xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision bd611623)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  *
29  * $FreeBSD: head/sys/dev/ath/if_ath.c 203751 2010-02-10 11:12:39Z rpaulo $");
30  */
31 
32 /*
33  * Driver for the Atheros Wireless LAN controller.
34  *
35  * This software is derived from work of Atsushi Onoe; his contribution
36  * is greatly appreciated.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ath.h"
41 #include "opt_wlan.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 #include <sys/priv.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 #include <net/if_arp.h>
66 #include <net/if_llc.h>
67 #include <net/ifq_var.h>
68 
69 #include <netproto/802_11/ieee80211_var.h>
70 #include <netproto/802_11/ieee80211_regdomain.h>
71 #ifdef IEEE80211_SUPPORT_SUPERG
72 #include <netproto/802_11/ieee80211_superg.h>
73 #endif
74 #ifdef IEEE80211_SUPPORT_TDMA
75 #include <netproto/802_11/ieee80211_tdma.h>
76 #endif
77 
78 #include <net/bpf.h>
79 
80 #ifdef INET
81 #include <netinet/in.h>
82 #include <netinet/if_ether.h>
83 #endif
84 
85 #include <dev/netif/ath/ath/if_athvar.h>
86 #include <dev/netif/ath/hal/ath_hal/ah_devid.h>		/* XXX for softled */
87 
88 #ifdef ATH_TX99_DIAG
89 #include <dev/netif/ath_tx99/ath_tx99.h>
90 #endif
91 
92 /*
93  * ATH_BCBUF determines the number of vap's that can transmit
94  * beacons and also (currently) the number of vap's that can
95  * have unique mac addresses/bssid.  When staggering beacons
96  * 4 is probably a good max as otherwise the beacons become
97  * very closely spaced and there is limited time for cab q traffic
98  * to go out.  You can burst beacons instead but that is not good
99  * for stations in power save and at some point you really want
100  * another radio (and channel).
101  *
102  * The limit on the number of mac addresses is tied to our use of
103  * the U/L bit and tracking addresses in a byte; it would be
104  * worthwhile to allow more for applications like proxy sta.
105  */
106 CTASSERT(ATH_BCBUF <= 8);
107 
108 /* unaligned little endian access */
109 #define LE_READ_2(p)							\
110 	((u_int16_t)							\
111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
112 #define LE_READ_4(p)							\
113 	((u_int32_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116 
117 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
118 		    const char name[IFNAMSIZ], int unit, int opmode,
119 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
120 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
121 static void	ath_vap_delete(struct ieee80211vap *);
122 static void	ath_init(void *);
123 static void	ath_stop_locked(struct ifnet *);
124 static void	ath_stop(struct ifnet *);
125 static void	ath_start(struct ifnet *, struct ifaltq_subque *);
126 static int	ath_reset(struct ifnet *);
127 static int	ath_reset_vap(struct ieee80211vap *, u_long);
128 static int	ath_media_change(struct ifnet *);
129 static void	ath_watchdog_callout(void *);
130 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
131 static void	ath_fatal_proc(void *, int);
132 static void	ath_bmiss_vap(struct ieee80211vap *);
133 static void	ath_bmiss_task(void *, int);
134 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
135 			struct ieee80211_node *);
136 static int	ath_key_alloc(struct ieee80211vap *,
137 			struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211vap *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211vap *);
144 static void	ath_key_update_end(struct ieee80211vap *);
145 static void	ath_update_mcast(struct ifnet *);
146 static void	ath_update_promisc(struct ifnet *);
147 static void	ath_mode_init(struct ath_softc *);
148 static void	ath_setslottime(struct ath_softc *);
149 static void	ath_updateslot(struct ifnet *);
150 static int	ath_beaconq_setup(struct ath_hal *);
151 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
152 static void	ath_beacon_update(struct ieee80211vap *, int item);
153 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
154 static void	ath_beacon_proc(void *, int);
155 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
156 			struct ieee80211vap *);
157 static void	ath_bstuck_task(void *, int);
158 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
159 static void	ath_beacon_free(struct ath_softc *);
160 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
161 static void	ath_descdma_cleanup(struct ath_softc *sc,
162 			struct ath_descdma *, ath_bufhead *);
163 static int	ath_desc_alloc(struct ath_softc *);
164 static void	ath_desc_free(struct ath_softc *);
165 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
166 			const uint8_t [IEEE80211_ADDR_LEN]);
167 static void	ath_node_free(struct ieee80211_node *);
168 static void	ath_node_getsignal(const struct ieee80211_node *,
169 			int8_t *, int8_t *);
170 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
171 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
172 			int subtype, int rssi, int nf);
173 static void	ath_setdefantenna(struct ath_softc *, u_int);
174 static void	ath_rx_task(void *, int);
175 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
176 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
177 static int	ath_tx_setup(struct ath_softc *, int, int);
178 static int	ath_wme_update(struct ieee80211com *);
179 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
180 static void	ath_tx_cleanup(struct ath_softc *);
181 static void	ath_freetx(struct mbuf *);
182 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
183 			     struct ath_buf *, struct mbuf *);
184 static void	ath_tx_task_q0(void *, int);
185 static void	ath_tx_task_q0123(void *, int);
186 static void	ath_tx_task(void *, int);
187 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
188 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_draintxq(struct ath_softc *);
190 static void	ath_stoprecv(struct ath_softc *);
191 static int	ath_startrecv(struct ath_softc *);
192 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
193 static void	ath_scan_start(struct ieee80211com *);
194 static void	ath_scan_end(struct ieee80211com *);
195 static void	ath_set_channel(struct ieee80211com *);
196 static void	ath_calibrate_callout(void *);
197 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	ath_setup_stationkey(struct ieee80211_node *);
199 static void	ath_newassoc(struct ieee80211_node *, int);
200 static int	ath_setregdomain(struct ieee80211com *,
201 		    struct ieee80211_regdomain *, int,
202 		    struct ieee80211_channel []);
203 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204 		    struct ieee80211_channel []);
205 static int	ath_getchannels(struct ath_softc *);
206 static void	ath_led_event(struct ath_softc *, int);
207 
208 static int	ath_rate_setup(struct ath_softc *, u_int mode);
209 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
210 
211 static void	ath_sysctlattach(struct ath_softc *);
212 static int	ath_raw_xmit(struct ieee80211_node *,
213 			struct mbuf *, const struct ieee80211_bpf_params *);
214 static void	ath_announce(struct ath_softc *);
215 static void	ath_sysctl_stats_attach(struct ath_softc *sc);
216 
217 #ifdef IEEE80211_SUPPORT_TDMA
218 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
219 		    u_int32_t bintval);
220 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
221 		    const struct ieee80211_tdma_state *tdma);
222 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
223 static void	ath_tdma_update(struct ieee80211_node *ni,
224 		    const struct ieee80211_tdma_param *tdma, int);
225 static void	ath_tdma_beacon_send(struct ath_softc *sc,
226 		    struct ieee80211vap *vap);
227 
228 static __inline void
229 ath_hal_setcca(struct ath_hal *ah, int ena)
230 {
231 	/*
232 	 * NB: fill me in; this is not provided by default because disabling
233 	 *     CCA in most locales violates regulatory.
234 	 */
235 }
236 
237 static __inline int
238 ath_hal_getcca(struct ath_hal *ah)
239 {
240 	u_int32_t diag;
241 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
242 		return 1;
243 	return ((diag & 0x500000) == 0);
244 }
245 
246 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
247 #define	TDMA_LPF_LEN		6
248 #define	TDMA_DUMMY_MARKER	0x127
249 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
250 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
251 #define	TDMA_LPF(x, y, len) \
252     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
253 #define	TDMA_SAMPLE(x, y) do {					\
254 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
255 } while (0)
256 #define	TDMA_EP_RND(x,mul) \
257 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
258 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
259 #endif /* IEEE80211_SUPPORT_TDMA */
260 
261 SYSCTL_DECL(_hw_ath);
262 
263 /* XXX validate sysctl values */
264 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
265 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
266 	    0, "long chip calibration interval (secs)");
267 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
268 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
269 	    0, "short chip calibration interval (msecs)");
270 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
271 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
272 	    0, "reset chip calibration results (secs)");
273 
274 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
275 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
276 	    0, "rx buffers allocated");
277 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
278 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
279 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
280 	    0, "tx buffers allocated");
281 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
282 
283 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
284 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
285 	    0, "max missed beacon xmits before chip reset");
286 
287 #ifdef ATH_DEBUG
288 enum {
289 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
290 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
291 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
292 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
293 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
294 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
295 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
296 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
297 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
298 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
299 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
300 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
301 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
302 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
303 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
304 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
305 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
306 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
307 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
308 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
309 	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
310 	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
311 	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
312 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
313 	ATH_DEBUG_ANY		= 0xffffffff
314 };
315 static	int ath_debug = 0;
316 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
317 	    0, "control debugging printfs");
318 TUNABLE_INT("hw.ath.debug", &ath_debug);
319 
320 #define	IFF_DUMPPKTS(sc, m) \
321 	((sc->sc_debug & (m)) || \
322 	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
323 #define	DPRINTF(sc, m, fmt, ...) do {				\
324 	if (sc->sc_debug & (m))					\
325 		kprintf(fmt, __VA_ARGS__);			\
326 } while (0)
327 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
328 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
329 		ath_keyprint(sc, __func__, ix, hk, mac);	\
330 } while (0)
331 static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
332 	u_int ix, int);
333 static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
334 	u_int qnum, u_int ix, int done);
335 #else
336 #define	IFF_DUMPPKTS(sc, m) \
337 	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
338 #define	DPRINTF(sc, m, fmt, ...) do {				\
339 	(void) sc;						\
340 } while (0)
341 #define	KEYPRINTF(sc, k, ix, mac) do {				\
342 	(void) sc;						\
343 } while (0)
344 #endif
345 
346 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
347 
348 int
349 ath_attach(u_int16_t devid, struct ath_softc *sc)
350 {
351 	struct ifnet *ifp;
352 	struct ieee80211com *ic;
353 	struct ath_hal *ah = NULL;
354 	HAL_STATUS status;
355 	int error = 0, i;
356 	u_int wmodes;
357 	uint8_t macaddr[IEEE80211_ADDR_LEN];
358 
359 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
360 
361 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
362 	if (ifp == NULL) {
363 		device_printf(sc->sc_dev, "can not if_alloc()\n");
364 		error = ENOSPC;
365 		goto bad;
366 	}
367 	ic = ifp->if_l2com;
368 
369 	/* set these up early for if_printf use */
370 	if_initname(ifp, device_get_name(sc->sc_dev),
371 		device_get_unit(sc->sc_dev));
372 
373 	/* prepare sysctl tree for use in sub modules */
374 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
375 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
376 		SYSCTL_STATIC_CHILDREN(_hw),
377 		OID_AUTO,
378 		device_get_nameunit(sc->sc_dev),
379 		CTLFLAG_RD, 0, "");
380 
381 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
382 	if (ah == NULL) {
383 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
384 			status);
385 		error = ENXIO;
386 		goto bad;
387 	}
388 	sc->sc_ah = ah;
389 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
390 #ifdef	ATH_DEBUG
391 	sc->sc_debug = ath_debug;
392 #endif
393 
394 	/*
395 	 * Check if the MAC has multi-rate retry support.
396 	 * We do this by trying to setup a fake extended
397 	 * descriptor.  MAC's that don't have support will
398 	 * return false w/o doing anything.  MAC's that do
399 	 * support it will return true w/o doing anything.
400 	 */
401 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
402 
403 	/*
404 	 * Check if the device has hardware counters for PHY
405 	 * errors.  If so we need to enable the MIB interrupt
406 	 * so we can act on stat triggers.
407 	 */
408 	if (ath_hal_hwphycounters(ah))
409 		sc->sc_needmib = 1;
410 
411 	/*
412 	 * Get the hardware key cache size.
413 	 */
414 	sc->sc_keymax = ath_hal_keycachesize(ah);
415 	if (sc->sc_keymax > ATH_KEYMAX) {
416 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
417 			ATH_KEYMAX, sc->sc_keymax);
418 		sc->sc_keymax = ATH_KEYMAX;
419 	}
420 	/*
421 	 * Reset the key cache since some parts do not
422 	 * reset the contents on initial power up.
423 	 */
424 	for (i = 0; i < sc->sc_keymax; i++)
425 		ath_hal_keyreset(ah, i);
426 
427 	/*
428 	 * Collect the default channel list.
429 	 */
430 	error = ath_getchannels(sc);
431 	if (error != 0)
432 		goto bad;
433 
434 	/*
435 	 * Setup rate tables for all potential media types.
436 	 */
437 	ath_rate_setup(sc, IEEE80211_MODE_11A);
438 	ath_rate_setup(sc, IEEE80211_MODE_11B);
439 	ath_rate_setup(sc, IEEE80211_MODE_11G);
440 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
441 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
442 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
443 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
444 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
445 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
446 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
447 
448 	/* NB: setup here so ath_rate_update is happy */
449 	ath_setcurmode(sc, IEEE80211_MODE_11A);
450 
451 	/*
452 	 * Allocate tx+rx descriptors and populate the lists.
453 	 */
454 	wlan_assert_serialized();
455 	wlan_serialize_exit();
456 	error = ath_desc_alloc(sc);
457 	wlan_serialize_enter();
458 	if (error != 0) {
459 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
460 		goto bad;
461 	}
462 	callout_init(&sc->sc_cal_ch);
463 	callout_init(&sc->sc_wd_ch);
464 
465 	sc->sc_tq = taskqueue_create("ath_taskq", M_INTWAIT,
466 		taskqueue_thread_enqueue, &sc->sc_tq);
467 	taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
468 		"%s taskq", ifp->if_xname);
469 
470 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_task, sc);
471 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_task, sc);
472 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_task, sc);
473 
474 	/*
475 	 * Allocate hardware transmit queues: one queue for
476 	 * beacon frames and one data queue for each QoS
477 	 * priority.  Note that the hal handles reseting
478 	 * these queues at the needed time.
479 	 *
480 	 * XXX PS-Poll
481 	 */
482 	sc->sc_bhalq = ath_beaconq_setup(ah);
483 	if (sc->sc_bhalq == (u_int) -1) {
484 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
485 		error = EIO;
486 		goto bad2;
487 	}
488 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
489 	if (sc->sc_cabq == NULL) {
490 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
491 		error = EIO;
492 		goto bad2;
493 	}
494 	/* NB: insure BK queue is the lowest priority h/w queue */
495 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
496 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
497 			ieee80211_wme_acnames[WME_AC_BK]);
498 		error = EIO;
499 		goto bad2;
500 	}
501 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
502 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
503 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
504 		/*
505 		 * Not enough hardware tx queues to properly do WME;
506 		 * just punt and assign them all to the same h/w queue.
507 		 * We could do a better job of this if, for example,
508 		 * we allocate queues when we switch from station to
509 		 * AP mode.
510 		 */
511 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
512 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
513 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
514 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
515 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
516 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
517 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
518 	}
519 
520 	/*
521 	 * Special case certain configurations.  Note the
522 	 * CAB queue is handled by these specially so don't
523 	 * include them when checking the txq setup mask.
524 	 */
525 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
526 	case 0x01:
527 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task_q0, sc);
528 		break;
529 	case 0x0f:
530 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task_q0123, sc);
531 		break;
532 	default:
533 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_task, sc);
534 		break;
535 	}
536 
537 	/*
538 	 * Setup rate control.  Some rate control modules
539 	 * call back to change the anntena state so expose
540 	 * the necessary entry points.
541 	 * XXX maybe belongs in struct ath_ratectrl?
542 	 */
543 	sc->sc_setdefantenna = ath_setdefantenna;
544 	sc->sc_rc = ath_rate_attach(sc);
545 	if (sc->sc_rc == NULL) {
546 		error = EIO;
547 		goto bad2;
548 	}
549 
550 	sc->sc_blinking = 0;
551 	sc->sc_ledstate = 1;
552 	sc->sc_ledon = 0;			/* low true */
553 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
554 	callout_init_mp(&sc->sc_ledtimer);
555 	/*
556 	 * Auto-enable soft led processing for IBM cards and for
557 	 * 5211 minipci cards.  Users can also manually enable/disable
558 	 * support with a sysctl.
559 	 */
560 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
561 	if (sc->sc_softled) {
562 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
563 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
564 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
565 	}
566 
567 	ifp->if_softc = sc;
568 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
569 	ifp->if_start = ath_start;
570 	ifp->if_ioctl = ath_ioctl;
571 	ifp->if_init = ath_init;
572 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
573 	ifq_set_ready(&ifp->if_snd);
574 
575 	ic->ic_ifp = ifp;
576 	/* XXX not right but it's not used anywhere important */
577 	ic->ic_phytype = IEEE80211_T_OFDM;
578 	ic->ic_opmode = IEEE80211_M_STA;
579 	ic->ic_caps =
580 		  IEEE80211_C_STA		/* station mode */
581 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
582 		| IEEE80211_C_HOSTAP		/* hostap mode */
583 		| IEEE80211_C_MONITOR		/* monitor mode */
584 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
585 		| IEEE80211_C_WDS		/* 4-address traffic works */
586 		| IEEE80211_C_MBSS		/* mesh point link mode */
587 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
588 		| IEEE80211_C_SHSLOT		/* short slot time supported */
589 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
590 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
591 		| IEEE80211_C_TXFRAG		/* handle tx frags */
592 		;
593 	/*
594 	 * Query the hal to figure out h/w crypto support.
595 	 */
596 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
597 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
598 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
599 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
600 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
601 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
602 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
603 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
604 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
605 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
606 		/*
607 		 * Check if h/w does the MIC and/or whether the
608 		 * separate key cache entries are required to
609 		 * handle both tx+rx MIC keys.
610 		 */
611 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
612 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
613 		/*
614 		 * If the h/w supports storing tx+rx MIC keys
615 		 * in one cache slot automatically enable use.
616 		 */
617 		if (ath_hal_hastkipsplit(ah) ||
618 		    !ath_hal_settkipsplit(ah, AH_FALSE))
619 			sc->sc_splitmic = 1;
620 		/*
621 		 * If the h/w can do TKIP MIC together with WME then
622 		 * we use it; otherwise we force the MIC to be done
623 		 * in software by the net80211 layer.
624 		 */
625 		if (ath_hal_haswmetkipmic(ah))
626 			sc->sc_wmetkipmic = 1;
627 	}
628 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
629 	/*
630 	 * Check for multicast key search support.
631 	 */
632 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
633 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
634 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
635 	}
636 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
637 	/*
638 	 * Mark key cache slots associated with global keys
639 	 * as in use.  If we knew TKIP was not to be used we
640 	 * could leave the +32, +64, and +32+64 slots free.
641 	 */
642 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
643 		setbit(sc->sc_keymap, i);
644 		setbit(sc->sc_keymap, i+64);
645 		if (sc->sc_splitmic) {
646 			setbit(sc->sc_keymap, i+32);
647 			setbit(sc->sc_keymap, i+32+64);
648 		}
649 	}
650 	/*
651 	 * TPC support can be done either with a global cap or
652 	 * per-packet support.  The latter is not available on
653 	 * all parts.  We're a bit pedantic here as all parts
654 	 * support a global cap.
655 	 */
656 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
657 		ic->ic_caps |= IEEE80211_C_TXPMGT;
658 
659 	/*
660 	 * Mark WME capability only if we have sufficient
661 	 * hardware queues to do proper priority scheduling.
662 	 */
663 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
664 		ic->ic_caps |= IEEE80211_C_WME;
665 	/*
666 	 * Check for misc other capabilities.
667 	 */
668 	if (ath_hal_hasbursting(ah))
669 		ic->ic_caps |= IEEE80211_C_BURST;
670 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
671 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
672 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
673 	if (ath_hal_hasfastframes(ah))
674 		ic->ic_caps |= IEEE80211_C_FF;
675 	wmodes = ath_hal_getwirelessmodes(ah);
676 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
677 		ic->ic_caps |= IEEE80211_C_TURBOP;
678 #ifdef IEEE80211_SUPPORT_TDMA
679 	if (ath_hal_macversion(ah) > 0x78) {
680 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
681 		ic->ic_tdma_update = ath_tdma_update;
682 	}
683 #endif
684 	/*
685 	 * Indicate we need the 802.11 header padded to a
686 	 * 32-bit boundary for 4-address and QoS frames.
687 	 */
688 	ic->ic_flags |= IEEE80211_F_DATAPAD;
689 
690 	/*
691 	 * Query the hal about antenna support.
692 	 */
693 	sc->sc_defant = ath_hal_getdefantenna(ah);
694 
695 	/*
696 	 * Not all chips have the VEOL support we want to
697 	 * use with IBSS beacons; check here for it.
698 	 */
699 	sc->sc_hasveol = ath_hal_hasveol(ah);
700 
701 	/* get mac address from hardware */
702 	ath_hal_getmac(ah, macaddr);
703 	if (sc->sc_hasbmask)
704 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
705 
706 	/* NB: used to size node table key mapping array */
707 	ic->ic_max_keyix = sc->sc_keymax;
708 	/* call MI attach routine. */
709 	ieee80211_ifattach(ic, macaddr);
710 	ic->ic_setregdomain = ath_setregdomain;
711 	ic->ic_getradiocaps = ath_getradiocaps;
712 	sc->sc_opmode = HAL_M_STA;
713 
714 	/* override default methods */
715 	ic->ic_newassoc = ath_newassoc;
716 	ic->ic_updateslot = ath_updateslot;
717 	ic->ic_wme.wme_update = ath_wme_update;
718 	ic->ic_vap_create = ath_vap_create;
719 	ic->ic_vap_delete = ath_vap_delete;
720 	ic->ic_raw_xmit = ath_raw_xmit;
721 	ic->ic_update_mcast = ath_update_mcast;
722 	ic->ic_update_promisc = ath_update_promisc;
723 	ic->ic_node_alloc = ath_node_alloc;
724 	sc->sc_node_free = ic->ic_node_free;
725 	ic->ic_node_free = ath_node_free;
726 	ic->ic_node_getsignal = ath_node_getsignal;
727 	ic->ic_scan_start = ath_scan_start;
728 	ic->ic_scan_end = ath_scan_end;
729 	ic->ic_set_channel = ath_set_channel;
730 
731 	ieee80211_radiotap_attach(ic,
732 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
733 		ATH_TX_RADIOTAP_PRESENT,
734 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
735 		ATH_RX_RADIOTAP_PRESENT);
736 
737 	/*
738 	 * Setup dynamic sysctl's now that country code and
739 	 * regdomain are available from the hal.
740 	 */
741 	ath_sysctlattach(sc);
742 	ath_sysctl_stats_attach(sc);
743 
744 	if (bootverbose)
745 		ieee80211_announce(ic);
746 	ath_announce(sc);
747 	return 0;
748 bad2:
749 	ath_tx_cleanup(sc);
750 	ath_desc_free(sc);
751 bad:
752 	if (ah)
753 		ath_hal_detach(ah);
754 	if (ifp != NULL)
755 		if_free(ifp);
756 	sc->sc_invalid = 1;
757 	return error;
758 }
759 
760 int
761 ath_detach(struct ath_softc *sc)
762 {
763 	struct ifnet *ifp = sc->sc_ifp;
764 
765 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
766 		__func__, ifp->if_flags);
767 
768 	/*
769 	 * NB: the order of these is important:
770 	 * o stop the chip so no more interrupts will fire
771 	 * o call the 802.11 layer before detaching the hal to
772 	 *   insure callbacks into the driver to delete global
773 	 *   key cache entries can be handled
774 	 * o free the taskqueue which drains any pending tasks
775 	 * o reclaim the tx queue data structures after calling
776 	 *   the 802.11 layer as we'll get called back to reclaim
777 	 *   node state and potentially want to use them
778 	 * o to cleanup the tx queues the hal is called, so detach
779 	 *   it last
780 	 * Other than that, it's straightforward...
781 	 */
782 	ath_stop(ifp);
783 	ieee80211_ifdetach(ifp->if_l2com);
784 	taskqueue_free(sc->sc_tq);
785 #ifdef ATH_TX99_DIAG
786 	if (sc->sc_tx99 != NULL)
787 		sc->sc_tx99->detach(sc->sc_tx99);
788 #endif
789 	ath_rate_detach(sc->sc_rc);
790 	ath_desc_free(sc);
791 	ath_tx_cleanup(sc);
792 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
793 	if (sc->sc_sysctl_tree) {
794 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
795 		sc->sc_sysctl_tree = NULL;
796 	}
797 	if_free(ifp);
798 
799 	return 0;
800 }
801 
802 /*
803  * MAC address handling for multiple BSS on the same radio.
804  * The first vap uses the MAC address from the EEPROM.  For
805  * subsequent vap's we set the U/L bit (bit 1) in the MAC
806  * address and use the next six bits as an index.
807  */
808 static void
809 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
810 {
811 	int i;
812 
813 	if (clone && sc->sc_hasbmask) {
814 		/* NB: we only do this if h/w supports multiple bssid */
815 		for (i = 0; i < 8; i++)
816 			if ((sc->sc_bssidmask & (1<<i)) == 0)
817 				break;
818 		if (i != 0)
819 			mac[0] |= (i << 2)|0x2;
820 	} else
821 		i = 0;
822 	sc->sc_bssidmask |= 1<<i;
823 	sc->sc_hwbssidmask[0] &= ~mac[0];
824 	if (i == 0)
825 		sc->sc_nbssid0++;
826 }
827 
828 static void
829 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
830 {
831 	int i = mac[0] >> 2;
832 	uint8_t mask;
833 
834 	if (i != 0 || --sc->sc_nbssid0 == 0) {
835 		sc->sc_bssidmask &= ~(1<<i);
836 		/* recalculate bssid mask from remaining addresses */
837 		mask = 0xff;
838 		for (i = 1; i < 8; i++)
839 			if (sc->sc_bssidmask & (1<<i))
840 				mask &= ~((i<<2)|0x2);
841 		sc->sc_hwbssidmask[0] |= mask;
842 	}
843 }
844 
845 /*
846  * Assign a beacon xmit slot.  We try to space out
847  * assignments so when beacons are staggered the
848  * traffic coming out of the cab q has maximal time
849  * to go out before the next beacon is scheduled.
850  */
851 static int
852 assign_bslot(struct ath_softc *sc)
853 {
854 	u_int slot, free;
855 
856 	free = 0;
857 	for (slot = 0; slot < ATH_BCBUF; slot++)
858 		if (sc->sc_bslot[slot] == NULL) {
859 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
860 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
861 				return slot;
862 			free = slot;
863 			/* NB: keep looking for a double slot */
864 		}
865 	return free;
866 }
867 
868 static struct ieee80211vap *
869 ath_vap_create(struct ieee80211com *ic,
870 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
871 	const uint8_t bssid[IEEE80211_ADDR_LEN],
872 	const uint8_t mac0[IEEE80211_ADDR_LEN])
873 {
874 	struct ath_softc *sc = ic->ic_ifp->if_softc;
875 	struct ath_vap *avp;
876 	struct ieee80211vap *vap;
877 	uint8_t mac[IEEE80211_ADDR_LEN];
878 	int ic_opmode, needbeacon, error;
879 
880 	avp = (struct ath_vap *) kmalloc(sizeof(struct ath_vap),
881 	    M_80211_VAP, M_WAITOK | M_ZERO);
882 	needbeacon = 0;
883 	IEEE80211_ADDR_COPY(mac, mac0);
884 
885 	ic_opmode = opmode;		/* default to opmode of new vap */
886 	switch (opmode) {
887 	case IEEE80211_M_STA:
888 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
889 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
890 			goto bad;
891 		}
892 		if (sc->sc_nvaps) {
893 			/*
894 			 * With multiple vaps we must fall back
895 			 * to s/w beacon miss handling.
896 			 */
897 			flags |= IEEE80211_CLONE_NOBEACONS;
898 		}
899 		if (flags & IEEE80211_CLONE_NOBEACONS) {
900 			/*
901 			 * Station mode w/o beacons are implemented w/ AP mode.
902 			 */
903 			ic_opmode = IEEE80211_M_HOSTAP;
904 		}
905 		break;
906 	case IEEE80211_M_IBSS:
907 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
908 			device_printf(sc->sc_dev,
909 			    "only 1 ibss vap supported\n");
910 			goto bad;
911 		}
912 		needbeacon = 1;
913 		break;
914 	case IEEE80211_M_AHDEMO:
915 #ifdef IEEE80211_SUPPORT_TDMA
916 		if (flags & IEEE80211_CLONE_TDMA) {
917 			if (sc->sc_nvaps != 0) {
918 				device_printf(sc->sc_dev,
919 				    "only 1 tdma vap supported\n");
920 				goto bad;
921 			}
922 			needbeacon = 1;
923 			flags |= IEEE80211_CLONE_NOBEACONS;
924 		}
925 		/* fall thru... */
926 #endif
927 	case IEEE80211_M_MONITOR:
928 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
929 			/*
930 			 * Adopt existing mode.  Adding a monitor or ahdemo
931 			 * vap to an existing configuration is of dubious
932 			 * value but should be ok.
933 			 */
934 			/* XXX not right for monitor mode */
935 			ic_opmode = ic->ic_opmode;
936 		}
937 		break;
938 	case IEEE80211_M_HOSTAP:
939 	case IEEE80211_M_MBSS:
940 		needbeacon = 1;
941 		break;
942 	case IEEE80211_M_WDS:
943 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
944 			device_printf(sc->sc_dev,
945 			    "wds not supported in sta mode\n");
946 			goto bad;
947 		}
948 		/*
949 		 * Silently remove any request for a unique
950 		 * bssid; WDS vap's always share the local
951 		 * mac address.
952 		 */
953 		flags &= ~IEEE80211_CLONE_BSSID;
954 		if (sc->sc_nvaps == 0)
955 			ic_opmode = IEEE80211_M_HOSTAP;
956 		else
957 			ic_opmode = ic->ic_opmode;
958 		break;
959 	default:
960 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
961 		goto bad;
962 	}
963 	/*
964 	 * Check that a beacon buffer is available; the code below assumes it.
965 	 */
966 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
967 		device_printf(sc->sc_dev, "no beacon buffer available\n");
968 		goto bad;
969 	}
970 
971 	/* STA, AHDEMO? */
972 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
973 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
974 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
975 	}
976 
977 	vap = &avp->av_vap;
978 	/* XXX can't hold mutex across if_alloc */
979 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
980 	    bssid, mac);
981 	if (error != 0) {
982 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
983 		    __func__, error);
984 		goto bad2;
985 	}
986 
987 	/* h/w crypto support */
988 	vap->iv_key_alloc = ath_key_alloc;
989 	vap->iv_key_delete = ath_key_delete;
990 	vap->iv_key_set = ath_key_set;
991 	vap->iv_key_update_begin = ath_key_update_begin;
992 	vap->iv_key_update_end = ath_key_update_end;
993 
994 	/* override various methods */
995 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
996 	vap->iv_recv_mgmt = ath_recv_mgmt;
997 	vap->iv_reset = ath_reset_vap;
998 	vap->iv_update_beacon = ath_beacon_update;
999 	avp->av_newstate = vap->iv_newstate;
1000 	vap->iv_newstate = ath_newstate;
1001 	avp->av_bmiss = vap->iv_bmiss;
1002 	vap->iv_bmiss = ath_bmiss_vap;
1003 
1004 	avp->av_bslot = -1;
1005 	if (needbeacon) {
1006 		/*
1007 		 * Allocate beacon state and setup the q for buffered
1008 		 * multicast frames.  We know a beacon buffer is
1009 		 * available because we checked above.
1010 		 */
1011 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1012 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1013 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1014 			/*
1015 			 * Assign the vap to a beacon xmit slot.  As above
1016 			 * this cannot fail to find a free one.
1017 			 */
1018 			avp->av_bslot = assign_bslot(sc);
1019 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1020 			    ("beacon slot %u not empty", avp->av_bslot));
1021 			sc->sc_bslot[avp->av_bslot] = vap;
1022 			sc->sc_nbcnvaps++;
1023 		}
1024 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1025 			/*
1026 			 * Multple vaps are to transmit beacons and we
1027 			 * have h/w support for TSF adjusting; enable
1028 			 * use of staggered beacons.
