xref: /dragonfly/sys/dev/netif/ath/ath/if_ath.c (revision ef3ac1d1)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 
32 /*
33  * Driver for the Atheros Wireless LAN controller.
34  *
35  * This software is derived from work of Atsushi Onoe; his contribution
36  * is greatly appreciated.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ath.h"
41 /*
42  * This is needed for register operations which are performed
43  * by the driver - eg, calls to ath_hal_gettsf32().
44  *
45  * It's also required for any AH_DEBUG checks in here, eg the
46  * module dependencies.
47  */
48 #include "opt_ah.h"
49 #include "opt_wlan.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysctl.h>
54 #include <sys/mbuf.h>
55 #include <sys/malloc.h>
56 #include <sys/lock.h>
57 #include <sys/mutex.h>
58 #include <sys/kernel.h>
59 #include <sys/socket.h>
60 #include <sys/sockio.h>
61 #include <sys/errno.h>
62 #include <sys/callout.h>
63 #include <sys/bus.h>
64 #include <sys/endian.h>
65 #include <sys/kthread.h>
66 #include <sys/taskqueue.h>
67 #include <sys/priv.h>
68 #include <sys/module.h>
69 #include <sys/ktr.h>
70 
71 #include <net/if.h>
72 #include <net/if_var.h>
73 #include <net/if_dl.h>
74 #include <net/if_media.h>
75 #include <net/if_types.h>
76 #include <net/if_arp.h>
77 #include <net/ethernet.h>
78 #include <net/if_llc.h>
79 #include <net/ifq_var.h>
80 
81 #include <netproto/802_11/ieee80211_var.h>
82 #include <netproto/802_11/ieee80211_regdomain.h>
83 #ifdef IEEE80211_SUPPORT_SUPERG
84 #include <netproto/802_11/ieee80211_superg.h>
85 #endif
86 #ifdef IEEE80211_SUPPORT_TDMA
87 #include <netproto/802_11/ieee80211_tdma.h>
88 #endif
89 
90 #include <net/bpf.h>
91 
92 #ifdef INET
93 #include <netinet/in.h>
94 #include <netinet/if_ether.h>
95 #endif
96 
97 #include <dev/netif/ath/ath/if_athvar.h>
98 #include <dev/netif/ath/ath_hal/ah_devid.h>		/* XXX for softled */
99 #include <dev/netif/ath/ath_hal/ah_diagcodes.h>
100 
101 #include <dev/netif/ath/ath/if_ath_debug.h>
102 #include <dev/netif/ath/ath/if_ath_misc.h>
103 #include <dev/netif/ath/ath/if_ath_tsf.h>
104 #include <dev/netif/ath/ath/if_ath_tx.h>
105 #include <dev/netif/ath/ath/if_ath_sysctl.h>
106 #include <dev/netif/ath/ath/if_ath_led.h>
107 #include <dev/netif/ath/ath/if_ath_keycache.h>
108 #include <dev/netif/ath/ath/if_ath_rx.h>
109 #include <dev/netif/ath/ath/if_ath_rx_edma.h>
110 #include <dev/netif/ath/ath/if_ath_tx_edma.h>
111 #include <dev/netif/ath/ath/if_ath_beacon.h>
112 #include <dev/netif/ath/ath/if_ath_btcoex.h>
113 #include <dev/netif/ath/ath/if_ath_spectral.h>
114 #include <dev/netif/ath/ath/if_ath_lna_div.h>
115 #include <dev/netif/ath/ath/if_athdfs.h>
116 
117 #ifdef ATH_TX99_DIAG
118 #include <dev/netif/ath/ath_tx99/ath_tx99.h>
119 #endif
120 
121 #ifdef	ATH_DEBUG_ALQ
122 #include <dev/netif/ath/ath/if_ath_alq.h>
123 #endif
124 
125 /*
126  * Only enable this if you're working on PS-POLL support.
127  */
128 #define	ATH_SW_PSQ
129 
130 #ifdef __DragonFly__
131 #define CURVNET_SET(name)
132 #define CURVNET_RESTORE()
133 #endif
134 
135 /*
136  * ATH_BCBUF determines the number of vap's that can transmit
137  * beacons and also (currently) the number of vap's that can
138  * have unique mac addresses/bssid.  When staggering beacons
139  * 4 is probably a good max as otherwise the beacons become
140  * very closely spaced and there is limited time for cab q traffic
141  * to go out.  You can burst beacons instead but that is not good
142  * for stations in power save and at some point you really want
143  * another radio (and channel).
144  *
145  * The limit on the number of mac addresses is tied to our use of
146  * the U/L bit and tracking addresses in a byte; it would be
147  * worthwhile to allow more for applications like proxy sta.
148  */
149 CTASSERT(ATH_BCBUF <= 8);
150 
151 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
152 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
153 		    const uint8_t [IEEE80211_ADDR_LEN],
154 		    const uint8_t [IEEE80211_ADDR_LEN]);
155 static void	ath_vap_delete(struct ieee80211vap *);
156 static void	ath_init(void *);
157 static void	ath_stop_locked(struct ifnet *);
158 static void	ath_stop(struct ifnet *);
159 static int	ath_reset_vap(struct ieee80211vap *, u_long);
160 static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
161 #if 0
162 static void	ath_qflush(struct ifnet *ifp);
163 #endif
164 static int	ath_media_change(struct ifnet *);
165 static void	ath_watchdog(void *);
166 static void	ath_start(struct ifnet *, struct ifaltq_subque *);
167 static int	ath_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
168 static void	ath_fatal_proc(void *, int);
169 static void	ath_bmiss_vap(struct ieee80211vap *);
170 static void	ath_bmiss_proc(void *, int);
171 static void	ath_key_update_begin(struct ieee80211vap *);
172 static void	ath_key_update_end(struct ieee80211vap *);
173 static void	ath_update_mcast(struct ifnet *);
174 static void	ath_update_promisc(struct ifnet *);
175 static void	ath_updateslot(struct ifnet *);
176 static void	ath_bstuck_proc(void *, int);
177 static void	ath_reset_proc(void *, int);
178 static int	ath_desc_alloc(struct ath_softc *);
179 static void	ath_desc_free(struct ath_softc *);
180 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
181 			const uint8_t [IEEE80211_ADDR_LEN]);
182 static void	ath_node_cleanup(struct ieee80211_node *);
183 static void	ath_node_free(struct ieee80211_node *);
184 static void	ath_node_getsignal(const struct ieee80211_node *,
185 			int8_t *, int8_t *);
186 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
187 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
188 static int	ath_tx_setup(struct ath_softc *, int, int);
189 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
190 static void	ath_tx_cleanup(struct ath_softc *);
191 static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
192 		    int dosched);
193 static void	ath_tx_proc_q0(void *, int);
194 static void	ath_tx_proc_q0123(void *, int);
195 static void	ath_tx_proc(void *, int);
196 static void	ath_txq_sched_tasklet(void *, int);
197 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
198 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
199 static void	ath_scan_start(struct ieee80211com *);
200 static void	ath_scan_end(struct ieee80211com *);
201 static void	ath_set_channel(struct ieee80211com *);
202 #ifdef	ATH_ENABLE_11N
203 static void	ath_update_chw(struct ieee80211com *);
204 #endif	/* ATH_ENABLE_11N */
205 static void	ath_calibrate(void *);
206 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
207 static void	ath_setup_stationkey(struct ieee80211_node *);
208 static void	ath_newassoc(struct ieee80211_node *, int);
209 static int	ath_setregdomain(struct ieee80211com *,
210 		    struct ieee80211_regdomain *, int,
211 		    struct ieee80211_channel []);
212 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
213 		    struct ieee80211_channel []);
214 static int	ath_getchannels(struct ath_softc *);
215 
216 static int	ath_rate_setup(struct ath_softc *, u_int mode);
217 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
218 
219 static void	ath_announce(struct ath_softc *);
220 
221 static void	ath_dfs_tasklet(void *, int);
222 #if 0
223 static void	ath_node_powersave(struct ieee80211_node *, int);
224 static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
225 #endif
226 static int	ath_node_set_tim(struct ieee80211_node *, int);
227 
228 #ifdef IEEE80211_SUPPORT_TDMA
229 #include <dev/netif/ath/ath/if_ath_tdma.h>
230 #endif
231 
232 extern	const char* ath_hal_ether_sprintf(const u_int8_t *mac);
233 
234 SYSCTL_DECL(_hw_ath);
235 
236 /* XXX validate sysctl values */
237 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
238 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
239 	    0, "long chip calibration interval (secs)");
240 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
241 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
242 	    0, "short chip calibration interval (msecs)");
243 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
244 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
245 	    0, "reset chip calibration results (secs)");
246 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
247 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
248 	    0, "ANI calibration (msecs)");
249 
250 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
251 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
252 	    0, "rx buffers allocated");
253 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
254 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
255 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
256 	    0, "tx buffers allocated");
257 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
258 int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
259 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
260 	    0, "tx (mgmt) buffers allocated");
261 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
262 
263 int ath_bstuck_threshold = 4;		/* max missed beacons */
264 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
265 	    0, "max missed beacon xmits before chip reset");
266 
267 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
268 
269 void
270 ath_legacy_attach_comp_func(struct ath_softc *sc)
271 {
272 
273 	/*
274 	 * Special case certain configurations.  Note the
275 	 * CAB queue is handled by these specially so don't
276 	 * include them when checking the txq setup mask.
277 	 */
278 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
279 	case 0x01:
280 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
281 		break;
282 	case 0x0f:
283 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
284 		break;
285 	default:
286 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
287 		break;
288 	}
289 }
290 
291 /*
292  * Set the target power mode.
293  *
294  * If this is called during a point in time where
295  * the hardware is being programmed elsewhere, it will
296  * simply store it away and update it when all current
297  * uses of the hardware are completed.
298  */
299 void
300 _ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
301 {
302 	ATH_LOCK_ASSERT(sc);
303 
304 	sc->sc_target_powerstate = power_state;
305 
306 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
307 	    __func__,
308 	    file,
309 	    line,
310 	    power_state,
311 	    sc->sc_powersave_refcnt);
312 
313 	if (sc->sc_powersave_refcnt == 0 &&
314 	    power_state != sc->sc_cur_powerstate) {
315 		sc->sc_cur_powerstate = power_state;
316 		ath_hal_setpower(sc->sc_ah, power_state);
317 
318 		/*
319 		 * If the NIC is force-awake, then set the
320 		 * self-gen frame state appropriately.
321 		 *
322 		 * If the nic is in network sleep or full-sleep,
323 		 * we let the above call leave the self-gen
324 		 * state as "sleep".
325 		 */
326 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
327 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
328 			ath_hal_setselfgenpower(sc->sc_ah,
329 			    sc->sc_target_selfgen_state);
330 		}
331 	}
332 }
333 
334 /*
335  * Set the current self-generated frames state.
336  *
337  * This is separate from the target power mode.  The chip may be
338  * awake but the desired state is "sleep", so frames sent to the
339  * destination has PWRMGT=1 in the 802.11 header.  The NIC also
340  * needs to know to set PWRMGT=1 in self-generated frames.
341  */
342 void
343 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
344 {
345 
346 	ATH_LOCK_ASSERT(sc);
347 
348 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
349 	    __func__,
350 	    file,
351 	    line,
352 	    power_state,
353 	    sc->sc_target_selfgen_state);
354 
355 	sc->sc_target_selfgen_state = power_state;
356 
357 	/*
358 	 * If the NIC is force-awake, then set the power state.
359 	 * Network-state and full-sleep will already transition it to
360 	 * mark self-gen frames as sleeping - and we can't
361 	 * guarantee the NIC is awake to program the self-gen frame
362 	 * setting anyway.
363 	 */
364 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
365 		ath_hal_setselfgenpower(sc->sc_ah, power_state);
366 	}
367 }
368 
369 /*
370  * Set the hardware power mode and take a reference.
371  *
372  * This doesn't update the target power mode in the driver;
373  * it just updates the hardware power state.
374  *
375  * XXX it should only ever force the hardware awake; it should
376  * never be called to set it asleep.
377  */
378 void
379 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
380 {
381 	ATH_LOCK_ASSERT(sc);
382 
383 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
384 	    __func__,
385 	    file,
386 	    line,
387 	    power_state,
388 	    sc->sc_powersave_refcnt);
389 
390 	sc->sc_powersave_refcnt++;
391 
392 	if (power_state != sc->sc_cur_powerstate) {
393 		ath_hal_setpower(sc->sc_ah, power_state);
394 		sc->sc_cur_powerstate = power_state;
395 
396 		/*
397 		 * Adjust the self-gen powerstate if appropriate.
398 		 */
399 		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
400 		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
401 			ath_hal_setselfgenpower(sc->sc_ah,
402 			    sc->sc_target_selfgen_state);
403 		}
404 
405 	}
406 }
407 
408 /*
409  * Restore the power save mode to what it once was.
410  *
411  * This will decrement the reference counter and once it hits
412  * zero, it'll restore the powersave state.
413  */
414 void
415 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
416 {
417 
418 	ATH_LOCK_ASSERT(sc);
419 
420 	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
421 	    __func__,
422 	    file,
423 	    line,
424 	    sc->sc_powersave_refcnt,
425 	    sc->sc_target_powerstate);
426 
427 	if (sc->sc_powersave_refcnt == 0)
428 		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
429 	else
430 		sc->sc_powersave_refcnt--;
431 
432 	if (sc->sc_powersave_refcnt == 0 &&
433 	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
434 		sc->sc_cur_powerstate = sc->sc_target_powerstate;
435 		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
436 	}
437 
438 	/*
439 	 * Adjust the self-gen powerstate if appropriate.
440 	 */
441 	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
442 	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
443 		ath_hal_setselfgenpower(sc->sc_ah,
444 		    sc->sc_target_selfgen_state);
445 	}
446 
447 }
448 
449 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
450 #define	HAL_MODE_HT40 \
451 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
452 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
453 int
454 ath_attach(u_int16_t devid, struct ath_softc *sc)
455 {
456 	struct ifnet *ifp;
457 	struct ieee80211com *ic;
458 	struct ath_hal *ah = NULL;
459 	HAL_STATUS status;
460 	int error = 0, i;
461 	u_int wmodes;
462 	uint8_t macaddr[IEEE80211_ADDR_LEN];
463 	int rx_chainmask, tx_chainmask;
464 
465 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
466 
467 	CURVNET_SET(vnet0);
468 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
469 	if (ifp == NULL) {
470 		device_printf(sc->sc_dev, "can not if_alloc()\n");
471 		error = ENOSPC;
472 		CURVNET_RESTORE();
473 		goto bad;
474 	}
475 	ic = ifp->if_l2com;
476 
477 	/* set these up early for if_printf use */
478 	if_initname(ifp, device_get_name(sc->sc_dev),
479 		device_get_unit(sc->sc_dev));
480 	CURVNET_RESTORE();
481 
482 	sc->sc_rxfifo_state = ATH_RXFIFO_RESET;
483 
484 	/* prepare sysctl tree for use in sub modules */
485 	sysctl_ctx_init(&sc->sc_sysctl_ctx);
486 	sc->sc_sysctl_tree = SYSCTL_ADD_NODE(&sc->sc_sysctl_ctx,
487 		SYSCTL_STATIC_CHILDREN(_hw),
488 		OID_AUTO,
489 		device_get_nameunit(sc->sc_dev),
490 		CTLFLAG_RD, 0, "");
491 
492 
493 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
494 	    sc->sc_eepromdata, &status);
495 	if (ah == NULL) {
496 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
497 			status);
498 		error = ENXIO;
499 		goto bad;
500 	}
501 	sc->sc_ah = ah;
502 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
503 #ifdef	ATH_DEBUG
504 	sc->sc_debug = ath_debug;
505 #endif
506 
507 	/*
508 	 * Setup the DMA/EDMA functions based on the current
509 	 * hardware support.
510 	 *
511 	 * This is required before the descriptors are allocated.
512 	 */
513 	if (ath_hal_hasedma(sc->sc_ah)) {
514 		sc->sc_isedma = 1;
515 		ath_recv_setup_edma(sc);
516 		ath_xmit_setup_edma(sc);
517 	} else {
518 		ath_recv_setup_legacy(sc);
519 		ath_xmit_setup_legacy(sc);
520 	}
521 
522 	if (ath_hal_hasmybeacon(sc->sc_ah)) {
523 		sc->sc_do_mybeacon = 1;
524 	}
525 
526 	/*
527 	 * Check if the MAC has multi-rate retry support.
528 	 * We do this by trying to setup a fake extended
529 	 * descriptor.  MAC's that don't have support will
530 	 * return false w/o doing anything.  MAC's that do
531 	 * support it will return true w/o doing anything.
532 	 */
533 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
534 
535 	/*
536 	 * Check if the device has hardware counters for PHY
537 	 * errors.  If so we need to enable the MIB interrupt
538 	 * so we can act on stat triggers.
539 	 */
540 	if (ath_hal_hwphycounters(ah))
541 		sc->sc_needmib = 1;
542 
543 	/*
544 	 * Get the hardware key cache size.
545 	 */
546 	sc->sc_keymax = ath_hal_keycachesize(ah);
547 	if (sc->sc_keymax > ATH_KEYMAX) {
548 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
549 			ATH_KEYMAX, sc->sc_keymax);
550 		sc->sc_keymax = ATH_KEYMAX;
551 	}
552 	/*
553 	 * Reset the key cache since some parts do not
554 	 * reset the contents on initial power up.
555 	 */
556 	for (i = 0; i < sc->sc_keymax; i++)
557 		ath_hal_keyreset(ah, i);
558 
559 	/*
560 	 * Collect the default channel list.
561 	 */
562 	error = ath_getchannels(sc);
563 	if (error != 0)
564 		goto bad;
565 
566 	/*
567 	 * Setup rate tables for all potential media types.
568 	 */
569 	ath_rate_setup(sc, IEEE80211_MODE_11A);
570 	ath_rate_setup(sc, IEEE80211_MODE_11B);
571 	ath_rate_setup(sc, IEEE80211_MODE_11G);
572 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
573 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
574 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
575 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
576 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
577 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
578 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
579 
580 	/* NB: setup here so ath_rate_update is happy */
581 	ath_setcurmode(sc, IEEE80211_MODE_11A);
582 
583 	/*
584 	 * Allocate TX descriptors and populate the lists.
585 	 */
586 	wlan_assert_serialized();
587 	wlan_serialize_exit();
588 	error = ath_desc_alloc(sc);
589 	wlan_serialize_enter();
590 	if (error != 0) {
591 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
592 		    error);
593 		goto bad;
594 	}
595 	error = ath_txdma_setup(sc);
596 	if (error != 0) {
597 		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
598 		    error);
599 		goto bad;
600 	}
601 
602 	/*
603 	 * Allocate RX descriptors and populate the lists.
604 	 */
605 	error = ath_rxdma_setup(sc);
606 	if (error != 0) {
607 		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
608 		    error);
609 		goto bad;
610 	}
611 
612 	callout_init_mp(&sc->sc_cal_ch);
613 	callout_init_mp(&sc->sc_wd_ch);
614 
615 	ATH_TXBUF_LOCK_INIT(sc);
616 
617 	sc->sc_tq = taskqueue_create("ath_taskq", M_INTWAIT,
618 		taskqueue_thread_enqueue, &sc->sc_tq);
619 	taskqueue_start_threads(&sc->sc_tq, 1, TDPRI_KERN_DAEMON, -1,
620 		"%s taskq", ifp->if_xname);
621 
622 	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
623 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
624 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
625 	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
626 	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
627 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
628 
629 	/*
630 	 * Allocate hardware transmit queues: one queue for
631 	 * beacon frames and one data queue for each QoS
632 	 * priority.  Note that the hal handles resetting
633 	 * these queues at the needed time.
634 	 *
635 	 * XXX PS-Poll
636 	 */
637 	sc->sc_bhalq = ath_beaconq_setup(sc);
638 	if (sc->sc_bhalq == (u_int) -1) {
639 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
640 		error = EIO;
641 		goto bad2;
642 	}
643 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
644 	if (sc->sc_cabq == NULL) {
645 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
646 		error = EIO;
647 		goto bad2;
648 	}
649 	/* NB: insure BK queue is the lowest priority h/w queue */
650 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
651 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
652 			ieee80211_wme_acnames[WME_AC_BK]);
653 		error = EIO;
654 		goto bad2;
655 	}
656 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
657 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
658 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
659 		/*
660 		 * Not enough hardware tx queues to properly do WME;
661 		 * just punt and assign them all to the same h/w queue.
662 		 * We could do a better job of this if, for example,
663 		 * we allocate queues when we switch from station to
664 		 * AP mode.
665 		 */
666 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
667 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
668 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
669 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
670 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
671 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
672 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
673 	}
674 
675 	/*
676 	 * Attach the TX completion function.
677 	 *
678 	 * The non-EDMA chips may have some special case optimisations;
679 	 * this method gives everyone a chance to attach cleanly.
680 	 */
681 	sc->sc_tx.xmit_attach_comp_func(sc);
682 
683 	/*
684 	 * Setup rate control.  Some rate control modules
685 	 * call back to change the anntena state so expose
686 	 * the necessary entry points.
687 	 * XXX maybe belongs in struct ath_ratectrl?
688 	 */
689 	sc->sc_setdefantenna = ath_setdefantenna;
690 	sc->sc_rc = ath_rate_attach(sc);
691 	if (sc->sc_rc == NULL) {
692 		error = EIO;
693 		goto bad2;
694 	}
695 
696 	/* Attach DFS module */
697 	if (! ath_dfs_attach(sc)) {
698 		device_printf(sc->sc_dev,
699 		    "%s: unable to attach DFS\n", __func__);
700 		error = EIO;
701 		goto bad2;
702 	}
703 
704 	/* Attach spectral module */
705 	if (ath_spectral_attach(sc) < 0) {
706 		device_printf(sc->sc_dev,
707 		    "%s: unable to attach spectral\n", __func__);
708 		error = EIO;
709 		goto bad2;
710 	}
711 
712 	/* Attach bluetooth coexistence module */
713 	if (ath_btcoex_attach(sc) < 0) {
714 		device_printf(sc->sc_dev,
715 		    "%s: unable to attach bluetooth coexistence\n", __func__);
716 		error = EIO;
717 		goto bad2;
718 	}
719 
720 	/* Attach LNA diversity module */
721 	if (ath_lna_div_attach(sc) < 0) {
722 		device_printf(sc->sc_dev,
723 		    "%s: unable to attach LNA diversity\n", __func__);
724 		error = EIO;
725 		goto bad2;
726 	}
727 
728 	/* Start DFS processing tasklet */
729 	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
730 
731 	/* Configure LED state */
732 	sc->sc_blinking = 0;
733 	sc->sc_ledstate = 1;
734 	sc->sc_ledon = 0;			/* low true */
735 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
736 	callout_init_mp(&sc->sc_ledtimer);
737 
738 	/*
739 	 * Don't setup hardware-based blinking.
