xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision c03f08f3)
1 /*
2  * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  * 3. Neither the names of the above-listed copyright holders nor the names
16  *    of any contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * NO WARRANTY
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGES.
35  *
36  * $FreeBSD: src/sys/dev/ath/if_ath.c,v 1.94.2.23 2006/07/10 01:15:24 sam Exp $
37  * $DragonFly: src/sys/dev/netif/ath/ath/if_ath.c,v 1.7 2007/02/22 05:17:09 sephe Exp $
38  */
39 
40 /*
41  * Driver for the Atheros Wireless LAN controller.
42  *
43  * This software is derived from work of Atsushi Onoe; his contribution
44  * is greatly appreciated.
45  */
46 
47 #include "opt_ath.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysctl.h>
52 #include <sys/mbuf.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/errno.h>
58 #include <sys/callout.h>
59 #include <sys/bus.h>
60 #include <sys/endian.h>
61 #include <sys/kthread.h>
62 #include <sys/serialize.h>
63 #include <sys/bus.h>
64 #include <sys/rman.h>
65 
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_media.h>
69 #include <net/if_types.h>
70 #include <net/if_arp.h>
71 #include <net/ethernet.h>
72 #include <net/if_llc.h>
73 #include <net/ifq_var.h>
74 
75 #include <netproto/802_11/ieee80211_var.h>
76 
77 #include <net/bpf.h>
78 
79 #if 0
80 #define ATH_DEBUG
81 #endif
82 
83 #include <dev/netif/ath/ath/if_athvar.h>
84 #include <contrib/dev/ath/ah_desc.h>
85 #include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
86 
87 /* unaligned little endian access */
88 #define LE_READ_2(p)							\
89 	((uint16_t)							\
90 	 ((((uint8_t *)(p))[0]      ) | (((uint8_t *)(p))[1] <<  8)))
91 #define LE_READ_4(p)							\
92 	((uint32_t)							\
93 	 ((((uint8_t *)(p))[0]      ) | (((uint8_t *)(p))[1] <<  8) |	\
94 	  (((uint8_t *)(p))[2] << 16) | (((uint8_t *)(p))[3] << 24)))
95 
96 enum {
97 	ATH_LED_TX,
98 	ATH_LED_RX,
99 	ATH_LED_POLL,
100 };
101 
102 static void	ath_init(void *);
103 static void	ath_stop_no_pwchg(struct ifnet *);
104 static void	ath_stop(struct ifnet *);
105 static void	ath_start(struct ifnet *);
106 static int	ath_reset(struct ifnet *);
107 static int	ath_media_change(struct ifnet *);
108 static void	ath_watchdog(struct ifnet *);
109 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
110 static void	ath_fatal_proc(struct ath_softc *);
111 static void	ath_rxorn_proc(struct ath_softc *);
112 static void	ath_bmiss_proc(struct ath_softc *);
113 static int	ath_key_alloc(struct ieee80211com *,
114 			const struct ieee80211_key *,
115 			ieee80211_keyix *, ieee80211_keyix *);
116 static int	ath_key_delete(struct ieee80211com *,
117 			const struct ieee80211_key *);
118 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119 			const uint8_t mac[IEEE80211_ADDR_LEN]);
120 static void	ath_key_update_begin(struct ieee80211com *);
121 static void	ath_key_update_end(struct ieee80211com *);
122 static void	ath_mode_init(struct ath_softc *);
123 static void	ath_setslottime(struct ath_softc *);
124 static void	ath_updateslot(struct ifnet *);
125 static int	ath_beaconq_setup(struct ath_hal *);
126 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128 static void	ath_beacon_proc(struct ath_softc *);
129 static void	ath_bstuck_proc(struct ath_softc *);
130 static void	ath_beacon_free(struct ath_softc *);
131 static void	ath_beacon_config(struct ath_softc *);
132 static void	ath_descdma_cleanup(struct ath_softc *sc,
133 			struct ath_descdma *, ath_bufhead *);
134 static int	ath_desc_alloc(struct ath_softc *);
135 static void	ath_desc_free(struct ath_softc *);
136 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137 static void	ath_node_free(struct ieee80211_node *);
138 static uint8_t	ath_node_getrssi(const struct ieee80211_node *);
139 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141 			struct ieee80211_node *ni,
142 			int subtype, int rssi, uint32_t rstamp);
143 static void	ath_setdefantenna(struct ath_softc *, u_int);
144 static void	ath_rx_proc(struct ath_softc *);
145 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
146 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
147 static int	ath_tx_setup(struct ath_softc *, int, int);
148 static int	ath_wme_update(struct ieee80211com *);
149 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
150 static void	ath_tx_cleanup(struct ath_softc *);
151 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
152 			     struct ath_buf *, struct mbuf *);
153 static void	ath_tx_proc_q0(struct ath_softc *);
154 static void	ath_tx_proc_q0123(struct ath_softc *);
155 static void	ath_tx_proc(struct ath_softc *);
156 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
157 static void	ath_draintxq(struct ath_softc *);
158 static void	ath_stoprecv(struct ath_softc *);
159 static int	ath_startrecv(struct ath_softc *);
160 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
161 static void	ath_next_scan(void *);
162 static void	ath_calibrate(void *);
163 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
164 static void	ath_setup_stationkey(struct ieee80211_node *);
165 static void	ath_newassoc(struct ieee80211_node *, int);
166 static int	ath_getchannels(struct ath_softc *, u_int cc,
167 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
168 static void	ath_led_event(struct ath_softc *, int);
169 static void	ath_update_txpow(struct ath_softc *);
170 
171 static int	ath_rate_setup(struct ath_softc *, u_int mode);
172 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
173 
174 static void	ath_sysctlattach(struct ath_softc *);
175 static void	ath_bpfattach(struct ath_softc *);
176 static void	ath_announce(struct ath_softc *);
177 
178 static void	ath_dma_map_mbuf(void *, bus_dma_segment_t *, int, bus_size_t,
179 				 int);
180 
181 SYSCTL_DECL(_hw_ath);
182 
183 /* XXX validate sysctl values */
184 static	int ath_dwelltime = 200;		/* 5 channels/second */
185 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
186 	    0, "channel dwell time (ms) for AP/station scanning");
187 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
188 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
189 	    0, "chip calibration interval (secs)");
190 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
191 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
192 	    0, "outdoor operation");
193 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
194 static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
195 SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
196 	    0, "extended channel mode");
197 TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
198 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
199 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
200 	    0, "country code");
201 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
202 static	int ath_regdomain = 0;			/* regulatory domain */
203 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
204 	    0, "regulatory domain");
205 
206 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
207 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RD, &ath_rxbuf,
208 	    0, "rx buffers allocated");
209 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
210 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
211 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RD, &ath_txbuf,
212 	    0, "tx buffers allocated");
213 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
214 
215 #ifdef ATH_DEBUG
216 static	int ath_debug = 0;
217 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
218 	    0, "control debugging kprintfs");
219 TUNABLE_INT("hw.ath.debug", &ath_debug);
220 enum {
221 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
222 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
223 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
224 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
225 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
226 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
227 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
228 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
229 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
230 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
231 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
232 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
233 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
234 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
235 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
236 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
237 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
238 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
239 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
240 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
241 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
242 	ATH_DEBUG_ANY		= 0xffffffff
243 };
244 #define	IFF_DUMPPKTS(sc, m) \
245 	((sc->sc_debug & (m)) || \
246 	 (sc->sc_ic.ic_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
247 #define	DPRINTF(sc, m, fmt, ...) do {				\
248 	if (sc->sc_debug & (m))					\
249 		kprintf(fmt, __VA_ARGS__);			\
250 } while (0)
251 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
252 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
253 		ath_keyprint(sc, __func__, ix, hk, mac);	\
254 } while (0)
255 static	void ath_printrxbuf(const struct ath_buf *bf, u_int ix, int);
256 static	void ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done);
257 #else
258 #define	IFF_DUMPPKTS(sc, m) \
259 	((sc->sc_ic.ic_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
260 #define	DPRINTF(sc, m, fmt, ...) do {				\
261 	(void) sc;						\
262 } while (0)
263 #define	KEYPRINTF(sc, k, ix, mac) do {				\
264 	(void) sc;						\
265 } while (0)
266 #endif
267 
268 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
269 
270 int
271 ath_attach(uint16_t devid, struct ath_softc *sc)
272 {
273 	struct ieee80211com *ic = &sc->sc_ic;
274 	struct ifnet *ifp = &ic->ic_if;
275 	struct ath_hal *ah = NULL;
276 	HAL_STATUS status;
277 	int error = 0, i;
278 
279 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
280 
281 	/* set these up early for if_printf use */
282 	if_initname(ifp, device_get_name(sc->sc_dev),
283 		    device_get_unit(sc->sc_dev));
284 
285 	/*
286 	 * Mark device invalid so any interrupts (shared or otherwise)
287 	 * that arrive before the HAL is setup are discarded.
288 	 */
289 	sc->sc_invalid = 1;
290 
291 	/*
292 	 * Arrange interrupt line.
293 	 */
294 	sc->sc_irq_rid = 0;
295 	sc->sc_irq = bus_alloc_resource_any(sc->sc_dev, SYS_RES_IRQ,
296 					    &sc->sc_irq_rid,
297 					    RF_SHAREABLE | RF_ACTIVE);
298 	if (sc->sc_irq == NULL) {
299 		if_printf(ifp, "could not map interrupt\n");
300 		return ENXIO;
301 	}
302 
303 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
304 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
305 					     SYSCTL_STATIC_CHILDREN(_hw),
306 					     OID_AUTO,
307 					     device_get_nameunit(sc->sc_dev),
308 					     CTLFLAG_RD, 0, "");
309 	if (sc->sc_sysctl_tree == NULL) {
310 		if_printf(ifp, "could not add sysctl node\n");
311 		error = ENXIO;
312 		goto fail;
313 	}
314 
315 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
316 	if (ah == NULL) {
317 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
318 			status);
319 		error = ENXIO;
320 		goto fail;
321 	}
322 	sc->sc_ah = ah;
323 
324 	if (ah->ah_abi != HAL_ABI_VERSION) {
325 		if_printf(ifp, "HAL ABI mismatch detected "
326 			"(HAL:0x%x != driver:0x%x)\n",
327 			ah->ah_abi, HAL_ABI_VERSION);
328 		error = ENXIO;
329 		goto fail;
330 	}
331 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
332 
333 	/*
334 	 * Check if the MAC has multi-rate retry support.
335 	 * We do this by trying to setup a fake extended
336 	 * descriptor.  MAC's that don't have support will
337 	 * return false w/o doing anything.  MAC's that do
338 	 * support it will return true w/o doing anything.
339 	 */
340 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
341 
342 	/*
343 	 * Check if the device has hardware counters for PHY
344 	 * errors.  If so we need to enable the MIB interrupt
345 	 * so we can act on stat triggers.
346 	 */
347 	if (ath_hal_hwphycounters(ah))
348 		sc->sc_needmib = 1;
349 
350 	/*
351 	 * Get the hardware key cache size.
352 	 */
353 	sc->sc_keymax = ath_hal_keycachesize(ah);
354 	if (sc->sc_keymax > ATH_KEYMAX) {
355 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
356 			ATH_KEYMAX, sc->sc_keymax);
357 		sc->sc_keymax = ATH_KEYMAX;
358 	}
359 	/*
360 	 * Reset the key cache since some parts do not
361 	 * reset the contents on initial power up.
362 	 */
363 	for (i = 0; i < sc->sc_keymax; i++)
364 		ath_hal_keyreset(ah, i);
365 
366 	/*
367 	 * Collect the channel list using the default country
368 	 * code and including outdoor channels.  The 802.11 layer
369 	 * is resposible for filtering this list based on settings
370 	 * like the phy mode.
371 	 */
372 	error = ath_getchannels(sc, ath_countrycode,
373 				ath_outdoor, ath_xchanmode);
374 	if (error)
375 		goto fail;
376 
377 	/*
378 	 * Setup rate tables for all potential media types.
379 	 */
380 	ath_rate_setup(sc, IEEE80211_MODE_11A);
381 	ath_rate_setup(sc, IEEE80211_MODE_11B);
382 	ath_rate_setup(sc, IEEE80211_MODE_11G);
383 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
384 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
385 
386 	/* NB: setup here so ath_rate_update is happy */
387 	ath_setcurmode(sc, IEEE80211_MODE_11A);
388 
389 	/*
390 	 * Allocate tx+rx descriptors and populate the lists.
391 	 */
392 	error = ath_desc_alloc(sc);
393 	if (error) {
394 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
395 		goto fail;
396 	}
397 
398 	callout_init(&sc->sc_scan_ch);
399 	callout_init(&sc->sc_cal_ch);
400 	callout_init(&sc->sc_dfs_ch);
401 
402 	/*
403 	 * Allocate hardware transmit queues: one queue for
404 	 * beacon frames and one data queue for each QoS
405 	 * priority.  Note that the hal handles reseting
406 	 * these queues at the needed time.
407 	 *
408 	 * XXX PS-Poll
409 	 */
410 	sc->sc_bhalq = ath_beaconq_setup(ah);
411 	if (sc->sc_bhalq == (u_int)-1) {
412 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
413 		error = EIO;
414 		goto fail;
415 	}
416 
417 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
418 	if (sc->sc_cabq == NULL) {
419 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
420 		error = EIO;
421 		goto fail;
422 	}
423 
424 	ath_txq_init(sc, &sc->sc_mcastq, -1);	/* NB: s/w q, qnum not used */
425 
426 	/* NB: insure BK queue is the lowest priority h/w queue */
427 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
428 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
429 			ieee80211_wme_acnames[WME_AC_BK]);
430 		error = EIO;
431 		goto fail;
432 	}
433 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
434 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
435 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
436 		/*
437 		 * Not enough hardware tx queues to properly do WME;
438 		 * just punt and assign them all to the same h/w queue.
439 		 * We could do a better job of this if, for example,
440 		 * we allocate queues when we switch from station to
441 		 * AP mode.
442 		 */
443 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
444 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
445 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
446 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
447 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
448 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
449 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
450 	}
451 
452 	/*
453 	 * Special case certain configurations.  Note the
454 	 * CAB queue is handled by these specially so don't
455 	 * include them when checking the txq setup mask.
456 	 */
457 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
458 	case 0x01:
459 		sc->sc_tx_proc = ath_tx_proc_q0;
460 		if (bootverbose)
461 			if_printf(ifp, "single TX queue\n");
462 		break;
463 	case 0x0f:
464 		sc->sc_tx_proc = ath_tx_proc_q0123;
465 		if (bootverbose)
466 			if_printf(ifp, "four TX queues\n");
467 		break;
468 	default:
469 		sc->sc_tx_proc = ath_tx_proc;
470 		break;
471 	}
472 
473 	/*
474 	 * Setup rate control.  Some rate control modules
475 	 * call back to change the anntena state so expose
476 	 * the necessary entry points.
477 	 * XXX maybe belongs in struct ath_ratectrl?
478 	 */
479 	sc->sc_setdefantenna = ath_setdefantenna;
480 	sc->sc_rc = ath_rate_attach(sc);
481 	if (sc->sc_rc == NULL) {
482 		error = EIO;
483 		goto fail;
484 	}
485 
486 	sc->sc_blinking = 0;
487 	sc->sc_ledstate = 1;
488 	sc->sc_ledon = 0;			/* low true */
489 	sc->sc_ledidle = (2700 * hz) / 1000;	/* 2.7sec */
490 	callout_init(&sc->sc_ledtimer);
491 
492 	/*
493 	 * Auto-enable soft led processing for IBM cards and for
494 	 * 5211 minipci cards.  Users can also manually enable/disable
495 	 * support with a sysctl.
496 	 */
497 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
498 	if (sc->sc_softled) {
499 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
500 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
501 	}
502 
503 	ifp->if_softc = sc;
504 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
505 	ifp->if_start = ath_start;
506 	ifp->if_watchdog = ath_watchdog;
507 	ifp->if_ioctl = ath_ioctl;
508 	ifp->if_init = ath_init;
509 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
510 	ifq_set_ready(&ifp->if_snd);
511 
512 	ic->ic_reset = ath_reset;
513 	ic->ic_newassoc = ath_newassoc;
514 	ic->ic_updateslot = ath_updateslot;
515 	ic->ic_wme.wme_update = ath_wme_update;
516 	/* XXX not right but it's not used anywhere important */
517 	ic->ic_phytype = IEEE80211_T_OFDM;
518 	ic->ic_opmode = IEEE80211_M_STA;
519 	ic->ic_caps =
520 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
521 		| IEEE80211_C_HOSTAP		/* hostap mode */
522 		| IEEE80211_C_MONITOR		/* monitor mode */
523 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
524 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
525 		| IEEE80211_C_SHSLOT		/* short slot time supported */
526 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
527 		;
528 	/*
529 	 * Query the hal to figure out h/w crypto support.
530 	 */
531 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
532 		ic->ic_caps |= IEEE80211_C_WEP;
533 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
534 		ic->ic_caps |= IEEE80211_C_AES;
535 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
536 		ic->ic_caps |= IEEE80211_C_AES_CCM;
537 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
538 		ic->ic_caps |= IEEE80211_C_CKIP;
539 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
540 		ic->ic_caps |= IEEE80211_C_TKIP;
541 		/*
542 		 * Check if h/w does the MIC and/or whether the
543 		 * separate key cache entries are required to
544 		 * handle both tx+rx MIC keys.
545 		 */
546 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
547 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
548 		/*
549 		 * If the h/w supports storing tx+rx MIC keys
550 		 * in one cache slot automatically enable use.
551 		 */
552 		if (ath_hal_hastkipsplit(ah) ||
553 		    !ath_hal_settkipsplit(ah, AH_FALSE))
554 			sc->sc_splitmic = 1;
555 	}
556 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
557 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
558  	/*
559 	 * Mark key cache slots associated with global keys
560 	 * as in use.  If we knew TKIP was not to be used we
561 	 * could leave the +32, +64, and +32+64 slots free.
562 	 */
563 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
564 		setbit(sc->sc_keymap, i);
565 		setbit(sc->sc_keymap, i+64);
566 		if (sc->sc_splitmic) {
567 			setbit(sc->sc_keymap, i+32);
568 			setbit(sc->sc_keymap, i+32+64);
569 		}
570 	}
571 	/*
572 	 * TPC support can be done either with a global cap or
573 	 * per-packet support.  The latter is not available on
574 	 * all parts.  We're a bit pedantic here as all parts
575 	 * support a global cap.
576 	 */
577 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
578 		ic->ic_caps |= IEEE80211_C_TXPMGT;
579 
580 	/*
581 	 * Mark WME capability only if we have sufficient
582 	 * hardware queues to do proper priority scheduling.
583 	 */
584 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
585 		ic->ic_caps |= IEEE80211_C_WME;
586 	/*
587 	 * Check for misc other capabilities.
588 	 */
589 	if (ath_hal_hasbursting(ah))
590 		ic->ic_caps |= IEEE80211_C_BURST;
591 
592 	/*
593 	 * Indicate we need the 802.11 header padded to a
594 	 * 32-bit boundary for 4-address and QoS frames.
595 	 */
596 	ic->ic_flags |= IEEE80211_F_DATAPAD;
597 
598 	/*
599 	 * Query the hal about antenna support.
600 	 */
601 	sc->sc_defant = ath_hal_getdefantenna(ah);
602 
603 	/*
604 	 * Not all chips have the VEOL support we want to
605 	 * use with IBSS beacons; check here for it.
606 	 */
607 	sc->sc_hasveol = ath_hal_hasveol(ah);
608 
609 	/* get mac address from hardware */
610 	ath_hal_getmac(ah, ic->ic_myaddr);
611 
612 	/* call MI attach routine. */
613 	ieee80211_ifattach(ic);
614 	sc->sc_opmode = ic->ic_opmode;
615 	/* override default methods */
616 	ic->ic_node_alloc = ath_node_alloc;
617 	sc->sc_node_free = ic->ic_node_free;
618 	ic->ic_node_free = ath_node_free;
619 	ic->ic_node_getrssi = ath_node_getrssi;
620 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
621 	ic->ic_recv_mgmt = ath_recv_mgmt;
622 	sc->sc_newstate = ic->ic_newstate;
623 	ic->ic_newstate = ath_newstate;
624 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
625 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
626 	ic->ic_crypto.cs_key_delete = ath_key_delete;
627 	ic->ic_crypto.cs_key_set = ath_key_set;
628 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
629 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
630 	/* complete initialization */
631 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
632 
633 	ath_bpfattach(sc);
634 	/*
635 	 * Setup dynamic sysctl's now that country code and
636 	 * regdomain are available from the hal.
637 	 */
638 	ath_sysctlattach(sc);
639 
640 	error = bus_setup_intr(sc->sc_dev, sc->sc_irq, INTR_MPSAFE, ath_intr,
641 			       sc, &sc->sc_ih, ifp->if_serializer);
642 	if (error) {
643 		if_printf(ifp, "could not establish interrupt\n");
644 		bpfdetach(ifp);
645 		ieee80211_ifdetach(ic);
646 		goto fail;
647 	}
648 
649 	if (bootverbose)
650 		ieee80211_announce(ic);
651 	ath_announce(sc);
652 
653 	return 0;
654 fail:
655 	ath_detach(sc);
656 	return error;
657 }
658 
659 int
660 ath_detach(struct ath_softc *sc)
661 {
662 	struct ifnet *ifp = &sc->sc_ic.ic_if;
663 
664 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
665 		__func__, ifp->if_flags);
666 
667 	/*
668 	 * NB: the order of these is important:
669 	 * o call the 802.11 layer before detaching the hal to
670 	 *   insure callbacks into the driver to delete global
671 	 *   key cache entries can be handled
672 	 * o reclaim the tx queue data structures after calling
673 	 *   the 802.11 layer as we'll get called back to reclaim
674 	 *   node state and potentially want to use them
675 	 * o to cleanup the tx queues the hal is called, so detach
676 	 *   it last
677 	 * Other than that, it's straightforward...
678 	 */
679 
680 	if (device_is_attached(sc->sc_dev)) {
681 		lwkt_serialize_enter(ifp->if_serializer);
682 
683 		ath_rate_stop(sc->sc_rc);
684 
685 		/*
686 		 * It seems power changing in ath_stop() will freeze
687 		 * ath_hal_releasetxqueue(), which is called by
688 		 * ath_tx_cleanup() below.
689 		 */
690 #if 1
691 		ath_stop_no_pwchg(ifp);
692 #else
693 		ath_stop(ifp);
694 #endif
695 		bus_teardown_intr(sc->sc_dev, sc->sc_irq, sc->sc_ih);
696 
697 		lwkt_serialize_exit(ifp->if_serializer);
698 
699 		bpfdetach(ifp);
700 		ieee80211_ifdetach(&sc->sc_ic);
701 	}
702 
703 	if (sc->sc_rc != NULL)
704 		ath_rate_detach(sc->sc_rc);
705 
706 	ath_desc_free(sc);
707 
708 	ath_tx_cleanup(sc);
709 
710 	if (sc->sc_ah)
711 		ath_hal_detach(sc->sc_ah);
712 
713 	if (sc->sc_irq != NULL) {
714 		bus_release_resource(sc->sc_dev, SYS_RES_IRQ, sc->sc_irq_rid,
715 				     sc->sc_irq);
716 	}
717 
718 	if (sc->sc_sysctl_tree != NULL)
719 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
720 
721 	return 0;
722 }
723 
724 void
725 ath_suspend(struct ath_softc *sc)
726 {
727 	struct ifnet *ifp = &sc->sc_ic.ic_if;
728 
729 	lwkt_serialize_enter(ifp->if_serializer);
730 
731 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
732 		__func__, ifp->if_flags);
733 	ath_stop(ifp);
734 
735 	lwkt_serialize_exit(ifp->if_serializer);
736 }
737 
738 void
739 ath_resume(struct ath_softc *sc)
740 {
741 	struct ifnet *ifp = &sc->sc_ic.ic_if;
742 
743 	lwkt_serialize_enter(ifp->if_serializer);
744 
745 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
746 		__func__, ifp->if_flags);
747 
748 	if (ifp->if_flags & IFF_UP) {
749 		ath_init(sc);
750 		if (ifp->if_flags & IFF_RUNNING)
751 			ath_start(ifp);
752 	}
753 	if (sc->sc_softled) {
754 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
755 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
756 	}
757 
758 	lwkt_serialize_exit(ifp->if_serializer);
759 }
760 
761 void
762 ath_shutdown(struct ath_softc *sc)
763 {
764 	struct ifnet *ifp = &sc->sc_ic.ic_if;
765 
766 	lwkt_serialize_enter(ifp->if_serializer);
767 
768 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
769 		__func__, ifp->if_flags);
770 	ath_stop(ifp);
771 
772 	lwkt_serialize_exit(ifp->if_serializer);
773 }
774 
775 /*
776  * Interrupt handler.  Most of the actual processing is deferred.