1029 			 */
1030 			sc->sc_stagbeacons = 1;
1031 		}
1032 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1033 	}
1034 
1035 	ic->ic_opmode = ic_opmode;
1036 	if (opmode != IEEE80211_M_WDS) {
1037 		sc->sc_nvaps++;
1038 		if (opmode == IEEE80211_M_STA)
1039 			sc->sc_nstavaps++;
1040 		if (opmode == IEEE80211_M_MBSS)
1041 			sc->sc_nmeshvaps++;
1042 	}
1043 	switch (ic_opmode) {
1044 	case IEEE80211_M_IBSS:
1045 		sc->sc_opmode = HAL_M_IBSS;
1046 		break;
1047 	case IEEE80211_M_STA:
1048 		sc->sc_opmode = HAL_M_STA;
1049 		break;
1050 	case IEEE80211_M_AHDEMO:
1051 #ifdef IEEE80211_SUPPORT_TDMA
1052 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1053 			sc->sc_tdma = 1;
1054 			/* NB: disable tsf adjust */
1055 			sc->sc_stagbeacons = 0;
1056 		}
1057 		/*
1058 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1059 		 * just ap mode.
1060 		 */
1061 		/* fall thru... */
1062 #endif
1063 	case IEEE80211_M_HOSTAP:
1064 	case IEEE80211_M_MBSS:
1065 		sc->sc_opmode = HAL_M_HOSTAP;
1066 		break;
1067 	case IEEE80211_M_MONITOR:
1068 		sc->sc_opmode = HAL_M_MONITOR;
1069 		break;
1070 	default:
1071 		/* XXX should not happen */
1072 		break;
1073 	}
1074 	if (sc->sc_hastsfadd) {
1075 		/*
1076 		 * Configure whether or not TSF adjust should be done.
1077 		 */
1078 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1079 	}
1080 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1081 		/*
1082 		 * Enable s/w beacon miss handling.
1083 		 */
1084 		sc->sc_swbmiss = 1;
1085 	}
1086 
1087 	/* complete setup */
1088 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1089 	return vap;
1090 bad2:
1091 	reclaim_address(sc, mac);
1092 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1093 bad:
1094 	kfree(avp, M_80211_VAP);
1095 	return NULL;
1096 }
1097 
1098 static void
1099 ath_vap_delete(struct ieee80211vap *vap)
1100 {
1101 	struct ieee80211com *ic = vap->iv_ic;
1102 	struct ifnet *ifp = ic->ic_ifp;
1103 	struct ath_softc *sc = ifp->if_softc;
1104 	struct ath_hal *ah = sc->sc_ah;
1105 	struct ath_vap *avp = ATH_VAP(vap);
1106 
1107 	if (ifp->if_flags & IFF_RUNNING) {
1108 		/*
1109 		 * Quiesce the hardware while we remove the vap.  In
1110 		 * particular we need to reclaim all references to
1111 		 * the vap state by any frames pending on the tx queues.
1112 		 */
1113 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1114 		ath_draintxq(sc);		/* stop xmit side */
1115 		ath_stoprecv(sc);		/* stop recv side */
1116 	}
1117 
1118 	ieee80211_vap_detach(vap);
1119 	/*
1120 	 * Reclaim beacon state.  Note this must be done before
1121 	 * the vap instance is reclaimed as we may have a reference
1122 	 * to it in the buffer for the beacon frame.
1123 	 */
1124 	if (avp->av_bcbuf != NULL) {
1125 		if (avp->av_bslot != -1) {
1126 			sc->sc_bslot[avp->av_bslot] = NULL;
1127 			sc->sc_nbcnvaps--;
1128 		}
1129 		ath_beacon_return(sc, avp->av_bcbuf);
1130 		avp->av_bcbuf = NULL;
1131 		if (sc->sc_nbcnvaps == 0) {
1132 			sc->sc_stagbeacons = 0;
1133 			if (sc->sc_hastsfadd)
1134 				ath_hal_settsfadjust(sc->sc_ah, 0);
1135 		}
1136 		/*
1137 		 * Reclaim any pending mcast frames for the vap.
1138 		 */
1139 		ath_tx_draintxq(sc, &avp->av_mcastq);
1140 	}
1141 	/*
1142 	 * Update bookkeeping.
1143 	 */
1144 	if (vap->iv_opmode == IEEE80211_M_STA) {
1145 		sc->sc_nstavaps--;
1146 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1147 			sc->sc_swbmiss = 0;
1148 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1149 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1150 		reclaim_address(sc, vap->iv_myaddr);
1151 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1152 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1153 			sc->sc_nmeshvaps--;
1154 	}
1155 	if (vap->iv_opmode != IEEE80211_M_WDS)
1156 		sc->sc_nvaps--;
1157 #ifdef IEEE80211_SUPPORT_TDMA
1158 	/* TDMA operation ceases when the last vap is destroyed */
1159 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1160 		sc->sc_tdma = 0;
1161 		sc->sc_swbmiss = 0;
1162 	}
1163 #endif
1164 	kfree(avp, M_80211_VAP);
1165 
1166 	if (ifp->if_flags & IFF_RUNNING) {
1167 		/*
1168 		 * Restart rx+tx machines if still running (RUNNING will
1169 		 * be reset if we just destroyed the last vap).
1170 		 */
1171 		if (ath_startrecv(sc) != 0)
1172 			if_printf(ifp, "%s: unable to restart recv logic\n",
1173 			    __func__);
1174 		if (sc->sc_beacons) {		/* restart beacons */
1175 #ifdef IEEE80211_SUPPORT_TDMA
1176 			if (sc->sc_tdma)
1177 				ath_tdma_config(sc, NULL);
1178 			else
1179 #endif
1180 				ath_beacon_config(sc, NULL);
1181 		}
1182 		ath_hal_intrset(ah, sc->sc_imask);
1183 	}
1184 }
1185 
1186 void
1187 ath_suspend(struct ath_softc *sc)
1188 {
1189 	struct ifnet *ifp = sc->sc_ifp;
1190 	struct ieee80211com *ic = ifp->if_l2com;
1191 
1192 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1193 		__func__, ifp->if_flags);
1194 
1195 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1196 	if (ic->ic_opmode == IEEE80211_M_STA)
1197 		ath_stop(ifp);
1198 	else
1199 		ieee80211_suspend_all(ic);
1200 	/*
1201 	 * NB: don't worry about putting the chip in low power
1202 	 * mode; pci will power off our socket on suspend and
1203 	 * CardBus detaches the device.
1204 	 */
1205 }
1206 
1207 /*
1208  * Reset the key cache since some parts do not reset the
1209  * contents on resume.  First we clear all entries, then
1210  * re-load keys that the 802.11 layer assumes are setup
1211  * in h/w.
1212  */
1213 static void
1214 ath_reset_keycache(struct ath_softc *sc)
1215 {
1216 	struct ifnet *ifp = sc->sc_ifp;
1217 	struct ieee80211com *ic = ifp->if_l2com;
1218 	struct ath_hal *ah = sc->sc_ah;
1219 	int i;
1220 
1221 	for (i = 0; i < sc->sc_keymax; i++)
1222 		ath_hal_keyreset(ah, i);
1223 	ieee80211_crypto_reload_keys(ic);
1224 }
1225 
1226 void
1227 ath_resume(struct ath_softc *sc)
1228 {
1229 	struct ifnet *ifp = sc->sc_ifp;
1230 	struct ieee80211com *ic = ifp->if_l2com;
1231 	struct ath_hal *ah = sc->sc_ah;
1232 	HAL_STATUS status;
1233 
1234 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1235 		__func__, ifp->if_flags);
1236 
1237 	/*
1238 	 * Must reset the chip before we reload the
1239 	 * keycache as we were powered down on suspend.
1240 	 */
1241 	ath_hal_reset(ah, sc->sc_opmode,
1242 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1243 	    AH_FALSE, &status);
1244 	ath_reset_keycache(sc);
1245 	if (sc->sc_resume_up) {
1246 		if (ic->ic_opmode == IEEE80211_M_STA) {
1247 			ath_init(sc);
1248 			/*
1249 			 * Program the beacon registers using the last rx'd
1250 			 * beacon frame and enable sync on the next beacon
1251 			 * we see.  This should handle the case where we
1252 			 * wakeup and find the same AP and also the case where
1253 			 * we wakeup and need to roam.  For the latter we
1254 			 * should get bmiss events that trigger a roam.
1255 			 */
1256 			ath_beacon_config(sc, NULL);
1257 			sc->sc_syncbeacon = 1;
1258 		} else
1259 			ieee80211_resume_all(ic);
1260 	}
1261 	if (sc->sc_softled) {
1262 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1263 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1264 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1265 	}
1266 }
1267 
1268 void
1269 ath_shutdown(struct ath_softc *sc)
1270 {
1271 	struct ifnet *ifp = sc->sc_ifp;
1272 
1273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1274 		__func__, ifp->if_flags);
1275 
1276 	ath_stop(ifp);
1277 	/* NB: no point powering down chip as we're about to reboot */
1278 }
1279 
1280 /*
1281  * Interrupt handler.  Most of the actual processing is deferred.
1282  */
1283 void
1284 ath_intr(void *arg)
1285 {
1286 	struct ath_softc *sc = arg;
1287 	struct ifnet *ifp = sc->sc_ifp;
1288 	struct ath_hal *ah = sc->sc_ah;
1289 	HAL_INT status;
1290 	HAL_INT ostatus;
1291 
1292 	if (sc->sc_invalid) {
1293 		/*
1294 		 * The hardware is not ready/present, don't touch anything.
1295 		 * Note this can happen early on if the IRQ is shared.
1296 		 */
1297 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1298 		return;
1299 	}
1300 
1301 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1302 		return;
1303 	if ((ifp->if_flags & IFF_UP) == 0 ||
1304 	    (ifp->if_flags & IFF_RUNNING) == 0) {
1305 		HAL_INT status;
1306 
1307 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1308 			__func__, ifp->if_flags);
1309 		ath_hal_getisr(ah, &status);	/* clear ISR */
1310 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1311 		return;
1312 	}
1313 	/*
1314 	 * Figure out the reason(s) for the interrupt.  Note
1315 	 * that the hal returns a pseudo-ISR that may include
1316 	 * bits we haven't explicitly enabled so we mask the
1317 	 * value to insure we only process bits we requested.
1318 	 */
1319 	ath_hal_getisr(ah, &ostatus);		/* NB: clears ISR too */
1320 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, ostatus);
1321 	status = ostatus & sc->sc_imask;	/* discard unasked for bits */
1322 	if (status & HAL_INT_FATAL) {
1323 		sc->sc_stats.ast_hardware++;
1324 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1325 		ath_fatal_proc(sc, 0);
1326 	} else {
1327 		if (status & HAL_INT_SWBA) {
1328 			/*
1329 			 * Software beacon alert--time to send a beacon.
1330 			 * Handle beacon transmission directly; deferring
1331 			 * this is too slow to meet timing constraints
1332 			 * under load.
1333 			 */
1334 #ifdef IEEE80211_SUPPORT_TDMA
1335 			if (sc->sc_tdma) {
1336 				if (sc->sc_tdmaswba == 0) {
1337 					struct ieee80211com *ic = ifp->if_l2com;
1338 					struct ieee80211vap *vap =
1339 					    TAILQ_FIRST(&ic->ic_vaps);
1340 					ath_tdma_beacon_send(sc, vap);
1341 					sc->sc_tdmaswba =
1342 					    vap->iv_tdma->tdma_bintval;
1343 				} else
1344 					sc->sc_tdmaswba--;
1345 			} else
1346 #endif
1347 			{
1348 				ath_beacon_proc(sc, 0);
1349 #ifdef IEEE80211_SUPPORT_SUPERG
1350 				/*
1351 				 * Schedule the rx taskq in case there's no
1352 				 * traffic so any frames held on the staging
1353 				 * queue are aged and potentially flushed.
1354 				 */
1355 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1356 #endif
1357 			}
1358 		}
1359 
1360 		/*
1361 		 * NB: The hardware should re-read the link when the RXE
1362 		 *     bit is written, but it doesn't work at least on
1363 		 *     older chipsets.
1364 		 */
1365 		if (status & HAL_INT_RXEOL) {
1366 			sc->sc_stats.ast_rxeol++;
1367 			sc->sc_rxlink = NULL;
1368 		}
1369 
1370 		if (status & HAL_INT_TXURN) {
1371 			sc->sc_stats.ast_txurn++;
1372 			/* bump tx trigger level */
1373 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1374 		}
1375 
1376 		if (status & HAL_INT_RX)
1377 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1378 
1379 		if (status & HAL_INT_TX)
1380 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1381 
1382 		if (status & HAL_INT_BMISS) {
1383 			sc->sc_stats.ast_bmiss++;
1384 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1385 		}
1386 
1387 		if (status & HAL_INT_MIB) {
1388 			sc->sc_stats.ast_mib++;
1389 			/*
1390 			 * Disable interrupts until we service the MIB
1391 			 * interrupt; otherwise it will continue to fire.
1392 			 */
1393 			ath_hal_intrset(ah, 0);
1394 			/*
1395 			 * Let the hal handle the event.  We assume it will
1396 			 * clear whatever condition caused the interrupt.
1397 			 */
1398 			ath_hal_mibevent(ah, &sc->sc_halstats);
1399 			ath_hal_intrset(ah, sc->sc_imask);
1400 		}
1401 
1402 		if (status & HAL_INT_RXORN) {
1403 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1404 			sc->sc_stats.ast_rxorn++;
1405 		}
1406 	}
1407 }
1408 
1409 static void
1410 ath_fatal_proc(void *arg, int pending)
1411 {
1412 	struct ath_softc *sc = arg;
1413 	struct ifnet *ifp = sc->sc_ifp;
1414 	u_int32_t *state;
1415 	u_int32_t len;
1416 	void *sp;
1417 
1418 	if_printf(ifp, "hardware error; resetting\n");
1419 	/*
1420 	 * Fatal errors are unrecoverable.  Typically these
1421 	 * are caused by DMA errors.  Collect h/w state from
1422 	 * the hal so we can diagnose what's going on.
1423 	 */
1424 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1425 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1426 		state = sp;
1427 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1428 		    state[0], state[1] , state[2], state[3],
1429 		    state[4], state[5]);
1430 	}
1431 	ath_reset(ifp);
1432 }
1433 
1434 static void
1435 ath_bmiss_vap(struct ieee80211vap *vap)
1436 {
1437 	/*
1438 	 * Workaround phantom bmiss interrupts by sanity-checking
1439 	 * the time of our last rx'd frame.  If it is within the
1440 	 * beacon miss interval then ignore the interrupt.  If it's
1441 	 * truly a bmiss we'll get another interrupt soon and that'll
1442 	 * be dispatched up for processing.  Note this applies only
1443 	 * for h/w beacon miss events.
1444 	 */
1445 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1446 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1447 		struct ath_softc *sc = ifp->if_softc;
1448 		u_int64_t lastrx = sc->sc_lastrx;
1449 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1450 		u_int bmisstimeout =
1451 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1452 
1453 		DPRINTF(sc, ATH_DEBUG_BEACON,
1454 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1455 		    __func__, (unsigned long long) tsf,
1456 		    (unsigned long long)(tsf - lastrx),
1457 		    (unsigned long long) lastrx, bmisstimeout);
1458 
1459 		if (tsf - lastrx <= bmisstimeout) {
1460 			sc->sc_stats.ast_bmiss_phantom++;
1461 			return;
1462 		}
1463 	}
1464 	ATH_VAP(vap)->av_bmiss(vap);
1465 }
1466 
1467 static int
1468 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1469 {
1470 	uint32_t rsize;
1471 	void *sp;
1472 
1473 	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(mask), &sp, &rsize))
1474 		return 0;
1475 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1476 	*hangs = *(uint32_t *)sp;
1477 	return 1;
1478 }
1479 
1480 static void
1481 ath_bmiss_task(void *arg, int pending)
1482 {
1483 	struct ath_softc *sc = arg;
1484 	struct ifnet *ifp = sc->sc_ifp;
1485 	uint32_t hangs;
1486 
1487 	wlan_serialize_enter();
1488 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1489 
1490 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1491 		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1492 		ath_reset(ifp);
1493 	} else {
1494 		ieee80211_beacon_miss(ifp->if_l2com);
1495 	}
1496 	wlan_serialize_exit();
1497 }
1498 
1499 /*
1500  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1501  * calcs together with WME.  If necessary disable the crypto
1502  * hardware and mark the 802.11 state so keys will be setup
1503  * with the MIC work done in software.
1504  */
1505 static void
1506 ath_settkipmic(struct ath_softc *sc)
1507 {
1508 	struct ifnet *ifp = sc->sc_ifp;
1509 	struct ieee80211com *ic = ifp->if_l2com;
1510 
1511 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1512 		if (ic->ic_flags & IEEE80211_F_WME) {
1513 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1514 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1515 		} else {
1516 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1517 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1518 		}
1519 	}
1520 }
1521 
1522 static void
1523 ath_init(void *arg)
1524 {
1525 	struct ath_softc *sc = (struct ath_softc *) arg;
1526 	struct ifnet *ifp = sc->sc_ifp;
1527 	struct ieee80211com *ic = ifp->if_l2com;
1528 	struct ath_hal *ah = sc->sc_ah;
1529 	HAL_STATUS status;
1530 
1531 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1532 		__func__, ifp->if_flags);
1533 
1534 	/*
1535 	 * Stop anything previously setup.  This is safe
1536 	 * whether this is the first time through or not.
1537 	 */
1538 	ath_stop_locked(ifp);
1539 
1540 	/*
1541 	 * The basic interface to setting the hardware in a good
1542 	 * state is ``reset''.  On return the hardware is known to
1543 	 * be powered up and with interrupts disabled.  This must
1544 	 * be followed by initialization of the appropriate bits
1545 	 * and then setup of the interrupt mask.
1546 	 */
1547 	ath_settkipmic(sc);
1548 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1549 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1550 			status);
1551 		return;
1552 	}
1553 	ath_chan_change(sc, ic->ic_curchan);
1554 
1555 	/*
1556 	 * Likewise this is set during reset so update
1557 	 * state cached in the driver.
1558 	 */
1559 	sc->sc_diversity = ath_hal_getdiversity(ah);
1560 	sc->sc_lastlongcal = 0;
1561 	sc->sc_resetcal = 1;
1562 	sc->sc_lastcalreset = 0;
1563 
1564 	/*
1565 	 * Setup the hardware after reset: the key cache
1566 	 * is filled as needed and the receive engine is
1567 	 * set going.  Frame transmit is handled entirely
1568 	 * in the frame output path; there's nothing to do
1569 	 * here except setup the interrupt mask.
1570 	 */
1571 	if (ath_startrecv(sc) != 0) {
1572 		if_printf(ifp, "unable to start recv logic\n");
1573 		return;
1574 	}
1575 
1576 	/*
1577 	 * Enable interrupts.
1578 	 */
1579 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1580 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1581 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1582 	/*
1583 	 * Enable MIB interrupts when there are hardware phy counters.
1584 	 * Note we only do this (at the moment) for station mode.
1585 	 */
1586 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1587 		sc->sc_imask |= HAL_INT_MIB;
1588 
1589 	ifp->if_flags |= IFF_RUNNING;
1590 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog_callout, sc);
1591 	ath_hal_intrset(ah, sc->sc_imask);
1592 
1593 
1594 #ifdef ATH_TX99_DIAG
1595 	if (sc->sc_tx99 != NULL)
1596 		sc->sc_tx99->start(sc->sc_tx99);
1597 	else
1598 #endif
1599 	ieee80211_start_all(ic);		/* start all vap's */
1600 }
1601 
1602 static void
1603 ath_stop_locked(struct ifnet *ifp)
1604 {
1605 	struct ath_softc *sc = ifp->if_softc;
1606 	struct ath_hal *ah = sc->sc_ah;
1607 
1608 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1609 		__func__, sc->sc_invalid, ifp->if_flags);
1610 
1611 	if (ifp->if_flags & IFF_RUNNING) {
1612 		/*
1613 		 * Shutdown the hardware and driver:
1614 		 *    reset 802.11 state machine
1615 		 *    turn off timers
1616 		 *    disable interrupts
1617 		 *    turn off the radio
1618 		 *    clear transmit machinery
1619 		 *    clear receive machinery
1620 		 *    drain and release tx queues
1621 		 *    reclaim beacon resources
1622 		 *    power down hardware
1623 		 *
1624 		 * Note that some of this work is not possible if the
1625 		 * hardware is gone (invalid).
1626 		 */
1627 #ifdef ATH_TX99_DIAG
1628 		if (sc->sc_tx99 != NULL)
1629 			sc->sc_tx99->stop(sc->sc_tx99);
1630 #endif
1631 		callout_stop(&sc->sc_wd_ch);
1632 		sc->sc_wd_timer = 0;
1633 		ifp->if_flags &= ~IFF_RUNNING;
1634 		if (!sc->sc_invalid) {
1635 			if (sc->sc_softled) {
1636 				callout_stop(&sc->sc_ledtimer);
1637 				ath_hal_gpioset(ah, sc->sc_ledpin,
1638 					!sc->sc_ledon);
1639 				sc->sc_blinking = 0;
1640 			}
1641 			ath_hal_intrset(ah, 0);
1642 		}
1643 		ath_draintxq(sc);
1644 		if (!sc->sc_invalid) {
1645 			ath_stoprecv(sc);
1646 			ath_hal_phydisable(ah);
1647 		} else
1648 			sc->sc_rxlink = NULL;
1649 		ath_beacon_free(sc);	/* XXX not needed */
1650 	}
1651 }
1652 
1653 static void
1654 ath_stop(struct ifnet *ifp)
1655 {
1656 	struct ath_softc *sc __unused = ifp->if_softc;
1657 
1658 	ath_stop_locked(ifp);
1659 }
1660 
1661 /*
1662  * Reset the hardware w/o losing operational state.  This is
1663  * basically a more efficient way of doing ath_stop, ath_init,
1664  * followed by state transitions to the current 802.11
1665  * operational state.  Used to recover from various errors and
1666  * to reset or reload hardware state.
1667  */
1668 static int
1669 ath_reset(struct ifnet *ifp)
1670 {
1671 	struct ath_softc *sc = ifp->if_softc;
1672 	struct ieee80211com *ic = ifp->if_l2com;
1673 	struct ath_hal *ah = sc->sc_ah;
1674 	HAL_STATUS status;
1675 
1676 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1677 	ath_draintxq(sc);		/* stop xmit side */
1678 	ath_stoprecv(sc);		/* stop recv side */
1679 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1680 	/* NB: indicate channel change so we do a full reset */
1681 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1682 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1683 			__func__, status);
1684 	sc->sc_diversity = ath_hal_getdiversity(ah);
1685 	if (ath_startrecv(sc) != 0)	/* restart recv */
1686 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1687 	/*
1688 	 * We may be doing a reset in response to an ioctl
1689 	 * that changes the channel so update any state that
1690 	 * might change as a result.
1691 	 */
1692 	ath_chan_change(sc, ic->ic_curchan);
1693 	if (sc->sc_beacons) {		/* restart beacons */
1694 #ifdef IEEE80211_SUPPORT_TDMA
1695 		if (sc->sc_tdma)
1696 			ath_tdma_config(sc, NULL);
1697 		else
1698 #endif
1699 			ath_beacon_config(sc, NULL);
1700 	}
1701 	ath_hal_intrset(ah, sc->sc_imask);
1702 
1703 	if_devstart(ifp);	/* restart xmit */
1704 	return 0;
1705 }
1706 
1707 static int
1708 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1709 {
1710 	struct ieee80211com *ic = vap->iv_ic;
1711 	struct ifnet *ifp = ic->ic_ifp;
1712 	struct ath_softc *sc = ifp->if_softc;
1713 	struct ath_hal *ah = sc->sc_ah;
1714 
1715 	switch (cmd) {
1716 	case IEEE80211_IOC_TXPOWER:
1717 		/*
1718 		 * If per-packet TPC is enabled, then we have nothing
1719 		 * to do; otherwise we need to force the global limit.
1720 		 * All this can happen directly; no need to reset.
1721 		 */
1722 		if (!ath_hal_gettpc(ah))
1723 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1724 		return 0;
1725 	}
1726 	return ath_reset(ifp);
1727 }
1728 
1729 static struct ath_buf *
1730 _ath_getbuf_locked(struct ath_softc *sc)
1731 {
1732 	struct ath_buf *bf;
1733 
1734 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1735 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1736 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1737 	else
1738 		bf = NULL;
1739 	if (bf == NULL) {
1740 		kprintf("ath: ran out of descriptors\n");
1741 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1742 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1743 			"out of xmit buffers" : "xmit buffer busy");
1744 	}
1745 	return bf;
1746 }
1747 
1748 static struct ath_buf *
1749 ath_getbuf(struct ath_softc *sc)
1750 {
1751 	struct ath_buf *bf;
1752 
1753 	bf = _ath_getbuf_locked(sc);
1754 	if (bf == NULL) {
1755 		struct ifnet *ifp = sc->sc_ifp;
1756 
1757 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1758 		sc->sc_stats.ast_tx_qstop++;
1759 		ifq_set_oactive(&ifp->if_snd);
1760 	}
1761 	return bf;
1762 }
1763 
1764 /*
1765  * Cleanup driver resources when we run out of buffers
1766  * while processing fragments; return the tx buffers
1767  * allocated and drop node references.
1768  */
1769 static void
1770 ath_txfrag_cleanup(struct ath_softc *sc,
1771 	ath_bufhead *frags, struct ieee80211_node *ni)
1772 {
1773 	struct ath_buf *bf, *next;
1774 
1775 	STAILQ_FOREACH_MUTABLE(bf, frags, bf_list, next) {
1776 		/* NB: bf assumed clean */
1777 		STAILQ_REMOVE_HEAD(frags, bf_list);
1778 		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1779 		ieee80211_node_decref(ni);
1780 	}
1781 }
1782 
1783 /*
1784  * Setup xmit of a fragmented frame.  Allocate a buffer
1785  * for each frag and bump the node reference count to
1786  * reflect the held reference to be setup by ath_tx_start.
1787  */
1788 static int
1789 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1790 	struct mbuf *m0, struct ieee80211_node *ni)
1791 {
1792 	struct mbuf *m;
1793 	struct ath_buf *bf;
1794 
1795 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1796 		bf = _ath_getbuf_locked(sc);
1797 		if (bf == NULL) {	/* out of buffers, cleanup */
1798 			ath_txfrag_cleanup(sc, frags, ni);
1799 			break;
1800 		}
1801 		ieee80211_node_incref(ni);
1802 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1803 	}
1804 
1805 	return !STAILQ_EMPTY(frags);
1806 }
1807 
1808 static void
1809 ath_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1810 {
1811 	struct ath_softc *sc = ifp->if_softc;
1812 	struct ieee80211_node *ni;
1813 	struct ath_buf *bf;
1814 	struct mbuf *m, *next;
1815 	ath_bufhead frags;
1816 
1817 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1818 
1819 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
1820 		ifq_purge(&ifp->if_snd);
1821 		return;
1822 	}
1823 	for (;;) {
1824 		/*
1825 		 * Grab a TX buffer and associated resources.
1826 		 */
1827 		bf = ath_getbuf(sc);
1828 		if (bf == NULL)
1829 			break;
1830 
1831 		m = ifq_dequeue(&ifp->if_snd, NULL);
1832 		if (m == NULL) {
1833 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1834 			break;
1835 		}
1836 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1837 		/*
1838 		 * Check for fragmentation.  If this frame
1839 		 * has been broken up verify we have enough
1840 		 * buffers to send all the fragments so all
1841 		 * go out or none...
1842 		 */
1843 		STAILQ_INIT(&frags);
1844 		if ((m->m_flags & M_FRAG) &&
1845 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1846 			DPRINTF(sc, ATH_DEBUG_XMIT,
1847 			    "%s: out of txfrag buffers\n", __func__);
1848 			sc->sc_stats.ast_tx_nofrag++;
1849 			ifp->if_oerrors++;
1850 			ath_freetx(m);
1851 			goto bad;
1852 		}
1853 		ifp->if_opackets++;
1854 	nextfrag:
1855 		/*
1856 		 * Pass the frame to the h/w for transmission.
1857 		 * Fragmented frames have each frag chained together
1858 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1859 		 * to send all the frags because of work done by
1860 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1861 		 * calling ath_tx_start so it can use it to extend the
1862 		 * the tx duration to cover the subsequent frag and
1863 		 * so it can reclaim all the mbufs in case of an error;
1864 		 * ath_tx_start clears m_nextpkt once it commits to
1865 		 * handing the frame to the hardware.
1866 		 */
1867 		next = m->m_nextpkt;
1868 		if (ath_tx_start(sc, ni, bf, m)) {
1869 	bad:
1870 			ifp->if_oerrors++;
1871 	reclaim:
1872 			bf->bf_m = NULL;
1873 			bf->bf_node = NULL;
1874 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1875 			ath_txfrag_cleanup(sc, &frags, ni);
1876 			if (ni != NULL)
1877 				ieee80211_free_node(ni);
1878 			continue;
1879 		}
1880 		if (next != NULL) {
1881 			/*
1882 			 * Beware of state changing between frags.
1883 			 * XXX check sta power-save state?
1884 			 */
1885 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1886 				DPRINTF(sc, ATH_DEBUG_XMIT,
1887 				    "%s: flush fragmented packet, state %s\n",
1888 				    __func__,
1889 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1890 				ath_freetx(next);
1891 				goto reclaim;
1892 			}
1893 			m = next;
1894 			bf = STAILQ_FIRST(&frags);
1895 			KASSERT(bf != NULL, ("no buf for txfrag"));
1896 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1897 			goto nextfrag;
1898 		}
1899 
1900 		sc->sc_wd_timer = 5;
1901 	}
1902 }
1903 
1904 static int
1905 ath_media_change(struct ifnet *ifp)
1906 {
1907 	int error = ieee80211_media_change(ifp);
1908 	/* NB: only the fixed rate can change and that doesn't need a reset */
1909 	return (error == ENETRESET ? 0 : error);
1910 }
1911 
1912 #ifdef ATH_DEBUG
1913 static void
1914 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1915 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1916 {
1917 	static const char *ciphers[] = {
1918 		"WEP",
1919 		"AES-OCB",
1920 		"AES-CCM",
1921 		"CKIP",
1922 		"TKIP",
1923 		"CLR",
1924 	};
1925 	char ethstr[ETHER_ADDRSTRLEN + 1];
1926 	int i, n;
1927 
1928 	kprintf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1929 	for (i = 0, n = hk->kv_len; i < n; i++)
1930 		kprintf("%02x", hk->kv_val[i]);
1931 	kprintf(" mac %s", kether_ntoa(mac, ethstr));
1932 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1933 		kprintf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1934 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1935 			kprintf("%02x", hk->kv_mic[i]);
1936 		if (!sc->sc_splitmic) {
1937 			kprintf(" txmic ");
1938 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1939 				kprintf("%02x", hk->kv_txmic[i]);
1940 		}
1941 	}
1942 	kprintf("\n");
1943 }
1944 #endif
1945 
1946 /*
1947  * Set a TKIP key into the hardware.  This handles the
1948  * potential distribution of key state to multiple key
1949  * cache slots for TKIP.
1950  */
1951 static int
1952 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1953 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1954 {
1955 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1956 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1957 	struct ath_hal *ah = sc->sc_ah;
1958 
1959 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1960 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1961 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1962 		if (sc->sc_splitmic) {
1963 			/*
1964 			 * TX key goes at first index, RX key at the rx index.
1965 			 * The hal handles the MIC keys at index+64.
1966 			 */
1967 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1968 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1969 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1970 				return 0;
1971 
1972 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1973 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1974 			/* XXX delete tx key on failure? */
1975 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1976 		} else {
1977 			/*
1978 			 * Room for both TX+RX MIC keys in one key cache
1979 			 * slot, just set key at the first index; the hal
1980 			 * will handle the rest.
1981 			 */
1982 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1983 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1984 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1985 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1986 		}
1987 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1988 		if (sc->sc_splitmic) {
1989 			/*
1990 			 * NB: must pass MIC key in expected location when
1991 			 * the keycache only holds one MIC key per entry.