740 	 *
741 	 * Although some NICs may have this configured in the
742 	 * default reset register values, the user may wish
743 	 * to alter which pins have which function.
744 	 *
745 	 * The reference driver attaches the MAC network LED to GPIO1 and
746 	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
747 	 * NIC has these reversed.
748 	 */
749 	sc->sc_hardled = (1 == 0);
750 	sc->sc_led_net_pin = -1;
751 	sc->sc_led_pwr_pin = -1;
752 	/*
753 	 * Auto-enable soft led processing for IBM cards and for
754 	 * 5211 minipci cards.  Users can also manually enable/disable
755 	 * support with a sysctl.
756 	 */
757 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
758 	ath_led_config(sc);
759 	ath_hal_setledstate(ah, HAL_LED_INIT);
760 
761 	ifp->if_softc = sc;
762 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
763 #if 0
764 	ifp->if_transmit = ath_transmit;
765 	ifp->if_qflush = ath_qflush;
766 #endif
767 	ifp->if_start = ath_start;
768 	ifp->if_ioctl = ath_ioctl;
769 	ifp->if_init = ath_init;
770 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
771 #if 0
772 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
773 	IFQ_SET_READY(&ifp->if_snd);
774 #endif
775 
776 	ic->ic_ifp = ifp;
777 	/* XXX not right but it's not used anywhere important */
778 	ic->ic_phytype = IEEE80211_T_OFDM;
779 	ic->ic_opmode = IEEE80211_M_STA;
780 	ic->ic_caps =
781 		  IEEE80211_C_STA		/* station mode */
782 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
783 		| IEEE80211_C_HOSTAP		/* hostap mode */
784 		| IEEE80211_C_MONITOR		/* monitor mode */
785 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
786 		| IEEE80211_C_WDS		/* 4-address traffic works */
787 		| IEEE80211_C_MBSS		/* mesh point link mode */
788 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
789 		| IEEE80211_C_SHSLOT		/* short slot time supported */
790 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
791 #ifndef	ATH_ENABLE_11N
792 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
793 #endif
794 		| IEEE80211_C_TXFRAG		/* handle tx frags */
795 #ifdef	ATH_ENABLE_DFS
796 		| IEEE80211_C_DFS		/* Enable radar detection */
797 #endif
798 		| IEEE80211_C_PMGT		/* Station side power mgmt */
799 		| IEEE80211_C_SWSLEEP
800 		;
801 	/*
802 	 * Query the hal to figure out h/w crypto support.
803 	 */
804 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
805 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
806 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
807 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
808 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
809 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
810 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
811 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
812 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
813 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
814 		/*
815 		 * Check if h/w does the MIC and/or whether the
816 		 * separate key cache entries are required to
817 		 * handle both tx+rx MIC keys.
818 		 */
819 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
820 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
821 		/*
822 		 * If the h/w supports storing tx+rx MIC keys
823 		 * in one cache slot automatically enable use.
824 		 */
825 		if (ath_hal_hastkipsplit(ah) ||
826 		    !ath_hal_settkipsplit(ah, AH_FALSE))
827 			sc->sc_splitmic = 1;
828 		/*
829 		 * If the h/w can do TKIP MIC together with WME then
830 		 * we use it; otherwise we force the MIC to be done
831 		 * in software by the net80211 layer.
832 		 */
833 		if (ath_hal_haswmetkipmic(ah))
834 			sc->sc_wmetkipmic = 1;
835 	}
836 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
837 	/*
838 	 * Check for multicast key search support.
839 	 */
840 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
841 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
842 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
843 	}
844 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
845 	/*
846 	 * Mark key cache slots associated with global keys
847 	 * as in use.  If we knew TKIP was not to be used we
848 	 * could leave the +32, +64, and +32+64 slots free.
849 	 */
850 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
851 		setbit(sc->sc_keymap, i);
852 		setbit(sc->sc_keymap, i+64);
853 		if (sc->sc_splitmic) {
854 			setbit(sc->sc_keymap, i+32);
855 			setbit(sc->sc_keymap, i+32+64);
856 		}
857 	}
858 	/*
859 	 * TPC support can be done either with a global cap or
860 	 * per-packet support.  The latter is not available on
861 	 * all parts.  We're a bit pedantic here as all parts
862 	 * support a global cap.
863 	 */
864 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
865 		ic->ic_caps |= IEEE80211_C_TXPMGT;
866 
867 	/*
868 	 * Mark WME capability only if we have sufficient
869 	 * hardware queues to do proper priority scheduling.
870 	 */
871 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
872 		ic->ic_caps |= IEEE80211_C_WME;
873 	/*
874 	 * Check for misc other capabilities.
875 	 */
876 	if (ath_hal_hasbursting(ah))
877 		ic->ic_caps |= IEEE80211_C_BURST;
878 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
879 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
880 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
881 	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
882 	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
883 	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
884 	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
885 	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
886 
887 	if (ath_hal_hasfastframes(ah))
888 		ic->ic_caps |= IEEE80211_C_FF;
889 	wmodes = ath_hal_getwirelessmodes(ah);
890 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
891 		ic->ic_caps |= IEEE80211_C_TURBOP;
892 #ifdef IEEE80211_SUPPORT_TDMA
893 	if (ath_hal_macversion(ah) > 0x78) {
894 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
895 		ic->ic_tdma_update = ath_tdma_update;
896 	}
897 #endif
898 
899 	/*
900 	 * TODO: enforce that at least this many frames are available
901 	 * in the txbuf list before allowing data frames (raw or
902 	 * otherwise) to be transmitted.
903 	 */
904 	sc->sc_txq_data_minfree = 10;
905 	/*
906 	 * Leave this as default to maintain legacy behaviour.
907 	 * Shortening the cabq/mcastq may end up causing some
908 	 * undesirable behaviour.
909 	 */
910 	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
911 
912 	/*
913 	 * How deep can the node software TX queue get whilst it's asleep.
914 	 */
915 	sc->sc_txq_node_psq_maxdepth = 16;
916 
917 	/*
918 	 * Default the maximum queue depth for a given node
919 	 * to 1/4'th the TX buffers, or 64, whichever
920 	 * is larger.
921 	 */
922 	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
923 
924 	/* Enable CABQ by default */
925 	sc->sc_cabq_enable = 1;
926 
927 	/*
928 	 * Allow the TX and RX chainmasks to be overridden by
929 	 * environment variables and/or device.hints.
930 	 *
931 	 * This must be done early - before the hardware is
932 	 * calibrated or before the 802.11n stream calculation
933 	 * is done.
934 	 */
935 	if (resource_int_value(device_get_name(sc->sc_dev),
936 	    device_get_unit(sc->sc_dev), "rx_chainmask",
937 	    &rx_chainmask) == 0) {
938 		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
939 		    rx_chainmask);
940 		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
941 	}
942 	if (resource_int_value(device_get_name(sc->sc_dev),
943 	    device_get_unit(sc->sc_dev), "tx_chainmask",
944 	    &tx_chainmask) == 0) {
945 		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
946 		    tx_chainmask);
947 		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
948 	}
949 
950 	/*
951 	 * Query the TX/RX chainmask configuration.
952 	 *
953 	 * This is only relevant for 11n devices.
954 	 */
955 	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
956 	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
957 
958 	/*
959 	 * Disable MRR with protected frames by default.
960 	 * Only 802.11n series NICs can handle this.
961 	 */
962 	sc->sc_mrrprot = 0;	/* XXX should be a capability */
963 
964 	/*
965 	 * Query the enterprise mode information the HAL.
966 	 */
967 	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
968 	    &sc->sc_ent_cfg) == HAL_OK)
969 		sc->sc_use_ent = 1;
970 
971 #ifdef	ATH_ENABLE_11N
972 	/*
973 	 * Query HT capabilities
974 	 */
975 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
976 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
977 		uint32_t rxs, txs;
978 
979 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
980 
981 		sc->sc_mrrprot = 1;	/* XXX should be a capability */
982 
983 		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
984 			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
985 			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
986 			    | IEEE80211_HTCAP_MAXAMSDU_3839
987 			    				/* max A-MSDU length */
988 			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
989 
990 		/*
991 		 * Enable short-GI for HT20 only if the hardware
992 		 * advertises support.
993 		 * Notably, anything earlier than the AR9287 doesn't.
994 		 */
995 		if ((ath_hal_getcapability(ah,
996 		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
997 		    (wmodes & HAL_MODE_HT20)) {
998 			device_printf(sc->sc_dev,
999 			    "[HT] enabling short-GI in 20MHz mode\n");
1000 			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1001 		}
1002 
1003 		if (wmodes & HAL_MODE_HT40)
1004 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1005 			    |  IEEE80211_HTCAP_SHORTGI40;
1006 
1007 		/*
1008 		 * TX/RX streams need to be taken into account when
1009 		 * negotiating which MCS rates it'll receive and
1010 		 * what MCS rates are available for TX.
1011 		 */
1012 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1013 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1014 		ic->ic_txstream = txs;
1015 		ic->ic_rxstream = rxs;
1016 
1017 		/*
1018 		 * Setup TX and RX STBC based on what the HAL allows and
1019 		 * the currently configured chainmask set.
1020 		 * Ie - don't enable STBC TX if only one chain is enabled.
1021 		 * STBC RX is fine on a single RX chain; it just won't
1022 		 * provide any real benefit.
1023 		 */
1024 		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1025 		    NULL) == HAL_OK) {
1026 			sc->sc_rx_stbc = 1;
1027 			device_printf(sc->sc_dev,
1028 			    "[HT] 1 stream STBC receive enabled\n");
1029 			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1030 		}
1031 		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1032 		    NULL) == HAL_OK) {
1033 			sc->sc_tx_stbc = 1;
1034 			device_printf(sc->sc_dev,
1035 			    "[HT] 1 stream STBC transmit enabled\n");
1036 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1037 		}
1038 
1039 		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1040 		    &sc->sc_rts_aggr_limit);
1041 		if (sc->sc_rts_aggr_limit != (64 * 1024))
1042 			device_printf(sc->sc_dev,
1043 			    "[HT] RTS aggregates limited to %d KiB\n",
1044 			    sc->sc_rts_aggr_limit / 1024);
1045 
1046 		device_printf(sc->sc_dev,
1047 		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1048 	}
1049 #endif
1050 
1051 	/*
1052 	 * Initial aggregation settings.
1053 	 */
1054 	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1055 	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1056 	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1057 	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1058 	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1059 	sc->sc_delim_min_pad = 0;
1060 
1061 	/*
1062 	 * Check if the hardware requires PCI register serialisation.
1063 	 * Some of the Owl based MACs require this.
1064 	 */
1065 	if (ncpus > 1 &&
1066 	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1067 	     0, NULL) == HAL_OK) {
1068 		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1069 		device_printf(sc->sc_dev,
1070 		    "Enabling register serialisation\n");
1071 	}
1072 
1073 	/*
1074 	 * Initialise the deferred completed RX buffer list.
1075 	 */
1076 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1077 	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1078 
1079 	/*
1080 	 * Indicate we need the 802.11 header padded to a
1081 	 * 32-bit boundary for 4-address and QoS frames.
1082 	 */
1083 	ic->ic_flags |= IEEE80211_F_DATAPAD;
1084 
1085 	/*
1086 	 * Query the hal about antenna support.
1087 	 */
1088 	sc->sc_defant = ath_hal_getdefantenna(ah);
1089 
1090 	/*
1091 	 * Not all chips have the VEOL support we want to
1092 	 * use with IBSS beacons; check here for it.
1093 	 */
1094 	sc->sc_hasveol = ath_hal_hasveol(ah);
1095 
1096 	/* get mac address from hardware */
1097 	ath_hal_getmac(ah, macaddr);
1098 	if (sc->sc_hasbmask)
1099 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1100 
1101 	/* NB: used to size node table key mapping array */
1102 	ic->ic_max_keyix = sc->sc_keymax;
1103 	/* call MI attach routine. */
1104 	ieee80211_ifattach(ic, macaddr);
1105 	ic->ic_setregdomain = ath_setregdomain;
1106 	ic->ic_getradiocaps = ath_getradiocaps;
1107 	sc->sc_opmode = HAL_M_STA;
1108 
1109 	/* override default methods */
1110 	ic->ic_newassoc = ath_newassoc;
1111 	ic->ic_updateslot = ath_updateslot;
1112 	ic->ic_wme.wme_update = ath_wme_update;
1113 	ic->ic_vap_create = ath_vap_create;
1114 	ic->ic_vap_delete = ath_vap_delete;
1115 	ic->ic_raw_xmit = ath_raw_xmit;
1116 	ic->ic_update_mcast = ath_update_mcast;
1117 	ic->ic_update_promisc = ath_update_promisc;
1118 	ic->ic_node_alloc = ath_node_alloc;
1119 	sc->sc_node_free = ic->ic_node_free;
1120 	ic->ic_node_free = ath_node_free;
1121 	sc->sc_node_cleanup = ic->ic_node_cleanup;
1122 	ic->ic_node_cleanup = ath_node_cleanup;
1123 	ic->ic_node_getsignal = ath_node_getsignal;
1124 	ic->ic_scan_start = ath_scan_start;
1125 	ic->ic_scan_end = ath_scan_end;
1126 	ic->ic_set_channel = ath_set_channel;
1127 #ifdef	ATH_ENABLE_11N
1128 	/* 802.11n specific - but just override anyway */
1129 	sc->sc_addba_request = ic->ic_addba_request;
1130 	sc->sc_addba_response = ic->ic_addba_response;
1131 	sc->sc_addba_stop = ic->ic_addba_stop;
1132 	sc->sc_bar_response = ic->ic_bar_response;
1133 	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1134 
1135 	ic->ic_addba_request = ath_addba_request;
1136 	ic->ic_addba_response = ath_addba_response;
1137 	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1138 	ic->ic_addba_stop = ath_addba_stop;
1139 	ic->ic_bar_response = ath_bar_response;
1140 
1141 	ic->ic_update_chw = ath_update_chw;
1142 #endif	/* ATH_ENABLE_11N */
1143 
1144 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1145 	/*
1146 	 * There's one vendor bitmap entry in the RX radiotap
1147 	 * header; make sure that's taken into account.
1148 	 */
1149 	ieee80211_radiotap_attachv(ic,
1150 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1151 		ATH_TX_RADIOTAP_PRESENT,
1152 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1153 		ATH_RX_RADIOTAP_PRESENT);
1154 #else
1155 	/*
1156 	 * No vendor bitmap/extensions are present.
1157 	 */
1158 	ieee80211_radiotap_attach(ic,
1159 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1160 		ATH_TX_RADIOTAP_PRESENT,
1161 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1162 		ATH_RX_RADIOTAP_PRESENT);
1163 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1164 
1165 	/*
1166 	 * Setup the ALQ logging if required
1167 	 */
1168 #ifdef	ATH_DEBUG_ALQ
1169 	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1170 	if_ath_alq_setcfg(&sc->sc_alq,
1171 	    sc->sc_ah->ah_macVersion,
1172 	    sc->sc_ah->ah_macRev,
1173 	    sc->sc_ah->ah_phyRev,
1174 	    sc->sc_ah->ah_magic);
1175 #endif
1176 
1177 	/*
1178 	 * Setup dynamic sysctl's now that country code and
1179 	 * regdomain are available from the hal.
1180 	 */
1181 	ath_sysctlattach(sc);
1182 	ath_sysctl_stats_attach(sc);
1183 	ath_sysctl_hal_attach(sc);
1184 
1185 	if (bootverbose)
1186 		ieee80211_announce(ic);
1187 	ath_announce(sc);
1188 
1189 	/*
1190 	 * Put it to sleep for now.
1191 	 */
1192 	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1193 
1194 	return 0;
1195 bad2:
1196 	ath_tx_cleanup(sc);
1197 	ath_desc_free(sc);
1198 	ath_txdma_teardown(sc);
1199 	ath_rxdma_teardown(sc);
1200 bad:
1201 	if (ah)
1202 		ath_hal_detach(ah);
1203 
1204 	/*
1205 	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1206 	 */
1207 #if !defined(__DragonFly__)
1208 	if (ifp != NULL && ifp->if_vnet) {
1209 		CURVNET_SET(ifp->if_vnet);
1210 		if_free(ifp);
1211 		CURVNET_RESTORE();
1212 	} else
1213 #endif
1214 	if (ifp != NULL)
1215 		if_free(ifp);
1216 	sc->sc_invalid = 1;
1217 	return error;
1218 }
1219 
1220 int
1221 ath_detach(struct ath_softc *sc)
1222 {
1223 	struct ifnet *ifp = sc->sc_ifp;
1224 
1225 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1226 		__func__, ifp->if_flags);
1227 
1228 	/*
1229 	 * NB: the order of these is important:
1230 	 * o stop the chip so no more interrupts will fire
1231 	 * o call the 802.11 layer before detaching the hal to
1232 	 *   insure callbacks into the driver to delete global
1233 	 *   key cache entries can be handled
1234 	 * o free the taskqueue which drains any pending tasks
1235 	 * o reclaim the tx queue data structures after calling
1236 	 *   the 802.11 layer as we'll get called back to reclaim
1237 	 *   node state and potentially want to use them
1238 	 * o to cleanup the tx queues the hal is called, so detach
1239 	 *   it last
1240 	 * Other than that, it's straightforward...
1241 	 */
1242 
1243 	/*
1244 	 * XXX Wake the hardware up first.  ath_stop() will still
1245 	 * wake it up first, but I'd rather do it here just to
1246 	 * ensure it's awake.
1247 	 */
1248 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1249 	ath_power_setpower(sc, HAL_PM_AWAKE);
1250 
1251 	/*
1252 	 * Stop things cleanly.
1253 	 */
1254 	ath_stop(ifp);
1255 	wlan_serialize_enter();
1256 	ieee80211_ifdetach(ifp->if_l2com);
1257 	wlan_serialize_exit();
1258 	taskqueue_free(sc->sc_tq);
1259 #ifdef ATH_TX99_DIAG
1260 	if (sc->sc_tx99 != NULL)
1261 		sc->sc_tx99->detach(sc->sc_tx99);
1262 #endif
1263 	ath_rate_detach(sc->sc_rc);
1264 #ifdef	ATH_DEBUG_ALQ
1265 	if_ath_alq_tidyup(&sc->sc_alq);
1266 #endif
1267 	ath_lna_div_detach(sc);
1268 	ath_btcoex_detach(sc);
1269 	ath_spectral_detach(sc);
1270 	ath_dfs_detach(sc);
1271 	ath_desc_free(sc);
1272 	ath_txdma_teardown(sc);
1273 	ath_rxdma_teardown(sc);
1274 	ath_tx_cleanup(sc);
1275 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1276 
1277 	CURVNET_SET(ifp->if_vnet);
1278 	if_free(ifp);
1279 	CURVNET_RESTORE();
1280 
1281 	if (sc->sc_sysctl_tree) {
1282 		sysctl_ctx_free(&sc->sc_sysctl_ctx);
1283 		sc->sc_sysctl_tree = NULL;
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 /*
1290  * MAC address handling for multiple BSS on the same radio.
1291  * The first vap uses the MAC address from the EEPROM.  For
1292  * subsequent vap's we set the U/L bit (bit 1) in the MAC
1293  * address and use the next six bits as an index.
1294  */
1295 static void
1296 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1297 {
1298 	int i;
1299 
1300 	if (clone && sc->sc_hasbmask) {
1301 		/* NB: we only do this if h/w supports multiple bssid */
1302 		for (i = 0; i < 8; i++)
1303 			if ((sc->sc_bssidmask & (1<<i)) == 0)
1304 				break;
1305 		if (i != 0)
1306 			mac[0] |= (i << 2)|0x2;
1307 	} else
1308 		i = 0;
1309 	sc->sc_bssidmask |= 1<<i;
1310 	sc->sc_hwbssidmask[0] &= ~mac[0];
1311 	if (i == 0)
1312 		sc->sc_nbssid0++;
1313 }
1314 
1315 static void
1316 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1317 {
1318 	int i = mac[0] >> 2;
1319 	uint8_t mask;
1320 
1321 	if (i != 0 || --sc->sc_nbssid0 == 0) {
1322 		sc->sc_bssidmask &= ~(1<<i);
1323 		/* recalculate bssid mask from remaining addresses */
1324 		mask = 0xff;
1325 		for (i = 1; i < 8; i++)
1326 			if (sc->sc_bssidmask & (1<<i))
1327 				mask &= ~((i<<2)|0x2);
1328 		sc->sc_hwbssidmask[0] |= mask;
1329 	}
1330 }
1331 
1332 /*
1333  * Assign a beacon xmit slot.  We try to space out
1334  * assignments so when beacons are staggered the
1335  * traffic coming out of the cab q has maximal time
1336  * to go out before the next beacon is scheduled.
1337  */
1338 static int
1339 assign_bslot(struct ath_softc *sc)
1340 {
1341 	u_int slot, free;
1342 
1343 	free = 0;
1344 	for (slot = 0; slot < ATH_BCBUF; slot++)
1345 		if (sc->sc_bslot[slot] == NULL) {
1346 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1347 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1348 				return slot;
1349 			free = slot;
1350 			/* NB: keep looking for a double slot */
1351 		}
1352 	return free;
1353 }
1354 
1355 static struct ieee80211vap *
1356 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1357     enum ieee80211_opmode opmode, int flags,
1358     const uint8_t bssid[IEEE80211_ADDR_LEN],
1359     const uint8_t mac0[IEEE80211_ADDR_LEN])
1360 {
1361 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1362 	struct ath_vap *avp;
1363 	struct ieee80211vap *vap;
1364 	uint8_t mac[IEEE80211_ADDR_LEN];
1365 	int needbeacon, error;
1366 	enum ieee80211_opmode ic_opmode;
1367 
1368 	avp = (struct ath_vap *) kmalloc(sizeof(struct ath_vap),
1369 	    M_80211_VAP, M_WAITOK | M_ZERO);
1370 	needbeacon = 0;
1371 	IEEE80211_ADDR_COPY(mac, mac0);
1372 
1373 	ATH_LOCK(sc);
1374 	ic_opmode = opmode;		/* default to opmode of new vap */
1375 	switch (opmode) {
1376 	case IEEE80211_M_STA:
1377 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1378 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1379 			goto bad;
1380 		}
1381 		if (sc->sc_nvaps) {
1382 			/*
1383 			 * With multiple vaps we must fall back
1384 			 * to s/w beacon miss handling.
1385 			 */
1386 			flags |= IEEE80211_CLONE_NOBEACONS;
1387 		}
1388 		if (flags & IEEE80211_CLONE_NOBEACONS) {
1389 			/*
1390 			 * Station mode w/o beacons are implemented w/ AP mode.
