; deduct them here.
4504 	 */
4505 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4506 
4507 	if (iswep) {
4508 		const struct ieee80211_cipher *cip;
4509 		struct ieee80211_key *k;
4510 
4511 		/*
4512 		 * Construct the 802.11 header+trailer for an encrypted
4513 		 * frame. The only reason this can fail is because of an
4514 		 * unknown or unsupported cipher/key type.
4515 		 */
4516 		k = ieee80211_crypto_encap(ni, m0);
4517 		if (k == NULL) {
4518 			/*
4519 			 * This can happen when the key is yanked after the
4520 			 * frame was queued.  Just discard the frame; the
4521 			 * 802.11 layer counts failures and provides
4522 			 * debugging/diagnostics.
4523 			 */
4524 			ath_freetx(m0);
4525 			return EIO;
4526 		}
4527 		/*
4528 		 * Adjust the packet + header lengths for the crypto
4529 		 * additions and calculate the h/w key index.  When
4530 		 * a s/w mic is done the frame will have had any mic
4531 		 * added to it prior to entry so m0->m_pkthdr.len will
4532 		 * account for it. Otherwise we need to add it to the
4533 		 * packet length.
4534 		 */
4535 		cip = k->wk_cipher;
4536 		hdrlen += cip->ic_header;
4537 		pktlen += cip->ic_header + cip->ic_trailer;
4538 		/* NB: frags always have any TKIP MIC done in s/w */
4539 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4540 			pktlen += cip->ic_miclen;
4541 		keyix = k->wk_keyix;
4542 
4543 		/* packet header may have moved, reset our local pointer */
4544 		wh = mtod(m0, struct ieee80211_frame *);
4545 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4546 		/*
4547 		 * Use station key cache slot, if assigned.
4548 		 */
4549 		keyix = ni->ni_ucastkey.wk_keyix;
4550 		if (keyix == IEEE80211_KEYIX_NONE)
4551 			keyix = HAL_TXKEYIX_INVALID;
4552 	} else
4553 		keyix = HAL_TXKEYIX_INVALID;
4554 
4555 	pktlen += IEEE80211_CRC_LEN;
4556 
4557 	/*
4558 	 * Load the DMA map so any coalescing is done.  This
4559 	 * also calculates the number of descriptors we need.
4560 	 */
4561 	error = ath_tx_dmasetup(sc, bf, m0);
4562 	if (error != 0) {
4563 		return error;
4564 	}
4565 	bf->bf_node = ni;			/* NB: held reference */
4566 	m0 = bf->bf_m;				/* NB: may have changed */
4567 	wh = mtod(m0, struct ieee80211_frame *);
4568 
4569 	/* setup descriptors */
4570 	ds = bf->bf_desc;
4571 	rt = sc->sc_currates;
4572 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4573 
4574 	/*
4575 	 * NB: the 802.11 layer marks whether or not we should
4576 	 * use short preamble based on the current mode and
4577 	 * negotiated parameters.
4578 	 */
4579 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4580 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4581 		shortPreamble = AH_TRUE;
4582 		sc->sc_stats.ast_tx_shortpre++;
4583 	} else {
4584 		shortPreamble = AH_FALSE;
4585 	}
4586 
4587 	an = ATH_NODE(ni);
4588 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4589 	ismrr = 0;				/* default no multi-rate retry*/
4590 	pri = M_WME_GETAC(m0);			/* honor classification */
4591 	/* XXX use txparams instead of fixed values */
4592 	/*
4593 	 * Calculate Atheros packet type from IEEE80211 packet header,
4594 	 * setup for rate calculations, and select h/w transmit queue.
4595 	 */
4596 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4597 	case IEEE80211_FC0_TYPE_MGT:
4598 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4599 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4600 			atype = HAL_PKT_TYPE_BEACON;
4601 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4602 			atype = HAL_PKT_TYPE_PROBE_RESP;
4603 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4604 			atype = HAL_PKT_TYPE_ATIM;
4605 		else
4606 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4607 		rix = an->an_mgmtrix;
4608 		txrate = rt->info[rix].rateCode;
4609 		if (shortPreamble)
4610 			txrate |= rt->info[rix].shortPreamble;
4611 		try0 = ATH_TXMGTTRY;
4612 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4613 		break;
4614 	case IEEE80211_FC0_TYPE_CTL:
4615 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4616 		rix = an->an_mgmtrix;
4617 		txrate = rt->info[rix].rateCode;
4618 		if (shortPreamble)
4619 			txrate |= rt->info[rix].shortPreamble;
4620 		try0 = ATH_TXMGTTRY;
4621 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4622 		break;
4623 	case IEEE80211_FC0_TYPE_DATA:
4624 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4625 		/*
4626 		 * Data frames: multicast frames go out at a fixed rate,
4627 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4628 		 * the rate control module for the rate to use.
4629 		 */
4630 		if (ismcast) {
4631 			rix = an->an_mcastrix;
4632 			txrate = rt->info[rix].rateCode;
4633 			if (shortPreamble)
4634 				txrate |= rt->info[rix].shortPreamble;
4635 			try0 = 1;
4636 		} else if (m0->m_flags & M_EAPOL) {
4637 			/* XXX? maybe always use long preamble? */
4638 			rix = an->an_mgmtrix;
4639 			txrate = rt->info[rix].rateCode;
4640 			if (shortPreamble)
4641 				txrate |= rt->info[rix].shortPreamble;
4642 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4643 		} else {
4644 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4645 				&rix, &try0, &txrate);
4646 			sc->sc_txrix = rix;		/* for LED blinking */
4647 			sc->sc_lastdatarix = rix;	/* for fast frames */
4648 			if (try0 != ATH_TXMAXTRY)
4649 				ismrr = 1;
4650 		}
4651 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4652 			flags |= HAL_TXDESC_NOACK;
4653 		break;
4654 	default:
4655 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4656 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4657 		/* XXX statistic */
4658 		ath_freetx(m0);
4659 		return EIO;
4660 	}
4661 	txq = sc->sc_ac2q[pri];
4662 
4663 	/*
4664 	 * When servicing one or more stations in power-save mode
4665 	 * (or) if there is some mcast data waiting on the mcast
4666 	 * queue (to prevent out of order delivery) multicast
4667 	 * frames must be buffered until after the beacon.
4668 	 */
4669 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4670 		txq = &avp->av_mcastq;
4671 
4672 	/*
4673 	 * Calculate miscellaneous flags.
4674 	 */
4675 	if (ismcast) {
4676 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4677 	} else if (pktlen > vap->iv_rtsthreshold &&
4678 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4679 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4680 		cix = rt->info[rix].controlRate;
4681 		sc->sc_stats.ast_tx_rts++;
4682 	}
4683 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4684 		sc->sc_stats.ast_tx_noack++;
4685 #ifdef IEEE80211_SUPPORT_TDMA
4686 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4687 		DPRINTF(sc, ATH_DEBUG_TDMA,
4688 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4689 		sc->sc_stats.ast_tdma_ack++;
4690 		ath_freetx(m0);
4691 		return EIO;
4692 	}
4693 #endif
4694 
4695 	/*
4696 	 * If 802.11g protection is enabled, determine whether
4697 	 * to use RTS/CTS or just CTS.  Note that this is only
4698 	 * done for OFDM unicast frames.
4699 	 */
4700 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4701 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4702 	    (flags & HAL_TXDESC_NOACK) == 0) {
4703 		/* XXX fragments must use CCK rates w/ protection */
4704 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4705 			flags |= HAL_TXDESC_RTSENA;
4706 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4707 			flags |= HAL_TXDESC_CTSENA;
4708 		if (isfrag) {
4709 			/*
4710 			 * For frags it would be desirable to use the
4711 			 * highest CCK rate for RTS/CTS.  But stations
4712 			 * farther away may detect it at a lower CCK rate
4713 			 * so use the configured protection rate instead
4714 			 * (for now).
4715 			 */
4716 			cix = rt->info[sc->sc_protrix].controlRate;
4717 		} else
4718 			cix = rt->info[sc->sc_protrix].controlRate;
4719 		sc->sc_stats.ast_tx_protect++;
4720 	}
4721 
4722 	/*
4723 	 * Calculate duration.  This logically belongs in the 802.11
4724 	 * layer but it lacks sufficient information to calculate it.
4725 	 */
4726 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4727 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4728 		u_int16_t dur;
4729 		if (shortPreamble)
4730 			dur = rt->info[rix].spAckDuration;
4731 		else
4732 			dur = rt->info[rix].lpAckDuration;
4733 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4734 			dur += dur;		/* additional SIFS+ACK */
4735 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4736 			/*
4737 			 * Include the size of next fragment so NAV is
4738 			 * updated properly.  The last fragment uses only
4739 			 * the ACK duration
4740 			 */
4741 			dur += ath_hal_computetxtime(ah, rt,
4742 					m0->m_nextpkt->m_pkthdr.len,
4743 					rix, shortPreamble);
4744 		}
4745 		if (isfrag) {
4746 			/*
4747 			 * Force hardware to use computed duration for next
4748 			 * fragment by disabling multi-rate retry which updates
4749 			 * duration based on the multi-rate duration table.
4750 			 */
4751 			ismrr = 0;
4752 			try0 = ATH_TXMGTTRY;	/* XXX? */
4753 		}
4754 		*(u_int16_t *)wh->i_dur = htole16(dur);
4755 	}
4756 
4757 	/*
4758 	 * Calculate RTS/CTS rate and duration if needed.
4759 	 */
4760 	ctsduration = 0;
4761 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4762 		/*
4763 		 * CTS transmit rate is derived from the transmit rate
4764 		 * by looking in the h/w rate table.  We must also factor
4765 		 * in whether or not a short preamble is to be used.
4766 		 */
4767 		/* NB: cix is set above where RTS/CTS is enabled */
4768 		KASSERT(cix != 0xff, ("cix not setup"));
4769 		ctsrate = rt->info[cix].rateCode;
4770 		/*
4771 		 * Compute the transmit duration based on the frame
4772 		 * size and the size of an ACK frame.  We call into the
4773 		 * HAL to do the computation since it depends on the
4774 		 * characteristics of the actual PHY being used.
4775 		 *
4776 		 * NB: CTS is assumed the same size as an ACK so we can
4777 		 *     use the precalculated ACK durations.
4778 		 */
4779 		if (shortPreamble) {
4780 			ctsrate |= rt->info[cix].shortPreamble;
4781 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4782 				ctsduration += rt->info[cix].spAckDuration;
4783 			ctsduration += ath_hal_computetxtime(ah,
4784 				rt, pktlen, rix, AH_TRUE);
4785 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4786 				ctsduration += rt->info[rix].spAckDuration;
4787 		} else {
4788 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4789 				ctsduration += rt->info[cix].lpAckDuration;
4790 			ctsduration += ath_hal_computetxtime(ah,
4791 				rt, pktlen, rix, AH_FALSE);
4792 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4793 				ctsduration += rt->info[rix].lpAckDuration;
4794 		}
4795 		/*
4796 		 * Must disable multi-rate retry when using RTS/CTS.
4797 		 */
4798 		ismrr = 0;
4799 		try0 = ATH_TXMGTTRY;		/* XXX */
4800 	} else
4801 		ctsrate = 0;
4802 
4803 	/*
4804 	 * At this point we are committed to sending the frame
4805 	 * and we don't need to look at m_nextpkt; clear it in
4806 	 * case this frame is part of frag chain.
4807 	 */
4808 	m0->m_nextpkt = NULL;
4809 
4810 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4811 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
4812 		    sc->sc_hwmap[rix].ieeerate, -1);
4813 
4814 	if (ieee80211_radiotap_active_vap(vap)) {
4815 		u_int64_t tsf = ath_hal_gettsf64(ah);
4816 
4817 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4818 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4819 		if (iswep)
4820 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4821 		if (isfrag)
4822 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4823 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4824 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4825 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4826 
4827 		ieee80211_radiotap_tx(vap, m0);
4828 	}
4829 
4830 	/*
4831 	 * Determine if a tx interrupt should be generated for
4832 	 * this descriptor.  We take a tx interrupt to reap
4833 	 * descriptors when the h/w hits an EOL condition or
4834 	 * when the descriptor is specifically marked to generate
4835 	 * an interrupt.  We periodically mark descriptors in this
4836 	 * way to insure timely replenishing of the supply needed
4837 	 * for sending frames.  Defering interrupts reduces system
4838 	 * load and potentially allows more concurrent work to be
4839 	 * done but if done to aggressively can cause senders to
4840 	 * backup.
4841 	 *
4842 	 * NB: use >= to deal with sc_txintrperiod changing
4843 	 *     dynamically through sysctl.
4844 	 */
4845 	if (flags & HAL_TXDESC_INTREQ) {
4846 		txq->axq_intrcnt = 0;
4847 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4848 		flags |= HAL_TXDESC_INTREQ;
4849 		txq->axq_intrcnt = 0;
4850 	}
4851 
4852 	/*
4853 	 * Formulate first tx descriptor with tx controls.
4854 	 */
4855 	/* XXX check return value? */
4856 	ath_hal_setuptxdesc(ah, ds
4857 		, pktlen		/* packet length */
4858 		, hdrlen		/* header length */
4859 		, atype			/* Atheros packet type */
4860 		, ni->ni_txpower	/* txpower */
4861 		, txrate, try0		/* series 0 rate/tries */
4862 		, keyix			/* key cache index */
4863 		, sc->sc_txantenna	/* antenna mode */
4864 		, flags			/* flags */
4865 		, ctsrate		/* rts/cts rate */
4866 		, ctsduration		/* rts/cts duration */
4867 	);
4868 	bf->bf_txflags = flags;
4869 	/*
4870 	 * Setup the multi-rate retry state only when we're
4871 	 * going to use it.  This assumes ath_hal_setuptxdesc
4872 	 * initializes the descriptors (so we don't have to)
4873 	 * when the hardware supports multi-rate retry and
4874 	 * we don't use it.