777  */
778 void
779 ath_intr(void *arg)
780 {
781 	struct ath_softc *sc = arg;
782 	struct ifnet *ifp = &sc->sc_ic.ic_if;
783 	struct ath_hal *ah = sc->sc_ah;
784 	HAL_INT status;
785 
786 	if (sc->sc_invalid) {
787 		/*
788 		 * The hardware is not ready/present, don't touch anything.
789 		 * Note this can happen early on if the IRQ is shared.
790 		 */
791 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
792 		return;
793 	}
794 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
795 		return;
796 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
797 	    (IFF_UP | IFF_RUNNING)) {
798 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
799 			__func__, ifp->if_flags);
800 		ath_hal_getisr(ah, &status);	/* clear ISR */
801 		ath_hal_intrset(ah, 0);		/* disable further intr's */
802 		return;
803 	}
804 	/*
805 	 * Figure out the reason(s) for the interrupt.  Note
806 	 * that the hal returns a pseudo-ISR that may include
807 	 * bits we haven't explicitly enabled so we mask the
808 	 * value to insure we only process bits we requested.
809 	 */
810 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
811 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
812 	status &= sc->sc_imask;			/* discard unasked for bits */
813 	if (status & HAL_INT_FATAL) {
814 		/*
815 		 * Fatal errors are unrecoverable.  Typically
816 		 * these are caused by DMA errors.  Unfortunately
817 		 * the exact reason is not (presently) returned
818 		 * by the hal.
819 		 */
820 		sc->sc_stats.ast_hardware++;
821 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
822 		ath_fatal_proc(sc);
823 	} else if (status & HAL_INT_RXORN) {
824 		sc->sc_stats.ast_rxorn++;
825 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
826 		ath_rxorn_proc(sc);
827 	} else {
828 		if (status & HAL_INT_SWBA) {
829 			/*
830 			 * Software beacon alert--time to send a beacon.
831 			 * Handle beacon transmission directly; deferring
832 			 * this is too slow to meet timing constraints
833 			 * under load.
834 			 */
835 			ath_beacon_proc(sc);
836 		}
837 		if (status & HAL_INT_RXEOL) {
838 			/*
839 			 * NB: the hardware should re-read the link when
840 			 *     RXE bit is written, but it doesn't work at
841 			 *     least on older hardware revs.
842 			 */
843 			sc->sc_stats.ast_rxeol++;
844 			sc->sc_rxlink = NULL;
845 		}
846 		if (status & HAL_INT_TXURN) {
847 			sc->sc_stats.ast_txurn++;
848 			/* bump tx trigger level */
849 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
850 		}
851 		if (status & HAL_INT_RX)
852 			ath_rx_proc(sc);
853 		if (status & HAL_INT_TX)
854 			sc->sc_tx_proc(sc);
855 		if (status & HAL_INT_BMISS) {
856 			sc->sc_stats.ast_bmiss++;
857 			ath_bmiss_proc(sc);
858 		}
859 		if (status & HAL_INT_MIB) {
860 			sc->sc_stats.ast_mib++;
861 			/*
862 			 * Disable interrupts until we service the MIB
863 			 * interrupt; otherwise it will continue to fire.
864 			 */
865 			ath_hal_intrset(ah, 0);
866 			/*
867 			 * Let the hal handle the event.  We assume it will
868 			 * clear whatever condition caused the interrupt.
869 			 */
870 			ath_hal_mibevent(ah, &sc->sc_halstats);
871 			ath_hal_intrset(ah, sc->sc_imask);
872 		}
873 	}
874 }
875 
876 static void
877 ath_fatal_proc(struct ath_softc *sc)
878 {
879 	struct ifnet *ifp = &sc->sc_ic.ic_if;
880 	uint32_t *state;
881 	uint32_t len;
882 
883 	if_printf(ifp, "hardware error; resetting\n");
884 
885 	/*
886 	 * Fatal errors are unrecoverable.  Typically these
887 	 * are caused by DMA errors.  Collect h/w state from
888 	 * the hal so we can diagnose what's going on.
889 	 */
890 	if (ath_hal_getfatalstate(sc->sc_ah, &state, &len)) {
891 		KASSERT(len >= (6 * sizeof(uint32_t)), ("len %u bytes", len));
892 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
893 		    state[0], state[1] , state[2], state[3],
894 		    state[4], state[5]);
895 	}
896 
897 	ath_reset(ifp);
898 }
899 
900 static void
901 ath_rxorn_proc(struct ath_softc *sc)
902 {
903 	struct ifnet *ifp = &sc->sc_ic.ic_if;
904 
905 	if_printf(ifp, "rx FIFO overrun; resetting\n");
906 	ath_reset(ifp);
907 }
908 
909 static void
910 ath_bmiss_proc(struct ath_softc *sc)
911 {
912 	struct ieee80211com *ic = &sc->sc_ic;
913 
914 	DPRINTF(sc, ATH_DEBUG_ANY, "%s\n", __func__);
915 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
916 		("unexpect operating mode %u", ic->ic_opmode));
917 	if (ic->ic_state == IEEE80211_S_RUN) {
918 		uint64_t lastrx = sc->sc_lastrx;
919 		uint64_t tsf = ath_hal_gettsf64(sc->sc_ah);
920 		u_int bmisstimeout =
921 			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
922 
923 		DPRINTF(sc, ATH_DEBUG_BEACON,
924 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
925 		    __func__, (unsigned long long) tsf,
926 		    (unsigned long long)(tsf - lastrx),
927 		    (unsigned long long) lastrx, bmisstimeout);
928 		/*
929 		 * Workaround phantom bmiss interrupts by sanity-checking
930 		 * the time of our last rx'd frame.  If it is within the
931 		 * beacon miss interval then ignore the interrupt.  If it's
932 		 * truly a bmiss we'll get another interrupt soon and that'll
933 		 * be dispatched up for processing.
934 		 */
935 		if (tsf - lastrx > bmisstimeout)
936 			ieee80211_beacon_miss(ic);
937 		else
938 			sc->sc_stats.ast_bmiss_phantom++;
939 	}
940 }
941 
942 static u_int
943 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
944 {
945 #define	N(a)	(sizeof(a) / sizeof(a[0]))
946 	static const u_int modeflags[] = {
947 		0,			/* IEEE80211_MODE_AUTO */
948 		CHANNEL_A,		/* IEEE80211_MODE_11A */
949 		CHANNEL_B,		/* IEEE80211_MODE_11B */
950 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
951 		0,			/* IEEE80211_MODE_FH */
952 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
953 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
954 	};
955 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
956 
957 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
958 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
959 	return modeflags[mode];
960 #undef N
961 }
962 
963 /* XXX error cleanup */
964 static void
965 ath_init(void *arg)
966 {
967 	struct ath_softc *sc = arg;
968 	struct ieee80211com *ic = &sc->sc_ic;
969 	struct ifnet *ifp = &ic->ic_if;
970 	struct ath_hal *ah = sc->sc_ah;
971 	HAL_STATUS status;
972 
973 	ASSERT_SERIALIZED(ifp->if_serializer);
974 
975 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
976 		__func__, ifp->if_flags);
977 
978 	/*
979 	 * Stop anything previously setup.  This is safe
980 	 * whether this is the first time through or not.
981 	 */
982 	ath_stop_no_pwchg(ifp);
983 
984 	/*
985 	 * The basic interface to setting the hardware in a good
986 	 * state is ``reset''.  On return the hardware is known to
987 	 * be powered up and with interrupts disabled.  This must
988 	 * be followed by initialization of the appropriate bits
989 	 * and then setup of the interrupt mask.
990 	 */
991 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
992 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
993 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE,
994 			   &status)) {
995 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
996 			status);
997 		return;
998 	}
999 
1000 	/*
1001 	 * This is needed only to setup initial state
1002 	 * but it's best done after a reset.
1003 	 */
1004 	ath_update_txpow(sc);
1005 	/*
1006 	 * Likewise this is set during reset so update
1007 	 * state cached in the driver.
1008 	 */
1009 	sc->sc_diversity = ath_hal_getdiversity(ah);
1010 	sc->sc_calinterval = 1;
1011 	sc->sc_caltries = 0;
1012 
1013 	/*
1014 	 * Setup the hardware after reset: the key cache
1015 	 * is filled as needed and the receive engine is
1016 	 * set going.  Frame transmit is handled entirely
1017 	 * in the frame output path; there's nothing to do
1018 	 * here except setup the interrupt mask.
1019 	 */
1020 	if (ath_startrecv(sc) != 0) {
1021 		if_printf(ifp, "unable to start recv logic\n");
1022 		return;
1023 	}
1024 
1025 	/*
1026 	 * Enable interrupts.
1027 	 */
1028 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1029 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1030 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1031 	/*
1032 	 * Enable MIB interrupts when there are hardware phy counters.
1033 	 * Note we only do this (at the moment) for station mode.
1034 	 */
1035 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1036 		sc->sc_imask |= HAL_INT_MIB;
1037 	ath_hal_intrset(ah, sc->sc_imask);
1038 
1039 	ifp->if_flags |= IFF_RUNNING;
1040 	ic->ic_state = IEEE80211_S_INIT;
1041 
1042 	/*
1043 	 * The hardware should be ready to go now so it's safe
1044 	 * to kick the 802.11 state machine as it's likely to
1045 	 * immediately call back to us to send mgmt frames.
1046 	 */
1047 	ath_chan_change(sc, ic->ic_curchan);
1048 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1049 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1050 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1051 	} else {
1052 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1053 	}
1054 }
1055 
1056 static void
1057 ath_stop_no_pwchg(struct ifnet *ifp)
1058 {
1059 	struct ath_softc *sc = ifp->if_softc;
1060 	struct ieee80211com *ic = &sc->sc_ic;
1061 	struct ath_hal *ah = sc->sc_ah;
1062 
1063 	ASSERT_SERIALIZED(ifp->if_serializer);
1064 
1065 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1066 		__func__, sc->sc_invalid, ifp->if_flags);
1067 
1068 	if (ifp->if_flags & IFF_RUNNING) {
1069 		/*
1070 		 * Shutdown the hardware and driver:
1071 		 *    reset 802.11 state machine
1072 		 *    turn off timers
1073 		 *    disable interrupts
1074 		 *    turn off the radio
1075 		 *    clear transmit machinery
1076 		 *    clear receive machinery
1077 		 *    drain and release tx queues
1078 		 *    reclaim beacon resources
1079 		 *    power down hardware
1080 		 *
1081 		 * Note that some of this work is not possible if the
1082 		 * hardware is gone (invalid).
1083 		 */
1084 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1085 		ifp->if_flags &= ~IFF_RUNNING;
1086 		ifp->if_timer = 0;
1087 		if (!sc->sc_invalid) {
1088 			if (sc->sc_softled) {
1089 				callout_stop(&sc->sc_ledtimer);
1090 				ath_hal_gpioset(ah, sc->sc_ledpin,
1091 					!sc->sc_ledon);
1092 				sc->sc_blinking = 0;
1093 			}
1094 			ath_hal_intrset(ah, 0);
1095 		}
1096 		ath_draintxq(sc);
1097 		if (!sc->sc_invalid) {
1098 			ath_stoprecv(sc);
1099 			ath_hal_phydisable(ah);
1100 		} else
1101 			sc->sc_rxlink = NULL;
1102 #ifdef foo
1103 		ifq_purge(&ifp->if_snd);
1104 #endif
1105 		ath_beacon_free(sc);
1106 	}
1107 }
1108 
1109 static void
1110 ath_stop(struct ifnet *ifp)
1111 {
1112 	struct ath_softc *sc = ifp->if_softc;
1113 
1114 	ASSERT_SERIALIZED(ifp->if_serializer);
1115 
1116 	ath_stop_no_pwchg(ifp);
1117 	if (!sc->sc_invalid) {
1118 		/*
1119 		 * Set the chip in full sleep mode.  Note that we are
1120 		 * careful to do this only when bringing the interface
1121 		 * completely to a stop.  When the chip is in this state
1122 		 * it must be carefully woken up or references to
1123 		 * registers in the PCI clock domain may freeze the bus
1124 		 * (and system).  This varies by chip and is mostly an
1125 		 * issue with newer parts that go to sleep more quickly.
1126 		 */
1127 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1128 	}
1129 }
1130 
1131 /*
1132  * Reset the hardware w/o losing operational state.  This is
1133  * basically a more efficient way of doing ath_stop, ath_init,
1134  * followed by state transitions to the current 802.11
1135  * operational state.  Used to recover from various errors and
1136  * to reset or reload hardware state.
1137  */
1138 static int
1139 ath_reset(struct ifnet *ifp)
1140 {
1141 	struct ath_softc *sc = ifp->if_softc;
1142 	struct ieee80211com *ic = &sc->sc_ic;
1143 	struct ath_hal *ah = sc->sc_ah;
1144 	struct ieee80211_channel *c;
1145 	HAL_STATUS status;
1146 
1147 	ASSERT_SERIALIZED(ifp->if_serializer);
1148 
1149 	/*
1150 	 * Convert to a HAL channel description with the flags
1151 	 * constrained to reflect the current operating mode.
1152 	 */
1153 	c = ic->ic_curchan;
1154 	sc->sc_curchan.channel = c->ic_freq;
1155 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1156 
1157 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1158 	ath_draintxq(sc);		/* stop xmit side */
1159 	ath_stoprecv(sc);		/* stop recv side */
1160 	/* NB: indicate channel change so we do a full reset */
1161 	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE,
1162 			   &status)) {
1163 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1164 			__func__, status);
1165 	}
1166 	ath_update_txpow(sc);		/* update tx power state */
1167 	sc->sc_diversity = ath_hal_getdiversity(ah);
1168 	sc->sc_calinterval = 1;
1169 	sc->sc_caltries = 0;
1170 	/*
1171 	 * We may be doing a reset in response to an ioctl
1172 	 * that changes the channel so update any state that
1173 	 * might change as a result.
1174 	 */
1175 	ath_chan_change(sc, c);
1176 	if (ath_startrecv(sc) != 0)	/* restart recv */
1177 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1178 	if (ic->ic_state == IEEE80211_S_RUN)
1179 		ath_beacon_config(sc);	/* restart beacons */
1180 	ath_hal_intrset(ah, sc->sc_imask);
1181 
1182 	ath_start(ifp);			/* restart xmit */
1183 	return 0;
1184 }
1185 
1186 static void
1187 ath_start(struct ifnet *ifp)
1188 {
1189 	struct ath_softc *sc = ifp->if_softc;
1190 	struct ath_hal *ah = sc->sc_ah;
1191 	struct ieee80211com *ic = &sc->sc_ic;
1192 	struct ieee80211_node *ni;
1193 	struct ath_buf *bf;
1194 	struct mbuf *m;
1195 	struct ieee80211_frame *wh;
1196 	struct ether_header *eh;
1197 
1198 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1199 		return;
1200 
1201 	for (;;) {
1202 		/*
1203 		 * Grab a TX buffer and associated resources.
1204 		 */
1205 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1206 		if (bf != NULL)
1207 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1208 		if (bf == NULL) {
1209 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1210 				__func__);
1211 			sc->sc_stats.ast_tx_qstop++;
1212 			ifp->if_flags |= IFF_OACTIVE;
1213 			break;
1214 		}
1215 		/*
1216 		 * Poll the management queue for frames; they
1217 		 * have priority over normal data frames.
1218 		 */
1219 		IF_DEQUEUE(&ic->ic_mgtq, m);
1220 		if (m == NULL) {
1221 			/*
1222 			 * No data frames go out unless we're associated.
1223 			 */
1224 			if (ic->ic_state != IEEE80211_S_RUN) {
1225 				DPRINTF(sc, ATH_DEBUG_XMIT,
1226 				    "%s: discard data packet, state %s\n",
1227 				    __func__,
1228 				    ieee80211_state_name[ic->ic_state]);
1229 				sc->sc_stats.ast_tx_discard++;
1230 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1231 				break;
1232 			}
1233 			m = ifq_dequeue(&ifp->if_snd, NULL);
1234 			if (m == NULL) {
1235 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1236 				break;
1237 			}
1238 			/*
1239 			 * Find the node for the destination so we can do
1240 			 * things like power save and fast frames aggregation.
1241 			 */
1242 			if (m->m_len < sizeof(struct ether_header) &&
1243 			    (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1244 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1245 				ni = NULL;
1246 				goto bad;
1247 			}
1248 			eh = mtod(m, struct ether_header *);
1249 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1250 			if (ni == NULL) {
1251 				/* NB: ieee80211_find_txnode does stat+msg */
1252 				m_freem(m);
1253 				goto bad;
1254 			}
1255 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1256 			    (m->m_flags & M_PWR_SAV) == 0) {
1257 				/*
1258 				 * Station in power save mode; pass the frame
1259 				 * to the 802.11 layer and continue.  We'll get
1260 				 * the frame back when the time is right.
1261 				 */
1262 				ieee80211_pwrsave(ic, ni, m);
1263 				goto reclaim;
1264 			}
1265 			/* calculate priority so we can find the tx queue */
1266 			if (ieee80211_classify(ic, m, ni)) {
1267 				DPRINTF(sc, ATH_DEBUG_XMIT,
1268 					"%s: discard, classification failure\n",
1269 					__func__);
1270 				m_freem(m);
1271 				goto bad;
1272 			}
1273 			ifp->if_opackets++;
1274 			BPF_MTAP(ifp, m);
1275 			/*
1276 			 * Encapsulate the packet in prep for transmission.
1277 			 */
1278 			m = ieee80211_encap(ic, m, ni);
1279 			if (m == NULL) {
1280 				DPRINTF(sc, ATH_DEBUG_XMIT,
1281 					"%s: encapsulation failure\n",
1282 					__func__);
1283 				sc->sc_stats.ast_tx_encap++;
1284 				goto bad;
1285 			}
1286 		} else {
1287 			/*
1288 			 * Hack!  The referenced node pointer is in the
1289 			 * rcvif field of the packet header.  This is
1290 			 * placed there by ieee80211_mgmt_output because
1291 			 * we need to hold the reference with the frame
1292 			 * and there's no other way (other than packet
1293 			 * tags which we consider too expensive to use)
1294 			 * to pass it along.
1295 			 */
1296 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1297 			m->m_pkthdr.rcvif = NULL;
1298 
1299 			wh = mtod(m, struct ieee80211_frame *);
1300 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1301 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1302 				/* fill time stamp */
1303 				uint64_t tsf;
1304 				uint32_t *tstamp;
1305 
1306 				tsf = ath_hal_gettsf64(ah);
1307 				/* XXX: adjust 100us delay to xmit */
1308 				tsf += 100;
1309 				tstamp = (uint32_t *)&wh[1];
1310 				tstamp[0] = htole32(tsf & 0xffffffff);
1311 				tstamp[1] = htole32(tsf >> 32);
1312 			}
1313 			sc->sc_stats.ast_tx_mgmt++;
1314 		}
1315 
1316 		if (ath_tx_start(sc, ni, bf, m)) {
1317 bad:
1318 			ifp->if_oerrors++;
1319 reclaim:
1320 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1321 			if (ni != NULL)
1322 				ieee80211_free_node(ni);
1323 			continue;
1324 		}
1325 
1326 		sc->sc_tx_timer = 5;
1327 		ifp->if_timer = 1;
1328 	}
1329 }
1330 
1331 static int
1332 ath_media_change(struct ifnet *ifp)
1333 {
1334 #define	IS_UP(ifp) \
1335 	((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_RUNNING | IFF_UP))
1336 	int error;
1337 
1338 	error = ieee80211_media_change(ifp);
1339 	if (error == ENETRESET) {
1340 		struct ath_softc *sc = ifp->if_softc;
1341 		struct ieee80211com *ic = &sc->sc_ic;
1342 
1343 		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1344 			/*
1345 			 * Adhoc demo mode is just ibss mode w/o beacons
1346 			 * (mostly).  The hal knows nothing about it;
1347 			 * tell it we're operating in ibss mode.
1348 			 */
1349 			sc->sc_opmode = HAL_M_IBSS;
1350 		} else
1351 			sc->sc_opmode = ic->ic_opmode;
1352 		if (IS_UP(ifp))
1353 			ath_init(ifp->if_softc);	/* XXX lose error */
1354 		error = 0;
1355 	}
1356 	return error;
1357 #undef IS_UP
1358 }
1359 
1360 #ifdef ATH_DEBUG
1361 static void
1362 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1363 	const HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1364 {
1365 	static const char *ciphers[] = {
1366 		"WEP",
1367 		"AES-OCB",
1368 		"AES-CCM",
1369 		"CKIP",
1370 		"TKIP",
1371 		"CLR",
1372 	};
1373 	int i, n;
1374 
1375 	kprintf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1376 	for (i = 0, n = hk->kv_len; i < n; i++)
1377 		kprintf("%02x", hk->kv_val[i]);
1378 	kprintf(" mac %6D", mac, ":");
1379 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1380 		kprintf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1381 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1382 			kprintf("%02x", hk->kv_mic[i]);
1383 #if HAL_ABI_VERSION > 0x06052200
1384 		if (!sc->sc_splitmic) {
1385 			kprintf(" txmic ");
1386 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1387 				kprintf("%02x", hk->kv_txmic[i]);
1388 		}
1389 #endif
1390 	}
1391 	kprintf("\n");
1392 }
1393 #endif
1394 
1395 /*
1396  * Set a TKIP key into the hardware.  This handles the
1397  * potential distribution of key state to multiple key
1398  * cache slots for TKIP.
1399  */
1400 static int
1401 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1402 	HAL_KEYVAL *hk, const uint8_t mac[IEEE80211_ADDR_LEN])
1403 {
1404 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1405 	static const uint8_t zerobssid[IEEE80211_ADDR_LEN];
1406 	struct ath_hal *ah = sc->sc_ah;
1407 
1408 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1409 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1410 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1411 		if (sc->sc_splitmic) {
1412 			/*
1413 			 * TX key goes at first index, RX key at the rx index.
1414 			 * The hal handles the MIC keys at index+64.
1415 			 */
1416 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1417 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1418 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1419 				return 0;
1420 
1421 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1422 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1423 			/* XXX delete tx key on failure? */
1424 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1425 		} else {
1426 			/*
1427 			 * Room for both TX+RX MIC keys in one key cache
1428 			 * slot, just set key at the first index; the hal
1429 			 * will handle the reset.
1430 			 */
1431 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1432 #if HAL_ABI_VERSION > 0x06052200
1433 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1434 #endif
1435 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1436 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1437 		}
1438 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1439 		/*
1440 		 * TX/RX key goes at first index.
1441 		 * The hal handles the MIC keys are index+64.