1391 			 */
1392 			ic_opmode = IEEE80211_M_HOSTAP;
1393 		}
1394 		break;
1395 	case IEEE80211_M_IBSS:
1396 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1397 			device_printf(sc->sc_dev,
1398 			    "only 1 ibss vap supported\n");
1399 			goto bad;
1400 		}
1401 		needbeacon = 1;
1402 		break;
1403 	case IEEE80211_M_AHDEMO:
1404 #ifdef IEEE80211_SUPPORT_TDMA
1405 		if (flags & IEEE80211_CLONE_TDMA) {
1406 			if (sc->sc_nvaps != 0) {
1407 				device_printf(sc->sc_dev,
1408 				    "only 1 tdma vap supported\n");
1409 				goto bad;
1410 			}
1411 			needbeacon = 1;
1412 			flags |= IEEE80211_CLONE_NOBEACONS;
1413 		}
1414 		/* fall thru... */
1415 #endif
1416 	case IEEE80211_M_MONITOR:
1417 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1418 			/*
1419 			 * Adopt existing mode.  Adding a monitor or ahdemo
1420 			 * vap to an existing configuration is of dubious
1421 			 * value but should be ok.
1422 			 */
1423 			/* XXX not right for monitor mode */
1424 			ic_opmode = ic->ic_opmode;
1425 		}
1426 		break;
1427 	case IEEE80211_M_HOSTAP:
1428 	case IEEE80211_M_MBSS:
1429 		needbeacon = 1;
1430 		break;
1431 	case IEEE80211_M_WDS:
1432 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1433 			device_printf(sc->sc_dev,
1434 			    "wds not supported in sta mode\n");
1435 			goto bad;
1436 		}
1437 		/*
1438 		 * Silently remove any request for a unique
1439 		 * bssid; WDS vap's always share the local
1440 		 * mac address.
1441 		 */
1442 		flags &= ~IEEE80211_CLONE_BSSID;
1443 		if (sc->sc_nvaps == 0)
1444 			ic_opmode = IEEE80211_M_HOSTAP;
1445 		else
1446 			ic_opmode = ic->ic_opmode;
1447 		break;
1448 	default:
1449 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1450 		goto bad;
1451 	}
1452 	/*
1453 	 * Check that a beacon buffer is available; the code below assumes it.
1454 	 */
1455 	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1456 		device_printf(sc->sc_dev, "no beacon buffer available\n");
1457 		goto bad;
1458 	}
1459 
1460 	/* STA, AHDEMO? */
1461 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1462 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1463 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1464 	}
1465 
1466 	vap = &avp->av_vap;
1467 	/* XXX can't hold mutex across if_alloc */
1468 	ATH_UNLOCK(sc);
1469 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1470 	    bssid, mac);
1471 	ATH_LOCK(sc);
1472 	if (error != 0) {
1473 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1474 		    __func__, error);
1475 		goto bad2;
1476 	}
1477 
1478 	/* h/w crypto support */
1479 	vap->iv_key_alloc = ath_key_alloc;
1480 	vap->iv_key_delete = ath_key_delete;
1481 	vap->iv_key_set = ath_key_set;
1482 	vap->iv_key_update_begin = ath_key_update_begin;
1483 	vap->iv_key_update_end = ath_key_update_end;
1484 
1485 	/* override various methods */
1486 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1487 	vap->iv_recv_mgmt = ath_recv_mgmt;
1488 	vap->iv_reset = ath_reset_vap;
1489 	vap->iv_update_beacon = ath_beacon_update;
1490 	avp->av_newstate = vap->iv_newstate;
1491 	vap->iv_newstate = ath_newstate;
1492 	avp->av_bmiss = vap->iv_bmiss;
1493 	vap->iv_bmiss = ath_bmiss_vap;
1494 
1495 #if 0
1496 	avp->av_node_ps = vap->iv_node_ps;
1497 	vap->iv_node_ps = ath_node_powersave;
1498 #endif
1499 
1500 	avp->av_set_tim = vap->iv_set_tim;
1501 	vap->iv_set_tim = ath_node_set_tim;
1502 
1503 #if 0
1504 	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1505 	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1506 #endif
1507 
1508 	/* Set default parameters */
1509 
1510 	/*
1511 	 * Anything earlier than some AR9300 series MACs don't
1512 	 * support a smaller MPDU density.
1513 	 */
1514 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1515 	/*
1516 	 * All NICs can handle the maximum size, however
1517 	 * AR5416 based MACs can only TX aggregates w/ RTS
1518 	 * protection when the total aggregate size is <= 8k.
1519 	 * However, for now that's enforced by the TX path.
1520 	 */
1521 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1522 
1523 	avp->av_bslot = -1;
1524 	if (needbeacon) {
1525 		/*
1526 		 * Allocate beacon state and setup the q for buffered
1527 		 * multicast frames.  We know a beacon buffer is
1528 		 * available because we checked above.
1529 		 */
1530 		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1531 		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1532 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1533 			/*
1534 			 * Assign the vap to a beacon xmit slot.  As above
1535 			 * this cannot fail to find a free one.
1536 			 */
1537 			avp->av_bslot = assign_bslot(sc);
1538 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1539 			    ("beacon slot %u not empty", avp->av_bslot));
1540 			sc->sc_bslot[avp->av_bslot] = vap;
1541 			sc->sc_nbcnvaps++;
1542 		}
1543 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1544 			/*
1545 			 * Multple vaps are to transmit beacons and we
1546 			 * have h/w support for TSF adjusting; enable
1547 			 * use of staggered beacons.
1548 			 */
1549 			sc->sc_stagbeacons = 1;
1550 		}
1551 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1552 	}
1553 
1554 	ic->ic_opmode = ic_opmode;
1555 	if (opmode != IEEE80211_M_WDS) {
1556 		sc->sc_nvaps++;
1557 		if (opmode == IEEE80211_M_STA)
1558 			sc->sc_nstavaps++;
1559 		if (opmode == IEEE80211_M_MBSS)
1560 			sc->sc_nmeshvaps++;
1561 	}
1562 	switch (ic_opmode) {
1563 	case IEEE80211_M_IBSS:
1564 		sc->sc_opmode = HAL_M_IBSS;
1565 		break;
1566 	case IEEE80211_M_STA:
1567 		sc->sc_opmode = HAL_M_STA;
1568 		break;
1569 	case IEEE80211_M_AHDEMO:
1570 #ifdef IEEE80211_SUPPORT_TDMA
1571 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1572 			sc->sc_tdma = 1;
1573 			/* NB: disable tsf adjust */
1574 			sc->sc_stagbeacons = 0;
1575 		}
1576 		/*
1577 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1578 		 * just ap mode.
1579 		 */
1580 		/* fall thru... */
1581 #endif
1582 	case IEEE80211_M_HOSTAP:
1583 	case IEEE80211_M_MBSS:
1584 		sc->sc_opmode = HAL_M_HOSTAP;
1585 		break;
1586 	case IEEE80211_M_MONITOR:
1587 		sc->sc_opmode = HAL_M_MONITOR;
1588 		break;
1589 	default:
1590 		/* XXX should not happen */
1591 		break;
1592 	}
1593 	if (sc->sc_hastsfadd) {
1594 		/*
1595 		 * Configure whether or not TSF adjust should be done.
1596 		 */
1597 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1598 	}
1599 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1600 		/*
1601 		 * Enable s/w beacon miss handling.
1602 		 */
1603 		sc->sc_swbmiss = 1;
1604 	}
1605 	ATH_UNLOCK(sc);
1606 
1607 	/* complete setup */
1608 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1609 	return vap;
1610 bad2:
1611 	reclaim_address(sc, mac);
1612 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1613 bad:
1614 	kfree(avp, M_80211_VAP);
1615 	ATH_UNLOCK(sc);
1616 	return NULL;
1617 }
1618 
1619 static void
1620 ath_vap_delete(struct ieee80211vap *vap)
1621 {
1622 	struct ieee80211com *ic = vap->iv_ic;
1623 	struct ifnet *ifp = ic->ic_ifp;
1624 	struct ath_softc *sc = ifp->if_softc;
1625 	struct ath_hal *ah = sc->sc_ah;
1626 	struct ath_vap *avp = ATH_VAP(vap);
1627 
1628 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1629 
1630 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1631 	if (ifp->if_flags & IFF_RUNNING) {
1632 		/*
1633 		 * Quiesce the hardware while we remove the vap.  In
1634 		 * particular we need to reclaim all references to
1635 		 * the vap state by any frames pending on the tx queues.
1636 		 */
1637 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1638 		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1639 		/* XXX Do all frames from all vaps/nodes need draining here? */
1640 		ath_stoprecv(sc, 1);		/* stop recv side */
1641 	}
1642 
1643 	/* .. leave the hardware awake for now. */
1644 
1645 	ieee80211_vap_detach(vap);
1646 
1647 	/*
1648 	 * XXX Danger Will Robinson! Danger!
1649 	 *
1650 	 * Because ieee80211_vap_detach() can queue a frame (the station
1651 	 * diassociate message?) after we've drained the TXQ and
1652 	 * flushed the software TXQ, we will end up with a frame queued
1653 	 * to a node whose vap is about to be freed.
1654 	 *
1655 	 * To work around this, flush the hardware/software again.
1656 	 * This may be racy - the ath task may be running and the packet
1657 	 * may be being scheduled between sw->hw txq. Tsk.
1658 	 *
1659 	 * TODO: figure out why a new node gets allocated somewhere around
1660 	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1661 	 * call!)
1662 	 */
1663 
1664 	ath_draintxq(sc, ATH_RESET_DEFAULT);
1665 
1666 	ATH_LOCK(sc);
1667 	/*
1668 	 * Reclaim beacon state.  Note this must be done before
1669 	 * the vap instance is reclaimed as we may have a reference
1670 	 * to it in the buffer for the beacon frame.
1671 	 */
1672 	if (avp->av_bcbuf != NULL) {
1673 		if (avp->av_bslot != -1) {
1674 			sc->sc_bslot[avp->av_bslot] = NULL;
1675 			sc->sc_nbcnvaps--;
1676 		}
1677 		ath_beacon_return(sc, avp->av_bcbuf);
1678 		avp->av_bcbuf = NULL;
1679 		if (sc->sc_nbcnvaps == 0) {
1680 			sc->sc_stagbeacons = 0;
1681 			if (sc->sc_hastsfadd)
1682 				ath_hal_settsfadjust(sc->sc_ah, 0);
1683 		}
1684 		/*
1685 		 * Reclaim any pending mcast frames for the vap.
1686 		 */
1687 		ath_tx_draintxq(sc, &avp->av_mcastq);
1688 	}
1689 	/*
1690 	 * Update bookkeeping.
1691 	 */
1692 	if (vap->iv_opmode == IEEE80211_M_STA) {
1693 		sc->sc_nstavaps--;
1694 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1695 			sc->sc_swbmiss = 0;
1696 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1697 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1698 		reclaim_address(sc, vap->iv_myaddr);
1699 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1700 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1701 			sc->sc_nmeshvaps--;
1702 	}
1703 	if (vap->iv_opmode != IEEE80211_M_WDS)
1704 		sc->sc_nvaps--;
1705 #ifdef IEEE80211_SUPPORT_TDMA
1706 	/* TDMA operation ceases when the last vap is destroyed */
1707 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1708 		sc->sc_tdma = 0;
1709 		sc->sc_swbmiss = 0;
1710 	}
1711 #endif
1712 	kfree(avp, M_80211_VAP);
1713 
1714 	if (ifp->if_flags & IFF_RUNNING) {
1715 		/*
1716 		 * Restart rx+tx machines if still running (RUNNING will
1717 		 * be reset if we just destroyed the last vap).
1718 		 */
1719 		if (ath_startrecv(sc) != 0)
1720 			if_printf(ifp, "%s: unable to restart recv logic\n",
1721 			    __func__);
1722 		if (sc->sc_beacons) {		/* restart beacons */
1723 #ifdef IEEE80211_SUPPORT_TDMA
1724 			if (sc->sc_tdma)
1725 				ath_tdma_config(sc, NULL);
1726 			else
1727 #endif
1728 				ath_beacon_config(sc, NULL);
1729 		}
1730 		ath_hal_intrset(ah, sc->sc_imask);
1731 	}
1732 
1733 	/* Ok, let the hardware asleep. */
1734 	ath_power_restore_power_state(sc);
1735 	ATH_UNLOCK(sc);
1736 }
1737 
1738 void
1739 ath_suspend(struct ath_softc *sc)
1740 {
1741 	struct ifnet *ifp = sc->sc_ifp;
1742 	struct ieee80211com *ic = ifp->if_l2com;
1743 
1744 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1745 		__func__, ifp->if_flags);
1746 
1747 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1748 
1749 	ieee80211_suspend_all(ic);
1750 	/*
1751 	 * NB: don't worry about putting the chip in low power
1752 	 * mode; pci will power off our socket on suspend and
1753 	 * CardBus detaches the device.
1754 	 */
1755 
1756 	/*
1757 	 * XXX ensure none of the taskqueues are running
1758 	 * XXX ensure sc_invalid is 1
1759 	 * XXX ensure the calibration callout is disabled
1760 	 */
1761 
1762 	/* Disable the PCIe PHY, complete with workarounds */
1763 	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1764 }
1765 
1766 /*
1767  * Reset the key cache since some parts do not reset the
1768  * contents on resume.  First we clear all entries, then
1769  * re-load keys that the 802.11 layer assumes are setup
1770  * in h/w.
1771  */
1772 static void
1773 ath_reset_keycache(struct ath_softc *sc)
1774 {
1775 	struct ifnet *ifp = sc->sc_ifp;
1776 	struct ieee80211com *ic = ifp->if_l2com;
1777 	struct ath_hal *ah = sc->sc_ah;
1778 	int i;
1779 
1780 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1781 	for (i = 0; i < sc->sc_keymax; i++)
1782 		ath_hal_keyreset(ah, i);
1783 	ath_power_restore_power_state(sc);
1784 	ieee80211_crypto_reload_keys(ic);
1785 }
1786 
1787 /*
1788  * Fetch the current chainmask configuration based on the current
1789  * operating channel and options.
1790  */
1791 static void
1792 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1793 {
1794 
1795 	/*
1796 	 * Set TX chainmask to the currently configured chainmask;
1797 	 * the TX chainmask depends upon the current operating mode.
1798 	 */
1799 	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1800 	if (IEEE80211_IS_CHAN_HT(chan)) {
1801 		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1802 	} else {
1803 		sc->sc_cur_txchainmask = 1;
1804 	}
1805 
1806 	DPRINTF(sc, ATH_DEBUG_RESET,
1807 	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1808 	    __func__,
1809 	    sc->sc_cur_txchainmask,
1810 	    sc->sc_cur_rxchainmask);
1811 }
1812 
1813 void
1814 ath_resume(struct ath_softc *sc)
1815 {
1816 	struct ifnet *ifp = sc->sc_ifp;
1817 	struct ieee80211com *ic = ifp->if_l2com;
1818 	struct ath_hal *ah = sc->sc_ah;
1819 	HAL_STATUS status;
1820 
1821 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1822 		__func__, ifp->if_flags);
1823 
1824 	/* Re-enable PCIe, re-enable the PCIe bus */
1825 	ath_hal_enablepcie(ah, 0, 0);
1826 
1827 	/*
1828 	 * Must reset the chip before we reload the
1829 	 * keycache as we were powered down on suspend.
1830 	 */
1831 	ath_update_chainmasks(sc,
1832 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1833 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1834 	    sc->sc_cur_rxchainmask);
1835 
1836 	/* Ensure we set the current power state to on */
1837 	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1838 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1839 	ath_power_setpower(sc, HAL_PM_AWAKE);
1840 
1841 	sc->sc_rxfifo_state = ATH_RXFIFO_RESET;
1842 	ath_hal_reset(ah, sc->sc_opmode,
1843 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1844 	    AH_FALSE, &status);
1845 	ath_reset_keycache(sc);
1846 
1847 	/* Let DFS at it in case it's a DFS channel */
1848 	ath_dfs_radar_enable(sc, ic->ic_curchan);
1849 
1850 	/* Let spectral at in case spectral is enabled */
1851 	ath_spectral_enable(sc, ic->ic_curchan);
1852 
1853 	/*
1854 	 * Let bluetooth coexistence at in case it's needed for this channel
1855 	 */
1856 	ath_btcoex_enable(sc, ic->ic_curchan);
1857 
1858 	/*
1859 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1860 	 * support it.
1861 	 */
1862 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1863 		ath_hal_setenforcetxop(sc->sc_ah, 1);
1864 	else
1865 		ath_hal_setenforcetxop(sc->sc_ah, 0);
1866 
1867 	/* Restore the LED configuration */
1868 	ath_led_config(sc);
1869 	ath_hal_setledstate(ah, HAL_LED_INIT);
1870 
1871 	if (sc->sc_resume_up)
1872 		ieee80211_resume_all(ic);
1873 
1874 	ath_power_restore_power_state(sc);
1875 
1876 	/* XXX beacons ? */
1877 }
1878 
1879 void
1880 ath_shutdown(struct ath_softc *sc)
1881 {
1882 	struct ifnet *ifp = sc->sc_ifp;
1883 
1884 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1885 		__func__, ifp->if_flags);
1886 
1887 	ath_stop(ifp);
1888 	/* NB: no point powering down chip as we're about to reboot */
1889 }
1890 
1891 /*
1892  * Interrupt handler.  Most of the actual processing is deferred.
1893  */
1894 void
1895 ath_intr(void *arg)
1896 {
1897 	struct ath_softc *sc = arg;
1898 	struct ifnet *ifp = sc->sc_ifp;
1899 	struct ath_hal *ah = sc->sc_ah;
1900 	HAL_INT status = 0;
1901 	uint32_t txqs;
1902 
1903 	/*
1904 	 * If we're inside a reset path, just print a warning and
1905 	 * clear the ISR. The reset routine will finish it for us.
1906 	 */
1907 	ATH_PCU_LOCK(sc);
1908 	if (sc->sc_inreset_cnt) {
1909 		HAL_INT status;
1910 		ath_hal_getisr(ah, &status);	/* clear ISR */
1911 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1912 		DPRINTF(sc, ATH_DEBUG_ANY,
1913 		    "%s: in reset, ignoring: status=0x%x\n",
1914 		    __func__, status);
1915 		ATH_PCU_UNLOCK(sc);
1916 		return;
1917 	}
1918 
1919 	if (sc->sc_invalid) {
1920 		/*
1921 		 * The hardware is not ready/present, don't touch anything.
1922 		 * Note this can happen early on if the IRQ is shared.
1923 		 */
1924 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1925 		ATH_PCU_UNLOCK(sc);
1926 		return;
1927 	}
1928 	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1929 		ATH_PCU_UNLOCK(sc);
1930 		return;
1931 	}
1932 
1933 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1934 
1935 	if ((ifp->if_flags & IFF_UP) == 0 ||
1936 	    (ifp->if_flags & IFF_RUNNING) == 0) {
1937 		HAL_INT status;
1938 
1939 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1940 			__func__, ifp->if_flags);
1941 		ath_hal_getisr(ah, &status);	/* clear ISR */
1942 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1943 		ATH_PCU_UNLOCK(sc);
1944 		ath_power_restore_power_state(sc);
1945 		return;
1946 	}
1947 
1948 	/*
1949 	 * Figure out the reason(s) for the interrupt.  Note
1950 	 * that the hal returns a pseudo-ISR that may include
1951 	 * bits we haven't explicitly enabled so we mask the
1952 	 * value to insure we only process bits we requested.
1953 	 */
1954 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1955 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1956 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1957 #ifdef	ATH_DEBUG_ALQ
1958 	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1959 	    ah->ah_syncstate);
1960 #endif	/* ATH_DEBUG_ALQ */
1961 #ifdef	ATH_KTR_INTR_DEBUG
1962 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1963 	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1964 	    ah->ah_intrstate[0],
1965 	    ah->ah_intrstate[1],
1966 	    ah->ah_intrstate[2],
1967 	    ah->ah_intrstate[3],
1968 	    ah->ah_intrstate[6]);
1969 #endif
1970 
1971 	/* Squirrel away SYNC interrupt debugging */
1972 	if (ah->ah_syncstate != 0) {
1973 		int i;
1974 		for (i = 0; i < 32; i++)
1975 			if (ah->ah_syncstate & (i << i))
1976 				sc->sc_intr_stats.sync_intr[i]++;
1977 	}
1978 
1979 	status &= sc->sc_imask;			/* discard unasked for bits */
1980 
1981 	/* Short-circuit un-handled interrupts */
1982 	if (status == 0x0) {
1983 		ATH_PCU_UNLOCK(sc);
1984 		ath_power_restore_power_state(sc);
1985 		return;
1986 	}
1987 
1988 	/*
1989 	 * Take a note that we're inside the interrupt handler, so
1990 	 * the reset routines know to wait.
1991 	 */
1992 	sc->sc_intr_cnt++;
1993 	ATH_PCU_UNLOCK(sc);
1994 
1995 	/*
1996 	 * Handle the interrupt. We won't run concurrent with the reset
1997 	 * or channel change routines as they'll wait for sc_intr_cnt
1998 	 * to be 0 before continuing.
1999 	 */
2000 	if (status & HAL_INT_FATAL) {
2001 		sc->sc_stats.ast_hardware++;
2002 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2003 		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2004 	} else {
2005 		if (status & HAL_INT_SWBA) {
2006 			/*
2007 			 * Software beacon alert--time to send a beacon.
2008 			 * Handle beacon transmission directly; deferring
2009 			 * this is too slow to meet timing constraints
2010 			 * under load.
2011 			 */
2012 #ifdef IEEE80211_SUPPORT_TDMA
2013 			if (sc->sc_tdma) {
2014 				if (sc->sc_tdmaswba == 0) {
2015 					struct ieee80211com *ic = ifp->if_l2com;
2016 					struct ieee80211vap *vap =
2017 					    TAILQ_FIRST(&ic->ic_vaps);
2018 					ath_tdma_beacon_send(sc, vap);
2019 					sc->sc_tdmaswba =
2020 					    vap->iv_tdma->tdma_bintval;
2021 				} else
2022 					sc->sc_tdmaswba--;
2023 			} else
2024 #endif
2025 			{
2026 				ath_beacon_proc(sc, 0);
2027 #ifdef IEEE80211_SUPPORT_SUPERG
2028 				/*
2029 				 * Schedule the rx taskq in case there's no
2030 				 * traffic so any frames held on the staging
2031 				 * queue are aged and potentially flushed.
2032 				 */
2033 				sc->sc_rx.recv_sched(sc, 1);
2034 #endif
2035 			}
2036 		}
2037 		if ((status & HAL_INT_RXEOL) && sc->sc_kickpcu == 0) {
2038 			int imask;
2039 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2040 			ATH_PCU_LOCK(sc);
2041 			/*
2042 			 * NB: the hardware should re-read the link when
2043 			 *     RXE bit is written, but it doesn't work at
2044 			 *     least on older hardware revs.