4875 	 */
4876 	if (ismrr)
4877 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4878 
4879 	ath_tx_handoff(sc, txq, bf);
4880 	return 0;
4881 }
4882 
4883 /*
4884  * Process completed xmit descriptors from the specified queue.
4885  */
4886 static int
4887 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4888 {
4889 	struct ath_hal *ah = sc->sc_ah;
4890 	struct ifnet *ifp = sc->sc_ifp;
4891 	struct ieee80211com *ic = ifp->if_l2com;
4892 	struct ath_buf *bf, *last;
4893 	struct ath_desc *ds, *ds0;
4894 	struct ath_tx_status *ts;
4895 	struct ieee80211_node *ni;
4896 	struct ath_node *an;
4897 	int sr, lr, pri, nacked;
4898 	HAL_STATUS status;
4899 
4900 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4901 		__func__, txq->axq_qnum,
4902 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4903 		txq->axq_link);
4904 	nacked = 0;
4905 	for (;;) {
4906 		int qbusy;
4907 
4908 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4909 		bf = STAILQ_FIRST(&txq->axq_q);
4910 		if (bf == NULL)
4911 			break;
4912 		ds0 = &bf->bf_desc[0];
4913 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4914 		ts = &bf->bf_status.ds_txstat;
4915 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4916 		status = ath_hal_txprocdesc(ah, ds, ts);
4917 #ifdef ATH_DEBUG
4918 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4919 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4920 			    status == HAL_OK);
4921 #endif
4922 		if (status == HAL_EINPROGRESS) {
4923 #ifdef IEEE80211_SUPPORT_TDMA
4924 			/*
4925 			 * If not done and the queue is not busy then the
4926 			 * transmitter raced the hardware on the link field
4927 			 * and we have to restart it.
4928 			 */
4929 			if (!qbusy) {
4930 				cpu_sfence();
4931 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4932 						 bf->bf_daddr);
4933 				ath_hal_txstart(ah, txq->axq_qnum);
4934 			}
4935 #endif
4936 			break;
4937 		}
4938 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4939 #ifdef IEEE80211_SUPPORT_TDMA
4940 		if (txq->axq_depth > 0) {
4941 			/*
4942 			 * More frames follow.  Mark the buffer busy
4943 			 * so it's not re-used while the hardware may
4944 			 * still re-read the link field in the descriptor.
4945 			 */
4946 			bf->bf_flags |= ATH_BUF_BUSY;
4947 		} else
4948 #else
4949 		if (txq->axq_depth == 0)
4950 #endif
4951 			txq->axq_link = NULL;
4952 
4953 		ni = bf->bf_node;
4954 		if (ni != NULL) {
4955 			an = ATH_NODE(ni);
4956 			if (ts->ts_status == 0) {
4957 				u_int8_t txant = ts->ts_antenna;
4958 				sc->sc_stats.ast_ant_tx[txant]++;
4959 				sc->sc_ant_tx[txant]++;
4960 				if (ts->ts_finaltsi != 0)
4961 					sc->sc_stats.ast_tx_altrate++;
4962 				pri = M_WME_GETAC(bf->bf_m);
4963 				if (pri >= WME_AC_VO)
4964 					ic->ic_wme.wme_hipri_traffic++;
4965 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4966 					ni->ni_inact = ni->ni_inact_reload;
4967 			} else {
4968 				if (ts->ts_status & HAL_TXERR_XRETRY)
4969 					sc->sc_stats.ast_tx_xretries++;
4970 				if (ts->ts_status & HAL_TXERR_FIFO)
4971 					sc->sc_stats.ast_tx_fifoerr++;
4972 				if (ts->ts_status & HAL_TXERR_FILT)
4973 					sc->sc_stats.ast_tx_filtered++;
4974 				if (bf->bf_m->m_flags & M_FF)
4975 					sc->sc_stats.ast_ff_txerr++;
4976 			}
4977 			sr = ts->ts_shortretry;
4978 			lr = ts->ts_longretry;
4979 			sc->sc_stats.ast_tx_shortretry += sr;
4980 			sc->sc_stats.ast_tx_longretry += lr;
4981 			/*
4982 			 * Hand the descriptor to the rate control algorithm.
4983 			 */
4984 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4985 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4986 				/*
4987 				 * If frame was ack'd update statistics,
4988 				 * including the last rx time used to
4989 				 * workaround phantom bmiss interrupts.
4990 				 */
4991 				if (ts->ts_status == 0) {
4992 					nacked++;
4993 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4994 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4995 						ts->ts_rssi);
4996 				}
4997 				ath_rate_tx_complete(sc, an, bf);
4998 			}
4999 			/*
5000 			 * Do any tx complete callback.  Note this must
5001 			 * be done before releasing the node reference.
5002 			 */
5003 			if (bf->bf_m->m_flags & M_TXCB)
5004 				ieee80211_process_callback(ni, bf->bf_m,
5005 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5006 				        ts->ts_status : HAL_TXERR_XRETRY);
5007 			ieee80211_free_node(ni);
5008 		}
5009 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5010 		    BUS_DMASYNC_POSTWRITE);
5011 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5012 
5013 		m_freem(bf->bf_m);
5014 		bf->bf_m = NULL;
5015 		bf->bf_node = NULL;
5016 
5017 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5018 		if (last != NULL)
5019 			last->bf_flags &= ~ATH_BUF_BUSY;
5020 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5021 	}
5022 #ifdef IEEE80211_SUPPORT_SUPERG
5023 	/*
5024 	 * Flush fast-frame staging queue when traffic slows.
5025 	 */
5026 	if (txq->axq_depth <= 1)
5027 		ieee80211_ff_flush(ic, txq->axq_ac);
5028 #endif
5029 	return nacked;
5030 }
5031 
5032 static __inline int
5033 txqactive(struct ath_hal *ah, int qnum)
5034 {
5035 	u_int32_t txqs = 1<<qnum;
5036 	ath_hal_gettxintrtxqs(ah, &txqs);
5037 	return (txqs & (1<<qnum));
5038 }
5039 
5040 /*
5041  * Deferred processing of transmit interrupt; special-cased
5042  * for a single hardware transmit queue (e.g. 5210 and 5211).
5043  */
5044 static void
5045 ath_tx_task_q0(void *arg, int npending)
5046 {
5047 	struct ath_softc *sc = arg;
5048 	struct ifnet *ifp = sc->sc_ifp;
5049 
5050 	wlan_serialize_enter();
5051 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5052 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5053 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5054 		ath_tx_processq(sc, sc->sc_cabq);
5055 	ifp->if_flags &= ~IFF_OACTIVE;
5056 	sc->sc_wd_timer = 0;
5057 
5058 	if (sc->sc_softled)
5059 		ath_led_event(sc, sc->sc_txrix);
5060 
5061 	ath_start(ifp);
5062 	wlan_serialize_exit();
5063 }
5064 
5065 /*
5066  * Deferred processing of transmit interrupt; special-cased
5067  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5068  */
5069 static void
5070 ath_tx_task_q0123(void *arg, int npending)
5071 {
5072 	struct ath_softc *sc = arg;
5073 	struct ifnet *ifp = sc->sc_ifp;
5074 	int nacked;
5075 
5076 	wlan_serialize_enter();
5077 	/*
5078 	 * Process each active queue.
5079 	 */
5080 	nacked = 0;
5081 	if (txqactive(sc->sc_ah, 0))
5082 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5083 	if (txqactive(sc->sc_ah, 1))
5084 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5085 	if (txqactive(sc->sc_ah, 2))
5086 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5087 	if (txqactive(sc->sc_ah, 3))
5088 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5089 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5090 		ath_tx_processq(sc, sc->sc_cabq);
5091 	if (nacked)
5092 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5093 
5094 	ifp->if_flags &= ~IFF_OACTIVE;
5095 	sc->sc_wd_timer = 0;
5096 
5097 	if (sc->sc_softled)
5098 		ath_led_event(sc, sc->sc_txrix);
5099 
5100 	ath_start(ifp);
5101 	wlan_serialize_exit();
5102 }
5103 
5104 /*
5105  * Deferred processing of transmit interrupt.
5106  */
5107 static void
5108 ath_tx_task(void *arg, int npending)
5109 {
5110 	struct ath_softc *sc = arg;
5111 	struct ifnet *ifp = sc->sc_ifp;
5112 	int i, nacked;
5113 
5114 	wlan_serialize_enter();
5115 
5116 	/*
5117 	 * Process each active queue.
5118 	 */
5119 	nacked = 0;
5120 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5121 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5122 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5123 	}
5124 	if (nacked)
5125 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5126 
5127 	ifp->if_flags &= ~IFF_OACTIVE;
5128 	sc->sc_wd_timer = 0;
5129 
5130 	if (sc->sc_softled)
5131 		ath_led_event(sc, sc->sc_txrix);
5132 
5133 	ath_start(ifp);
5134 	wlan_serialize_exit();
5135 }
5136 
5137 static void
5138 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5139 {
5140 #ifdef ATH_DEBUG
5141 	struct ath_hal *ah = sc->sc_ah;
5142 #endif
5143 	struct ieee80211_node *ni;
5144 	struct ath_buf *bf;
5145 	u_int ix;
5146 
5147 	/*
5148 	 * NB: this assumes output has been stopped and
5149 	 *     we do not need to block ath_tx_proc
5150 	 */
5151 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5152 	if (bf != NULL)
5153 		bf->bf_flags &= ~ATH_BUF_BUSY;
5154 	for (ix = 0;; ix++) {
5155 		bf = STAILQ_FIRST(&txq->axq_q);
5156 		if (bf == NULL) {
5157 			txq->axq_link = NULL;
5158 			break;
5159 		}
5160 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5161 #ifdef ATH_DEBUG
5162 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5163 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5164 
5165 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5166 				ath_hal_txprocdesc(ah, bf->bf_desc,
5167 				    &bf->bf_status.ds_txstat) == HAL_OK);
5168 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5169 			    bf->bf_m->m_len, 0, -1);
5170 		}
5171 #endif /* ATH_DEBUG */
5172 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5173 		ni = bf->bf_node;
5174 		bf->bf_node = NULL;
5175 		if (ni != NULL) {
5176 			/*
5177 			 * Do any callback and reclaim the node reference.
5178 			 */
5179 			if (bf->bf_m->m_flags & M_TXCB)
5180 				ieee80211_process_callback(ni, bf->bf_m, -1);
5181 			ieee80211_free_node(ni);
5182 		}
5183 		m_freem(bf->bf_m);
5184 		bf->bf_m = NULL;
5185 		bf->bf_flags &= ~ATH_BUF_BUSY;
5186 
5187 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5188 	}
5189 }
5190 
5191 static void
5192 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5193 {
5194 	struct ath_hal *ah = sc->sc_ah;
5195 
5196 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5197 	    __func__, txq->axq_qnum,
5198 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5199 	    txq->axq_link);
5200 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5201 }
5202 
5203 /*
5204  * Drain the transmit queues and reclaim resources.
5205  */
5206 static void
5207 ath_draintxq(struct ath_softc *sc)
5208 {
5209 	struct ath_hal *ah = sc->sc_ah;
5210 	struct ifnet *ifp = sc->sc_ifp;
5211 	int i;
5212 
5213 	/* XXX return value */
5214 	if (!sc->sc_invalid) {
5215 		/* don't touch the hardware if marked invalid */
5216 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5217 		    __func__, sc->sc_bhalq,
5218 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5219 		    NULL);
5220 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5221 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5222 			if (ATH_TXQ_SETUP(sc, i))
5223 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5224 	}
5225 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5226 		if (ATH_TXQ_SETUP(sc, i))
5227 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5228 #ifdef ATH_DEBUG
5229 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5230 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5231 		if (bf != NULL && bf->bf_m != NULL) {
5232 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5233 				ath_hal_txprocdesc(ah, bf->bf_desc,
5234 				    &bf->bf_status.ds_txstat) == HAL_OK);
5235 			ieee80211_dump_pkt(ifp->if_l2com,
5236 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5237 			    0, -1);
5238 		}
5239 	}
5240 #endif /* ATH_DEBUG */
5241 	ifp->if_flags &= ~IFF_OACTIVE;
5242 	sc->sc_wd_timer = 0;
5243 }
5244 
5245 /*
5246  * Disable the receive h/w in preparation for a reset.
5247  */
5248 static void
5249 ath_stoprecv(struct ath_softc *sc)
5250 {
5251 #define	PA2DESC(_sc, _pa) \
5252 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5253 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5254 	struct ath_hal *ah = sc->sc_ah;
5255 
5256 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5257 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5258 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5259 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5260 #ifdef ATH_DEBUG
5261 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5262 		struct ath_buf *bf;
5263 		u_int ix;
5264 
5265 		kprintf("%s: rx queue %p, link %p\n", __func__,
5266 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5267 		ix = 0;
5268 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5269 			struct ath_desc *ds = bf->bf_desc;
5270 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5271 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5272 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5273 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5274 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5275 			ix++;
5276 		}
5277 	}
5278 #endif
5279 	if (sc->sc_rxpending != NULL) {
5280 		m_freem(sc->sc_rxpending);
5281 		sc->sc_rxpending = NULL;
5282 	}
5283 	sc->sc_rxlink = NULL;		/* just in case */
5284 #undef PA2DESC
5285 }
5286 
5287 /*
5288  * Enable the receive h/w following a reset.