1992 			 */
1993 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1994 		} else
1995 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1996 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1997 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1998 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1999 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2000 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2001 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2002 	}
2003 	return 0;
2004 #undef IEEE80211_KEY_XR
2005 }
2006 
2007 /*
2008  * Set a net80211 key into the hardware.  This handles the
2009  * potential distribution of key state to multiple key
2010  * cache slots for TKIP with hardware MIC support.
2011  */
2012 static int
2013 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2014 	struct ieee80211_node *bss)
2015 {
2016 	static const u_int8_t ciphermap[] = {
2017 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2018 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2019 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2020 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2021 		(u_int8_t) -1,		/* 4 is not allocated */
2022 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2023 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2024 	};
2025 	struct ath_hal *ah = sc->sc_ah;
2026 	const struct ieee80211_cipher *cip = k->wk_cipher;
2027 	u_int8_t gmac[IEEE80211_ADDR_LEN];
2028 	const u_int8_t *mac;
2029 	HAL_KEYVAL hk;
2030 
2031 	memset(&hk, 0, sizeof(hk));
2032 	/*
2033 	 * Software crypto uses a "clear key" so non-crypto
2034 	 * state kept in the key cache are maintained and
2035 	 * so that rx frames have an entry to match.
2036 	 */
2037 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2038 		KASSERT(cip->ic_cipher < NELEM(ciphermap),
2039 			("invalid cipher type %u", cip->ic_cipher));
2040 		hk.kv_type = ciphermap[cip->ic_cipher];
2041 		hk.kv_len = k->wk_keylen;
2042 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2043 	} else
2044 		hk.kv_type = HAL_CIPHER_CLR;
2045 
2046 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2047 		/*
2048 		 * Group keys on hardware that supports multicast frame
2049 		 * key search use a MAC that is the sender's address with
2050 		 * the high bit set instead of the app-specified address.
2051 		 */
2052 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2053 		gmac[0] |= 0x80;
2054 		mac = gmac;
2055 	} else
2056 		mac = k->wk_macaddr;
2057 
2058 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2059 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2060 		return ath_keyset_tkip(sc, k, &hk, mac);
2061 	} else {
2062 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2063 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2064 	}
2065 }
2066 
2067 /*
2068  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2069  * each key, one for decrypt/encrypt and the other for the MIC.
2070  */
2071 static u_int16_t
2072 key_alloc_2pair(struct ath_softc *sc,
2073 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2074 {
2075 	u_int i, keyix;
2076 
2077 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2078 	/* XXX could optimize */
2079 	for (i = 0; i < NELEM(sc->sc_keymap)/4; i++) {
2080 		u_int8_t b = sc->sc_keymap[i];
2081 		if (b != 0xff) {
2082 			/*
2083 			 * One or more slots in this byte are free.
2084 			 */
2085 			keyix = i*NBBY;
2086 			while (b & 1) {
2087 		again:
2088 				keyix++;
2089 				b >>= 1;
2090 			}
2091 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2092 			if (isset(sc->sc_keymap, keyix+32) ||
2093 			    isset(sc->sc_keymap, keyix+64) ||
2094 			    isset(sc->sc_keymap, keyix+32+64)) {
2095 				/* full pair unavailable */
2096 				/* XXX statistic */
2097 				if (keyix == (i+1)*NBBY) {
2098 					/* no slots were appropriate, advance */
2099 					continue;
2100 				}
2101 				goto again;
2102 			}
2103 			setbit(sc->sc_keymap, keyix);
2104 			setbit(sc->sc_keymap, keyix+64);
2105 			setbit(sc->sc_keymap, keyix+32);
2106 			setbit(sc->sc_keymap, keyix+32+64);
2107 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2108 				"%s: key pair %u,%u %u,%u\n",
2109 				__func__, keyix, keyix+64,
2110 				keyix+32, keyix+32+64);
2111 			*txkeyix = keyix;
2112 			*rxkeyix = keyix+32;
2113 			return 1;
2114 		}
2115 	}
2116 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2117 	return 0;
2118 }
2119 
2120 /*
2121  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2122  * each key, one for decrypt/encrypt and the other for the MIC.
2123  */
2124 static u_int16_t
2125 key_alloc_pair(struct ath_softc *sc,
2126 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2127 {
2128 	u_int i, keyix;
2129 
2130 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2131 	/* XXX could optimize */
2132 	for (i = 0; i < NELEM(sc->sc_keymap)/4; i++) {
2133 		u_int8_t b = sc->sc_keymap[i];
2134 		if (b != 0xff) {
2135 			/*
2136 			 * One or more slots in this byte are free.
2137 			 */
2138 			keyix = i*NBBY;
2139 			while (b & 1) {
2140 		again:
2141 				keyix++;
2142 				b >>= 1;
2143 			}
2144 			if (isset(sc->sc_keymap, keyix+64)) {
2145 				/* full pair unavailable */
2146 				/* XXX statistic */
2147 				if (keyix == (i+1)*NBBY) {
2148 					/* no slots were appropriate, advance */
2149 					continue;
2150 				}
2151 				goto again;
2152 			}
2153 			setbit(sc->sc_keymap, keyix);
2154 			setbit(sc->sc_keymap, keyix+64);
2155 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2156 				"%s: key pair %u,%u\n",
2157 				__func__, keyix, keyix+64);
2158 			*txkeyix = *rxkeyix = keyix;
2159 			return 1;
2160 		}
2161 	}
2162 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2163 	return 0;
2164 }
2165 
2166 /*
2167  * Allocate a single key cache slot.
2168  */
2169 static int
2170 key_alloc_single(struct ath_softc *sc,
2171 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2172 {
2173 	u_int i, keyix;
2174 
2175 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2176 	for (i = 0; i < NELEM(sc->sc_keymap); i++) {
2177 		u_int8_t b = sc->sc_keymap[i];
2178 		if (b != 0xff) {
2179 			/*
2180 			 * One or more slots are free.
2181 			 */
2182 			keyix = i*NBBY;
2183 			while (b & 1)
2184 				keyix++, b >>= 1;
2185 			setbit(sc->sc_keymap, keyix);
2186 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2187 				__func__, keyix);
2188 			*txkeyix = *rxkeyix = keyix;
2189 			return 1;
2190 		}
2191 	}
2192 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2193 	return 0;
2194 }
2195 
2196 /*
2197  * Allocate one or more key cache slots for a uniacst key.  The
2198  * key itself is needed only to identify the cipher.  For hardware
2199  * TKIP with split cipher+MIC keys we allocate two key cache slot
2200  * pairs so that we can setup separate TX and RX MIC keys.  Note
2201  * that the MIC key for a TKIP key at slot i is assumed by the
2202  * hardware to be at slot i+64.  This limits TKIP keys to the first
2203  * 64 entries.
2204  */
2205 static int
2206 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2207 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2208 {
2209 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2210 
2211 	/*
2212 	 * Group key allocation must be handled specially for
2213 	 * parts that do not support multicast key cache search
2214 	 * functionality.  For those parts the key id must match
2215 	 * the h/w key index so lookups find the right key.  On
2216 	 * parts w/ the key search facility we install the sender's
2217 	 * mac address (with the high bit set) and let the hardware
2218 	 * find the key w/o using the key id.  This is preferred as
2219 	 * it permits us to support multiple users for adhoc and/or
2220 	 * multi-station operation.
2221 	 */
2222 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
2223 		/*
2224 		 * Only global keys should have key index assigned.
2225 		 */
2226 		if (!(&vap->iv_nw_keys[0] <= k &&
2227 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2228 			/* should not happen */
2229 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2230 				"%s: bogus group key\n", __func__);
2231 			return 0;
2232 		}
2233 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
2234 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
2235 		    !sc->sc_mcastkey) {
2236 			/*
2237 			 * XXX we pre-allocate the global keys so
2238 			 * have no way to check if they've already
2239 			 * been allocated.
2240 			 */
2241 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
2242 			return 1;
2243 		}
2244 		/*
2245 		 * Group key and device supports multicast key search.
2246 		 */
2247 		k->wk_keyix = IEEE80211_KEYIX_NONE;
2248 	}
2249 
2250 	/*
2251 	 * We allocate two pair for TKIP when using the h/w to do
2252 	 * the MIC.  For everything else, including software crypto,
2253 	 * we allocate a single entry.  Note that s/w crypto requires
2254 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2255 	 * not support pass-through cache entries and we map all
2256 	 * those requests to slot 0.
2257 	 */
2258 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2259 		return key_alloc_single(sc, keyix, rxkeyix);
2260 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2261 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2262 		if (sc->sc_splitmic)
2263 			return key_alloc_2pair(sc, keyix, rxkeyix);
2264 		else
2265 			return key_alloc_pair(sc, keyix, rxkeyix);
2266 	} else {
2267 		return key_alloc_single(sc, keyix, rxkeyix);
2268 	}
2269 }
2270 
2271 /*
2272  * Delete an entry in the key cache allocated by ath_key_alloc.
2273  */
2274 static int
2275 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2276 {
2277 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2278 	struct ath_hal *ah = sc->sc_ah;
2279 	const struct ieee80211_cipher *cip = k->wk_cipher;
2280 	u_int keyix = k->wk_keyix;
2281 
2282 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2283 
2284 	ath_hal_keyreset(ah, keyix);
2285 	/*
2286 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2287 	 */
2288 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2289 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2290 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2291 	if (keyix >= IEEE80211_WEP_NKID) {
2292 		/*
2293 		 * Don't touch keymap entries for global keys so
2294 		 * they are never considered for dynamic allocation.
2295 		 */
2296 		clrbit(sc->sc_keymap, keyix);
2297 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2298 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2299 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2300 			if (sc->sc_splitmic) {
2301 				/* +32 for RX key, +32+64 for RX key MIC */
2302 				clrbit(sc->sc_keymap, keyix+32);
2303 				clrbit(sc->sc_keymap, keyix+32+64);
2304 			}
2305 		}
2306 	}
2307 	return 1;
2308 }
2309 
2310 /*
2311  * Set the key cache contents for the specified key.  Key cache
2312  * slot(s) must already have been allocated by ath_key_alloc.
2313  */
2314 static int
2315 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2316 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2317 {
2318 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2319 
2320 	return ath_keyset(sc, k, vap->iv_bss);
2321 }
2322 
2323 /*
2324  * Block/unblock tx+rx processing while a key change is done.
2325  * We assume the caller serializes key management operations
2326  * so we only need to worry about synchronization with other
2327  * uses that originate in the driver.
2328  */
2329 static void
2330 ath_key_update_begin(struct ieee80211vap *vap)
2331 {
2332 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2333 	struct ath_softc *sc = ifp->if_softc;
2334 
2335 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2336 	taskqueue_block(sc->sc_tq);
2337 }
2338 
2339 static void
2340 ath_key_update_end(struct ieee80211vap *vap)
2341 {
2342 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2343 	struct ath_softc *sc = ifp->if_softc;
2344 
2345 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2346 	taskqueue_unblock(sc->sc_tq);
2347 }
2348 
2349 /*
2350  * Calculate the receive filter according to the
2351  * operating mode and state:
2352  *
2353  * o always accept unicast, broadcast, and multicast traffic
2354  * o accept PHY error frames when hardware doesn't have MIB support
2355  *   to count and we need them for ANI (sta mode only until recently)
2356  *   and we are not scanning (ANI is disabled)
2357  *   NB: older hal's add rx filter bits out of sight and we need to
2358  *	 blindly preserve them
2359  * o probe request frames are accepted only when operating in
2360  *   hostap, adhoc, mesh, or monitor modes
2361  * o enable promiscuous mode
2362  *   - when in monitor mode
2363  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2364  * o accept beacons:
2365  *   - when operating in station mode for collecting rssi data when
2366  *     the station is otherwise quiet, or
2367  *   - when operating in adhoc mode so the 802.11 layer creates
2368  *     node table entries for peers,
2369  *   - when scanning
2370  *   - when doing s/w beacon miss (e.g. for ap+sta)
2371  *   - when operating in ap mode in 11g to detect overlapping bss that
2372  *     require protection
2373  *   - when operating in mesh mode to detect neighbors
2374  * o accept control frames:
2375  *   - when in monitor mode
2376  * XXX BAR frames for 11n
2377  * XXX HT protection for 11n
2378  */
2379 static u_int32_t
2380 ath_calcrxfilter(struct ath_softc *sc)
2381 {
2382 	struct ifnet *ifp = sc->sc_ifp;
2383 	struct ieee80211com *ic = ifp->if_l2com;
2384 	u_int32_t rfilt;
2385 
2386 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2387 	if (!sc->sc_needmib && !sc->sc_scanning)
2388 		rfilt |= HAL_RX_FILTER_PHYERR;
2389 	if (ic->ic_opmode != IEEE80211_M_STA)
2390 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2391 	/* XXX ic->ic_monvaps != 0? */
2392 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2393 		rfilt |= HAL_RX_FILTER_PROM;
2394 	if (ic->ic_opmode == IEEE80211_M_STA ||
2395 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2396 	    sc->sc_swbmiss || sc->sc_scanning)
2397 		rfilt |= HAL_RX_FILTER_BEACON;
2398 	/*
2399 	 * NB: We don't recalculate the rx filter when
2400 	 * ic_protmode changes; otherwise we could do
2401 	 * this only when ic_protmode != NONE.
2402 	 */
2403 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2404 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2405 		rfilt |= HAL_RX_FILTER_BEACON;
2406 	if (sc->sc_nmeshvaps) {
2407 		rfilt |= HAL_RX_FILTER_BEACON;
2408 		if (sc->sc_hasbmatch)
2409 			rfilt |= HAL_RX_FILTER_BSSID;
2410 		else
2411 			rfilt |= HAL_RX_FILTER_PROM;
2412 	}
2413 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2414 		rfilt |= HAL_RX_FILTER_CONTROL;
2415 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2416 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2417 	return rfilt;
2418 }
2419 
2420 static void
2421 ath_update_promisc(struct ifnet *ifp)
2422 {
2423 	struct ath_softc *sc = ifp->if_softc;
2424 	u_int32_t rfilt;
2425 
2426 	/* configure rx filter */
2427 	rfilt = ath_calcrxfilter(sc);
2428 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2429 
2430 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2431 }
2432 
2433 static void
2434 ath_update_mcast(struct ifnet *ifp)
2435 {
2436 	struct ath_softc *sc = ifp->if_softc;
2437 	u_int32_t mfilt[2];
2438 
2439 	/* calculate and install multicast filter */
2440 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2441 		struct ifmultiaddr *ifma;
2442 		/*
2443 		 * Merge multicast addresses to form the hardware filter.
2444 		 */
2445 		mfilt[0] = mfilt[1] = 0;
2446 #ifdef __FreeBSD__
2447 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2448 #endif
2449 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2450 			caddr_t dl;
2451 			u_int32_t val;
2452 			u_int8_t pos;
2453 
2454 			/* calculate XOR of eight 6bit values */
2455 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2456 			val = LE_READ_4(dl + 0);
2457 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2458 			val = LE_READ_4(dl + 3);
2459 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2460 			pos &= 0x3f;
2461 			mfilt[pos / 32] |= (1 << (pos % 32));
2462 		}
2463 #ifdef __FreeBSD__
2464 		if_maddr_runlock(ifp);
2465 #endif
2466 	} else
2467 		mfilt[0] = mfilt[1] = ~0;
2468 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2469 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2470 		__func__, mfilt[0], mfilt[1]);
2471 }
2472 
2473 static void
2474 ath_mode_init(struct ath_softc *sc)
2475 {
2476 	struct ifnet *ifp = sc->sc_ifp;
2477 	struct ath_hal *ah = sc->sc_ah;
2478 	u_int32_t rfilt;
2479 
2480 	/* configure rx filter */
2481 	rfilt = ath_calcrxfilter(sc);
2482 	ath_hal_setrxfilter(ah, rfilt);
2483 
2484 	/* configure operational mode */
2485 	ath_hal_setopmode(ah);
2486 
2487 	/* handle any link-level address change */
2488 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2489 
2490 	/* calculate and install multicast filter */
2491 	ath_update_mcast(ifp);
2492 }
2493 
2494 /*
2495  * Set the slot time based on the current setting.
2496  */
2497 static void
2498 ath_setslottime(struct ath_softc *sc)
2499 {
2500 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2501 	struct ath_hal *ah = sc->sc_ah;
2502 	u_int usec;
2503 
2504 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2505 		usec = 13;
2506 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2507 		usec = 21;
2508 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2509 		/* honor short/long slot time only in 11g */
2510 		/* XXX shouldn't honor on pure g or turbo g channel */
2511 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2512 			usec = HAL_SLOT_TIME_9;
2513 		else
2514 			usec = HAL_SLOT_TIME_20;
2515 	} else
2516 		usec = HAL_SLOT_TIME_9;
2517 
2518 	DPRINTF(sc, ATH_DEBUG_RESET,
2519 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2520 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2521 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2522 
2523 	ath_hal_setslottime(ah, usec);
2524 	sc->sc_updateslot = OK;
2525 }
2526 
2527 /*
2528  * Callback from the 802.11 layer to update the
2529  * slot time based on the current setting.
2530  */
2531 static void
2532 ath_updateslot(struct ifnet *ifp)
2533 {
2534 	struct ath_softc *sc = ifp->if_softc;
2535 	struct ieee80211com *ic = ifp->if_l2com;
2536 
2537 	/*
2538 	 * When not coordinating the BSS, change the hardware
2539 	 * immediately.  For other operation we defer the change
2540 	 * until beacon updates have propagated to the stations.
2541 	 */
2542 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2543 	    ic->ic_opmode == IEEE80211_M_MBSS)
2544 		sc->sc_updateslot = UPDATE;
2545 	else
2546 		ath_setslottime(sc);
2547 }
2548 
2549 /*
2550  * Setup a h/w transmit queue for beacons.
2551  */
2552 static int
2553 ath_beaconq_setup(struct ath_hal *ah)
2554 {
2555 	HAL_TXQ_INFO qi;
2556 
2557 	memset(&qi, 0, sizeof(qi));
2558 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2559 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2560 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2561 	/* NB: for dynamic turbo, don't enable any other interrupts */
2562 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2563 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2564 }
2565 
2566 /*
2567  * Setup the transmit queue parameters for the beacon queue.
2568  */
2569 static int
2570 ath_beaconq_config(struct ath_softc *sc)
2571 {
2572 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2573 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2574 	struct ath_hal *ah = sc->sc_ah;
2575 	HAL_TXQ_INFO qi;
2576 
2577 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2578 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2579 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2580 		/*
2581 		 * Always burst out beacon and CAB traffic.
2582 		 */
2583 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2584 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2585 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2586 	} else {
2587 		struct wmeParams *wmep =
2588 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2589 		/*
2590 		 * Adhoc mode; important thing is to use 2x cwmin.
2591 		 */
2592 		qi.tqi_aifs = wmep->wmep_aifsn;
2593 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2594 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2595 	}
2596 
2597 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2598 		device_printf(sc->sc_dev, "unable to update parameters for "
2599 			"beacon hardware queue!\n");
2600 		return 0;
2601 	} else {
2602 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2603 		return 1;
2604 	}
2605 #undef ATH_EXPONENT_TO_VALUE
2606 }
2607 
2608 /*
2609  * Allocate and setup an initial beacon frame.
2610  */
2611 static int
2612 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2613 {
2614 	struct ieee80211vap *vap = ni->ni_vap;
2615 	struct ath_vap *avp = ATH_VAP(vap);
2616 	struct ath_buf *bf;
2617 	struct mbuf *m;
2618 	int error;
2619 
2620 	bf = avp->av_bcbuf;
2621 	if (bf->bf_m != NULL) {
2622 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2623 		m_freem(bf->bf_m);
2624 		bf->bf_m = NULL;
2625 	}
2626 	if (bf->bf_node != NULL) {
2627 		ieee80211_free_node(bf->bf_node);
2628 		bf->bf_node = NULL;
2629 	}
2630 
2631 	/*
2632 	 * NB: the beacon data buffer must be 32-bit aligned;
2633 	 * we assume the mbuf routines will return us something
2634 	 * with this alignment (perhaps should assert).
2635 	 */
2636 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2637 	if (m == NULL) {
2638 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2639 		sc->sc_stats.ast_be_nombuf++;
2640 		return ENOMEM;
2641 	}
2642 	error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
2643 				     bf->bf_segs, 1, &bf->bf_nseg,
2644 				     BUS_DMA_NOWAIT);
2645 	if (error != 0) {
2646 		device_printf(sc->sc_dev,
2647 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_segment returns %d\n",
2648 		    __func__, error);
2649 		m_freem(m);
2650 		return error;
2651 	}
2652 
2653 	/*
2654 	 * Calculate a TSF adjustment factor required for staggered
2655 	 * beacons.  Note that we assume the format of the beacon
2656 	 * frame leaves the tstamp field immediately following the
2657 	 * header.
2658 	 */
2659 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2660 		uint64_t tsfadjust;
2661 		struct ieee80211_frame *wh;
2662 
2663 		/*
2664 		 * The beacon interval is in TU's; the TSF is in usecs.
2665 		 * We figure out how many TU's to add to align the timestamp
2666 		 * then convert to TSF units and handle byte swapping before
2667 		 * inserting it in the frame.  The hardware will then add this
2668 		 * each time a beacon frame is sent.  Note that we align vap's
2669 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2670 		 * timestamp in one beacon interval while the others get a
2671 		 * timstamp aligned to the next interval.
2672 		 */
2673 		tsfadjust = ni->ni_intval *
2674 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2675 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2676 
2677 		DPRINTF(sc, ATH_DEBUG_BEACON,
2678 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2679 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2680 		    avp->av_bslot, ni->ni_intval,
2681 		    (long long unsigned) le64toh(tsfadjust));
2682 
2683 		wh = mtod(m, struct ieee80211_frame *);
2684 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2685 	}
2686 	bf->bf_m = m;
2687 	bf->bf_node = ieee80211_ref_node(ni);
2688 
2689 	return 0;
2690 }
2691 
2692 /*
2693  * Setup the beacon frame for transmit.
2694  */
2695 static void
2696 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2697 {
2698 #define	USE_SHPREAMBLE(_ic) \
2699 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2700 		== IEEE80211_F_SHPREAMBLE)
2701 	struct ieee80211_node *ni = bf->bf_node;
2702 	struct ieee80211com *ic = ni->ni_ic;
2703 	struct mbuf *m = bf->bf_m;
2704 	struct ath_hal *ah = sc->sc_ah;
2705 	struct ath_desc *ds;
2706 	int flags, antenna;
2707 	const HAL_RATE_TABLE *rt;
2708 	u_int8_t rix, rate;
2709 
2710 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2711 		__func__, m, m->m_len);
2712 
2713 	/* setup descriptors */
2714 	ds = bf->bf_desc;
2715 
2716 	flags = HAL_TXDESC_NOACK;
2717 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2718 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2719 		flags |= HAL_TXDESC_VEOL;
2720 		/*
2721 		 * Let hardware handle antenna switching.
2722 		 */
2723 		antenna = sc->sc_txantenna;
2724 	} else {
2725 		ds->ds_link = 0;
2726 		/*
2727 		 * Switch antenna every 4 beacons.
2728 		 * XXX assumes two antenna
2729 		 */
2730 		if (sc->sc_txantenna != 0)
2731 			antenna = sc->sc_txantenna;
2732 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2733 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2734 		else
2735 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2736 	}
2737 
2738 	KASSERT(bf->bf_nseg == 1,
2739 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2740 	ds->ds_data = bf->bf_segs[0].ds_addr;
2741 	/*
2742 	 * Calculate rate code.
2743 	 * XXX everything at min xmit rate
2744 	 */
2745 	rix = 0;
2746 	rt = sc->sc_currates;
2747 	rate = rt->info[rix].rateCode;
2748 	if (USE_SHPREAMBLE(ic))
2749 		rate |= rt->info[rix].shortPreamble;
2750 	ath_hal_setuptxdesc(ah, ds
2751 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2752 		, sizeof(struct ieee80211_frame)/* header length */
2753 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2754 		, ni->ni_txpower		/* txpower XXX */
2755 		, rate, 1			/* series 0 rate/tries */
2756 		, HAL_TXKEYIX_INVALID		/* no encryption */
2757 		, antenna			/* antenna mode */
2758 		, flags				/* no ack, veol for beacons */
2759 		, 0				/* rts/cts rate */
2760 		, 0				/* rts/cts duration */
2761 	);
2762 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2763 	ath_hal_filltxdesc(ah, ds
2764 		, roundup(m->m_len, 4)		/* buffer length */
2765 		, AH_TRUE			/* first segment */
2766 		, AH_TRUE			/* last segment */
2767 		, ds				/* first descriptor */
2768 	);
2769 #if 0
2770 	ath_desc_swap(ds);
2771 #endif
2772 #undef USE_SHPREAMBLE
2773 }
2774 
2775 static void
2776 ath_beacon_update(struct ieee80211vap *vap, int item)
2777 {
2778 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2779 
2780 	setbit(bo->bo_flags, item);
2781 }
2782 
2783 /*
2784  * Append the contents of src to dst; both queues
2785  * are assumed to be locked.
2786  */
2787 static void
2788 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2789 {
2790 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2791 	if (src->axq_depth)
2792 		dst->axq_link = src->axq_link;
2793 	src->axq_link = NULL;
2794 	dst->axq_depth += src->axq_depth;
2795 	src->axq_depth = 0;
2796 }
2797 
2798 /*
2799  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2800  * frame contents are done as needed and the slot time is
2801  * also adjusted based on current state.
2802  */
2803 static void
2804 ath_beacon_proc(void *arg, int pending)
2805 {
2806 	struct ath_softc *sc = arg;
2807 	struct ath_hal *ah = sc->sc_ah;
2808 	struct ieee80211vap *vap;
2809 	struct ath_buf *bf;
2810 	int slot, otherant;
2811 	uint32_t bfaddr;
2812 
2813 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2814 		__func__, pending);
2815 	/*
2816 	 * Check if the previous beacon has gone out.  If
2817 	 * not don't try to post another, skip this period
2818 	 * and wait for the next.  Missed beacons indicate
2819 	 * a problem and should not occur.  If we miss too
2820 	 * many consecutive beacons reset the device.
2821 	 */
2822 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2823 		sc->sc_bmisscount++;
2824 		DPRINTF(sc, ATH_DEBUG_BEACON,
2825 			"%s: missed %u consecutive beacons\n",
2826 			__func__, sc->sc_bmisscount);
2827 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2828 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2829 		return;
2830 	}
2831 	if (sc->sc_bmisscount != 0) {
2832 		DPRINTF(sc, ATH_DEBUG_BEACON,
2833 			"%s: resume beacon xmit after %u misses\n",
2834 			__func__, sc->sc_bmisscount);
2835 		sc->sc_bmisscount = 0;
2836 	}
2837 
2838 	/*
2839 	 * Stop any current dma before messing with the beacon linkages.
2840 	 */
2841 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2842 		DPRINTF(sc, ATH_DEBUG_ANY,
2843 			"%s: beacon queue %u did not stop?\n",
2844 			__func__, sc->sc_bhalq);
2845 	}
2846 
2847 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2848 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2849 		uint32_t tsftu;
2850 
2851 		tsftu = ath_hal_gettsf32(ah) >> 10;
2852 		/* XXX lintval */
2853 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2854 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2855 		bfaddr = 0;
2856 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2857 			bf = ath_beacon_generate(sc, vap);
2858 			if (bf != NULL)
2859 				bfaddr = bf->bf_daddr;
2860 		}
2861 	} else {					/* burst'd beacons */
2862 		uint32_t *bflink = &bfaddr;
2863 
2864 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2865 			vap = sc->sc_bslot[slot];
2866 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2867 				bf = ath_beacon_generate(sc, vap);
2868 				if (bf != NULL) {
2869 					*bflink = bf->bf_daddr;
2870 					bflink = &bf->bf_desc->ds_link;
2871 				}
2872 			}
2873 		}
2874 		*bflink = 0;				/* terminate list */
2875 	}
2876 
2877 	/*
2878 	 * Handle slot time change when a non-ERP station joins/leaves
2879 	 * an 11g network.  The 802.11 layer notifies us via callback,
2880 	 * we mark updateslot, then wait one beacon before effecting
2881 	 * the change.  This gives associated stations at least one
2882 	 * beacon interval to note the state change.
2883 	 */
2884 	/* XXX locking */
2885 	if (sc->sc_updateslot == UPDATE) {
2886 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2887 		sc->sc_slotupdate = slot;
2888 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2889 		ath_setslottime(sc);		/* commit change to h/w */
2890 
2891 	/*
2892 	 * Check recent per-antenna transmit statistics and flip
2893 	 * the default antenna if noticeably more frames went out
2894 	 * on the non-default antenna.
2895 	 * XXX assumes 2 anntenae
2896 	 */
2897 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2898 		otherant = sc->sc_defant & 1 ? 2 : 1;
2899 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2900 			ath_setdefantenna(sc, otherant);
2901 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2902 	}
2903 
2904 	if (bfaddr != 0) {
2905 		/* NB: cabq traffic should already be queued and primed */
2906 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2907 		sc->sc_stats.ast_be_xmit++;
2908 		ath_hal_txstart(ah, sc->sc_bhalq);
2909 	}
2910 	/* else no beacon will be generated */
2911 }
2912 
2913 static struct ath_buf *
2914 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2915 {
2916 	struct ath_vap *avp = ATH_VAP(vap);
2917 	struct ath_txq *cabq = sc->sc_cabq;
2918 	struct ath_buf *bf;
2919 	struct mbuf *m;
2920 	int nmcastq, error;
2921 
2922 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2923 	    ("not running, state %d", vap->iv_state));
2924 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2925 
2926 	/*
2927 	 * Update dynamic beacon contents.  If this returns
2928 	 * non-zero then we need to remap the memory because
2929 	 * the beacon frame changed size (probably because
2930 	 * of the TIM bitmap).
2931 	 */
2932 	bf = avp->av_bcbuf;
2933 	m = bf->bf_m;
2934 	nmcastq = avp->av_mcastq.axq_depth;
2935 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2936 		/* XXX too conservative? */
2937 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2938 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
2939 					     bf->bf_segs, 1, &bf->bf_nseg,
2940 					     BUS_DMA_NOWAIT);
2941 		if (error != 0) {
2942 			if_printf(vap->iv_ifp,
2943 			    "%s: bus_dmamap_load_mbuf_segment failed, error %u\n",
2944 			    __func__, error);
2945 			return NULL;
2946 		}
2947 	}
2948 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2949 		DPRINTF(sc, ATH_DEBUG_BEACON,
2950 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2951 		    __func__, nmcastq, cabq->axq_depth);
2952 		sc->sc_stats.ast_cabq_busy++;
2953 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2954 			/*
2955 			 * CABQ traffic from a previous vap is still pending.
2956 			 * We must drain the q before this beacon frame goes
2957 			 * out as otherwise this vap's stations will get cab
2958 			 * frames from a different vap.
2959 			 * XXX could be slow causing us to miss DBA
2960 			 */
2961 			ath_tx_draintxq(sc, cabq);
2962 		}
2963 	}
2964 	ath_beacon_setup(sc, bf);
2965 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2966 
2967 	/*
2968 	 * Enable the CAB queue before the beacon queue to
2969 	 * insure cab frames are triggered by this beacon.
2970 	 */
2971 	if (avp->av_boff.bo_tim[4] & 1) {
2972 		struct ath_hal *ah = sc->sc_ah;
2973 
2974 		/* NB: only at DTIM */
2975 		if (nmcastq) {
2976 			struct ath_buf *bfm;
2977 			int qbusy;
2978 
2979 			/*
2980 			 * Move frames from the s/w mcast q to the h/w cab q.