1442 		 */
1443 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1444 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1445 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1446 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1447 	}
1448 	return 0;
1449 #undef IEEE80211_KEY_XR
1450 }
1451 
1452 /*
1453  * Set a net80211 key into the hardware.  This handles the
1454  * potential distribution of key state to multiple key
1455  * cache slots for TKIP with hardware MIC support.
1456  */
1457 static int
1458 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1459 	const uint8_t mac0[IEEE80211_ADDR_LEN],
1460 	struct ieee80211_node *bss)
1461 {
1462 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1463 	static const uint8_t ciphermap[] = {
1464 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1465 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1466 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1467 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1468 		(uint8_t) -1,		/* 4 is not allocated */
1469 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1470 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1471 	};
1472 	struct ath_hal *ah = sc->sc_ah;
1473 	const struct ieee80211_cipher *cip = k->wk_cipher;
1474 	uint8_t gmac[IEEE80211_ADDR_LEN];
1475 	const uint8_t *mac;
1476 	HAL_KEYVAL hk;
1477 
1478 	memset(&hk, 0, sizeof(hk));
1479 	/*
1480 	 * Software crypto uses a "clear key" so non-crypto
1481 	 * state kept in the key cache are maintained and
1482 	 * so that rx frames have an entry to match.
1483 	 */
1484 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1485 		KASSERT(cip->ic_cipher < N(ciphermap),
1486 			("invalid cipher type %u", cip->ic_cipher));
1487 		hk.kv_type = ciphermap[cip->ic_cipher];
1488 		hk.kv_len = k->wk_keylen;
1489 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1490 	} else
1491 		hk.kv_type = HAL_CIPHER_CLR;
1492 
1493 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1494 		/*
1495 		 * Group keys on hardware that supports multicast frame
1496 		 * key search use a mac that is the sender's address with
1497 		 * the high bit set instead of the app-specified address.
1498 		 */
1499 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1500 		gmac[0] |= 0x80;
1501 		mac = gmac;
1502 	} else
1503 		mac = mac0;
1504 
1505 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1506 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1507 		return ath_keyset_tkip(sc, k, &hk, mac);
1508 	} else {
1509 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1510 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1511 	}
1512 #undef N
1513 }
1514 
1515 /*
1516  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1517  * each key, one for decrypt/encrypt and the other for the MIC.
1518  */
1519 static uint16_t
1520 key_alloc_2pair(struct ath_softc *sc,
1521 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1522 {
1523 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1524 	u_int i, keyix;
1525 
1526 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1527 	/* XXX could optimize */
1528 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1529 		uint8_t b = sc->sc_keymap[i];
1530 		if (b != 0xff) {
1531 			/*
1532 			 * One or more slots in this byte are free.
1533 			 */
1534 			keyix = i*NBBY;
1535 			while (b & 1) {
1536 		again:
1537 				keyix++;
1538 				b >>= 1;
1539 			}
1540 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1541 			if (isset(sc->sc_keymap, keyix+32) ||
1542 			    isset(sc->sc_keymap, keyix+64) ||
1543 			    isset(sc->sc_keymap, keyix+32+64)) {
1544 				/* full pair unavailable */
1545 				/* XXX statistic */
1546 				if (keyix == (i+1)*NBBY) {
1547 					/* no slots were appropriate, advance */
1548 					continue;
1549 				}
1550 				goto again;
1551 			}
1552 			setbit(sc->sc_keymap, keyix);
1553 			setbit(sc->sc_keymap, keyix+64);
1554 			setbit(sc->sc_keymap, keyix+32);
1555 			setbit(sc->sc_keymap, keyix+32+64);
1556 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1557 				"%s: key pair %u,%u %u,%u\n",
1558 				__func__, keyix, keyix+64,
1559 				keyix+32, keyix+32+64);
1560 			*txkeyix = keyix;
1561 			*rxkeyix = keyix+32;
1562 			return 1;
1563 		}
1564 	}
1565 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1566 	return 0;
1567 #undef N
1568 }
1569 
1570 /*
1571  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1572  * each key, one for decrypt/encrypt and the other for the MIC.
1573  */
1574 static uint16_t
1575 key_alloc_pair(struct ath_softc *sc,
1576 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1577 {
1578 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1579 	u_int i, keyix;
1580 
1581 	KASSERT(!sc->sc_splitmic, ("key cache split"));
1582 	/* XXX could optimize */
1583 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1584 		uint8_t b = sc->sc_keymap[i];
1585 		if (b != 0xff) {
1586 			/*
1587 			 * One or more slots in this byte are free.
1588 			 */
1589 			keyix = i*NBBY;
1590 			while (b & 1) {
1591 		again:
1592 				keyix++;
1593 				b >>= 1;
1594 			}
1595 			if (isset(sc->sc_keymap, keyix+64)) {
1596 				/* full pair unavailable */
1597 				/* XXX statistic */
1598 				if (keyix == (i+1)*NBBY) {
1599 					/* no slots were appropriate, advance */
1600 					continue;
1601 				}
1602 				goto again;
1603 			}
1604 			setbit(sc->sc_keymap, keyix);
1605 			setbit(sc->sc_keymap, keyix+64);
1606 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1607 				"%s: key pair %u,%u\n",
1608 				__func__, keyix, keyix+64);
1609 			*txkeyix = *rxkeyix = keyix;
1610 			return 1;
1611 		}
1612 	}
1613 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1614 	return 0;
1615 #undef N
1616 }
1617 
1618 /*
1619  * Allocate a single key cache slot.
1620  */
1621 static int
1622 key_alloc_single(struct ath_softc *sc,
1623 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1624 {
1625 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1626 	u_int i, keyix;
1627 
1628 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1629 	for (i = 0; i < N(sc->sc_keymap); i++) {
1630 		uint8_t b = sc->sc_keymap[i];
1631 		if (b != 0xff) {
1632 			/*
1633 			 * One or more slots are free.
1634 			 */
1635 			keyix = i*NBBY;
1636 			while (b & 1)
1637 				keyix++, b >>= 1;
1638 			setbit(sc->sc_keymap, keyix);
1639 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1640 				__func__, keyix);
1641 			*txkeyix = *rxkeyix = keyix;
1642 			return 1;
1643 		}
1644 	}
1645 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1646 	return 0;
1647 #undef N
1648 }
1649 
1650 /*
1651  * Allocate one or more key cache slots for a uniacst key.  The
1652  * key itself is needed only to identify the cipher.  For hardware
1653  * TKIP with split cipher+MIC keys we allocate two key cache slot
1654  * pairs so that we can setup separate TX and RX MIC keys.  Note
1655  * that the MIC key for a TKIP key at slot i is assumed by the
1656  * hardware to be at slot i+64.  This limits TKIP keys to the first
1657  * 64 entries.
1658  */
1659 static int
1660 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1661 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1662 {
1663 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1664 
1665 	/*
1666 	 * Group key allocation must be handled specially for
1667 	 * parts that do not support multicast key cache search
1668 	 * functionality.  For those parts the key id must match
1669 	 * the h/w key index so lookups find the right key.  On
1670 	 * parts w/ the key search facility we install the sender's
1671 	 * mac address (with the high bit set) and let the hardware
1672 	 * find the key w/o using the key id.  This is preferred as
1673 	 * it permits us to support multiple users for adhoc and/or
1674 	 * multi-station operation.
1675 	 */
1676 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1677 		if (!(&ic->ic_nw_keys[0] <= k &&
1678 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1679 			/* should not happen */
1680 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1681 				"%s: bogus group key\n", __func__);
1682 			return 0;
1683 		}
1684 		/*
1685 		 * XXX we pre-allocate the global keys so
1686 		 * have no way to check if they've already been allocated.
1687 		 */
1688 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1689 		return 1;
1690 	}
1691 
1692 	/*
1693 	 * We allocate two pair for TKIP when using the h/w to do
1694 	 * the MIC.  For everything else, including software crypto,
1695 	 * we allocate a single entry.  Note that s/w crypto requires
1696 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1697 	 * not support pass-through cache entries and we map all
1698 	 * those requests to slot 0.
1699 	 */
1700 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1701 		return key_alloc_single(sc, keyix, rxkeyix);
1702 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1703 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1704 		if (sc->sc_splitmic)
1705 			return key_alloc_2pair(sc, keyix, rxkeyix);
1706 		else
1707 			return key_alloc_pair(sc, keyix, rxkeyix);
1708 	} else {
1709 		return key_alloc_single(sc, keyix, rxkeyix);
1710 	}
1711 }
1712 
1713 /*
1714  * Delete an entry in the key cache allocated by ath_key_alloc.
1715  */
1716 static int
1717 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1718 {
1719 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1720 	struct ath_hal *ah = sc->sc_ah;
1721 	const struct ieee80211_cipher *cip = k->wk_cipher;
1722 	u_int keyix = k->wk_keyix;
1723 
1724 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1725 
1726 	ath_hal_keyreset(ah, keyix);
1727 	/*
1728 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1729 	 */
1730 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1731 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1732 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1733 	if (keyix >= IEEE80211_WEP_NKID) {
1734 		/*
1735 		 * Don't touch keymap entries for global keys so
1736 		 * they are never considered for dynamic allocation.
1737 		 */
1738 		clrbit(sc->sc_keymap, keyix);
1739 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1740 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1741 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1742 			if (sc->sc_splitmic) {
1743 				/* +32 for RX key, +32+64 for RX key MIC */
1744 				clrbit(sc->sc_keymap, keyix+32);
1745 				clrbit(sc->sc_keymap, keyix+32+64);
1746 			}
1747 		}
1748 	}
1749 	return 1;
1750 }
1751 
1752 /*
1753  * Set the key cache contents for the specified key.  Key cache
1754  * slot(s) must already have been allocated by ath_key_alloc.
1755  */
1756 static int
1757 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1758 	const uint8_t mac[IEEE80211_ADDR_LEN])
1759 {
1760 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1761 
1762 	return ath_keyset(sc, k, mac, ic->ic_bss);
1763 }
1764 
1765 /*
1766  * Block/unblock tx+rx processing while a key change is done.
1767  * We assume the caller serializes key management operations
1768  * so we only need to worry about synchronization with other
1769  * uses that originate in the driver.
1770  */
1771 static void
1772 ath_key_update_begin(struct ieee80211com *ic)
1773 {
1774 	struct ifnet *ifp = ic->ic_ifp;
1775 	struct ath_softc *sc = ifp->if_softc;
1776 
1777 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1778 #if 0
1779 	tasklet_disable(&sc->sc_rxtq);
1780 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1781 #endif
1782 }
1783 
1784 static void
1785 ath_key_update_end(struct ieee80211com *ic)
1786 {
1787 	struct ifnet *ifp = ic->ic_ifp;
1788 	struct ath_softc *sc = ifp->if_softc;
1789 
1790 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1791 #if 0
1792 	IF_UNLOCK(&ifp->if_snd);
1793 	tasklet_enable(&sc->sc_rxtq);
1794 #endif
1795 }
1796 
1797 /*
1798  * Calculate the receive filter according to the
1799  * operating mode and state:
1800  *
1801  * o always accept unicast, broadcast, and multicast traffic
1802  * o maintain current state of phy error reception (the hal
1803  *   may enable phy error frames for noise immunity work)
1804  * o probe request frames are accepted only when operating in
1805  *   hostap, adhoc, or monitor modes
1806  * o enable promiscuous mode according to the interface state
1807  * o accept beacons:
1808  *   - when operating in adhoc mode so the 802.11 layer creates
1809  *     node table entries for peers,
1810  *   - when operating in station mode for collecting rssi data when
1811  *     the station is otherwise quiet, or
1812  *   - when scanning
1813  * o accept control frames:
1814  *   - when in monitor mode
1815  */
1816 static uint32_t
1817 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1818 {
1819 #define	RX_FILTER_PRESERVE	(HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
1820 	struct ieee80211com *ic = &sc->sc_ic;
1821 	struct ath_hal *ah = sc->sc_ah;
1822 	struct ifnet *ifp = &ic->ic_if;
1823 	uint32_t rfilt;
1824 
1825 	rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
1826 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1827 	if (ic->ic_opmode != IEEE80211_M_STA)
1828 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1829 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1830 	    (ifp->if_flags & IFF_PROMISC))
1831 		rfilt |= HAL_RX_FILTER_PROM;
1832 	if (ic->ic_opmode == IEEE80211_M_STA ||
1833 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1834 	    state == IEEE80211_S_SCAN)
1835 		rfilt |= HAL_RX_FILTER_BEACON;
1836 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1837 		rfilt |= HAL_RX_FILTER_CONTROL;
1838 	return rfilt;
1839 #undef RX_FILTER_PRESERVE
1840 }
1841 
1842 static void
1843 ath_mode_init(struct ath_softc *sc)
1844 {
1845 	struct ieee80211com *ic = &sc->sc_ic;
1846 	struct ath_hal *ah = sc->sc_ah;
1847 	struct ifnet *ifp = &ic->ic_if;
1848 	uint32_t rfilt, mfilt[2], val;
1849 	uint8_t pos;
1850 	struct ifmultiaddr *ifma;
1851 
1852 	/* configure rx filter */
1853 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1854 	ath_hal_setrxfilter(ah, rfilt);
1855 
1856 	/* configure operational mode */
1857 	ath_hal_setopmode(ah);
1858 
1859 	/*
1860 	 * Handle any link-level address change.  Note that we only
1861 	 * need to force ic_myaddr; any other addresses are handled
1862 	 * as a byproduct of the ifnet code marking the interface
1863 	 * down then up.
1864 	 *
1865 	 * XXX should get from lladdr instead of arpcom but that's more work
1866 	 */
1867 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1868 	ath_hal_setmac(ah, ic->ic_myaddr);
1869 
1870 	/* calculate and install multicast filter */
1871 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1872 		mfilt[0] = mfilt[1] = 0;
1873 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1874 			caddr_t dl;
1875 
1876 			/* calculate XOR of eight 6bit values */
1877 			dl = LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
1878 			val = LE_READ_4(dl + 0);
1879 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1880 			val = LE_READ_4(dl + 3);
1881 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1882 			pos &= 0x3f;
1883 			mfilt[pos / 32] |= (1 << (pos % 32));
1884 		}
1885 	} else {
1886 		mfilt[0] = mfilt[1] = ~0;
1887 	}
1888 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1889 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1890 		__func__, rfilt, mfilt[0], mfilt[1]);
1891 }
1892 
1893 /*
1894  * Set the slot time based on the current setting.
1895  */
1896 static void
1897 ath_setslottime(struct ath_softc *sc)
1898 {
1899 	struct ieee80211com *ic = &sc->sc_ic;
1900 	struct ath_hal *ah = sc->sc_ah;
1901 
1902 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1903 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1904 	else
1905 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1906 	sc->sc_updateslot = OK;
1907 }
1908 
1909 /*
1910  * Callback from the 802.11 layer to update the
1911  * slot time based on the current setting.
1912  */
1913 static void
1914 ath_updateslot(struct ifnet *ifp)
1915 {
1916 	struct ath_softc *sc = ifp->if_softc;
1917 	struct ieee80211com *ic = &sc->sc_ic;
1918 
1919 	/*
1920 	 * When not coordinating the BSS, change the hardware
1921 	 * immediately.  For other operation we defer the change
1922 	 * until beacon updates have propagated to the stations.
1923 	 */
1924 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1925 		sc->sc_updateslot = UPDATE;
1926 	else
1927 		ath_setslottime(sc);
1928 }
1929 
1930 /*
1931  * Setup a h/w transmit queue for beacons.
1932  */
1933 static int
1934 ath_beaconq_setup(struct ath_hal *ah)
1935 {
1936 	HAL_TXQ_INFO qi;
1937 
1938 	memset(&qi, 0, sizeof(qi));
1939 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1940 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1941 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1942 	/* NB: for dynamic turbo, don't enable any other interrupts */
1943 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1944 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1945 }
1946 
1947 /*
1948  * Setup the transmit queue parameters for the beacon queue.
1949  */
1950 static int
1951 ath_beaconq_config(struct ath_softc *sc)
1952 {
1953 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1954 	struct ieee80211com *ic = &sc->sc_ic;
1955 	struct ath_hal *ah = sc->sc_ah;
1956 	HAL_TXQ_INFO qi;
1957 
1958 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1959 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1960 		/*
1961 		 * Always burst out beacon and CAB traffic.
1962 		 */
1963 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1964 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1965 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1966 	} else {
1967 		struct wmeParams *wmep =
1968 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1969 		/*
1970 		 * Adhoc mode; important thing is to use 2x cwmin.
1971 		 */
1972 		qi.tqi_aifs = wmep->wmep_aifsn;
1973 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1974 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1975 	}
1976 
1977 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1978 		device_printf(sc->sc_dev, "unable to update parameters for "
1979 			"beacon hardware queue!\n");
1980 		return 0;
1981 	} else {
1982 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1983 		return 1;
1984 	}
1985 #undef ATH_EXPONENT_TO_VALUE
1986 }
1987 
1988 /*
1989  * Allocate and setup an initial beacon frame.
1990  */
1991 static int
1992 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1993 {
1994 	struct ieee80211com *ic = ni->ni_ic;
1995 	struct ath_buf *bf;
1996 	struct mbuf *m;
1997 	int error;
1998 
1999 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2000 	if (bf == NULL) {
2001 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2002 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2003 		return ENOMEM;			/* XXX */
2004 	}
2005 	/*
2006 	 * NB: the beacon data buffer must be 32-bit aligned;
2007 	 * we assume the mbuf routines will return us something
2008 	 * with this alignment (perhaps should assert).
2009 	 */
2010 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2011 	if (m == NULL) {
2012 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2013 			__func__);
2014 		sc->sc_stats.ast_be_nombuf++;
2015 		return ENOMEM;
2016 	}
2017 
2018 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2019 				     ath_dma_map_mbuf, bf, BUS_DMA_NOWAIT);
2020 	if (error == 0) {
2021 		bf->bf_m = m;
2022 		bf->bf_node = ieee80211_ref_node(ni);
2023 	} else {
2024 		m_freem(m);
2025 	}
2026 	return error;
2027 }
2028 
2029 /*
2030  * Setup the beacon frame for transmit.
2031  */
2032 static void
2033 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2034 {
2035 #define	USE_SHPREAMBLE(_ic) \
2036 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2037 		== IEEE80211_F_SHPREAMBLE)
2038 	struct ieee80211_node *ni = bf->bf_node;
2039 	struct ieee80211com *ic = ni->ni_ic;
2040 	struct mbuf *m = bf->bf_m;
2041 	struct ath_hal *ah = sc->sc_ah;
2042 	struct ath_desc *ds;
2043 	int flags, antenna;
2044 	const HAL_RATE_TABLE *rt;
2045 	uint8_t rix, rate;
2046 
2047 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2048 		__func__, m, m->m_len);
2049 
2050 	/* setup descriptors */
2051 	ds = bf->bf_desc;
2052 
2053 	flags = HAL_TXDESC_NOACK;
2054 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2055 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2056 		flags |= HAL_TXDESC_VEOL;
2057 		/*
2058 		 * Let hardware handle antenna switching.
2059 		 */
2060 		antenna = sc->sc_txantenna;
2061 	} else {
2062 		ds->ds_link = 0;
2063 		/*
2064 		 * Switch antenna every 4 beacons.
2065 		 * XXX assumes two antenna
2066 		 */
2067 		antenna = sc->sc_txantenna != 0 ? sc->sc_txantenna
2068 			  : (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2069 	}
2070 
2071 	KASSERT(bf->bf_nseg == 1,
2072 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2073 	ds->ds_data = bf->bf_segs[0].ds_addr;
2074 	/*
2075 	 * Calculate rate code.
2076 	 * XXX everything at min xmit rate
2077 	 */
2078 	rix = sc->sc_minrateix;
2079 	rt = sc->sc_currates;
2080 	rate = rt->info[rix].rateCode;
2081 	if (USE_SHPREAMBLE(ic))
2082 		rate |= rt->info[rix].shortPreamble;
2083 	ath_hal_setuptxdesc(ah, ds
2084 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2085 		, sizeof(struct ieee80211_frame)/* header length */
2086 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2087 		, ni->ni_txpower		/* txpower XXX */
2088 		, rate, 1			/* series 0 rate/tries */
2089 		, HAL_TXKEYIX_INVALID		/* no encryption */
2090 		, antenna			/* antenna mode */
2091 		, flags				/* no ack, veol for beacons */
2092 		, 0				/* rts/cts rate */
2093 		, 0				/* rts/cts duration */
2094 	);
2095 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2096 	ath_hal_filltxdesc(ah, ds
2097 		, roundup(m->m_len, 4)		/* buffer length */
2098 		, AH_TRUE			/* first segment */
2099 		, AH_TRUE			/* last segment */
2100 		, ds				/* first descriptor */
2101 	);
2102 #undef USE_SHPREAMBLE
2103 }
2104 
2105 /*
2106  * Append the contents of src to dst; both queues
2107  * are assumed to be locked.
2108  */
2109 static void
2110 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2111 {
2112 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2113 	dst->axq_link = src->axq_link;
2114 	src->axq_link = NULL;
2115 	dst->axq_depth += src->axq_depth;
2116 	src->axq_depth = 0;
2117 }
2118 
2119 /*
2120  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2121  * frame contents are done as needed and the slot time is
2122  * also adjusted based on current state.
2123  */
2124 static void
2125 ath_beacon_proc(struct ath_softc *sc)
2126 {
2127 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2128 	struct ieee80211_node *ni = bf->bf_node;
2129 	struct ieee80211com *ic = ni->ni_ic;
2130 	struct ath_hal *ah = sc->sc_ah;
2131 	struct ath_txq *cabq = sc->sc_cabq;
2132 	struct mbuf *m;
2133 	int ncabq, nmcastq, error, otherant;
2134 
2135 	if (ic->ic_opmode == IEEE80211_M_STA ||
2136 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2137 	    bf == NULL || bf->bf_m == NULL) {
2138 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2139 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2140 		return;
2141 	}
2142 	/*
2143 	 * Check if the previous beacon has gone out.  If
2144 	 * not don't try to post another, skip this period
2145 	 * and wait for the next.  Missed beacons indicate
2146 	 * a problem and should not occur.  If we miss too
2147 	 * many consecutive beacons reset the device.
2148 	 */
2149 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2150 		sc->sc_bmisscount++;
2151 		DPRINTF(sc, ATH_DEBUG_BEACON,
2152 			"%s: missed %u consecutive beacons\n",
2153 			__func__, sc->sc_bmisscount);
2154 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2155 			ath_bstuck_proc(sc);
2156 		return;
2157 	}
2158 	if (sc->sc_bmisscount != 0) {
2159 		DPRINTF(sc, ATH_DEBUG_BEACON,
2160 			"%s: resume beacon xmit after %u misses\n",
2161 			__func__, sc->sc_bmisscount);
2162 		sc->sc_bmisscount = 0;
2163 	}
2164 
2165 	/*
2166 	 * Update dynamic beacon contents.  If this returns
2167 	 * non-zero then we need to remap the memory because
2168 	 * the beacon frame changed size (probably because
2169 	 * of the TIM bitmap).
2170 	 */
2171 	m = bf->bf_m;
2172 	nmcastq = sc->sc_mcastq.axq_depth;
2173 	ncabq = ath_hal_numtxpending(ah, cabq->axq_qnum);
2174 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m,
2175 				    ncabq + nmcastq)) {
2176 		/* XXX too conservative? */
2177 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2178 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2179 					     ath_dma_map_mbuf, bf,
2180 					     BUS_DMA_NOWAIT);
2181 		if (error != 0) {
2182 			if_printf(ic->ic_ifp,
2183 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2184 			    __func__, error);
2185 			return;
2186 		}
2187 	}
2188 
2189 	if (ncabq && (sc->sc_boff.bo_tim[4] & 1)) {
2190 		/*
2191 		 * CABQ traffic from the previous DTIM is still pending.