5289  */
5290 static int
5291 ath_startrecv(struct ath_softc *sc)
5292 {
5293 	struct ath_hal *ah = sc->sc_ah;
5294 	struct ath_buf *bf;
5295 
5296 	sc->sc_rxlink = NULL;
5297 	sc->sc_rxpending = NULL;
5298 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5299 		int error = ath_rxbuf_init(sc, bf);
5300 		if (error != 0) {
5301 			DPRINTF(sc, ATH_DEBUG_RECV,
5302 				"%s: ath_rxbuf_init failed %d\n",
5303 				__func__, error);
5304 			return error;
5305 		}
5306 	}
5307 
5308 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5309 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5310 	ath_hal_rxena(ah);		/* enable recv descriptors */
5311 	ath_mode_init(sc);		/* set filters, etc. */
5312 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5313 	return 0;
5314 }
5315 
5316 /*
5317  * Update internal state after a channel change.
5318  */
5319 static void
5320 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5321 {
5322 	enum ieee80211_phymode mode;
5323 
5324 	/*
5325 	 * Change channels and update the h/w rate map
5326 	 * if we're switching; e.g. 11a to 11b/g.
5327 	 */
5328 	mode = ieee80211_chan2mode(chan);
5329 	if (mode != sc->sc_curmode)
5330 		ath_setcurmode(sc, mode);
5331 	sc->sc_curchan = chan;
5332 }
5333 
5334 /*
5335  * Set/change channels.  If the channel is really being changed,
5336  * it's done by reseting the chip.  To accomplish this we must
5337  * first cleanup any pending DMA, then restart stuff after a la
5338  * ath_init.
5339  */
5340 static int
5341 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5342 {
5343 	struct ifnet *ifp = sc->sc_ifp;
5344 	struct ieee80211com *ic = ifp->if_l2com;
5345 	struct ath_hal *ah = sc->sc_ah;
5346 
5347 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5348 	    __func__, ieee80211_chan2ieee(ic, chan),
5349 	    chan->ic_freq, chan->ic_flags);
5350 	if (chan != sc->sc_curchan) {
5351 		HAL_STATUS status;
5352 		/*
5353 		 * To switch channels clear any pending DMA operations;
5354 		 * wait long enough for the RX fifo to drain, reset the
5355 		 * hardware at the new frequency, and then re-enable
5356 		 * the relevant bits of the h/w.
5357 		 */
5358 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5359 		ath_draintxq(sc);		/* clear pending tx frames */
5360 		ath_stoprecv(sc);		/* turn off frame recv */
5361 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5362 			if_printf(ifp, "%s: unable to reset "
5363 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5364 			    __func__, ieee80211_chan2ieee(ic, chan),
5365 			    chan->ic_freq, chan->ic_flags, status);
5366 			return EIO;
5367 		}
5368 		sc->sc_diversity = ath_hal_getdiversity(ah);
5369 
5370 		/*
5371 		 * Re-enable rx framework.
5372 		 */
5373 		if (ath_startrecv(sc) != 0) {
5374 			if_printf(ifp, "%s: unable to restart recv logic\n",
5375 			    __func__);
5376 			return EIO;
5377 		}
5378 
5379 		/*
5380 		 * Change channels and update the h/w rate map
5381 		 * if we're switching; e.g. 11a to 11b/g.
5382 		 */
5383 		ath_chan_change(sc, chan);
5384 
5385 		/*
5386 		 * Re-enable interrupts.
5387 		 */
5388 		ath_hal_intrset(ah, sc->sc_imask);
5389 	}
5390 	return 0;
5391 }
5392 
5393 /*
5394  * Periodically recalibrate the PHY to account
5395  * for temperature/environment changes.
5396  */
5397 static void
5398 ath_calibrate_callout(void *arg)
5399 {
5400 	struct ath_softc *sc = arg;
5401 	struct ath_hal *ah = sc->sc_ah;
5402 	struct ifnet *ifp = sc->sc_ifp;
5403 	struct ieee80211com *ic = ifp->if_l2com;
5404 	HAL_BOOL longCal, isCalDone;
5405 	int nextcal;
5406 
5407 	wlan_serialize_enter();
5408 
5409 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5410 		goto restart;
5411 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5412 	if (longCal) {
5413 		sc->sc_stats.ast_per_cal++;
5414 		sc->sc_lastlongcal = ticks;
5415 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5416 			/*
5417 			 * Rfgain is out of bounds, reset the chip
5418 			 * to load new gain values.
5419 			 */
5420 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5421 				"%s: rfgain change\n", __func__);
5422 			sc->sc_stats.ast_per_rfgain++;
5423 			ath_reset(ifp);
5424 		}
5425 		/*
5426 		 * If this long cal is after an idle period, then
5427 		 * reset the data collection state so we start fresh.
5428 		 */
5429 		if (sc->sc_resetcal) {
5430 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5431 			sc->sc_lastcalreset = ticks;
5432 			sc->sc_resetcal = 0;
5433 		}
5434 	}
5435 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5436 		if (longCal) {
5437 			/*
5438 			 * Calibrate noise floor data again in case of change.
5439 			 */
5440 			ath_hal_process_noisefloor(ah);
5441 		}
5442 	} else {
5443 		DPRINTF(sc, ATH_DEBUG_ANY,
5444 			"%s: calibration of channel %u failed\n",
5445 			__func__, sc->sc_curchan->ic_freq);
5446 		sc->sc_stats.ast_per_calfail++;
5447 	}
5448 	if (!isCalDone) {
5449 restart:
5450 		/*
5451 		 * Use a shorter interval to potentially collect multiple
5452 		 * data samples required to complete calibration.  Once
5453 		 * we're told the work is done we drop back to a longer
5454 		 * interval between requests.  We're more aggressive doing
5455 		 * work when operating as an AP to improve operation right
5456 		 * after startup.
5457 		 */
5458 		nextcal = (1000*ath_shortcalinterval)/hz;
5459 		if (sc->sc_opmode != HAL_M_HOSTAP)
5460 			nextcal *= 10;
5461 	} else {
5462 		nextcal = ath_longcalinterval*hz;
5463 		if (sc->sc_lastcalreset == 0)
5464 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5465 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5466 			sc->sc_resetcal = 1;	/* setup reset next trip */
5467 	}
5468 
5469 	if (nextcal != 0) {
5470 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5471 		    __func__, nextcal, isCalDone ? "" : "!");
5472 		callout_reset(&sc->sc_cal_ch, nextcal,
5473 			      ath_calibrate_callout, sc);
5474 	} else {
5475 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5476 		    __func__);
5477 		/* NB: don't rearm timer */
5478 	}
5479 	wlan_serialize_exit();
5480 }
5481 
5482 static void
5483 ath_scan_start(struct ieee80211com *ic)
5484 {
5485 	struct ifnet *ifp = ic->ic_ifp;
5486 	struct ath_softc *sc = ifp->if_softc;
5487 	struct ath_hal *ah = sc->sc_ah;
5488 	u_int32_t rfilt;
5489 
5490 	/* XXX calibration timer? */
5491 
5492 	sc->sc_scanning = 1;
5493 	sc->sc_syncbeacon = 0;
5494 	rfilt = ath_calcrxfilter(sc);
5495 	ath_hal_setrxfilter(ah, rfilt);
5496 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5497 
5498 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D aid 0\n",
5499 		 __func__, rfilt, ifp->if_broadcastaddr, ":");
5500 }
5501 
5502 static void
5503 ath_scan_end(struct ieee80211com *ic)
5504 {
5505 	struct ifnet *ifp = ic->ic_ifp;
5506 	struct ath_softc *sc = ifp->if_softc;
5507 	struct ath_hal *ah = sc->sc_ah;
5508 	u_int32_t rfilt;
5509 
5510 	sc->sc_scanning = 0;
5511 	rfilt = ath_calcrxfilter(sc);
5512 	ath_hal_setrxfilter(ah, rfilt);
5513 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5514 
5515 	ath_hal_process_noisefloor(ah);
5516 
5517 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D aid 0x%x\n",
5518 		 __func__, rfilt, sc->sc_curbssid, ":",
5519 		 sc->sc_curaid);
5520 }
5521 
5522 static void
5523 ath_set_channel(struct ieee80211com *ic)
5524 {
5525 	struct ifnet *ifp = ic->ic_ifp;
5526 	struct ath_softc *sc = ifp->if_softc;
5527 
5528 	(void) ath_chan_set(sc, ic->ic_curchan);
5529 	/*
5530 	 * If we are returning to our bss channel then mark state
5531 	 * so the next recv'd beacon's tsf will be used to sync the
5532 	 * beacon timers.  Note that since we only hear beacons in
5533 	 * sta/ibss mode this has no effect in other operating modes.
5534 	 */
5535 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5536 		sc->sc_syncbeacon = 1;
5537 }
5538 
5539 /*
5540  * Walk the vap list and check if there any vap's in RUN state.
5541  */
5542 static int
5543 ath_isanyrunningvaps(struct ieee80211vap *this)
5544 {
5545 	struct ieee80211com *ic = this->iv_ic;
5546 	struct ieee80211vap *vap;
5547 
5548 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5549 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5550 			return 1;
5551 	}
5552 	return 0;
5553 }
5554 
5555 static int
5556 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5557 {
5558 	struct ieee80211com *ic = vap->iv_ic;
5559 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5560 	struct ath_vap *avp = ATH_VAP(vap);
5561 	struct ath_hal *ah = sc->sc_ah;
5562 	struct ieee80211_node *ni = NULL;
5563 	int i, error, stamode;
5564 	u_int32_t rfilt;
5565 	static const HAL_LED_STATE leds[] = {
5566 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5567 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5568 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5569 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5570 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5571 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5572 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5573 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5574 	};
5575 
5576 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5577 		ieee80211_state_name[vap->iv_state],
5578 		ieee80211_state_name[nstate]);
5579 
5580 	callout_stop(&sc->sc_cal_ch);
5581 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5582 
5583 	if (nstate == IEEE80211_S_SCAN) {
5584 		/*
5585 		 * Scanning: turn off beacon miss and don't beacon.
5586 		 * Mark beacon state so when we reach RUN state we'll
5587 		 * [re]setup beacons.  Unblock the task q thread so
5588 		 * deferred interrupt processing is done.
5589 		 */
5590 		ath_hal_intrset(ah,
5591 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5592 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5593 		sc->sc_beacons = 0;
5594 		taskqueue_unblock(sc->sc_tq);
5595 	}
5596 
5597 	ni = vap->iv_bss;
5598 	rfilt = ath_calcrxfilter(sc);
5599 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5600 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5601 		   vap->iv_opmode == IEEE80211_M_IBSS);
5602 	if (stamode && nstate == IEEE80211_S_RUN) {
5603 		sc->sc_curaid = ni->ni_associd;
5604 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5605 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5606 	}
5607 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D aid 0x%x\n",
5608 	   __func__, rfilt, sc->sc_curbssid, ":", sc->sc_curaid);
5609 	ath_hal_setrxfilter(ah, rfilt);
5610 
5611 	/* XXX is this to restore keycache on resume? */
5612 	if (vap->iv_opmode != IEEE80211_M_STA &&
5613 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5614 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5615 			if (ath_hal_keyisvalid(ah, i))
5616 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5617 	}
5618 
5619 	/*
5620 	 * Invoke the parent method to do net80211 work.
5621 	 */
5622 	error = avp->av_newstate(vap, nstate, arg);
5623 	if (error != 0)
5624 		goto bad;
5625 
5626 	if (nstate == IEEE80211_S_RUN) {
5627 		/* NB: collect bss node again, it may have changed */
5628 		ni = vap->iv_bss;
5629 
5630 		DPRINTF(sc, ATH_DEBUG_STATE,
5631 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %6D "
5632 		    "capinfo 0x%04x chan %d\n", __func__,
5633 		    vap->iv_flags, ni->ni_intval, ni->ni_bssid, ":",
5634 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5635 
5636 		switch (vap->iv_opmode) {
5637 #ifdef IEEE80211_SUPPORT_TDMA
5638 		case IEEE80211_M_AHDEMO:
5639 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5640 				break;
5641 			/* fall thru... */
5642 #endif
5643 		case IEEE80211_M_HOSTAP:
5644 		case IEEE80211_M_IBSS:
5645 		case IEEE80211_M_MBSS:
5646 			/*
5647 			 * Allocate and setup the beacon frame.
5648 			 *
5649 			 * Stop any previous beacon DMA.  This may be
5650 			 * necessary, for example, when an ibss merge
5651 			 * causes reconfiguration; there will be a state
5652 			 * transition from RUN->RUN that means we may
5653 			 * be called with beacon transmission active.
5654 			 */
5655 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5656 
5657 			error = ath_beacon_alloc(sc, ni);
5658 			if (error != 0)
5659 				goto bad;
5660 			/*
5661 			 * If joining an adhoc network defer beacon timer
5662 			 * configuration to the next beacon frame so we
5663 			 * have a current TSF to use.  Otherwise we're
5664 			 * starting an ibss/bss so there's no need to delay;
5665 			 * if this is the first vap moving to RUN state, then
5666 			 * beacon state needs to be [re]configured.
5667 			 */
5668 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5669 			    ni->ni_tstamp.tsf != 0) {
5670 				sc->sc_syncbeacon = 1;
5671 			} else if (!sc->sc_beacons) {
5672 #ifdef IEEE80211_SUPPORT_TDMA
5673 				if (vap->iv_caps & IEEE80211_C_TDMA)
5674 					ath_tdma_config(sc, vap);
5675 				else
5676 #endif
5677 					ath_beacon_config(sc, vap);
5678 				sc->sc_beacons = 1;
5679 			}
5680 			break;
5681 		case IEEE80211_M_STA:
5682 			/*
5683 			 * Defer beacon timer configuration to the next
5684 			 * beacon frame so we have a current TSF to use
5685 			 * (any TSF collected when scanning is likely old).