2981 			 * XXX MORE_DATA bit
2982 			 */
2983 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2984 			qbusy = ath_hal_txqenabled(ah, cabq->axq_qnum);
2985 			if (qbusy == 0) {
2986 				if (cabq->axq_link != NULL) {
2987 					cpu_sfence();
2988 					*cabq->axq_link = bfm->bf_daddr;
2989 					cabq->axq_flags |= ATH_TXQ_PUTPENDING;
2990 				} else {
2991 					cpu_sfence();
2992 					ath_hal_puttxbuf(ah, cabq->axq_qnum,
2993 						bfm->bf_daddr);
2994 				}
2995 			} else {
2996 				if (cabq->axq_link != NULL) {
2997 					cpu_sfence();
2998 					*cabq->axq_link = bfm->bf_daddr;
2999 				}
3000 				cabq->axq_flags |= ATH_TXQ_PUTPENDING;
3001 			}
3002 			ath_txqmove(cabq, &avp->av_mcastq);
3003 
3004 			sc->sc_stats.ast_cabq_xmit += nmcastq;
3005 		}
3006 		/* NB: gated by beacon so safe to start here */
3007 		ath_hal_txstart(ah, cabq->axq_qnum);
3008 	}
3009 	return bf;
3010 }
3011 
3012 static void
3013 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3014 {
3015 	struct ath_vap *avp = ATH_VAP(vap);
3016 	struct ath_hal *ah = sc->sc_ah;
3017 	struct ath_buf *bf;
3018 	struct mbuf *m;
3019 	int error;
3020 
3021 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3022 
3023 	/*
3024 	 * Update dynamic beacon contents.  If this returns
3025 	 * non-zero then we need to remap the memory because
3026 	 * the beacon frame changed size (probably because
3027 	 * of the TIM bitmap).
3028 	 */
3029 	bf = avp->av_bcbuf;
3030 	m = bf->bf_m;
3031 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3032 		/* XXX too conservative? */
3033 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3034 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat, bf->bf_dmamap, m,
3035 					     bf->bf_segs, 1, &bf->bf_nseg,
3036 					     BUS_DMA_NOWAIT);
3037 		if (error != 0) {
3038 			if_printf(vap->iv_ifp,
3039 			    "%s: bus_dmamap_load_mbuf_segment failed, error %u\n",
3040 			    __func__, error);
3041 			return;
3042 		}
3043 	}
3044 	ath_beacon_setup(sc, bf);
3045 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3046 
3047 	/* NB: caller is known to have already stopped tx dma */
3048 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3049 	ath_hal_txstart(ah, sc->sc_bhalq);
3050 }
3051 
3052 /*
3053  * Reset the hardware after detecting beacons have stopped.
3054  */
3055 static void
3056 ath_bstuck_task(void *arg, int pending)
3057 {
3058 	struct ath_softc *sc = arg;
3059 	struct ifnet *ifp = sc->sc_ifp;
3060 
3061 	wlan_serialize_enter();
3062 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3063 		  sc->sc_bmisscount);
3064 	sc->sc_stats.ast_bstuck++;
3065 	ath_reset(ifp);
3066 	wlan_serialize_exit();
3067 }
3068 
3069 /*
3070  * Reclaim beacon resources and return buffer to the pool.
3071  */
3072 static void
3073 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3074 {
3075 
3076 	if (bf->bf_m != NULL) {
3077 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3078 		m_freem(bf->bf_m);
3079 		bf->bf_m = NULL;
3080 	}
3081 	if (bf->bf_node != NULL) {
3082 		ieee80211_free_node(bf->bf_node);
3083 		bf->bf_node = NULL;
3084 	}
3085 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3086 }
3087 
3088 /*
3089  * Reclaim beacon resources.
3090  */
3091 static void
3092 ath_beacon_free(struct ath_softc *sc)
3093 {
3094 	struct ath_buf *bf;
3095 
3096 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3097 		if (bf->bf_m != NULL) {
3098 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3099 			m_freem(bf->bf_m);
3100 			bf->bf_m = NULL;
3101 		}
3102 		if (bf->bf_node != NULL) {
3103 			ieee80211_free_node(bf->bf_node);
3104 			bf->bf_node = NULL;
3105 		}
3106 	}
3107 }
3108 
3109 /*
3110  * Configure the beacon and sleep timers.
3111  *
3112  * When operating as an AP this resets the TSF and sets
3113  * up the hardware to notify us when we need to issue beacons.
3114  *
3115  * When operating in station mode this sets up the beacon
3116  * timers according to the timestamp of the last received
3117  * beacon and the current TSF, configures PCF and DTIM
3118  * handling, programs the sleep registers so the hardware
3119  * will wakeup in time to receive beacons, and configures
3120  * the beacon miss handling so we'll receive a BMISS
3121  * interrupt when we stop seeing beacons from the AP
3122  * we've associated with.
3123  */
3124 static void
3125 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3126 {
3127 #define	TSF_TO_TU(_h,_l) \
3128 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3129 #define	FUDGE	2
3130 	struct ath_hal *ah = sc->sc_ah;
3131 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3132 	struct ieee80211_node *ni;
3133 	u_int32_t nexttbtt, intval, tsftu;
3134 	u_int64_t tsf;
3135 
3136 	if (vap == NULL)
3137 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3138 	ni = vap->iv_bss;
3139 
3140 	/* extract tstamp from last beacon and convert to TU */
3141 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3142 			     LE_READ_4(ni->ni_tstamp.data));
3143 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3144 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3145 		/*
3146 		 * For multi-bss ap/mesh support beacons are either staggered
3147 		 * evenly over N slots or burst together.  For the former
3148 		 * arrange for the SWBA to be delivered for each slot.
3149 		 * Slots that are not occupied will generate nothing.
3150 		 */
3151 		/* NB: the beacon interval is kept internally in TU's */
3152 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3153 		if (sc->sc_stagbeacons)
3154 			intval /= ATH_BCBUF;
3155 	} else {
3156 		/* NB: the beacon interval is kept internally in TU's */
3157 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3158 	}
3159 	if (nexttbtt == 0)		/* e.g. for ap mode */
3160 		nexttbtt = intval;
3161 	else if (intval)		/* NB: can be 0 for monitor mode */
3162 		nexttbtt = roundup(nexttbtt, intval);
3163 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3164 		__func__, nexttbtt, intval, ni->ni_intval);
3165 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3166 		HAL_BEACON_STATE bs;
3167 		int dtimperiod, dtimcount;
3168 		int cfpperiod, cfpcount;
3169 
3170 		/*
3171 		 * Setup dtim and cfp parameters according to
3172 		 * last beacon we received (which may be none).
3173 		 */
3174 		dtimperiod = ni->ni_dtim_period;
3175 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3176 			dtimperiod = 1;
3177 		dtimcount = ni->ni_dtim_count;
3178 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3179 			dtimcount = 0;		/* XXX? */
3180 		cfpperiod = 1;			/* NB: no PCF support yet */
3181 		cfpcount = 0;
3182 		/*
3183 		 * Pull nexttbtt forward to reflect the current
3184 		 * TSF and calculate dtim+cfp state for the result.
3185 		 */
3186 		tsf = ath_hal_gettsf64(ah);
3187 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3188 		do {
3189 			nexttbtt += intval;
3190 			if (--dtimcount < 0) {
3191 				dtimcount = dtimperiod - 1;
3192 				if (--cfpcount < 0)
3193 					cfpcount = cfpperiod - 1;
3194 			}
3195 		} while (nexttbtt < tsftu);
3196 		memset(&bs, 0, sizeof(bs));
3197 		bs.bs_intval = intval;
3198 		bs.bs_nexttbtt = nexttbtt;
3199 		bs.bs_dtimperiod = dtimperiod*intval;
3200 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3201 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3202 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3203 		bs.bs_cfpmaxduration = 0;
3204 #if 0
3205 		/*
3206 		 * The 802.11 layer records the offset to the DTIM
3207 		 * bitmap while receiving beacons; use it here to
3208 		 * enable h/w detection of our AID being marked in
3209 		 * the bitmap vector (to indicate frames for us are
3210 		 * pending at the AP).
3211 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3212 		 * XXX enable based on h/w rev for newer chips
3213 		 */
3214 		bs.bs_timoffset = ni->ni_timoff;
3215 #endif
3216 		/*
3217 		 * Calculate the number of consecutive beacons to miss
3218 		 * before taking a BMISS interrupt.
3219 		 * Note that we clamp the result to at most 10 beacons.
3220 		 */
3221 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3222 		if (bs.bs_bmissthreshold > 10)
3223 			bs.bs_bmissthreshold = 10;
3224 		else if (bs.bs_bmissthreshold <= 0)
3225 			bs.bs_bmissthreshold = 1;
3226 
3227 		/*
3228 		 * Calculate sleep duration.  The configuration is
3229 		 * given in ms.  We insure a multiple of the beacon
3230 		 * period is used.  Also, if the sleep duration is
3231 		 * greater than the DTIM period then it makes senses
3232 		 * to make it a multiple of that.
3233 		 *
3234 		 * XXX fixed at 100ms
3235 		 */
3236 		bs.bs_sleepduration =
3237 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3238 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3239 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3240 
3241 		DPRINTF(sc, ATH_DEBUG_BEACON,
3242 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3243 			, __func__
3244 			, tsf, tsftu
3245 			, bs.bs_intval
3246 			, bs.bs_nexttbtt
3247 			, bs.bs_dtimperiod
3248 			, bs.bs_nextdtim
3249 			, bs.bs_bmissthreshold
3250 			, bs.bs_sleepduration
3251 			, bs.bs_cfpperiod
3252 			, bs.bs_cfpmaxduration
3253 			, bs.bs_cfpnext
3254 			, bs.bs_timoffset
3255 		);
3256 		ath_hal_intrset(ah, 0);
3257 		ath_hal_beacontimers(ah, &bs);
3258 		sc->sc_imask |= HAL_INT_BMISS;
3259 		ath_hal_intrset(ah, sc->sc_imask);
3260 	} else {
3261 		ath_hal_intrset(ah, 0);
3262 		if (nexttbtt == intval)
3263 			intval |= HAL_BEACON_RESET_TSF;
3264 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3265 			/*
3266 			 * In IBSS mode enable the beacon timers but only
3267 			 * enable SWBA interrupts if we need to manually
3268 			 * prepare beacon frames.  Otherwise we use a
3269 			 * self-linked tx descriptor and let the hardware
3270 			 * deal with things.
3271 			 */
3272 			intval |= HAL_BEACON_ENA;
3273 			if (!sc->sc_hasveol)
3274 				sc->sc_imask |= HAL_INT_SWBA;
3275 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3276 				/*
3277 				 * Pull nexttbtt forward to reflect
3278 				 * the current TSF.
3279 				 */
3280 				tsf = ath_hal_gettsf64(ah);
3281 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3282 				do {
3283 					nexttbtt += intval;
3284 				} while (nexttbtt < tsftu);
3285 			}
3286 			ath_beaconq_config(sc);
3287 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3288 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3289 			/*
3290 			 * In AP/mesh mode we enable the beacon timers
3291 			 * and SWBA interrupts to prepare beacon frames.
3292 			 */
3293 			intval |= HAL_BEACON_ENA;
3294 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3295 			ath_beaconq_config(sc);
3296 		}
3297 		ath_hal_beaconinit(ah, nexttbtt, intval);
3298 		sc->sc_bmisscount = 0;
3299 		ath_hal_intrset(ah, sc->sc_imask);
3300 		/*
3301 		 * When using a self-linked beacon descriptor in
3302 		 * ibss mode load it once here.
3303 		 */
3304 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3305 			ath_beacon_start_adhoc(sc, vap);
3306 	}
3307 	sc->sc_syncbeacon = 0;
3308 #undef FUDGE
3309 #undef TSF_TO_TU
3310 }
3311 
3312 static void
3313 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3314 {
3315 	bus_addr_t *paddr = (bus_addr_t*) arg;
3316 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3317 	*paddr = segs->ds_addr;
3318 }
3319 
3320 static int
3321 ath_descdma_setup(struct ath_softc *sc,
3322 	struct ath_descdma *dd, ath_bufhead *head,
3323 	const char *name, int nbuf, int ndesc)
3324 {
3325 #define	DS2PHYS(_dd, _ds) \
3326 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3327 	struct ifnet *ifp = sc->sc_ifp;
3328 	struct ath_desc *ds;
3329 	struct ath_buf *bf;
3330 	int i, bsize, error;
3331 
3332 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3333 	    __func__, name, nbuf, ndesc);
3334 
3335 	dd->dd_name = name;
3336 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3337 
3338 	/*
3339 	 * Setup DMA descriptor area.
3340 	 */
3341 	error = bus_dma_tag_create(dd->dd_dmat,	/* parent */
3342 		       PAGE_SIZE, 0,		/* alignment, bounds */
3343 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3344 		       BUS_SPACE_MAXADDR,	/* highaddr */
3345 		       NULL, NULL,		/* filter, filterarg */
3346 		       dd->dd_desc_len,		/* maxsize */
3347 		       1,			/* nsegments */
3348 		       dd->dd_desc_len,		/* maxsegsize */
3349 		       BUS_DMA_ALLOCNOW,	/* flags */
3350 		       &dd->dd_dmat);
3351 	if (error != 0) {
3352 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3353 		return error;
3354 	}
3355 
3356 	/* allocate descriptors */
3357 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3358 	if (error != 0) {
3359 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3360 			"error %u\n", dd->dd_name, error);
3361 		goto fail0;
3362 	}
3363 
3364 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3365 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3366 				 &dd->dd_dmamap);
3367 	if (error != 0) {
3368 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3369 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3370 		goto fail1;
3371 	}
3372 
3373 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3374 				dd->dd_desc, dd->dd_desc_len,
3375 				ath_load_cb, &dd->dd_desc_paddr,
3376 				BUS_DMA_NOWAIT);
3377 	if (error != 0) {
3378 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3379 			dd->dd_name, error);
3380 		goto fail2;
3381 	}
3382 
3383 	ds = dd->dd_desc;
3384 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3385 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3386 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3387 
3388 	/* allocate rx buffers */
3389 	bsize = sizeof(struct ath_buf) * nbuf;
3390 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
3391 	dd->dd_bufptr = bf;
3392 
3393 	STAILQ_INIT(head);
3394 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3395 		bf->bf_desc = ds;
3396 		bf->bf_daddr = DS2PHYS(dd, ds);
3397 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3398 				&bf->bf_dmamap);
3399 		if (error != 0) {
3400 			if_printf(ifp, "unable to create dmamap for %s "
3401 				"buffer %u, error %u\n", dd->dd_name, i, error);
3402 			ath_descdma_cleanup(sc, dd, head);
3403 			return error;
3404 		}
3405 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3406 	}
3407 	return 0;
3408 fail2:
3409 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3410 fail1:
3411 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3412 fail0:
3413 	bus_dma_tag_destroy(dd->dd_dmat);
3414 	memset(dd, 0, sizeof(*dd));
3415 	return error;
3416 #undef DS2PHYS
3417 }
3418 
3419 static void
3420 ath_descdma_cleanup(struct ath_softc *sc,
3421 	struct ath_descdma *dd, ath_bufhead *head)
3422 {
3423 	struct ath_buf *bf;
3424 	struct ieee80211_node *ni;
3425 
3426 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3427 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3428 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3429 	bus_dma_tag_destroy(dd->dd_dmat);
3430 
3431 	STAILQ_FOREACH(bf, head, bf_list) {
3432 		if (bf->bf_m) {
3433 			m_freem(bf->bf_m);
3434 			bf->bf_m = NULL;
3435 		}
3436 		if (bf->bf_dmamap != NULL) {
3437 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3438 			bf->bf_dmamap = NULL;
3439 		}
3440 		ni = bf->bf_node;
3441 		bf->bf_node = NULL;
3442 		if (ni != NULL) {
3443 			/*
3444 			 * Reclaim node reference.
3445 			 */
3446 			ieee80211_free_node(ni);
3447 		}
3448 	}
3449 
3450 	STAILQ_INIT(head);
3451 	kfree(dd->dd_bufptr, M_ATHDEV);
3452 	memset(dd, 0, sizeof(*dd));
3453 }
3454 
3455 static int
3456 ath_desc_alloc(struct ath_softc *sc)
3457 {
3458 	int error;
3459 
3460 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3461 			"rx", ath_rxbuf, 1);
3462 	if (error != 0)
3463 		return error;
3464 
3465 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3466 			"tx", ath_txbuf, ATH_TXDESC);
3467 	if (error != 0) {
3468 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3469 		return error;
3470 	}
3471 
3472 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3473 			"beacon", ATH_BCBUF, 1);
3474 	if (error != 0) {
3475 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3476 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3477 		return error;
3478 	}
3479 	return 0;
3480 }
3481 
3482 static void
3483 ath_desc_free(struct ath_softc *sc)
3484 {
3485 
3486 	if (sc->sc_bdma.dd_desc_len != 0)
3487 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3488 	if (sc->sc_txdma.dd_desc_len != 0)
3489 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3490 	if (sc->sc_rxdma.dd_desc_len != 0)
3491 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3492 }
3493 
3494 static struct ieee80211_node *
3495 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3496 {
3497 	struct ieee80211com *ic = vap->iv_ic;
3498 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3499 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3500 	struct ath_node *an;
3501 
3502 	an = kmalloc(space, M_80211_NODE, M_INTWAIT|M_ZERO);
3503 	ath_rate_node_init(sc, an);
3504 
3505 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3506 	return &an->an_node;
3507 }
3508 
3509 static void
3510 ath_node_free(struct ieee80211_node *ni)
3511 {
3512 	struct ieee80211com *ic = ni->ni_ic;
3513         struct ath_softc *sc = ic->ic_ifp->if_softc;
3514 
3515 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3516 
3517 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3518 	sc->sc_node_free(ni);
3519 }
3520 
3521 static void
3522 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3523 {
3524 	struct ieee80211com *ic = ni->ni_ic;
3525 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3526 	struct ath_hal *ah = sc->sc_ah;
3527 
3528 	*rssi = ic->ic_node_getrssi(ni);
3529 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3530 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3531 	else
3532 		*noise = -95;		/* nominally correct */
3533 }
3534 
3535 static int
3536 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3537 {
3538 	struct ath_hal *ah = sc->sc_ah;
3539 	int error;
3540 	struct mbuf *m;
3541 	struct ath_desc *ds;
3542 
3543 	m = bf->bf_m;
3544 	if (m == NULL) {
3545 		/*
3546 		 * NB: by assigning a page to the rx dma buffer we
3547 		 * implicitly satisfy the Atheros requirement that
3548 		 * this buffer be cache-line-aligned and sized to be
3549 		 * multiple of the cache line size.  Not doing this
3550 		 * causes weird stuff to happen (for the 5210 at least).
3551 		 */
3552 		m = m_getcl(MB_WAIT, MT_DATA, M_PKTHDR);
3553 		if (m == NULL) {
3554 			kprintf("ath_rxbuf_init: no mbuf\n");
3555 			DPRINTF(sc, ATH_DEBUG_ANY,
3556 				"%s: no mbuf/cluster\n", __func__);
3557 			sc->sc_stats.ast_rx_nombuf++;
3558 			return ENOMEM;
3559 		}
3560 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3561 
3562 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat,
3563 					     bf->bf_dmamap, m,
3564 					     bf->bf_segs, 1, &bf->bf_nseg,
3565 					     BUS_DMA_NOWAIT);
3566 		if (error != 0) {
3567 			DPRINTF(sc, ATH_DEBUG_ANY,
3568 			    "%s: bus_dmamap_load_mbuf_segment failed; error %d\n",
3569 			    __func__, error);
3570 			sc->sc_stats.ast_rx_busdma++;
3571 			m_freem(m);
3572 			return error;
3573 		}
3574 		KASSERT(bf->bf_nseg == 1,
3575 			("multi-segment packet; nseg %u", bf->bf_nseg));
3576 		bf->bf_m = m;
3577 	}
3578 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3579 
3580 	/*
3581 	 * Setup descriptors.  For receive we always terminate
3582 	 * the descriptor list with a self-linked entry so we'll
3583 	 * not get overrun under high load (as can happen with a
3584 	 * 5212 when ANI processing enables PHY error frames).
3585 	 *
3586 	 * To insure the last descriptor is self-linked we create
3587 	 * each descriptor as self-linked and add it to the end.  As
3588 	 * each additional descriptor is added the previous self-linked
3589 	 * entry is ``fixed'' naturally.  This should be safe even
3590 	 * if DMA is happening.  When processing RX interrupts we
3591 	 * never remove/process the last, self-linked, entry on the
3592 	 * descriptor list.  This insures the hardware always has
3593 	 * someplace to write a new frame.
3594 	 */
3595 	ds = bf->bf_desc;
3596 	ds->ds_link = bf->bf_daddr;	/* link to self */
3597 	ds->ds_data = bf->bf_segs[0].ds_addr;
3598 	ath_hal_setuprxdesc(ah, ds
3599 		, m->m_len		/* buffer size */
3600 		, 0
3601 	);
3602 
3603 	if (sc->sc_rxlink != NULL)
3604 		*sc->sc_rxlink = bf->bf_daddr;
3605 	sc->sc_rxlink = &ds->ds_link;
3606 	return 0;
3607 }
3608 
3609 /*
3610  * Extend 15-bit time stamp from rx descriptor to
3611  * a full 64-bit TSF using the specified TSF.
3612  */
3613 static __inline u_int64_t
3614 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3615 {
3616 	if ((tsf & 0x7fff) < rstamp)
3617 		tsf -= 0x8000;
3618 	return ((tsf &~ 0x7fff) | rstamp);
3619 }
3620 
3621 /*
3622  * Intercept management frames to collect beacon rssi data
3623  * and to do ibss merges.
3624  */
3625 static void
3626 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3627 	int subtype, int rssi, int nf)
3628 {
3629 	struct ieee80211vap *vap = ni->ni_vap;
3630 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3631 
3632 	/*
3633 	 * Call up first so subsequent work can use information
3634 	 * potentially stored in the node (e.g. for ibss merge).
3635 	 */
3636 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3637 	switch (subtype) {
3638 	case IEEE80211_FC0_SUBTYPE_BEACON:
3639 		/* update rssi statistics for use by the hal */
3640 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3641 		if (sc->sc_syncbeacon &&
3642 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3643 			/*
3644 			 * Resync beacon timers using the tsf of the beacon
3645 			 * frame we just received.
3646 			 */
3647 			ath_beacon_config(sc, vap);
3648 		}
3649 		/* fall thru... */
3650 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3651 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3652 		    vap->iv_state == IEEE80211_S_RUN) {
3653 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3654 			u_int64_t tsf = ath_extend_tsf(rstamp,
3655 				ath_hal_gettsf64(sc->sc_ah));
3656 			/*
3657 			 * Handle ibss merge as needed; check the tsf on the
3658 			 * frame before attempting the merge.  The 802.11 spec
3659 			 * says the station should change it's bssid to match
3660 			 * the oldest station with the same ssid, where oldest
3661 			 * is determined by the tsf.  Note that hardware
3662 			 * reconfiguration happens through callback to
3663 			 * ath_newstate as the state machine will go from
3664 			 * RUN -> RUN when this happens.
3665 			 */
3666 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3667 				DPRINTF(sc, ATH_DEBUG_STATE,
3668 				    "ibss merge, rstamp %u tsf %ju "
3669 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3670 				    (uintmax_t)ni->ni_tstamp.tsf);
3671 				(void) ieee80211_ibss_merge(ni);
3672 			}
3673 		}
3674 		break;
3675 	}
3676 }
3677 
3678 /*
3679  * Set the default antenna.
3680  */
3681 static void
3682 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3683 {
3684 	struct ath_hal *ah = sc->sc_ah;
3685 
3686 	/* XXX block beacon interrupts */
3687 	ath_hal_setdefantenna(ah, antenna);
3688 	if (sc->sc_defant != antenna)
3689 		sc->sc_stats.ast_ant_defswitch++;
3690 	sc->sc_defant = antenna;
3691 	sc->sc_rxotherant = 0;
3692 }
3693 
3694 static void
3695 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3696 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3697 {
3698 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3699 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3700 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3701 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3702 	struct ath_softc *sc = ifp->if_softc;
3703 	const HAL_RATE_TABLE *rt;
3704 	uint8_t rix;
3705 
3706 	rt = sc->sc_currates;
3707 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3708 	rix = rt->rateCodeToIndex[rs->rs_rate];
3709 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3710 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3711 #ifdef AH_SUPPORT_AR5416
3712 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3713 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3714 		struct ieee80211com *ic = ifp->if_l2com;
3715 
3716 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3717 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3718 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3719 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3720 		else
3721 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3722 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3723 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3724 	}
3725 #endif
3726 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3727 	if (rs->rs_status & HAL_RXERR_CRC)
3728 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3729 	/* XXX propagate other error flags from descriptor */
3730 	sc->sc_rx_th.wr_antnoise = nf;
3731 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3732 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3733 #undef CHAN_HT
3734 #undef CHAN_HT20
3735 #undef CHAN_HT40U
3736 #undef CHAN_HT40D
3737 }
3738 
3739 static void
3740 ath_handle_micerror(struct ieee80211com *ic,
3741 	struct ieee80211_frame *wh, int keyix)
3742 {
3743 	struct ieee80211_node *ni;
3744 
3745 	/* XXX recheck MIC to deal w/ chips that lie */
3746 	/* XXX discard MIC errors on !data frames */
3747 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3748 	if (ni != NULL) {
3749 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3750 		ieee80211_free_node(ni);
3751 	}
3752 }
3753 
3754 static void
3755 ath_rx_task(void *arg, int npending)
3756 {
3757 #define	PA2DESC(_sc, _pa) \
3758 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3759 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3760 	struct ath_softc *sc = arg;
3761 	struct ath_buf *bf;
3762 	struct ifnet *ifp;
3763 	struct ieee80211com *ic;
3764 	struct ath_hal *ah;
3765 	struct ath_desc *ds;
3766 	struct ath_rx_status *rs;
3767 	struct mbuf *m;
3768 	struct ieee80211_node *ni;
3769 	int len, type, ngood;
3770 	u_int phyerr;
3771 	HAL_STATUS status;
3772 	int16_t nf;
3773 	u_int64_t tsf;
3774 
3775 	wlan_serialize_enter();
3776 	ifp = sc->sc_ifp;
3777 	ic = ifp->if_l2com;
3778 	ah = sc->sc_ah;
3779 
3780 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3781 	ngood = 0;
3782 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3783 	sc->sc_stats.ast_rx_noise = nf;
3784 	tsf = ath_hal_gettsf64(ah);
3785 	do {
3786 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3787 		if (bf == NULL) {		/* NB: shouldn't happen */
3788 			if_printf(ifp, "%s: no buffer!\n", __func__);
3789 			break;
3790 		}
3791 		m = bf->bf_m;
3792 		if (m == NULL) {		/* NB: shouldn't happen */
3793 			/*
3794 			 * If mbuf allocation failed previously there
3795 			 * will be no mbuf; try again to re-populate it.
3796 			 */
3797 			/* XXX make debug msg */
3798 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3799 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3800 			goto rx_next;
3801 		}
3802 		ds = bf->bf_desc;
3803 		if (ds->ds_link == bf->bf_daddr) {
3804 			/* NB: never process the self-linked entry at the end */
3805 			break;
3806 		}
3807 		/* XXX sync descriptor memory */
3808 		/*
3809 		 * Must provide the virtual address of the current
3810 		 * descriptor, the physical address, and the virtual
3811 		 * address of the next descriptor in the h/w chain.
3812 		 * This allows the HAL to look ahead to see if the
3813 		 * hardware is done with a descriptor by checking the
3814 		 * done bit in the following descriptor and the address
3815 		 * of the current descriptor the DMA engine is working
3816 		 * on.  All this is necessary because of our use of
3817 		 * a self-linked list to avoid rx overruns.
3818 		 */
3819 		rs = &bf->bf_status.ds_rxstat;
3820 		status = ath_hal_rxprocdesc(ah, ds,
3821 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3822 #ifdef ATH_DEBUG
3823 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3824 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3825 #endif
3826 		if (status == HAL_EINPROGRESS)
3827 			break;
3828 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3829 		if (rs->rs_status != 0) {
3830 			if (rs->rs_status & HAL_RXERR_CRC)
3831 				sc->sc_stats.ast_rx_crcerr++;
3832 			if (rs->rs_status & HAL_RXERR_FIFO)
3833 				sc->sc_stats.ast_rx_fifoerr++;
3834 			if (rs->rs_status & HAL_RXERR_PHY) {
3835 				sc->sc_stats.ast_rx_phyerr++;
3836 				phyerr = rs->rs_phyerr & 0x1f;
3837 				sc->sc_stats.ast_rx_phy[phyerr]++;
3838 				goto rx_error;	/* NB: don't count in ierrors */
3839 			}
3840 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3841 				/*
3842 				 * Decrypt error.  If the error occurred
3843 				 * because there was no hardware key, then
3844 				 * let the frame through so the upper layers
3845 				 * can process it.  This is necessary for 5210
3846 				 * parts which have no way to setup a ``clear''
3847 				 * key cache entry.
3848 				 *
3849 				 * XXX do key cache faulting
3850 				 */
3851 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3852 					goto rx_accept;
3853 				sc->sc_stats.ast_rx_badcrypt++;
3854 			}
3855 			if (rs->rs_status & HAL_RXERR_MIC) {
3856 				sc->sc_stats.ast_rx_badmic++;
3857 				/*
3858 				 * Do minimal work required to hand off
3859 				 * the 802.11 header for notification.
3860 				 */
3861 				/* XXX frag's and qos frames */
3862 				len = rs->rs_datalen;
3863 				if (len >= sizeof (struct ieee80211_frame)) {
3864 					bus_dmamap_sync(sc->sc_dmat,
3865 					    bf->bf_dmamap,
3866 					    BUS_DMASYNC_POSTREAD);
3867 					ath_handle_micerror(ic,
3868 					    mtod(m, struct ieee80211_frame *),
3869 					    sc->sc_splitmic ?
3870 						rs->rs_keyix-32 : rs->rs_keyix);
3871 				}
3872 			}
3873 			ifp->if_ierrors++;
3874 rx_error:
3875 			/*
3876 			 * Cleanup any pending partial frame.
3877 			 */
3878 			if (sc->sc_rxpending != NULL) {
3879 				m_freem(sc->sc_rxpending);
3880 				sc->sc_rxpending = NULL;
3881 			}
3882 			/*
3883 			 * When a tap is present pass error frames
3884 			 * that have been requested.  By default we
3885 			 * pass decrypt+mic errors but others may be
3886 			 * interesting (e.g. crc).
3887 			 */
3888 			if (ieee80211_radiotap_active(ic) &&
3889 			    (rs->rs_status & sc->sc_monpass)) {
3890 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3891 				    BUS_DMASYNC_POSTREAD);
3892 				/* NB: bpf needs the mbuf length setup */
3893 				len = rs->rs_datalen;
3894 				m->m_pkthdr.len = m->m_len = len;
3895 				ath_rx_tap(ifp, m, rs, tsf, nf);
3896 				ieee80211_radiotap_rx_all(ic, m);
3897 			}
3898 			/* XXX pass MIC errors up for s/w reclaculation */
3899 			goto rx_next;
3900 		}
3901 rx_accept:
3902 		/*
3903 		 * Sync and unmap the frame.  At this point we're
3904 		 * committed to passing the mbuf somewhere so clear
3905 		 * bf_m; this means a new mbuf must be allocated
3906 		 * when the rx descriptor is setup again to receive
3907 		 * another frame.
3908 		 */
3909 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3910 		    BUS_DMASYNC_POSTREAD);
3911 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3912 		bf->bf_m = NULL;
3913 
3914 		len = rs->rs_datalen;
3915 		m->m_len = len;
3916 
3917 		if (rs->rs_more) {
3918 			/*
3919 			 * Frame spans multiple descriptors; save
3920 			 * it for the next completed descriptor, it
3921 			 * will be used to construct a jumbogram.
3922 			 */
3923 			if (sc->sc_rxpending != NULL) {
3924 				/* NB: max frame size is currently 2 clusters */
3925 				sc->sc_stats.ast_rx_toobig++;
3926 				m_freem(sc->sc_rxpending);
3927 			}
3928 			m->m_pkthdr.rcvif = ifp;
3929 			m->m_pkthdr.len = len;
3930 			sc->sc_rxpending = m;
3931 			goto rx_next;
3932 		} else if (sc->sc_rxpending != NULL) {
3933 			/*
3934 			 * This is the second part of a jumbogram,
3935 			 * chain it to the first mbuf, adjust the
3936 			 * frame length, and clear the rxpending state.