2192 		 * This is ok for now but when there are multiple vap's
2193 		 * and we are using staggered beacons we'll want to drain
2194 		 * the cabq before loading frames for the different vap.
2195 		 */
2196 		DPRINTF(sc, ATH_DEBUG_BEACON,
2197 		    "%s: cabq did not drain, mcastq %u cabq %u/%u\n",
2198 		    __func__, nmcastq, ncabq, cabq->axq_depth);
2199 		sc->sc_stats.ast_cabq_busy++;
2200 	}
2201 
2202 	/*
2203 	 * Handle slot time change when a non-ERP station joins/leaves
2204 	 * an 11g network.  The 802.11 layer notifies us via callback,
2205 	 * we mark updateslot, then wait one beacon before effecting
2206 	 * the change.  This gives associated stations at least one
2207 	 * beacon interval to note the state change.
2208 	 */
2209 	/* XXX locking */
2210 	if (sc->sc_updateslot == UPDATE)
2211 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2212 	else if (sc->sc_updateslot == COMMIT)
2213 		ath_setslottime(sc);		/* commit change to h/w */
2214 
2215 	/*
2216 	 * Check recent per-antenna transmit statistics and flip
2217 	 * the default antenna if noticeably more frames went out
2218 	 * on the non-default antenna.
2219 	 * XXX assumes 2 anntenae
2220 	 */
2221 	otherant = sc->sc_defant & 1 ? 2 : 1;
2222 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2223 		ath_setdefantenna(sc, otherant);
2224 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2225 
2226 	/*
2227 	 * Construct tx descriptor.
2228 	 */
2229 	ath_beacon_setup(sc, bf);
2230 
2231 	/*
2232 	 * Stop any current dma and put the new frame on the queue.
2233 	 * This should never fail since we check above that no frames
2234 	 * are still pending on the queue.
2235 	 */
2236 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2237 		DPRINTF(sc, ATH_DEBUG_ANY,
2238 			"%s: beacon queue %u did not stop?\n",
2239 			__func__, sc->sc_bhalq);
2240 	}
2241 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2242 
2243 	/*
2244 	 * Enable the CAB queue before the beacon queue to
2245 	 * insure cab frames are triggered by this beacon.
2246 	 */
2247 	if (sc->sc_boff.bo_tim_len && (sc->sc_boff.bo_tim[4] & 1)) {
2248 		/* NB: only at DTIM */
2249 		if (nmcastq) {
2250 			struct ath_buf *bfm;
2251 
2252 			/*
2253 			 * Move frames from the s/w mcast q to the h/w cab q.
2254 			 */
2255 			bfm = STAILQ_FIRST(&sc->sc_mcastq.axq_q);
2256 			if (cabq->axq_link != NULL) {
2257 				*cabq->axq_link = bfm->bf_daddr;
2258 			} else {
2259 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2260 					bfm->bf_daddr);
2261 			}
2262 			ath_txqmove(cabq, &sc->sc_mcastq);
2263 
2264 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2265 		}
2266 		/* NB: gated by beacon so safe to start here */
2267 		ath_hal_txstart(ah, cabq->axq_qnum);
2268 	}
2269 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2270 	ath_hal_txstart(ah, sc->sc_bhalq);
2271 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2272 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2273 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2274 
2275 	sc->sc_stats.ast_be_xmit++;
2276 }
2277 
2278 /*
2279  * Reset the hardware after detecting beacons have stopped.
2280  */
2281 static void
2282 ath_bstuck_proc(struct ath_softc *sc)
2283 {
2284 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2285 
2286 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2287 		  sc->sc_bmisscount);
2288 	ath_reset(ifp);
2289 }
2290 
2291 /*
2292  * Reclaim beacon resources.
2293  */
2294 static void
2295 ath_beacon_free(struct ath_softc *sc)
2296 {
2297 	struct ath_buf *bf;
2298 
2299 	ASSERT_SERIALIZED(sc->sc_ic.ic_if.if_serializer);
2300 
2301 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2302 		if (bf->bf_m != NULL) {
2303 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2304 			m_freem(bf->bf_m);
2305 			bf->bf_m = NULL;
2306 		}
2307 		if (bf->bf_node != NULL) {
2308 			ieee80211_free_node(bf->bf_node);
2309 			bf->bf_node = NULL;
2310 		}
2311 	}
2312 }
2313 
2314 /*
2315  * Configure the beacon and sleep timers.
2316  *
2317  * When operating as an AP this resets the TSF and sets
2318  * up the hardware to notify us when we need to issue beacons.
2319  *
2320  * When operating in station mode this sets up the beacon
2321  * timers according to the timestamp of the last received
2322  * beacon and the current TSF, configures PCF and DTIM
2323  * handling, programs the sleep registers so the hardware
2324  * will wakeup in time to receive beacons, and configures
2325  * the beacon miss handling so we'll receive a BMISS
2326  * interrupt when we stop seeing beacons from the AP
2327  * we've associated with.
2328  */
2329 static void
2330 ath_beacon_config(struct ath_softc *sc)
2331 {
2332 #define	TSF_TO_TU(_h,_l) \
2333 	((((uint32_t)(_h)) << 22) | (((uint32_t)(_l)) >> 10))
2334 #define	FUDGE	2
2335 	struct ath_hal *ah = sc->sc_ah;
2336 	struct ieee80211com *ic = &sc->sc_ic;
2337 	struct ieee80211_node *ni = ic->ic_bss;
2338 	uint32_t nexttbtt, intval, tsftu;
2339 	uint64_t tsf;
2340 
2341 	/* extract tstamp from last beacon and convert to TU */
2342 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2343 			     LE_READ_4(ni->ni_tstamp.data));
2344 	/* NB: the beacon interval is kept internally in TU's */
2345 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2346 	if (nexttbtt == 0)		/* e.g. for ap mode */
2347 		nexttbtt = intval;
2348 	else if (intval)		/* NB: can be 0 for monitor mode */
2349 		nexttbtt = roundup(nexttbtt, intval);
2350 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2351 		__func__, nexttbtt, intval, ni->ni_intval);
2352 	if (ic->ic_opmode == IEEE80211_M_STA) {
2353 		HAL_BEACON_STATE bs;
2354 		int dtimperiod, dtimcount;
2355 		int cfpperiod, cfpcount;
2356 
2357 		/*
2358 		 * Setup dtim and cfp parameters according to
2359 		 * last beacon we received (which may be none).
2360 		 */
2361 		dtimperiod = ni->ni_dtim_period;
2362 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2363 			dtimperiod = 1;
2364 		dtimcount = ni->ni_dtim_count;
2365 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2366 			dtimcount = 0;		/* XXX? */
2367 		cfpperiod = 1;			/* NB: no PCF support yet */
2368 		cfpcount = 0;
2369 		/*
2370 		 * Pull nexttbtt forward to reflect the current
2371 		 * TSF and calculate dtim+cfp state for the result.
2372 		 */
2373 		tsf = ath_hal_gettsf64(ah);
2374 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2375 		do {
2376 			nexttbtt += intval;
2377 			if (--dtimcount < 0) {
2378 				dtimcount = dtimperiod - 1;
2379 				if (--cfpcount < 0)
2380 					cfpcount = cfpperiod - 1;
2381 			}
2382 		} while (nexttbtt < tsftu);
2383 		memset(&bs, 0, sizeof(bs));
2384 		bs.bs_intval = intval;
2385 		bs.bs_nexttbtt = nexttbtt;
2386 		bs.bs_dtimperiod = dtimperiod*intval;
2387 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2388 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2389 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2390 		bs.bs_cfpmaxduration = 0;
2391 #if 0
2392 		/*
2393 		 * The 802.11 layer records the offset to the DTIM
2394 		 * bitmap while receiving beacons; use it here to
2395 		 * enable h/w detection of our AID being marked in
2396 		 * the bitmap vector (to indicate frames for us are
2397 		 * pending at the AP).
2398 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2399 		 * XXX enable based on h/w rev for newer chips
2400 		 */
2401 		bs.bs_timoffset = ni->ni_timoff;
2402 #endif
2403 		/*
2404 		 * Calculate the number of consecutive beacons to miss
2405 		 * before taking a BMISS interrupt.  The configuration
2406 		 * is specified in ms, so we need to convert that to
2407 		 * TU's and then calculate based on the beacon interval.
2408 		 * Note that we clamp the result to at most 10 beacons.
2409 		 */
2410 		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2411 		if (bs.bs_bmissthreshold > 10)
2412 			bs.bs_bmissthreshold = 10;
2413 		else if (bs.bs_bmissthreshold <= 0)
2414 			bs.bs_bmissthreshold = 1;
2415 
2416 		/*
2417 		 * Calculate sleep duration.  The configuration is
2418 		 * given in ms.  We insure a multiple of the beacon
2419 		 * period is used.  Also, if the sleep duration is
2420 		 * greater than the DTIM period then it makes senses
2421 		 * to make it a multiple of that.
2422 		 *
2423 		 * XXX fixed at 100ms
2424 		 */
2425 		bs.bs_sleepduration =
2426 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2427 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2428 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2429 
2430 		DPRINTF(sc, ATH_DEBUG_BEACON,
2431 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2432 			, __func__
2433 			, tsf, tsftu
2434 			, bs.bs_intval
2435 			, bs.bs_nexttbtt
2436 			, bs.bs_dtimperiod
2437 			, bs.bs_nextdtim
2438 			, bs.bs_bmissthreshold
2439 			, bs.bs_sleepduration
2440 			, bs.bs_cfpperiod
2441 			, bs.bs_cfpmaxduration
2442 			, bs.bs_cfpnext
2443 			, bs.bs_timoffset
2444 		);
2445 		ath_hal_intrset(ah, 0);
2446 		ath_hal_beacontimers(ah, &bs);
2447 		sc->sc_imask |= HAL_INT_BMISS;
2448 		ath_hal_intrset(ah, sc->sc_imask);
2449 	} else {
2450 		ath_hal_intrset(ah, 0);
2451 		if (nexttbtt == intval)
2452 			intval |= HAL_BEACON_RESET_TSF;
2453 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2454 			/*
2455 			 * In IBSS mode enable the beacon timers but only
2456 			 * enable SWBA interrupts if we need to manually
2457 			 * prepare beacon frames.  Otherwise we use a
2458 			 * self-linked tx descriptor and let the hardware
2459 			 * deal with things.
2460 			 */
2461 			intval |= HAL_BEACON_ENA;
2462 			if (!sc->sc_hasveol)
2463 				sc->sc_imask |= HAL_INT_SWBA;
2464 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2465 				/*
2466 				 * Pull nexttbtt forward to reflect
2467 				 * the current TSF.
2468 				 */
2469 				tsf = ath_hal_gettsf64(ah);
2470 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2471 				do {
2472 					nexttbtt += intval;
2473 				} while (nexttbtt < tsftu);
2474 			}
2475 			ath_beaconq_config(sc);
2476 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2477 			/*
2478 			 * In AP mode we enable the beacon timers and
2479 			 * SWBA interrupts to prepare beacon frames.
2480 			 */
2481 			intval |= HAL_BEACON_ENA;
2482 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2483 			ath_beaconq_config(sc);
2484 		}
2485 		ath_hal_beaconinit(ah, nexttbtt, intval);
2486 		sc->sc_bmisscount = 0;
2487 		ath_hal_intrset(ah, sc->sc_imask);
2488 		/*
2489 		 * When using a self-linked beacon descriptor in
2490 		 * ibss mode load it once here.
2491 		 */
2492 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2493 			ath_beacon_proc(sc);
2494 	}
2495 	sc->sc_syncbeacon = 0;
2496 #undef FUDGE
2497 #undef TSF_TO_TU
2498 }
2499 
2500 static void
2501 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2502 {
2503 	bus_addr_t *paddr = (bus_addr_t*) arg;
2504 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2505 	*paddr = segs->ds_addr;
2506 }
2507 
2508 static int
2509 ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
2510 		  ath_bufhead *head, const char *name, int nbuf, int ndesc)
2511 {
2512 #define	DS2PHYS(_dd, _ds) \
2513 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2514 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2515 	struct ath_desc *ds;
2516 	struct ath_buf *bf;
2517 	int i, bsize, error;
2518 
2519 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2520 	    __func__, name, nbuf, ndesc);
2521 
2522 	dd->dd_name = name;
2523 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2524 	STAILQ_INIT(head);
2525 
2526 	/*
2527 	 * Setup DMA descriptor area.
2528 	 */
2529 	error = bus_dma_tag_create(NULL,	/* parent */
2530 		       PAGE_SIZE, 0,		/* alignment, bounds */
2531 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2532 		       BUS_SPACE_MAXADDR,	/* highaddr */
2533 		       NULL, NULL,		/* filter, filterarg */
2534 		       dd->dd_desc_len,		/* maxsize */
2535 		       1,			/* nsegments */
2536 		       dd->dd_desc_len,		/* maxsegsize */
2537 		       BUS_DMA_ALLOCNOW,	/* flags */
2538 		       &dd->dd_dmat);
2539 	if (error) {
2540 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2541 		return error;
2542 	}
2543 
2544 	/* allocate descriptors */
2545 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_WAITOK, &dd->dd_dmamap);
2546 	if (error) {
2547 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2548 			"error %u\n", dd->dd_name, error);
2549 		return error;
2550 	}
2551 
2552 	error = bus_dmamem_alloc(dd->dd_dmat, (void **)&dd->dd_desc,
2553 				 BUS_DMA_WAITOK, &dd->dd_dmamap);
2554 	if (error) {
2555 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2556 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2557 		return error;
2558 	}
2559 
2560 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2561 				dd->dd_desc, dd->dd_desc_len,
2562 				ath_load_cb, &dd->dd_desc_paddr,
2563 				BUS_DMA_WAITOK);
2564 	if (error) {
2565 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2566 			dd->dd_name, error);
2567 
2568 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2569 		dd->dd_desc = NULL;
2570 		return error;
2571 	}
2572 
2573 	ds = dd->dd_desc;
2574 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2575 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2576 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2577 
2578 	/* allocate rx buffers */
2579 	bsize = sizeof(struct ath_buf) * nbuf;
2580 	bf = kmalloc(bsize, M_ATHDEV, M_WAITOK | M_ZERO);
2581 	dd->dd_bufptr = bf;
2582 
2583 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2584 		bf->bf_desc = ds;
2585 		bf->bf_daddr = DS2PHYS(dd, ds);
2586 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_WAITOK,
2587 					  &bf->bf_dmamap);
2588 		if (error) {
2589 			if_printf(ifp, "unable to create dmamap for %s "
2590 				"buffer %u, error %u\n", dd->dd_name, i, error);
2591 			ath_descdma_cleanup(sc, dd, head);
2592 			return error;
2593 		}
2594 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2595 	}
2596 	return 0;
2597 
2598 #if 0
2599 fail3:
2600 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2601 fail2:
2602 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2603 fail1:
2604 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2605 fail0:
2606 	bus_dma_tag_destroy(dd->dd_dmat);
2607 	memset(dd, 0, sizeof(*dd));
2608 	return error;
2609 #endif
2610 #undef DS2PHYS
2611 }
2612 
2613 static void
2614 ath_descdma_cleanup(struct ath_softc *sc,
2615 	struct ath_descdma *dd, ath_bufhead *head)
2616 {
2617 	struct ath_buf *bf;
2618 	struct ieee80211_node *ni;
2619 
2620 	if (dd->dd_desc != NULL) {
2621 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2622 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2623 		dd->dd_desc = NULL;
2624 	}
2625 
2626 	if (dd->dd_dmamap != NULL) {
2627 		bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2628 		dd->dd_dmamap = NULL;
2629 	}
2630 
2631 	if (dd->dd_dmat != NULL) {
2632 		bus_dma_tag_destroy(dd->dd_dmat);
2633 		dd->dd_dmat = NULL;
2634 	}
2635 
2636 	STAILQ_FOREACH(bf, head, bf_list) {
2637 		if (bf->bf_m) {
2638 			m_freem(bf->bf_m);
2639 			bf->bf_m = NULL;
2640 		}
2641 		if (bf->bf_dmamap != NULL) {
2642 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2643 			bf->bf_dmamap = NULL;
2644 		}
2645 		ni = bf->bf_node;
2646 		bf->bf_node = NULL;
2647 		if (ni != NULL) {
2648 			/*
2649 			 * Reclaim node reference.
2650 			 */
2651 			ieee80211_free_node(ni);
2652 		}
2653 	}
2654 	STAILQ_INIT(head);
2655 
2656 	if (dd->dd_bufptr != NULL)
2657 		kfree(dd->dd_bufptr, M_ATHDEV);
2658 	memset(dd, 0, sizeof(*dd));
2659 }
2660 
2661 static int
2662 ath_desc_alloc(struct ath_softc *sc)
2663 {
2664 	int error;
2665 
2666 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2667 				  "rx", ath_rxbuf, 1);
2668 	if (error)
2669 		return error;
2670 
2671 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2672 				  "tx", ath_txbuf, ATH_TXDESC);
2673 	if (error)
2674 		return error;
2675 
2676 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2677 				  "beacon", 1, 1);
2678 	if (error)
2679 		return error;
2680 	return 0;
2681 }
2682 
2683 static void
2684 ath_desc_free(struct ath_softc *sc)
2685 {
2686 
2687 	if (sc->sc_bdma.dd_desc_len != 0) {
2688 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2689 		sc->sc_bdma.dd_desc_len = 0;
2690 	}
2691 	if (sc->sc_txdma.dd_desc_len != 0) {
2692 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2693 		sc->sc_txdma.dd_desc_len = 0;
2694 	}
2695 	if (sc->sc_rxdma.dd_desc_len != 0) {
2696 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2697 		sc->sc_rxdma.dd_desc_len = 0;
2698 	}
2699 }
2700 
2701 static struct ieee80211_node *
2702 ath_node_alloc(struct ieee80211_node_table *nt)
2703 {
2704 	struct ieee80211com *ic = nt->nt_ic;
2705 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2706 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2707 	struct ath_node *an;
2708 
2709 	an = kmalloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2710 	if (an == NULL) {
2711 		/* XXX stat+msg */
2712 		return NULL;
2713 	}
2714 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2715 	ath_rate_node_init(sc, an);
2716 
2717 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2718 	return &an->an_node;
2719 }
2720 
2721 static void
2722 ath_node_free(struct ieee80211_node *ni)
2723 {
2724 	struct ieee80211com *ic = ni->ni_ic;
2725         struct ath_softc *sc = ic->ic_ifp->if_softc;
2726 
2727 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2728 
2729 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2730 	sc->sc_node_free(ni);
2731 }
2732 
2733 static uint8_t
2734 ath_node_getrssi(const struct ieee80211_node *ni)
2735 {
2736 #define	HAL_EP_RND(x, mul) \
2737 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2738 	uint32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2739 	int32_t rssi;
2740 
2741 	/*
2742 	 * When only one frame is received there will be no state in
2743 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2744 	 */
2745 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2746 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2747 	else
2748 		rssi = ni->ni_rssi;
2749 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2750 #undef HAL_EP_RND
2751 }
2752 
2753 static int
2754 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2755 {
2756 	struct ath_hal *ah = sc->sc_ah;
2757 	int error;
2758 	struct mbuf *m;
2759 	struct ath_desc *ds;
2760 
2761 	m = bf->bf_m;
2762 	if (m == NULL) {
2763 		/*
2764 		 * NB: by assigning a page to the rx dma buffer we
2765 		 * implicitly satisfy the Atheros requirement that
2766 		 * this buffer be cache-line-aligned and sized to be
2767 		 * multiple of the cache line size.  Not doing this
2768 		 * causes weird stuff to happen (for the 5210 at least).
2769 		 */
2770 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2771 		if (m == NULL) {
2772 			DPRINTF(sc, ATH_DEBUG_ANY,
2773 				"%s: no mbuf/cluster\n", __func__);
2774 			sc->sc_stats.ast_rx_nombuf++;
2775 			return ENOMEM;
2776 		}
2777 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2778 
2779 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2780 					     ath_dma_map_mbuf, bf,
2781 					     BUS_DMA_NOWAIT);
2782 		if (error != 0) {
2783 			DPRINTF(sc, ATH_DEBUG_ANY,
2784 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2785 			    __func__, error);
2786 			sc->sc_stats.ast_rx_busdma++;
2787 			m_freem(m);
2788 			return error;
2789 		}
2790 		KASSERT(bf->bf_nseg == 1,
2791 			("multi-segment packet; nseg %u", bf->bf_nseg));
2792 		bf->bf_m = m;
2793 	}
2794 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2795 
2796 	/*
2797 	 * Setup descriptors.  For receive we always terminate
2798 	 * the descriptor list with a self-linked entry so we'll
2799 	 * not get overrun under high load (as can happen with a
2800 	 * 5212 when ANI processing enables PHY error frames).
2801 	 *
2802 	 * To insure the last descriptor is self-linked we create
2803 	 * each descriptor as self-linked and add it to the end.  As
2804 	 * each additional descriptor is added the previous self-linked
2805 	 * entry is ``fixed'' naturally.  This should be safe even
2806 	 * if DMA is happening.  When processing RX interrupts we
2807 	 * never remove/process the last, self-linked, entry on the
2808 	 * descriptor list.  This insures the hardware always has
2809 	 * someplace to write a new frame.
2810 	 */
2811 	ds = bf->bf_desc;
2812 	ds->ds_link = bf->bf_daddr;	/* link to self */
2813 	ds->ds_data = bf->bf_segs[0].ds_addr;
2814 	ath_hal_setuprxdesc(ah, ds
2815 		, m->m_len		/* buffer size */
2816 		, 0
2817 	);
2818 
2819 	if (sc->sc_rxlink != NULL)
2820 		*sc->sc_rxlink = bf->bf_daddr;
2821 	sc->sc_rxlink = &ds->ds_link;
2822 	return 0;
2823 }
2824 
2825 /*
2826  * Extend 15-bit time stamp from rx descriptor to
2827  * a full 64-bit TSF using the specified TSF.
2828  */
2829 static __inline uint64_t
2830 ath_extend_tsf(uint32_t rstamp, uint64_t tsf)
2831 {
2832 	if ((tsf & 0x7fff) < rstamp)
2833 		tsf -= 0x8000;
2834 	return ((tsf &~ 0x7fff) | rstamp);
2835 }
2836 
2837 /*
2838  * Intercept management frames to collect beacon rssi data
2839  * and to do ibss merges.
2840  */
2841 static void
2842 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2843 	struct ieee80211_node *ni,
2844 	int subtype, int rssi, uint32_t rstamp)
2845 {
2846 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2847 
2848 	/*
2849 	 * Call up first so subsequent work can use information
2850 	 * potentially stored in the node (e.g. for ibss merge).
2851 	 */
2852 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2853 	switch (subtype) {
2854 	case IEEE80211_FC0_SUBTYPE_BEACON:
2855 		/* update rssi statistics for use by the hal */
2856 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2857 		if (sc->sc_syncbeacon &&
2858 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2859 			/*
2860 			 * Resync beacon timers using the tsf of the beacon
2861 			 * frame we just received.
2862 			 */
2863 			ath_beacon_config(sc);
2864 		}
2865 		/* fall thru... */
2866 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2867 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2868 		    ic->ic_state == IEEE80211_S_RUN) {
2869 			uint64_t tsf = ath_extend_tsf(rstamp,
2870 				ath_hal_gettsf64(sc->sc_ah));
2871 			/*
2872 			 * Handle ibss merge as needed; check the tsf on the
2873 			 * frame before attempting the merge.  The 802.11 spec
2874 			 * says the station should change it's bssid to match
2875 			 * the oldest station with the same ssid, where oldest
2876 			 * is determined by the tsf.  Note that hardware
2877 			 * reconfiguration happens through callback to
2878 			 * ath_newstate as the state machine will go from
2879 			 * RUN -> RUN when this happens.