5686 			 */
5687 			sc->sc_syncbeacon = 1;
5688 			break;
5689 		case IEEE80211_M_MONITOR:
5690 			/*
5691 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5692 			 * transitions so we must re-enable interrupts here to
5693 			 * handle the case of a single monitor mode vap.
5694 			 */
5695 			ath_hal_intrset(ah, sc->sc_imask);
5696 			break;
5697 		case IEEE80211_M_WDS:
5698 			break;
5699 		default:
5700 			break;
5701 		}
5702 		/*
5703 		 * Let the hal process statistics collected during a
5704 		 * scan so it can provide calibrated noise floor data.
5705 		 */
5706 		ath_hal_process_noisefloor(ah);
5707 		/*
5708 		 * Reset rssi stats; maybe not the best place...
5709 		 */
5710 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5711 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5712 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5713 		/*
5714 		 * Finally, start any timers and the task q thread
5715 		 * (in case we didn't go through SCAN state).
5716 		 */
5717 		if (ath_longcalinterval != 0) {
5718 			/* start periodic recalibration timer */
5719 			callout_reset(&sc->sc_cal_ch, 1,
5720 				      ath_calibrate_callout, sc);
5721 		} else {
5722 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5723 			    "%s: calibration disabled\n", __func__);
5724 		}
5725 		taskqueue_unblock(sc->sc_tq);
5726 	} else if (nstate == IEEE80211_S_INIT) {
5727 		/*
5728 		 * If there are no vaps left in RUN state then
5729 		 * shutdown host/driver operation:
5730 		 * o disable interrupts
5731 		 * o disable the task queue thread
5732 		 * o mark beacon processing as stopped
5733 		 */
5734 		if (!ath_isanyrunningvaps(vap)) {
5735 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5736 			/* disable interrupts  */
5737 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5738 			taskqueue_block(sc->sc_tq);
5739 			sc->sc_beacons = 0;
5740 		}
5741 #ifdef IEEE80211_SUPPORT_TDMA
5742 		ath_hal_setcca(ah, AH_TRUE);
5743 #endif
5744 	}
5745 bad:
5746 	return error;
5747 }
5748 
5749 /*
5750  * Allocate a key cache slot to the station so we can
5751  * setup a mapping from key index to node. The key cache
5752  * slot is needed for managing antenna state and for
5753  * compression when stations do not use crypto.  We do
5754  * it uniliaterally here; if crypto is employed this slot
5755  * will be reassigned.
5756  */
5757 static void
5758 ath_setup_stationkey(struct ieee80211_node *ni)
5759 {
5760 	struct ieee80211vap *vap = ni->ni_vap;
5761 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5762 	ieee80211_keyix keyix, rxkeyix;
5763 
5764 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5765 		/*
5766 		 * Key cache is full; we'll fall back to doing
5767 		 * the more expensive lookup in software.  Note
5768 		 * this also means no h/w compression.
5769 		 */
5770 		/* XXX msg+statistic */
5771 	} else {
5772 		/* XXX locking? */
5773 		ni->ni_ucastkey.wk_keyix = keyix;
5774 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5775 		/* NB: must mark device key to get called back on delete */
5776 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5777 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5778 		/* NB: this will create a pass-thru key entry */
5779 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5780 	}
5781 }
5782 
5783 /*
5784  * Setup driver-specific state for a newly associated node.
5785  * Note that we're called also on a re-associate, the isnew
5786  * param tells us if this is the first time or not.
5787  */
5788 static void
5789 ath_newassoc(struct ieee80211_node *ni, int isnew)
5790 {
5791 	struct ath_node *an = ATH_NODE(ni);
5792 	struct ieee80211vap *vap = ni->ni_vap;
5793 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5794 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5795 
5796 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5797 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5798 
5799 	ath_rate_newassoc(sc, an, isnew);
5800 	if (isnew &&
5801 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5802 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5803 		ath_setup_stationkey(ni);
5804 }
5805 
5806 static int
5807 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5808 	int nchans, struct ieee80211_channel chans[])
5809 {
5810 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5811 	struct ath_hal *ah = sc->sc_ah;
5812 	HAL_STATUS status;
5813 
5814 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5815 	    "%s: rd %u cc %u location %c%s\n",
5816 	    __func__, reg->regdomain, reg->country, reg->location,
5817 	    reg->ecm ? " ecm" : "");
5818 
5819 	status = ath_hal_set_channels(ah, chans, nchans,
5820 	    reg->country, reg->regdomain);
5821 	if (status != HAL_OK) {
5822 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5823 		    __func__, status);
5824 		return EINVAL;		/* XXX */
5825 	}
5826 	return 0;
5827 }
5828 
5829 static void
5830 ath_getradiocaps(struct ieee80211com *ic,
5831 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5832 {
5833 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5834 	struct ath_hal *ah = sc->sc_ah;
5835 
5836 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5837 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5838 
5839 	/* XXX check return */
5840 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5841 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5842 
5843 }
5844 
5845 static int
5846 ath_getchannels(struct ath_softc *sc)
5847 {
5848 	struct ifnet *ifp = sc->sc_ifp;
5849 	struct ieee80211com *ic = ifp->if_l2com;
5850 	struct ath_hal *ah = sc->sc_ah;
5851 	HAL_STATUS status;
5852 
5853 	/*
5854 	 * Collect channel set based on EEPROM contents.
5855 	 */
5856 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5857 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5858 	if (status != HAL_OK) {
5859 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5860 		    "status %d\n", __func__, status);
5861 		return EINVAL;
5862 	}
5863 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5864 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5865 	/* XXX map Atheros sku's to net80211 SKU's */
5866 	/* XXX net80211 types too small */
5867 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5868 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5869 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5870 	ic->ic_regdomain.isocc[1] = ' ';
5871 
5872 	ic->ic_regdomain.ecm = 1;
5873 	ic->ic_regdomain.location = 'I';
5874 
5875 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5876 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5877 	    __func__, sc->sc_eerd, sc->sc_eecc,
5878 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5879 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5880 	return 0;
5881 }
5882 
5883 static void
5884 ath_led_done_callout(void *arg)
5885 {
5886 	struct ath_softc *sc = arg;
5887 
5888 	wlan_serialize_enter();
5889 	sc->sc_blinking = 0;
5890 	wlan_serialize_exit();
5891 }
5892 
5893 /*
5894  * Turn the LED off: flip the pin and then set a timer so no
5895  * update will happen for the specified duration.
5896  */
5897 static void
5898 ath_led_off_callout(void *arg)
5899 {
5900 	struct ath_softc *sc = arg;
5901 
5902 	wlan_serialize_enter();
5903 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5904 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff,
5905 			ath_led_done_callout, sc);
5906 	wlan_serialize_exit();
5907 }
5908 
5909 /*
5910  * Blink the LED according to the specified on/off times.
5911  */
5912 static void
5913 ath_led_blink(struct ath_softc *sc, int on, int off)
5914 {
5915 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5916 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5917 	sc->sc_blinking = 1;
5918 	sc->sc_ledoff = off;
5919 	callout_reset(&sc->sc_ledtimer, on, ath_led_off_callout, sc);
5920 }
5921 
5922 static void
5923 ath_led_event(struct ath_softc *sc, int rix)
5924 {
5925 	sc->sc_ledevent = ticks;	/* time of last event */
5926 	if (sc->sc_blinking)		/* don't interrupt active blink */
5927 		return;
5928 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5929 }
5930 
5931 static int
5932 ath_rate_setup(struct ath_softc *sc, u_int mode)
5933 {
5934 	struct ath_hal *ah = sc->sc_ah;
5935 	const HAL_RATE_TABLE *rt;
5936 
5937 	switch (mode) {
5938 	case IEEE80211_MODE_11A:
5939 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5940 		break;
5941 	case IEEE80211_MODE_HALF:
5942 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5943 		break;
5944 	case IEEE80211_MODE_QUARTER:
5945 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5946 		break;
5947 	case IEEE80211_MODE_11B:
5948 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5949 		break;
5950 	case IEEE80211_MODE_11G:
5951 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5952 		break;
5953 	case IEEE80211_MODE_TURBO_A:
5954 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5955 		break;
5956 	case IEEE80211_MODE_TURBO_G:
5957 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5958 		break;
5959 	case IEEE80211_MODE_STURBO_A:
5960 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5961 		break;
5962 	case IEEE80211_MODE_11NA:
5963 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5964 		break;
5965 	case IEEE80211_MODE_11NG:
5966 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5967 		break;
5968 	default:
5969 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5970 			__func__, mode);
5971 		return 0;
5972 	}
5973 	sc->sc_rates[mode] = rt;
5974 	return (rt != NULL);
5975 }
5976 
5977 static void
5978 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5979 {
5980 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5981 	static const struct {
5982 		u_int		rate;		/* tx/rx 802.11 rate */
5983 		u_int16_t	timeOn;		/* LED on time (ms) */
5984 		u_int16_t	timeOff;	/* LED off time (ms) */
5985 	} blinkrates[] = {
5986 		{ 108,  40,  10 },
5987 		{  96,  44,  11 },
5988 		{  72,  50,  13 },
5989 		{  48,  57,  14 },
5990 		{  36,  67,  16 },
5991 		{  24,  80,  20 },
5992 		{  22, 100,  25 },
5993 		{  18, 133,  34 },
5994 		{  12, 160,  40 },
5995 		{  10, 200,  50 },
5996 		{   6, 240,  58 },
5997 		{   4, 267,  66 },
5998 		{   2, 400, 100 },
5999 		{   0, 500, 130 },
6000 		/* XXX half/quarter rates */
6001 	};
6002 	const HAL_RATE_TABLE *rt;
6003 	int i, j;
6004 
6005 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6006 	rt = sc->sc_rates[mode];
6007 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6008 	for (i = 0; i < rt->rateCount; i++) {
6009 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6010 		if (rt->info[i].phy != IEEE80211_T_HT)
6011 			sc->sc_rixmap[ieeerate] = i;
6012 		else
6013 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6014 	}
6015 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6016 	for (i = 0; i < NELEM(sc->sc_hwmap); i++) {
6017 		if (i >= rt->rateCount) {
6018 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6019 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6020 			continue;
6021 		}
6022 		sc->sc_hwmap[i].ieeerate =
6023 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6024 		if (rt->info[i].phy == IEEE80211_T_HT)
6025 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6026 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6027 		if (rt->info[i].shortPreamble ||
6028 		    rt->info[i].phy == IEEE80211_T_OFDM)
6029 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6030 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6031 		for (j = 0; j < NELEM(blinkrates)-1; j++)
6032 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6033 				break;
6034 		/* NB: this uses the last entry if the rate isn't found */
6035 		/* XXX beware of overlow */
6036 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6037 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6038 	}
6039 	sc->sc_currates = rt;
6040 	sc->sc_curmode = mode;
6041 	/*
6042 	 * All protection frames are transmited at 2Mb/s for
6043 	 * 11g, otherwise at 1Mb/s.
6044 	 */
6045 	if (mode == IEEE80211_MODE_11G)
6046 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6047 	else
6048 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6049 	/* NB: caller is responsible for reseting rate control state */
6050 }
6051 
6052 #ifdef ATH_DEBUG
6053 static void
6054 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6055 	u_int ix, int done)
6056 {
6057 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6058 	struct ath_hal *ah = sc->sc_ah;
6059 	const struct ath_desc *ds;
6060 	int i;
6061 
6062 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6063 		kprintf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6064 		       "      %08x %08x %08x %08x\n",
6065 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6066 		    ds->ds_link, ds->ds_data,
6067 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6068 		    ds->ds_ctl0, ds->ds_ctl1,
6069 		    ds->ds_hw[0], ds->ds_hw[1]);
6070 		if (ah->ah_magic == 0x20065416) {
6071 			kprintf("        %08x %08x %08x %08x %08x %08x %08x\n",
6072 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6073 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6074 			    ds->ds_hw[8]);
6075 		}
6076 	}
6077 }
6078 
6079 static void
6080 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6081 	u_int qnum, u_int ix, int done)
6082 {
6083 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6084 	struct ath_hal *ah = sc->sc_ah;
6085 	const struct ath_desc *ds;
6086 	int i;
6087 
6088 	kprintf("Q%u[%3u]", qnum, ix);
6089 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6090 		kprintf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6091 		       "        %08x %08x %08x %08x %08x %08x\n",
6092 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6093 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6094 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6095 		    ds->ds_ctl0, ds->ds_ctl1,
6096 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6097 		if (ah->ah_magic == 0x20065416) {
6098 			kprintf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6099 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6100 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6101 			    ds->ds_hw[10],ds->ds_hw[11]);
6102 			kprintf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6103 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6104 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6105 			    ds->ds_hw[18], ds->ds_hw[19]);
6106 		}
6107 	}
6108 }
6109 #endif /* ATH_DEBUG */
6110 
6111 static void
6112 ath_watchdog_callout(void *arg)
6113 {
6114 	struct ath_softc *sc = arg;
6115 
6116 	wlan_serialize_enter();
6117 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6118 		struct ifnet *ifp = sc->sc_ifp;
6119 		uint32_t hangs;
6120 
6121 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6122 		    hangs != 0) {
6123 			if_printf(ifp, "%s hang detected (0x%x)\n",
6124 			    hangs & 0xff ? "bb" : "mac", hangs);
6125 		} else
6126 			if_printf(ifp, "device timeout\n");
6127 		ath_reset(ifp);
6128 		ifp->if_oerrors++;
6129 		sc->sc_stats.ast_watchdog++;
6130 	}
6131 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog_callout, sc);
6132 	wlan_serialize_exit();
6133 }
6134 
6135 #ifdef ATH_DIAGAPI
6136 /*
6137  * Diagnostic interface to the HAL.  This is used by various
6138  * tools to do things like retrieve register contents for
6139  * debugging.  The mechanism is intentionally opaque so that
6140  * it can change frequently w/o concern for compatiblity.