3937 			 */
3938 			sc->sc_rxpending->m_next = m;
3939 			sc->sc_rxpending->m_pkthdr.len += len;
3940 			m = sc->sc_rxpending;
3941 			sc->sc_rxpending = NULL;
3942 		} else {
3943 			/*
3944 			 * Normal single-descriptor receive; setup
3945 			 * the rcvif and packet length.
3946 			 */
3947 			m->m_pkthdr.rcvif = ifp;
3948 			m->m_pkthdr.len = len;
3949 		}
3950 
3951 		ifp->if_ipackets++;
3952 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3953 
3954 		/*
3955 		 * Populate the rx status block.  When there are bpf
3956 		 * listeners we do the additional work to provide
3957 		 * complete status.  Otherwise we fill in only the
3958 		 * material required by ieee80211_input.  Note that
3959 		 * noise setting is filled in above.
3960 		 */
3961 		if (ieee80211_radiotap_active(ic))
3962 			ath_rx_tap(ifp, m, rs, tsf, nf);
3963 
3964 		/*
3965 		 * From this point on we assume the frame is at least
3966 		 * as large as ieee80211_frame_min; verify that.
3967 		 */
3968 		if (len < IEEE80211_MIN_LEN) {
3969 			if (!ieee80211_radiotap_active(ic)) {
3970 				DPRINTF(sc, ATH_DEBUG_RECV,
3971 				    "%s: short packet %d\n", __func__, len);
3972 				sc->sc_stats.ast_rx_tooshort++;
3973 			} else {
3974 				/* NB: in particular this captures ack's */
3975 				ieee80211_radiotap_rx_all(ic, m);
3976 			}
3977 			m_freem(m);
3978 			goto rx_next;
3979 		}
3980 
3981 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3982 			const HAL_RATE_TABLE *rt = sc->sc_currates;
3983 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3984 
3985 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3986 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3987 		}
3988 
3989 		m_adj(m, -IEEE80211_CRC_LEN);
3990 
3991 		/*
3992 		 * Locate the node for sender, track state, and then
3993 		 * pass the (referenced) node up to the 802.11 layer
3994 		 * for its use.
3995 		 */
3996 		ni = ieee80211_find_rxnode_withkey(ic,
3997 			mtod(m, const struct ieee80211_frame_min *),
3998 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3999 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4000 		if (ni != NULL) {
4001 			/*
4002 			 * Sending station is known, dispatch directly.
4003 			 */
4004 			sc->sc_lastrs = rs;
4005 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4006 			ieee80211_free_node(ni);
4007 			/*
4008 			 * Arrange to update the last rx timestamp only for
4009 			 * frames from our ap when operating in station mode.
4010 			 * This assumes the rx key is always setup when
4011 			 * associated.
4012 			 */
4013 			if (ic->ic_opmode == IEEE80211_M_STA &&
4014 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4015 				ngood++;
4016 		} else {
4017 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4018 		}
4019 		/*
4020 		 * Track rx rssi and do any rx antenna management.
4021 		 */
4022 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4023 		if (sc->sc_diversity) {
4024 			/*
4025 			 * When using fast diversity, change the default rx
4026 			 * antenna if diversity chooses the other antenna 3
4027 			 * times in a row.
4028 			 */
4029 			if (sc->sc_defant != rs->rs_antenna) {
4030 				if (++sc->sc_rxotherant >= 3)
4031 					ath_setdefantenna(sc, rs->rs_antenna);
4032 			} else
4033 				sc->sc_rxotherant = 0;
4034 		}
4035 		if (sc->sc_softled) {
4036 			/*
4037 			 * Blink for any data frame.  Otherwise do a
4038 			 * heartbeat-style blink when idle.  The latter
4039 			 * is mainly for station mode where we depend on
4040 			 * periodic beacon frames to trigger the poll event.
4041 			 */
4042 			if (type == IEEE80211_FC0_TYPE_DATA) {
4043 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4044 				ath_led_event(sc,
4045 				    rt->rateCodeToIndex[rs->rs_rate]);
4046 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4047 				ath_led_event(sc, 0);
4048 		}
4049 rx_next:
4050 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4051 	} while (ath_rxbuf_init(sc, bf) == 0);
4052 
4053 	/* rx signal state monitoring */
4054 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4055 	if (ngood)
4056 		sc->sc_lastrx = tsf;
4057 
4058 	if (!ifq_is_oactive(&ifp->if_snd)) {
4059 #ifdef IEEE80211_SUPPORT_SUPERG
4060 		ieee80211_ff_age_all(ic, 100);
4061 #endif
4062 		if (!ifq_is_empty(&ifp->if_snd))
4063 			if_devstart(ifp);
4064 	}
4065 	wlan_serialize_exit();
4066 #undef PA2DESC
4067 }
4068 
4069 static void
4070 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4071 {
4072 	txq->axq_qnum = qnum;
4073 	txq->axq_ac = 0;
4074 	txq->axq_depth = 0;
4075 	txq->axq_intrcnt = 0;
4076 	txq->axq_link = NULL;
4077 	STAILQ_INIT(&txq->axq_q);
4078 }
4079 
4080 /*
4081  * Setup a h/w transmit queue.
4082  */
4083 static struct ath_txq *
4084 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4085 {
4086 	struct ath_hal *ah = sc->sc_ah;
4087 	HAL_TXQ_INFO qi;
4088 	int qnum;
4089 
4090 	memset(&qi, 0, sizeof(qi));
4091 	qi.tqi_subtype = subtype;
4092 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4093 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4094 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4095 	/*
4096 	 * Enable interrupts only for EOL and DESC conditions.
4097 	 * We mark tx descriptors to receive a DESC interrupt
4098 	 * when a tx queue gets deep; otherwise waiting for the
4099 	 * EOL to reap descriptors.  Note that this is done to
4100 	 * reduce interrupt load and this only defers reaping
4101 	 * descriptors, never transmitting frames.  Aside from
4102 	 * reducing interrupts this also permits more concurrency.
4103 	 * The only potential downside is if the tx queue backs
4104 	 * up in which case the top half of the kernel may backup
4105 	 * due to a lack of tx descriptors.
4106 	 */
4107 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4108 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4109 	if (qnum == -1) {
4110 		/*
4111 		 * NB: don't print a message, this happens
4112 		 * normally on parts with too few tx queues
4113 		 */
4114 		return NULL;
4115 	}
4116 	if (qnum >= NELEM(sc->sc_txq)) {
4117 		device_printf(sc->sc_dev,
4118 			"hal qnum %u out of range, max %zu!\n",
4119 			qnum, NELEM(sc->sc_txq));
4120 		ath_hal_releasetxqueue(ah, qnum);
4121 		return NULL;
4122 	}
4123 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4124 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4125 		sc->sc_txqsetup |= 1<<qnum;
4126 	}
4127 	return &sc->sc_txq[qnum];
4128 }
4129 
4130 /*
4131  * Setup a hardware data transmit queue for the specified
4132  * access control.  The hal may not support all requested
4133  * queues in which case it will return a reference to a
4134  * previously setup queue.  We record the mapping from ac's
4135  * to h/w queues for use by ath_tx_start and also track
4136  * the set of h/w queues being used to optimize work in the
4137  * transmit interrupt handler and related routines.
4138  */
4139 static int
4140 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4141 {
4142 	struct ath_txq *txq;
4143 
4144 	if (ac >= NELEM(sc->sc_ac2q)) {
4145 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4146 			ac, NELEM(sc->sc_ac2q));
4147 		return 0;
4148 	}
4149 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4150 	if (txq != NULL) {
4151 		txq->axq_ac = ac;
4152 		sc->sc_ac2q[ac] = txq;
4153 		return 1;
4154 	} else
4155 		return 0;
4156 }
4157 
4158 /*
4159  * Update WME parameters for a transmit queue.
4160  */
4161 static int
4162 ath_txq_update(struct ath_softc *sc, int ac)
4163 {
4164 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4165 #define	ATH_TXOP_TO_US(v)		(v<<5)
4166 	struct ifnet *ifp = sc->sc_ifp;
4167 	struct ieee80211com *ic = ifp->if_l2com;
4168 	struct ath_txq *txq = sc->sc_ac2q[ac];
4169 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4170 	struct ath_hal *ah = sc->sc_ah;
4171 	HAL_TXQ_INFO qi;
4172 
4173 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4174 #ifdef IEEE80211_SUPPORT_TDMA
4175 	if (sc->sc_tdma) {
4176 		/*
4177 		 * AIFS is zero so there's no pre-transmit wait.  The
4178 		 * burst time defines the slot duration and is configured
4179 		 * through net80211.  The QCU is setup to not do post-xmit
4180 		 * back off, lockout all lower-priority QCU's, and fire
4181 		 * off the DMA beacon alert timer which is setup based
4182 		 * on the slot configuration.
4183 		 */
4184 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4185 			      | HAL_TXQ_TXERRINT_ENABLE
4186 			      | HAL_TXQ_TXURNINT_ENABLE
4187 			      | HAL_TXQ_TXEOLINT_ENABLE
4188 			      | HAL_TXQ_DBA_GATED
4189 			      | HAL_TXQ_BACKOFF_DISABLE
4190 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4191 			      ;
4192 		qi.tqi_aifs = 0;
4193 		/* XXX +dbaprep? */
4194 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4195 		qi.tqi_burstTime = qi.tqi_readyTime;
4196 	} else {
4197 #endif
4198 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4199 			      | HAL_TXQ_TXERRINT_ENABLE
4200 			      | HAL_TXQ_TXDESCINT_ENABLE
4201 			      | HAL_TXQ_TXURNINT_ENABLE
4202 			      ;
4203 		qi.tqi_aifs = wmep->wmep_aifsn;
4204 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4205 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4206 		qi.tqi_readyTime = 0;
4207 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4208 #ifdef IEEE80211_SUPPORT_TDMA
4209 	}
4210 #endif
4211 
4212 	DPRINTF(sc, ATH_DEBUG_RESET,
4213 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4214 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4215 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4216 
4217 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4218 		if_printf(ifp, "unable to update hardware queue "
4219 			"parameters for %s traffic!\n",
4220 			ieee80211_wme_acnames[ac]);
4221 		return 0;
4222 	} else {
4223 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4224 		return 1;
4225 	}
4226 #undef ATH_TXOP_TO_US
4227 #undef ATH_EXPONENT_TO_VALUE
4228 }
4229 
4230 /*
4231  * Callback from the 802.11 layer to update WME parameters.
4232  */
4233 static int
4234 ath_wme_update(struct ieee80211com *ic)
4235 {
4236 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4237 
4238 	return !ath_txq_update(sc, WME_AC_BE) ||
4239 	    !ath_txq_update(sc, WME_AC_BK) ||
4240 	    !ath_txq_update(sc, WME_AC_VI) ||
4241 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4242 }
4243 
4244 /*
4245  * Reclaim resources for a setup queue.
4246  */
4247 static void
4248 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4249 {
4250 
4251 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4252 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4253 }
4254 
4255 /*
4256  * Reclaim all tx queue resources.
4257  */
4258 static void
4259 ath_tx_cleanup(struct ath_softc *sc)
4260 {
4261 	int i;
4262 
4263 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4264 		if (ATH_TXQ_SETUP(sc, i))
4265 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4266 }
4267 
4268 /*
4269  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4270  * using the current rates in sc_rixmap.
4271  */
4272 static __inline int
4273 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4274 {
4275 	int rix = sc->sc_rixmap[rate];
4276 	/* NB: return lowest rix for invalid rate */
4277 	return (rix == 0xff ? 0 : rix);
4278 }
4279 
4280 /*
4281  * Reclaim mbuf resources.  For fragmented frames we
4282  * need to claim each frag chained with m_nextpkt.
4283  */
4284 static void
4285 ath_freetx(struct mbuf *m)
4286 {
4287 	struct mbuf *next;
4288 
4289 	do {
4290 		next = m->m_nextpkt;
4291 		m->m_nextpkt = NULL;
4292 		m_freem(m);
4293 	} while ((m = next) != NULL);
4294 }
4295 
4296 static int
4297 ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4298 {
4299 	int error;
4300 
4301 	/*
4302 	 *
4303 	 * Load the DMA map so any coalescing is done.  This
4304 	 * also calculates the number of descriptors we need.
4305 	 */
4306 	error = bus_dmamap_load_mbuf_defrag(sc->sc_dmat, bf->bf_dmamap, &m0,
4307 				     bf->bf_segs, ATH_TXDESC,
4308 				     &bf->bf_nseg, BUS_DMA_NOWAIT);
4309 	if (error != 0) {
4310 		sc->sc_stats.ast_tx_busdma++;
4311 		ath_freetx(m0);
4312 		return error;
4313 	}
4314 
4315 	/*
4316 	 * Discard null packets.
4317 	 */
4318 	if (bf->bf_nseg == 0) {		/* null packet, discard */
4319 		sc->sc_stats.ast_tx_nodata++;
4320 		ath_freetx(m0);
4321 		return EIO;
4322 	}
4323 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4324 		__func__, m0, m0->m_pkthdr.len);
4325 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4326 	bf->bf_m = m0;
4327 
4328 	return 0;
4329 }
4330 
4331 static void
4332 ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4333 {
4334 	struct ath_hal *ah = sc->sc_ah;
4335 	struct ath_desc *ds, *ds0;
4336 	int i;
4337 
4338 	/*
4339 	 * Fillin the remainder of the descriptor info.
4340 	 */
4341 	ds0 = ds = bf->bf_desc;
4342 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4343 		ds->ds_data = bf->bf_segs[i].ds_addr;
4344 		if (i == bf->bf_nseg - 1)
4345 			ds->ds_link = 0;
4346 		else
4347 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4348 		ath_hal_filltxdesc(ah, ds
4349 			, bf->bf_segs[i].ds_len	/* segment length */
4350 			, i == 0		/* first segment */
4351 			, i == bf->bf_nseg - 1	/* last segment */
4352 			, ds0			/* first descriptor */
4353 		);
4354 		DPRINTF(sc, ATH_DEBUG_XMIT,
4355 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4356 			__func__, i, ds->ds_link, ds->ds_data,
4357 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4358 	}
4359 	/*
4360 	 * Insert the frame on the outbound list and pass it on
4361 	 * to the hardware.  Multicast frames buffered for power
4362 	 * save stations and transmit from the CAB queue are stored
4363 	 * on a s/w only queue and loaded on to the CAB queue in
4364 	 * the SWBA handler since frames only go out on DTIM and
4365 	 * to avoid possible races.
4366 	 */
4367 	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4368 	     ("busy status 0x%x", bf->bf_flags));
4369 	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4370 #ifdef IEEE80211_SUPPORT_TDMA
4371 		/*
4372 		 * Supporting transmit dma.  If the queue is busy it is
4373 		 * impossible to determine if we've won the race against
4374 		 * the chipset checking the link field or not, so we don't
4375 		 * try.  Instead we let the TX interrupt detect the case
4376 		 * and restart the transmitter.
4377 		 *
4378 		 * If the queue is not busy we can start things rolling
4379 		 * right here.
4380 		 */
4381 		int qbusy;
4382 
4383 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4384 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4385 
4386 		if (qbusy == 0) {
4387 			if (txq->axq_link != NULL) {
4388 				/*
4389 				 * We had already started one previously but
4390 				 * not yet processed the TX interrupt.  Don't
4391 				 * try to race a restart because we do not
4392 				 * know where it stopped, let the TX interrupt
4393 				 * restart us when it figures out where we
4394 				 * stopped.
4395 				 */
4396 				cpu_sfence();
4397 				*txq->axq_link = bf->bf_daddr;
4398 				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4399 			} else {
4400 				/*
4401 				 * We are first in line, we can safely start
4402 				 * at this address.
4403 				 */
4404 				cpu_sfence();
4405 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4406 						 bf->bf_daddr);
4407 			}
4408 		} else {
4409 			/*
4410 			 * The queue is busy, go ahead and link us in but
4411 			 * do not try to start/restart the tx.  We just
4412 			 * don't know whether it will pick up our link
4413 			 * or not and we don't want to double-xmit.
4414 			 */
4415 			if (txq->axq_link != NULL) {
4416 				cpu_sfence();
4417 				*txq->axq_link = bf->bf_daddr;
4418 			}
4419 			txq->axq_flags |= ATH_TXQ_PUTPENDING;
4420 		}
4421 #if 0
4422 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4423 					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4424 #endif
4425 #else
4426 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4427 		if (txq->axq_link == NULL) {
4428 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4429 			DPRINTF(sc, ATH_DEBUG_XMIT,
4430 			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4431 			    __func__, txq->axq_qnum,
4432 			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4433 			    txq->axq_depth);
4434 		} else {
4435 			*txq->axq_link = bf->bf_daddr;
4436 			DPRINTF(sc, ATH_DEBUG_XMIT,
4437 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4438 			    txq->axq_qnum, txq->axq_link,
4439 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4440 		}
4441 #endif /* IEEE80211_SUPPORT_TDMA */
4442 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4443 		ath_hal_txstart(ah, txq->axq_qnum);
4444 	} else {
4445 		if (txq->axq_link != NULL) {
4446 			struct ath_buf *last = ATH_TXQ_LAST(txq);
4447 			struct ieee80211_frame *wh;
4448 
4449 			/* mark previous frame */
4450 			wh = mtod(last->bf_m, struct ieee80211_frame *);
4451 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4452 			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4453 			    BUS_DMASYNC_PREWRITE);
4454 
4455 			/* link descriptor */
4456 			*txq->axq_link = bf->bf_daddr;
4457 		}
4458 		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4459 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4460 	}
4461 }
4462 
4463 static int
4464 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4465     struct mbuf *m0)
4466 {
4467 	struct ieee80211vap *vap = ni->ni_vap;
4468 	struct ath_vap *avp = ATH_VAP(vap);
4469 	struct ath_hal *ah = sc->sc_ah;
4470 	struct ifnet *ifp = sc->sc_ifp;
4471 	struct ieee80211com *ic = ifp->if_l2com;
4472 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4473 	int error, iswep, ismcast, isfrag, ismrr;
4474 	int keyix, hdrlen, pktlen, try0;
4475 	u_int8_t rix, txrate, ctsrate;
4476 	u_int8_t cix = 0xff;		/* NB: silence compiler */
4477 	struct ath_desc *ds;
4478 	struct ath_txq *txq;
4479 	struct ieee80211_frame *wh;
4480 	u_int subtype, flags, ctsduration;
4481 	HAL_PKT_TYPE atype;
4482 	const HAL_RATE_TABLE *rt;
4483 	HAL_BOOL shortPreamble;
4484 	struct ath_node *an;
4485 	u_int pri;
4486 
4487 	wh = mtod(m0, struct ieee80211_frame *);
4488 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4489 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4490 	isfrag = m0->m_flags & M_FRAG;
4491 	hdrlen = ieee80211_anyhdrsize(wh);
4492 	/*
4493 	 * Packet length must not include any
4494 	 * pad bytes; deduct them here.
4495 	 */
4496 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4497 
4498 	if (iswep) {
4499 		const struct ieee80211_cipher *cip;
4500 		struct ieee80211_key *k;
4501 
4502 		/*
4503 		 * Construct the 802.11 header+trailer for an encrypted
4504 		 * frame. The only reason this can fail is because of an
4505 		 * unknown or unsupported cipher/key type.
4506 		 */
4507 		k = ieee80211_crypto_encap(ni, m0);
4508 		if (k == NULL) {
4509 			/*
4510 			 * This can happen when the key is yanked after the
4511 			 * frame was queued.  Just discard the frame; the
4512 			 * 802.11 layer counts failures and provides
4513 			 * debugging/diagnostics.
4514 			 */
4515 			ath_freetx(m0);
4516 			return EIO;
4517 		}
4518 		/*
4519 		 * Adjust the packet + header lengths for the crypto
4520 		 * additions and calculate the h/w key index.  When
4521 		 * a s/w mic is done the frame will have had any mic
4522 		 * added to it prior to entry so m0->m_pkthdr.len will
4523 		 * account for it. Otherwise we need to add it to the
4524 		 * packet length.
4525 		 */
4526 		cip = k->wk_cipher;
4527 		hdrlen += cip->ic_header;
4528 		pktlen += cip->ic_header + cip->ic_trailer;
4529 		/* NB: frags always have any TKIP MIC done in s/w */
4530 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4531 			pktlen += cip->ic_miclen;
4532 		keyix = k->wk_keyix;
4533 
4534 		/* packet header may have moved, reset our local pointer */
4535 		wh = mtod(m0, struct ieee80211_frame *);
4536 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4537 		/*
4538 		 * Use station key cache slot, if assigned.
4539 		 */
4540 		keyix = ni->ni_ucastkey.wk_keyix;
4541 		if (keyix == IEEE80211_KEYIX_NONE)
4542 			keyix = HAL_TXKEYIX_INVALID;
4543 	} else
4544 		keyix = HAL_TXKEYIX_INVALID;
4545 
4546 	pktlen += IEEE80211_CRC_LEN;
4547 
4548 	/*
4549 	 * Load the DMA map so any coalescing is done.  This
4550 	 * also calculates the number of descriptors we need.
4551 	 */
4552 	error = ath_tx_dmasetup(sc, bf, m0);
4553 	if (error != 0) {
4554 		return error;
4555 	}
4556 	bf->bf_node = ni;			/* NB: held reference */
4557 	m0 = bf->bf_m;				/* NB: may have changed */
4558 	wh = mtod(m0, struct ieee80211_frame *);
4559 
4560 	/* setup descriptors */
4561 	ds = bf->bf_desc;
4562 	rt = sc->sc_currates;
4563 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4564 
4565 	/*
4566 	 * NB: the 802.11 layer marks whether or not we should
4567 	 * use short preamble based on the current mode and
4568 	 * negotiated parameters.
4569 	 */
4570 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4571 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4572 		shortPreamble = AH_TRUE;
4573 		sc->sc_stats.ast_tx_shortpre++;
4574 	} else {
4575 		shortPreamble = AH_FALSE;
4576 	}
4577 
4578 	an = ATH_NODE(ni);
4579 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4580 	ismrr = 0;				/* default no multi-rate retry*/
4581 	pri = M_WME_GETAC(m0);			/* honor classification */
4582 	/* XXX use txparams instead of fixed values */
4583 	/*
4584 	 * Calculate Atheros packet type from IEEE80211 packet header,
4585 	 * setup for rate calculations, and select h/w transmit queue.
4586 	 */
4587 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4588 	case IEEE80211_FC0_TYPE_MGT:
4589 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4590 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4591 			atype = HAL_PKT_TYPE_BEACON;
4592 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4593 			atype = HAL_PKT_TYPE_PROBE_RESP;
4594 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4595 			atype = HAL_PKT_TYPE_ATIM;
4596 		else
4597 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4598 		rix = an->an_mgmtrix;
4599 		txrate = rt->info[rix].rateCode;
4600 		if (shortPreamble)
4601 			txrate |= rt->info[rix].shortPreamble;
4602 		try0 = ATH_TXMGTTRY;
4603 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4604 		break;
4605 	case IEEE80211_FC0_TYPE_CTL:
4606 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4607 		rix = an->an_mgmtrix;
4608 		txrate = rt->info[rix].rateCode;
4609 		if (shortPreamble)
4610 			txrate |= rt->info[rix].shortPreamble;
4611 		try0 = ATH_TXMGTTRY;
4612 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4613 		break;
4614 	case IEEE80211_FC0_TYPE_DATA:
4615 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4616 		/*
4617 		 * Data frames: multicast frames go out at a fixed rate,
4618 		 * EAPOL frames use the mgmt frame rate; otherwise consult
4619 		 * the rate control module for the rate to use.
4620 		 */
4621 		if (ismcast) {
4622 			rix = an->an_mcastrix;
4623 			txrate = rt->info[rix].rateCode;
4624 			if (shortPreamble)
4625 				txrate |= rt->info[rix].shortPreamble;
4626 			try0 = 1;
4627 		} else if (m0->m_flags & M_EAPOL) {
4628 			/* XXX? maybe always use long preamble? */
4629 			rix = an->an_mgmtrix;
4630 			txrate = rt->info[rix].rateCode;
4631 			if (shortPreamble)
4632 				txrate |= rt->info[rix].shortPreamble;
4633 			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4634 		} else {
4635 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4636 				&rix, &try0, &txrate);
4637 			sc->sc_txrix = rix;		/* for LED blinking */
4638 			sc->sc_lastdatarix = rix;	/* for fast frames */
4639 			if (try0 != ATH_TXMAXTRY)
4640 				ismrr = 1;
4641 		}
4642 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4643 			flags |= HAL_TXDESC_NOACK;
4644 		break;
4645 	default:
4646 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4647 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4648 		/* XXX statistic */
4649 		ath_freetx(m0);
4650 		return EIO;
4651 	}
4652 	txq = sc->sc_ac2q[pri];
4653 
4654 	/*
4655 	 * When servicing one or more stations in power-save mode
4656 	 * (or) if there is some mcast data waiting on the mcast
4657 	 * queue (to prevent out of order delivery) multicast
4658 	 * frames must be buffered until after the beacon.
4659 	 */
4660 	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4661 		txq = &avp->av_mcastq;
4662 
4663 	/*
4664 	 * Calculate miscellaneous flags.
4665 	 */
4666 	if (ismcast) {
4667 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4668 	} else if (pktlen > vap->iv_rtsthreshold &&
4669 	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4670 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4671 		cix = rt->info[rix].controlRate;
4672 		sc->sc_stats.ast_tx_rts++;
4673 	}
4674 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4675 		sc->sc_stats.ast_tx_noack++;
4676 #ifdef IEEE80211_SUPPORT_TDMA
4677 	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4678 		DPRINTF(sc, ATH_DEBUG_TDMA,
4679 		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4680 		sc->sc_stats.ast_tdma_ack++;
4681 		ath_freetx(m0);
4682 		return EIO;
4683 	}
4684 #endif
4685 
4686 	/*
4687 	 * If 802.11g protection is enabled, determine whether
4688 	 * to use RTS/CTS or just CTS.  Note that this is only
4689 	 * done for OFDM unicast frames.
4690 	 */
4691 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4692 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4693 	    (flags & HAL_TXDESC_NOACK) == 0) {
4694 		/* XXX fragments must use CCK rates w/ protection */
4695 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4696 			flags |= HAL_TXDESC_RTSENA;
4697 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4698 			flags |= HAL_TXDESC_CTSENA;
4699 		if (isfrag) {
4700 			/*
4701 			 * For frags it would be desirable to use the
4702 			 * highest CCK rate for RTS/CTS.  But stations
4703 			 * farther away may detect it at a lower CCK rate
4704 			 * so use the configured protection rate instead
4705 			 * (for now).
4706 			 */
4707 			cix = rt->info[sc->sc_protrix].controlRate;
4708 		} else
4709 			cix = rt->info[sc->sc_protrix].controlRate;
4710 		sc->sc_stats.ast_tx_protect++;
4711 	}
4712 
4713 	/*
4714 	 * Calculate duration.  This logically belongs in the 802.11
4715 	 * layer but it lacks sufficient information to calculate it.
4716 	 */
4717 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4718 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4719 		u_int16_t dur;
4720 		if (shortPreamble)
4721 			dur = rt->info[rix].spAckDuration;
4722 		else
4723 			dur = rt->info[rix].lpAckDuration;
4724 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4725 			dur += dur;		/* additional SIFS+ACK */
4726 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4727 			/*
4728 			 * Include the size of next fragment so NAV is
4729 			 * updated properly.  The last fragment uses only
4730 			 * the ACK duration
4731 			 */
4732 			dur += ath_hal_computetxtime(ah, rt,
4733 					m0->m_nextpkt->m_pkthdr.len,
4734 					rix, shortPreamble);
4735 		}
4736 		if (isfrag) {
4737 			/*
4738 			 * Force hardware to use computed duration for next
4739 			 * fragment by disabling multi-rate retry which updates
4740 			 * duration based on the multi-rate duration table.
4741 			 */
4742 			ismrr = 0;
4743 			try0 = ATH_TXMGTTRY;	/* XXX? */
4744 		}
4745 		*(u_int16_t *)wh->i_dur = htole16(dur);
4746 	}
4747 
4748 	/*
4749 	 * Calculate RTS/CTS rate and duration if needed.
4750 	 */
4751 	ctsduration = 0;
4752 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4753 		/*
4754 		 * CTS transmit rate is derived from the transmit rate
4755 		 * by looking in the h/w rate table.  We must also factor
4756 		 * in whether or not a short preamble is to be used.
4757 		 */
4758 		/* NB: cix is set above where RTS/CTS is enabled */
4759 		KASSERT(cix != 0xff, ("cix not setup"));
4760 		ctsrate = rt->info[cix].rateCode;
4761 		/*
4762 		 * Compute the transmit duration based on the frame
4763 		 * size and the size of an ACK frame.  We call into the
4764 		 * HAL to do the computation since it depends on the
4765 		 * characteristics of the actual PHY being used.
4766 		 *
4767 		 * NB: CTS is assumed the same size as an ACK so we can
4768 		 *     use the precalculated ACK durations.
4769 		 */
4770 		if (shortPreamble) {
4771 			ctsrate |= rt->info[cix].shortPreamble;
4772 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4773 				ctsduration += rt->info[cix].spAckDuration;
4774 			ctsduration += ath_hal_computetxtime(ah,
4775 				rt, pktlen, rix, AH_TRUE);
4776 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4777 				ctsduration += rt->info[rix].spAckDuration;
4778 		} else {
4779 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4780 				ctsduration += rt->info[cix].lpAckDuration;
4781 			ctsduration += ath_hal_computetxtime(ah,
4782 				rt, pktlen, rix, AH_FALSE);
4783 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4784 				ctsduration += rt->info[rix].lpAckDuration;
4785 		}
4786 		/*
4787 		 * Must disable multi-rate retry when using RTS/CTS.
4788 		 */
4789 		ismrr = 0;
4790 		try0 = ATH_TXMGTTRY;		/* XXX */
4791 	} else
4792 		ctsrate = 0;
4793 
4794 	/*
4795 	 * At this point we are committed to sending the frame
4796 	 * and we don't need to look at m_nextpkt; clear it in
4797 	 * case this frame is part of frag chain.
4798 	 */
4799 	m0->m_nextpkt = NULL;
4800 
4801 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4802 		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
4803 		    sc->sc_hwmap[rix].ieeerate, -1);
4804 
4805 	if (ieee80211_radiotap_active_vap(vap)) {
4806 		u_int64_t tsf = ath_hal_gettsf64(ah);
4807 
4808 		sc->sc_tx_th.wt_tsf = htole64(tsf);
4809 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4810 		if (iswep)
4811 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4812 		if (isfrag)
4813 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4814 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4815 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4816 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4817 
4818 		ieee80211_radiotap_tx(vap, m0);
4819 	}
4820 
4821 	/*
4822 	 * Determine if a tx interrupt should be generated for
4823 	 * this descriptor.  We take a tx interrupt to reap
4824 	 * descriptors when the h/w hits an EOL condition or
4825 	 * when the descriptor is specifically marked to generate
4826 	 * an interrupt.  We periodically mark descriptors in this
4827 	 * way to insure timely replenishing of the supply needed
4828 	 * for sending frames.  Defering interrupts reduces system
4829 	 * load and potentially allows more concurrent work to be
4830 	 * done but if done to aggressively can cause senders to
4831 	 * backup.
4832 	 *
4833 	 * NB: use >= to deal with sc_txintrperiod changing
4834 	 *     dynamically through sysctl.
4835 	 */
4836 	if (flags & HAL_TXDESC_INTREQ) {
4837 		txq->axq_intrcnt = 0;
4838 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4839 		flags |= HAL_TXDESC_INTREQ;
4840 		txq->axq_intrcnt = 0;
4841 	}
4842 
4843 	/*
4844 	 * Formulate first tx descriptor with tx controls.