2880 			 */
2881 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2882 				DPRINTF(sc, ATH_DEBUG_STATE,
2883 				    "ibss merge, rstamp %u tsf %ju "
2884 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2885 				    (uintmax_t)ni->ni_tstamp.tsf);
2886 				ieee80211_ibss_merge(ni);
2887 			}
2888 		}
2889 		break;
2890 	}
2891 }
2892 
2893 /*
2894  * Set the default antenna.
2895  */
2896 static void
2897 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2898 {
2899 	struct ath_hal *ah = sc->sc_ah;
2900 
2901 	/* XXX block beacon interrupts */
2902 	ath_hal_setdefantenna(ah, antenna);
2903 	if (sc->sc_defant != antenna)
2904 		sc->sc_stats.ast_ant_defswitch++;
2905 	sc->sc_defant = antenna;
2906 	sc->sc_rxotherant = 0;
2907 }
2908 
2909 static int
2910 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2911 	const struct ath_rx_status *rs, uint64_t tsf, int16_t nf)
2912 {
2913 	uint8_t rix;
2914 
2915 	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2916 
2917 	/*
2918 	 * Discard anything shorter than an ack or cts.
2919 	 */
2920 	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2921 		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2922 			__func__, m->m_pkthdr.len);
2923 		sc->sc_stats.ast_rx_tooshort++;
2924 		return 0;
2925 	}
2926 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
2927 	rix = rs->rs_rate;
2928 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2929 	if (rs->rs_status & HAL_RXERR_CRC)
2930 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2931 	/* XXX propagate other error flags from descriptor */
2932 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2933 	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
2934 	sc->sc_rx_th.wr_antnoise = nf;
2935 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
2936 
2937 	bpf_ptap(sc->sc_drvbpf, m, &sc->sc_rx_th, sc->sc_rx_th_len);
2938 
2939 	return 1;
2940 }
2941 
2942 static void
2943 ath_rx_proc(struct ath_softc *sc)
2944 {
2945 #define	PA2DESC(_sc, _pa) \
2946 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2947 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2948 	struct ath_buf *bf;
2949 	struct ieee80211com *ic = &sc->sc_ic;
2950 	struct ifnet *ifp = &ic->ic_if;
2951 	struct ath_hal *ah = sc->sc_ah;
2952 	struct ath_desc *ds;
2953 	struct ath_rx_status *rs;
2954 	struct mbuf *m;
2955 	struct ieee80211_node *ni;
2956 	struct ath_node *an;
2957 	int len, type, ngood;
2958 	u_int phyerr;
2959 	HAL_STATUS status;
2960 	int16_t nf;
2961 	uint64_t tsf;
2962 
2963 	ngood = 0;
2964 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2965 	tsf = ath_hal_gettsf64(ah);
2966 	do {
2967 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2968 		if (bf == NULL) {		/* NB: shouldn't happen */
2969 			if_printf(ifp, "%s: no buffer!\n", __func__);
2970 			break;
2971 		}
2972 		m = bf->bf_m;
2973 		if (m == NULL) {		/* NB: shouldn't happen */
2974 			/*
2975 			 * If mbuf allocation failed previously there
2976 			 * will be no mbuf; try again to re-populate it.
2977 			 */
2978 			/* XXX make debug msg */
2979 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2980 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2981 			goto rx_next;
2982 		}
2983 		ds = bf->bf_desc;
2984 		if (ds->ds_link == bf->bf_daddr) {
2985 			/* NB: never process the self-linked entry at the end */
2986 			break;
2987 		}
2988 		/* XXX sync descriptor memory */
2989 		/*
2990 		 * Must provide the virtual address of the current
2991 		 * descriptor, the physical address, and the virtual
2992 		 * address of the next descriptor in the h/w chain.
2993 		 * This allows the HAL to look ahead to see if the
2994 		 * hardware is done with a descriptor by checking the
2995 		 * done bit in the following descriptor and the address
2996 		 * of the current descriptor the DMA engine is working
2997 		 * on.  All this is necessary because of our use of
2998 		 * a self-linked list to avoid rx overruns.
2999 		 */
3000 		rs = &bf->bf_status.ds_rxstat;
3001 		status = ath_hal_rxprocdesc(ah, ds,
3002 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3003 #ifdef ATH_DEBUG
3004 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3005 			ath_printrxbuf(bf, 0, status == HAL_OK);
3006 #endif
3007 		if (status == HAL_EINPROGRESS)
3008 			break;
3009 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3010 		if (rs->rs_more) {
3011 			/*
3012 			 * Frame spans multiple descriptors; this
3013 			 * cannot happen yet as we don't support
3014 			 * jumbograms.  If not in monitor mode,
3015 			 * discard the frame.
3016 			 */
3017 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3018 				sc->sc_stats.ast_rx_toobig++;
3019 				goto rx_next;
3020 			}
3021 			/* fall thru for monitor mode handling... */
3022 		} else if (rs->rs_status != 0) {
3023 			if (rs->rs_status & HAL_RXERR_CRC)
3024 				sc->sc_stats.ast_rx_crcerr++;
3025 			if (rs->rs_status & HAL_RXERR_FIFO)
3026 				sc->sc_stats.ast_rx_fifoerr++;
3027 			if (rs->rs_status & HAL_RXERR_PHY) {
3028 				sc->sc_stats.ast_rx_phyerr++;
3029 				phyerr = rs->rs_phyerr & 0x1f;
3030 				sc->sc_stats.ast_rx_phy[phyerr]++;
3031 				goto rx_next;
3032 			}
3033 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3034 				/*
3035 				 * Decrypt error.  If the error occurred
3036 				 * because there was no hardware key, then
3037 				 * let the frame through so the upper layers
3038 				 * can process it.  This is necessary for 5210
3039 				 * parts which have no way to setup a ``clear''
3040 				 * key cache entry.
3041 				 *
3042 				 * XXX do key cache faulting
3043 				 */
3044 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3045 					goto rx_accept;
3046 				sc->sc_stats.ast_rx_badcrypt++;
3047 			}
3048 			if (rs->rs_status & HAL_RXERR_MIC) {
3049 				sc->sc_stats.ast_rx_badmic++;
3050 				/*
3051 				 * Do minimal work required to hand off
3052 				 * the 802.11 header for notifcation.
3053 				 */
3054 				/* XXX frag's and qos frames */
3055 				len = rs->rs_datalen;
3056 				if (len >= sizeof (struct ieee80211_frame)) {
3057 					bus_dmamap_sync(sc->sc_dmat,
3058 					    bf->bf_dmamap,
3059 					    BUS_DMASYNC_POSTREAD);
3060 					ieee80211_notify_michael_failure(ic,
3061 					    mtod(m, struct ieee80211_frame *),
3062 					    sc->sc_splitmic ?
3063 					        rs->rs_keyix-32 : rs->rs_keyix
3064 					);
3065 				}
3066 			}
3067 			ifp->if_ierrors++;
3068 			/*
3069 			 * When a tap is present pass error frames
3070 			 * that have been requested.  By default we
3071 			 * pass decrypt+mic errors but others may be
3072 			 * interesting (e.g. crc).
3073 			 */
3074 			if (sc->sc_drvbpf != NULL &&
3075 			    (rs->rs_status & sc->sc_monpass)) {
3076 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3077 				    BUS_DMASYNC_POSTREAD);
3078 				/* NB: bpf needs the mbuf length setup */
3079 				len = rs->rs_datalen;
3080 				m->m_pkthdr.len = m->m_len = len;
3081 				ath_rx_tap(sc, m, rs, tsf, nf);
3082 			}
3083 			/* XXX pass MIC errors up for s/w reclaculation */
3084 			goto rx_next;
3085 		}
3086 rx_accept:
3087 		/*
3088 		 * Sync and unmap the frame.  At this point we're
3089 		 * committed to passing the mbuf somewhere so clear
3090 		 * bf_m; this means a new mbuf must be allocated
3091 		 * when the rx descriptor is setup again to receive
3092 		 * another frame.
3093 		 */
3094 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3095 		    BUS_DMASYNC_POSTREAD);
3096 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3097 		bf->bf_m = NULL;
3098 
3099 		m->m_pkthdr.rcvif = ifp;
3100 		len = rs->rs_datalen;
3101 		m->m_pkthdr.len = m->m_len = len;
3102 
3103 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3104 
3105 		if (sc->sc_drvbpf != NULL && !ath_rx_tap(sc, m, rs, tsf, nf)) {
3106 			m_freem(m);		/* XXX reclaim */
3107 			goto rx_next;
3108 		}
3109 
3110 		/*
3111 		 * From this point on we assume the frame is at least
3112 		 * as large as ieee80211_frame_min; verify that.
3113 		 */
3114 		if (len < IEEE80211_MIN_LEN) {
3115 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3116 				__func__, len);
3117 			sc->sc_stats.ast_rx_tooshort++;
3118 			m_freem(m);
3119 			goto rx_next;
3120 		}
3121 
3122 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3123 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
3124 				   sc->sc_hwmap[rs->rs_rate].ieeerate,
3125 				   rs->rs_rssi);
3126 		}
3127 
3128 		m_adj(m, -IEEE80211_CRC_LEN);
3129 
3130 		/*
3131 		 * Locate the node for sender, track state, and then
3132 		 * pass the (referenced) node up to the 802.11 layer
3133 		 * for its use.
3134 		 */
3135 		ni = ieee80211_find_rxnode_withkey(ic,
3136 			mtod(m, const struct ieee80211_frame_min *),
3137 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3138 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3139 		/*
3140 		 * Track rx rssi and do any rx antenna management.
3141 		 */
3142 		an = ATH_NODE(ni);
3143 		ATH_RSSI_LPF(an->an_avgrssi, rs->rs_rssi);
3144 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3145 		/*
3146 		 * Send frame up for processing.
3147 		 */
3148 		type = ieee80211_input(ic, m, ni, rs->rs_rssi, rs->rs_tstamp);
3149 		ieee80211_free_node(ni);
3150 		if (sc->sc_diversity) {
3151 			/*
3152 			 * When using fast diversity, change the default rx
3153 			 * antenna if diversity chooses the other antenna 3
3154 			 * times in a row.
3155 			 */
3156 			if (sc->sc_defant != rs->rs_antenna) {
3157 				if (++sc->sc_rxotherant >= 3)
3158 					ath_setdefantenna(sc, rs->rs_antenna);
3159 			} else
3160 				sc->sc_rxotherant = 0;
3161 		}
3162 		if (sc->sc_softled) {
3163 			/*
3164 			 * Blink for any data frame.  Otherwise do a
3165 			 * heartbeat-style blink when idle.  The latter
3166 			 * is mainly for station mode where we depend on
3167 			 * periodic beacon frames to trigger the poll event.
3168 			 */
3169 			if (type == IEEE80211_FC0_TYPE_DATA) {
3170 				sc->sc_rxrate = rs->rs_rate;
3171 				ath_led_event(sc, ATH_LED_RX);
3172 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3173 				ath_led_event(sc, ATH_LED_POLL);
3174 		}
3175 		/*
3176 		 * Arrange to update the last rx timestamp only for
3177 		 * frames from our ap when operating in station mode.
3178 		 * This assumes the rx key is always setup when associated.
3179 		 */
3180 		if (ic->ic_opmode == IEEE80211_M_STA &&
3181 		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3182 			ngood++;
3183 rx_next:
3184 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3185 	} while (ath_rxbuf_init(sc, bf) == 0);
3186 
3187 	/* rx signal state monitoring */
3188 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3189 	if (ngood)
3190 		sc->sc_lastrx = tsf;
3191 #undef PA2DESC
3192 }
3193 
3194 static void
3195 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3196 {
3197 	txq->axq_qnum = qnum;
3198 	txq->axq_depth = 0;
3199 	txq->axq_intrcnt = 0;
3200 	txq->axq_link = NULL;
3201 	STAILQ_INIT(&txq->axq_q);
3202 }
3203 
3204 /*
3205  * Setup a h/w transmit queue.
3206  */
3207 static struct ath_txq *
3208 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3209 {
3210 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3211 	struct ath_hal *ah = sc->sc_ah;
3212 	HAL_TXQ_INFO qi;
3213 	int qnum;
3214 
3215 	memset(&qi, 0, sizeof(qi));
3216 	qi.tqi_subtype = subtype;
3217 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3218 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3219 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3220 	/*
3221 	 * Enable interrupts only for EOL and DESC conditions.
3222 	 * We mark tx descriptors to receive a DESC interrupt
3223 	 * when a tx queue gets deep; otherwise waiting for the
3224 	 * EOL to reap descriptors.  Note that this is done to
3225 	 * reduce interrupt load and this only defers reaping
3226 	 * descriptors, never transmitting frames.  Aside from
3227 	 * reducing interrupts this also permits more concurrency.
3228 	 * The only potential downside is if the tx queue backs
3229 	 * up in which case the top half of the kernel may backup
3230 	 * due to a lack of tx descriptors.
3231 	 */
3232 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3233 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3234 	if (qnum == -1) {
3235 		/*
3236 		 * NB: don't print a message, this happens
3237 		 * normally on parts with too few tx queues
3238 		 */
3239 		return NULL;
3240 	}
3241 	if (qnum >= N(sc->sc_txq)) {
3242 		device_printf(sc->sc_dev,
3243 			"hal qnum %u out of range, max %zu!\n",
3244 			qnum, N(sc->sc_txq));
3245 		ath_hal_releasetxqueue(ah, qnum);
3246 		return NULL;
3247 	}
3248 	if (!IS_ATH_TXQ_SETUP(sc, qnum)) {
3249 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3250 		ATH_TXQ_SETUP(sc, qnum);
3251 	}
3252 	return &sc->sc_txq[qnum];
3253 #undef N
3254 }
3255 
3256 /*
3257  * Setup a hardware data transmit queue for the specified
3258  * access control.  The hal may not support all requested
3259  * queues in which case it will return a reference to a
3260  * previously setup queue.  We record the mapping from ac's
3261  * to h/w queues for use by ath_tx_start and also track
3262  * the set of h/w queues being used to optimize work in the
3263  * transmit interrupt handler and related routines.
3264  */
3265 static int
3266 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3267 {
3268 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3269 	struct ath_txq *txq;
3270 
3271 	if (ac >= N(sc->sc_ac2q)) {
3272 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3273 			ac, N(sc->sc_ac2q));
3274 		return 0;
3275 	}
3276 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3277 	if (txq != NULL) {
3278 		sc->sc_ac2q[ac] = txq;
3279 		return 1;
3280 	} else {
3281 		return 0;
3282 	}
3283 #undef N
3284 }
3285 
3286 /*
3287  * Update WME parameters for a transmit queue.
3288  */
3289 static int
3290 ath_txq_update(struct ath_softc *sc, int ac)
3291 {
3292 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3293 #define	ATH_TXOP_TO_US(v)		(v<<5)
3294 	struct ieee80211com *ic = &sc->sc_ic;
3295 	struct ath_txq *txq = sc->sc_ac2q[ac];
3296 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3297 	struct ath_hal *ah = sc->sc_ah;
3298 	HAL_TXQ_INFO qi;
3299 
3300 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3301 	qi.tqi_aifs = wmep->wmep_aifsn;
3302 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3303 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3304 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3305 
3306 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3307 		device_printf(sc->sc_dev, "unable to update hardware queue "
3308 			"parameters for %s traffic!\n",
3309 			ieee80211_wme_acnames[ac]);
3310 		return 0;
3311 	} else {
3312 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3313 		return 1;
3314 	}
3315 #undef ATH_TXOP_TO_US
3316 #undef ATH_EXPONENT_TO_VALUE
3317 }
3318 
3319 /*
3320  * Callback from the 802.11 layer to update WME parameters.
3321  */
3322 static int
3323 ath_wme_update(struct ieee80211com *ic)
3324 {
3325 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3326 
3327 	return !ath_txq_update(sc, WME_AC_BE) ||
3328 	    !ath_txq_update(sc, WME_AC_BK) ||
3329 	    !ath_txq_update(sc, WME_AC_VI) ||
3330 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3331 }
3332 
3333 /*
3334  * Reclaim resources for a setup queue.
3335  */
3336 static void
3337 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3338 {
3339 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3340 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3341 }
3342 
3343 /*
3344  * Reclaim all tx queue resources.
3345  */
3346 static void
3347 ath_tx_cleanup(struct ath_softc *sc)
3348 {
3349 	int i;
3350 
3351 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3352 		if (IS_ATH_TXQ_SETUP(sc, i))
3353 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3354 }
3355 
3356 /*
3357  * Defragment an mbuf chain, returning at most maxfrags separate
3358  * mbufs+clusters.  If this is not possible NULL is returned and
3359  * the original mbuf chain is left in it's present (potentially
3360  * modified) state.  We use two techniques: collapsing consecutive
3361  * mbufs and replacing consecutive mbufs by a cluster.
3362  */
3363 static struct mbuf *
3364 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3365 {
3366 	struct mbuf *m, *n, *n2, **prev;
3367 	u_int curfrags;
3368 
3369 	/*
3370 	 * Calculate the current number of frags.
3371 	 */
3372 	curfrags = 0;
3373 	for (m = m0; m != NULL; m = m->m_next)
3374 		curfrags++;
3375 	/*
3376 	 * First, try to collapse mbufs.  Note that we always collapse
3377 	 * towards the front so we don't need to deal with moving the
3378 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3379 	 * less data than the following.
3380 	 */
3381 	m = m0;
3382 again:
3383 	for (;;) {
3384 		n = m->m_next;
3385 		if (n == NULL)
3386 			break;
3387 		if (n->m_len < M_TRAILINGSPACE(m)) {
3388 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3389 			      n->m_len);
3390 			m->m_len += n->m_len;
3391 			m->m_next = n->m_next;
3392 			m_free(n);
3393 			if (--curfrags <= maxfrags)
3394 				return m0;
3395 		} else
3396 			m = n;
3397 	}
3398 	KASSERT(maxfrags > 1,
3399 		("maxfrags %u, but normal collapse failed", maxfrags));
3400 	/*
3401 	 * Collapse consecutive mbufs to a cluster.
3402 	 */
3403 	prev = &m0->m_next;		/* NB: not the first mbuf */
3404 	while ((n = *prev) != NULL) {
3405 		if ((n2 = n->m_next) != NULL &&
3406 		    n->m_len + n2->m_len < MCLBYTES) {
3407 			m = m_getcl(how, MT_DATA, 0);
3408 			if (m == NULL)
3409 				goto bad;
3410 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3411 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3412 				n2->m_len);
3413 			m->m_len = n->m_len + n2->m_len;
3414 			m->m_next = n2->m_next;
3415 			*prev = m;
3416 			m_free(n);
3417 			m_free(n2);
3418 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3419 				return m0;
3420 			/*
3421 			 * Still not there, try the normal collapse
3422 			 * again before we allocate another cluster.
3423 			 */
3424 			goto again;
3425 		}
3426 		prev = &n->m_next;
3427 	}
3428 	/*
3429 	 * No place where we can collapse to a cluster; punt.
3430 	 * This can occur if, for example, you request 2 frags
3431 	 * but the packet requires that both be clusters (we
3432 	 * never reallocate the first mbuf to avoid moving the
3433 	 * packet header).
3434 	 */
3435 bad:
3436 	return NULL;
3437 }
3438 
3439 /*
3440  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3441  */
3442 static int
3443 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3444 {
3445 	int i;
3446 
3447 	for (i = 0; i < rt->rateCount; i++)
3448 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3449 			return i;
3450 	return 0;		/* NB: lowest rate */
3451 }
3452 
3453 static int
3454 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
3455 	     struct ath_buf *bf, struct mbuf *m0)
3456 {
3457 	struct ieee80211com *ic = &sc->sc_ic;
3458 	struct ath_hal *ah = sc->sc_ah;
3459 	struct ifnet *ifp = &ic->ic_if;
3460 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3461 	int i, error, iswep, ismcast, ismrr;
3462 	int keyix, hdrlen, pktlen, try0;
3463 	uint8_t rix, txrate, ctsrate;
3464 	uint8_t cix = 0xff;		/* NB: silence compiler */
3465 	struct ath_desc *ds, *ds0;
3466 	struct ath_txq *txq;
3467 	struct ieee80211_frame *wh;
3468 	u_int subtype, flags, ctsduration;
3469 	HAL_PKT_TYPE atype;
3470 	const HAL_RATE_TABLE *rt;
3471 	HAL_BOOL shortPreamble;
3472 	struct ath_node *an;
3473 	struct mbuf *m;
3474 	u_int pri;
3475 
3476 	wh = mtod(m0, struct ieee80211_frame *);
3477 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3478 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3479 	hdrlen = ieee80211_anyhdrsize(wh);
3480 	/*
3481 	 * Packet length must not include any
3482 	 * pad bytes; deduct them here.
3483 	 */
3484 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3485 
3486 	if (iswep) {
3487 		const struct ieee80211_cipher *cip;
3488 		struct ieee80211_key *k;
3489 
3490 		/*
3491 		 * Construct the 802.11 header+trailer for an encrypted
3492 		 * frame. The only reason this can fail is because of an
3493 		 * unknown or unsupported cipher/key type.
3494 		 */
3495 		k = ieee80211_crypto_encap(ic, ni, m0);
3496 		if (k == NULL) {
3497 			/*
3498 			 * This can happen when the key is yanked after the
3499 			 * frame was queued.  Just discard the frame; the
3500 			 * 802.11 layer counts failures and provides
3501 			 * debugging/diagnostics.
3502 			 */
3503 			m_freem(m0);
3504 			return EIO;
3505 		}
3506 		/*
3507 		 * Adjust the packet + header lengths for the crypto
3508 		 * additions and calculate the h/w key index.  When
3509 		 * a s/w mic is done the frame will have had any mic
3510 		 * added to it prior to entry so m0->m_pkthdr.len above will
3511 		 * account for it. Otherwise we need to add it to the
3512 		 * packet length.
3513 		 */
3514 		cip = k->wk_cipher;
3515 		hdrlen += cip->ic_header;
3516 		pktlen += cip->ic_header + cip->ic_trailer;
3517 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3518 			pktlen += cip->ic_miclen;
3519 		keyix = k->wk_keyix;
3520 
3521 		/* packet header may have moved, reset our local pointer */
3522 		wh = mtod(m0, struct ieee80211_frame *);
3523 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3524 		/*
3525 		 * Use station key cache slot, if assigned.
3526 		 */
3527 		keyix = ni->ni_ucastkey.wk_keyix;
3528 		if (keyix == IEEE80211_KEYIX_NONE)
3529 			keyix = HAL_TXKEYIX_INVALID;
3530 	} else
3531 		keyix = HAL_TXKEYIX_INVALID;
3532 
3533 	pktlen += IEEE80211_CRC_LEN;
3534 
3535 	/*
3536 	 * Load the DMA map so any coalescing is done.  This
3537 	 * also calculates the number of descriptors we need.
3538 	 */
3539 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3540 				     ath_dma_map_mbuf, bf, BUS_DMA_NOWAIT);
3541 	if (error == EFBIG) {
3542 		/* XXX packet requires too many descriptors */
3543 		bf->bf_nseg = ATH_TXDESC+1;
3544 	} else if (error != 0) {
3545 		sc->sc_stats.ast_tx_busdma++;
3546 		m_freem(m0);
3547 		return error;
3548 	}
3549 	/*
3550 	 * Discard null packets and check for packets that
3551 	 * require too many TX descriptors.  We try to convert
3552 	 * the latter to a cluster.