2045 			 */
2046 			sc->sc_stats.ast_rxeol++;
2047 			/*
2048 			 * Disable RXEOL/RXORN - prevent an interrupt
2049 			 * storm until the PCU logic can be reset.
2050 			 * In case the interface is reset some other
2051 			 * way before "sc_kickpcu" is called, don't
2052 			 * modify sc_imask - that way if it is reset
2053 			 * by a call to ath_reset() somehow, the
2054 			 * interrupt mask will be correctly reprogrammed.
2055 			 */
2056 			imask = sc->sc_imask;
2057 			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2058 			ath_hal_intrset(ah, imask);
2059 			/*
2060 			 * Only blank sc_rxlink if we've not yet kicked
2061 			 * the PCU.
2062 			 *
2063 			 * This isn't entirely correct - the correct solution
2064 			 * would be to have a PCU lock and engage that for
2065 			 * the duration of the PCU fiddling; which would include
2066 			 * running the RX process. Otherwise we could end up
2067 			 * messing up the RX descriptor chain and making the
2068 			 * RX desc list much shorter.
2069 			 */
2070 			sc->sc_rxlink = NULL;
2071 			sc->sc_kickpcu = 1;
2072 			ATH_PCU_UNLOCK(sc);
2073 			/*
2074 			 * Enqueue an RX proc, to handled whatever
2075 			 * is in the RX queue.
2076 			 * This will then kick the PCU.
2077 			 */
2078 			sc->sc_rx.recv_sched(sc, 1);
2079 		}
2080 		if (status & HAL_INT_TXURN) {
2081 			sc->sc_stats.ast_txurn++;
2082 			/* bump tx trigger level */
2083 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2084 		}
2085 		/*
2086 		 * Handle both the legacy and RX EDMA interrupt bits.
2087 		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2088 		 */
2089 		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2090 			sc->sc_stats.ast_rx_intr++;
2091 			sc->sc_rx.recv_sched(sc, 1);
2092 		}
2093 		if (status & HAL_INT_TX) {
2094 			sc->sc_stats.ast_tx_intr++;
2095 			/*
2096 			 * Grab all the currently set bits in the HAL txq bitmap
2097 			 * and blank them. This is the only place we should be
2098 			 * doing this.
2099 			 */
2100 			if (! sc->sc_isedma) {
2101 				ATH_PCU_LOCK(sc);
2102 				txqs = 0xffffffff;
2103 				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2104 				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2105 				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2106 				    txqs,
2107 				    sc->sc_txq_active,
2108 				    sc->sc_txq_active | txqs);
2109 				sc->sc_txq_active |= txqs;
2110 				ATH_PCU_UNLOCK(sc);
2111 			}
2112 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2113 		}
2114 		if (status & HAL_INT_BMISS) {
2115 			sc->sc_stats.ast_bmiss++;
2116 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2117 		}
2118 		if (status & HAL_INT_GTT)
2119 			sc->sc_stats.ast_tx_timeout++;
2120 		if (status & HAL_INT_CST)
2121 			sc->sc_stats.ast_tx_cst++;
2122 		if (status & HAL_INT_MIB) {
2123 			sc->sc_stats.ast_mib++;
2124 			ATH_PCU_LOCK(sc);
2125 			/*
2126 			 * Disable interrupts until we service the MIB
2127 			 * interrupt; otherwise it will continue to fire.
2128 			 */
2129 			ath_hal_intrset(ah, 0);
2130 			/*
2131 			 * Let the hal handle the event.  We assume it will
2132 			 * clear whatever condition caused the interrupt.
2133 			 */
2134 			ath_hal_mibevent(ah, &sc->sc_halstats);
2135 			/*
2136 			 * Don't reset the interrupt if we've just
2137 			 * kicked the PCU, or we may get a nested
2138 			 * RXEOL before the rxproc has had a chance
2139 			 * to run.
2140 			 */
2141 			if (sc->sc_kickpcu == 0)
2142 				ath_hal_intrset(ah, sc->sc_imask);
2143 			ATH_PCU_UNLOCK(sc);
2144 		}
2145 		if (status & HAL_INT_RXORN) {
2146 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2147 			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2148 			sc->sc_stats.ast_rxorn++;
2149 		}
2150 		if (status & HAL_INT_TSFOOR) {
2151 			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2152 			sc->sc_syncbeacon = 1;
2153 		}
2154 	}
2155 	ATH_PCU_LOCK(sc);
2156 	sc->sc_intr_cnt--;
2157 	ATH_PCU_UNLOCK(sc);
2158 
2159 	ath_power_restore_power_state(sc);
2160 }
2161 
2162 static void
2163 ath_fatal_proc(void *arg, int pending)
2164 {
2165 	struct ath_softc *sc = arg;
2166 	struct ifnet *ifp = sc->sc_ifp;
2167 	u_int32_t *state;
2168 	u_int32_t len;
2169 	void *sp;
2170 
2171 	if_printf(ifp, "hardware error; resetting\n");
2172 	/*
2173 	 * Fatal errors are unrecoverable.  Typically these
2174 	 * are caused by DMA errors.  Collect h/w state from
2175 	 * the hal so we can diagnose what's going on.
2176 	 */
2177 	wlan_serialize_enter();
2178 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2179 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2180 		state = sp;
2181 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
2182 		    state[0], state[1] , state[2], state[3],
2183 		    state[4], state[5]);
2184 	}
2185 	ath_reset(ifp, ATH_RESET_NOLOSS);
2186 	wlan_serialize_exit();
2187 }
2188 
2189 static void
2190 ath_bmiss_vap(struct ieee80211vap *vap)
2191 {
2192 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2193 
2194 	/*
2195 	 * Workaround phantom bmiss interrupts by sanity-checking
2196 	 * the time of our last rx'd frame.  If it is within the
2197 	 * beacon miss interval then ignore the interrupt.  If it's
2198 	 * truly a bmiss we'll get another interrupt soon and that'll
2199 	 * be dispatched up for processing.  Note this applies only
2200 	 * for h/w beacon miss events.
2201 	 */
2202 
2203 	/*
2204 	 * XXX TODO: Just read the TSF during the interrupt path;
2205 	 * that way we don't have to wake up again just to read it
2206 	 * again.
2207 	 */
2208 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2209 
2210 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2211 		u_int64_t lastrx = sc->sc_lastrx;
2212 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2213 		/* XXX should take a locked ref to iv_bss */
2214 		u_int bmisstimeout =
2215 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2216 
2217 		DPRINTF(sc, ATH_DEBUG_BEACON,
2218 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2219 		    __func__, (unsigned long long) tsf,
2220 		    (unsigned long long)(tsf - lastrx),
2221 		    (unsigned long long) lastrx, bmisstimeout);
2222 
2223 		if (tsf - lastrx <= bmisstimeout) {
2224 			sc->sc_stats.ast_bmiss_phantom++;
2225 			ath_power_restore_power_state(sc);
2226 			return;
2227 		}
2228 	}
2229 
2230 	/*
2231 	 * There's no need to keep the hardware awake during the call
2232 	 * to av_bmiss().
2233 	 */
2234 	ath_power_restore_power_state(sc);
2235 
2236 	/*
2237 	 * Attempt to force a beacon resync.
2238 	 */
2239 	sc->sc_syncbeacon = 1;
2240 
2241 	ATH_VAP(vap)->av_bmiss(vap);
2242 }
2243 
2244 /* XXX this needs a force wakeup! */
2245 int
2246 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2247 {
2248 	uint32_t rsize;
2249 	void *sp;
2250 
2251 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2252 		return 0;
2253 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2254 	*hangs = *(uint32_t *)sp;
2255 	return 1;
2256 }
2257 
2258 static void
2259 ath_bmiss_proc(void *arg, int pending)
2260 {
2261 	struct ath_softc *sc = arg;
2262 	struct ifnet *ifp = sc->sc_ifp;
2263 	uint32_t hangs;
2264 
2265 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2266 
2267 	/*
2268 	 * Do a reset upon any becaon miss event.
2269 	 *
2270 	 * It may be a non-recognised RX clear hang which needs a reset
2271 	 * to clear.
2272 	 */
2273 	wlan_serialize_enter();
2274 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2275 	ath_beacon_miss(sc);
2276 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2277 		ath_reset(ifp, ATH_RESET_NOLOSS);
2278 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2279 	} else {
2280 		ath_reset(ifp, ATH_RESET_NOLOSS);
2281 		ieee80211_beacon_miss(ifp->if_l2com);
2282 	}
2283 
2284 	/* Force a beacon resync, in case they've drifted */
2285 	sc->sc_syncbeacon = 1;
2286 	ath_power_restore_power_state(sc);
2287 
2288 	wlan_serialize_exit();
2289 }
2290 
2291 /*
2292  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2293  * calcs together with WME.  If necessary disable the crypto
2294  * hardware and mark the 802.11 state so keys will be setup
2295  * with the MIC work done in software.
2296  */
2297 static void
2298 ath_settkipmic(struct ath_softc *sc)
2299 {
2300 	struct ifnet *ifp = sc->sc_ifp;
2301 	struct ieee80211com *ic = ifp->if_l2com;
2302 
2303 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2304 		if (ic->ic_flags & IEEE80211_F_WME) {
2305 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2306 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2307 		} else {
2308 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2309 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2310 		}
2311 	}
2312 }
2313 
2314 static void
2315 ath_init(void *arg)
2316 {
2317 	struct ath_softc *sc = (struct ath_softc *) arg;
2318 	struct ifnet *ifp = sc->sc_ifp;
2319 	struct ieee80211com *ic = ifp->if_l2com;
2320 	struct ath_hal *ah = sc->sc_ah;
2321 	HAL_STATUS status;
2322 
2323 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2324 		__func__, ifp->if_flags);
2325 
2326 	ATH_LOCK(sc);
2327 	/*
2328 	 * Stop anything previously setup.  This is safe
2329 	 * whether this is the first time through or not.
2330 	 */
2331 	ath_stop_locked(ifp);
2332 
2333 	/*
2334 	 * The basic interface to setting the hardware in a good
2335 	 * state is ``reset''.  On return the hardware is known to
2336 	 * be powered up and with interrupts disabled.  This must
2337 	 * be followed by initialization of the appropriate bits
2338 	 * and then setup of the interrupt mask.
2339 	 */
2340 	ath_settkipmic(sc);
2341 	ath_update_chainmasks(sc, ic->ic_curchan);
2342 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2343 	    sc->sc_cur_rxchainmask);
2344 	sc->sc_rxfifo_state = ATH_RXFIFO_RESET;
2345 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2346 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2347 			status);
2348 		ATH_UNLOCK(sc);
2349 		return;
2350 	}
2351 	ath_chan_change(sc, ic->ic_curchan);
2352 
2353 	/* Let DFS at it in case it's a DFS channel */
2354 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2355 
2356 	/* Let spectral at in case spectral is enabled */
2357 	ath_spectral_enable(sc, ic->ic_curchan);
2358 
2359 	/*
2360 	 * Let bluetooth coexistence at in case it's needed for this channel
2361 	 */
2362 	ath_btcoex_enable(sc, ic->ic_curchan);
2363 
2364 	/*
2365 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2366 	 * support it.
2367 	 */
2368 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2369 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2370 	else
2371 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2372 
2373 	/*
2374 	 * Likewise this is set during reset so update
2375 	 * state cached in the driver.
2376 	 */
2377 	sc->sc_diversity = ath_hal_getdiversity(ah);
2378 	sc->sc_lastlongcal = 0;
2379 	sc->sc_resetcal = 1;
2380 	sc->sc_lastcalreset = 0;
2381 	sc->sc_lastani = 0;
2382 	sc->sc_lastshortcal = 0;
2383 	sc->sc_doresetcal = AH_FALSE;
2384 	/*
2385 	 * Beacon timers were cleared here; give ath_newstate()
2386 	 * a hint that the beacon timers should be poked when
2387 	 * things transition to the RUN state.
2388 	 */
2389 	sc->sc_beacons = 0;
2390 
2391 	/*
2392 	 * Setup the hardware after reset: the key cache
2393 	 * is filled as needed and the receive engine is
2394 	 * set going.  Frame transmit is handled entirely
2395 	 * in the frame output path; there's nothing to do
2396 	 * here except setup the interrupt mask.
2397 	 */
2398 	if (ath_startrecv(sc) != 0) {
2399 		if_printf(ifp, "unable to start recv logic\n");
2400 		ath_power_restore_power_state(sc);
2401 		ATH_UNLOCK(sc);
2402 		return;
2403 	}
2404 
2405 	/*
2406 	 * Enable interrupts.
2407 	 */
2408 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2409 		  | HAL_INT_RXEOL | HAL_INT_RXORN
2410 		  | HAL_INT_TXURN
2411 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2412 
2413 	/*
2414 	 * Enable RX EDMA bits.  Note these overlap with
2415 	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2416 	 */
2417 	if (sc->sc_isedma)
2418 		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2419 
2420 	/*
2421 	 * Enable MIB interrupts when there are hardware phy counters.
2422 	 * Note we only do this (at the moment) for station mode.
2423 	 */
2424 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2425 		sc->sc_imask |= HAL_INT_MIB;
2426 
2427 	/*
2428 	 * XXX add capability for this.
2429 	 *
2430 	 * If we're in STA mode (and maybe IBSS?) then register for
2431 	 * TSFOOR interrupts.
2432 	 */
2433 	if (ic->ic_opmode == IEEE80211_M_STA)
2434 		sc->sc_imask |= HAL_INT_TSFOOR;
2435 
2436 	/* Enable global TX timeout and carrier sense timeout if available */
2437 	if (ath_hal_gtxto_supported(ah))
2438 		sc->sc_imask |= HAL_INT_GTT;
2439 
2440 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2441 		__func__, sc->sc_imask);
2442 
2443 	ifp->if_flags |= IFF_RUNNING;
2444 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2445 	ath_hal_intrset(ah, sc->sc_imask);
2446 
2447 	ath_power_restore_power_state(sc);
2448 	ATH_UNLOCK(sc);
2449 
2450 #ifdef ATH_TX99_DIAG
2451 	if (sc->sc_tx99 != NULL)
2452 		sc->sc_tx99->start(sc->sc_tx99);
2453 	else
2454 #endif
2455 	ieee80211_start_all(ic);		/* start all vap's */
2456 }
2457 
2458 static void
2459 ath_stop_locked(struct ifnet *ifp)
2460 {
2461 	struct ath_softc *sc = ifp->if_softc;
2462 	struct ath_hal *ah = sc->sc_ah;
2463 
2464 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2465 		__func__, sc->sc_invalid, ifp->if_flags);
2466 
2467 	ATH_LOCK_ASSERT(sc);
2468 
2469 	/*
2470 	 * Wake the hardware up before fiddling with it.
2471 	 */
2472 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2473 
2474 	if (ifp->if_flags & IFF_RUNNING) {
2475 		/*
2476 		 * Shutdown the hardware and driver:
2477 		 *    reset 802.11 state machine
2478 		 *    turn off timers
2479 		 *    disable interrupts
2480 		 *    turn off the radio
2481 		 *    clear transmit machinery
2482 		 *    clear receive machinery
2483 		 *    drain and release tx queues
2484 		 *    reclaim beacon resources
2485 		 *    power down hardware
2486 		 *
2487 		 * Note that some of this work is not possible if the
2488 		 * hardware is gone (invalid).
2489 		 */
2490 #ifdef ATH_TX99_DIAG
2491 		if (sc->sc_tx99 != NULL)
2492 			sc->sc_tx99->stop(sc->sc_tx99);
2493 #endif
2494 		callout_stop(&sc->sc_wd_ch);
2495 		sc->sc_wd_timer = 0;
2496 		ifp->if_flags &= ~IFF_RUNNING;
2497 		if (!sc->sc_invalid) {
2498 			if (sc->sc_softled) {
2499 				callout_stop(&sc->sc_ledtimer);
2500 				ath_hal_gpioset(ah, sc->sc_ledpin,
2501 					!sc->sc_ledon);
2502 				sc->sc_blinking = 0;
2503 			}
2504 			ath_hal_intrset(ah, 0);
2505 		}
2506 		ath_draintxq(sc, ATH_RESET_DEFAULT);
2507 		if (!sc->sc_invalid) {
2508 			ath_stoprecv(sc, 1);
2509 			ath_hal_phydisable(ah);
2510 		} else
2511 			sc->sc_rxlink = NULL;
2512 		ath_beacon_free(sc);	/* XXX not needed */
2513 	}
2514 
2515 	/* And now, restore the current power state */
2516 	ath_power_restore_power_state(sc);
2517 }
2518 
2519 /*
2520  * Wait until all pending TX/RX has completed.
2521  *
2522  * This waits until all existing transmit, receive and interrupts
2523  * have completed.  It's assumed that the caller has first
2524  * grabbed the reset lock so it doesn't try to do overlapping
2525  * chip resets.
2526  */
2527 #define	MAX_TXRX_ITERATIONS	100
2528 static void
2529 ath_txrx_stop_locked(struct ath_softc *sc)
2530 {
2531 	int i = MAX_TXRX_ITERATIONS;
2532 
2533 	ATH_UNLOCK_ASSERT(sc);
2534 	ATH_PCU_LOCK_ASSERT(sc);
2535 
2536 	/*
2537 	 * Sleep until all the pending operations have completed.
2538 	 *
2539 	 * The caller must ensure that reset has been incremented
2540 	 * or the pending operations may continue being queued.
2541 	 */
2542 	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2543 	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2544 		if (i <= 0)
2545 			break;
2546 		wlan_serialize_sleep(sc, 0, "ath_txrx_stop", (hz + 99) / 100);
2547 		i--;
2548 	}
2549 
2550 	if (i <= 0)
2551 		device_printf(sc->sc_dev,
2552 		    "%s: didn't finish after %d iterations\n",
2553 		    __func__, MAX_TXRX_ITERATIONS);
2554 }
2555 #undef	MAX_TXRX_ITERATIONS
2556 
2557 #if 0
2558 static void
2559 ath_txrx_stop(struct ath_softc *sc)
2560 {
2561 	ATH_UNLOCK_ASSERT(sc);
2562 	ATH_PCU_UNLOCK_ASSERT(sc);
2563 
2564 	ATH_PCU_LOCK(sc);
2565 	ath_txrx_stop_locked(sc);
2566 	ATH_PCU_UNLOCK(sc);
2567 }
2568 #endif
2569 
2570 static void
2571 ath_txrx_start(struct ath_softc *sc)
2572 {
2573 
2574 	taskqueue_unblock(sc->sc_tq);
2575 }
2576 
2577 /*
2578  * Grab the reset lock, and wait around until noone else
2579  * is trying to do anything with it.
2580  *
2581  * This is totally horrible but we can't hold this lock for
2582  * long enough to do TX/RX or we end up with net80211/ip stack
2583  * LORs and eventual deadlock.
2584  *
2585  * "dowait" signals whether to spin, waiting for the reset
2586  * lock count to reach 0. This should (for now) only be used
2587  * during the reset path, as the rest of the code may not
2588  * be locking-reentrant enough to behave correctly.
2589  *
2590  * Another, cleaner way should be found to serialise all of
2591  * these operations.
2592  */
2593 #define	MAX_RESET_ITERATIONS	25
2594 static int
2595 ath_reset_grablock(struct ath_softc *sc, int dowait)
2596 {
2597 	int w = 0;
2598 	int i = MAX_RESET_ITERATIONS;
2599 
2600 	ATH_PCU_LOCK_ASSERT(sc);
2601 	do {
2602 		if (sc->sc_inreset_cnt == 0) {
2603 			w = 1;
2604 			break;
2605 		}
2606 		if (dowait == 0) {
2607 			w = 0;
2608 			break;
2609 		}
2610 		ATH_PCU_UNLOCK(sc);
2611 		wlan_serialize_sleep(sc, 0, "ath_reset_grablock",
2612 				     (hz + 9) / 10);
2613 		i--;
2614 		ATH_PCU_LOCK(sc);
2615 	} while (i > 0);
2616 
2617 	/*
2618 	 * We always increment the refcounter, regardless
2619 	 * of whether we succeeded to get it in an exclusive
2620 	 * way.
2621 	 */
2622 	sc->sc_inreset_cnt++;
2623 
2624 	if (i <= 0)
2625 		device_printf(sc->sc_dev,
2626 		    "%s: didn't finish after %d iterations\n",
2627 		    __func__, MAX_RESET_ITERATIONS);
2628 
2629 	if (w == 0)
2630 		device_printf(sc->sc_dev,
2631 		    "%s: warning, recursive reset path!\n",
2632 		    __func__);
2633 
2634 	return w;
2635 }
2636 #undef MAX_RESET_ITERATIONS
2637 
2638 /*
2639  * XXX TODO: write ath_reset_releaselock
2640  */
2641 
2642 static void
2643 ath_stop(struct ifnet *ifp)
2644 {
2645 	struct ath_softc *sc __unused = ifp->if_softc;
2646 
2647 	ATH_LOCK(sc);
2648 	ath_stop_locked(ifp);
2649 	ATH_UNLOCK(sc);
2650 }
2651 
2652 /*
2653  * Reset the hardware w/o losing operational state.  This is
2654  * basically a more efficient way of doing ath_stop, ath_init,
2655  * followed by state transitions to the current 802.11
2656  * operational state.  Used to recover from various errors and
2657  * to reset or reload hardware state.
2658  */
2659 int
2660 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2661 {
2662 	struct ath_softc *sc = ifp->if_softc;
2663 	struct ieee80211com *ic = ifp->if_l2com;
2664 	struct ath_hal *ah = sc->sc_ah;
2665 	HAL_STATUS status;
2666 	int i;
2667 
2668 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2669 
2670 	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2671 	ATH_PCU_UNLOCK_ASSERT(sc);
2672 	ATH_UNLOCK_ASSERT(sc);
2673 
2674 	/* Try to (stop any further TX/RX from occuring */
2675 	taskqueue_block(sc->sc_tq);
2676 
2677 	/*
2678 	 * Wake the hardware up.
2679 	 */
2680 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2681 
2682 	ATH_PCU_LOCK(sc);
2683 
2684 	/*
2685 	 * Grab the reset lock before TX/RX is stopped.
2686 	 *
2687 	 * This is needed to ensure that when the TX/RX actually does finish,
2688 	 * no further TX/RX/reset runs in parallel with this.
2689 	 */
2690 	if (ath_reset_grablock(sc, 1) == 0) {
2691 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2692 		    __func__);
2693 	}
2694 
2695 	/* disable interrupts */
2696 	ath_hal_intrset(ah, 0);
2697 
2698 	/*
2699 	 * Now, ensure that any in progress TX/RX completes before we
2700 	 * continue.
2701 	 */
2702 	ath_txrx_stop_locked(sc);
2703 
2704 	ATH_PCU_UNLOCK(sc);
2705 
2706 	/*
2707 	 * Should now wait for pending TX/RX to complete
2708 	 * and block future ones from occuring. This needs to be
2709 	 * done before the TX queue is drained.