6141  */
6142 static int
6143 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6144 {
6145 	struct ath_hal *ah = sc->sc_ah;
6146 	u_int id = ad->ad_id & ATH_DIAG_ID;
6147 	void *indata = NULL;
6148 	void *outdata = NULL;
6149 	u_int32_t insize = ad->ad_in_size;
6150 	u_int32_t outsize = ad->ad_out_size;
6151 	int error = 0;
6152 
6153 	if (ad->ad_id & ATH_DIAG_IN) {
6154 		/*
6155 		 * Copy in data.
6156 		 */
6157 		indata = kmalloc(insize, M_TEMP, M_INTWAIT);
6158 		if (indata == NULL) {
6159 			error = ENOMEM;
6160 			goto bad;
6161 		}
6162 		error = copyin(ad->ad_in_data, indata, insize);
6163 		if (error)
6164 			goto bad;
6165 	}
6166 	if (ad->ad_id & ATH_DIAG_DYN) {
6167 		/*
6168 		 * Allocate a buffer for the results (otherwise the HAL
6169 		 * returns a pointer to a buffer where we can read the
6170 		 * results).  Note that we depend on the HAL leaving this
6171 		 * pointer for us to use below in reclaiming the buffer;
6172 		 * may want to be more defensive.
6173 		 */
6174 		outdata = kmalloc(outsize, M_TEMP, M_INTWAIT);
6175 		if (outdata == NULL) {
6176 			error = ENOMEM;
6177 			goto bad;
6178 		}
6179 	}
6180 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6181 		if (outsize < ad->ad_out_size)
6182 			ad->ad_out_size = outsize;
6183 		if (outdata != NULL)
6184 			error = copyout(outdata, ad->ad_out_data,
6185 					ad->ad_out_size);
6186 	} else {
6187 		error = EINVAL;
6188 	}
6189 bad:
6190 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6191 		kfree(indata, M_TEMP);
6192 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6193 		kfree(outdata, M_TEMP);
6194 	return error;
6195 }
6196 #endif /* ATH_DIAGAPI */
6197 
6198 static int
6199 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
6200 {
6201 #define	IS_RUNNING(ifp) \
6202 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
6203 	struct ath_softc *sc = ifp->if_softc;
6204 	struct ieee80211com *ic = ifp->if_l2com;
6205 	struct ifreq *ifr = (struct ifreq *)data;
6206 	const HAL_RATE_TABLE *rt;
6207 	int error = 0;
6208 
6209 	switch (cmd) {
6210 	case SIOCSIFFLAGS:
6211 		if (IS_RUNNING(ifp)) {
6212 			/*
6213 			 * To avoid rescanning another access point,
6214 			 * do not call ath_init() here.  Instead,
6215 			 * only reflect promisc mode settings.
6216 			 */
6217 			ath_mode_init(sc);
6218 		} else if (ifp->if_flags & IFF_UP) {
6219 			/*
6220 			 * Beware of being called during attach/detach
6221 			 * to reset promiscuous mode.  In that case we
6222 			 * will still be marked UP but not RUNNING.
6223 			 * However trying to re-init the interface
6224 			 * is the wrong thing to do as we've already
6225 			 * torn down much of our state.  There's
6226 			 * probably a better way to deal with this.
6227 			 */
6228 			if (!sc->sc_invalid)
6229 				ath_init(sc);	/* XXX lose error */
6230 		} else {
6231 			ath_stop_locked(ifp);
6232 #ifdef notyet
6233 			/* XXX must wakeup in places like ath_vap_delete */
6234 			if (!sc->sc_invalid)
6235 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6236 #endif
6237 		}
6238 		break;
6239 	case SIOCGIFMEDIA:
6240 	case SIOCSIFMEDIA:
6241 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6242 		break;
6243 	case SIOCGATHSTATS:
6244 		/* NB: embed these numbers to get a consistent view */
6245 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6246 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6247 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6248 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6249 #ifdef IEEE80211_SUPPORT_TDMA
6250 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6251 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6252 #endif
6253 		rt = sc->sc_currates;
6254 		/* XXX HT rates */
6255 		sc->sc_stats.ast_tx_rate =
6256 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6257 		return copyout(&sc->sc_stats,
6258 		    ifr->ifr_data, sizeof (sc->sc_stats));
6259 	case SIOCZATHSTATS:
6260 		error = priv_check(curthread, PRIV_DRIVER);
6261 		if (error == 0)
6262 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6263 		break;
6264 #ifdef ATH_DIAGAPI
6265 	case SIOCGATHDIAG:
6266 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6267 		break;
6268 #endif
6269 	case SIOCGIFADDR:
6270 		error = ether_ioctl(ifp, cmd, data);
6271 		break;
6272 	default:
6273 		error = EINVAL;
6274 		break;
6275 	}
6276 	return error;
6277 #undef IS_RUNNING
6278 }
6279 
6280 static int
6281 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6282 {
6283 	struct ath_softc *sc = arg1;
6284 	u_int slottime;
6285 	int error;
6286 
6287 	wlan_serialize_enter();
6288 	slottime = ath_hal_getslottime(sc->sc_ah);
6289 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6290 	if (error == 0 && req->newptr) {
6291 		if (!ath_hal_setslottime(sc->sc_ah, slottime))
6292 			error = EINVAL;
6293 	}
6294 	wlan_serialize_exit();
6295 	return error;
6296 }
6297 
6298 static int
6299 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6300 {
6301 	struct ath_softc *sc = arg1;
6302 	u_int acktimeout;
6303 	int error;
6304 
6305 	wlan_serialize_enter();
6306 	acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6307 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6308 	if (error == 0 && req->newptr) {
6309 		if (!ath_hal_setacktimeout(sc->sc_ah, acktimeout))
6310 			error = EINVAL;
6311 	}
6312 	wlan_serialize_exit();
6313 	return error;
6314 }
6315 
6316 static int
6317 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6318 {
6319 	struct ath_softc *sc = arg1;
6320 	u_int ctstimeout;
6321 	int error;
6322 
6323 	wlan_serialize_enter();
6324 	ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6325 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6326 	if (error == 0 && req->newptr) {
6327 		if (!ath_hal_setctstimeout(sc->sc_ah, ctstimeout))
6328 			error = EINVAL;
6329 	}
6330 	wlan_serialize_exit();
6331 	return error;
6332 }
6333 
6334 static int
6335 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6336 {
6337 	struct ath_softc *sc = arg1;
6338 	int softled = sc->sc_softled;
6339 	int error;
6340 
6341 	error = sysctl_handle_int(oidp, &softled, 0, req);
6342 	if (error || !req->newptr)
6343 		return error;
6344 	wlan_serialize_enter();
6345 	softled = (softled != 0);
6346 	if (softled != sc->sc_softled) {
6347 		if (softled) {
6348 			/* NB: handle any sc_ledpin change */
6349 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6350 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6351 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6352 				!sc->sc_ledon);
6353 		}
6354 		sc->sc_softled = softled;
6355 	}
6356 	wlan_serialize_exit();
6357 	return 0;
6358 }
6359 
6360 static int
6361 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6362 {
6363 	struct ath_softc *sc = arg1;
6364 	int ledpin = sc->sc_ledpin;
6365 	int error;
6366 
6367 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6368 	if (error || !req->newptr)
6369 		return error;
6370 	wlan_serialize_enter();
6371 	if (ledpin != sc->sc_ledpin) {
6372 		sc->sc_ledpin = ledpin;
6373 		if (sc->sc_softled) {
6374 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6375 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6376 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6377 				!sc->sc_ledon);
6378 		}
6379 	}
6380 	wlan_serialize_exit();
6381 	return 0;
6382 }
6383 
6384 static int
6385 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6386 {
6387 	struct ath_softc *sc = arg1;
6388 	u_int txantenna;
6389 	int error;
6390 
6391 	wlan_serialize_enter();
6392 	txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6393 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6394 
6395 	if (!error && req->newptr) {
6396 		/* XXX assumes 2 antenna ports */
6397 		if (txantenna < HAL_ANT_VARIABLE ||
6398 		    txantenna > HAL_ANT_FIXED_B) {
6399 			error = EINVAL;
6400 		} else {
6401 			ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6402 			/*
6403 			 * NB: with the switch locked this isn't meaningful,
6404 			 *     but set it anyway so things like radiotap get
6405 			 *     consistent info in their data.
6406 			 */
6407 			sc->sc_txantenna = txantenna;
6408 		}
6409 	}
6410 	wlan_serialize_exit();
6411 	return error;
6412 }
6413 
6414 static int
6415 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6416 {
6417 	struct ath_softc *sc = arg1;
6418 	u_int defantenna;
6419 	int error;
6420 
6421 	wlan_serialize_enter();
6422 	defantenna = ath_hal_getdefantenna(sc->sc_ah);
6423 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6424 	if (error == 0 && req->newptr)
6425 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6426 	wlan_serialize_exit();
6427 	return error;
6428 }
6429 
6430 static int
6431 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6432 {
6433 	struct ath_softc *sc = arg1;
6434 	u_int diversity;
6435 	int error;
6436 
6437 	wlan_serialize_enter();
6438 	diversity = ath_hal_getdiversity(sc->sc_ah);
6439 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6440 	if (error == 0 && req->newptr) {
6441 		if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6442 			error = EINVAL;
6443 		else
6444 			sc->sc_diversity = diversity;
6445 	}
6446 	wlan_serialize_exit();
6447 	return error;
6448 }
6449 
6450 static int
6451 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6452 {
6453 	struct ath_softc *sc = arg1;
6454 	u_int32_t diag;
6455 	int error;
6456 
6457 	wlan_serialize_enter();
6458 	if (!ath_hal_getdiag(sc->sc_ah, &diag)) {
6459 		error = EINVAL;
6460 	} else {
6461 		error = sysctl_handle_int(oidp, &diag, 0, req);
6462 		if (error == 0 && req->newptr) {
6463 			if (!ath_hal_setdiag(sc->sc_ah, diag))
6464 				error = EINVAL;
6465 		}
6466 	}
6467 	wlan_serialize_exit();
6468 	return error;
6469 }
6470 
6471 static int
6472 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6473 {
6474 	struct ath_softc *sc = arg1;
6475 	struct ifnet *ifp = sc->sc_ifp;
6476 	u_int32_t scale;
6477 	int error;
6478 
6479 	wlan_serialize_enter();
6480 	(void)ath_hal_gettpscale(sc->sc_ah, &scale);
6481 	error = sysctl_handle_int(oidp, &scale, 0, req);
6482 	if (error == 0 && req->newptr) {
6483 		if (!ath_hal_settpscale(sc->sc_ah, scale))
6484 			error = EINVAL;
6485 		else if (ifp->if_flags & IFF_RUNNING)
6486 			error = ath_reset(ifp);
6487 	}
6488 	wlan_serialize_exit();
6489 	return error;
6490 }
6491 
6492 static int
6493 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6494 {
6495 	struct ath_softc *sc = arg1;
6496 	u_int tpc;
6497 	int error;
6498 
6499 	wlan_serialize_enter();
6500 	tpc = ath_hal_gettpc(sc->sc_ah);
6501 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6502 	if (error == 0 && req->newptr) {
6503 		if (!ath_hal_settpc(sc->sc_ah, tpc))
6504 			error = EINVAL;
6505 	}
6506 	wlan_serialize_exit();
6507 	return error;
6508 }
6509 
6510 static int
6511 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6512 {
6513 	struct ath_softc *sc = arg1;
6514 	struct ifnet *ifp;
6515 	struct ath_hal *ah;
6516 	u_int rfkill;
6517 	int error;
6518 
6519 	wlan_serialize_enter();
6520 	ifp = sc->sc_ifp;
6521 	ah = sc->sc_ah;
6522 	rfkill = ath_hal_getrfkill(ah);
6523 
6524 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6525 	if (error == 0 && req->newptr) {
6526 		if (rfkill != ath_hal_getrfkill(ah)) {
6527 			if (!ath_hal_setrfkill(ah, rfkill))
6528 				error = EINVAL;
6529 			else if (ifp->if_flags & IFF_RUNNING)
6530 				error = ath_reset(ifp);
6531 		}
6532 	}
6533 	wlan_serialize_exit();
6534 	return error;
6535 }
6536 
6537 static int
6538 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6539 {
6540 	struct ath_softc *sc = arg1;
6541 	u_int rfsilent;
6542 	int error;
6543 
6544 	wlan_serialize_enter();
6545 	(void)ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6546 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6547 	if (error == 0 && req->newptr) {
6548 		if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) {
6549 			error = EINVAL;
6550 		} else {
6551 			sc->sc_rfsilentpin = rfsilent & 0x1c;
6552 			sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6553 		}
6554 	}
6555 	wlan_serialize_exit();
6556 	return error;
6557 }
6558 
6559 static int
6560 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6561 {
6562 	struct ath_softc *sc = arg1;
6563 	u_int32_t tpack;
6564 	int error;
6565 
6566 	wlan_serialize_enter();
6567 	(void)ath_hal_gettpack(sc->sc_ah, &tpack);
6568 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6569 	if (error == 0 && req->newptr) {
6570 		if (!ath_hal_settpack(sc->sc_ah, tpack))
6571 			error = EINVAL;
6572 	}
6573 	wlan_serialize_exit();
6574 	return error;
6575 }
6576 
6577 static int
6578 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6579 {
6580 	struct ath_softc *sc = arg1;
6581 	u_int32_t tpcts;
6582 	int error;
6583 
6584 	wlan_serialize_enter();
6585 	(void)ath_hal_gettpcts(sc->sc_ah, &tpcts);
6586 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6587 	if (error == 0 && req->newptr) {
6588 		if (!ath_hal_settpcts(sc->sc_ah, tpcts))
6589 			error = EINVAL;
6590 	}
6591 	wlan_serialize_exit();
6592 	return error;
6593 }
6594 
6595 static int
6596 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6597 {
6598 	struct ath_softc *sc = arg1;
6599 	int intmit, error;
6600 
6601 	wlan_serialize_enter();
6602 	intmit = ath_hal_getintmit(sc->sc_ah);
6603 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6604 	if (error == 0 && req->newptr) {
6605 		if (!ath_hal_setintmit(sc->sc_ah, intmit))
6606 			error = EINVAL;
6607 	}
6608 	wlan_serialize_exit();
6609 	return error;
6610 }
6611 
6612 #ifdef IEEE80211_SUPPORT_TDMA
6613 static int
6614 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6615 {
6616 	struct ath_softc *sc = arg1;
6617 	int setcca, error;
6618 
6619 	wlan_serialize_enter();
6620 	setcca = sc->sc_setcca;
6621 	error = sysctl_handle_int(oidp, &setcca, 0, req);
6622 	if (error == 0 && req->newptr)
6623 		sc->sc_setcca = (setcca != 0);
6624 	wlan_serialize_exit();
6625 	return error;
6626 }
6627 #endif /* IEEE80211_SUPPORT_TDMA */
6628 
6629 static void