3553 	 */
3554 	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3555 		sc->sc_stats.ast_tx_linear++;
3556 		m = ath_defrag(m0, MB_DONTWAIT, ATH_TXDESC);
3557 		if (m == NULL) {
3558 			m_freem(m0);
3559 			sc->sc_stats.ast_tx_nombuf++;
3560 			return ENOMEM;
3561 		}
3562 		m0 = m;
3563 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3564 					     ath_dma_map_mbuf, bf,
3565 					     BUS_DMA_NOWAIT);
3566 		if (error != 0) {
3567 			sc->sc_stats.ast_tx_busdma++;
3568 			m_freem(m0);
3569 			return error;
3570 		}
3571 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3572 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3573 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3574 		sc->sc_stats.ast_tx_nodata++;
3575 		m_freem(m0);
3576 		return EIO;
3577 	}
3578 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3579 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3580 	bf->bf_m = m0;
3581 	bf->bf_node = ni;			/* NB: held reference */
3582 
3583 	/* setup descriptors */
3584 	ds = bf->bf_desc;
3585 	rt = sc->sc_currates;
3586 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3587 
3588 	/*
3589 	 * NB: the 802.11 layer marks whether or not we should
3590 	 * use short preamble based on the current mode and
3591 	 * negotiated parameters.
3592 	 */
3593 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3594 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3595 		shortPreamble = AH_TRUE;
3596 		sc->sc_stats.ast_tx_shortpre++;
3597 	} else {
3598 		shortPreamble = AH_FALSE;
3599 	}
3600 
3601 	an = ATH_NODE(ni);
3602 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3603 	ismrr = 0;				/* default no multi-rate retry*/
3604 	/*
3605 	 * Calculate Atheros packet type from IEEE80211 packet header,
3606 	 * setup for rate calculations, and select h/w transmit queue.
3607 	 */
3608 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3609 	case IEEE80211_FC0_TYPE_MGT:
3610 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3611 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3612 			atype = HAL_PKT_TYPE_BEACON;
3613 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3614 			atype = HAL_PKT_TYPE_PROBE_RESP;
3615 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3616 			atype = HAL_PKT_TYPE_ATIM;
3617 		else
3618 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3619 		rix = sc->sc_minrateix;
3620 		txrate = rt->info[rix].rateCode;
3621 		if (shortPreamble)
3622 			txrate |= rt->info[rix].shortPreamble;
3623 		try0 = ATH_TXMGTTRY;
3624 		/* NB: force all management frames to highest queue */
3625 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3626 			/* NB: force all management frames to highest queue */
3627 			pri = WME_AC_VO;
3628 		} else
3629 			pri = WME_AC_BE;
3630 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3631 		break;
3632 	case IEEE80211_FC0_TYPE_CTL:
3633 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3634 		rix = sc->sc_minrateix;
3635 		txrate = rt->info[rix].rateCode;
3636 		if (shortPreamble)
3637 			txrate |= rt->info[rix].shortPreamble;
3638 		try0 = ATH_TXMGTTRY;
3639 		/* NB: force all ctl frames to highest queue */
3640 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3641 			/* NB: force all ctl frames to highest queue */
3642 			pri = WME_AC_VO;
3643 		} else
3644 			pri = WME_AC_BE;
3645 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3646 		break;
3647 	case IEEE80211_FC0_TYPE_DATA:
3648 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3649 		/*
3650 		 * Data frames: multicast frames go out at a fixed rate,
3651 		 * otherwise consult the rate control module for the
3652 		 * rate to use.
3653 		 */
3654 		if (ismcast) {
3655 			/*
3656 			 * Check mcast rate setting in case it's changed.
3657 			 * XXX move out of fastpath
3658 			 */
3659 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3660 				sc->sc_mcastrix =
3661 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3662 				sc->sc_mcastrate = ic->ic_mcast_rate;
3663 			}
3664 			rix = sc->sc_mcastrix;
3665 			txrate = rt->info[rix].rateCode;
3666 			if (shortPreamble)
3667 				txrate |= rt->info[rix].shortPreamble;
3668 			try0 = 1;
3669 		} else {
3670 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3671 				&rix, &try0, &txrate);
3672 			sc->sc_txrate = txrate;		/* for LED blinking */
3673 			if (try0 != ATH_TXMAXTRY)
3674 				ismrr = 1;
3675 		}
3676 		pri = M_WME_GETAC(m0);
3677 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3678 			flags |= HAL_TXDESC_NOACK;
3679 		break;
3680 	default:
3681 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3682 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3683 		/* XXX statistic */
3684 		m_freem(m0);
3685 		return EIO;
3686 	}
3687 	txq = sc->sc_ac2q[pri];
3688 
3689 	/*
3690 	 * When servicing one or more stations in power-save mode
3691 	 * (or) if there is some mcast data waiting on the mcast
3692 	 * queue (to prevent out of order delivery) multicast
3693 	 * frames must be buffered until after the beacon.
3694 	 */
3695 	if (ismcast && (ic->ic_ps_sta || sc->sc_mcastq.axq_depth)) {
3696 		txq = &sc->sc_mcastq;
3697 		/* XXX? more bit in 802.11 frame header */
3698 	}
3699 
3700 	/*
3701 	 * Calculate miscellaneous flags.
3702 	 */
3703 	if (ismcast) {
3704 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3705 	} else if (pktlen > ic->ic_rtsthreshold) {
3706 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3707 		cix = rt->info[rix].controlRate;
3708 		sc->sc_stats.ast_tx_rts++;
3709 	}
3710 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3711 		sc->sc_stats.ast_tx_noack++;
3712 
3713 	/*
3714 	 * If 802.11g protection is enabled, determine whether
3715 	 * to use RTS/CTS or just CTS.  Note that this is only
3716 	 * done for OFDM unicast frames.
3717 	 */
3718 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3719 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3720 	    (flags & HAL_TXDESC_NOACK) == 0) {
3721 		/* XXX fragments must use CCK rates w/ protection */
3722 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3723 			flags |= HAL_TXDESC_RTSENA;
3724 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3725 			flags |= HAL_TXDESC_CTSENA;
3726 		cix = rt->info[sc->sc_protrix].controlRate;
3727 		sc->sc_stats.ast_tx_protect++;
3728 	}
3729 
3730 	/*
3731 	 * Calculate duration.  This logically belongs in the 802.11
3732 	 * layer but it lacks sufficient information to calculate it.
3733 	 */
3734 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3735 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3736 		uint16_t dur;
3737 		/*
3738 		 * XXX not right with fragmentation.
3739 		 */
3740 		if (shortPreamble)
3741 			dur = rt->info[rix].spAckDuration;
3742 		else
3743 			dur = rt->info[rix].lpAckDuration;
3744 		*(uint16_t *)wh->i_dur = htole16(dur);
3745 	}
3746 
3747 	/*
3748 	 * Calculate RTS/CTS rate and duration if needed.
3749 	 */
3750 	ctsduration = 0;
3751 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3752 		/*
3753 		 * CTS transmit rate is derived from the transmit rate
3754 		 * by looking in the h/w rate table.  We must also factor
3755 		 * in whether or not a short preamble is to be used.
3756 		 */
3757 		/* NB: cix is set above where RTS/CTS is enabled */
3758 		KASSERT(cix != 0xff, ("cix not setup"));
3759 		ctsrate = rt->info[cix].rateCode;
3760 		/*
3761 		 * Compute the transmit duration based on the frame
3762 		 * size and the size of an ACK frame.  We call into the
3763 		 * HAL to do the computation since it depends on the
3764 		 * characteristics of the actual PHY being used.
3765 		 *
3766 		 * NB: CTS is assumed the same size as an ACK so we can
3767 		 *     use the precalculated ACK durations.
3768 		 */
3769 		if (shortPreamble) {
3770 			ctsrate |= rt->info[cix].shortPreamble;
3771 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3772 				ctsduration += rt->info[cix].spAckDuration;
3773 			ctsduration += ath_hal_computetxtime(ah,
3774 				rt, pktlen, rix, AH_TRUE);
3775 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3776 				ctsduration += rt->info[rix].spAckDuration;
3777 		} else {
3778 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3779 				ctsduration += rt->info[cix].lpAckDuration;
3780 			ctsduration += ath_hal_computetxtime(ah,
3781 				rt, pktlen, rix, AH_FALSE);
3782 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3783 				ctsduration += rt->info[rix].lpAckDuration;
3784 		}
3785 		/*
3786 		 * Must disable multi-rate retry when using RTS/CTS.
3787 		 */
3788 		ismrr = 0;
3789 		try0 = ATH_TXMGTTRY;		/* XXX */
3790 	} else
3791 		ctsrate = 0;
3792 
3793 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3794 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3795 			sc->sc_hwmap[txrate].ieeerate, -1);
3796 
3797 	if (ic->ic_rawbpf)
3798 		bpf_mtap(ic->ic_rawbpf, m0);
3799 	if (sc->sc_drvbpf) {
3800 		uint64_t tsf = ath_hal_gettsf64(ah);
3801 
3802 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3803 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3804 		if (iswep)
3805 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3806 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3807 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3808 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3809 
3810 		bpf_ptap(sc->sc_drvbpf, m0, &sc->sc_tx_th, sc->sc_tx_th_len);
3811 	}
3812 
3813 	/*
3814 	 * Determine if a tx interrupt should be generated for
3815 	 * this descriptor.  We take a tx interrupt to reap
3816 	 * descriptors when the h/w hits an EOL condition or
3817 	 * when the descriptor is specifically marked to generate
3818 	 * an interrupt.  We periodically mark descriptors in this
3819 	 * way to insure timely replenishing of the supply needed
3820 	 * for sending frames.  Defering interrupts reduces system
3821 	 * load and potentially allows more concurrent work to be
3822 	 * done but if done to aggressively can cause senders to
3823 	 * backup.
3824 	 *
3825 	 * NB: use >= to deal with sc_txintrperiod changing
3826 	 *     dynamically through sysctl.
3827 	 */
3828 	if (flags & HAL_TXDESC_INTREQ) {
3829 		txq->axq_intrcnt = 0;
3830 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3831 		flags |= HAL_TXDESC_INTREQ;
3832 		txq->axq_intrcnt = 0;
3833 	}
3834 
3835 	/*
3836 	 * Formulate first tx descriptor with tx controls.
3837 	 */
3838 	/* XXX check return value? */
3839 	ath_hal_setuptxdesc(ah, ds
3840 		, pktlen		/* packet length */
3841 		, hdrlen		/* header length */
3842 		, atype			/* Atheros packet type */
3843 		, ni->ni_txpower	/* txpower */
3844 		, txrate, try0		/* series 0 rate/tries */
3845 		, keyix			/* key cache index */
3846 		, sc->sc_txantenna	/* antenna mode */
3847 		, flags			/* flags */
3848 		, ctsrate		/* rts/cts rate */
3849 		, ctsduration		/* rts/cts duration */
3850 	);
3851 	bf->bf_flags = flags;
3852 	/*
3853 	 * Setup the multi-rate retry state only when we're
3854 	 * going to use it.  This assumes ath_hal_setuptxdesc
3855 	 * initializes the descriptors (so we don't have to)
3856 	 * when the hardware supports multi-rate retry and
3857 	 * we don't use it.
3858 	 */
3859 	if (ismrr)
3860 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3861 
3862 	/*
3863 	 * Fillin the remainder of the descriptor info.
3864 	 */
3865 	ds0 = ds;
3866 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3867 		ds->ds_data = bf->bf_segs[i].ds_addr;
3868 		if (i == bf->bf_nseg - 1)
3869 			ds->ds_link = 0;
3870 		else
3871 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3872 		ath_hal_filltxdesc(ah, ds
3873 			, bf->bf_segs[i].ds_len	/* segment length */
3874 			, i == 0		/* first segment */
3875 			, i == bf->bf_nseg - 1	/* last segment */
3876 			, ds0			/* first descriptor */
3877 		);
3878 		DPRINTF(sc, ATH_DEBUG_XMIT,
3879 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3880 			__func__, i, ds->ds_link, ds->ds_data,
3881 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3882 	}
3883 	/*
3884 	 * Insert the frame on the outbound list and pass it on
3885 	 * to the hardware.  Multicast frames buffered for power
3886 	 * save stations and transmit from the CAB queue are stored
3887 	 * on a s/w only queue and loaded on to the CAB queue in
3888 	 * the SWBA handler since frames only go out on DTIM and
3889 	 * to avoid possible races.
3890 	 */
3891 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3892 	if (txq != &sc->sc_mcastq) {
3893 		if (txq->axq_link == NULL) {
3894 			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3895 			DPRINTF(sc, ATH_DEBUG_XMIT,
3896 			    "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3897 			    txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3898 			    txq->axq_depth);
3899 		} else {
3900 			*txq->axq_link = bf->bf_daddr;
3901 			DPRINTF(sc, ATH_DEBUG_XMIT,
3902 			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3903 			    txq->axq_qnum, txq->axq_link,
3904 			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3905 		}
3906 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3907 		ath_hal_txstart(ah, txq->axq_qnum);
3908 	} else {
3909 		if (txq->axq_link != NULL)
3910 			*txq->axq_link = bf->bf_daddr;
3911 		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3912 	}
3913 
3914 	return 0;
3915 }
3916 
3917 /*
3918  * Process completed xmit descriptors from the specified queue.
3919  */
3920 static int
3921 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3922 {
3923 	struct ath_hal *ah = sc->sc_ah;
3924 	struct ieee80211com *ic = &sc->sc_ic;
3925 	struct ath_buf *bf;
3926 	struct ath_desc *ds, *ds0;
3927 	struct ath_tx_status *ts;
3928 	struct ieee80211_node *ni;
3929 	struct ath_node *an;
3930 	int sr, lr, pri, nacked;
3931 	HAL_STATUS status;
3932 
3933 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3934 		__func__, txq->axq_qnum,
3935 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3936 		txq->axq_link);
3937 	nacked = 0;
3938 	for (;;) {
3939 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3940 		bf = STAILQ_FIRST(&txq->axq_q);
3941 		if (bf == NULL)
3942 			break;
3943 		ds0 = &bf->bf_desc[0];
3944 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3945 		ts = &bf->bf_status.ds_txstat;
3946 		status = ath_hal_txprocdesc(ah, ds, ts);
3947 #ifdef ATH_DEBUG
3948 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3949 			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
3950 #endif
3951 		if (status == HAL_EINPROGRESS)
3952 			break;
3953 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3954 		if (txq->axq_depth == 0)
3955 			txq->axq_link = NULL;
3956 
3957 		ni = bf->bf_node;
3958 		if (ni != NULL) {
3959 			an = ATH_NODE(ni);
3960 			if (ts->ts_status == 0) {
3961 				uint8_t txant = ts->ts_antenna;
3962 				sc->sc_stats.ast_ant_tx[txant]++;
3963 				sc->sc_ant_tx[txant]++;
3964 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
3965 					sc->sc_stats.ast_tx_altrate++;
3966 				sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3967 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3968 					ts->ts_rssi);
3969 				pri = M_WME_GETAC(bf->bf_m);
3970 				if (pri >= WME_AC_VO)
3971 					ic->ic_wme.wme_hipri_traffic++;
3972 				ni->ni_inact = ni->ni_inact_reload;
3973 			} else {
3974 				if (ts->ts_status & HAL_TXERR_XRETRY)
3975 					sc->sc_stats.ast_tx_xretries++;
3976 				if (ts->ts_status & HAL_TXERR_FIFO)
3977 					sc->sc_stats.ast_tx_fifoerr++;
3978 				if (ts->ts_status & HAL_TXERR_FILT)
3979 					sc->sc_stats.ast_tx_filtered++;
3980 			}
3981 			sr = ts->ts_shortretry;
3982 			lr = ts->ts_longretry;
3983 			sc->sc_stats.ast_tx_shortretry += sr;
3984 			sc->sc_stats.ast_tx_longretry += lr;
3985 			/*
3986 			 * Hand the descriptor to the rate control algorithm.
3987 			 */
3988 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3989 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3990 				/*
3991 				 * If frame was ack'd update the last rx time
3992 				 * used to workaround phantom bmiss interrupts.
3993 				 */
3994 				if (ts->ts_status == 0)
3995 					nacked++;
3996 				ath_rate_tx_complete(sc, an, bf);
3997 			}
3998 			/*
3999 			 * Reclaim reference to node.
4000 			 *
4001 			 * NB: the node may be reclaimed here if, for example
4002 			 *     this is a DEAUTH message that was sent and the
4003 			 *     node was timed out due to inactivity.
4004 			 */
4005 			ieee80211_free_node(ni);
4006 		}
4007 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4008 		    BUS_DMASYNC_POSTWRITE);
4009 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4010 		m_freem(bf->bf_m);
4011 		bf->bf_m = NULL;
4012 		bf->bf_node = NULL;
4013 
4014 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4015 	}
4016 	return nacked;
4017 }
4018 
4019 static __inline int
4020 txqactive(struct ath_hal *ah, int qnum)
4021 {
4022 	uint32_t txqs = 1<<qnum;
4023 	ath_hal_gettxintrtxqs(ah, &txqs);
4024 	return (txqs & (1<<qnum));
4025 }
4026 
4027 /*
4028  * Deferred processing of transmit interrupt; special-cased
4029  * for a single hardware transmit queue (e.g. 5210 and 5211).
4030  */
4031 static void
4032 ath_tx_proc_q0(struct ath_softc *sc)
4033 {
4034 	struct ifnet *ifp = &sc->sc_ic.ic_if;
4035 
4036 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4037 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4038 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4039 		ath_tx_processq(sc, sc->sc_cabq);
4040 	ifp->if_flags &= ~IFF_OACTIVE;
4041 	sc->sc_tx_timer = 0;
4042 
4043 	if (sc->sc_softled)
4044 		ath_led_event(sc, ATH_LED_TX);
4045 
4046 	ath_start(ifp);
4047 }
4048 
4049 /*
4050  * Deferred processing of transmit interrupt; special-cased
4051  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4052  */
4053 static void
4054 ath_tx_proc_q0123(struct ath_softc *sc)
4055 {
4056 	struct ifnet *ifp = &sc->sc_ic.ic_if;
4057 	int nacked;
4058 
4059 	/*
4060 	 * Process each active queue.
4061 	 */
4062 	nacked = 0;
4063 	if (txqactive(sc->sc_ah, 0))
4064 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4065 	if (txqactive(sc->sc_ah, 1))
4066 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4067 	if (txqactive(sc->sc_ah, 2))
4068 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4069 	if (txqactive(sc->sc_ah, 3))
4070 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4071 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4072 		ath_tx_processq(sc, sc->sc_cabq);
4073 	if (nacked)
4074 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4075 
4076 	ifp->if_flags &= ~IFF_OACTIVE;
4077 	sc->sc_tx_timer = 0;
4078 
4079 	if (sc->sc_softled)
4080 		ath_led_event(sc, ATH_LED_TX);
4081 
4082 	ath_start(ifp);
4083 }
4084 
4085 /*
4086  * Deferred processing of transmit interrupt.
4087  */
4088 static void
4089 ath_tx_proc(struct ath_softc *sc)
4090 {
4091 	struct ifnet *ifp = &sc->sc_ic.ic_if;
4092 	int i, nacked;
4093 
4094 	/*
4095 	 * Process each active queue.
4096 	 */
4097 	nacked = 0;
4098 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4099 		if (IS_ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4100 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4101 	if (nacked)
4102 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4103 
4104 	ifp->if_flags &= ~IFF_OACTIVE;
4105 	sc->sc_tx_timer = 0;
4106 
4107 	if (sc->sc_softled)
4108 		ath_led_event(sc, ATH_LED_TX);
4109 
4110 	ath_start(ifp);
4111 }
4112 
4113 static void
4114 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4115 {
4116 #ifdef ATH_DEBUG
4117 	struct ath_hal *ah = sc->sc_ah;
4118 #endif
4119 	struct ieee80211_node *ni;
4120 	struct ath_buf *bf;
4121 	u_int ix;
4122 
4123 	/*
4124 	 * NB: this assumes output has been stopped and
4125 	 *     we do not need to block ath_tx_tasklet
4126 	 */
4127 	for (ix = 0;; ix++) {
4128 		bf = STAILQ_FIRST(&txq->axq_q);
4129 		if (bf == NULL) {
4130 			txq->axq_link = NULL;
4131 			break;
4132 		}
4133 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4134 #ifdef ATH_DEBUG
4135 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4136 			ath_printtxbuf(bf, txq->axq_qnum, ix,
4137 				ath_hal_txprocdesc(ah, bf->bf_desc,
4138 				    &bf->bf_status.ds_txstat) == HAL_OK);
4139 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
4140 				bf->bf_m->m_len, 0, -1);
4141 		}
4142 #endif /* ATH_DEBUG */
4143 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4144 		m_freem(bf->bf_m);
4145 		bf->bf_m = NULL;
4146 		ni = bf->bf_node;
4147 		bf->bf_node = NULL;
4148 		if (ni != NULL) {
4149 			/*
4150 			 * Reclaim node reference.
4151 			 */
4152 			ieee80211_free_node(ni);
4153 		}
4154 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4155 	}
4156 }
4157 
4158 static void
4159 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4160 {
4161 	struct ath_hal *ah = sc->sc_ah;
4162 
4163 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4164 	    __func__, txq->axq_qnum,
4165 	    (caddr_t)(uintptr_t)ath_hal_gettxbuf(ah, txq->axq_qnum),
4166 	    txq->axq_link);
4167 	ath_hal_stoptxdma(ah, txq->axq_qnum);
4168 }
4169 
4170 /*
4171  * Drain the transmit queues and reclaim resources.
4172  */
4173 static void
4174 ath_draintxq(struct ath_softc *sc)
4175 {
4176 	struct ath_hal *ah = sc->sc_ah;
4177 	struct ifnet *ifp = &sc->sc_ic.ic_if;
4178 	int i;
4179 
4180 	ASSERT_SERIALIZED(ifp->if_serializer);
4181 
4182 	/* XXX return value */
4183 	if (!sc->sc_invalid) {
4184 		/* don't touch the hardware if marked invalid */
4185 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p\n",
4186 		    __func__, sc->sc_bhalq,
4187 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4188 		ath_hal_stoptxdma(ah, sc->sc_bhalq);
4189 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4190 			if (IS_ATH_TXQ_SETUP(sc, i))
4191 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4192 	}
4193 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4194 		if (IS_ATH_TXQ_SETUP(sc, i))
4195 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4196 	ath_tx_draintxq(sc, &sc->sc_mcastq);
4197 #ifdef ATH_DEBUG
4198 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4199 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4200 		if (bf != NULL && bf->bf_m != NULL) {
4201 			ath_printtxbuf(bf, sc->sc_bhalq, 0,
4202 				ath_hal_txprocdesc(ah, bf->bf_desc,
4203 				    &bf->bf_status.ds_txstat) == HAL_OK);
4204 			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
4205 				bf->bf_m->m_len, 0, -1);
4206 		}
4207 	}
4208 #endif /* ATH_DEBUG */
4209 	ifp->if_flags &= ~IFF_OACTIVE;
4210 	sc->sc_tx_timer = 0;
4211 }
4212 
4213 /*
4214  * Disable the receive h/w in preparation for a reset.
4215  */
4216 static void
4217 ath_stoprecv(struct ath_softc *sc)
4218 {
4219 #define	PA2DESC(_sc, _pa) \
4220 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4221 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4222 	struct ath_hal *ah = sc->sc_ah;
4223 
4224 	ASSERT_SERIALIZED(sc->sc_ic.ic_if.if_serializer);
4225 
4226 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4227 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4228 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4229 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4230 #ifdef ATH_DEBUG
4231 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4232 		struct ath_buf *bf;
4233 		u_int ix;
4234 
4235 		kprintf("%s: rx queue %p, link %p\n", __func__,
4236 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah),
4237 			sc->sc_rxlink);
4238 		ix = 0;
4239 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4240 			struct ath_desc *ds = bf->bf_desc;
4241 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4242 			HAL_STATUS status;
4243 
4244 			status = ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
4245 						    PA2DESC(sc, ds->ds_link),
4246 						    rs);
4247 			if (status == HAL_OK ||
4248 			    (sc->sc_debug & ATH_DEBUG_FATAL))
4249 				ath_printrxbuf(bf, ix, status == HAL_OK);
4250 			ix++;
4251 		}
4252 	}
4253 #endif
4254 	sc->sc_rxlink = NULL;		/* just in case */
4255 #undef PA2DESC
4256 }
4257 
4258 /*
4259  * Enable the receive h/w following a reset.