2710 	 */
2711 	ath_draintxq(sc, reset_type);	/* stop xmit side */
2712 
2713 	/*
2714 	 * Regardless of whether we're doing a no-loss flush or
2715 	 * not, stop the PCU and handle what's in the RX queue.
2716 	 * That way frames aren't dropped which shouldn't be.
2717 	 */
2718 	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2719 	ath_rx_flush(sc);
2720 
2721 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2722 	/* NB: indicate channel change so we do a full reset */
2723 	ath_update_chainmasks(sc, ic->ic_curchan);
2724 	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2725 	    sc->sc_cur_rxchainmask);
2726 	sc->sc_rxfifo_state = ATH_RXFIFO_RESET;
2727 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2728 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2729 			__func__, status);
2730 	sc->sc_diversity = ath_hal_getdiversity(ah);
2731 
2732 	/* Let DFS at it in case it's a DFS channel */
2733 	ath_dfs_radar_enable(sc, ic->ic_curchan);
2734 
2735 	/* Let spectral at in case spectral is enabled */
2736 	ath_spectral_enable(sc, ic->ic_curchan);
2737 
2738 	/*
2739 	 * Let bluetooth coexistence at in case it's needed for this channel
2740 	 */
2741 	ath_btcoex_enable(sc, ic->ic_curchan);
2742 
2743 	/*
2744 	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2745 	 * support it.
2746 	 */
2747 	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2748 		ath_hal_setenforcetxop(sc->sc_ah, 1);
2749 	else
2750 		ath_hal_setenforcetxop(sc->sc_ah, 0);
2751 
2752 	if (ath_startrecv(sc) != 0)	/* restart recv */
2753 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2754 	/*
2755 	 * We may be doing a reset in response to an ioctl
2756 	 * that changes the channel so update any state that
2757 	 * might change as a result.
2758 	 */
2759 	ath_chan_change(sc, ic->ic_curchan);
2760 	if (sc->sc_beacons) {		/* restart beacons */
2761 #ifdef IEEE80211_SUPPORT_TDMA
2762 		if (sc->sc_tdma)
2763 			ath_tdma_config(sc, NULL);
2764 		else
2765 #endif
2766 			ath_beacon_config(sc, NULL);
2767 	}
2768 
2769 	/*
2770 	 * Release the reset lock and re-enable interrupts here.
2771 	 * If an interrupt was being processed in ath_intr(),
2772 	 * it would disable interrupts at this point. So we have
2773 	 * to atomically enable interrupts and decrement the
2774 	 * reset counter - this way ath_intr() doesn't end up
2775 	 * disabling interrupts without a corresponding enable
2776 	 * in the rest or channel change path.
2777 	 *
2778 	 * Grab the TX reference in case we need to transmit.
2779 	 * That way a parallel transmit doesn't.
2780 	 */
2781 	ATH_PCU_LOCK(sc);
2782 	sc->sc_inreset_cnt--;
2783 	sc->sc_txstart_cnt++;
2784 	/* XXX only do this if sc_inreset_cnt == 0? */
2785 	ath_hal_intrset(ah, sc->sc_imask);
2786 	ATH_PCU_UNLOCK(sc);
2787 
2788 	/*
2789 	 * TX and RX can be started here. If it were started with
2790 	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2791 	 * Thus if this is a nested call through the reset or
2792 	 * channel change code, TX completion will occur but
2793 	 * RX completion and ath_start / ath_tx_start will not
2794 	 * run.
2795 	 */
2796 
2797 	/* XXX TODO: we need to hold the tx refcount here! */
2798 
2799 	/* Restart TX/RX as needed */
2800 	ath_txrx_start(sc);
2801 
2802 	/* Restart TX completion and pending TX */
2803 	if (reset_type == ATH_RESET_NOLOSS) {
2804 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2805 			if (ATH_TXQ_SETUP(sc, i)) {
2806 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2807 				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2808 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2809 
2810 				ATH_TX_LOCK(sc);
2811 				ath_txq_sched(sc, &sc->sc_txq[i]);
2812 				ATH_TX_UNLOCK(sc);
2813 			}
2814 		}
2815 	}
2816 
2817 #if 0
2818 	/* remove, DragonFly uses OACTIVE to control if_start calls */
2819 	/*
2820 	 * This may have been set during an ath_start() call which
2821 	 * set this once it detected a concurrent TX was going on.
2822 	 * So, clear it.
2823 	 */
2824 	IF_LOCK(&ifp->if_snd);
2825 	ifq_clr_oactive(&ifp->if_snd);
2826 	IF_UNLOCK(&ifp->if_snd);
2827 #endif
2828 
2829 	ath_power_restore_power_state(sc);
2830 
2831 	ATH_PCU_LOCK(sc);
2832 	sc->sc_txstart_cnt--;
2833 	ATH_PCU_UNLOCK(sc);
2834 
2835 	/* Handle any frames in the TX queue */
2836 	/*
2837 	 * XXX should this be done by the caller, rather than
2838 	 * ath_reset() ?
2839 	 */
2840 	ath_tx_kick(sc);		/* restart xmit */
2841 	return 0;
2842 }
2843 
2844 static int
2845 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2846 {
2847 	struct ieee80211com *ic = vap->iv_ic;
2848 	struct ifnet *ifp = ic->ic_ifp;
2849 	struct ath_softc *sc = ifp->if_softc;
2850 	struct ath_hal *ah = sc->sc_ah;
2851 
2852 	switch (cmd) {
2853 	case IEEE80211_IOC_TXPOWER:
2854 		/*
2855 		 * If per-packet TPC is enabled, then we have nothing
2856 		 * to do; otherwise we need to force the global limit.
2857 		 * All this can happen directly; no need to reset.
2858 		 */
2859 		if (!ath_hal_gettpc(ah))
2860 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2861 		return 0;
2862 	}
2863 	/* XXX? Full or NOLOSS? */
2864 	return ath_reset(ifp, ATH_RESET_FULL);
2865 }
2866 
2867 struct ath_buf *
2868 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2869 {
2870 	struct ath_buf *bf;
2871 
2872 	ATH_TXBUF_LOCK_ASSERT(sc);
2873 
2874 	if (btype == ATH_BUFTYPE_MGMT)
2875 		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2876 	else
2877 		bf = TAILQ_FIRST(&sc->sc_txbuf);
2878 
2879 	if (bf == NULL) {
2880 		sc->sc_stats.ast_tx_getnobuf++;
2881 	} else {
2882 		if (bf->bf_flags & ATH_BUF_BUSY) {
2883 			sc->sc_stats.ast_tx_getbusybuf++;
2884 			bf = NULL;
2885 		}
2886 	}
2887 
2888 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2889 		if (btype == ATH_BUFTYPE_MGMT)
2890 			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2891 		else {
2892 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2893 			sc->sc_txbuf_cnt--;
2894 
2895 			/*
2896 			 * This shuldn't happen; however just to be
2897 			 * safe print a warning and fudge the txbuf
2898 			 * count.
2899 			 */
2900 			if (sc->sc_txbuf_cnt < 0) {
2901 				device_printf(sc->sc_dev,
2902 				    "%s: sc_txbuf_cnt < 0?\n",
2903 				    __func__);
2904 				sc->sc_txbuf_cnt = 0;
2905 			}
2906 		}
2907 	} else
2908 		bf = NULL;
2909 
2910 	if (bf == NULL) {
2911 		/* XXX should check which list, mgmt or otherwise */
2912 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2913 		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2914 			"out of xmit buffers" : "xmit buffer busy");
2915 		return NULL;
2916 	}
2917 
2918 	/* XXX TODO: should do this at buffer list initialisation */
2919 	/* XXX (then, ensure the buffer has the right flag set) */
2920 	bf->bf_flags = 0;
2921 	if (btype == ATH_BUFTYPE_MGMT)
2922 		bf->bf_flags |= ATH_BUF_MGMT;
2923 	else
2924 		bf->bf_flags &= (~ATH_BUF_MGMT);
2925 
2926 	/* Valid bf here; clear some basic fields */
2927 	bf->bf_next = NULL;	/* XXX just to be sure */
2928 	bf->bf_last = NULL;	/* XXX again, just to be sure */
2929 	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2930 	bzero(&bf->bf_state, sizeof(bf->bf_state));
2931 
2932 	/*
2933 	 * Track the descriptor ID only if doing EDMA
2934 	 */
2935 	if (sc->sc_isedma) {
2936 		bf->bf_descid = sc->sc_txbuf_descid;
2937 		sc->sc_txbuf_descid++;
2938 	}
2939 
2940 	return bf;
2941 }
2942 
2943 /*
2944  * When retrying a software frame, buffers marked ATH_BUF_BUSY
2945  * can't be thrown back on the queue as they could still be
2946  * in use by the hardware.
2947  *
2948  * This duplicates the buffer, or returns NULL.
2949  *
2950  * The descriptor is also copied but the link pointers and
2951  * the DMA segments aren't copied; this frame should thus
2952  * be again passed through the descriptor setup/chain routines
2953  * so the link is correct.
2954  *
2955  * The caller must free the buffer using ath_freebuf().
2956  */
2957 struct ath_buf *
2958 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2959 {
2960 	struct ath_buf *tbf;
2961 
2962 	tbf = ath_getbuf(sc,
2963 	    (bf->bf_flags & ATH_BUF_MGMT) ?
2964 	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2965 	if (tbf == NULL)
2966 		return NULL;	/* XXX failure? Why? */
2967 
2968 	/* Copy basics */
2969 	tbf->bf_next = NULL;
2970 	tbf->bf_nseg = bf->bf_nseg;
2971 	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2972 	tbf->bf_status = bf->bf_status;
2973 	tbf->bf_m = bf->bf_m;
2974 	tbf->bf_node = bf->bf_node;
2975 	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
2976 	/* will be setup by the chain/setup function */
2977 	tbf->bf_lastds = NULL;
2978 	/* for now, last == self */
2979 	tbf->bf_last = tbf;
2980 	tbf->bf_comp = bf->bf_comp;
2981 
2982 	/* NOTE: DMA segments will be setup by the setup/chain functions */
2983 
2984 	/* The caller has to re-init the descriptor + links */
2985 
2986 	/*
2987 	 * Free the DMA mapping here, before we NULL the mbuf.
2988 	 * We must only call bus_dmamap_unload() once per mbuf chain
2989 	 * or behaviour is undefined.
2990 	 */
2991 	if (bf->bf_m != NULL) {
2992 		/*
2993 		 * XXX is this POSTWRITE call required?
2994 		 */
2995 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2996 		    BUS_DMASYNC_POSTWRITE);
2997 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2998 	}
2999 
3000 	bf->bf_m = NULL;
3001 	bf->bf_node = NULL;
3002 
3003 	/* Copy state */
3004 	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3005 
3006 	return tbf;
3007 }
3008 
3009 struct ath_buf *
3010 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3011 {
3012 	struct ath_buf *bf;
3013 
3014 	ATH_TXBUF_LOCK(sc);
3015 	bf = _ath_getbuf_locked(sc, btype);
3016 	/*
3017 	 * If a mgmt buffer was requested but we're out of those,
3018 	 * try requesting a normal one.
3019 	 */
3020 	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3021 		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3022 	ATH_TXBUF_UNLOCK(sc);
3023 	if (bf == NULL) {
3024 #if 0
3025 		struct ifnet *ifp = sc->sc_ifp;
3026 #endif
3027 
3028 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3029 		sc->sc_stats.ast_tx_qstop++;
3030 #if 0
3031 		/* remove, DragonFly uses OACTIVE to control if_start calls */
3032 		IF_LOCK(&ifp->if_snd);
3033 		ifq_set_oactive(&ifp->if_snd);
3034 		IF_UNLOCK(&ifp->if_snd);
3035 #endif
3036 	}
3037 	return bf;
3038 }
3039 
3040 #if 0
3041 
3042 static void
3043 ath_qflush(struct ifnet *ifp)
3044 {
3045 
3046 	/* XXX TODO */
3047 }
3048 
3049 #endif
3050 
3051 /*
3052  * Transmit a single frame.
3053  *
3054  * net80211 will free the node reference if the transmit
3055  * fails, so don't free the node reference here.
3056  */
3057 static int
3058 ath_transmit(struct ifnet *ifp, struct mbuf *m)
3059 {
3060 	struct ieee80211com *ic = ifp->if_l2com;
3061 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3062 	struct ieee80211_node *ni;
3063 	struct mbuf *next;
3064 	struct ath_buf *bf;
3065 	ath_bufhead frags;
3066 	int retval = 0;
3067 
3068 	/*
3069 	 * Tell the reset path that we're currently transmitting.
3070 	 */
3071 	ATH_PCU_LOCK(sc);
3072 	if (sc->sc_inreset_cnt > 0) {
3073 		DPRINTF(sc, ATH_DEBUG_XMIT,
3074 		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3075 		ATH_PCU_UNLOCK(sc);
3076 		IF_LOCK(&ifp->if_snd);
3077 		sc->sc_stats.ast_tx_qstop++;
3078 #if 0
3079 		/* remove, DragonFly uses OACTIVE to control if_start calls */
3080 		ifq_set_oactive(&ifp->if_snd);
3081 #endif
3082 		IF_UNLOCK(&ifp->if_snd);
3083 		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3084 		m_freem(m);
3085 		m = NULL;
3086 		return (ENOBUFS);	/* XXX should be EINVAL or? */
3087 	}
3088 	sc->sc_txstart_cnt++;
3089 	ATH_PCU_UNLOCK(sc);
3090 
3091 	/* Wake the hardware up already */
3092 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3093 
3094 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3095 	/*
3096 	 * Grab the TX lock - it's ok to do this here; we haven't
3097 	 * yet started transmitting.
3098 	 */
3099 	ATH_TX_LOCK(sc);
3100 
3101 	/*
3102 	 * Node reference, if there's one.
3103 	 */
3104 	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3105 
3106 	/*
3107 	 * Enforce how deep a node queue can get.
3108 	 *
3109 	 * XXX it would be nicer if we kept an mbuf queue per
3110 	 * node and only whacked them into ath_bufs when we
3111 	 * are ready to schedule some traffic from them.
3112 	 * .. that may come later.
3113 	 *
3114 	 * XXX we should also track the per-node hardware queue
3115 	 * depth so it is easy to limit the _SUM_ of the swq and
3116 	 * hwq frames.  Since we only schedule two HWQ frames
3117 	 * at a time, this should be OK for now.
3118 	 */
3119 	if ((!(m->m_flags & M_EAPOL)) &&
3120 	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3121 		sc->sc_stats.ast_tx_nodeq_overflow++;
3122 		m_freem(m);
3123 		m = NULL;
3124 		retval = ENOBUFS;
3125 		goto finish;
3126 	}
3127 
3128 	/*
3129 	 * Check how many TX buffers are available.
3130 	 *
3131 	 * If this is for non-EAPOL traffic, just leave some
3132 	 * space free in order for buffer cloning and raw
3133 	 * frame transmission to occur.
3134 	 *
3135 	 * If it's for EAPOL traffic, ignore this for now.
3136 	 * Management traffic will be sent via the raw transmit
3137 	 * method which bypasses this check.
3138 	 *
3139 	 * This is needed to ensure that EAPOL frames during
3140 	 * (re) keying have a chance to go out.
3141 	 *
3142 	 * See kern/138379 for more information.
3143 	 */
3144 	if ((!(m->m_flags & M_EAPOL)) &&
3145 	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3146 		sc->sc_stats.ast_tx_nobuf++;
3147 		m_freem(m);
3148 		m = NULL;
3149 		retval = ENOBUFS;
3150 		goto finish;
3151 	}
3152 
3153 	/*
3154 	 * Grab a TX buffer and associated resources.
3155 	 *
3156 	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3157 	 * That way even with temporary buffer exhaustion due to
3158 	 * the data path doesn't leave us without the ability
3159 	 * to transmit management frames.
3160 	 *
3161 	 * Otherwise allocate a normal buffer.
3162 	 */
3163 	if (m->m_flags & M_EAPOL)
3164 		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3165 	else
3166 		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3167 
3168 	if (bf == NULL) {
3169 		/*
3170 		 * If we failed to allocate a buffer, fail.
3171 		 *
3172 		 * We shouldn't fail normally, due to the check
3173 		 * above.
3174 		 */
3175 		sc->sc_stats.ast_tx_nobuf++;
3176 #if 0
3177 		/* remove, DragonFly uses OACTIVE to control if_start calls */
3178 		IF_LOCK(&ifp->if_snd);
3179 		ifq_set_oactive(&ifp->if_snd);
3180 		IF_UNLOCK(&ifp->if_snd);
3181 #endif
3182 		m_freem(m);
3183 		m = NULL;
3184 		retval = ENOBUFS;
3185 		goto finish;
3186 	}
3187 
3188 	/*
3189 	 * At this point we have a buffer; so we need to free it
3190 	 * if we hit any error conditions.
3191 	 */
3192 
3193 	/*
3194 	 * Check for fragmentation.  If this frame
3195 	 * has been broken up verify we have enough
3196 	 * buffers to send all the fragments so all
3197 	 * go out or none...
3198 	 */
3199 	TAILQ_INIT(&frags);
3200 	if ((m->m_flags & M_FRAG) &&
3201 	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3202 		DPRINTF(sc, ATH_DEBUG_XMIT,
3203 		    "%s: out of txfrag buffers\n", __func__);
3204 		sc->sc_stats.ast_tx_nofrag++;
3205 		ifp->if_oerrors++;
3206 		ath_freetx(m);
3207 		goto bad;
3208 	}
3209 
3210 	/*
3211 	 * At this point if we have any TX fragments, then we will
3212 	 * have bumped the node reference once for each of those.
3213 	 */
3214 
3215 	/*
3216 	 * XXX Is there anything actually _enforcing_ that the
3217 	 * fragments are being transmitted in one hit, rather than
3218 	 * being interleaved with other transmissions on that
3219 	 * hardware queue?
3220 	 *
3221 	 * The ATH TX output lock is the only thing serialising this
3222 	 * right now.
3223 	 */
3224 
3225 	/*
3226 	 * Calculate the "next fragment" length field in ath_buf
3227 	 * in order to let the transmit path know enough about
3228 	 * what to next write to the hardware.
3229 	 */
3230 	if (m->m_flags & M_FRAG) {
3231 		struct ath_buf *fbf = bf;
3232 		struct ath_buf *n_fbf = NULL;
3233 		struct mbuf *fm = m->m_nextpkt;
3234 
3235 		/*
3236 		 * We need to walk the list of fragments and set
3237 		 * the next size to the following buffer.
3238 		 * However, the first buffer isn't in the frag
3239 		 * list, so we have to do some gymnastics here.
3240 		 */
3241 		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3242 			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3243 			fbf = n_fbf;
3244 			fm = fm->m_nextpkt;
3245 		}
3246 	}
3247 
3248 	/*
3249 	 * Bump the ifp output counter.
3250 	 *
3251 	 * XXX should use atomics?
3252 	 */
3253 	ifp->if_opackets++;
3254 nextfrag:
3255 	/*
3256 	 * Pass the frame to the h/w for transmission.
3257 	 * Fragmented frames have each frag chained together
3258 	 * with m_nextpkt.  We know there are sufficient ath_buf's
3259 	 * to send all the frags because of work done by
3260 	 * ath_txfrag_setup.  We leave m_nextpkt set while
3261 	 * calling ath_tx_start so it can use it to extend the
3262 	 * the tx duration to cover the subsequent frag and
3263 	 * so it can reclaim all the mbufs in case of an error;
3264 	 * ath_tx_start clears m_nextpkt once it commits to
3265 	 * handing the frame to the hardware.
3266 	 *
3267 	 * Note: if this fails, then the mbufs are freed but
3268 	 * not the node reference.
3269 	 */
3270 	next = m->m_nextpkt;
3271 	if (ath_tx_start(sc, ni, bf, m)) {
3272 bad:
3273 		ifp->if_oerrors++;
3274 reclaim:
3275 		bf->bf_m = NULL;
3276 		bf->bf_node = NULL;
3277 		ATH_TXBUF_LOCK(sc);
3278 		ath_returnbuf_head(sc, bf);
3279 		/*
3280 		 * Free the rest of the node references and
3281 		 * buffers for the fragment list.
3282 		 */
3283 		ath_txfrag_cleanup(sc, &frags, ni);
3284 		ATH_TXBUF_UNLOCK(sc);
3285 		retval = ENOBUFS;
3286 		goto finish;
3287 	}
3288 
3289 	/*
3290 	 * Check here if the node is in power save state.
3291 	 */
3292 	ath_tx_update_tim(sc, ni, 1);
3293 
3294 	if (next != NULL) {
3295 		/*
3296 		 * Beware of state changing between frags.
3297 		 * XXX check sta power-save state?
3298 		 */
3299 		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3300 			DPRINTF(sc, ATH_DEBUG_XMIT,
3301 			    "%s: flush fragmented packet, state %s\n",
3302 			    __func__,
3303 			    ieee80211_state_name[ni->ni_vap->iv_state]);
3304 			/* XXX dmamap */
3305 			ath_freetx(next);
3306 			goto reclaim;
3307 		}
3308 		m = next;
3309 		bf = TAILQ_FIRST(&frags);
3310 		KASSERT(bf != NULL, ("no buf for txfrag"));
3311 		TAILQ_REMOVE(&frags, bf, bf_list);
3312 		goto nextfrag;
3313 	}
3314 
3315 	/*
3316 	 * Bump watchdog timer.
3317 	 */
3318 	sc->sc_wd_timer = 5;
3319 
3320 finish:
3321 	ATH_TX_UNLOCK(sc);
3322 
3323 	/*
3324 	 * Finished transmitting!
3325 	 */
3326 	ATH_PCU_LOCK(sc);
3327 	sc->sc_txstart_cnt--;
3328 	ATH_PCU_UNLOCK(sc);
3329 
3330 	/* Sleep the hardware if required */
3331 	ath_power_restore_power_state(sc);
3332 
3333 	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3334 
3335 	return (retval);
3336 }
3337 
3338 static int
3339 ath_media_change(struct ifnet *ifp)
3340 {
3341 	int error = ieee80211_media_change(ifp);
3342 	/* NB: only the fixed rate can change and that doesn't need a reset */
3343 	return (error == ENETRESET ? 0 : error);
3344 }
3345 
3346 /*
3347  * Block/unblock tx+rx processing while a key change is done.
3348  * We assume the caller serializes key management operations
3349  * so we only need to worry about synchronization with other
3350  * uses that originate in the driver.