6630 ath_sysctlattach(struct ath_softc *sc)
6631 {
6632 	struct sysctl_ctx_list *ctx;
6633 	struct sysctl_oid *tree;
6634 	struct ath_hal *ah = sc->sc_ah;
6635 
6636 	ctx = &sc->sc_sysctl_ctx;
6637 	tree = sc->sc_sysctl_tree;
6638         if (tree == NULL) {
6639 		device_printf(sc->sc_dev, "can't add sysctl node\n");
6640 		return;
6641 	}
6642 
6643 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6644 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6645 		"EEPROM country code");
6646 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6647 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6648 		"EEPROM regdomain code");
6649 #ifdef	ATH_DEBUG
6650 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6651 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6652 		"control debugging printfs");
6653 #endif
6654 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6655 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6656 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6657 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6658 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6659 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6660 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6661 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6662 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6663 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6664 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6665 		ath_sysctl_softled, "I", "enable/disable software LED support");
6666 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6667 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6668 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6669 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6670 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6671 		"setting to turn LED on");
6672 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6673 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6674 		"idle time for inactivity LED (ticks)");
6675 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6676 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6677 		ath_sysctl_txantenna, "I", "antenna switch");
6678 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6679 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6680 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6681 	if (ath_hal_hasdiversity(ah))
6682 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6683 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6684 			ath_sysctl_diversity, "I", "antenna diversity");
6685 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6686 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6687 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6688 		"tx descriptor batching");
6689 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6690 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6691 		ath_sysctl_diag, "I", "h/w diagnostic control");
6692 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6693 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6694 		ath_sysctl_tpscale, "I", "tx power scaling");
6695 	if (ath_hal_hastpc(ah)) {
6696 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6697 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6698 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6699 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6700 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6701 			ath_sysctl_tpack, "I", "tx power for ack frames");
6702 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6703 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6704 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6705 	}
6706 	if (ath_hal_hasrfsilent(ah)) {
6707 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6708 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6709 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6710 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6711 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6712 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6713 	}
6714 	if (ath_hal_hasintmit(ah)) {
6715 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6716 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6717 			ath_sysctl_intmit, "I", "interference mitigation");
6718 	}
6719 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6720 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6721 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6722 		"mask of error frames to pass when monitoring");
6723 #ifdef IEEE80211_SUPPORT_TDMA
6724 	if (ath_hal_macversion(ah) > 0x78) {
6725 		sc->sc_tdmadbaprep = 2;
6726 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6727 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6728 			"TDMA DBA preparation time");
6729 		sc->sc_tdmaswbaprep = 10;
6730 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6731 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6732 			"TDMA SWBA preparation time");
6733 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6734 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6735 			"TDMA slot guard time");
6736 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6737 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6738 			"TDMA calculated super frame");
6739 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6740 			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6741 			ath_sysctl_setcca, "I", "enable CCA control");
6742 	}
6743 #endif
6744 }
6745 
6746 static int
6747 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6748 	struct ath_buf *bf, struct mbuf *m0,
6749 	const struct ieee80211_bpf_params *params)
6750 {
6751 	struct ifnet *ifp = sc->sc_ifp;
6752 	struct ieee80211com *ic = ifp->if_l2com;
6753 	struct ath_hal *ah = sc->sc_ah;
6754 	struct ieee80211vap *vap = ni->ni_vap;
6755 	int error, ismcast, ismrr;
6756 	int keyix, hdrlen, pktlen, try0, txantenna;
6757 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6758 	struct ieee80211_frame *wh;
6759 	u_int flags, ctsduration;
6760 	HAL_PKT_TYPE atype;
6761 	const HAL_RATE_TABLE *rt;
6762 	struct ath_desc *ds;
6763 	u_int pri;
6764 
6765 	wh = mtod(m0, struct ieee80211_frame *);
6766 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6767 	hdrlen = ieee80211_anyhdrsize(wh);
6768 	/*
6769 	 * Packet length must not include any
6770 	 * pad bytes; deduct them here.
6771 	 */
6772 	/* XXX honor IEEE80211_BPF_DATAPAD */
6773 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6774 
6775 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
6776 		const struct ieee80211_cipher *cip;
6777 		struct ieee80211_key *k;
6778 
6779 		/*
6780 		 * Construct the 802.11 header+trailer for an encrypted
6781 		 * frame. The only reason this can fail is because of an
6782 		 * unknown or unsupported cipher/key type.
6783 		 */
6784 		k = ieee80211_crypto_encap(ni, m0);
6785 		if (k == NULL) {
6786 			/*
6787 			 * This can happen when the key is yanked after the
6788 			 * frame was queued.  Just discard the frame; the
6789 			 * 802.11 layer counts failures and provides
6790 			 * debugging/diagnostics.
6791 			 */
6792 			ath_freetx(m0);
6793 			return EIO;
6794 		}
6795 		/*
6796 		 * Adjust the packet + header lengths for the crypto
6797 		 * additions and calculate the h/w key index.  When
6798 		 * a s/w mic is done the frame will have had any mic
6799 		 * added to it prior to entry so m0->m_pkthdr.len will
6800 		 * account for it. Otherwise we need to add it to the
6801 		 * packet length.
6802 		 */
6803 		cip = k->wk_cipher;
6804 		hdrlen += cip->ic_header;
6805 		pktlen += cip->ic_header + cip->ic_trailer;
6806 		/* NB: frags always have any TKIP MIC done in s/w */
6807 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
6808 			pktlen += cip->ic_miclen;
6809 		keyix = k->wk_keyix;
6810 
6811 		/* packet header may have moved, reset our local pointer */
6812 		wh = mtod(m0, struct ieee80211_frame *);
6813 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
6814 		/*
6815 		 * Use station key cache slot, if assigned.
6816 		 */
6817 		keyix = ni->ni_ucastkey.wk_keyix;
6818 		if (keyix == IEEE80211_KEYIX_NONE)
6819 			keyix = HAL_TXKEYIX_INVALID;
6820 	} else
6821 		keyix = HAL_TXKEYIX_INVALID;
6822 
6823 	error = ath_tx_dmasetup(sc, bf, m0);
6824 	if (error != 0)
6825 		return error;
6826 	m0 = bf->bf_m;				/* NB: may have changed */
6827 	wh = mtod(m0, struct ieee80211_frame *);
6828 	bf->bf_node = ni;			/* NB: held reference */
6829 
6830 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6831 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6832 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6833 		flags |= HAL_TXDESC_RTSENA;
6834 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6835 		flags |= HAL_TXDESC_CTSENA;
6836 	/* XXX leave ismcast to injector? */
6837 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6838 		flags |= HAL_TXDESC_NOACK;
6839 
6840 	rt = sc->sc_currates;
6841 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6842 	rix = ath_tx_findrix(sc, params->ibp_rate0);
6843 	txrate = rt->info[rix].rateCode;
6844 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6845 		txrate |= rt->info[rix].shortPreamble;
6846 	sc->sc_txrix = rix;
6847 	try0 = params->ibp_try0;
6848 	ismrr = (params->ibp_try1 != 0);
6849 	txantenna = params->ibp_pri >> 2;
6850 	if (txantenna == 0)			/* XXX? */
6851 		txantenna = sc->sc_txantenna;
6852 	ctsduration = 0;
6853 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6854 		cix = ath_tx_findrix(sc, params->ibp_ctsrate);
6855 		ctsrate = rt->info[cix].rateCode;
6856 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6857 			ctsrate |= rt->info[cix].shortPreamble;
6858 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6859 				ctsduration += rt->info[cix].spAckDuration;
6860 			ctsduration += ath_hal_computetxtime(ah,
6861 				rt, pktlen, rix, AH_TRUE);
6862 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6863 				ctsduration += rt->info[rix].spAckDuration;
6864 		} else {
6865 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6866 				ctsduration += rt->info[cix].lpAckDuration;
6867 			ctsduration += ath_hal_computetxtime(ah,
6868 				rt, pktlen, rix, AH_FALSE);
6869 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6870 				ctsduration += rt->info[rix].lpAckDuration;
6871 		}
6872 		ismrr = 0;			/* XXX */
6873 	} else
6874 		ctsrate = 0;
6875 	pri = params->ibp_pri & 3;
6876 	/*
6877 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6878 	 * set the sequence number, duration, etc.
6879 	 */
6880 	atype = HAL_PKT_TYPE_PSPOLL;
6881 
6882 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6883 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6884 		    sc->sc_hwmap[rix].ieeerate, -1);
6885 
6886 	if (ieee80211_radiotap_active_vap(vap)) {
6887 		u_int64_t tsf = ath_hal_gettsf64(ah);
6888 
6889 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6890 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6891 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6892 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6893 		if (m0->m_flags & M_FRAG)
6894 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
6895 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6896 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6897 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6898 
6899 		ieee80211_radiotap_tx(vap, m0);
6900 	}
6901 
6902 	/*
6903 	 * Formulate first tx descriptor with tx controls.
6904 	 */
6905 	ds = bf->bf_desc;
6906 	/* XXX check return value? */
6907 	ath_hal_setuptxdesc(ah, ds
6908 		, pktlen		/* packet length */
6909 		, hdrlen		/* header length */
6910 		, atype			/* Atheros packet type */
6911 		, params->ibp_power	/* txpower */
6912 		, txrate, try0		/* series 0 rate/tries */
6913 		, keyix			/* key cache index */
6914 		, txantenna		/* antenna mode */
6915 		, flags			/* flags */
6916 		, ctsrate		/* rts/cts rate */
6917 		, ctsduration		/* rts/cts duration */
6918 	);
6919 	bf->bf_txflags = flags;
6920 
6921 	if (ismrr) {
6922 		rix = ath_tx_findrix(sc, params->ibp_rate1);
6923 		rate1 = rt->info[rix].rateCode;
6924 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6925 			rate1 |= rt->info[rix].shortPreamble;
6926 		if (params->ibp_try2) {
6927 			rix = ath_tx_findrix(sc, params->ibp_rate2);
6928 			rate2 = rt->info[rix].rateCode;
6929 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6930 				rate2 |= rt->info[rix].shortPreamble;
6931 		} else
6932 			rate2 = 0;
6933 		if (params->ibp_try3) {
6934 			rix = ath_tx_findrix(sc, params->ibp_rate3);
6935 			rate3 = rt->info[rix].rateCode;
6936 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6937 				rate3 |= rt->info[rix].shortPreamble;
6938 		} else
6939 			rate3 = 0;
6940 		ath_hal_setupxtxdesc(ah, ds
6941 			, rate1, params->ibp_try1	/* series 1 */
6942 			, rate2, params->ibp_try2	/* series 2 */
6943 			, rate3, params->ibp_try3	/* series 3 */
6944 		);
6945 	}
6946 
6947 	/* NB: no buffered multicast in power save support */
6948 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6949 	return 0;
6950 }
6951 
6952 static int
6953 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6954 	const struct ieee80211_bpf_params *params)
6955 {
6956 	struct ieee80211com *ic = ni->ni_ic;
6957 	struct ifnet *ifp = ic->ic_ifp;
6958 	struct ath_softc *sc = ifp->if_softc;
6959 	struct ath_buf *bf;
6960 	int error;
6961 
6962 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
6963 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
6964 		    (ifp->if_flags & IFF_RUNNING) == 0 ?
6965 			"!running" : "invalid");
6966 		m_freem(m);
6967 		error = ENETDOWN;
6968 		goto bad;
6969 	}
6970 	/*
6971 	 * Grab a TX buffer and associated resources.
6972 	 */
6973 	bf = ath_getbuf(sc);
6974 	if (bf == NULL) {
6975 		sc->sc_stats.ast_tx_nobuf++;
6976 		m_freem(m);
6977 		error = ENOBUFS;
6978 		goto bad;
6979 	}
6980 
6981 	if (params == NULL) {
6982 		/*
6983 		 * Legacy path; interpret frame contents to decide
6984 		 * precisely how to send the frame.