4845 	 */
4846 	/* XXX check return value? */
4847 	ath_hal_setuptxdesc(ah, ds
4848 		, pktlen		/* packet length */
4849 		, hdrlen		/* header length */
4850 		, atype			/* Atheros packet type */
4851 		, ni->ni_txpower	/* txpower */
4852 		, txrate, try0		/* series 0 rate/tries */
4853 		, keyix			/* key cache index */
4854 		, sc->sc_txantenna	/* antenna mode */
4855 		, flags			/* flags */
4856 		, ctsrate		/* rts/cts rate */
4857 		, ctsduration		/* rts/cts duration */
4858 	);
4859 	bf->bf_txflags = flags;
4860 	/*
4861 	 * Setup the multi-rate retry state only when we're
4862 	 * going to use it.  This assumes ath_hal_setuptxdesc
4863 	 * initializes the descriptors (so we don't have to)
4864 	 * when the hardware supports multi-rate retry and
4865 	 * we don't use it.
4866 	 */
4867 	if (ismrr)
4868 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4869 
4870 	ath_tx_handoff(sc, txq, bf);
4871 	return 0;
4872 }
4873 
4874 /*
4875  * Process completed xmit descriptors from the specified queue.
4876  */
4877 static int
4878 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4879 {
4880 	struct ath_hal *ah = sc->sc_ah;
4881 	struct ifnet *ifp = sc->sc_ifp;
4882 	struct ieee80211com *ic = ifp->if_l2com;
4883 	struct ath_buf *bf, *last;
4884 	struct ath_desc *ds;
4885 	struct ath_tx_status *ts;
4886 	struct ieee80211_node *ni;
4887 	struct ath_node *an;
4888 	int sr, lr, pri, nacked;
4889 	HAL_STATUS status;
4890 
4891 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4892 		__func__, txq->axq_qnum,
4893 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4894 		txq->axq_link);
4895 	nacked = 0;
4896 	for (;;) {
4897 		int qbusy;
4898 
4899 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4900 		bf = STAILQ_FIRST(&txq->axq_q);
4901 		if (bf == NULL)
4902 			break;
4903 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4904 		ts = &bf->bf_status.ds_txstat;
4905 		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4906 		status = ath_hal_txprocdesc(ah, ds, ts);
4907 #ifdef ATH_DEBUG
4908 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4909 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4910 			    status == HAL_OK);
4911 #endif
4912 		if (status == HAL_EINPROGRESS) {
4913 #ifdef IEEE80211_SUPPORT_TDMA
4914 			/*
4915 			 * If not done and the queue is not busy then the
4916 			 * transmitter raced the hardware on the link field
4917 			 * and we have to restart it.
4918 			 */
4919 			if (!qbusy) {
4920 				cpu_sfence();
4921 				ath_hal_puttxbuf(ah, txq->axq_qnum,
4922 						 bf->bf_daddr);
4923 				ath_hal_txstart(ah, txq->axq_qnum);
4924 			}
4925 #endif
4926 			break;
4927 		}
4928 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4929 #ifdef IEEE80211_SUPPORT_TDMA
4930 		if (txq->axq_depth > 0) {
4931 			/*
4932 			 * More frames follow.  Mark the buffer busy
4933 			 * so it's not re-used while the hardware may
4934 			 * still re-read the link field in the descriptor.
4935 			 */
4936 			bf->bf_flags |= ATH_BUF_BUSY;
4937 		} else
4938 #else
4939 		if (txq->axq_depth == 0)
4940 #endif
4941 			txq->axq_link = NULL;
4942 
4943 		ni = bf->bf_node;
4944 		if (ni != NULL) {
4945 			an = ATH_NODE(ni);
4946 			if (ts->ts_status == 0) {
4947 				u_int8_t txant = ts->ts_antenna;
4948 				sc->sc_stats.ast_ant_tx[txant]++;
4949 				sc->sc_ant_tx[txant]++;
4950 				if (ts->ts_finaltsi != 0)
4951 					sc->sc_stats.ast_tx_altrate++;
4952 				pri = M_WME_GETAC(bf->bf_m);
4953 				if (pri >= WME_AC_VO)
4954 					ic->ic_wme.wme_hipri_traffic++;
4955 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4956 					ni->ni_inact = ni->ni_inact_reload;
4957 			} else {
4958 				if (ts->ts_status & HAL_TXERR_XRETRY)
4959 					sc->sc_stats.ast_tx_xretries++;
4960 				if (ts->ts_status & HAL_TXERR_FIFO)
4961 					sc->sc_stats.ast_tx_fifoerr++;
4962 				if (ts->ts_status & HAL_TXERR_FILT)
4963 					sc->sc_stats.ast_tx_filtered++;
4964 				if (bf->bf_m->m_flags & M_FF)
4965 					sc->sc_stats.ast_ff_txerr++;
4966 			}
4967 			sr = ts->ts_shortretry;
4968 			lr = ts->ts_longretry;
4969 			sc->sc_stats.ast_tx_shortretry += sr;
4970 			sc->sc_stats.ast_tx_longretry += lr;
4971 			/*
4972 			 * Hand the descriptor to the rate control algorithm.
4973 			 */
4974 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4975 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4976 				/*
4977 				 * If frame was ack'd update statistics,
4978 				 * including the last rx time used to
4979 				 * workaround phantom bmiss interrupts.
4980 				 */
4981 				if (ts->ts_status == 0) {
4982 					nacked++;
4983 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4984 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4985 						ts->ts_rssi);
4986 				}
4987 				ath_rate_tx_complete(sc, an, bf);
4988 			}
4989 			/*
4990 			 * Do any tx complete callback.  Note this must
4991 			 * be done before releasing the node reference.
4992 			 */
4993 			if (bf->bf_m->m_flags & M_TXCB)
4994 				ieee80211_process_callback(ni, bf->bf_m,
4995 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
4996 				        ts->ts_status : HAL_TXERR_XRETRY);
4997 			ieee80211_free_node(ni);
4998 		}
4999 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5000 		    BUS_DMASYNC_POSTWRITE);
5001 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5002 
5003 		m_freem(bf->bf_m);
5004 		bf->bf_m = NULL;
5005 		bf->bf_node = NULL;
5006 
5007 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5008 		if (last != NULL)
5009 			last->bf_flags &= ~ATH_BUF_BUSY;
5010 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5011 	}
5012 #ifdef IEEE80211_SUPPORT_SUPERG
5013 	/*
5014 	 * Flush fast-frame staging queue when traffic slows.
5015 	 */
5016 	if (txq->axq_depth <= 1)
5017 		ieee80211_ff_flush(ic, txq->axq_ac);
5018 #endif
5019 	return nacked;
5020 }
5021 
5022 static __inline int
5023 txqactive(struct ath_hal *ah, int qnum)
5024 {
5025 	u_int32_t txqs = 1<<qnum;
5026 	ath_hal_gettxintrtxqs(ah, &txqs);
5027 	return (txqs & (1<<qnum));
5028 }
5029 
5030 /*
5031  * Deferred processing of transmit interrupt; special-cased
5032  * for a single hardware transmit queue (e.g. 5210 and 5211).
5033  */
5034 static void
5035 ath_tx_task_q0(void *arg, int npending)
5036 {
5037 	struct ath_softc *sc = arg;
5038 	struct ifnet *ifp = sc->sc_ifp;
5039 
5040 	wlan_serialize_enter();
5041 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5042 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5043 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5044 		ath_tx_processq(sc, sc->sc_cabq);
5045 	ifq_clr_oactive(&ifp->if_snd);
5046 	sc->sc_wd_timer = 0;
5047 
5048 	if (sc->sc_softled)
5049 		ath_led_event(sc, sc->sc_txrix);
5050 
5051 	if_devstart(ifp);
5052 	wlan_serialize_exit();
5053 }
5054 
5055 /*
5056  * Deferred processing of transmit interrupt; special-cased
5057  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5058  */
5059 static void
5060 ath_tx_task_q0123(void *arg, int npending)
5061 {
5062 	struct ath_softc *sc = arg;
5063 	struct ifnet *ifp = sc->sc_ifp;
5064 	int nacked;
5065 
5066 	wlan_serialize_enter();
5067 	/*
5068 	 * Process each active queue.
5069 	 */
5070 	nacked = 0;
5071 	if (txqactive(sc->sc_ah, 0))
5072 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5073 	if (txqactive(sc->sc_ah, 1))
5074 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5075 	if (txqactive(sc->sc_ah, 2))
5076 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5077 	if (txqactive(sc->sc_ah, 3))
5078 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5079 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5080 		ath_tx_processq(sc, sc->sc_cabq);
5081 	if (nacked)
5082 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5083 
5084 	ifq_clr_oactive(&ifp->if_snd);
5085 	sc->sc_wd_timer = 0;
5086 
5087 	if (sc->sc_softled)
5088 		ath_led_event(sc, sc->sc_txrix);
5089 
5090 	if_devstart(ifp);
5091 	wlan_serialize_exit();
5092 }
5093 
5094 /*
5095  * Deferred processing of transmit interrupt.
5096  */
5097 static void
5098 ath_tx_task(void *arg, int npending)
5099 {
5100 	struct ath_softc *sc = arg;
5101 	struct ifnet *ifp = sc->sc_ifp;
5102 	int i, nacked;
5103 
5104 	wlan_serialize_enter();
5105 
5106 	/*
5107 	 * Process each active queue.
5108 	 */
5109 	nacked = 0;
5110 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5111 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5112 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5113 	}
5114 	if (nacked)
5115 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5116 
5117 	ifq_clr_oactive(&ifp->if_snd);
5118 	sc->sc_wd_timer = 0;
5119 
5120 	if (sc->sc_softled)
5121 		ath_led_event(sc, sc->sc_txrix);
5122 
5123 	if_devstart(ifp);
5124 	wlan_serialize_exit();
5125 }
5126 
5127 static void
5128 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5129 {
5130 #ifdef ATH_DEBUG
5131 	struct ath_hal *ah = sc->sc_ah;
5132 #endif
5133 	struct ieee80211_node *ni;
5134 	struct ath_buf *bf;
5135 	u_int ix;
5136 
5137 	/*
5138 	 * NB: this assumes output has been stopped and
5139 	 *     we do not need to block ath_tx_proc
5140 	 */
5141 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5142 	if (bf != NULL)
5143 		bf->bf_flags &= ~ATH_BUF_BUSY;
5144 	for (ix = 0;; ix++) {
5145 		bf = STAILQ_FIRST(&txq->axq_q);
5146 		if (bf == NULL) {
5147 			txq->axq_link = NULL;
5148 			break;
5149 		}
5150 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5151 #ifdef ATH_DEBUG
5152 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5153 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5154 
5155 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5156 				ath_hal_txprocdesc(ah, bf->bf_desc,
5157 				    &bf->bf_status.ds_txstat) == HAL_OK);
5158 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5159 			    bf->bf_m->m_len, 0, -1);
5160 		}
5161 #endif /* ATH_DEBUG */
5162 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5163 		ni = bf->bf_node;
5164 		bf->bf_node = NULL;
5165 		if (ni != NULL) {
5166 			/*
5167 			 * Do any callback and reclaim the node reference.
5168 			 */
5169 			if (bf->bf_m->m_flags & M_TXCB)
5170 				ieee80211_process_callback(ni, bf->bf_m, -1);
5171 			ieee80211_free_node(ni);
5172 		}
5173 		m_freem(bf->bf_m);
5174 		bf->bf_m = NULL;
5175 		bf->bf_flags &= ~ATH_BUF_BUSY;
5176 
5177 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5178 	}
5179 }
5180 
5181 static void
5182 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5183 {
5184 	struct ath_hal *ah = sc->sc_ah;
5185 
5186 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5187 	    __func__, txq->axq_qnum,
5188 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5189 	    txq->axq_link);
5190 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5191 }
5192 
5193 /*
5194  * Drain the transmit queues and reclaim resources.
5195  */
5196 static void
5197 ath_draintxq(struct ath_softc *sc)
5198 {
5199 	struct ath_hal *ah = sc->sc_ah;
5200 	struct ifnet *ifp = sc->sc_ifp;
5201 	int i;
5202 
5203 	/* XXX return value */
5204 	if (!sc->sc_invalid) {
5205 		/* don't touch the hardware if marked invalid */
5206 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5207 		    __func__, sc->sc_bhalq,
5208 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5209 		    NULL);
5210 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5211 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5212 			if (ATH_TXQ_SETUP(sc, i))
5213 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5214 	}
5215 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5216 		if (ATH_TXQ_SETUP(sc, i))
5217 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5218 #ifdef ATH_DEBUG
5219 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5220 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5221 		if (bf != NULL && bf->bf_m != NULL) {
5222 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5223 				ath_hal_txprocdesc(ah, bf->bf_desc,
5224 				    &bf->bf_status.ds_txstat) == HAL_OK);
5225 			ieee80211_dump_pkt(ifp->if_l2com,
5226 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5227 			    0, -1);
5228 		}
5229 	}
5230 #endif /* ATH_DEBUG */
5231 	ifq_clr_oactive(&ifp->if_snd);
5232 	sc->sc_wd_timer = 0;
5233 }
5234 
5235 /*
5236  * Disable the receive h/w in preparation for a reset.
5237  */
5238 static void
5239 ath_stoprecv(struct ath_softc *sc)
5240 {
5241 #define	PA2DESC(_sc, _pa) \
5242 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5243 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5244 	struct ath_hal *ah = sc->sc_ah;
5245 
5246 	ath_hal_stoppcurecv(ah);	/* disable PCU */
5247 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5248 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5249 	DELAY(3000);			/* 3ms is long enough for 1 frame */
5250 #ifdef ATH_DEBUG
5251 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5252 		struct ath_buf *bf;
5253 		u_int ix;
5254 
5255 		kprintf("%s: rx queue %p, link %p\n", __func__,
5256 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5257 		ix = 0;
5258 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5259 			struct ath_desc *ds = bf->bf_desc;
5260 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5261 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5262 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5263 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5264 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5265 			ix++;
5266 		}
5267 	}
5268 #endif
5269 	if (sc->sc_rxpending != NULL) {
5270 		m_freem(sc->sc_rxpending);
5271 		sc->sc_rxpending = NULL;
5272 	}
5273 	sc->sc_rxlink = NULL;		/* just in case */
5274 #undef PA2DESC
5275 }
5276 
5277 /*
5278  * Enable the receive h/w following a reset.
5279  */
5280 static int
5281 ath_startrecv(struct ath_softc *sc)
5282 {
5283 	struct ath_hal *ah = sc->sc_ah;
5284 	struct ath_buf *bf;
5285 
5286 	sc->sc_rxlink = NULL;
5287 	sc->sc_rxpending = NULL;
5288 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5289 		int error = ath_rxbuf_init(sc, bf);
5290 		if (error != 0) {
5291 			DPRINTF(sc, ATH_DEBUG_RECV,
5292 				"%s: ath_rxbuf_init failed %d\n",
5293 				__func__, error);
5294 			return error;
5295 		}
5296 	}
5297 
5298 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5299 	ath_hal_putrxbuf(ah, bf->bf_daddr);
5300 	ath_hal_rxena(ah);		/* enable recv descriptors */
5301 	ath_mode_init(sc);		/* set filters, etc. */
5302 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5303 	return 0;
5304 }
5305 
5306 /*
5307  * Update internal state after a channel change.
5308  */
5309 static void
5310 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5311 {
5312 	enum ieee80211_phymode mode;
5313 
5314 	/*
5315 	 * Change channels and update the h/w rate map
5316 	 * if we're switching; e.g. 11a to 11b/g.
5317 	 */
5318 	mode = ieee80211_chan2mode(chan);
5319 	if (mode != sc->sc_curmode)
5320 		ath_setcurmode(sc, mode);
5321 	sc->sc_curchan = chan;
5322 }
5323 
5324 /*
5325  * Set/change channels.  If the channel is really being changed,
5326  * it's done by reseting the chip.  To accomplish this we must
5327  * first cleanup any pending DMA, then restart stuff after a la
5328  * ath_init.
5329  */
5330 static int
5331 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5332 {
5333 	struct ifnet *ifp = sc->sc_ifp;
5334 	struct ieee80211com *ic = ifp->if_l2com;
5335 	struct ath_hal *ah = sc->sc_ah;
5336 
5337 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5338 	    __func__, ieee80211_chan2ieee(ic, chan),
5339 	    chan->ic_freq, chan->ic_flags);
5340 	if (chan != sc->sc_curchan) {
5341 		HAL_STATUS status;
5342 		/*
5343 		 * To switch channels clear any pending DMA operations;
5344 		 * wait long enough for the RX fifo to drain, reset the
5345 		 * hardware at the new frequency, and then re-enable
5346 		 * the relevant bits of the h/w.
5347 		 */
5348 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5349 		ath_draintxq(sc);		/* clear pending tx frames */
5350 		ath_stoprecv(sc);		/* turn off frame recv */
5351 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5352 			if_printf(ifp, "%s: unable to reset "
5353 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5354 			    __func__, ieee80211_chan2ieee(ic, chan),
5355 			    chan->ic_freq, chan->ic_flags, status);
5356 			return EIO;
5357 		}
5358 		sc->sc_diversity = ath_hal_getdiversity(ah);
5359 
5360 		/*
5361 		 * Re-enable rx framework.
5362 		 */
5363 		if (ath_startrecv(sc) != 0) {
5364 			if_printf(ifp, "%s: unable to restart recv logic\n",
5365 			    __func__);
5366 			return EIO;
5367 		}
5368 
5369 		/*
5370 		 * Change channels and update the h/w rate map
5371 		 * if we're switching; e.g. 11a to 11b/g.
5372 		 */
5373 		ath_chan_change(sc, chan);
5374 
5375 		/*
5376 		 * Re-enable interrupts.
5377 		 */
5378 		ath_hal_intrset(ah, sc->sc_imask);
5379 	}
5380 	return 0;
5381 }
5382 
5383 /*
5384  * Periodically recalibrate the PHY to account
5385  * for temperature/environment changes.
5386  */
5387 static void
5388 ath_calibrate_callout(void *arg)
5389 {
5390 	struct ath_softc *sc = arg;
5391 	struct ath_hal *ah = sc->sc_ah;
5392 	struct ifnet *ifp = sc->sc_ifp;
5393 	struct ieee80211com *ic = ifp->if_l2com;
5394 	HAL_BOOL longCal, isCalDone;
5395 	int nextcal;
5396 
5397 	wlan_serialize_enter();
5398 
5399 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5400 		goto restart;
5401 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5402 	if (longCal) {
5403 		sc->sc_stats.ast_per_cal++;
5404 		sc->sc_lastlongcal = ticks;
5405 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5406 			/*
5407 			 * Rfgain is out of bounds, reset the chip
5408 			 * to load new gain values.
5409 			 */
5410 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5411 				"%s: rfgain change\n", __func__);
5412 			sc->sc_stats.ast_per_rfgain++;
5413 			ath_reset(ifp);
5414 		}
5415 		/*
5416 		 * If this long cal is after an idle period, then
5417 		 * reset the data collection state so we start fresh.
5418 		 */
5419 		if (sc->sc_resetcal) {
5420 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5421 			sc->sc_lastcalreset = ticks;
5422 			sc->sc_resetcal = 0;
5423 		}
5424 	}
5425 	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5426 		if (longCal) {
5427 			/*
5428 			 * Calibrate noise floor data again in case of change.
5429 			 */
5430 			ath_hal_process_noisefloor(ah);
5431 		}
5432 	} else {
5433 		DPRINTF(sc, ATH_DEBUG_ANY,
5434 			"%s: calibration of channel %u failed\n",
5435 			__func__, sc->sc_curchan->ic_freq);
5436 		sc->sc_stats.ast_per_calfail++;
5437 	}
5438 	if (!isCalDone) {
5439 restart:
5440 		/*
5441 		 * Use a shorter interval to potentially collect multiple
5442 		 * data samples required to complete calibration.  Once
5443 		 * we're told the work is done we drop back to a longer
5444 		 * interval between requests.  We're more aggressive doing
5445 		 * work when operating as an AP to improve operation right
5446 		 * after startup.
5447 		 */
5448 		nextcal = (1000*ath_shortcalinterval)/hz;
5449 		if (sc->sc_opmode != HAL_M_HOSTAP)
5450 			nextcal *= 10;
5451 	} else {
5452 		nextcal = ath_longcalinterval*hz;
5453 		if (sc->sc_lastcalreset == 0)
5454 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5455 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5456 			sc->sc_resetcal = 1;	/* setup reset next trip */
5457 	}
5458 
5459 	if (nextcal != 0) {
5460 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5461 		    __func__, nextcal, isCalDone ? "" : "!");
5462 		callout_reset(&sc->sc_cal_ch, nextcal,
5463 			      ath_calibrate_callout, sc);
5464 	} else {
5465 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5466 		    __func__);
5467 		/* NB: don't rearm timer */
5468 	}
5469 	wlan_serialize_exit();
5470 }
5471 
5472 static void
5473 ath_scan_start(struct ieee80211com *ic)
5474 {
5475 	struct ifnet *ifp = ic->ic_ifp;
5476 	struct ath_softc *sc = ifp->if_softc;
5477 	struct ath_hal *ah = sc->sc_ah;
5478 #ifdef ATH_DEBUG
5479 	char ethstr[ETHER_ADDRSTRLEN + 1];
5480 #endif
5481 	u_int32_t rfilt;
5482 
5483 	/* XXX calibration timer? */
5484 
5485 	sc->sc_scanning = 1;
5486 	sc->sc_syncbeacon = 0;
5487 	rfilt = ath_calcrxfilter(sc);
5488 	ath_hal_setrxfilter(ah, rfilt);
5489 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5490 
5491 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5492 	    __func__, rfilt, kether_ntoa(ifp->if_broadcastaddr, ethstr));
5493 }
5494 
5495 static void
5496 ath_scan_end(struct ieee80211com *ic)
5497 {
5498 	struct ifnet *ifp = ic->ic_ifp;
5499 	struct ath_softc *sc = ifp->if_softc;
5500 	struct ath_hal *ah = sc->sc_ah;
5501 #ifdef ATH_DEBUG
5502 	char ethstr[ETHER_ADDRSTRLEN + 1];
5503 #endif
5504 	u_int32_t rfilt;
5505 
5506 	sc->sc_scanning = 0;
5507 	rfilt = ath_calcrxfilter(sc);
5508 	ath_hal_setrxfilter(ah, rfilt);
5509 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5510 
5511 	ath_hal_process_noisefloor(ah);
5512 
5513 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5514 	    __func__, rfilt, kether_ntoa(sc->sc_curbssid, ethstr),
5515 	    sc->sc_curaid);
5516 }
5517 
5518 static void
5519 ath_set_channel(struct ieee80211com *ic)
5520 {
5521 	struct ifnet *ifp = ic->ic_ifp;
5522 	struct ath_softc *sc = ifp->if_softc;
5523 
5524 	(void) ath_chan_set(sc, ic->ic_curchan);
5525 	/*
5526 	 * If we are returning to our bss channel then mark state
5527 	 * so the next recv'd beacon's tsf will be used to sync the
5528 	 * beacon timers.  Note that since we only hear beacons in
5529 	 * sta/ibss mode this has no effect in other operating modes.
5530 	 */
5531 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5532 		sc->sc_syncbeacon = 1;
5533 }
5534 
5535 /*
5536  * Walk the vap list and check if there any vap's in RUN state.
5537  */
5538 static int
5539 ath_isanyrunningvaps(struct ieee80211vap *this)
5540 {
5541 	struct ieee80211com *ic = this->iv_ic;
5542 	struct ieee80211vap *vap;
5543 
5544 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5545 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5546 			return 1;
5547 	}
5548 	return 0;
5549 }
5550 
5551 static int
5552 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5553 {
5554 	struct ieee80211com *ic = vap->iv_ic;
5555 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5556 	struct ath_vap *avp = ATH_VAP(vap);
5557 	struct ath_hal *ah = sc->sc_ah;
5558 	struct ieee80211_node *ni = NULL;
5559 	int i, error, stamode;
5560 	u_int32_t rfilt;
5561 #ifdef ATH_DEBUG
5562 	char ethstr[ETHER_ADDRSTRLEN + 1];
5563 #endif
5564 	static const HAL_LED_STATE leds[] = {
5565 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5566 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5567 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5568 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5569 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5570 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5571 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5572 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5573 	};
5574 
5575 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5576 		ieee80211_state_name[vap->iv_state],
5577 		ieee80211_state_name[nstate]);
5578 
5579 	callout_stop(&sc->sc_cal_ch);
5580 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5581 
5582 	if (nstate == IEEE80211_S_SCAN) {
5583 		/*
5584 		 * Scanning: turn off beacon miss and don't beacon.
5585 		 * Mark beacon state so when we reach RUN state we'll
5586 		 * [re]setup beacons.  Unblock the task q thread so
5587 		 * deferred interrupt processing is done.
5588 		 */
5589 		ath_hal_intrset(ah,
5590 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5591 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5592 		sc->sc_beacons = 0;
5593 		taskqueue_unblock(sc->sc_tq);
5594 	}
5595 
5596 	ni = vap->iv_bss;
5597 	rfilt = ath_calcrxfilter(sc);
5598 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5599 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5600 		   vap->iv_opmode == IEEE80211_M_IBSS);
5601 	if (stamode && nstate == IEEE80211_S_RUN) {
5602 		sc->sc_curaid = ni->ni_associd;
5603 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5604 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5605 	}
5606 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5607 	    __func__, rfilt, kether_ntoa(sc->sc_curbssid, ethstr), sc->sc_curaid);
5608 	ath_hal_setrxfilter(ah, rfilt);
5609 
5610 	/* XXX is this to restore keycache on resume? */
5611 	if (vap->iv_opmode != IEEE80211_M_STA &&
5612 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5613 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5614 			if (ath_hal_keyisvalid(ah, i))
5615 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5616 	}
5617 
5618 	/*
5619 	 * Invoke the parent method to do net80211 work.
5620 	 */
5621 	error = avp->av_newstate(vap, nstate, arg);
5622 	if (error != 0)
5623 		goto bad;
5624 
5625 	if (nstate == IEEE80211_S_RUN) {
5626 		/* NB: collect bss node again, it may have changed */
5627 		ni = vap->iv_bss;
5628 
5629 		DPRINTF(sc, ATH_DEBUG_STATE,
5630 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5631 		    "capinfo 0x%04x chan %d\n", __func__,
5632 		    vap->iv_flags, ni->ni_intval, kether_ntoa(ni->ni_bssid, ethstr),
5633 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5634 
5635 		switch (vap->iv_opmode) {
5636 #ifdef IEEE80211_SUPPORT_TDMA
5637 		case IEEE80211_M_AHDEMO:
5638 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5639 				break;
5640 			/* fall thru... */
5641 #endif
5642 		case IEEE80211_M_HOSTAP:
5643 		case IEEE80211_M_IBSS:
5644 		case IEEE80211_M_MBSS:
5645 			/*
5646 			 * Allocate and setup the beacon frame.
5647 			 *
5648 			 * Stop any previous beacon DMA.  This may be
5649 			 * necessary, for example, when an ibss merge
5650 			 * causes reconfiguration; there will be a state
5651 			 * transition from RUN->RUN that means we may
5652 			 * be called with beacon transmission active.
5653 			 */
5654 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5655 
5656 			error = ath_beacon_alloc(sc, ni);
5657 			if (error != 0)
5658 				goto bad;
5659 			/*
5660 			 * If joining an adhoc network defer beacon timer
5661 			 * configuration to the next beacon frame so we
5662 			 * have a current TSF to use.  Otherwise we're
5663 			 * starting an ibss/bss so there's no need to delay;
5664 			 * if this is the first vap moving to RUN state, then
5665 			 * beacon state needs to be [re]configured.
5666 			 */
5667 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5668 			    ni->ni_tstamp.tsf != 0) {
5669 				sc->sc_syncbeacon = 1;
5670 			} else if (!sc->sc_beacons) {
5671 #ifdef IEEE80211_SUPPORT_TDMA
5672 				if (vap->iv_caps & IEEE80211_C_TDMA)
5673 					ath_tdma_config(sc, vap);
5674 				else
5675 #endif
5676 					ath_beacon_config(sc, vap);
5677 				sc->sc_beacons = 1;
5678 			}
5679 			break;
5680 		case IEEE80211_M_STA:
5681 			/*
5682 			 * Defer beacon timer configuration to the next
5683 			 * beacon frame so we have a current TSF to use
5684 			 * (any TSF collected when scanning is likely old).
5685 			 */
5686 			sc->sc_syncbeacon = 1;
5687 			break;
5688 		case IEEE80211_M_MONITOR:
5689 			/*
5690 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5691 			 * transitions so we must re-enable interrupts here to
5692 			 * handle the case of a single monitor mode vap.
5693 			 */
5694 			ath_hal_intrset(ah, sc->sc_imask);
5695 			break;
5696 		case IEEE80211_M_WDS:
5697 			break;
5698 		default:
5699 			break;
5700 		}
5701 		/*
5702 		 * Let the hal process statistics collected during a
5703 		 * scan so it can provide calibrated noise floor data.
5704 		 */
5705 		ath_hal_process_noisefloor(ah);
5706 		/*
5707 		 * Reset rssi stats; maybe not the best place...
5708 		 */
5709 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5710 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5711 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5712 		/*
5713 		 * Finally, start any timers and the task q thread
5714 		 * (in case we didn't go through SCAN state).
5715 		 */
5716 		if (ath_longcalinterval != 0) {
5717 			/* start periodic recalibration timer */
5718 			callout_reset(&sc->sc_cal_ch, 1,
5719 				      ath_calibrate_callout, sc);
5720 		} else {
5721 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5722 			    "%s: calibration disabled\n", __func__);
5723 		}
5724 		taskqueue_unblock(sc->sc_tq);
5725 	} else if (nstate == IEEE80211_S_INIT) {
5726 		/*
5727 		 * If there are no vaps left in RUN state then
5728 		 * shutdown host/driver operation:
5729 		 * o disable interrupts
5730 		 * o disable the task queue thread
5731 		 * o mark beacon processing as stopped
5732 		 */
5733 		if (!ath_isanyrunningvaps(vap)) {
5734 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5735 			/* disable interrupts  */
5736 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5737 			taskqueue_block(sc->sc_tq);
5738 			sc->sc_beacons = 0;
5739 		}
5740 #ifdef IEEE80211_SUPPORT_TDMA
5741 		ath_hal_setcca(ah, AH_TRUE);
5742 #endif
5743 	}
5744 bad:
5745 	return error;
5746 }
5747 
5748 /*
5749  * Allocate a key cache slot to the station so we can
5750  * setup a mapping from key index to node. The key cache
5751  * slot is needed for managing antenna state and for
5752  * compression when stations do not use crypto.  We do
5753  * it uniliaterally here; if crypto is employed this slot
5754  * will be reassigned.
5755  */
5756 static void
5757 ath_setup_stationkey(struct ieee80211_node *ni)
5758 {
5759 	struct ieee80211vap *vap = ni->ni_vap;
5760 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5761 	ieee80211_keyix keyix, rxkeyix;
5762 
5763 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5764 		/*
5765 		 * Key cache is full; we'll fall back to doing
5766 		 * the more expensive lookup in software.  Note
5767 		 * this also means no h/w compression.
5768 		 */
5769 		/* XXX msg+statistic */
5770 	} else {
5771 		/* XXX locking? */
5772 		ni->ni_ucastkey.wk_keyix = keyix;
5773 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5774 		/* NB: must mark device key to get called back on delete */
5775 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5776 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5777 		/* NB: this will create a pass-thru key entry */
5778 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5779 	}
5780 }
5781 
5782 /*
5783  * Setup driver-specific state for a newly associated node.
5784  * Note that we're called also on a re-associate, the isnew
5785  * param tells us if this is the first time or not.