3351  */
3352 static void
3353 ath_key_update_begin(struct ieee80211vap *vap)
3354 {
3355 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3356 	struct ath_softc *sc = ifp->if_softc;
3357 
3358 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3359 	taskqueue_block(sc->sc_tq);
3360 }
3361 
3362 static void
3363 ath_key_update_end(struct ieee80211vap *vap)
3364 {
3365 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3366 	struct ath_softc *sc = ifp->if_softc;
3367 
3368 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3369 	taskqueue_unblock(sc->sc_tq);
3370 }
3371 
3372 static void
3373 ath_update_promisc(struct ifnet *ifp)
3374 {
3375 	struct ath_softc *sc = ifp->if_softc;
3376 	u_int32_t rfilt;
3377 
3378 	/* configure rx filter */
3379 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3380 	rfilt = ath_calcrxfilter(sc);
3381 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3382 	ath_power_restore_power_state(sc);
3383 
3384 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3385 }
3386 
3387 static void
3388 ath_update_mcast(struct ifnet *ifp)
3389 {
3390 	struct ath_softc *sc = ifp->if_softc;
3391 	u_int32_t mfilt[2];
3392 
3393 	/* calculate and install multicast filter */
3394 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3395 		struct ifmultiaddr *ifma;
3396 		/*
3397 		 * Merge multicast addresses to form the hardware filter.
3398 		 */
3399 		mfilt[0] = mfilt[1] = 0;
3400 #if 0
3401 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3402 #endif
3403 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3404 			caddr_t dl;
3405 			u_int32_t val;
3406 			u_int8_t pos;
3407 
3408 			/* calculate XOR of eight 6bit values */
3409 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3410 			val = LE_READ_4(dl + 0);
3411 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3412 			val = LE_READ_4(dl + 3);
3413 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3414 			pos &= 0x3f;
3415 			mfilt[pos / 32] |= (1 << (pos % 32));
3416 		}
3417 #if 0
3418 		if_maddr_runlock(ifp);
3419 #endif
3420 	} else
3421 		mfilt[0] = mfilt[1] = ~0;
3422 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3423 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3424 	ath_power_restore_power_state(sc);
3425 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3426 		__func__, mfilt[0], mfilt[1]);
3427 }
3428 
3429 void
3430 ath_mode_init(struct ath_softc *sc)
3431 {
3432 	struct ifnet *ifp = sc->sc_ifp;
3433 	struct ath_hal *ah = sc->sc_ah;
3434 	u_int32_t rfilt;
3435 
3436 	/* configure rx filter */
3437 	rfilt = ath_calcrxfilter(sc);
3438 	ath_hal_setrxfilter(ah, rfilt);
3439 
3440 	/* configure operational mode */
3441 	ath_hal_setopmode(ah);
3442 
3443 #if 0
3444 	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3445 	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3446 	    __func__,
3447 	    ah,
3448 	    ifp,
3449 	    (ifp == NULL) ? NULL : ifp->if_addr);
3450 #endif
3451 
3452 	/* handle any link-level address change */
3453 	ath_hal_setmac(ah, IF_LLADDR(ifp));
3454 
3455 	/* calculate and install multicast filter */
3456 	ath_update_mcast(ifp);
3457 }
3458 
3459 /*
3460  * Set the slot time based on the current setting.
3461  */
3462 void
3463 ath_setslottime(struct ath_softc *sc)
3464 {
3465 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3466 	struct ath_hal *ah = sc->sc_ah;
3467 	u_int usec;
3468 
3469 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3470 		usec = 13;
3471 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3472 		usec = 21;
3473 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3474 		/* honor short/long slot time only in 11g */
3475 		/* XXX shouldn't honor on pure g or turbo g channel */
3476 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3477 			usec = HAL_SLOT_TIME_9;
3478 		else
3479 			usec = HAL_SLOT_TIME_20;
3480 	} else
3481 		usec = HAL_SLOT_TIME_9;
3482 
3483 	DPRINTF(sc, ATH_DEBUG_RESET,
3484 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3485 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3486 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3487 
3488 	/* Wake up the hardware first before updating the slot time */
3489 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3490 	ath_hal_setslottime(ah, usec);
3491 	ath_power_restore_power_state(sc);
3492 	sc->sc_updateslot = OK;
3493 }
3494 
3495 /*
3496  * Callback from the 802.11 layer to update the
3497  * slot time based on the current setting.
3498  */
3499 static void
3500 ath_updateslot(struct ifnet *ifp)
3501 {
3502 	struct ath_softc *sc = ifp->if_softc;
3503 	struct ieee80211com *ic = ifp->if_l2com;
3504 
3505 	/*
3506 	 * When not coordinating the BSS, change the hardware
3507 	 * immediately.  For other operation we defer the change
3508 	 * until beacon updates have propagated to the stations.
3509 	 *
3510 	 * XXX sc_updateslot isn't changed behind a lock?
3511 	 */
3512 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3513 	    ic->ic_opmode == IEEE80211_M_MBSS)
3514 		sc->sc_updateslot = UPDATE;
3515 	else
3516 		ath_setslottime(sc);
3517 }
3518 
3519 /*
3520  * Append the contents of src to dst; both queues
3521  * are assumed to be locked.
3522  */
3523 void
3524 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3525 {
3526 
3527 	ATH_TXQ_LOCK_ASSERT(src);
3528 	ATH_TXQ_LOCK_ASSERT(dst);
3529 
3530 	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3531 	dst->axq_link = src->axq_link;
3532 	src->axq_link = NULL;
3533 	dst->axq_depth += src->axq_depth;
3534 	dst->axq_aggr_depth += src->axq_aggr_depth;
3535 	src->axq_depth = 0;
3536 	src->axq_aggr_depth = 0;
3537 }
3538 
3539 /*
3540  * Reset the hardware, with no loss.
3541  *
3542  * This can't be used for a general case reset.
3543  */
3544 static void
3545 ath_reset_proc(void *arg, int pending)
3546 {
3547 	struct ath_softc *sc = arg;
3548 	struct ifnet *ifp = sc->sc_ifp;
3549 
3550 #if 0
3551 	if_printf(ifp, "%s: resetting\n", __func__);
3552 #endif
3553 	wlan_serialize_enter();
3554 	ath_reset(ifp, ATH_RESET_NOLOSS);
3555 	wlan_serialize_exit();
3556 }
3557 
3558 /*
3559  * Reset the hardware after detecting beacons have stopped.
3560  */
3561 static void
3562 ath_bstuck_proc(void *arg, int pending)
3563 {
3564 	struct ath_softc *sc = arg;
3565 	struct ifnet *ifp = sc->sc_ifp;
3566 	uint32_t hangs = 0;
3567 
3568 	wlan_serialize_enter();
3569 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3570 		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3571 
3572 #ifdef	ATH_DEBUG_ALQ
3573 	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3574 		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3575 #endif
3576 
3577 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3578 		sc->sc_bmisscount);
3579 	sc->sc_stats.ast_bstuck++;
3580 	/*
3581 	 * This assumes that there's no simultaneous channel mode change
3582 	 * occuring.
3583 	 */
3584 	ath_reset(ifp, ATH_RESET_NOLOSS);
3585 	wlan_serialize_exit();
3586 }
3587 
3588 static void
3589 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3590 {
3591 	bus_addr_t *paddr = (bus_addr_t*) arg;
3592 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3593 	*paddr = segs->ds_addr;
3594 }
3595 
3596 /*
3597  * Allocate the descriptors and appropriate DMA tag/setup.
3598  *
3599  * For some situations (eg EDMA TX completion), there isn't a requirement
3600  * for the ath_buf entries to be allocated.
3601  */
3602 int
3603 ath_descdma_alloc_desc(struct ath_softc *sc,
3604 	struct ath_descdma *dd, ath_bufhead *head,
3605 	const char *name, int ds_size, int ndesc)
3606 {
3607 #define	DS2PHYS(_dd, _ds) \
3608 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3609 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3610 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3611 	struct ifnet *ifp = sc->sc_ifp;
3612 	int error;
3613 
3614 	dd->dd_descsize = ds_size;
3615 
3616 	DPRINTF(sc, ATH_DEBUG_RESET,
3617 	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3618 	    __func__, name, ndesc, dd->dd_descsize);
3619 
3620 	dd->dd_name = name;
3621 	dd->dd_desc_len = dd->dd_descsize * ndesc;
3622 
3623 	/*
3624 	 * Merlin work-around:
3625 	 * Descriptors that cross the 4KB boundary can't be used.
3626 	 * Assume one skipped descriptor per 4KB page.
3627 	 */
3628 	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3629 		int numpages = dd->dd_desc_len / 4096;
3630 		dd->dd_desc_len += ds_size * numpages;
3631 	}
3632 
3633 	/*
3634 	 * Setup DMA descriptor area.
3635 	 *
3636 	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3637 	 * buffers for the descriptors themselves.
3638 	 */
3639 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3640 		       PAGE_SIZE, 0,		/* alignment, bounds */
3641 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3642 		       BUS_SPACE_MAXADDR,	/* highaddr */
3643 		       NULL, NULL,		/* filter, filterarg */
3644 		       dd->dd_desc_len,		/* maxsize */
3645 		       1,			/* nsegments */
3646 		       dd->dd_desc_len,		/* maxsegsize */
3647 		       0,			/* flags */
3648 		       &dd->dd_dmat);
3649 	if (error != 0) {
3650 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3651 		return error;
3652 	}
3653 
3654 	/* allocate descriptors */
3655 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3656 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3657 				 &dd->dd_dmamap);
3658 	if (error != 0) {
3659 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3660 			"error %u\n", ndesc, dd->dd_name, error);
3661 		goto fail1;
3662 	}
3663 
3664 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3665 				dd->dd_desc, dd->dd_desc_len,
3666 				ath_load_cb, &dd->dd_desc_paddr,
3667 				BUS_DMA_NOWAIT);
3668 	if (error != 0) {
3669 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3670 			dd->dd_name, error);
3671 		goto fail2;
3672 	}
3673 
3674 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3675 	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3676 	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3677 	    /*XXX*/ (u_long) dd->dd_desc_len);
3678 
3679 	return (0);
3680 
3681 fail2:
3682 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3683 fail1:
3684 	bus_dma_tag_destroy(dd->dd_dmat);
3685 	memset(dd, 0, sizeof(*dd));
3686 	return error;
3687 #undef DS2PHYS
3688 #undef ATH_DESC_4KB_BOUND_CHECK
3689 }
3690 
3691 int
3692 ath_descdma_setup(struct ath_softc *sc,
3693 	struct ath_descdma *dd, ath_bufhead *head,
3694 	const char *name, int ds_size, int nbuf, int ndesc)
3695 {
3696 #define	DS2PHYS(_dd, _ds) \
3697 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3698 #define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3699 	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3700 	struct ifnet *ifp = sc->sc_ifp;
3701 	uint8_t *ds;
3702 	struct ath_buf *bf;
3703 	int i, bsize, error;
3704 
3705 	/* Allocate descriptors */
3706 	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3707 	    nbuf * ndesc);
3708 
3709 	/* Assume any errors during allocation were dealt with */
3710 	if (error != 0) {
3711 		return (error);
3712 	}
3713 
3714 	ds = (uint8_t *) dd->dd_desc;
3715 
3716 	/* allocate rx buffers */
3717 	bsize = sizeof(struct ath_buf) * nbuf;
3718 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT|M_ZERO);
3719 	if (bf == NULL) {
3720 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3721 			dd->dd_name, bsize);
3722 		goto fail3;
3723 	}
3724 	dd->dd_bufptr = bf;
3725 
3726 	TAILQ_INIT(head);
3727 	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3728 		bf->bf_desc = (struct ath_desc *) ds;
3729 		bf->bf_daddr = DS2PHYS(dd, ds);
3730 		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3731 			/*
3732 			 * Merlin WAR: Skip descriptor addresses which
3733 			 * cause 4KB boundary crossing along any point
3734 			 * in the descriptor.
3735 			 */
3736 			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3737 			     dd->dd_descsize)) {
3738 				/* Start at the next page */
3739 				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3740 				bf->bf_desc = (struct ath_desc *) ds;
3741 				bf->bf_daddr = DS2PHYS(dd, ds);
3742 			}
3743 		}
3744 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3745 				&bf->bf_dmamap);
3746 		if (error != 0) {
3747 			if_printf(ifp, "unable to create dmamap for %s "
3748 				"buffer %u, error %u\n", dd->dd_name, i, error);
3749 			ath_descdma_cleanup(sc, dd, head);
3750 			return error;
3751 		}
3752 		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3753 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3754 	}
3755 
3756 	/*
3757 	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3758 	 * allocation otherwise weird stuff will occur and crash your
3759 	 * machine.
3760 	 */
3761 	return 0;
3762 	/* XXX this should likely just call ath_descdma_cleanup() */
3763 fail3:
3764 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3765 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3766 	bus_dma_tag_destroy(dd->dd_dmat);
3767 	memset(dd, 0, sizeof(*dd));
3768 	return error;
3769 #undef DS2PHYS
3770 #undef ATH_DESC_4KB_BOUND_CHECK
3771 }
3772 
3773 /*
3774  * Allocate ath_buf entries but no descriptor contents.
3775  *
3776  * This is for RX EDMA where the descriptors are the header part of
3777  * the RX buffer.
3778  */
3779 int
3780 ath_descdma_setup_rx_edma(struct ath_softc *sc,
3781 	struct ath_descdma *dd, ath_bufhead *head,
3782 	const char *name, int nbuf, int rx_status_len)
3783 {
3784 	struct ifnet *ifp = sc->sc_ifp;
3785 	struct ath_buf *bf;
3786 	int i, bsize, error;
3787 
3788 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3789 	    __func__, name, nbuf);
3790 
3791 	dd->dd_name = name;
3792 	/*
3793 	 * This is (mostly) purely for show.  We're not allocating any actual
3794 	 * descriptors here as EDMA RX has the descriptor be part
3795 	 * of the RX buffer.
3796 	 *
3797 	 * However, dd_desc_len is used by ath_descdma_free() to determine
3798 	 * whether we have already freed this DMA mapping.
3799 	 */
3800 	dd->dd_desc_len = rx_status_len * nbuf;
3801 	dd->dd_descsize = rx_status_len;
3802 
3803 	/* allocate rx buffers */
3804 	bsize = sizeof(struct ath_buf) * nbuf;
3805 	bf = kmalloc(bsize, M_ATHDEV, M_INTWAIT | M_ZERO);
3806 	if (bf == NULL) {
3807 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3808 			dd->dd_name, bsize);
3809 		error = ENOMEM;
3810 		goto fail3;
3811 	}
3812 	dd->dd_bufptr = bf;
3813 
3814 	TAILQ_INIT(head);
3815 	for (i = 0; i < nbuf; i++, bf++) {
3816 		bf->bf_desc = NULL;
3817 		bf->bf_daddr = 0;
3818 		bf->bf_lastds = NULL;	/* Just an initial value */
3819 
3820 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3821 				&bf->bf_dmamap);
3822 		if (error != 0) {
3823 			if_printf(ifp, "unable to create dmamap for %s "
3824 				"buffer %u, error %u\n", dd->dd_name, i, error);
3825 			ath_descdma_cleanup(sc, dd, head);
3826 			return error;
3827 		}
3828 		TAILQ_INSERT_TAIL(head, bf, bf_list);
3829 	}
3830 	return 0;
3831 fail3:
3832 	memset(dd, 0, sizeof(*dd));
3833 	return error;
3834 }
3835 
3836 void
3837 ath_descdma_cleanup(struct ath_softc *sc,
3838 	struct ath_descdma *dd, ath_bufhead *head)
3839 {
3840 	struct ath_buf *bf;
3841 	struct ieee80211_node *ni;
3842 	int do_warning = 0;
3843 
3844 	if (dd->dd_dmamap != 0) {
3845 		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3846 		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3847 		bus_dma_tag_destroy(dd->dd_dmat);
3848 	}
3849 
3850 	if (head != NULL) {
3851 		TAILQ_FOREACH(bf, head, bf_list) {
3852 			if (bf->bf_m) {
3853 				/*
3854 				 * XXX warn if there's buffers here.
3855 				 * XXX it should have been freed by the
3856 				 * owner!
3857 				 */
3858 
3859 				if (do_warning == 0) {
3860 					do_warning = 1;
3861 					device_printf(sc->sc_dev,
3862 					    "%s: %s: mbuf should've been"
3863 					    " unmapped/freed!\n",
3864 					    __func__,
3865 					    dd->dd_name);
3866 				}
3867 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3868 				    BUS_DMASYNC_POSTREAD);
3869 				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3870 				m_freem(bf->bf_m);
3871 				bf->bf_m = NULL;
3872 			}
3873 			if (bf->bf_dmamap != NULL) {
3874 				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3875 				bf->bf_dmamap = NULL;
3876 			}
3877 			ni = bf->bf_node;
3878 			bf->bf_node = NULL;
3879 			if (ni != NULL) {
3880 				/*
3881 				 * Reclaim node reference.
3882 				 */
3883 				ieee80211_free_node(ni);
3884 			}
3885 		}
3886 	}
3887 
3888 	if (head != NULL)
3889 		TAILQ_INIT(head);
3890 
3891 	if (dd->dd_bufptr != NULL)
3892 		kfree(dd->dd_bufptr, M_ATHDEV);
3893 	memset(dd, 0, sizeof(*dd));
3894 }
3895 
3896 static int
3897 ath_desc_alloc(struct ath_softc *sc)
3898 {
3899 	int error;
3900 
3901 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3902 		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3903 	if (error != 0) {
3904 		return error;
3905 	}
3906 	sc->sc_txbuf_cnt = ath_txbuf;
3907 
3908 	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3909 		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3910 		    ATH_TXDESC);
3911 	if (error != 0) {
3912 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3913 		return error;
3914 	}
3915 
3916 	/*
3917 	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3918 	 * flag doesn't have to be set in ath_getbuf_locked().
3919 	 */
3920 
3921 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3922 			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3923 	if (error != 0) {
3924 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3925 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3926 		    &sc->sc_txbuf_mgmt);
3927 		return error;
3928 	}
3929 	return 0;
3930 }
3931 
3932 static void
3933 ath_desc_free(struct ath_softc *sc)
3934 {
3935 
3936 	if (sc->sc_bdma.dd_desc_len != 0)
3937 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3938 	if (sc->sc_txdma.dd_desc_len != 0)
3939 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3940 	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3941 		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3942 		    &sc->sc_txbuf_mgmt);
3943 }
3944 
3945 static struct ieee80211_node *
3946 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3947 {
3948 	struct ieee80211com *ic = vap->iv_ic;
3949 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3950 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3951 	struct ath_node *an;
3952 
3953 	an = kmalloc(space, M_80211_NODE, M_INTWAIT|M_ZERO);
3954 	if (an == NULL) {
3955 		/* XXX stat+msg */
3956 		return NULL;
3957 	}
3958 	ath_rate_node_init(sc, an);
3959 
3960 	/* Setup the mutex - there's no associd yet so set the name to NULL */
3961 	ksnprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3962 	    device_get_nameunit(sc->sc_dev), an);
3963 #if 0
3964 	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3965 #endif
3966 
3967 	/* XXX setup ath_tid */
3968 	ath_tx_tid_init(sc, an);
3969 
3970 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
3971 	    ath_hal_ether_sprintf(mac), an);
3972 	return &an->an_node;
3973 }
3974 
3975 static void
3976 ath_node_cleanup(struct ieee80211_node *ni)
3977 {
3978 	struct ieee80211com *ic = ni->ni_ic;
3979 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3980 
3981 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
3982 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
3983 
3984 	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3985 	ath_tx_node_flush(sc, ATH_NODE(ni));
3986 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3987 	sc->sc_node_cleanup(ni);
3988 }
3989 
3990 static void
3991 ath_node_free(struct ieee80211_node *ni)
3992 {
3993 	struct ieee80211com *ic = ni->ni_ic;
3994 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3995 
3996 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %s: an %p\n", __func__,
3997 	    ath_hal_ether_sprintf(ni->ni_macaddr), ATH_NODE(ni));
3998 #if 0
3999 	mtx_destroy(&ATH_NODE(ni)->an_mtx);
4000 #endif
4001 	sc->sc_node_free(ni);
4002 }
4003 
4004 static void
4005 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4006 {
4007 	struct ieee80211com *ic = ni->ni_ic;
4008 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4009 	struct ath_hal *ah = sc->sc_ah;
4010 
4011 	*rssi = ic->ic_node_getrssi(ni);
4012 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4013 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4014 	else
4015 		*noise = -95;		/* nominally correct */
4016 }
4017 
4018 /*
4019  * Set the default antenna.
4020  */
4021 void
4022 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4023 {
4024 	struct ath_hal *ah = sc->sc_ah;
4025 
4026 	/* XXX block beacon interrupts */
4027 	ath_hal_setdefantenna(ah, antenna);
4028 	if (sc->sc_defant != antenna)
4029 		sc->sc_stats.ast_ant_defswitch++;
4030 	sc->sc_defant = antenna;
4031 	sc->sc_rxotherant = 0;
4032 }
4033 
4034 static void
4035 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4036 {
4037 	txq->axq_qnum = qnum;
4038 	txq->axq_ac = 0;
4039 	txq->axq_depth = 0;
4040 	txq->axq_aggr_depth = 0;
4041 	txq->axq_intrcnt = 0;
4042 	txq->axq_link = NULL;
4043 	txq->axq_softc = sc;
4044 	TAILQ_INIT(&txq->axq_q);
4045 	TAILQ_INIT(&txq->axq_tidq);
4046 	TAILQ_INIT(&txq->fifo.axq_q);
4047 	ATH_TXQ_LOCK_INIT(sc, txq);
4048 }
4049 
4050 /*
4051  * Setup a h/w transmit queue.
4052  */
4053 static struct ath_txq *
4054 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4055 {
4056 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4057 	struct ath_hal *ah = sc->sc_ah;
4058 	HAL_TXQ_INFO qi;
4059 	int qnum;
4060 
4061 	memset(&qi, 0, sizeof(qi));
4062 	qi.tqi_subtype = subtype;
4063 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4064 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4065 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4066 	/*
4067 	 * Enable interrupts only for EOL and DESC conditions.
4068 	 * We mark tx descriptors to receive a DESC interrupt
4069 	 * when a tx queue gets deep; otherwise waiting for the
4070 	 * EOL to reap descriptors.  Note that this is done to
4071 	 * reduce interrupt load and this only defers reaping
4072 	 * descriptors, never transmitting frames.  Aside from
4073 	 * reducing interrupts this also permits more concurrency.
4074 	 * The only potential downside is if the tx queue backs
4075 	 * up in which case the top half of the kernel may backup
4076 	 * due to a lack of tx descriptors.