6985 		 */
6986 		if (ath_tx_start(sc, ni, bf, m)) {
6987 			error = EIO;		/* XXX */
6988 			goto bad2;
6989 		}
6990 	} else {
6991 		/*
6992 		 * Caller supplied explicit parameters to use in
6993 		 * sending the frame.
6994 		 */
6995 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
6996 			error = EIO;		/* XXX */
6997 			goto bad2;
6998 		}
6999 	}
7000 	sc->sc_wd_timer = 5;
7001 	ifp->if_opackets++;
7002 	sc->sc_stats.ast_tx_raw++;
7003 
7004 	return 0;
7005 bad2:
7006 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
7007 bad:
7008 	ifp->if_oerrors++;
7009 	sc->sc_stats.ast_tx_raw_fail++;
7010 	ieee80211_free_node(ni);
7011 	return error;
7012 }
7013 
7014 /*
7015  * Announce various information on device/driver attach.
7016  */
7017 static void
7018 ath_announce(struct ath_softc *sc)
7019 {
7020 	struct ifnet *ifp = sc->sc_ifp;
7021 	struct ath_hal *ah = sc->sc_ah;
7022 
7023 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
7024 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
7025 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7026 	if (bootverbose) {
7027 		int i;
7028 		for (i = 0; i <= WME_AC_VO; i++) {
7029 			struct ath_txq *txq = sc->sc_ac2q[i];
7030 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7031 				txq->axq_qnum, ieee80211_wme_acnames[i]);
7032 		}
7033 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7034 			sc->sc_cabq->axq_qnum);
7035 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7036 	}
7037 	if (ath_rxbuf != ATH_RXBUF)
7038 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7039 	if (ath_txbuf != ATH_TXBUF)
7040 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7041 	if (sc->sc_mcastkey && bootverbose)
7042 		if_printf(ifp, "using multicast key search\n");
7043 }
7044 
7045 #ifdef IEEE80211_SUPPORT_TDMA
7046 static __inline uint32_t
7047 ath_hal_getnexttbtt(struct ath_hal *ah)
7048 {
7049 #define	AR_TIMER0	0x8028
7050 	return OS_REG_READ(ah, AR_TIMER0);
7051 }
7052 
7053 static __inline void
7054 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
7055 {
7056 	/* XXX handle wrap/overflow */
7057 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
7058 }
7059 
7060 static void
7061 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
7062 {
7063 	struct ath_hal *ah = sc->sc_ah;
7064 	HAL_BEACON_TIMERS bt;
7065 
7066 	bt.bt_intval = bintval | HAL_BEACON_ENA;
7067 	bt.bt_nexttbtt = nexttbtt;
7068 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
7069 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
7070 	bt.bt_nextatim = nexttbtt+1;
7071 	ath_hal_beaconsettimers(ah, &bt);
7072 }
7073 
7074 /*
7075  * Calculate the beacon interval.  This is periodic in the
7076  * superframe for the bss.  We assume each station is configured
7077  * identically wrt transmit rate so the guard time we calculate
7078  * above will be the same on all stations.  Note we need to
7079  * factor in the xmit time because the hardware will schedule
7080  * a frame for transmit if the start of the frame is within
7081  * the burst time.  When we get hardware that properly kills
7082  * frames in the PCU we can reduce/eliminate the guard time.
7083  *
7084  * Roundup to 1024 is so we have 1 TU buffer in the guard time
7085  * to deal with the granularity of the nexttbtt timer.  11n MAC's
7086  * with 1us timer granularity should allow us to reduce/eliminate
7087  * this.
7088  */
7089 static void
7090 ath_tdma_bintvalsetup(struct ath_softc *sc,
7091 	const struct ieee80211_tdma_state *tdma)
7092 {
7093 	/* copy from vap state (XXX check all vaps have same value?) */
7094 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7095 
7096 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7097 		tdma->tdma_slotcnt, 1024);
7098 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7099 	if (sc->sc_tdmabintval & 1)
7100 		sc->sc_tdmabintval++;
7101 
7102 	if (tdma->tdma_slot == 0) {
7103 		/*
7104 		 * Only slot 0 beacons; other slots respond.
7105 		 */
7106 		sc->sc_imask |= HAL_INT_SWBA;
7107 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7108 	} else {
7109 		/* XXX all vaps must be slot 0 or slot !0 */
7110 		sc->sc_imask &= ~HAL_INT_SWBA;
7111 	}
7112 }
7113 
7114 /*
7115  * Max 802.11 overhead.  This assumes no 4-address frames and
7116  * the encapsulation done by ieee80211_encap (llc).  We also
7117  * include potential crypto overhead.
7118  */
7119 #define	IEEE80211_MAXOVERHEAD \
7120 	(sizeof(struct ieee80211_qosframe) \
7121 	 + sizeof(struct llc) \
7122 	 + IEEE80211_ADDR_LEN \
7123 	 + IEEE80211_WEP_IVLEN \
7124 	 + IEEE80211_WEP_KIDLEN \
7125 	 + IEEE80211_WEP_CRCLEN \
7126 	 + IEEE80211_WEP_MICLEN \
7127 	 + IEEE80211_CRC_LEN)
7128 
7129 /*
7130  * Setup initially for tdma operation.  Start the beacon
7131  * timers and enable SWBA if we are slot 0.  Otherwise
7132  * we wait for slot 0 to arrive so we can sync up before
7133  * starting to transmit.
7134  */
7135 static void
7136 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7137 {
7138 	struct ath_hal *ah = sc->sc_ah;
7139 	struct ifnet *ifp = sc->sc_ifp;
7140 	struct ieee80211com *ic = ifp->if_l2com;
7141 	const struct ieee80211_txparam *tp;
7142 	const struct ieee80211_tdma_state *tdma = NULL;
7143 	int rix;
7144 
7145 	if (vap == NULL) {
7146 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7147 		if (vap == NULL) {
7148 			if_printf(ifp, "%s: no vaps?\n", __func__);
7149 			return;
7150 		}
7151 	}
7152 	tp = vap->iv_bss->ni_txparms;
7153 	/*
7154 	 * Calculate the guard time for each slot.  This is the
7155 	 * time to send a maximal-size frame according to the
7156 	 * fixed/lowest transmit rate.  Note that the interface
7157 	 * mtu does not include the 802.11 overhead so we must
7158 	 * tack that on (ath_hal_computetxtime includes the
7159 	 * preamble and plcp in it's calculation).
7160 	 */
7161 	tdma = vap->iv_tdma;
7162 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7163 		rix = ath_tx_findrix(sc, tp->ucastrate);
7164 	else
7165 		rix = ath_tx_findrix(sc, tp->mcastrate);
7166 	/* XXX short preamble assumed */
7167 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7168 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7169 
7170 	ath_hal_intrset(ah, 0);
7171 
7172 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7173 	if (sc->sc_setcca)
7174 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7175 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7176 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7177 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7178 	sc->sc_syncbeacon = 0;
7179 
7180 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7181 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7182 
7183 	ath_hal_intrset(ah, sc->sc_imask);
7184 
7185 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7186 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7187 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7188 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7189 	    sc->sc_tdmadbaprep);
7190 }
7191 
7192 /*
7193  * Update tdma operation.  Called from the 802.11 layer
7194  * when a beacon is received from the TDMA station operating
7195  * in the slot immediately preceding us in the bss.  Use
7196  * the rx timestamp for the beacon frame to update our
7197  * beacon timers so we follow their schedule.  Note that
7198  * by using the rx timestamp we implicitly include the
7199  * propagation delay in our schedule.
7200  */
7201 static void
7202 ath_tdma_update(struct ieee80211_node *ni,
7203 	const struct ieee80211_tdma_param *tdma, int changed)
7204 {
7205 #define	TSF_TO_TU(_h,_l) \
7206 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7207 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7208 	struct ieee80211vap *vap = ni->ni_vap;
7209 	struct ieee80211com *ic = ni->ni_ic;
7210 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7211 	struct ath_hal *ah = sc->sc_ah;
7212 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7213 	u_int64_t tsf, rstamp, nextslot;
7214 	u_int32_t txtime, nextslottu, timer0;
7215 	int32_t tudelta, tsfdelta;
7216 	const struct ath_rx_status *rs;
7217 	int rix;
7218 
7219 	sc->sc_stats.ast_tdma_update++;
7220 
7221 	/*
7222 	 * Check for and adopt configuration changes.
7223 	 */
7224 	if (changed != 0) {
7225 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7226 
7227 		ath_tdma_bintvalsetup(sc, ts);
7228 		if (changed & TDMA_UPDATE_SLOTLEN)
7229 			ath_wme_update(ic);
7230 
7231 		DPRINTF(sc, ATH_DEBUG_TDMA,
7232 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7233 		    "bintval %u TU\n", __func__,
7234 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7235 		    sc->sc_tdmabintval);
7236 
7237 		/* XXX right? */
7238 		ath_hal_intrset(ah, sc->sc_imask);
7239 		/* NB: beacon timers programmed below */
7240 	}
7241 
7242 	/* extend rx timestamp to 64 bits */
7243 	rs = sc->sc_lastrs;
7244 	tsf = ath_hal_gettsf64(ah);
7245 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
7246 	/*
7247 	 * The rx timestamp is set by the hardware on completing
7248 	 * reception (at the point where the rx descriptor is DMA'd
7249 	 * to the host).  To find the start of our next slot we
7250 	 * must adjust this time by the time required to send
7251 	 * the packet just received.
7252 	 */
7253 	rix = rt->rateCodeToIndex[rs->rs_rate];
7254 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7255 	    rt->info[rix].shortPreamble);
7256 	/* NB: << 9 is to cvt to TU and /2 */
7257 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7258 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7259 
7260 	/*
7261 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7262 	 * to usecs and calculate the difference between what the
7263 	 * other station thinks and what we have programmed.  This
7264 	 * lets us figure how to adjust our timers to match.  The
7265 	 * adjustments are done by pulling the TSF forward and possibly
7266 	 * rewriting the beacon timers.
7267 	 */
7268 	timer0 = ath_hal_getnexttbtt(ah);
7269 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7270 
7271 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7272 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7273 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7274 
7275 	if (tsfdelta < 0) {
7276 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7277 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7278 		tsfdelta = -tsfdelta % 1024;
7279 		nextslottu++;
7280 	} else if (tsfdelta > 0) {
7281 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7282 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7283 		tsfdelta = 1024 - (tsfdelta % 1024);
7284 		nextslottu++;
7285 	} else {
7286 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7287 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7288 	}
7289 	tudelta = nextslottu - timer0;
7290 
7291 	/*
7292 	 * Copy sender's timetstamp into tdma ie so they can
7293 	 * calculate roundtrip time.  We submit a beacon frame
7294 	 * below after any timer adjustment.  The frame goes out
7295 	 * at the next TBTT so the sender can calculate the
7296 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7297 	 *
7298 	 * NB: This tstamp is subtlely preserved when
7299 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7300 	 *     slot position changes) because ieee80211_add_tdma
7301 	 *     skips over the data.
7302 	 */
7303 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7304 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7305 		&ni->ni_tstamp.data, 8);
7306 #if 0
7307 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7308 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7309 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7310 	    (int)(nextslot - tsf), tsfdelta,
7311 	    nextslottu, timer0, tudelta);
7312 #endif
7313 	/*
7314 	 * Adjust the beacon timers only when pulling them forward
7315 	 * or when going back by less than the beacon interval.
7316 	 * Negative jumps larger than the beacon interval seem to
7317 	 * cause the timers to stop and generally cause instability.
7318 	 * This basically filters out jumps due to missed beacons.
7319 	 */
7320 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7321 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7322 		sc->sc_stats.ast_tdma_timers++;
7323 	}
7324 	if (tsfdelta > 0) {
7325 		ath_hal_adjusttsf(ah, tsfdelta);
7326 		sc->sc_stats.ast_tdma_tsf++;
7327 	}
7328 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7329 #undef TU_TO_TSF
7330 #undef TSF_TO_TU
7331 }
7332 
7333 /*
7334  * Transmit a beacon frame at SWBA.  Dynamic updates
7335  * to the frame contents are done as needed.
7336  */
7337 static void
7338 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7339 {
7340 	struct ath_hal *ah = sc->sc_ah;
7341 	struct ath_buf *bf;
7342 	int otherant;
7343 
7344 	/*
7345 	 * Check if the previous beacon has gone out.  If
7346 	 * not don't try to post another, skip this period
7347 	 * and wait for the next.  Missed beacons indicate
7348 	 * a problem and should not occur.  If we miss too
7349 	 * many consecutive beacons reset the device.
7350 	 */
7351 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7352 		sc->sc_bmisscount++;
7353 		DPRINTF(sc, ATH_DEBUG_BEACON,
7354 			"%s: missed %u consecutive beacons\n",
7355 			__func__, sc->sc_bmisscount);
7356 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7357 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7358 		return;
7359 	}
7360 	if (sc->sc_bmisscount != 0) {
7361 		DPRINTF(sc, ATH_DEBUG_BEACON,
7362 			"%s: resume beacon xmit after %u misses\n",
7363 			__func__, sc->sc_bmisscount);
7364 		sc->sc_bmisscount = 0;
7365 	}
7366 
7367 	/*
7368 	 * Check recent per-antenna transmit statistics and flip
7369 	 * the default antenna if noticeably more frames went out
7370 	 * on the non-default antenna.
7371 	 * XXX assumes 2 anntenae
7372 	 */
7373 	if (!sc->sc_diversity) {
7374 		otherant = sc->sc_defant & 1 ? 2 : 1;
7375 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7376 			ath_setdefantenna(sc, otherant);
7377 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7378 	}
7379 
7380 	/*
7381 	 * Stop any current dma before messing with the beacon linkages.