5786  */
5787 static void
5788 ath_newassoc(struct ieee80211_node *ni, int isnew)
5789 {
5790 	struct ath_node *an = ATH_NODE(ni);
5791 	struct ieee80211vap *vap = ni->ni_vap;
5792 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5793 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5794 
5795 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5796 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5797 
5798 	ath_rate_newassoc(sc, an, isnew);
5799 	if (isnew &&
5800 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5801 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5802 		ath_setup_stationkey(ni);
5803 }
5804 
5805 static int
5806 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5807 	int nchans, struct ieee80211_channel chans[])
5808 {
5809 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5810 	struct ath_hal *ah = sc->sc_ah;
5811 	HAL_STATUS status;
5812 
5813 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5814 	    "%s: rd %u cc %u location %c%s\n",
5815 	    __func__, reg->regdomain, reg->country, reg->location,
5816 	    reg->ecm ? " ecm" : "");
5817 
5818 	status = ath_hal_set_channels(ah, chans, nchans,
5819 	    reg->country, reg->regdomain);
5820 	if (status != HAL_OK) {
5821 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5822 		    __func__, status);
5823 		return EINVAL;		/* XXX */
5824 	}
5825 	return 0;
5826 }
5827 
5828 static void
5829 ath_getradiocaps(struct ieee80211com *ic,
5830 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5831 {
5832 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5833 	struct ath_hal *ah = sc->sc_ah;
5834 
5835 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5836 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5837 
5838 	/* XXX check return */
5839 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5840 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5841 
5842 }
5843 
5844 static int
5845 ath_getchannels(struct ath_softc *sc)
5846 {
5847 	struct ifnet *ifp = sc->sc_ifp;
5848 	struct ieee80211com *ic = ifp->if_l2com;
5849 	struct ath_hal *ah = sc->sc_ah;
5850 	HAL_STATUS status;
5851 
5852 	/*
5853 	 * Collect channel set based on EEPROM contents.
5854 	 */
5855 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5856 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5857 	if (status != HAL_OK) {
5858 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5859 		    "status %d\n", __func__, status);
5860 		return EINVAL;
5861 	}
5862 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5863 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5864 	/* XXX map Atheros sku's to net80211 SKU's */
5865 	/* XXX net80211 types too small */
5866 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5867 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5868 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5869 	ic->ic_regdomain.isocc[1] = ' ';
5870 
5871 	ic->ic_regdomain.ecm = 1;
5872 	ic->ic_regdomain.location = 'I';
5873 
5874 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5875 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5876 	    __func__, sc->sc_eerd, sc->sc_eecc,
5877 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5878 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5879 	return 0;
5880 }
5881 
5882 static void
5883 ath_led_done_callout(void *arg)
5884 {
5885 	struct ath_softc *sc = arg;
5886 
5887 	wlan_serialize_enter();
5888 	sc->sc_blinking = 0;
5889 	wlan_serialize_exit();
5890 }
5891 
5892 /*
5893  * Turn the LED off: flip the pin and then set a timer so no
5894  * update will happen for the specified duration.
5895  */
5896 static void
5897 ath_led_off_callout(void *arg)
5898 {
5899 	struct ath_softc *sc = arg;
5900 
5901 	wlan_serialize_enter();
5902 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5903 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff,
5904 			ath_led_done_callout, sc);
5905 	wlan_serialize_exit();
5906 }
5907 
5908 /*
5909  * Blink the LED according to the specified on/off times.
5910  */
5911 static void
5912 ath_led_blink(struct ath_softc *sc, int on, int off)
5913 {
5914 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5915 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5916 	sc->sc_blinking = 1;
5917 	sc->sc_ledoff = off;
5918 	callout_reset(&sc->sc_ledtimer, on, ath_led_off_callout, sc);
5919 }
5920 
5921 static void
5922 ath_led_event(struct ath_softc *sc, int rix)
5923 {
5924 	sc->sc_ledevent = ticks;	/* time of last event */
5925 	if (sc->sc_blinking)		/* don't interrupt active blink */
5926 		return;
5927 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5928 }
5929 
5930 static int
5931 ath_rate_setup(struct ath_softc *sc, u_int mode)
5932 {
5933 	struct ath_hal *ah = sc->sc_ah;
5934 	const HAL_RATE_TABLE *rt;
5935 
5936 	switch (mode) {
5937 	case IEEE80211_MODE_11A:
5938 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5939 		break;
5940 	case IEEE80211_MODE_HALF:
5941 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5942 		break;
5943 	case IEEE80211_MODE_QUARTER:
5944 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5945 		break;
5946 	case IEEE80211_MODE_11B:
5947 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5948 		break;
5949 	case IEEE80211_MODE_11G:
5950 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5951 		break;
5952 	case IEEE80211_MODE_TURBO_A:
5953 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5954 		break;
5955 	case IEEE80211_MODE_TURBO_G:
5956 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5957 		break;
5958 	case IEEE80211_MODE_STURBO_A:
5959 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5960 		break;
5961 	case IEEE80211_MODE_11NA:
5962 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5963 		break;
5964 	case IEEE80211_MODE_11NG:
5965 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5966 		break;
5967 	default:
5968 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5969 			__func__, mode);
5970 		return 0;
5971 	}
5972 	sc->sc_rates[mode] = rt;
5973 	return (rt != NULL);
5974 }
5975 
5976 static void
5977 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5978 {
5979 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5980 	static const struct {
5981 		u_int		rate;		/* tx/rx 802.11 rate */
5982 		u_int16_t	timeOn;		/* LED on time (ms) */
5983 		u_int16_t	timeOff;	/* LED off time (ms) */
5984 	} blinkrates[] = {
5985 		{ 108,  40,  10 },
5986 		{  96,  44,  11 },
5987 		{  72,  50,  13 },
5988 		{  48,  57,  14 },
5989 		{  36,  67,  16 },
5990 		{  24,  80,  20 },
5991 		{  22, 100,  25 },
5992 		{  18, 133,  34 },
5993 		{  12, 160,  40 },
5994 		{  10, 200,  50 },
5995 		{   6, 240,  58 },
5996 		{   4, 267,  66 },
5997 		{   2, 400, 100 },
5998 		{   0, 500, 130 },
5999 		/* XXX half/quarter rates */
6000 	};
6001 	const HAL_RATE_TABLE *rt;
6002 	int i, j;
6003 
6004 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6005 	rt = sc->sc_rates[mode];
6006 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6007 	for (i = 0; i < rt->rateCount; i++) {
6008 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6009 		if (rt->info[i].phy != IEEE80211_T_HT)
6010 			sc->sc_rixmap[ieeerate] = i;
6011 		else
6012 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6013 	}
6014 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6015 	for (i = 0; i < NELEM(sc->sc_hwmap); i++) {
6016 		if (i >= rt->rateCount) {
6017 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6018 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6019 			continue;
6020 		}
6021 		sc->sc_hwmap[i].ieeerate =
6022 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6023 		if (rt->info[i].phy == IEEE80211_T_HT)
6024 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6025 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6026 		if (rt->info[i].shortPreamble ||
6027 		    rt->info[i].phy == IEEE80211_T_OFDM)
6028 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6029 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6030 		for (j = 0; j < NELEM(blinkrates)-1; j++)
6031 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6032 				break;
6033 		/* NB: this uses the last entry if the rate isn't found */
6034 		/* XXX beware of overlow */
6035 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6036 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6037 	}
6038 	sc->sc_currates = rt;
6039 	sc->sc_curmode = mode;
6040 	/*
6041 	 * All protection frames are transmited at 2Mb/s for
6042 	 * 11g, otherwise at 1Mb/s.
6043 	 */
6044 	if (mode == IEEE80211_MODE_11G)
6045 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6046 	else
6047 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6048 	/* NB: caller is responsible for reseting rate control state */
6049 }
6050 
6051 #ifdef ATH_DEBUG
6052 static void
6053 ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6054 	u_int ix, int done)
6055 {
6056 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6057 	struct ath_hal *ah = sc->sc_ah;
6058 	const struct ath_desc *ds;
6059 	int i;
6060 
6061 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6062 		kprintf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6063 		       "      %08x %08x %08x %08x\n",
6064 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6065 		    ds->ds_link, ds->ds_data,
6066 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6067 		    ds->ds_ctl0, ds->ds_ctl1,
6068 		    ds->ds_hw[0], ds->ds_hw[1]);
6069 		if (ah->ah_magic == 0x20065416) {
6070 			kprintf("        %08x %08x %08x %08x %08x %08x %08x\n",
6071 			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6072 			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6073 			    ds->ds_hw[8]);
6074 		}
6075 	}
6076 }
6077 
6078 static void
6079 ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6080 	u_int qnum, u_int ix, int done)
6081 {
6082 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6083 	struct ath_hal *ah = sc->sc_ah;
6084 	const struct ath_desc *ds;
6085 	int i;
6086 
6087 	kprintf("Q%u[%3u]", qnum, ix);
6088 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6089 		kprintf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6090 		       "        %08x %08x %08x %08x %08x %08x\n",
6091 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6092 		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6093 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6094 		    ds->ds_ctl0, ds->ds_ctl1,
6095 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6096 		if (ah->ah_magic == 0x20065416) {
6097 			kprintf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6098 			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6099 			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6100 			    ds->ds_hw[10],ds->ds_hw[11]);
6101 			kprintf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6102 			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6103 			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6104 			    ds->ds_hw[18], ds->ds_hw[19]);
6105 		}
6106 	}
6107 }
6108 #endif /* ATH_DEBUG */
6109 
6110 static void
6111 ath_watchdog_callout(void *arg)
6112 {
6113 	struct ath_softc *sc = arg;
6114 
6115 	wlan_serialize_enter();
6116 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6117 		struct ifnet *ifp = sc->sc_ifp;
6118 		uint32_t hangs;
6119 
6120 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6121 		    hangs != 0) {
6122 			if_printf(ifp, "%s hang detected (0x%x)\n",
6123 			    hangs & 0xff ? "bb" : "mac", hangs);
6124 		} else
6125 			if_printf(ifp, "device timeout\n");
6126 		ath_reset(ifp);
6127 		ifp->if_oerrors++;
6128 		sc->sc_stats.ast_watchdog++;
6129 	}
6130 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog_callout, sc);
6131 	wlan_serialize_exit();
6132 }
6133 
6134 #ifdef ATH_DIAGAPI
6135 /*
6136  * Diagnostic interface to the HAL.  This is used by various
6137  * tools to do things like retrieve register contents for
6138  * debugging.  The mechanism is intentionally opaque so that
6139  * it can change frequently w/o concern for compatiblity.
6140  */
6141 static int
6142 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6143 {
6144 	struct ath_hal *ah = sc->sc_ah;
6145 	u_int id = ad->ad_id & ATH_DIAG_ID;
6146 	void *indata = NULL;
6147 	void *outdata = NULL;
6148 	u_int32_t insize = ad->ad_in_size;
6149 	u_int32_t outsize = ad->ad_out_size;
6150 	int error = 0;
6151 
6152 	if (ad->ad_id & ATH_DIAG_IN) {
6153 		/*
6154 		 * Copy in data.
6155 		 */
6156 		indata = kmalloc(insize, M_TEMP, M_INTWAIT);
6157 		error = copyin(ad->ad_in_data, indata, insize);
6158 		if (error)
6159 			goto bad;
6160 	}
6161 	if (ad->ad_id & ATH_DIAG_DYN) {
6162 		/*
6163 		 * Allocate a buffer for the results (otherwise the HAL
6164 		 * returns a pointer to a buffer where we can read the
6165 		 * results).  Note that we depend on the HAL leaving this
6166 		 * pointer for us to use below in reclaiming the buffer;
6167 		 * may want to be more defensive.
6168 		 */
6169 		outdata = kmalloc(outsize, M_TEMP, M_INTWAIT);
6170 	}
6171 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6172 		if (outsize < ad->ad_out_size)
6173 			ad->ad_out_size = outsize;
6174 		if (outdata != NULL)
6175 			error = copyout(outdata, ad->ad_out_data,
6176 					ad->ad_out_size);
6177 	} else {
6178 		error = EINVAL;
6179 	}
6180 bad:
6181 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6182 		kfree(indata, M_TEMP);
6183 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6184 		kfree(outdata, M_TEMP);
6185 	return error;
6186 }
6187 #endif /* ATH_DIAGAPI */
6188 
6189 static int
6190 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *ucred)
6191 {
6192 #define	IS_RUNNING(ifp) \
6193 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
6194 	struct ath_softc *sc = ifp->if_softc;
6195 	struct ieee80211com *ic = ifp->if_l2com;
6196 	struct ifreq *ifr = (struct ifreq *)data;
6197 	const HAL_RATE_TABLE *rt;
6198 	int error = 0;
6199 
6200 	switch (cmd) {
6201 	case SIOCSIFFLAGS:
6202 		if (IS_RUNNING(ifp)) {
6203 			/*
6204 			 * To avoid rescanning another access point,
6205 			 * do not call ath_init() here.  Instead,
6206 			 * only reflect promisc mode settings.
6207 			 */
6208 			ath_mode_init(sc);
6209 		} else if (ifp->if_flags & IFF_UP) {
6210 			/*
6211 			 * Beware of being called during attach/detach
6212 			 * to reset promiscuous mode.  In that case we
6213 			 * will still be marked UP but not RUNNING.
6214 			 * However trying to re-init the interface
6215 			 * is the wrong thing to do as we've already
6216 			 * torn down much of our state.  There's
6217 			 * probably a better way to deal with this.
6218 			 */
6219 			if (!sc->sc_invalid)
6220 				ath_init(sc);	/* XXX lose error */
6221 		} else {
6222 			ath_stop_locked(ifp);
6223 #ifdef notyet
6224 			/* XXX must wakeup in places like ath_vap_delete */
6225 			if (!sc->sc_invalid)
6226 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6227 #endif
6228 		}
6229 		break;
6230 	case SIOCGIFMEDIA:
6231 	case SIOCSIFMEDIA:
6232 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6233 		break;
6234 	case SIOCGATHSTATS:
6235 		/* NB: embed these numbers to get a consistent view */
6236 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6237 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6238 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6239 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6240 #ifdef IEEE80211_SUPPORT_TDMA
6241 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6242 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6243 #endif
6244 		rt = sc->sc_currates;
6245 		/* XXX HT rates */
6246 		sc->sc_stats.ast_tx_rate =
6247 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6248 		return copyout(&sc->sc_stats,
6249 		    ifr->ifr_data, sizeof (sc->sc_stats));
6250 	case SIOCZATHSTATS:
6251 		error = priv_check(curthread, PRIV_DRIVER);
6252 		if (error == 0)
6253 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6254 		break;
6255 #ifdef ATH_DIAGAPI
6256 	case SIOCGATHDIAG:
6257 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6258 		break;
6259 #endif
6260 	case SIOCGIFADDR:
6261 		error = ether_ioctl(ifp, cmd, data);
6262 		break;
6263 	default:
6264 		error = EINVAL;
6265 		break;
6266 	}
6267 	return error;
6268 #undef IS_RUNNING
6269 }
6270 
6271 static int
6272 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6273 {
6274 	struct ath_softc *sc = arg1;
6275 	u_int slottime;
6276 	int error;
6277 
6278 	wlan_serialize_enter();
6279 	slottime = ath_hal_getslottime(sc->sc_ah);
6280 	error = sysctl_handle_int(oidp, &slottime, 0, req);
6281 	if (error == 0 && req->newptr) {
6282 		if (!ath_hal_setslottime(sc->sc_ah, slottime))
6283 			error = EINVAL;
6284 	}
6285 	wlan_serialize_exit();
6286 	return error;
6287 }
6288 
6289 static int
6290 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6291 {
6292 	struct ath_softc *sc = arg1;
6293 	u_int acktimeout;
6294 	int error;
6295 
6296 	wlan_serialize_enter();
6297 	acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6298 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6299 	if (error == 0 && req->newptr) {
6300 		if (!ath_hal_setacktimeout(sc->sc_ah, acktimeout))
6301 			error = EINVAL;
6302 	}
6303 	wlan_serialize_exit();
6304 	return error;
6305 }
6306 
6307 static int
6308 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6309 {
6310 	struct ath_softc *sc = arg1;
6311 	u_int ctstimeout;
6312 	int error;
6313 
6314 	wlan_serialize_enter();
6315 	ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6316 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6317 	if (error == 0 && req->newptr) {
6318 		if (!ath_hal_setctstimeout(sc->sc_ah, ctstimeout))
6319 			error = EINVAL;
6320 	}
6321 	wlan_serialize_exit();
6322 	return error;
6323 }
6324 
6325 static int
6326 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6327 {
6328 	struct ath_softc *sc = arg1;
6329 	int softled = sc->sc_softled;
6330 	int error;
6331 
6332 	error = sysctl_handle_int(oidp, &softled, 0, req);
6333 	if (error || !req->newptr)
6334 		return error;
6335 	wlan_serialize_enter();
6336 	softled = (softled != 0);
6337 	if (softled != sc->sc_softled) {
6338 		if (softled) {
6339 			/* NB: handle any sc_ledpin change */
6340 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6341 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6342 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6343 				!sc->sc_ledon);
6344 		}
6345 		sc->sc_softled = softled;
6346 	}
6347 	wlan_serialize_exit();
6348 	return 0;
6349 }
6350 
6351 static int
6352 ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6353 {
6354 	struct ath_softc *sc = arg1;
6355 	int ledpin = sc->sc_ledpin;
6356 	int error;
6357 
6358 	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6359 	if (error || !req->newptr)
6360 		return error;
6361 	wlan_serialize_enter();
6362 	if (ledpin != sc->sc_ledpin) {
6363 		sc->sc_ledpin = ledpin;
6364 		if (sc->sc_softled) {
6365 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6366 			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6367 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6368 				!sc->sc_ledon);
6369 		}
6370 	}
6371 	wlan_serialize_exit();
6372 	return 0;
6373 }
6374 
6375 static int
6376 ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6377 {
6378 	struct ath_softc *sc = arg1;
6379 	u_int txantenna;
6380 	int error;
6381 
6382 	wlan_serialize_enter();
6383 	txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6384 	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6385 
6386 	if (!error && req->newptr) {
6387 		/* XXX assumes 2 antenna ports */
6388 		if (txantenna < HAL_ANT_VARIABLE ||
6389 		    txantenna > HAL_ANT_FIXED_B) {
6390 			error = EINVAL;
6391 		} else {
6392 			ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6393 			/*
6394 			 * NB: with the switch locked this isn't meaningful,
6395 			 *     but set it anyway so things like radiotap get
6396 			 *     consistent info in their data.
6397 			 */
6398 			sc->sc_txantenna = txantenna;
6399 		}
6400 	}
6401 	wlan_serialize_exit();
6402 	return error;
6403 }
6404 
6405 static int
6406 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6407 {
6408 	struct ath_softc *sc = arg1;
6409 	u_int defantenna;
6410 	int error;
6411 
6412 	wlan_serialize_enter();
6413 	defantenna = ath_hal_getdefantenna(sc->sc_ah);
6414 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6415 	if (error == 0 && req->newptr)
6416 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6417 	wlan_serialize_exit();
6418 	return error;
6419 }
6420 
6421 static int
6422 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6423 {
6424 	struct ath_softc *sc = arg1;
6425 	u_int diversity;
6426 	int error;
6427 
6428 	wlan_serialize_enter();
6429 	diversity = ath_hal_getdiversity(sc->sc_ah);
6430 	error = sysctl_handle_int(oidp, &diversity, 0, req);
6431 	if (error == 0 && req->newptr) {
6432 		if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6433 			error = EINVAL;
6434 		else
6435 			sc->sc_diversity = diversity;
6436 	}
6437 	wlan_serialize_exit();
6438 	return error;
6439 }
6440 
6441 static int
6442 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6443 {
6444 	struct ath_softc *sc = arg1;
6445 	u_int32_t diag;
6446 	int error;
6447 
6448 	wlan_serialize_enter();
6449 	if (!ath_hal_getdiag(sc->sc_ah, &diag)) {
6450 		error = EINVAL;
6451 	} else {
6452 		error = sysctl_handle_int(oidp, &diag, 0, req);
6453 		if (error == 0 && req->newptr) {
6454 			if (!ath_hal_setdiag(sc->sc_ah, diag))
6455 				error = EINVAL;
6456 		}
6457 	}
6458 	wlan_serialize_exit();
6459 	return error;
6460 }
6461 
6462 static int
6463 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6464 {
6465 	struct ath_softc *sc = arg1;
6466 	struct ifnet *ifp = sc->sc_ifp;
6467 	u_int32_t scale;
6468 	int error;
6469 
6470 	wlan_serialize_enter();
6471 	(void)ath_hal_gettpscale(sc->sc_ah, &scale);
6472 	error = sysctl_handle_int(oidp, &scale, 0, req);
6473 	if (error == 0 && req->newptr) {
6474 		if (!ath_hal_settpscale(sc->sc_ah, scale))
6475 			error = EINVAL;
6476 		else if (ifp->if_flags & IFF_RUNNING)
6477 			error = ath_reset(ifp);
6478 	}
6479 	wlan_serialize_exit();
6480 	return error;
6481 }
6482 
6483 static int
6484 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6485 {
6486 	struct ath_softc *sc = arg1;
6487 	u_int tpc;
6488 	int error;
6489 
6490 	wlan_serialize_enter();
6491 	tpc = ath_hal_gettpc(sc->sc_ah);
6492 	error = sysctl_handle_int(oidp, &tpc, 0, req);
6493 	if (error == 0 && req->newptr) {
6494 		if (!ath_hal_settpc(sc->sc_ah, tpc))
6495 			error = EINVAL;
6496 	}
6497 	wlan_serialize_exit();
6498 	return error;
6499 }
6500 
6501 static int
6502 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6503 {
6504 	struct ath_softc *sc = arg1;
6505 	struct ifnet *ifp;
6506 	struct ath_hal *ah;
6507 	u_int rfkill;
6508 	int error;
6509 
6510 	wlan_serialize_enter();
6511 	ifp = sc->sc_ifp;
6512 	ah = sc->sc_ah;
6513 	rfkill = ath_hal_getrfkill(ah);
6514 
6515 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6516 	if (error == 0 && req->newptr) {
6517 		if (rfkill != ath_hal_getrfkill(ah)) {
6518 			if (!ath_hal_setrfkill(ah, rfkill))
6519 				error = EINVAL;
6520 			else if (ifp->if_flags & IFF_RUNNING)
6521 				error = ath_reset(ifp);
6522 		}
6523 	}
6524 	wlan_serialize_exit();
6525 	return error;
6526 }
6527 
6528 static int
6529 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6530 {
6531 	struct ath_softc *sc = arg1;
6532 	u_int rfsilent;
6533 	int error;
6534 
6535 	wlan_serialize_enter();
6536 	(void)ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6537 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6538 	if (error == 0 && req->newptr) {
6539 		if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) {
6540 			error = EINVAL;
6541 		} else {
6542 			sc->sc_rfsilentpin = rfsilent & 0x1c;
6543 			sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6544 		}
6545 	}
6546 	wlan_serialize_exit();
6547 	return error;
6548 }
6549 
6550 static int
6551 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6552 {
6553 	struct ath_softc *sc = arg1;
6554 	u_int32_t tpack;
6555 	int error;
6556 
6557 	wlan_serialize_enter();
6558 	(void)ath_hal_gettpack(sc->sc_ah, &tpack);
6559 	error = sysctl_handle_int(oidp, &tpack, 0, req);
6560 	if (error == 0 && req->newptr) {
6561 		if (!ath_hal_settpack(sc->sc_ah, tpack))
6562 			error = EINVAL;
6563 	}
6564 	wlan_serialize_exit();
6565 	return error;
6566 }
6567 
6568 static int
6569 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6570 {
6571 	struct ath_softc *sc = arg1;
6572 	u_int32_t tpcts;
6573 	int error;
6574 
6575 	wlan_serialize_enter();
6576 	(void)ath_hal_gettpcts(sc->sc_ah, &tpcts);
6577 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6578 	if (error == 0 && req->newptr) {
6579 		if (!ath_hal_settpcts(sc->sc_ah, tpcts))
6580 			error = EINVAL;
6581 	}
6582 	wlan_serialize_exit();
6583 	return error;
6584 }
6585 
6586 static int
6587 ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6588 {
6589 	struct ath_softc *sc = arg1;
6590 	int intmit, error;
6591 
6592 	wlan_serialize_enter();
6593 	intmit = ath_hal_getintmit(sc->sc_ah);
6594 	error = sysctl_handle_int(oidp, &intmit, 0, req);
6595 	if (error == 0 && req->newptr) {
6596 		if (!ath_hal_setintmit(sc->sc_ah, intmit))
6597 			error = EINVAL;
6598 	}
6599 	wlan_serialize_exit();
6600 	return error;
6601 }
6602 
6603 #ifdef IEEE80211_SUPPORT_TDMA
6604 static int
6605 ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6606 {
6607 	struct ath_softc *sc = arg1;
6608 	int setcca, error;
6609 
6610 	wlan_serialize_enter();
6611 	setcca = sc->sc_setcca;
6612 	error = sysctl_handle_int(oidp, &setcca, 0, req);
6613 	if (error == 0 && req->newptr)
6614 		sc->sc_setcca = (setcca != 0);
6615 	wlan_serialize_exit();
6616 	return error;
6617 }
6618 #endif /* IEEE80211_SUPPORT_TDMA */
6619 
6620 static void
6621 ath_sysctlattach(struct ath_softc *sc)
6622 {
6623 	struct sysctl_ctx_list *ctx;
6624 	struct sysctl_oid *tree;
6625 	struct ath_hal *ah = sc->sc_ah;
6626 
6627 	ctx = &sc->sc_sysctl_ctx;
6628 	tree = sc->sc_sysctl_tree;
6629         if (tree == NULL) {
6630 		device_printf(sc->sc_dev, "can't add sysctl node\n");
6631 		return;
6632 	}
6633 
6634 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6635 		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6636 		"EEPROM country code");
6637 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6638 		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6639 		"EEPROM regdomain code");
6640 #ifdef	ATH_DEBUG
6641 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6642 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6643 		"control debugging printfs");
6644 #endif
6645 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6646 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6647 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6648 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6649 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6650 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6651 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6652 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6653 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6654 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6655 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6656 		ath_sysctl_softled, "I", "enable/disable software LED support");
6657 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6658 		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6659 		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6660 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6661 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6662 		"setting to turn LED on");
6663 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6664 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6665 		"idle time for inactivity LED (ticks)");
6666 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6667 		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6668 		ath_sysctl_txantenna, "I", "antenna switch");
6669 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6670 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6671 		ath_sysctl_rxantenna, "I", "default/rx antenna");
6672 	if (ath_hal_hasdiversity(ah))
6673 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6674 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6675 			ath_sysctl_diversity, "I", "antenna diversity");
6676 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6677 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6678 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6679 		"tx descriptor batching");
6680 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6681 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6682 		ath_sysctl_diag, "I", "h/w diagnostic control");
6683 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6684 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6685 		ath_sysctl_tpscale, "I", "tx power scaling");
6686 	if (ath_hal_hastpc(ah)) {
6687 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6688 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6689 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6690 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6691 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6692 			ath_sysctl_tpack, "I", "tx power for ack frames");
6693 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6694 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6695 			ath_sysctl_tpcts, "I", "tx power for cts frames");
6696 	}
6697 	if (ath_hal_hasrfsilent(ah)) {
6698 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6699 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6700 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6701 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6702 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6703 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6704 	}
6705 	if (ath_hal_hasintmit(ah)) {
6706 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6707 			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6708 			ath_sysctl_intmit, "I", "interference mitigation");
6709 	}
6710 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6711 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6712 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6713 		"mask of error frames to pass when monitoring");
6714 #ifdef IEEE80211_SUPPORT_TDMA
6715 	if (ath_hal_macversion(ah) > 0x78) {
6716 		sc->sc_tdmadbaprep = 2;
6717 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6718 			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6719 			"TDMA DBA preparation time");
6720 		sc->sc_tdmaswbaprep = 10;
6721 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6722 			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6723 			"TDMA SWBA preparation time");
6724 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6725 			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6726 			"TDMA slot guard time");
6727 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6728 			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6729 			"TDMA calculated super frame");
6730 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6731 			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6732 			ath_sysctl_setcca, "I", "enable CCA control");
6733 	}
6734 #endif
6735 }
6736 
6737 static int
6738 ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6739 	struct ath_buf *bf, struct mbuf *m0,
6740 	const struct ieee80211_bpf_params *params)
6741 {
6742 	struct ifnet *ifp = sc->sc_ifp;
6743 	struct ieee80211com *ic = ifp->if_l2com;
6744 	struct ath_hal *ah = sc->sc_ah;
6745 	struct ieee80211vap *vap = ni->ni_vap;
6746 	int error, ismcast, ismrr;
6747 	int keyix, hdrlen, pktlen, try0, txantenna;
6748 	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6749 	struct ieee80211_frame *wh;
6750 	u_int flags, ctsduration;
6751 	HAL_PKT_TYPE atype;
6752 	const HAL_RATE_TABLE *rt;
6753 	struct ath_desc *ds;
6754 	u_int pri;
6755 
6756 	wh = mtod(m0, struct ieee80211_frame *);
6757 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6758 	hdrlen = ieee80211_anyhdrsize(wh);
6759 	/*
6760 	 * Packet length must not include any
6761 	 * pad bytes; deduct them here.
6762 	 */
6763 	/* XXX honor IEEE80211_BPF_DATAPAD */
6764 	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6765 
6766 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
6767 		const struct ieee80211_cipher *cip;
6768 		struct ieee80211_key *k;
6769 
6770 		/*
6771 		 * Construct the 802.11 header+trailer for an encrypted
6772 		 * frame. The only reason this can fail is because of an
6773 		 * unknown or unsupported cipher/key type.
6774 		 */
6775 		k = ieee80211_crypto_encap(ni, m0);
6776 		if (k == NULL) {
6777 			/*
6778 			 * This can happen when the key is yanked after the
6779 			 * frame was queued.  Just discard the frame; the
6780 			 * 802.11 layer counts failures and provides
6781 			 * debugging/diagnostics.
6782 			 */
6783 			ath_freetx(m0);
6784 			return EIO;
6785 		}
6786 		/*
6787 		 * Adjust the packet + header lengths for the crypto
6788 		 * additions and calculate the h/w key index.  When
6789 		 * a s/w mic is done the frame will have had any mic
6790 		 * added to it prior to entry so m0->m_pkthdr.len will
6791 		 * account for it. Otherwise we need to add it to the
6792 		 * packet length.
6793 		 */
6794 		cip = k->wk_cipher;
6795 		hdrlen += cip->ic_header;
6796 		pktlen += cip->ic_header + cip->ic_trailer;
6797 		/* NB: frags always have any TKIP MIC done in s/w */
6798 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
6799 			pktlen += cip->ic_miclen;
6800 		keyix = k->wk_keyix;
6801 
6802 		/* packet header may have moved, reset our local pointer */
6803 		wh = mtod(m0, struct ieee80211_frame *);
6804 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
6805 		/*
6806 		 * Use station key cache slot, if assigned.
6807 		 */
6808 		keyix = ni->ni_ucastkey.wk_keyix;
6809 		if (keyix == IEEE80211_KEYIX_NONE)
6810 			keyix = HAL_TXKEYIX_INVALID;
6811 	} else
6812 		keyix = HAL_TXKEYIX_INVALID;
6813 
6814 	error = ath_tx_dmasetup(sc, bf, m0);
6815 	if (error != 0)
6816 		return error;
6817 	m0 = bf->bf_m;				/* NB: may have changed */
6818 	wh = mtod(m0, struct ieee80211_frame *);
6819 	bf->bf_node = ni;			/* NB: held reference */
6820 
6821 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6822 	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6823 	if (params->ibp_flags & IEEE80211_BPF_RTS)
6824 		flags |= HAL_TXDESC_RTSENA;
6825 	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6826 		flags |= HAL_TXDESC_CTSENA;
6827 	/* XXX leave ismcast to injector? */
6828 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6829 		flags |= HAL_TXDESC_NOACK;
6830 
6831 	rt = sc->sc_currates;
6832 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6833 	rix = ath_tx_findrix(sc, params->ibp_rate0);
6834 	txrate = rt->info[rix].rateCode;
6835 	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6836 		txrate |= rt->info[rix].shortPreamble;
6837 	sc->sc_txrix = rix;
6838 	try0 = params->ibp_try0;
6839 	ismrr = (params->ibp_try1 != 0);
6840 	txantenna = params->ibp_pri >> 2;
6841 	if (txantenna == 0)			/* XXX? */
6842 		txantenna = sc->sc_txantenna;
6843 	ctsduration = 0;
6844 	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6845 		cix = ath_tx_findrix(sc, params->ibp_ctsrate);
6846 		ctsrate = rt->info[cix].rateCode;
6847 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6848 			ctsrate |= rt->info[cix].shortPreamble;
6849 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6850 				ctsduration += rt->info[cix].spAckDuration;
6851 			ctsduration += ath_hal_computetxtime(ah,
6852 				rt, pktlen, rix, AH_TRUE);
6853 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6854 				ctsduration += rt->info[rix].spAckDuration;
6855 		} else {
6856 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6857 				ctsduration += rt->info[cix].lpAckDuration;
6858 			ctsduration += ath_hal_computetxtime(ah,
6859 				rt, pktlen, rix, AH_FALSE);
6860 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6861 				ctsduration += rt->info[rix].lpAckDuration;
6862 		}
6863 		ismrr = 0;			/* XXX */
6864 	} else
6865 		ctsrate = 0;
6866 	pri = params->ibp_pri & 3;
6867 	/*
6868 	 * NB: we mark all packets as type PSPOLL so the h/w won't
6869 	 * set the sequence number, duration, etc.