4077 	 */
4078 	if (sc->sc_isedma)
4079 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4080 		    HAL_TXQ_TXOKINT_ENABLE;
4081 	else
4082 		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4083 		    HAL_TXQ_TXDESCINT_ENABLE;
4084 
4085 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4086 	if (qnum == -1) {
4087 		/*
4088 		 * NB: don't print a message, this happens
4089 		 * normally on parts with too few tx queues
4090 		 */
4091 		return NULL;
4092 	}
4093 	if (qnum >= N(sc->sc_txq)) {
4094 		device_printf(sc->sc_dev,
4095 			"hal qnum %u out of range, max %zu!\n",
4096 			qnum, N(sc->sc_txq));
4097 		ath_hal_releasetxqueue(ah, qnum);
4098 		return NULL;
4099 	}
4100 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4101 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4102 		sc->sc_txqsetup |= 1<<qnum;
4103 	}
4104 	return &sc->sc_txq[qnum];
4105 #undef N
4106 }
4107 
4108 /*
4109  * Setup a hardware data transmit queue for the specified
4110  * access control.  The hal may not support all requested
4111  * queues in which case it will return a reference to a
4112  * previously setup queue.  We record the mapping from ac's
4113  * to h/w queues for use by ath_tx_start and also track
4114  * the set of h/w queues being used to optimize work in the
4115  * transmit interrupt handler and related routines.
4116  */
4117 static int
4118 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4119 {
4120 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4121 	struct ath_txq *txq;
4122 
4123 	if (ac >= N(sc->sc_ac2q)) {
4124 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4125 			ac, N(sc->sc_ac2q));
4126 		return 0;
4127 	}
4128 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4129 	if (txq != NULL) {
4130 		txq->axq_ac = ac;
4131 		sc->sc_ac2q[ac] = txq;
4132 		return 1;
4133 	} else
4134 		return 0;
4135 #undef N
4136 }
4137 
4138 /*
4139  * Update WME parameters for a transmit queue.
4140  */
4141 static int
4142 ath_txq_update(struct ath_softc *sc, int ac)
4143 {
4144 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4145 #define	ATH_TXOP_TO_US(v)		(v<<5)
4146 	struct ifnet *ifp = sc->sc_ifp;
4147 	struct ieee80211com *ic = ifp->if_l2com;
4148 	struct ath_txq *txq = sc->sc_ac2q[ac];
4149 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4150 	struct ath_hal *ah = sc->sc_ah;
4151 	HAL_TXQ_INFO qi;
4152 
4153 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4154 #ifdef IEEE80211_SUPPORT_TDMA
4155 	if (sc->sc_tdma) {
4156 		/*
4157 		 * AIFS is zero so there's no pre-transmit wait.  The
4158 		 * burst time defines the slot duration and is configured
4159 		 * through net80211.  The QCU is setup to not do post-xmit
4160 		 * back off, lockout all lower-priority QCU's, and fire
4161 		 * off the DMA beacon alert timer which is setup based
4162 		 * on the slot configuration.
4163 		 */
4164 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4165 			      | HAL_TXQ_TXERRINT_ENABLE
4166 			      | HAL_TXQ_TXURNINT_ENABLE
4167 			      | HAL_TXQ_TXEOLINT_ENABLE
4168 			      | HAL_TXQ_DBA_GATED
4169 			      | HAL_TXQ_BACKOFF_DISABLE
4170 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4171 			      ;
4172 		qi.tqi_aifs = 0;
4173 		/* XXX +dbaprep? */
4174 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4175 		qi.tqi_burstTime = qi.tqi_readyTime;
4176 	} else {
4177 #endif
4178 		/*
4179 		 * XXX shouldn't this just use the default flags
4180 		 * used in the previous queue setup?
4181 		 */
4182 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4183 			      | HAL_TXQ_TXERRINT_ENABLE
4184 			      | HAL_TXQ_TXDESCINT_ENABLE
4185 			      | HAL_TXQ_TXURNINT_ENABLE
4186 			      | HAL_TXQ_TXEOLINT_ENABLE
4187 			      ;
4188 		qi.tqi_aifs = wmep->wmep_aifsn;
4189 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4190 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4191 		qi.tqi_readyTime = 0;
4192 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4193 #ifdef IEEE80211_SUPPORT_TDMA
4194 	}
4195 #endif
4196 
4197 	DPRINTF(sc, ATH_DEBUG_RESET,
4198 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4199 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4200 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4201 
4202 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4203 		if_printf(ifp, "unable to update hardware queue "
4204 			"parameters for %s traffic!\n",
4205 			ieee80211_wme_acnames[ac]);
4206 		return 0;
4207 	} else {
4208 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4209 		return 1;
4210 	}
4211 #undef ATH_TXOP_TO_US
4212 #undef ATH_EXPONENT_TO_VALUE
4213 }
4214 
4215 /*
4216  * Callback from the 802.11 layer to update WME parameters.
4217  */
4218 int
4219 ath_wme_update(struct ieee80211com *ic)
4220 {
4221 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4222 
4223 	return !ath_txq_update(sc, WME_AC_BE) ||
4224 	    !ath_txq_update(sc, WME_AC_BK) ||
4225 	    !ath_txq_update(sc, WME_AC_VI) ||
4226 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4227 }
4228 
4229 /*
4230  * Reclaim resources for a setup queue.
4231  */
4232 static void
4233 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4234 {
4235 
4236 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4237 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4238 	ATH_TXQ_LOCK_DESTROY(txq);
4239 }
4240 
4241 /*
4242  * Reclaim all tx queue resources.
4243  */
4244 static void
4245 ath_tx_cleanup(struct ath_softc *sc)
4246 {
4247 	int i;
4248 
4249 	ATH_TXBUF_LOCK_DESTROY(sc);
4250 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4251 		if (ATH_TXQ_SETUP(sc, i))
4252 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4253 }
4254 
4255 /*
4256  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4257  * using the current rates in sc_rixmap.
4258  */
4259 int
4260 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4261 {
4262 	int rix = sc->sc_rixmap[rate];
4263 	/* NB: return lowest rix for invalid rate */
4264 	return (rix == 0xff ? 0 : rix);
4265 }
4266 
4267 static void
4268 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4269     struct ath_buf *bf)
4270 {
4271 	struct ieee80211_node *ni = bf->bf_node;
4272 	struct ifnet *ifp = sc->sc_ifp;
4273 	struct ieee80211com *ic = ifp->if_l2com;
4274 	int sr, lr, pri;
4275 
4276 	if (ts->ts_status == 0) {
4277 		u_int8_t txant = ts->ts_antenna;
4278 		sc->sc_stats.ast_ant_tx[txant]++;
4279 		sc->sc_ant_tx[txant]++;
4280 		if (ts->ts_finaltsi != 0)
4281 			sc->sc_stats.ast_tx_altrate++;
4282 		pri = M_WME_GETAC(bf->bf_m);
4283 		if (pri >= WME_AC_VO)
4284 			ic->ic_wme.wme_hipri_traffic++;
4285 		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4286 			ni->ni_inact = ni->ni_inact_reload;
4287 	} else {
4288 		if (ts->ts_status & HAL_TXERR_XRETRY)
4289 			sc->sc_stats.ast_tx_xretries++;
4290 		if (ts->ts_status & HAL_TXERR_FIFO)
4291 			sc->sc_stats.ast_tx_fifoerr++;
4292 		if (ts->ts_status & HAL_TXERR_FILT)
4293 			sc->sc_stats.ast_tx_filtered++;
4294 		if (ts->ts_status & HAL_TXERR_XTXOP)
4295 			sc->sc_stats.ast_tx_xtxop++;
4296 		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4297 			sc->sc_stats.ast_tx_timerexpired++;
4298 
4299 		if (bf->bf_m->m_flags & M_FF)
4300 			sc->sc_stats.ast_ff_txerr++;
4301 	}
4302 	/* XXX when is this valid? */
4303 	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4304 		sc->sc_stats.ast_tx_desccfgerr++;
4305 	/*
4306 	 * This can be valid for successful frame transmission!
4307 	 * If there's a TX FIFO underrun during aggregate transmission,
4308 	 * the MAC will pad the rest of the aggregate with delimiters.
4309 	 * If a BA is returned, the frame is marked as "OK" and it's up
4310 	 * to the TX completion code to notice which frames weren't
4311 	 * successfully transmitted.
4312 	 */
4313 	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4314 		sc->sc_stats.ast_tx_data_underrun++;
4315 	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4316 		sc->sc_stats.ast_tx_delim_underrun++;
4317 
4318 	sr = ts->ts_shortretry;
4319 	lr = ts->ts_longretry;
4320 	sc->sc_stats.ast_tx_shortretry += sr;
4321 	sc->sc_stats.ast_tx_longretry += lr;
4322 
4323 }
4324 
4325 /*
4326  * The default completion. If fail is 1, this means
4327  * "please don't retry the frame, and just return -1 status
4328  * to the net80211 stack.
4329  */
4330 void
4331 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4332 {
4333 	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4334 	int st;
4335 
4336 	if (fail == 1)
4337 		st = -1;
4338 	else
4339 		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4340 		    ts->ts_status : HAL_TXERR_XRETRY;
4341 
4342 #if 0
4343 	if (bf->bf_state.bfs_dobaw)
4344 		device_printf(sc->sc_dev,
4345 		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4346 		    __func__,
4347 		    bf,
4348 		    SEQNO(bf->bf_state.bfs_seqno));
4349 #endif
4350 	if (bf->bf_next != NULL)
4351 		device_printf(sc->sc_dev,
4352 		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4353 		    __func__,
4354 		    bf,
4355 		    SEQNO(bf->bf_state.bfs_seqno));
4356 
4357 	/*
4358 	 * Check if the node software queue is empty; if so
4359 	 * then clear the TIM.
4360 	 *
4361 	 * This needs to be done before the buffer is freed as
4362 	 * otherwise the node reference will have been released
4363 	 * and the node may not actually exist any longer.
4364 	 *
4365 	 * XXX I don't like this belonging here, but it's cleaner
4366 	 * to do it here right now then all the other places
4367 	 * where ath_tx_default_comp() is called.
4368 	 *
4369 	 * XXX TODO: during drain, ensure that the callback is
4370 	 * being called so we get a chance to update the TIM.
4371 	 */
4372 	if (bf->bf_node) {
4373 		ATH_TX_LOCK(sc);
4374 		ath_tx_update_tim(sc, bf->bf_node, 0);
4375 		ATH_TX_UNLOCK(sc);
4376 	}
4377 
4378 	/*
4379 	 * Do any tx complete callback.  Note this must
4380 	 * be done before releasing the node reference.
4381 	 * This will free the mbuf, release the net80211
4382 	 * node and recycle the ath_buf.
4383 	 */
4384 	ath_tx_freebuf(sc, bf, st);
4385 }
4386 
4387 /*
4388  * Update rate control with the given completion status.
4389  */
4390 void
4391 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4392     struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4393     int nframes, int nbad)
4394 {
4395 	struct ath_node *an;
4396 
4397 	/* Only for unicast frames */
4398 	if (ni == NULL)
4399 		return;
4400 
4401 	an = ATH_NODE(ni);
4402 	ATH_NODE_UNLOCK_ASSERT(an);
4403 
4404 	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4405 		ATH_NODE_LOCK(an);
4406 		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4407 		ATH_NODE_UNLOCK(an);
4408 	}
4409 }
4410 
4411 /*
4412  * Process the completion of the given buffer.
4413  *
4414  * This calls the rate control update and then the buffer completion.
4415  * This will either free the buffer or requeue it.  In any case, the
4416  * bf pointer should be treated as invalid after this function is called.
4417  */
4418 void
4419 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4420     struct ath_tx_status *ts, struct ath_buf *bf)
4421 {
4422 	struct ieee80211_node *ni = bf->bf_node;
4423 	struct ath_node *an = NULL;
4424 
4425 	ATH_TX_UNLOCK_ASSERT(sc);
4426 	ATH_TXQ_UNLOCK_ASSERT(txq);
4427 
4428 	/* If unicast frame, update general statistics */
4429 	if (ni != NULL) {
4430 		an = ATH_NODE(ni);
4431 		/* update statistics */
4432 		ath_tx_update_stats(sc, ts, bf);
4433 	}
4434 
4435 	/*
4436 	 * Call the completion handler.
4437 	 * The completion handler is responsible for
4438 	 * calling the rate control code.
4439 	 *
4440 	 * Frames with no completion handler get the
4441 	 * rate control code called here.
4442 	 */
4443 	if (bf->bf_comp == NULL) {
4444 		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4445 		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4446 			/*
4447 			 * XXX assume this isn't an aggregate
4448 			 * frame.
4449 			 */
4450 			ath_tx_update_ratectrl(sc, ni,
4451 			     bf->bf_state.bfs_rc, ts,
4452 			    bf->bf_state.bfs_pktlen, 1,
4453 			    (ts->ts_status == 0 ? 0 : 1));
4454 		}
4455 		ath_tx_default_comp(sc, bf, 0);
4456 	} else
4457 		bf->bf_comp(sc, bf, 0);
4458 }
4459 
4460 
4461 
4462 /*
4463  * Process completed xmit descriptors from the specified queue.
4464  * Kick the packet scheduler if needed. This can occur from this
4465  * particular task.
4466  */
4467 static int
4468 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4469 {
4470 	struct ath_hal *ah = sc->sc_ah;
4471 	struct ath_buf *bf;
4472 	struct ath_desc *ds;
4473 	struct ath_tx_status *ts;
4474 	struct ieee80211_node *ni;
4475 #ifdef	IEEE80211_SUPPORT_SUPERG
4476 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4477 #endif	/* IEEE80211_SUPPORT_SUPERG */
4478 	int nacked;
4479 	HAL_STATUS status;
4480 
4481 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4482 		__func__, txq->axq_qnum,
4483 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4484 		txq->axq_link);
4485 
4486 	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4487 	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4488 	    txq->axq_qnum,
4489 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4490 	    txq->axq_link,
4491 	    txq->axq_depth);
4492 
4493 	nacked = 0;
4494 	for (;;) {
4495 		ATH_TXQ_LOCK(txq);
4496 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4497 		bf = TAILQ_FIRST(&txq->axq_q);
4498 		if (bf == NULL) {
4499 			ATH_TXQ_UNLOCK(txq);
4500 			break;
4501 		}
4502 		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4503 		ts = &bf->bf_status.ds_txstat;
4504 
4505 		status = ath_hal_txprocdesc(ah, ds, ts);
4506 #ifdef ATH_DEBUG
4507 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4508 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4509 			    status == HAL_OK);
4510 		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4511 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4512 			    status == HAL_OK);
4513 #endif
4514 #ifdef	ATH_DEBUG_ALQ
4515 		if (if_ath_alq_checkdebug(&sc->sc_alq,
4516 		    ATH_ALQ_EDMA_TXSTATUS)) {
4517 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4518 			sc->sc_tx_statuslen,
4519 			(char *) ds);
4520 		}
4521 #endif
4522 
4523 		if (status == HAL_EINPROGRESS) {
4524 			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4525 			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4526 			    txq->axq_qnum, bf, ds);
4527 			ATH_TXQ_UNLOCK(txq);
4528 			break;
4529 		}
4530 		ATH_TXQ_REMOVE(txq, bf, bf_list);
4531 
4532 		/*
4533 		 * Sanity check.
4534 		 */
4535 		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4536 			device_printf(sc->sc_dev,
4537 			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4538 			    __func__,
4539 			    txq->axq_qnum,
4540 			    bf,
4541 			    bf->bf_state.bfs_tx_queue);
4542 		}
4543 		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4544 			device_printf(sc->sc_dev,
4545 			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4546 			    __func__,
4547 			    txq->axq_qnum,
4548 			    bf->bf_last,
4549 			    bf->bf_last->bf_state.bfs_tx_queue);
4550 		}
4551 
4552 #if 0
4553 		if (txq->axq_depth > 0) {
4554 			/*
4555 			 * More frames follow.  Mark the buffer busy
4556 			 * so it's not re-used while the hardware may
4557 			 * still re-read the link field in the descriptor.
4558 			 *
4559 			 * Use the last buffer in an aggregate as that
4560 			 * is where the hardware may be - intermediate
4561 			 * descriptors won't be "busy".
4562 			 */
4563 			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4564 		} else
4565 			txq->axq_link = NULL;
4566 #else
4567 		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4568 #endif
4569 		if (bf->bf_state.bfs_aggr)
4570 			txq->axq_aggr_depth--;
4571 
4572 		ni = bf->bf_node;
4573 
4574 		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4575 		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4576 		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4577 		/*
4578 		 * If unicast frame was ack'd update RSSI,
4579 		 * including the last rx time used to
4580 		 * workaround phantom bmiss interrupts.
4581 		 */
4582 		if (ni != NULL && ts->ts_status == 0 &&
4583 		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4584 			nacked++;
4585 			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4586 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4587 				ts->ts_rssi);
4588 		}
4589 		ATH_TXQ_UNLOCK(txq);
4590 
4591 		/*
4592 		 * Update statistics and call completion
4593 		 */
4594 		ath_tx_process_buf_completion(sc, txq, ts, bf);
4595 
4596 		/* XXX at this point, bf and ni may be totally invalid */
4597 	}
4598 #ifdef IEEE80211_SUPPORT_SUPERG
4599 	/*
4600 	 * Flush fast-frame staging queue when traffic slows.
4601 	 */
4602 	if (txq->axq_depth <= 1)
4603 		ieee80211_ff_flush(ic, txq->axq_ac);
4604 #endif
4605 
4606 	/* Kick the software TXQ scheduler */
4607 	if (dosched) {
4608 		ATH_TX_LOCK(sc);
4609 		ath_txq_sched(sc, txq);
4610 		ATH_TX_UNLOCK(sc);
4611 	}
4612 
4613 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4614 	    "ath_tx_processq: txq=%u: done",
4615 	    txq->axq_qnum);
4616 
4617 	return nacked;
4618 }
4619 
4620 #define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4621 
4622 /*
4623  * Deferred processing of transmit interrupt; special-cased
4624  * for a single hardware transmit queue (e.g. 5210 and 5211).
4625  */
4626 static void
4627 ath_tx_proc_q0(void *arg, int npending)
4628 {
4629 	struct ath_softc *sc = arg;
4630 #if 0
4631 	struct ifnet *ifp = sc->sc_ifp;
4632 #endif
4633 	uint32_t txqs;
4634 
4635 	wlan_serialize_enter();
4636 	ATH_PCU_LOCK(sc);
4637 	sc->sc_txproc_cnt++;
4638 	txqs = sc->sc_txq_active;
4639 	sc->sc_txq_active &= ~txqs;
4640 	ATH_PCU_UNLOCK(sc);
4641 
4642 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4643 
4644 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4645 	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4646 
4647 	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4648 		/* XXX why is lastrx updated in tx code? */
4649 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4650 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4651 		ath_tx_processq(sc, sc->sc_cabq, 1);
4652 #if 0
4653 	/* remove, DragonFly uses OACTIVE to control if_start calls */
4654 	IF_LOCK(&ifp->if_snd);
4655 	ifq_clr_oactive(&ifp->if_snd);
4656 	IF_UNLOCK(&ifp->if_snd);
4657 #endif
4658 	sc->sc_wd_timer = 0;
4659 
4660 	if (sc->sc_softled)
4661 		ath_led_event(sc, sc->sc_txrix);
4662 
4663 	ATH_PCU_LOCK(sc);
4664 	sc->sc_txproc_cnt--;
4665 	ATH_PCU_UNLOCK(sc);
4666 
4667 	ath_power_restore_power_state(sc);
4668 
4669 	ath_tx_kick(sc);
4670 	wlan_serialize_exit();
4671 }
4672 
4673 /*
4674  * Deferred processing of transmit interrupt; special-cased
4675  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4676  */
4677 static void
4678 ath_tx_proc_q0123(void *arg, int npending)
4679 {
4680 	struct ath_softc *sc = arg;
4681 #if 0
4682 	struct ifnet *ifp = sc->sc_ifp;
4683 #endif
4684 	int nacked;
4685 	uint32_t txqs;
4686 
4687 	wlan_serialize_enter();
4688 	ATH_PCU_LOCK(sc);
4689 	sc->sc_txproc_cnt++;
4690 	txqs = sc->sc_txq_active;
4691 	sc->sc_txq_active &= ~txqs;
4692 	ATH_PCU_UNLOCK(sc);
4693 
4694 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4695 
4696 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4697 	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4698 
4699 	/*
4700 	 * Process each active queue.
4701 	 */
4702 	nacked = 0;
4703 	if (TXQACTIVE(txqs, 0))
4704 		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4705 	if (TXQACTIVE(txqs, 1))
4706 		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4707 	if (TXQACTIVE(txqs, 2))
4708 		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4709 	if (TXQACTIVE(txqs, 3))
4710 		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4711 	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4712 		ath_tx_processq(sc, sc->sc_cabq, 1);
4713 	if (nacked)
4714 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4715 
4716 #if 0
4717 	/* remove, DragonFly uses OACTIVE to control if_start calls */
4718 	IF_LOCK(&ifp->if_snd);
4719 	ifq_clr_oactive(&ifp->if_snd);
4720 	IF_UNLOCK(&ifp->if_snd);
4721 #endif
4722 	sc->sc_wd_timer = 0;
4723 
4724 	if (sc->sc_softled)
4725 		ath_led_event(sc, sc->sc_txrix);
4726 
4727 	ATH_PCU_LOCK(sc);
4728 	sc->sc_txproc_cnt--;
4729 	ATH_PCU_UNLOCK(sc);
4730 
4731 	ath_power_restore_power_state(sc);
4732 
4733 	ath_tx_kick(sc);
4734 	wlan_serialize_exit();
4735 }
4736 
4737 /*
4738  * Deferred processing of transmit interrupt.
4739  */
4740 static void
4741 ath_tx_proc(void *arg, int npending)
4742 {
4743 	struct ath_softc *sc = arg;
4744 #if 0
4745 	struct ifnet *ifp = sc->sc_ifp;
4746 #endif
4747 	int i, nacked;
4748 	uint32_t txqs;
4749 
4750 	wlan_serialize_enter();
4751 	ATH_PCU_LOCK(sc);
4752 	sc->sc_txproc_cnt++;
4753 	txqs = sc->sc_txq_active;
4754 	sc->sc_txq_active &= ~txqs;
4755 	ATH_PCU_UNLOCK(sc);
4756 
4757 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4758 
4759 	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4760 
4761 	/*
4762 	 * Process each active queue.
4763 	 */
4764 	nacked = 0;
4765 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4766 		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4767 			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4768 	if (nacked)
4769 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4770 
4771 #if 0
4772 	/* remove, DragonFly uses OACTIVE to control if_start calls */
4773 	/* XXX check this inside of IF_LOCK? */
4774 	IF_LOCK(&ifp->if_snd);
4775 	ifq_clr_oactive(&ifp->if_snd);
4776 	IF_UNLOCK(&ifp->if_snd);
4777 #endif
4778 	sc->sc_wd_timer = 0;
4779 
4780 	if (sc->sc_softled)
4781 		ath_led_event(sc, sc->sc_txrix);
4782 
4783 	ATH_PCU_LOCK(sc);
4784 	sc->sc_txproc_cnt--;
4785 	ATH_PCU_UNLOCK(sc);
4786 
4787 	ath_power_restore_power_state(sc);
4788 
4789 	ath_tx_kick(sc);
4790 	wlan_serialize_exit();
4791 }
4792 #undef	TXQACTIVE
4793 
4794 /*
4795  * Deferred processing of TXQ rescheduling.