4260  */
4261 static int
4262 ath_startrecv(struct ath_softc *sc)
4263 {
4264 	struct ath_hal *ah = sc->sc_ah;
4265 	struct ath_buf *bf;
4266 
4267 	ASSERT_SERIALIZED(sc->sc_ic.ic_if.if_serializer);
4268 
4269 	sc->sc_rxlink = NULL;
4270 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4271 		int error = ath_rxbuf_init(sc, bf);
4272 		if (error != 0) {
4273 			DPRINTF(sc, ATH_DEBUG_RECV,
4274 				"%s: ath_rxbuf_init failed %d\n",
4275 				__func__, error);
4276 			return error;
4277 		}
4278 	}
4279 
4280 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4281 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4282 	ath_hal_rxena(ah);		/* enable recv descriptors */
4283 	ath_mode_init(sc);		/* set filters, etc. */
4284 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4285 	return 0;
4286 }
4287 
4288 /*
4289  * Update internal state after a channel change.
4290  */
4291 static void
4292 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4293 {
4294 	struct ieee80211com *ic = &sc->sc_ic;
4295 	enum ieee80211_phymode mode;
4296 	uint16_t flags;
4297 
4298 	/*
4299 	 * Change channels and update the h/w rate map
4300 	 * if we're switching; e.g. 11a to 11b/g.
4301 	 */
4302 	mode = ieee80211_chan2mode(ic, chan);
4303 	if (mode != sc->sc_curmode)
4304 		ath_setcurmode(sc, mode);
4305 	/*
4306 	 * Update BPF state.  NB: ethereal et. al. don't handle
4307 	 * merged flags well so pick a unique mode for their use.
4308 	 */
4309 	if (IEEE80211_IS_CHAN_A(chan))
4310 		flags = IEEE80211_CHAN_A;
4311 	/* XXX 11g schizophrenia */
4312 	else if (IEEE80211_IS_CHAN_G(chan) ||
4313 	    IEEE80211_IS_CHAN_PUREG(chan))
4314 		flags = IEEE80211_CHAN_G;
4315 	else
4316 		flags = IEEE80211_CHAN_B;
4317 	if (IEEE80211_IS_CHAN_T(chan))
4318 		flags |= IEEE80211_CHAN_TURBO;
4319 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4320 		htole16(chan->ic_freq);
4321 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4322 		htole16(flags);
4323 }
4324 
4325 /*
4326  * Poll for a channel clear indication; this is required
4327  * for channels requiring DFS and not previously visited
4328  * and/or with a recent radar detection.
4329  */
4330 static void
4331 ath_dfswait(void *arg)
4332 {
4333 	struct ath_softc *sc = arg;
4334 	struct ath_hal *ah = sc->sc_ah;
4335 	struct ifnet *ifp = &sc->sc_ic.ic_if;
4336 	HAL_CHANNEL hchan;
4337 
4338 	lwkt_serialize_enter(ifp->if_serializer);
4339 
4340 	ath_hal_radar_wait(ah, &hchan);
4341 	DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
4342 	    __func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
4343 
4344 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4345 		if_printf(ifp, "channel %u/0x%x/0x%x has interference\n",
4346 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4347 		goto back;
4348 	}
4349 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4350 		/* XXX should not happen */
4351 		goto back;
4352 	}
4353 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4354 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4355 		ifp->if_flags &= ~IFF_OACTIVE;
4356 		if_printf(ifp, "channel %u/0x%x/0x%x marked clear\n",
4357 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4358 	} else {
4359 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4360 	}
4361 
4362 back:
4363 	lwkt_serialize_exit(ifp->if_serializer);
4364 }
4365 
4366 /*
4367  * Set/change channels.  If the channel is really being changed,
4368  * it's done by reseting the chip.  To accomplish this we must
4369  * first cleanup any pending DMA, then restart stuff after a la
4370  * ath_init.
4371  */
4372 static int
4373 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4374 {
4375 	struct ath_hal *ah = sc->sc_ah;
4376 	struct ieee80211com *ic = &sc->sc_ic;
4377 	struct ifnet *ifp = &ic->ic_if;
4378 	HAL_CHANNEL hchan;
4379 
4380 	/*
4381 	 * Convert to a HAL channel description with
4382 	 * the flags constrained to reflect the current
4383 	 * operating mode.
4384 	 */
4385 	hchan.channel = chan->ic_freq;
4386 	hchan.channelFlags = ath_chan2flags(ic, chan);
4387 
4388 	DPRINTF(sc, ATH_DEBUG_RESET,
4389 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4390 	    __func__,
4391 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4392 		sc->sc_curchan.channelFlags),
4393 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4394 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4395 	        hchan.channel, hchan.channelFlags);
4396 	if (hchan.channel != sc->sc_curchan.channel ||
4397 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4398 		HAL_STATUS status;
4399 
4400 		/*
4401 		 * To switch channels clear any pending DMA operations;
4402 		 * wait long enough for the RX fifo to drain, reset the
4403 		 * hardware at the new frequency, and then re-enable
4404 		 * the relevant bits of the h/w.
4405 		 */
4406 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4407 		ath_draintxq(sc);		/* clear pending tx frames */
4408 		ath_stoprecv(sc);		/* turn off frame recv */
4409 		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_FALSE, &status)) {
4410 			if_printf(ifp, "%s: unable to reset "
4411 			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
4412 			    __func__, ieee80211_chan2ieee(ic, chan),
4413 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4414 			return EIO;
4415 		}
4416 		sc->sc_curchan = hchan;
4417 		ath_update_txpow(sc);		/* update tx power state */
4418 		sc->sc_diversity = ath_hal_getdiversity(ah);
4419 		sc->sc_calinterval = 1;
4420 		sc->sc_caltries = 0;
4421 
4422 		/*
4423 		 * Re-enable rx framework.
4424 		 */
4425 		if (ath_startrecv(sc) != 0) {
4426 			if_printf(ic->ic_ifp,
4427 				"%s: unable to restart recv logic\n", __func__);
4428 			return EIO;
4429 		}
4430 
4431 		/*
4432 		 * Change channels and update the h/w rate map
4433 		 * if we're switching; e.g. 11a to 11b/g.
4434 		 */
4435 		ic->ic_ibss_chan = chan;
4436 		ath_chan_change(sc, chan);
4437 
4438 		/*
4439 		 * Handle DFS required waiting period to determine
4440 		 * if channel is clear of radar traffic.
4441 		 */
4442 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4443 #define	DFS_AND_NOT_CLEAR(_c) \
4444 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4445 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4446 				if_printf(ifp,
4447 					"wait for DFS clear channel signal\n");
4448 				/* XXX stop sndq */
4449 				ifp->if_flags |= IFF_OACTIVE;
4450 				callout_reset(&sc->sc_dfs_ch,
4451 					2 * hz, ath_dfswait, sc);
4452 			} else {
4453 				callout_stop(&sc->sc_dfs_ch);
4454 			}
4455 #undef DFS_NOT_CLEAR
4456 		}
4457 
4458 		/*
4459 		 * Re-enable interrupts.
4460 		 */
4461 		ath_hal_intrset(ah, sc->sc_imask);
4462 	}
4463 	return 0;
4464 }
4465 
4466 static void
4467 ath_next_scan(void *arg)
4468 {
4469 	struct ath_softc *sc = arg;
4470 	struct ieee80211com *ic = &sc->sc_ic;
4471 	struct ifnet *ifp = &ic->ic_if;
4472 
4473 	lwkt_serialize_enter(ifp->if_serializer);
4474 
4475 	if (ic->ic_state == IEEE80211_S_SCAN)
4476 		ieee80211_next_scan(ic);
4477 
4478 	lwkt_serialize_exit(ifp->if_serializer);
4479 }
4480 
4481 /*
4482  * Periodically recalibrate the PHY to account
4483  * for temperature/environment changes.
4484  */
4485 static void
4486 ath_calibrate(void *arg)
4487 {
4488 	struct ath_softc *sc = arg;
4489 	struct ath_hal *ah = sc->sc_ah;
4490 	struct ifnet *ifp = &sc->sc_ic.ic_if;
4491 	HAL_BOOL iqCalDone;
4492 
4493 	lwkt_serialize_enter(ifp->if_serializer);
4494 
4495 	sc->sc_stats.ast_per_cal++;
4496 
4497 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4498 		/*
4499 		 * Rfgain is out of bounds, reset the chip
4500 		 * to load new gain values.
4501 		 */
4502 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4503 			"%s: rfgain change\n", __func__);
4504 		sc->sc_stats.ast_per_rfgain++;
4505 		ath_reset(&sc->sc_ic.ic_if);
4506 	}
4507 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4508 		DPRINTF(sc, ATH_DEBUG_ANY,
4509 			"%s: calibration of channel %u failed\n",
4510 			__func__, sc->sc_curchan.channel);
4511 		sc->sc_stats.ast_per_calfail++;
4512 	}
4513 	/*
4514 	 * Calibrate noise floor data again in case of change.
4515 	 */
4516 	ath_hal_process_noisefloor(ah);
4517 	/*
4518 	 * Poll more frequently when the IQ calibration is in
4519 	 * progress to speedup loading the final settings.
4520 	 * We temper this aggressive polling with an exponential
4521 	 * back off after 4 tries up to ath_calinterval.
4522 	 */
4523 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4524 		sc->sc_caltries = 0;
4525 		sc->sc_calinterval = ath_calinterval;
4526 	} else if (sc->sc_caltries > 4) {
4527 		sc->sc_caltries = 0;
4528 		sc->sc_calinterval <<= 1;
4529 		if (sc->sc_calinterval > ath_calinterval)
4530 			sc->sc_calinterval = ath_calinterval;
4531 	}
4532 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4533 		("bad calibration interval %u", sc->sc_calinterval));
4534 
4535 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4536 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4537 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4538 	sc->sc_caltries++;
4539 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4540 		ath_calibrate, sc);
4541 
4542 	lwkt_serialize_exit(ifp->if_serializer);
4543 }
4544 
4545 static int
4546 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4547 {
4548 	struct ifnet *ifp = ic->ic_ifp;
4549 	struct ath_softc *sc = ifp->if_softc;
4550 	struct ath_hal *ah = sc->sc_ah;
4551 	struct ieee80211_node *ni;
4552 	int i, error;
4553 	const uint8_t *bssid;
4554 	uint32_t rfilt;
4555 	static const HAL_LED_STATE leds[] = {
4556 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4557 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4558 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4559 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4560 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4561 	};
4562 
4563 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4564 		ieee80211_state_name[ic->ic_state],
4565 		ieee80211_state_name[nstate]);
4566 
4567 	callout_stop(&sc->sc_scan_ch);
4568 	callout_stop(&sc->sc_cal_ch);
4569 	callout_stop(&sc->sc_dfs_ch);
4570 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4571 
4572 	if (nstate == IEEE80211_S_INIT) {
4573 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4574 		/*
4575 		 * NB: disable interrupts so we don't rx frames.
4576 		 */
4577 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4578 		/*
4579 		 * Notify the rate control algorithm.
4580 		 */
4581 		ath_rate_newstate(sc, nstate);
4582 		goto done;
4583 	}
4584 	ni = ic->ic_bss;
4585 	error = ath_chan_set(sc, ic->ic_curchan);
4586 	if (error != 0)
4587 		goto bad;
4588 	rfilt = ath_calcrxfilter(sc, nstate);
4589 	if (nstate == IEEE80211_S_SCAN)
4590 		bssid = ifp->if_broadcastaddr;
4591 	else
4592 		bssid = ni->ni_bssid;
4593 	ath_hal_setrxfilter(ah, rfilt);
4594 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %6D\n",
4595 		 __func__, rfilt, bssid, ":");
4596 
4597 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4598 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4599 	else
4600 		ath_hal_setassocid(ah, bssid, 0);
4601 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4602 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4603 			if (ath_hal_keyisvalid(ah, i))
4604 				ath_hal_keysetmac(ah, i, bssid);
4605 	}
4606 
4607 	/*
4608 	 * Notify the rate control algorithm so rates
4609 	 * are setup should ath_beacon_alloc be called.
4610 	 */
4611 	ath_rate_newstate(sc, nstate);
4612 
4613 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4614 		/* nothing to do */;
4615 	} else if (nstate == IEEE80211_S_RUN) {
4616 		DPRINTF(sc, ATH_DEBUG_STATE,
4617 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%6D "
4618 			"capinfo=0x%04x chan=%d\n"
4619 			 , __func__
4620 			 , ic->ic_flags
4621 			 , ni->ni_intval
4622 			 , ni->ni_bssid, ":"
4623 			 , ni->ni_capinfo
4624 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4625 
4626 		switch (ic->ic_opmode) {
4627 		case IEEE80211_M_HOSTAP:
4628 		case IEEE80211_M_IBSS:
4629 			/*
4630 			 * Allocate and setup the beacon frame.
4631 			 *
4632 			 * Stop any previous beacon DMA.  This may be
4633 			 * necessary, for example, when an ibss merge
4634 			 * causes reconfiguration; there will be a state
4635 			 * transition from RUN->RUN that means we may
4636 			 * be called with beacon transmission active.
4637 			 */
4638 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4639 			ath_beacon_free(sc);
4640 			error = ath_beacon_alloc(sc, ni);
4641 			if (error != 0)
4642 				goto bad;
4643 			/*
4644 			 * If joining an adhoc network defer beacon timer
4645 			 * configuration to the next beacon frame so we
4646 			 * have a current TSF to use.  Otherwise we're
4647 			 * starting an ibss/bss so there's no need to delay.
4648 			 */
4649 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4650 			    ic->ic_bss->ni_tstamp.tsf != 0)
4651 				sc->sc_syncbeacon = 1;
4652 			else
4653 				ath_beacon_config(sc);
4654 			break;
4655 		case IEEE80211_M_STA:
4656 			/*
4657 			 * Allocate a key cache slot to the station.
4658 			 */
4659 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4660 			    sc->sc_hasclrkey &&
4661 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4662 				ath_setup_stationkey(ni);
4663 			/*
4664 			 * Defer beacon timer configuration to the next
4665 			 * beacon frame so we have a current TSF to use
4666 			 * (any TSF collected when scanning is likely old).
4667 			 */
4668 			sc->sc_syncbeacon = 1;
4669 			break;
4670 		default:
4671 			break;
4672 		}
4673 
4674 		/*
4675 		 * Let the hal process statistics collected during a
4676 		 * scan so it can provide calibrated noise floor data.
4677 		 */
4678 		ath_hal_process_noisefloor(ah);
4679 		/*
4680 		 * Reset rssi stats; maybe not the best place...
4681 		 */
4682 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4683 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4684 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4685 	} else {
4686 		ath_hal_intrset(ah,
4687 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4688 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4689 	}
4690 done:
4691 	/*
4692 	 * Invoke the parent method to complete the work.
4693 	 */
4694 	error = sc->sc_newstate(ic, nstate, arg);
4695 	/*
4696 	 * Finally, start any timers.
4697 	 */
4698 	if (nstate == IEEE80211_S_RUN) {
4699 		/* start periodic recalibration timer */
4700 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4701 			ath_calibrate, sc);
4702 	} else if (nstate == IEEE80211_S_SCAN) {
4703 		/* start ap/neighbor scan timer */
4704 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4705 			ath_next_scan, sc);
4706 	}
4707 bad:
4708 	return error;
4709 }
4710 
4711 /*
4712  * Allocate a key cache slot to the station so we can
4713  * setup a mapping from key index to node. The key cache
4714  * slot is needed for managing antenna state and for
4715  * compression when stations do not use crypto.  We do
4716  * it uniliaterally here; if crypto is employed this slot
4717  * will be reassigned.
4718  */
4719 static void
4720 ath_setup_stationkey(struct ieee80211_node *ni)
4721 {
4722 	struct ieee80211com *ic = ni->ni_ic;
4723 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4724 	ieee80211_keyix keyix, rxkeyix;
4725 
4726 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4727 		/*
4728 		 * Key cache is full; we'll fall back to doing
4729 		 * the more expensive lookup in software.  Note
4730 		 * this also means no h/w compression.
4731 		 */
4732 		/* XXX msg+statistic */
4733 	} else {
4734 		/* XXX locking? */
4735 		ni->ni_ucastkey.wk_keyix = keyix;
4736 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4737 		/* NB: this will create a pass-thru key entry */
4738 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4739 	}
4740 }
4741 
4742 /*
4743  * Setup driver-specific state for a newly associated node.
4744  * Note that we're called also on a re-associate, the isnew
4745  * param tells us if this is the first time or not.
4746  */
4747 static void
4748 ath_newassoc(struct ieee80211_node *ni, int isnew)
4749 {
4750 	struct ieee80211com *ic = ni->ni_ic;
4751 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4752 
4753 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4754 	if (isnew &&
4755 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4756 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4757 		    ("new assoc with a unicast key already setup (keyix %u)",
4758 		    ni->ni_ucastkey.wk_keyix));
4759 		ath_setup_stationkey(ni);
4760 	}
4761 }
4762 
4763 static int
4764 ath_getchannels(struct ath_softc *sc, u_int cc,
4765 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4766 {
4767 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4768 	struct ieee80211com *ic = &sc->sc_ic;
4769 	struct ifnet *ifp = &ic->ic_if;
4770 	struct ath_hal *ah = sc->sc_ah;
4771 	HAL_CHANNEL *chans;
4772 	int i, ix, nchan;
4773 
4774 	chans = kmalloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), M_TEMP,
4775 		       M_WAITOK);
4776 
4777 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4778 	    NULL, 0, NULL,
4779 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4780 		uint32_t rd;
4781 
4782 		ath_hal_getregdomain(ah, &rd);
4783 		if_printf(ifp, "unable to collect channel list from hal; "
4784 			"regdomain likely %u country code %u\n", rd, cc);
4785 		kfree(chans, M_TEMP);
4786 		return EINVAL;
4787 	}
4788 
4789 	/*
4790 	 * Convert HAL channels to ieee80211 ones and insert
4791 	 * them in the table according to their channel number.
4792 	 */
4793 	for (i = 0; i < nchan; i++) {
4794 		HAL_CHANNEL *c = &chans[i];
4795 		uint16_t flags;
4796 
4797 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4798 		if (ix > IEEE80211_CHAN_MAX) {
4799 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4800 				ix, c->channel, c->channelFlags);
4801 			continue;
4802 		}
4803 		if (ix < 0) {
4804 			/* XXX can't handle stuff <2400 right now */
4805 			if (bootverbose)
4806 				if_printf(ifp, "hal channel %d (%u/%x) "
4807 				    "cannot be handled; ignored\n",
4808 				    ix, c->channel, c->channelFlags);
4809 			continue;
4810 		}
4811 		/*
4812 		 * Calculate net80211 flags; most are compatible
4813 		 * but some need massaging.  Note the static turbo
4814 		 * conversion can be removed once net80211 is updated
4815 		 * to understand static vs. dynamic turbo.
4816 		 */
4817 		flags = c->channelFlags & COMPAT;
4818 		if (c->channelFlags & CHANNEL_STURBO)
4819 			flags |= IEEE80211_CHAN_TURBO;
4820 		if (ic->ic_channels[ix].ic_freq == 0) {
4821 			ic->ic_channels[ix].ic_freq = c->channel;
4822 			ic->ic_channels[ix].ic_flags = flags;
4823 		} else {
4824 			/* channels overlap; e.g. 11g and 11b */
4825 			ic->ic_channels[ix].ic_flags |= flags;
4826 		}
4827 	}
4828 	kfree(chans, M_TEMP);
4829 	return 0;
4830 #undef COMPAT
4831 }
4832 
4833 static void
4834 ath_led_done(void *arg)
4835 {
4836 	struct ath_softc *sc = arg;
4837 
4838 	sc->sc_blinking = 0;
4839 }
4840 
4841 /*
4842  * Turn the LED off: flip the pin and then set a timer so no
4843  * update will happen for the specified duration.
4844  */
4845 static void
4846 ath_led_off(void *arg)
4847 {
4848 	struct ath_softc *sc = arg;
4849 
4850 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4851 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4852 }
4853 
4854 /*
4855  * Blink the LED according to the specified on/off times.
4856  */
4857 static void
4858 ath_led_blink(struct ath_softc *sc, int on, int off)
4859 {
4860 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4861 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4862 	sc->sc_blinking = 1;
4863 	sc->sc_ledoff = off;
4864 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4865 }
4866 
4867 static void
4868 ath_led_event(struct ath_softc *sc, int event)
4869 {
4870 
4871 	sc->sc_ledevent = ticks;	/* time of last event */
4872 	if (sc->sc_blinking)		/* don't interrupt active blink */
4873 		return;
4874 	switch (event) {
4875 	case ATH_LED_POLL:
4876 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4877 			sc->sc_hwmap[0].ledoff);
4878 		break;
4879 	case ATH_LED_TX:
4880 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4881 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4882 		break;
4883 	case ATH_LED_RX:
4884 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4885 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4886 		break;
4887 	}
4888 }
4889 
4890 static void
4891 ath_update_txpow(struct ath_softc *sc)
4892 {
4893 	struct ieee80211com *ic = &sc->sc_ic;
4894 	struct ath_hal *ah = sc->sc_ah;
4895 	uint32_t txpow;
4896 
4897 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4898 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4899 		/* read back in case value is clamped */
4900 		ath_hal_gettxpowlimit(ah, &txpow);
4901 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4902 	}
4903 	/*
4904 	 * Fetch max tx power level for status requests.
4905 	 */
4906 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4907 	ic->ic_bss->ni_txpower = txpow;
4908 }
4909 
4910 static void
4911 rate_setup(struct ath_softc *sc,
4912 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4913 {
4914 	int i, maxrates;
4915 
4916 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4917 		DPRINTF(sc, ATH_DEBUG_ANY,
4918 			"%s: rate table too small (%u > %u)\n",
4919 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4920 		maxrates = IEEE80211_RATE_MAXSIZE;
4921 	} else
4922 		maxrates = rt->rateCount;
4923 	for (i = 0; i < maxrates; i++)
4924 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4925 	rs->rs_nrates = maxrates;
4926 }
4927 
4928 static int
4929 ath_rate_setup(struct ath_softc *sc, u_int mode)
4930 {
4931 	struct ath_hal *ah = sc->sc_ah;
4932 	struct ieee80211com *ic = &sc->sc_ic;
4933 	const HAL_RATE_TABLE *rt;
4934 
4935 	switch (mode) {
4936 	case IEEE80211_MODE_11A:
4937 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4938 		break;
4939 	case IEEE80211_MODE_11B:
4940 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4941 		break;
4942 	case IEEE80211_MODE_11G:
4943 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4944 		break;
4945 	case IEEE80211_MODE_TURBO_A:
4946 		/* XXX until static/dynamic turbo is fixed */
4947 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4948 		break;
4949 	case IEEE80211_MODE_TURBO_G:
4950 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4951 		break;
4952 	default:
4953 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4954 			__func__, mode);
4955 		return 0;
4956 	}
4957 	sc->sc_rates[mode] = rt;
4958 	if (rt != NULL) {
4959 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4960 		return 1;
4961 	} else
4962 		return 0;
4963 }
4964 
4965 static void
4966 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4967 {
4968 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4969 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4970 	static const struct {
4971 		u_int		rate;		/* tx/rx 802.11 rate */
4972 		uint16_t	timeOn;		/* LED on time (ms) */
4973 		uint16_t	timeOff;	/* LED off time (ms) */
4974 	} blinkrates[] = {
4975 		{ 108,  40,  10 },
4976 		{  96,  44,  11 },
4977 		{  72,  50,  13 },
4978 		{  48,  57,  14 },
4979 		{  36,  67,  16 },
4980 		{  24,  80,  20 },
4981 		{  22, 100,  25 },
4982 		{  18, 133,  34 },
4983 		{  12, 160,  40 },
4984 		{  10, 200,  50 },
4985 		{   6, 240,  58 },
4986 		{   4, 267,  66 },
4987 		{   2, 400, 100 },
4988 		{   0, 500, 130 },
4989 	};
4990 	const HAL_RATE_TABLE *rt;
4991 	int i, j;
4992 
4993 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4994 	rt = sc->sc_rates[mode];
4995 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4996 	for (i = 0; i < rt->rateCount; i++)
4997 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4998 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4999 	for (i = 0; i < 32; i++) {
5000 		uint8_t ix = rt->rateCodeToIndex[i];
5001 		if (ix == 0xff) {
5002 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5003 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5004 			continue;
5005 		}
5006 		sc->sc_hwmap[i].ieeerate =
5007 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5008 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5009 		if (rt->info[ix].shortPreamble ||
5010 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5011 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5012 		/* NB: receive frames include FCS */
5013 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5014 			IEEE80211_RADIOTAP_F_FCS;
5015 		/* setup blink rate table to avoid per-packet lookup */
5016 		for (j = 0; j < N(blinkrates)-1; j++)
5017 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5018 				break;
5019 		/* NB: this uses the last entry if the rate isn't found */
5020 		/* XXX beware of overlow */
5021 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5022 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5023 	}
5024 	sc->sc_currates = rt;
5025 	sc->sc_curmode = mode;
5026 	/*
5027 	 * All protection frames are transmited at 2Mb/s for
5028 	 * 11g, otherwise at 1Mb/s.