6870 	 */
6871 	atype = HAL_PKT_TYPE_PSPOLL;
6872 
6873 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6874 		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6875 		    sc->sc_hwmap[rix].ieeerate, -1);
6876 
6877 	if (ieee80211_radiotap_active_vap(vap)) {
6878 		u_int64_t tsf = ath_hal_gettsf64(ah);
6879 
6880 		sc->sc_tx_th.wt_tsf = htole64(tsf);
6881 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6882 		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6883 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6884 		if (m0->m_flags & M_FRAG)
6885 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
6886 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6887 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6888 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6889 
6890 		ieee80211_radiotap_tx(vap, m0);
6891 	}
6892 
6893 	/*
6894 	 * Formulate first tx descriptor with tx controls.
6895 	 */
6896 	ds = bf->bf_desc;
6897 	/* XXX check return value? */
6898 	ath_hal_setuptxdesc(ah, ds
6899 		, pktlen		/* packet length */
6900 		, hdrlen		/* header length */
6901 		, atype			/* Atheros packet type */
6902 		, params->ibp_power	/* txpower */
6903 		, txrate, try0		/* series 0 rate/tries */
6904 		, keyix			/* key cache index */
6905 		, txantenna		/* antenna mode */
6906 		, flags			/* flags */
6907 		, ctsrate		/* rts/cts rate */
6908 		, ctsduration		/* rts/cts duration */
6909 	);
6910 	bf->bf_txflags = flags;
6911 
6912 	if (ismrr) {
6913 		rix = ath_tx_findrix(sc, params->ibp_rate1);
6914 		rate1 = rt->info[rix].rateCode;
6915 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6916 			rate1 |= rt->info[rix].shortPreamble;
6917 		if (params->ibp_try2) {
6918 			rix = ath_tx_findrix(sc, params->ibp_rate2);
6919 			rate2 = rt->info[rix].rateCode;
6920 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6921 				rate2 |= rt->info[rix].shortPreamble;
6922 		} else
6923 			rate2 = 0;
6924 		if (params->ibp_try3) {
6925 			rix = ath_tx_findrix(sc, params->ibp_rate3);
6926 			rate3 = rt->info[rix].rateCode;
6927 			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6928 				rate3 |= rt->info[rix].shortPreamble;
6929 		} else
6930 			rate3 = 0;
6931 		ath_hal_setupxtxdesc(ah, ds
6932 			, rate1, params->ibp_try1	/* series 1 */
6933 			, rate2, params->ibp_try2	/* series 2 */
6934 			, rate3, params->ibp_try3	/* series 3 */
6935 		);
6936 	}
6937 
6938 	/* NB: no buffered multicast in power save support */
6939 	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6940 	return 0;
6941 }
6942 
6943 static int
6944 ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6945 	const struct ieee80211_bpf_params *params)
6946 {
6947 	struct ieee80211com *ic = ni->ni_ic;
6948 	struct ifnet *ifp = ic->ic_ifp;
6949 	struct ath_softc *sc = ifp->if_softc;
6950 	struct ath_buf *bf;
6951 	int error;
6952 
6953 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
6954 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
6955 		    (ifp->if_flags & IFF_RUNNING) == 0 ?
6956 			"!running" : "invalid");
6957 		m_freem(m);
6958 		error = ENETDOWN;
6959 		goto bad;
6960 	}
6961 	/*
6962 	 * Grab a TX buffer and associated resources.
6963 	 */
6964 	bf = ath_getbuf(sc);
6965 	if (bf == NULL) {
6966 		sc->sc_stats.ast_tx_nobuf++;
6967 		m_freem(m);
6968 		error = ENOBUFS;
6969 		goto bad;
6970 	}
6971 
6972 	if (params == NULL) {
6973 		/*
6974 		 * Legacy path; interpret frame contents to decide
6975 		 * precisely how to send the frame.
6976 		 */
6977 		if (ath_tx_start(sc, ni, bf, m)) {
6978 			error = EIO;		/* XXX */
6979 			goto bad2;
6980 		}
6981 	} else {
6982 		/*
6983 		 * Caller supplied explicit parameters to use in
6984 		 * sending the frame.
6985 		 */
6986 		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
6987 			error = EIO;		/* XXX */
6988 			goto bad2;
6989 		}
6990 	}
6991 	sc->sc_wd_timer = 5;
6992 	ifp->if_opackets++;
6993 	sc->sc_stats.ast_tx_raw++;
6994 
6995 	return 0;
6996 bad2:
6997 	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
6998 bad:
6999 	ifp->if_oerrors++;
7000 	sc->sc_stats.ast_tx_raw_fail++;
7001 	ieee80211_free_node(ni);
7002 	return error;
7003 }
7004 
7005 /*
7006  * Announce various information on device/driver attach.
7007  */
7008 static void
7009 ath_announce(struct ath_softc *sc)
7010 {
7011 	struct ifnet *ifp = sc->sc_ifp;
7012 	struct ath_hal *ah = sc->sc_ah;
7013 
7014 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
7015 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
7016 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7017 	if (bootverbose) {
7018 		int i;
7019 		for (i = 0; i <= WME_AC_VO; i++) {
7020 			struct ath_txq *txq = sc->sc_ac2q[i];
7021 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7022 				txq->axq_qnum, ieee80211_wme_acnames[i]);
7023 		}
7024 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7025 			sc->sc_cabq->axq_qnum);
7026 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7027 	}
7028 	if (ath_rxbuf != ATH_RXBUF)
7029 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7030 	if (ath_txbuf != ATH_TXBUF)
7031 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7032 	if (sc->sc_mcastkey && bootverbose)
7033 		if_printf(ifp, "using multicast key search\n");
7034 }
7035 
7036 #ifdef IEEE80211_SUPPORT_TDMA
7037 static __inline uint32_t
7038 ath_hal_getnexttbtt(struct ath_hal *ah)
7039 {
7040 #define	AR_TIMER0	0x8028
7041 	return OS_REG_READ(ah, AR_TIMER0);
7042 }
7043 
7044 static __inline void
7045 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
7046 {
7047 	/* XXX handle wrap/overflow */
7048 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
7049 }
7050 
7051 static void
7052 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
7053 {
7054 	struct ath_hal *ah = sc->sc_ah;
7055 	HAL_BEACON_TIMERS bt;
7056 
7057 	bt.bt_intval = bintval | HAL_BEACON_ENA;
7058 	bt.bt_nexttbtt = nexttbtt;
7059 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
7060 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
7061 	bt.bt_nextatim = nexttbtt+1;
7062 	ath_hal_beaconsettimers(ah, &bt);
7063 }
7064 
7065 /*
7066  * Calculate the beacon interval.  This is periodic in the
7067  * superframe for the bss.  We assume each station is configured
7068  * identically wrt transmit rate so the guard time we calculate
7069  * above will be the same on all stations.  Note we need to
7070  * factor in the xmit time because the hardware will schedule
7071  * a frame for transmit if the start of the frame is within
7072  * the burst time.  When we get hardware that properly kills
7073  * frames in the PCU we can reduce/eliminate the guard time.
7074  *
7075  * Roundup to 1024 is so we have 1 TU buffer in the guard time
7076  * to deal with the granularity of the nexttbtt timer.  11n MAC's
7077  * with 1us timer granularity should allow us to reduce/eliminate
7078  * this.
7079  */
7080 static void
7081 ath_tdma_bintvalsetup(struct ath_softc *sc,
7082 	const struct ieee80211_tdma_state *tdma)
7083 {
7084 	/* copy from vap state (XXX check all vaps have same value?) */
7085 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7086 
7087 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7088 		tdma->tdma_slotcnt, 1024);
7089 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7090 	if (sc->sc_tdmabintval & 1)
7091 		sc->sc_tdmabintval++;
7092 
7093 	if (tdma->tdma_slot == 0) {
7094 		/*
7095 		 * Only slot 0 beacons; other slots respond.
7096 		 */
7097 		sc->sc_imask |= HAL_INT_SWBA;
7098 		sc->sc_tdmaswba = 0;		/* beacon immediately */
7099 	} else {
7100 		/* XXX all vaps must be slot 0 or slot !0 */
7101 		sc->sc_imask &= ~HAL_INT_SWBA;
7102 	}
7103 }
7104 
7105 /*
7106  * Max 802.11 overhead.  This assumes no 4-address frames and
7107  * the encapsulation done by ieee80211_encap (llc).  We also
7108  * include potential crypto overhead.
7109  */
7110 #define	IEEE80211_MAXOVERHEAD \
7111 	(sizeof(struct ieee80211_qosframe) \
7112 	 + sizeof(struct llc) \
7113 	 + IEEE80211_ADDR_LEN \
7114 	 + IEEE80211_WEP_IVLEN \
7115 	 + IEEE80211_WEP_KIDLEN \
7116 	 + IEEE80211_WEP_CRCLEN \
7117 	 + IEEE80211_WEP_MICLEN \
7118 	 + IEEE80211_CRC_LEN)
7119 
7120 /*
7121  * Setup initially for tdma operation.  Start the beacon
7122  * timers and enable SWBA if we are slot 0.  Otherwise
7123  * we wait for slot 0 to arrive so we can sync up before
7124  * starting to transmit.
7125  */
7126 static void
7127 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7128 {
7129 	struct ath_hal *ah = sc->sc_ah;
7130 	struct ifnet *ifp = sc->sc_ifp;
7131 	struct ieee80211com *ic = ifp->if_l2com;
7132 	const struct ieee80211_txparam *tp;
7133 	const struct ieee80211_tdma_state *tdma = NULL;
7134 	int rix;
7135 
7136 	if (vap == NULL) {
7137 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7138 		if (vap == NULL) {
7139 			if_printf(ifp, "%s: no vaps?\n", __func__);
7140 			return;
7141 		}
7142 	}
7143 	tp = vap->iv_bss->ni_txparms;
7144 	/*
7145 	 * Calculate the guard time for each slot.  This is the
7146 	 * time to send a maximal-size frame according to the
7147 	 * fixed/lowest transmit rate.  Note that the interface
7148 	 * mtu does not include the 802.11 overhead so we must
7149 	 * tack that on (ath_hal_computetxtime includes the
7150 	 * preamble and plcp in it's calculation).
7151 	 */
7152 	tdma = vap->iv_tdma;
7153 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7154 		rix = ath_tx_findrix(sc, tp->ucastrate);
7155 	else
7156 		rix = ath_tx_findrix(sc, tp->mcastrate);
7157 	/* XXX short preamble assumed */
7158 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7159 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7160 
7161 	ath_hal_intrset(ah, 0);
7162 
7163 	ath_beaconq_config(sc);			/* setup h/w beacon q */
7164 	if (sc->sc_setcca)
7165 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7166 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7167 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7168 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7169 	sc->sc_syncbeacon = 0;
7170 
7171 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7172 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7173 
7174 	ath_hal_intrset(ah, sc->sc_imask);
7175 
7176 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7177 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7178 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7179 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7180 	    sc->sc_tdmadbaprep);
7181 }
7182 
7183 /*
7184  * Update tdma operation.  Called from the 802.11 layer
7185  * when a beacon is received from the TDMA station operating
7186  * in the slot immediately preceding us in the bss.  Use
7187  * the rx timestamp for the beacon frame to update our
7188  * beacon timers so we follow their schedule.  Note that
7189  * by using the rx timestamp we implicitly include the
7190  * propagation delay in our schedule.
7191  */
7192 static void
7193 ath_tdma_update(struct ieee80211_node *ni,
7194 	const struct ieee80211_tdma_param *tdma, int changed)
7195 {
7196 #define	TSF_TO_TU(_h,_l) \
7197 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7198 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7199 	struct ieee80211vap *vap = ni->ni_vap;
7200 	struct ieee80211com *ic = ni->ni_ic;
7201 	struct ath_softc *sc = ic->ic_ifp->if_softc;
7202 	struct ath_hal *ah = sc->sc_ah;
7203 	const HAL_RATE_TABLE *rt = sc->sc_currates;
7204 	u_int64_t tsf, rstamp, nextslot;
7205 	u_int32_t txtime, nextslottu, timer0;
7206 	int32_t tudelta, tsfdelta;
7207 	const struct ath_rx_status *rs;
7208 	int rix;
7209 
7210 	sc->sc_stats.ast_tdma_update++;
7211 
7212 	/*
7213 	 * Check for and adopt configuration changes.
7214 	 */
7215 	if (changed != 0) {
7216 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7217 
7218 		ath_tdma_bintvalsetup(sc, ts);
7219 		if (changed & TDMA_UPDATE_SLOTLEN)
7220 			ath_wme_update(ic);
7221 
7222 		DPRINTF(sc, ATH_DEBUG_TDMA,
7223 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7224 		    "bintval %u TU\n", __func__,
7225 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7226 		    sc->sc_tdmabintval);
7227 
7228 		/* XXX right? */
7229 		ath_hal_intrset(ah, sc->sc_imask);
7230 		/* NB: beacon timers programmed below */
7231 	}
7232 
7233 	/* extend rx timestamp to 64 bits */
7234 	rs = sc->sc_lastrs;
7235 	tsf = ath_hal_gettsf64(ah);
7236 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
7237 	/*
7238 	 * The rx timestamp is set by the hardware on completing
7239 	 * reception (at the point where the rx descriptor is DMA'd
7240 	 * to the host).  To find the start of our next slot we
7241 	 * must adjust this time by the time required to send
7242 	 * the packet just received.
7243 	 */
7244 	rix = rt->rateCodeToIndex[rs->rs_rate];
7245 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7246 	    rt->info[rix].shortPreamble);
7247 	/* NB: << 9 is to cvt to TU and /2 */
7248 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7249 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7250 
7251 	/*
7252 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7253 	 * to usecs and calculate the difference between what the
7254 	 * other station thinks and what we have programmed.  This
7255 	 * lets us figure how to adjust our timers to match.  The
7256 	 * adjustments are done by pulling the TSF forward and possibly
7257 	 * rewriting the beacon timers.
7258 	 */
7259 	timer0 = ath_hal_getnexttbtt(ah);
7260 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7261 
7262 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7263 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7264 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7265 
7266 	if (tsfdelta < 0) {
7267 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7268 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7269 		tsfdelta = -tsfdelta % 1024;
7270 		nextslottu++;
7271 	} else if (tsfdelta > 0) {
7272 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7273 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7274 		tsfdelta = 1024 - (tsfdelta % 1024);
7275 		nextslottu++;
7276 	} else {
7277 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7278 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7279 	}
7280 	tudelta = nextslottu - timer0;
7281 
7282 	/*
7283 	 * Copy sender's timetstamp into tdma ie so they can
7284 	 * calculate roundtrip time.  We submit a beacon frame
7285 	 * below after any timer adjustment.  The frame goes out
7286 	 * at the next TBTT so the sender can calculate the
7287 	 * roundtrip by inspecting the tdma ie in our beacon frame.
7288 	 *
7289 	 * NB: This tstamp is subtlely preserved when
7290 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7291 	 *     slot position changes) because ieee80211_add_tdma
7292 	 *     skips over the data.
7293 	 */
7294 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7295 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7296 		&ni->ni_tstamp.data, 8);
7297 #if 0
7298 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7299 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7300 	    (unsigned long long) tsf, (unsigned long long) nextslot,
7301 	    (int)(nextslot - tsf), tsfdelta,
7302 	    nextslottu, timer0, tudelta);
7303 #endif
7304 	/*
7305 	 * Adjust the beacon timers only when pulling them forward
7306 	 * or when going back by less than the beacon interval.
7307 	 * Negative jumps larger than the beacon interval seem to
7308 	 * cause the timers to stop and generally cause instability.
7309 	 * This basically filters out jumps due to missed beacons.
7310 	 */
7311 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7312 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7313 		sc->sc_stats.ast_tdma_timers++;
7314 	}
7315 	if (tsfdelta > 0) {
7316 		ath_hal_adjusttsf(ah, tsfdelta);
7317 		sc->sc_stats.ast_tdma_tsf++;
7318 	}
7319 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7320 #undef TU_TO_TSF
7321 #undef TSF_TO_TU
7322 }
7323 
7324 /*
7325  * Transmit a beacon frame at SWBA.  Dynamic updates
7326  * to the frame contents are done as needed.
7327  */
7328 static void
7329 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7330 {
7331 	struct ath_hal *ah = sc->sc_ah;
7332 	struct ath_buf *bf;
7333 	int otherant;
7334 
7335 	/*
7336 	 * Check if the previous beacon has gone out.  If
7337 	 * not don't try to post another, skip this period
7338 	 * and wait for the next.  Missed beacons indicate
7339 	 * a problem and should not occur.  If we miss too
7340 	 * many consecutive beacons reset the device.
7341 	 */
7342 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7343 		sc->sc_bmisscount++;
7344 		DPRINTF(sc, ATH_DEBUG_BEACON,
7345 			"%s: missed %u consecutive beacons\n",
7346 			__func__, sc->sc_bmisscount);
7347 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7348 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7349 		return;
7350 	}
7351 	if (sc->sc_bmisscount != 0) {
7352 		DPRINTF(sc, ATH_DEBUG_BEACON,
7353 			"%s: resume beacon xmit after %u misses\n",
7354 			__func__, sc->sc_bmisscount);
7355 		sc->sc_bmisscount = 0;
7356 	}
7357 
7358 	/*
7359 	 * Check recent per-antenna transmit statistics and flip
7360 	 * the default antenna if noticeably more frames went out
7361 	 * on the non-default antenna.
7362 	 * XXX assumes 2 anntenae
7363 	 */
7364 	if (!sc->sc_diversity) {
7365 		otherant = sc->sc_defant & 1 ? 2 : 1;
7366 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7367 			ath_setdefantenna(sc, otherant);
7368 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7369 	}
7370 
7371 	/*
7372 	 * Stop any current dma before messing with the beacon linkages.
7373 	 *
7374 	 * This should never fail since we check above that no frames
7375 	 * are still pending on the queue.
7376 	 */
7377 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7378 		DPRINTF(sc, ATH_DEBUG_ANY,
7379 			"%s: beacon queue %u did not stop?\n",
7380 			__func__, sc->sc_bhalq);
7381 		/* NB: the HAL still stops DMA, so proceed */
7382 	}
7383 	bf = ath_beacon_generate(sc, vap);
7384 	if (bf != NULL) {
7385 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7386 		ath_hal_txstart(ah, sc->sc_bhalq);
7387 
7388 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7389 
7390 		/*
7391 		 * Record local TSF for our last send for use
7392 		 * in arbitrating slot collisions.
7393 		 */
7394 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7395 	} else {
7396 		device_printf(sc->sc_dev, "tdma beacon gen failed!\n");
7397 	}
7398 }
7399 #endif /* IEEE80211_SUPPORT_TDMA */
7400 
7401 static int
7402 ath_sysctl_clearstats(SYSCTL_HANDLER_ARGS)
7403 {
7404 	struct ath_softc *sc = arg1;
7405 	int val = 0;
7406 	int error;
7407 
7408 	error = sysctl_handle_int(oidp, &val, 0, req);
7409 	if (error || !req->newptr)
7410 		return error;
7411 	if (val == 0)
7412 		return 0;       /* Not clearing the stats is still valid */
7413 	memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
7414 	val = 0;
7415 	return 0;
7416 }
7417 
7418 static void
7419 ath_sysctl_stats_attach(struct ath_softc *sc)
7420 {
7421 	struct sysctl_oid *tree;
7422 	struct sysctl_ctx_list *ctx;
7423 	struct sysctl_oid_list *child;
7424 
7425 	ctx = &sc->sc_sysctl_ctx;
7426 	tree = sc->sc_sysctl_tree;
7427 	child = SYSCTL_CHILDREN(tree);
7428 
7429 	/* Create "clear" node */
7430 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
7431 	    "clear_stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7432 	    ath_sysctl_clearstats, "I", "clear stats");
7433 
7434 	/* Create stats node */
7435 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
7436 	    NULL, "Statistics");
7437 	child = SYSCTL_CHILDREN(tree);
7438 
7439 	/* This was generated from if_athioctl.h */
7440 
7441 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_watchdog", CTLFLAG_RD,
7442 	    &sc->sc_stats.ast_watchdog, 0, "device reset by watchdog");
7443 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_hardware", CTLFLAG_RD,
7444 	    &sc->sc_stats.ast_hardware, 0, "fatal hardware error interrupts");
7445 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss", CTLFLAG_RD,
7446 	    &sc->sc_stats.ast_bmiss, 0, "beacon miss interrupts");
7447 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bmiss_phantom", CTLFLAG_RD,
7448 	    &sc->sc_stats.ast_bmiss_phantom, 0, "beacon miss interrupts");
7449 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_bstuck", CTLFLAG_RD,
7450 	    &sc->sc_stats.ast_bstuck, 0, "beacon stuck interrupts");
7451 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxorn", CTLFLAG_RD,
7452 	    &sc->sc_stats.ast_rxorn, 0, "rx overrun interrupts");
7453 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rxeol", CTLFLAG_RD,
7454 	    &sc->sc_stats.ast_rxeol, 0, "rx eol interrupts");
7455 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_txurn", CTLFLAG_RD,
7456 	    &sc->sc_stats.ast_txurn, 0, "tx underrun interrupts");
7457 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_mib", CTLFLAG_RD,
7458 	    &sc->sc_stats.ast_mib, 0, "mib interrupts");
7459 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_intrcoal", CTLFLAG_RD,
7460 	    &sc->sc_stats.ast_intrcoal, 0, "interrupts coalesced");
7461 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_packets", CTLFLAG_RD,
7462 	    &sc->sc_stats.ast_tx_packets, 0, "packet sent on the interface");
7463 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_mgmt", CTLFLAG_RD,
7464 	    &sc->sc_stats.ast_tx_mgmt, 0, "management frames transmitted");
7465 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_discard", CTLFLAG_RD,
7466 	    &sc->sc_stats.ast_tx_discard, 0, "frames discarded prior to assoc");
7467 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qstop", CTLFLAG_RD,
7468 	    &sc->sc_stats.ast_tx_qstop, 0, "output stopped 'cuz no buffer");
7469 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_encap", CTLFLAG_RD,
7470 	    &sc->sc_stats.ast_tx_encap, 0, "tx encapsulation failed");
7471 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nonode", CTLFLAG_RD,
7472 	    &sc->sc_stats.ast_tx_nonode, 0, "tx failed 'cuz no node");
7473 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nombuf", CTLFLAG_RD,
7474 	    &sc->sc_stats.ast_tx_nombuf, 0, "tx failed 'cuz no mbuf");
7475 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nomcl", CTLFLAG_RD,
7476 	    &sc->sc_stats.ast_tx_nomcl, 0, "tx failed 'cuz no cluster");
7477 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_linear", CTLFLAG_RD,
7478 	    &sc->sc_stats.ast_tx_linear, 0, "tx linearized to cluster");
7479 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nodata", CTLFLAG_RD,
7480 	    &sc->sc_stats.ast_tx_nodata, 0, "tx discarded empty frame");
7481 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_busdma", CTLFLAG_RD,
7482 	    &sc->sc_stats.ast_tx_busdma, 0, "tx failed for dma resrcs");
7483 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_xretries", CTLFLAG_RD,
7484 	    &sc->sc_stats.ast_tx_xretries, 0, "tx failed 'cuz too many retries");
7485 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_fifoerr", CTLFLAG_RD,
7486 	    &sc->sc_stats.ast_tx_fifoerr, 0, "tx failed 'cuz FIFO underrun");
7487 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_filtered", CTLFLAG_RD,
7488 	    &sc->sc_stats.ast_tx_filtered, 0, "tx failed 'cuz xmit filtered");
7489 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortretry", CTLFLAG_RD,
7490 	    &sc->sc_stats.ast_tx_shortretry, 0, "tx on-chip retries (short)");
7491 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_longretry", CTLFLAG_RD,
7492 	    &sc->sc_stats.ast_tx_longretry, 0, "tx on-chip retries (long)");
7493 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_badrate", CTLFLAG_RD,
7494 	    &sc->sc_stats.ast_tx_badrate, 0, "tx failed 'cuz bogus xmit rate");
7495 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_noack", CTLFLAG_RD,
7496 	    &sc->sc_stats.ast_tx_noack, 0, "tx frames with no ack marked");
7497 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_rts", CTLFLAG_RD,
7498 	    &sc->sc_stats.ast_tx_rts, 0, "tx frames with rts enabled");
7499 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_cts", CTLFLAG_RD,
7500 	    &sc->sc_stats.ast_tx_cts, 0, "tx frames with cts enabled");
7501 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_shortpre", CTLFLAG_RD,
7502 	    &sc->sc_stats.ast_tx_shortpre, 0, "tx frames with short preamble");
7503 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_altrate", CTLFLAG_RD,
7504 	    &sc->sc_stats.ast_tx_altrate, 0, "tx frames with alternate rate");
7505 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_protect", CTLFLAG_RD,
7506 	    &sc->sc_stats.ast_tx_protect, 0, "tx frames with protection");
7507 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsburst", CTLFLAG_RD,
7508 	    &sc->sc_stats.ast_tx_ctsburst, 0, "tx frames with cts and bursting");
7509 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_ctsext", CTLFLAG_RD,
7510 	    &sc->sc_stats.ast_tx_ctsext, 0, "tx frames with cts extension");
7511 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_nombuf", CTLFLAG_RD,
7512 	    &sc->sc_stats.ast_rx_nombuf, 0, "rx setup failed 'cuz no mbuf");
7513 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_busdma", CTLFLAG_RD,
7514 	    &sc->sc_stats.ast_rx_busdma, 0, "rx setup failed for dma resrcs");
7515 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_orn", CTLFLAG_RD,
7516 	    &sc->sc_stats.ast_rx_orn, 0, "rx failed 'cuz of desc overrun");
7517 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_crcerr", CTLFLAG_RD,
7518 	    &sc->sc_stats.ast_rx_crcerr, 0, "rx failed 'cuz of bad CRC");
7519 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_fifoerr", CTLFLAG_RD,
7520 	    &sc->sc_stats.ast_rx_fifoerr, 0, "rx failed 'cuz of FIFO overrun");
7521 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badcrypt", CTLFLAG_RD,
7522 	    &sc->sc_stats.ast_rx_badcrypt, 0, "rx failed 'cuz decryption");
7523 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_badmic", CTLFLAG_RD,
7524 	    &sc->sc_stats.ast_rx_badmic, 0, "rx failed 'cuz MIC failure");
7525 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_phyerr", CTLFLAG_RD,
7526 	    &sc->sc_stats.ast_rx_phyerr, 0, "rx failed 'cuz of PHY err");
7527 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_tooshort", CTLFLAG_RD,
7528 	    &sc->sc_stats.ast_rx_tooshort, 0, "rx discarded 'cuz frame too short");
7529 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_toobig", CTLFLAG_RD,
7530 	    &sc->sc_stats.ast_rx_toobig, 0, "rx discarded 'cuz frame too large");
7531 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_packets", CTLFLAG_RD,
7532 	    &sc->sc_stats.ast_rx_packets, 0, "packet recv on the interface");
7533 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_mgt", CTLFLAG_RD,
7534 	    &sc->sc_stats.ast_rx_mgt, 0, "management frames received");
7535 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rx_ctl", CTLFLAG_RD,
7536 	    &sc->sc_stats.ast_rx_ctl, 0, "rx discarded 'cuz ctl frame");
7537 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_xmit", CTLFLAG_RD,
7538 	    &sc->sc_stats.ast_be_xmit, 0, "beacons transmitted");
7539 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_nombuf", CTLFLAG_RD,
7540 	    &sc->sc_stats.ast_be_nombuf, 0, "beacon setup failed 'cuz no mbuf");
7541 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_cal", CTLFLAG_RD,
7542 	    &sc->sc_stats.ast_per_cal, 0, "periodic calibration calls");
7543 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_calfail", CTLFLAG_RD,
7544 	    &sc->sc_stats.ast_per_calfail, 0, "periodic calibration failed");
7545 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_per_rfgain", CTLFLAG_RD,
7546 	    &sc->sc_stats.ast_per_rfgain, 0, "periodic calibration rfgain reset");
7547 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_calls", CTLFLAG_RD,
7548 	    &sc->sc_stats.ast_rate_calls, 0, "rate control checks");
7549 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_raise", CTLFLAG_RD,
7550 	    &sc->sc_stats.ast_rate_raise, 0, "rate control raised xmit rate");
7551 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_rate_drop", CTLFLAG_RD,
7552 	    &sc->sc_stats.ast_rate_drop, 0, "rate control dropped xmit rate");
7553 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_defswitch", CTLFLAG_RD,
7554 	    &sc->sc_stats.ast_ant_defswitch, 0, "rx/default antenna switches");
7555 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ant_txswitch", CTLFLAG_RD,
7556 	    &sc->sc_stats.ast_ant_txswitch, 0, "tx antenna switches");
7557 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_xmit", CTLFLAG_RD,
7558 	    &sc->sc_stats.ast_cabq_xmit, 0, "cabq frames transmitted");
7559 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_cabq_busy", CTLFLAG_RD,
7560 	    &sc->sc_stats.ast_cabq_busy, 0, "cabq found busy");
7561 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw", CTLFLAG_RD,
7562 	    &sc->sc_stats.ast_tx_raw, 0, "tx frames through raw api");
7563 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txok", CTLFLAG_RD,
7564 	    &sc->sc_stats.ast_ff_txok, 0, "fast frames tx'd successfully");
7565 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_txerr", CTLFLAG_RD,
7566 	    &sc->sc_stats.ast_ff_txerr, 0, "fast frames tx'd w/ error");
7567 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_rx", CTLFLAG_RD,
7568 	    &sc->sc_stats.ast_ff_rx, 0, "fast frames rx'd");
7569 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_ff_flush", CTLFLAG_RD,
7570 	    &sc->sc_stats.ast_ff_flush, 0, "fast frames flushed from staging q");
7571 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_qfull", CTLFLAG_RD,
7572 	    &sc->sc_stats.ast_tx_qfull, 0, "tx dropped 'cuz of queue limit");
7573 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nobuf", CTLFLAG_RD,
7574 	    &sc->sc_stats.ast_tx_nobuf, 0, "tx dropped 'cuz no ath buffer");
7575 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_update", CTLFLAG_RD,
7576 	    &sc->sc_stats.ast_tdma_update, 0, "TDMA slot timing updates");
7577 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_timers", CTLFLAG_RD,
7578 	    &sc->sc_stats.ast_tdma_timers, 0, "TDMA slot update set beacon timers");
7579 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_tsf", CTLFLAG_RD,
7580 	    &sc->sc_stats.ast_tdma_tsf, 0, "TDMA slot update set TSF");
7581 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tdma_ack", CTLFLAG_RD,
7582 	    &sc->sc_stats.ast_tdma_ack, 0, "TDMA tx failed 'cuz ACK required");
7583 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_raw_fail", CTLFLAG_RD,
7584 	    &sc->sc_stats.ast_tx_raw_fail, 0, "raw tx failed 'cuz h/w down");
7585 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_tx_nofrag", CTLFLAG_RD,
7586 	    &sc->sc_stats.ast_tx_nofrag, 0, "tx dropped 'cuz no ath frag buffer");
7587 #if 0
7588 	SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "ast_be_missed", CTLFLAG_RD,
7589 	    &sc->sc_stats.ast_be_missed, 0, "number of -missed- beacons");
7590 #endif
7591 }
7592