7382 	 *
7383 	 * This should never fail since we check above that no frames
7384 	 * are still pending on the queue.
7385 	 */
7386 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7387 		DPRINTF(sc, ATH_DEBUG_ANY,
7388 			"%s: beacon queue %u did not stop?\n",
7389 			__func__, sc->sc_bhalq);
7390 		/* NB: the HAL still stops DMA, so proceed */
7391 	}
7392 	bf = ath_beacon_generate(sc, vap);
7393 	if (bf != NULL) {
7394 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7395 		ath_hal_txstart(ah, sc->sc_bhalq);
7396 
7397 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7398 
7399 		/*
7400 		 * Record local TSF for our last send for use
7401 		 * in arbitrating slot collisions.
7402 		 */
7403 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7404 	} else {
7405 		device_printf(sc->sc_dev, "tdma beacon gen failed!\n");
7406 	}
7407 }
7408 #endif /* IEEE80211_SUPPORT_TDMA */
7409 
7410 static int
7411 ath_sysctl_clearstats(SYSCTL_HANDLER_ARGS)
7412 {
7413 	struct ath_softc *sc = arg1;
7414 	int val = 0;
7415 	int error;
7416 
7417 	error = sysctl_handle_int(oidp, &val, 0, req);
7418 	if (error || !req->newptr)
7419 		return error;
7420 	if (val == 0)
7421 		return 0;       /* Not clearing the stats is still valid */
7422 	memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
7423 	val = 0;
7424 	return 0;
7425 }
7426 
7427 static void
7428 ath_sysctl_stats_attach(struct ath_softc *sc)
7429 {
7430 	struct sysctl_oid *tree;
7431 	struct sysctl_ctx_list *ctx;
7432 	struct sysctl_oid_list *child;
7433 
7434 	ctx = &sc->sc_sysctl_ctx;
7435 	tree = sc->sc_sysctl_tree;
7436 	child = SYSCTL_CHILDREN(tree);
7437 
7438 	/* Create "clear" node */
7439 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7440 	    "clear_stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7441 	    ath_sysctl_clearstats, "I", "clear stats");
7442 
7443 	/* Create stats node */
7444 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
7445 	    NULL, "Statistics");
7446 	child = SYSCTL_CHILDREN(tree);
7447 
7448 	/* This was generated from if_athioctl.h */
7449 
7450 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_watchdog", CTLFLAG_RD,
7451 	    &sc->sc_stats.ast_watchdog, 0, "device reset by watchdog");
7452 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_hardware", CTLFLAG_RD,
7453 	    &sc->sc_stats.ast_hardware, 0, "fatal hardware error interrupts");
7454 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss", CTLFLAG_RD,
7455 	    &sc->sc_stats.ast_bmiss, 0, "beacon miss interrupts");
7456 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss_phantom", CTLFLAG_RD,
7457 	    &sc->sc_stats.ast_bmiss_phantom, 0, "beacon miss interrupts");
7458 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bstuck", CTLFLAG_RD,
7459 	    &sc->sc_stats.ast_bstuck, 0, "beacon stuck interrupts");
7460 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxorn", CTLFLAG_RD,
7461 	    &sc->sc_stats.ast_rxorn, 0, "rx overrun interrupts");
7462 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxeol", CTLFLAG_RD,
7463 	    &sc->sc_stats.ast_rxeol, 0, "rx eol interrupts");
7464 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_txurn", CTLFLAG_RD,
7465 	    &sc->sc_stats.ast_txurn, 0, "tx underrun interrupts");
7466 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_mib", CTLFLAG_RD,
7467 	    &sc->sc_stats.ast_mib, 0, "mib interrupts");
7468 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_intrcoal", CTLFLAG_RD,
7469 	    &sc->sc_stats.ast_intrcoal, 0, "interrupts coalesced");
7470 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_packets", CTLFLAG_RD,
7471 	    &sc->sc_stats.ast_tx_packets, 0, "packet sent on the interface");
7472 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_mgmt", CTLFLAG_RD,
7473 	    &sc->sc_stats.ast_tx_mgmt, 0, "management frames transmitted");
7474 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_discard", CTLFLAG_RD,
7475 	    &sc->sc_stats.ast_tx_discard, 0, "frames discarded prior to assoc");
7476 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qstop", CTLFLAG_RD,
7477 	    &sc->sc_stats.ast_tx_qstop, 0, "output stopped 'cuz no buffer");
7478 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_encap", CTLFLAG_RD,
7479 	    &sc->sc_stats.ast_tx_encap, 0, "tx encapsulation failed");
7480 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nonode", CTLFLAG_RD,
7481 	    &sc->sc_stats.ast_tx_nonode, 0, "tx failed 'cuz no node");
7482 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nombuf", CTLFLAG_RD,
7483 	    &sc->sc_stats.ast_tx_nombuf, 0, "tx failed 'cuz no mbuf");
7484 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nomcl", CTLFLAG_RD,
7485 	    &sc->sc_stats.ast_tx_nomcl, 0, "tx failed 'cuz no cluster");
7486 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_linear", CTLFLAG_RD,
7487 	    &sc->sc_stats.ast_tx_linear, 0, "tx linearized to cluster");
7488 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nodata", CTLFLAG_RD,
7489 	    &sc->sc_stats.ast_tx_nodata, 0, "tx discarded empty frame");
7490 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_busdma", CTLFLAG_RD,
7491 	    &sc->sc_stats.ast_tx_busdma, 0, "tx failed for dma resrcs");
7492 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_xretries", CTLFLAG_RD,
7493 	    &sc->sc_stats.ast_tx_xretries, 0, "tx failed 'cuz too many retries");
7494 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_fifoerr", CTLFLAG_RD,
7495 	    &sc->sc_stats.ast_tx_fifoerr, 0, "tx failed 'cuz FIFO underrun");
7496 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_filtered", CTLFLAG_RD,
7497 	    &sc->sc_stats.ast_tx_filtered, 0, "tx failed 'cuz xmit filtered");
7498 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortretry", CTLFLAG_RD,
7499 	    &sc->sc_stats.ast_tx_shortretry, 0, "tx on-chip retries (short)");
7500 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_longretry", CTLFLAG_RD,
7501 	    &sc->sc_stats.ast_tx_longretry, 0, "tx on-chip retries (long)");
7502 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_badrate", CTLFLAG_RD,
7503 	    &sc->sc_stats.ast_tx_badrate, 0, "tx failed 'cuz bogus xmit rate");
7504 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_noack", CTLFLAG_RD,
7505 	    &sc->sc_stats.ast_tx_noack, 0, "tx frames with no ack marked");
7506 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_rts", CTLFLAG_RD,
7507 	    &sc->sc_stats.ast_tx_rts, 0, "tx frames with rts enabled");
7508 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_cts", CTLFLAG_RD,
7509 	    &sc->sc_stats.ast_tx_cts, 0, "tx frames with cts enabled");
7510 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortpre", CTLFLAG_RD,
7511 	    &sc->sc_stats.ast_tx_shortpre, 0, "tx frames with short preamble");
7512 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_altrate", CTLFLAG_RD,
7513 	    &sc->sc_stats.ast_tx_altrate, 0, "tx frames with alternate rate");
7514 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_protect", CTLFLAG_RD,
7515 	    &sc->sc_stats.ast_tx_protect, 0, "tx frames with protection");
7516 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsburst", CTLFLAG_RD,
7517 	    &sc->sc_stats.ast_tx_ctsburst, 0, "tx frames with cts and bursting");
7518 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsext", CTLFLAG_RD,
7519 	    &sc->sc_stats.ast_tx_ctsext, 0, "tx frames with cts extension");
7520 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_nombuf", CTLFLAG_RD,
7521 	    &sc->sc_stats.ast_rx_nombuf, 0, "rx setup failed 'cuz no mbuf");
7522 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_busdma", CTLFLAG_RD,
7523 	    &sc->sc_stats.ast_rx_busdma, 0, "rx setup failed for dma resrcs");
7524 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_orn", CTLFLAG_RD,
7525 	    &sc->sc_stats.ast_rx_orn, 0, "rx failed 'cuz of desc overrun");
7526 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_crcerr", CTLFLAG_RD,
7527 	    &sc->sc_stats.ast_rx_crcerr, 0, "rx failed 'cuz of bad CRC");
7528 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_fifoerr", CTLFLAG_RD,
7529 	    &sc->sc_stats.ast_rx_fifoerr, 0, "rx failed 'cuz of FIFO overrun");
7530 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badcrypt", CTLFLAG_RD,
7531 	    &sc->sc_stats.ast_rx_badcrypt, 0, "rx failed 'cuz decryption");
7532 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badmic", CTLFLAG_RD,
7533 	    &sc->sc_stats.ast_rx_badmic, 0, "rx failed 'cuz MIC failure");
7534 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_phyerr", CTLFLAG_RD,
7535 	    &sc->sc_stats.ast_rx_phyerr, 0, "rx failed 'cuz of PHY err");
7536 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_tooshort", CTLFLAG_RD,
7537 	    &sc->sc_stats.ast_rx_tooshort, 0, "rx discarded 'cuz frame too short");
7538 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_toobig", CTLFLAG_RD,
7539 	    &sc->sc_stats.ast_rx_toobig, 0, "rx discarded 'cuz frame too large");
7540 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_packets", CTLFLAG_RD,
7541 	    &sc->sc_stats.ast_rx_packets, 0, "packet recv on the interface");
7542 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_mgt", CTLFLAG_RD,
7543 	    &sc->sc_stats.ast_rx_mgt, 0, "management frames received");
7544 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_ctl", CTLFLAG_RD,
7545 	    &sc->sc_stats.ast_rx_ctl, 0, "rx discarded 'cuz ctl frame");
7546 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_xmit", CTLFLAG_RD,
7547 	    &sc->sc_stats.ast_be_xmit, 0, "beacons transmitted");
7548 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_nombuf", CTLFLAG_RD,
7549 	    &sc->sc_stats.ast_be_nombuf, 0, "beacon setup failed 'cuz no mbuf");
7550 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_cal", CTLFLAG_RD,
7551 	    &sc->sc_stats.ast_per_cal, 0, "periodic calibration calls");
7552 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_calfail", CTLFLAG_RD,
7553 	    &sc->sc_stats.ast_per_calfail, 0, "periodic calibration failed");
7554 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_rfgain", CTLFLAG_RD,
7555 	    &sc->sc_stats.ast_per_rfgain, 0, "periodic calibration rfgain reset");
7556 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_calls", CTLFLAG_RD,
7557 	    &sc->sc_stats.ast_rate_calls, 0, "rate control checks");
7558 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_raise", CTLFLAG_RD,
7559 	    &sc->sc_stats.ast_rate_raise, 0, "rate control raised xmit rate");
7560 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_drop", CTLFLAG_RD,
7561 	    &sc->sc_stats.ast_rate_drop, 0, "rate control dropped xmit rate");
7562 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_defswitch", CTLFLAG_RD,
7563 	    &sc->sc_stats.ast_ant_defswitch, 0, "rx/default antenna switches");
7564 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_txswitch", CTLFLAG_RD,
7565 	    &sc->sc_stats.ast_ant_txswitch, 0, "tx antenna switches");
7566 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_xmit", CTLFLAG_RD,
7567 	    &sc->sc_stats.ast_cabq_xmit, 0, "cabq frames transmitted");
7568 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_busy", CTLFLAG_RD,
7569 	    &sc->sc_stats.ast_cabq_busy, 0, "cabq found busy");
7570 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw", CTLFLAG_RD,
7571 	    &sc->sc_stats.ast_tx_raw, 0, "tx frames through raw api");
7572 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txok", CTLFLAG_RD,
7573 	    &sc->sc_stats.ast_ff_txok, 0, "fast frames tx'd successfully");
7574 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txerr", CTLFLAG_RD,
7575 	    &sc->sc_stats.ast_ff_txerr, 0, "fast frames tx'd w/ error");
7576 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_rx", CTLFLAG_RD,
7577 	    &sc->sc_stats.ast_ff_rx, 0, "fast frames rx'd");
7578 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_flush", CTLFLAG_RD,
7579 	    &sc->sc_stats.ast_ff_flush, 0, "fast frames flushed from staging q");
7580 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qfull", CTLFLAG_RD,
7581 	    &sc->sc_stats.ast_tx_qfull, 0, "tx dropped 'cuz of queue limit");
7582 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nobuf", CTLFLAG_RD,
7583 	    &sc->sc_stats.ast_tx_nobuf, 0, "tx dropped 'cuz no ath buffer");
7584 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_update", CTLFLAG_RD,
7585 	    &sc->sc_stats.ast_tdma_update, 0, "TDMA slot timing updates");
7586 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_timers", CTLFLAG_RD,
7587 	    &sc->sc_stats.ast_tdma_timers, 0, "TDMA slot update set beacon timers");
7588 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_tsf", CTLFLAG_RD,
7589 	    &sc->sc_stats.ast_tdma_tsf, 0, "TDMA slot update set TSF");
7590 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_ack", CTLFLAG_RD,
7591 	    &sc->sc_stats.ast_tdma_ack, 0, "TDMA tx failed 'cuz ACK required");
7592 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw_fail", CTLFLAG_RD,
7593 	    &sc->sc_stats.ast_tx_raw_fail, 0, "raw tx failed 'cuz h/w down");
7594 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nofrag", CTLFLAG_RD,
7595 	    &sc->sc_stats.ast_tx_nofrag, 0, "tx dropped 'cuz no ath frag buffer");
7596 #if 0
7597 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_missed", CTLFLAG_RD,
7598 	    &sc->sc_stats.ast_be_missed, 0, "number of -missed- beacons");
7599 #endif
7600 }
7601