5029 	 */
5030 	if (mode == IEEE80211_MODE_11G)
5031 		sc->sc_protrix = ath_tx_findrix(rt, 2 * 2);
5032 	else
5033 		sc->sc_protrix = ath_tx_findrix(rt, 2 * 1);
5034 	/* rate index used to send management frames */
5035 	sc->sc_minrateix = 0;
5036 	/*
5037 	 * Setup multicast rate state.
5038 	 */
5039 	/* XXX layering violation */
5040 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5041 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5042 	/* NB: caller is responsible for reseting rate control state */
5043 #undef N
5044 }
5045 
5046 #ifdef ATH_DEBUG
5047 static void
5048 ath_printrxbuf(const struct ath_buf *bf, u_int ix, int done)
5049 {
5050 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5051 	const struct ath_desc *ds;
5052 	int i;
5053 
5054 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5055 		kprintf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
5056 		       "      %08x %08x %08x %08x\n",
5057 		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
5058 		    ds->ds_link, ds->ds_data,
5059 		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
5060 		    ds->ds_ctl0, ds->ds_ctl1,
5061 		    ds->ds_hw[0], ds->ds_hw[1]);
5062 	}
5063 }
5064 
5065 static void
5066 ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done)
5067 {
5068 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
5069 	const struct ath_desc *ds;
5070 	int i;
5071 
5072 	kprintf("Q%u[%3u]", qnum, ix);
5073 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5074 		kprintf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
5075 		       "        %08x %08x %08x %08x %08x %08x\n",
5076 		    ds, (const struct ath_desc *)bf->bf_daddr + i,
5077 		    ds->ds_link, ds->ds_data, bf->bf_flags,
5078 		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
5079 		    ds->ds_ctl0, ds->ds_ctl1,
5080 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
5081 	}
5082 }
5083 #endif /* ATH_DEBUG */
5084 
5085 static void
5086 ath_watchdog(struct ifnet *ifp)
5087 {
5088 	struct ath_softc *sc = ifp->if_softc;
5089 	struct ieee80211com *ic = &sc->sc_ic;
5090 
5091 	ifp->if_timer = 0;
5092 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5093 		return;
5094 	if (sc->sc_tx_timer) {
5095 		if (--sc->sc_tx_timer == 0) {
5096 			if_printf(ifp, "device timeout\n");
5097 			ath_reset(ifp);
5098 			ifp->if_oerrors++;
5099 			sc->sc_stats.ast_watchdog++;
5100 		} else
5101 			ifp->if_timer = 1;
5102 	}
5103 	ieee80211_watchdog(ic);
5104 }
5105 
5106 #ifdef ATH_DIAGAPI
5107 /*
5108  * Diagnostic interface to the HAL.  This is used by various
5109  * tools to do things like retrieve register contents for
5110  * debugging.  The mechanism is intentionally opaque so that
5111  * it can change frequently w/o concern for compatiblity.
5112  */
5113 static int
5114 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5115 {
5116 	struct ath_hal *ah = sc->sc_ah;
5117 	u_int id = ad->ad_id & ATH_DIAG_ID;
5118 	void *indata = NULL;
5119 	void *outdata = NULL;
5120 	uint32_t insize = ad->ad_in_size;
5121 	uint32_t outsize = ad->ad_out_size;
5122 	int error = 0;
5123 
5124 	if (ad->ad_id & ATH_DIAG_IN) {
5125 		/*
5126 		 * Copy in data.
5127 		 */
5128 		indata = kmalloc(insize, M_TEMP, M_NOWAIT);
5129 		if (indata == NULL) {
5130 			error = ENOMEM;
5131 			goto bad;
5132 		}
5133 		error = copyin(ad->ad_in_data, indata, insize);
5134 		if (error)
5135 			goto bad;
5136 	}
5137 	if (ad->ad_id & ATH_DIAG_DYN) {
5138 		/*
5139 		 * Allocate a buffer for the results (otherwise the HAL
5140 		 * returns a pointer to a buffer where we can read the
5141 		 * results).  Note that we depend on the HAL leaving this
5142 		 * pointer for us to use below in reclaiming the buffer;
5143 		 * may want to be more defensive.
5144 		 */
5145 		outdata = kmalloc(outsize, M_TEMP, M_NOWAIT);
5146 		if (outdata == NULL) {
5147 			error = ENOMEM;
5148 			goto bad;
5149 		}
5150 	}
5151 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5152 		if (outsize < ad->ad_out_size)
5153 			ad->ad_out_size = outsize;
5154 		if (outdata != NULL)
5155 			error = copyout(outdata, ad->ad_out_data,
5156 					ad->ad_out_size);
5157 	} else {
5158 		error = EINVAL;
5159 	}
5160 bad:
5161 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5162 		kfree(indata, M_TEMP);
5163 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5164 		kfree(outdata, M_TEMP);
5165 	return error;
5166 }
5167 #endif /* ATH_DIAGAPI */
5168 
5169 static int
5170 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
5171 {
5172 #define	IS_RUNNING(ifp) \
5173 	((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
5174 	struct ath_softc *sc = ifp->if_softc;
5175 	struct ieee80211com *ic = &sc->sc_ic;
5176 	struct ifreq *ifr = (struct ifreq *)data;
5177 	int error = 0;
5178 
5179 	ASSERT_SERIALIZED(ifp->if_serializer);
5180 
5181 	switch (cmd) {
5182 	case SIOCSIFFLAGS:
5183 		if (IS_RUNNING(ifp)) {
5184 			/*
5185 			 * To avoid rescanning another access point,
5186 			 * do not call ath_init() here.  Instead,
5187 			 * only reflect promisc mode settings.
5188 			 */
5189 			ath_mode_init(sc);
5190 		} else if (ifp->if_flags & IFF_UP) {
5191 			/*
5192 			 * Beware of being called during attach/detach
5193 			 * to reset promiscuous mode.  In that case we
5194 			 * will still be marked UP but not RUNNING.
5195 			 * However trying to re-init the interface
5196 			 * is the wrong thing to do as we've already
5197 			 * torn down much of our state.  There's
5198 			 * probably a better way to deal with this.
5199 			 */
5200 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5201 				ath_init(sc);	/* XXX lose error */
5202 		} else
5203 			ath_stop_no_pwchg(ifp);
5204 		break;
5205 	case SIOCADDMULTI:
5206 	case SIOCDELMULTI:
5207 		/*
5208 		 * The upper layer has already installed/removed
5209 		 * the multicast address(es), just recalculate the
5210 		 * multicast filter for the card.
5211 		 */
5212 		if (ifp->if_flags & IFF_RUNNING)
5213 			ath_mode_init(sc);
5214 		break;
5215 	case SIOCGATHSTATS:
5216 		/* NB: embed these numbers to get a consistent view */
5217 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5218 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5219 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5220 		sc->sc_stats.ast_rx_noise =
5221 			ath_hal_getchannoise(sc->sc_ah, &sc->sc_curchan);
5222 		sc->sc_stats.ast_tx_rate = sc->sc_hwmap[sc->sc_txrate].ieeerate;
5223 		return copyout(&sc->sc_stats,
5224 				ifr->ifr_data, sizeof (sc->sc_stats));
5225 #ifdef ATH_DIAGAPI
5226 	case SIOCGATHDIAG:
5227 		error = ath_ioctl_diag(sc, (struct ath_diag *)ifr);
5228 		break;
5229 #endif
5230 	default:
5231 		error = ieee80211_ioctl(ic, cmd, data, cr);
5232 		if (error == ENETRESET) {
5233 			if (IS_RUNNING(ifp) &&
5234 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5235 				ath_init(sc);	/* XXX lose error */
5236 			error = 0;
5237 		}
5238 		if (error == ERESTART)
5239 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5240 		break;
5241 	}
5242 	return error;
5243 #undef IS_RUNNING
5244 }
5245 
5246 static int
5247 ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
5248 {
5249 	struct ath_softc *sc = arg1;
5250 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5251 	u_int slottime;
5252 	int error;
5253 
5254 	lwkt_serialize_enter(ifp->if_serializer);
5255 
5256 	slottime = ath_hal_getslottime(sc->sc_ah);
5257 	error = sysctl_handle_int(oidp, &slottime, 0, req);
5258 	if (error || !req->newptr)
5259 		goto back;
5260 	error = !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
5261 back:
5262 	lwkt_serialize_exit(ifp->if_serializer);
5263 	return error;
5264 }
5265 
5266 static int
5267 ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
5268 {
5269 	struct ath_softc *sc = arg1;
5270 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5271 	u_int acktimeout;
5272 	int error;
5273 
5274 	lwkt_serialize_enter(ifp->if_serializer);
5275 
5276 	acktimeout = ath_hal_getacktimeout(sc->sc_ah);
5277 	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
5278 	if (error || !req->newptr)
5279 		goto back;
5280 	error = !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
5281 back:
5282 	lwkt_serialize_exit(ifp->if_serializer);
5283 	return error;
5284 }
5285 
5286 static int
5287 ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
5288 {
5289 	struct ath_softc *sc = arg1;
5290 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5291 	u_int ctstimeout;
5292 	int error;
5293 
5294 	lwkt_serialize_enter(ifp->if_serializer);
5295 
5296 	ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
5297 	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
5298 	if (error || !req->newptr)
5299 		goto back;
5300 	error = !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
5301 back:
5302 	lwkt_serialize_exit(ifp->if_serializer);
5303 	return error;
5304 }
5305 
5306 static int
5307 ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
5308 {
5309 	struct ath_softc *sc = arg1;
5310 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5311 	int softled;
5312 	int error;
5313 
5314 	lwkt_serialize_enter(ifp->if_serializer);
5315 
5316 	softled = sc->sc_softled;
5317 	error = sysctl_handle_int(oidp, &softled, 0, req);
5318 	if (error || !req->newptr)
5319 		goto back;
5320 	softled = (softled != 0);
5321 	if (softled != sc->sc_softled) {
5322 		if (softled) {
5323 			/* NB: handle any sc_ledpin change */
5324 			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5325 			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5326 				!sc->sc_ledon);
5327 		}
5328 		sc->sc_softled = softled;
5329 	}
5330 back:
5331 	lwkt_serialize_exit(ifp->if_serializer);
5332 	return error;
5333 }
5334 
5335 static int
5336 ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
5337 {
5338 	struct ath_softc *sc = arg1;
5339 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5340 	u_int defantenna;
5341 	int error;
5342 
5343 	lwkt_serialize_enter(ifp->if_serializer);
5344 
5345 	defantenna = ath_hal_getdefantenna(sc->sc_ah);
5346 	error = sysctl_handle_int(oidp, &defantenna, 0, req);
5347 	if (!error && req->newptr)
5348 		ath_hal_setdefantenna(sc->sc_ah, defantenna);
5349 
5350 	lwkt_serialize_exit(ifp->if_serializer);
5351 	return error;
5352 }
5353 
5354 static int
5355 ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
5356 {
5357 	struct ath_softc *sc = arg1;
5358 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5359 	u_int diversity;
5360 	int error;
5361 
5362 	lwkt_serialize_enter(ifp->if_serializer);
5363 
5364 	diversity = ath_hal_getdiversity(sc->sc_ah);
5365 	error = sysctl_handle_int(oidp, &diversity, 0, req);
5366 	if (error || !req->newptr)
5367 		goto back;
5368 	if (!ath_hal_setdiversity(sc->sc_ah, diversity)) {
5369 		error = EINVAL;
5370 		goto back;
5371 	}
5372 	sc->sc_diversity = diversity;
5373 	error = 0;
5374 back:
5375 	lwkt_serialize_exit(ifp->if_serializer);
5376 	return error;
5377 }
5378 
5379 static int
5380 ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
5381 {
5382 	struct ath_softc *sc = arg1;
5383 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5384 	uint32_t diag;
5385 	int error;
5386 
5387 	lwkt_serialize_enter(ifp->if_serializer);
5388 
5389 	if (!ath_hal_getdiag(sc->sc_ah, &diag)) {
5390 		error = EINVAL;
5391 		goto back;
5392 	}
5393 	error = sysctl_handle_int(oidp, &diag, 0, req);
5394 	if (error || !req->newptr)
5395 		goto back;
5396 	error = !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
5397 back:
5398 	lwkt_serialize_exit(ifp->if_serializer);
5399 	return error;
5400 }
5401 
5402 static int
5403 ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
5404 {
5405 	struct ath_softc *sc = arg1;
5406 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5407 	uint32_t scale;
5408 	int error;
5409 
5410 	lwkt_serialize_enter(ifp->if_serializer);
5411 
5412 	ath_hal_gettpscale(sc->sc_ah, &scale);
5413 	error = sysctl_handle_int(oidp, &scale, 0, req);
5414 	if (error || !req->newptr)
5415 		goto back;
5416 	error = !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
5417 back:
5418 	lwkt_serialize_exit(ifp->if_serializer);
5419 	return error;
5420 }
5421 
5422 static int
5423 ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
5424 {
5425 	struct ath_softc *sc = arg1;
5426 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5427 	u_int tpc;
5428 	int error;
5429 
5430 	lwkt_serialize_enter(ifp->if_serializer);
5431 
5432 	tpc = ath_hal_gettpc(sc->sc_ah);
5433 	error = sysctl_handle_int(oidp, &tpc, 0, req);
5434 	if (error || !req->newptr)
5435 		goto back;
5436 	error = !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
5437 back:
5438 	lwkt_serialize_exit(ifp->if_serializer);
5439 	return error;
5440 }
5441 
5442 static int
5443 ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
5444 {
5445 	struct ath_softc *sc = arg1;
5446 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5447 	struct ath_hal *ah = sc->sc_ah;
5448 	u_int rfkill;
5449 	int error;
5450 
5451 	lwkt_serialize_enter(ifp->if_serializer);
5452 
5453 	rfkill = ath_hal_getrfkill(ah);
5454 	error = sysctl_handle_int(oidp, &rfkill, 0, req);
5455 	if (error || !req->newptr)
5456 		goto back;
5457 
5458 	error = 0;
5459 
5460 	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
5461 		goto back;
5462 
5463 	if (!ath_hal_setrfkill(ah, rfkill) || ath_reset(&sc->sc_ic.ic_if) != 0)
5464 		error = EINVAL;
5465 back:
5466 	lwkt_serialize_exit(ifp->if_serializer);
5467 	return error;
5468 }
5469 
5470 static int
5471 ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
5472 {
5473 	struct ath_softc *sc = arg1;
5474 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5475 	u_int rfsilent;
5476 	int error;
5477 
5478 	lwkt_serialize_enter(ifp->if_serializer);
5479 
5480 	ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
5481 	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
5482 	if (error || !req->newptr)
5483 		goto back;
5484 	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent)) {
5485 		error = EINVAL;
5486 		goto back;
5487 	}
5488 	sc->sc_rfsilentpin = rfsilent & 0x1c;
5489 	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
5490 	error = 0;
5491 back:
5492 	lwkt_serialize_exit(ifp->if_serializer);
5493 	return error;
5494 }
5495 
5496 static int
5497 ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
5498 {
5499 	struct ath_softc *sc = arg1;
5500 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5501 	uint32_t rd;
5502 	int error;
5503 
5504 	lwkt_serialize_enter(ifp->if_serializer);
5505 
5506 	if (!ath_hal_getregdomain(sc->sc_ah, &rd)) {
5507 		error = EINVAL;
5508 		goto back;
5509 	}
5510 	error = sysctl_handle_int(oidp, &rd, 0, req);
5511 	if (error || !req->newptr)
5512 		goto back;
5513 	error = !ath_hal_setregdomain(sc->sc_ah, rd) ? EINVAL : 0;
5514 back:
5515 	lwkt_serialize_exit(ifp->if_serializer);
5516 	return error;
5517 }
5518 
5519 static int
5520 ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
5521 {
5522 	struct ath_softc *sc = arg1;
5523 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5524 	uint32_t tpack;
5525 	int error;
5526 
5527 	lwkt_serialize_enter(ifp->if_serializer);
5528 
5529 	ath_hal_gettpack(sc->sc_ah, &tpack);
5530 	error = sysctl_handle_int(oidp, &tpack, 0, req);
5531 	if (error || !req->newptr)
5532 		goto back;
5533 	error = !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
5534 back:
5535 	lwkt_serialize_exit(ifp->if_serializer);
5536 	return error;
5537 }
5538 
5539 static int
5540 ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
5541 {
5542 	struct ath_softc *sc = arg1;
5543 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5544 	uint32_t tpcts;
5545 	int error;
5546 
5547 	lwkt_serialize_enter(ifp->if_serializer);
5548 
5549 	ath_hal_gettpcts(sc->sc_ah, &tpcts);
5550 	error = sysctl_handle_int(oidp, &tpcts, 0, req);
5551 	if (error || !req->newptr)
5552 		goto back;
5553 	error = !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
5554 back:
5555 	lwkt_serialize_exit(ifp->if_serializer);
5556 	return error;
5557 }
5558 
5559 static void
5560 ath_sysctlattach(struct ath_softc *sc)
5561 {
5562 	struct sysctl_ctx_list *ctx = &sc->sc_sysctl_ctx;
5563 	struct sysctl_oid *tree = sc->sc_sysctl_tree;
5564 	struct ath_hal *ah = sc->sc_ah;
5565 
5566 	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
5567 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5568 		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
5569 		"EEPROM country code");
5570 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5571 		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5572 		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
5573 #ifdef	ATH_DEBUG
5574 	sc->sc_debug = ath_debug;
5575 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5576 		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
5577 		"control debugging kprintfs");
5578 #endif
5579 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5580 		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5581 		ath_sysctl_slottime, "I", "802.11 slot time (us)");
5582 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5583 		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5584 		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
5585 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5586 		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5587 		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
5588 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5589 		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5590 		ath_sysctl_softled, "I", "enable/disable software LED support");
5591 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5592 		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
5593 		"GPIO pin connected to LED");
5594 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5595 		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
5596 		"setting to turn LED on");
5597 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5598 		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
5599 		"idle time for inactivity LED (ticks)");
5600 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5601 		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
5602 		"tx antenna (0=auto)");
5603 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5604 		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5605 		ath_sysctl_rxantenna, "I", "default/rx antenna");
5606 	if (ath_hal_hasdiversity(ah))
5607 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5608 			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5609 			ath_sysctl_diversity, "I", "antenna diversity");
5610 	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
5611 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5612 		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
5613 		"tx descriptor batching");
5614 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5615 		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5616 		ath_sysctl_diag, "I", "h/w diagnostic control");
5617 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5618 		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5619 		ath_sysctl_tpscale, "I", "tx power scaling");
5620 	if (ath_hal_hastpc(ah)) {
5621 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5622 			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5623 			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
5624 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5625 			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5626 			ath_sysctl_tpack, "I", "tx power for ack frames");
5627 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5628 			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5629 			ath_sysctl_tpcts, "I", "tx power for cts frames");
5630 	}
5631 	if (ath_hal_hasrfsilent(ah)) {
5632 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5633 			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5634 			ath_sysctl_rfsilent, "I", "h/w RF silent config");
5635 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5636 			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5637 			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
5638 	}
5639 	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
5640 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5641 		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
5642 		"mask of error frames to pass when monitoring");
5643 }
5644 
5645 static void
5646 ath_bpfattach(struct ath_softc *sc)
5647 {
5648 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5649 
5650 	bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
5651 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5652 		&sc->sc_drvbpf);
5653 	/*
5654 	 * Initialize constant fields.
5655 	 * XXX make header lengths a multiple of 32-bits so subsequent
5656 	 *     headers are properly aligned; this is a kludge to keep
5657 	 *     certain applications happy.
5658 	 *
5659 	 * NB: the channel is setup each time we transition to the
5660 	 *     RUN state to avoid filling it in for each frame.
5661 	 */
5662 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(uint32_t));
5663 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5664 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5665 
5666 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(uint32_t));
5667 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5668 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5669 }
5670 
5671 /*
5672  * Announce various information on device/driver attach.
5673  */
5674 static void
5675 ath_announce(struct ath_softc *sc)
5676 {
5677 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5678 	struct ifnet *ifp = &sc->sc_ic.ic_if;
5679 	struct ath_hal *ah = sc->sc_ah;
5680 	u_int modes, cc;
5681 
5682 	if_printf(ifp, "mac %d.%d phy %d.%d",
5683 		ah->ah_macVersion, ah->ah_macRev,
5684 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5685 	/*
5686 	 * Print radio revision(s).  We check the wireless modes
5687 	 * to avoid falsely printing revs for inoperable parts.
5688 	 * Dual-band radio revs are returned in the 5Ghz rev number.
5689 	 */
5690 	ath_hal_getcountrycode(ah, &cc);
5691 	modes = ath_hal_getwirelessmodes(ah, cc);
5692 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5693 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5694 			kprintf(" 5ghz radio %d.%d 2ghz radio %d.%d",
5695 				ah->ah_analog5GhzRev >> 4,
5696 				ah->ah_analog5GhzRev & 0xf,
5697 				ah->ah_analog2GhzRev >> 4,
5698 				ah->ah_analog2GhzRev & 0xf);
5699 		else
5700 			kprintf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5701 				ah->ah_analog5GhzRev & 0xf);
5702 	} else
5703 		kprintf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5704 			ah->ah_analog5GhzRev & 0xf);
5705 	kprintf("\n");
5706 	if (bootverbose) {
5707 		int i;
5708 		for (i = 0; i <= WME_AC_VO; i++) {
5709 			struct ath_txq *txq = sc->sc_ac2q[i];
5710 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5711 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5712 		}
5713 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5714 			sc->sc_cabq->axq_qnum);
5715 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5716 	}
5717 	if (ath_rxbuf != ATH_RXBUF)
5718 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5719 	if (ath_txbuf != ATH_TXBUF)
5720 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5721 #undef HAL_MODE_DUALBAND
5722 }
5723 
5724 static void
5725 ath_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nseg,
5726 		 bus_size_t mapsize, int error)
5727 {
5728 	struct ath_buf *bf = arg;
5729 
5730 	if (error)
5731 		return;
5732 
5733 	KASSERT(nseg <= ATH_MAX_SCATTER, ("too many DMA segments"));
5734 	bcopy(segs, bf->bf_segs, nseg * sizeof(bus_dma_segment_t));
5735 	bf->bf_nseg = nseg;
5736 }
5737