4796  */
4797 static void
4798 ath_txq_sched_tasklet(void *arg, int npending)
4799 {
4800 	struct ath_softc *sc = arg;
4801 	int i;
4802 
4803 	wlan_serialize_enter();
4804 
4805 	/* XXX is skipping ok? */
4806 	ATH_PCU_LOCK(sc);
4807 #if 0
4808 	if (sc->sc_inreset_cnt > 0) {
4809 		device_printf(sc->sc_dev,
4810 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4811 		ATH_PCU_UNLOCK(sc);
4812 		wlan_serialize_exit();
4813 		return;
4814 	}
4815 #endif
4816 	sc->sc_txproc_cnt++;
4817 	ATH_PCU_UNLOCK(sc);
4818 
4819 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4820 
4821 	ATH_TX_LOCK(sc);
4822 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4823 		if (ATH_TXQ_SETUP(sc, i)) {
4824 			ath_txq_sched(sc, &sc->sc_txq[i]);
4825 		}
4826 	}
4827 	ATH_TX_UNLOCK(sc);
4828 
4829 	ath_power_restore_power_state(sc);
4830 
4831 	ATH_PCU_LOCK(sc);
4832 	sc->sc_txproc_cnt--;
4833 	ATH_PCU_UNLOCK(sc);
4834 	wlan_serialize_exit();
4835 }
4836 
4837 void
4838 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4839 {
4840 
4841 	ATH_TXBUF_LOCK_ASSERT(sc);
4842 
4843 	if (bf->bf_flags & ATH_BUF_MGMT)
4844 		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4845 	else {
4846 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4847 		sc->sc_txbuf_cnt++;
4848 		if (sc->sc_txbuf_cnt > ath_txbuf) {
4849 			device_printf(sc->sc_dev,
4850 			    "%s: sc_txbuf_cnt > %d?\n",
4851 			    __func__,
4852 			    ath_txbuf);
4853 			sc->sc_txbuf_cnt = ath_txbuf;
4854 		}
4855 	}
4856 }
4857 
4858 void
4859 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4860 {
4861 
4862 	ATH_TXBUF_LOCK_ASSERT(sc);
4863 
4864 	if (bf->bf_flags & ATH_BUF_MGMT)
4865 		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4866 	else {
4867 		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4868 		sc->sc_txbuf_cnt++;
4869 		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4870 			device_printf(sc->sc_dev,
4871 			    "%s: sc_txbuf_cnt > %d?\n",
4872 			    __func__,
4873 			    ATH_TXBUF);
4874 			sc->sc_txbuf_cnt = ATH_TXBUF;
4875 		}
4876 	}
4877 }
4878 
4879 /*
4880  * Free the holding buffer if it exists
4881  */
4882 void
4883 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4884 {
4885 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4886 	ATH_TXQ_LOCK_ASSERT(txq);
4887 
4888 	if (txq->axq_holdingbf == NULL)
4889 		return;
4890 
4891 	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4892 
4893 	ATH_TXBUF_LOCK(sc);
4894 	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4895 	ATH_TXBUF_UNLOCK(sc);
4896 
4897 	txq->axq_holdingbf = NULL;
4898 }
4899 
4900 /*
4901  * Add this buffer to the holding queue, freeing the previous
4902  * one if it exists.
4903  */
4904 static void
4905 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4906 {
4907 	struct ath_txq *txq;
4908 
4909 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4910 
4911 	ATH_TXBUF_UNLOCK_ASSERT(sc);
4912 	ATH_TXQ_LOCK_ASSERT(txq);
4913 
4914 	/* XXX assert ATH_BUF_BUSY is set */
4915 
4916 	/* XXX assert the tx queue is under the max number */
4917 	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4918 		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4919 		    __func__,
4920 		    bf,
4921 		    bf->bf_state.bfs_tx_queue);
4922 		bf->bf_flags &= ~ATH_BUF_BUSY;
4923 		ath_returnbuf_tail(sc, bf);
4924 		return;
4925 	}
4926 	ath_txq_freeholdingbuf(sc, txq);
4927 	txq->axq_holdingbf = bf;
4928 }
4929 
4930 /*
4931  * Return a buffer to the pool and update the 'busy' flag on the
4932  * previous 'tail' entry.
4933  *
4934  * This _must_ only be called when the buffer is involved in a completed
4935  * TX. The logic is that if it was part of an active TX, the previous
4936  * buffer on the list is now not involved in a halted TX DMA queue, waiting
4937  * for restart (eg for TDMA.)
4938  *
4939  * The caller must free the mbuf and recycle the node reference.
4940  *
4941  * XXX This method of handling busy / holding buffers is insanely stupid.
4942  * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4943  * be much nicer if buffers in the processq() methods would instead be
4944  * always completed there (pushed onto a txq or ath_bufhead) so we knew
4945  * exactly what hardware queue they came from in the first place.
4946  */
4947 void
4948 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4949 {
4950 	struct ath_txq *txq;
4951 
4952 	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4953 
4954 	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4955 	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4956 
4957 	/*
4958 	 * If this buffer is busy, push it onto the holding queue.
4959 	 */
4960 	if (bf->bf_flags & ATH_BUF_BUSY) {
4961 		ATH_TXQ_LOCK(txq);
4962 		ath_txq_addholdingbuf(sc, bf);
4963 		ATH_TXQ_UNLOCK(txq);
4964 		return;
4965 	}
4966 
4967 	/*
4968 	 * Not a busy buffer, so free normally
4969 	 */
4970 	ATH_TXBUF_LOCK(sc);
4971 	ath_returnbuf_tail(sc, bf);
4972 	ATH_TXBUF_UNLOCK(sc);
4973 }
4974 
4975 /*
4976  * This is currently used by ath_tx_draintxq() and
4977  * ath_tx_tid_free_pkts().
4978  *
4979  * It recycles a single ath_buf.
4980  */
4981 void
4982 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4983 {
4984 	struct ieee80211_node *ni = bf->bf_node;
4985 	struct mbuf *m0 = bf->bf_m;
4986 
4987 	/*
4988 	 * Make sure that we only sync/unload if there's an mbuf.
4989 	 * If not (eg we cloned a buffer), the unload will have already
4990 	 * occured.
4991 	 */
4992 	if (bf->bf_m != NULL) {
4993 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4994 		    BUS_DMASYNC_POSTWRITE);
4995 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4996 	}
4997 
4998 	bf->bf_node = NULL;
4999 	bf->bf_m = NULL;
5000 
5001 	/* Free the buffer, it's not needed any longer */
5002 	ath_freebuf(sc, bf);
5003 
5004 	/* Pass the buffer back to net80211 - completing it */
5005 	ieee80211_tx_complete(ni, m0, status);
5006 }
5007 
5008 static struct ath_buf *
5009 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5010 {
5011 	struct ath_buf *bf;
5012 
5013 	ATH_TXQ_LOCK_ASSERT(txq);
5014 
5015 	/*
5016 	 * Drain the FIFO queue first, then if it's
5017 	 * empty, move to the normal frame queue.
5018 	 */
5019 	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5020 	if (bf != NULL) {
5021 		/*
5022 		 * Is it the last buffer in this set?
5023 		 * Decrement the FIFO counter.
5024 		 */
5025 		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5026 			if (txq->axq_fifo_depth == 0) {
5027 				device_printf(sc->sc_dev,
5028 				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5029 				    __func__,
5030 				    txq->axq_qnum,
5031 				    txq->fifo.axq_depth);
5032 			} else
5033 				txq->axq_fifo_depth--;
5034 		}
5035 		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5036 		return (bf);
5037 	}
5038 
5039 	/*
5040 	 * Debugging!
5041 	 */
5042 	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5043 		device_printf(sc->sc_dev,
5044 		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5045 		    __func__,
5046 		    txq->axq_qnum,
5047 		    txq->axq_fifo_depth,
5048 		    txq->fifo.axq_depth);
5049 	}
5050 
5051 	/*
5052 	 * Now drain the pending queue.
5053 	 */
5054 	bf = TAILQ_FIRST(&txq->axq_q);
5055 	if (bf == NULL) {
5056 		txq->axq_link = NULL;
5057 		return (NULL);
5058 	}
5059 	ATH_TXQ_REMOVE(txq, bf, bf_list);
5060 	return (bf);
5061 }
5062 
5063 void
5064 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5065 {
5066 #ifdef ATH_DEBUG
5067 	struct ath_hal *ah = sc->sc_ah;
5068 #endif
5069 	struct ath_buf *bf;
5070 	u_int ix;
5071 
5072 	/*
5073 	 * NB: this assumes output has been stopped and
5074 	 *     we do not need to block ath_tx_proc
5075 	 */
5076 	for (ix = 0;; ix++) {
5077 		ATH_TXQ_LOCK(txq);
5078 		bf = ath_tx_draintxq_get_one(sc, txq);
5079 		if (bf == NULL) {
5080 			ATH_TXQ_UNLOCK(txq);
5081 			break;
5082 		}
5083 		if (bf->bf_state.bfs_aggr)
5084 			txq->axq_aggr_depth--;
5085 #ifdef ATH_DEBUG
5086 		if (sc->sc_debug & ATH_DEBUG_RESET) {
5087 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5088 			int status = 0;
5089 
5090 			/*
5091 			 * EDMA operation has a TX completion FIFO
5092 			 * separate from the TX descriptor, so this
5093 			 * method of checking the "completion" status
5094 			 * is wrong.
5095 			 */
5096 			if (! sc->sc_isedma) {
5097 				status = (ath_hal_txprocdesc(ah,
5098 				    bf->bf_lastds,
5099 				    &bf->bf_status.ds_txstat) == HAL_OK);
5100 			}
5101 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5102 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5103 			    bf->bf_m->m_len, 0, -1);
5104 		}
5105 #endif /* ATH_DEBUG */
5106 		/*
5107 		 * Since we're now doing magic in the completion
5108 		 * functions, we -must- call it for aggregation
5109 		 * destinations or BAW tracking will get upset.
5110 		 */
5111 		/*
5112 		 * Clear ATH_BUF_BUSY; the completion handler
5113 		 * will free the buffer.
5114 		 */
5115 		ATH_TXQ_UNLOCK(txq);
5116 		bf->bf_flags &= ~ATH_BUF_BUSY;
5117 		if (bf->bf_comp)
5118 			bf->bf_comp(sc, bf, 1);
5119 		else
5120 			ath_tx_default_comp(sc, bf, 1);
5121 	}
5122 
5123 	/*
5124 	 * Free the holding buffer if it exists
5125 	 */
5126 	ATH_TXQ_LOCK(txq);
5127 	ath_txq_freeholdingbuf(sc, txq);
5128 	ATH_TXQ_UNLOCK(txq);
5129 
5130 	/*
5131 	 * Drain software queued frames which are on
5132 	 * active TIDs.
5133 	 */
5134 	ath_tx_txq_drain(sc, txq);
5135 }
5136 
5137 static void
5138 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5139 {
5140 	struct ath_hal *ah = sc->sc_ah;
5141 
5142 	ATH_TXQ_LOCK_ASSERT(txq);
5143 
5144 	DPRINTF(sc, ATH_DEBUG_RESET,
5145 	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5146 	    "link %p, holdingbf=%p\n",
5147 	    __func__,
5148 	    txq->axq_qnum,
5149 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5150 	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5151 	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5152 	    txq->axq_flags,
5153 	    txq->axq_link,
5154 	    txq->axq_holdingbf);
5155 
5156 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5157 	/* We've stopped TX DMA, so mark this as stopped. */
5158 	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5159 
5160 #ifdef	ATH_DEBUG
5161 	if ((sc->sc_debug & ATH_DEBUG_RESET)
5162 	    && (txq->axq_holdingbf != NULL)) {
5163 		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5164 	}
5165 #endif
5166 }
5167 
5168 int
5169 ath_stoptxdma(struct ath_softc *sc)
5170 {
5171 	struct ath_hal *ah = sc->sc_ah;
5172 	int i;
5173 
5174 	/* XXX return value */
5175 	if (sc->sc_invalid)
5176 		return 0;
5177 
5178 	if (!sc->sc_invalid) {
5179 		/* don't touch the hardware if marked invalid */
5180 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5181 		    __func__, sc->sc_bhalq,
5182 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5183 		    NULL);
5184 
5185 		/* stop the beacon queue */
5186 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5187 
5188 		/* Stop the data queues */
5189 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5190 			if (ATH_TXQ_SETUP(sc, i)) {
5191 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5192 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5193 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5194 			}
5195 		}
5196 	}
5197 
5198 	return 1;
5199 }
5200 
5201 #ifdef	ATH_DEBUG
5202 void
5203 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5204 {
5205 	struct ath_hal *ah = sc->sc_ah;
5206 	struct ath_buf *bf;
5207 	int i = 0;
5208 
5209 	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5210 		return;
5211 
5212 	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5213 	    __func__, txq->axq_qnum);
5214 	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5215 		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5216 			ath_hal_txprocdesc(ah, bf->bf_lastds,
5217 			    &bf->bf_status.ds_txstat) == HAL_OK);
5218 		i++;
5219 	}
5220 	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5221 	    __func__, txq->axq_qnum);
5222 }
5223 #endif /* ATH_DEBUG */
5224 
5225 /*
5226  * Drain the transmit queues and reclaim resources.
5227  */
5228 void
5229 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5230 {
5231 	struct ath_hal *ah = sc->sc_ah;
5232 #ifdef ATH_DEBUG
5233 	struct ifnet *ifp = sc->sc_ifp;
5234 #endif
5235 	int i;
5236 	struct ath_buf *bf_last;
5237 
5238 	(void) ath_stoptxdma(sc);
5239 
5240 	/*
5241 	 * Dump the queue contents
5242 	 */
5243 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5244 		/*
5245 		 * XXX TODO: should we just handle the completed TX frames
5246 		 * here, whether or not the reset is a full one or not?
5247 		 */
5248 		if (ATH_TXQ_SETUP(sc, i)) {
5249 #ifdef	ATH_DEBUG
5250 			if (sc->sc_debug & ATH_DEBUG_RESET)
5251 				ath_tx_dump(sc, &sc->sc_txq[i]);
5252 #endif	/* ATH_DEBUG */
5253 			if (reset_type == ATH_RESET_NOLOSS) {
5254 				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5255 				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5256 				/*
5257 				 * Free the holding buffer; DMA is now
5258 				 * stopped.
5259 				 */
5260 				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5261 				/*
5262 				 * Setup the link pointer to be the
5263 				 * _last_ buffer/descriptor in the list.
5264 				 * If there's nothing in the list, set it
5265 				 * to NULL.
5266 				 */
5267 				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5268 				    axq_q_s);
5269 				if (bf_last != NULL) {
5270 					ath_hal_gettxdesclinkptr(ah,
5271 					    bf_last->bf_lastds,
5272 					    &sc->sc_txq[i].axq_link);
5273 				} else {
5274 					sc->sc_txq[i].axq_link = NULL;
5275 				}
5276 				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5277 			} else
5278 				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5279 		}
5280 	}
5281 #ifdef ATH_DEBUG
5282 	if (sc->sc_debug & ATH_DEBUG_RESET) {
5283 		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5284 		if (bf != NULL && bf->bf_m != NULL) {
5285 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5286 				ath_hal_txprocdesc(ah, bf->bf_lastds,
5287 				    &bf->bf_status.ds_txstat) == HAL_OK);
5288 			ieee80211_dump_pkt(ifp->if_l2com,
5289 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5290 			    0, -1);
5291 		}
5292 	}
5293 #endif /* ATH_DEBUG */
5294 #if 0
5295 	/* remove, DragonFly uses OACTIVE to control if_start calls */
5296 	IF_LOCK(&ifp->if_snd);
5297 	ifq_clr_oactive(&ifp->if_snd);
5298 	IF_UNLOCK(&ifp->if_snd);
5299 #endif
5300 	sc->sc_wd_timer = 0;
5301 }
5302 
5303 /*
5304  * Update internal state after a channel change.
5305  */
5306 static void
5307 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5308 {
5309 	enum ieee80211_phymode mode;
5310 
5311 	/*
5312 	 * Change channels and update the h/w rate map
5313 	 * if we're switching; e.g. 11a to 11b/g.
5314 	 */
5315 	mode = ieee80211_chan2mode(chan);
5316 	if (mode != sc->sc_curmode)
5317 		ath_setcurmode(sc, mode);
5318 	sc->sc_curchan = chan;
5319 }
5320 
5321 /*
5322  * Set/change channels.  If the channel is really being changed,
5323  * it's done by resetting the chip.  To accomplish this we must
5324  * first cleanup any pending DMA, then restart stuff after a la
5325  * ath_init.
5326  */
5327 static int
5328 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5329 {
5330 	struct ifnet *ifp = sc->sc_ifp;
5331 	struct ieee80211com *ic = ifp->if_l2com;
5332 	struct ath_hal *ah = sc->sc_ah;
5333 	int ret = 0;
5334 
5335 	/* Treat this as an interface reset */
5336 	ATH_PCU_UNLOCK_ASSERT(sc);
5337 	ATH_UNLOCK_ASSERT(sc);
5338 
5339 	/* (Try to) stop TX/RX from occuring */
5340 	taskqueue_block(sc->sc_tq);
5341 
5342 	ATH_PCU_LOCK(sc);
5343 
5344 	/* Stop new RX/TX/interrupt completion */
5345 	if (ath_reset_grablock(sc, 1) == 0) {
5346 		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5347 		    __func__);
5348 	}
5349 
5350 	ath_hal_intrset(ah, 0);
5351 
5352 	/* Stop pending RX/TX completion */
5353 	ath_txrx_stop_locked(sc);
5354 
5355 	ATH_PCU_UNLOCK(sc);
5356 
5357 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5358 	    __func__, ieee80211_chan2ieee(ic, chan),
5359 	    chan->ic_freq, chan->ic_flags);
5360 	if (chan != sc->sc_curchan) {
5361 		HAL_STATUS status;
5362 		/*
5363 		 * To switch channels clear any pending DMA operations;
5364 		 * wait long enough for the RX fifo to drain, reset the
5365 		 * hardware at the new frequency, and then re-enable
5366 		 * the relevant bits of the h/w.
5367 		 */
5368 #if 0
5369 		ath_hal_intrset(ah, 0);		/* disable interrupts */
5370 #endif
5371 		ath_stoprecv(sc, 1);		/* turn off frame recv */
5372 		/*
5373 		 * First, handle completed TX/RX frames.
5374 		 */
5375 		ath_rx_flush(sc);
5376 		ath_draintxq(sc, ATH_RESET_NOLOSS);
5377 		/*
5378 		 * Next, flush the non-scheduled frames.
5379 		 */
5380 		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5381 
5382 		ath_update_chainmasks(sc, chan);
5383 		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5384 		    sc->sc_cur_rxchainmask);
5385 		sc->sc_rxfifo_state = ATH_RXFIFO_RESET;
5386 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5387 			if_printf(ifp, "%s: unable to reset "
5388 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5389 			    __func__, ieee80211_chan2ieee(ic, chan),
5390 			    chan->ic_freq, chan->ic_flags, status);
5391 			ret = EIO;
5392 			goto finish;
5393 		}
5394 		sc->sc_diversity = ath_hal_getdiversity(ah);
5395 
5396 		/* Let DFS at it in case it's a DFS channel */
5397 		ath_dfs_radar_enable(sc, chan);
5398 
5399 		/* Let spectral at in case spectral is enabled */
5400 		ath_spectral_enable(sc, chan);
5401 
5402 		/*
5403 		 * Let bluetooth coexistence at in case it's needed for this
5404 		 * channel
5405 		 */
5406 		ath_btcoex_enable(sc, ic->ic_curchan);
5407 
5408 		/*
5409 		 * If we're doing TDMA, enforce the TXOP limitation for chips
5410 		 * that support it.
5411 		 */
5412 		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5413 			ath_hal_setenforcetxop(sc->sc_ah, 1);
5414 		else
5415 			ath_hal_setenforcetxop(sc->sc_ah, 0);
5416 
5417 		/*
5418 		 * Re-enable rx framework.
5419 		 */
5420 		if (ath_startrecv(sc) != 0) {
5421 			if_printf(ifp, "%s: unable to restart recv logic\n",
5422 			    __func__);
5423 			ret = EIO;
5424 			goto finish;
5425 		}
5426 
5427 		/*
5428 		 * Change channels and update the h/w rate map
5429 		 * if we're switching; e.g. 11a to 11b/g.
5430 		 */
5431 		ath_chan_change(sc, chan);
5432 
5433 		/*
5434 		 * Reset clears the beacon timers; reset them
5435 		 * here if needed.
5436 		 */
5437 		if (sc->sc_beacons) {		/* restart beacons */
5438 #ifdef IEEE80211_SUPPORT_TDMA
5439 			if (sc->sc_tdma)
5440 				ath_tdma_config(sc, NULL);
5441 			else
5442 #endif
5443 			ath_beacon_config(sc, NULL);
5444 		}
5445 
5446 		/*
5447 		 * Re-enable interrupts.
5448 		 */
5449 #if 0
5450 		ath_hal_intrset(ah, sc->sc_imask);
5451 #endif
5452 	}
5453 
5454 finish:
5455 	ATH_PCU_LOCK(sc);
5456 	sc->sc_inreset_cnt--;
5457 	/* XXX only do this if sc_inreset_cnt == 0? */
5458 	ath_hal_intrset(ah, sc->sc_imask);
5459 	ATH_PCU_UNLOCK(sc);
5460 
5461 #if 0
5462 	/* remove, DragonFly uses OACTIVE to control if_start calls */
5463 	IF_LOCK(&ifp->if_snd);
5464 	ifq_clr_oactive(&ifp->if_snd);
5465 	IF_UNLOCK(&ifp->if_snd);
5466 #endif
5467 	ath_txrx_start(sc);
5468 	/* XXX ath_start? */
5469 
5470 	return ret;
5471 }
5472 
5473 /*
5474  * Periodically recalibrate the PHY to account
5475  * for temperature/environment changes.
5476  */
5477 static void
5478 ath_calibrate(void *arg)
5479 {
5480 	struct ath_softc *sc = arg;
5481 	struct ath_hal *ah = sc->sc_ah;
5482 	struct ifnet *ifp = sc->sc_ifp;
5483 	struct ieee80211com *ic = ifp->if_l2com;
5484 	HAL_BOOL longCal, isCalDone = AH_TRUE;
5485 	HAL_BOOL aniCal, shortCal = AH_FALSE;
5486 	int nextcal;
5487 
5488 	/*
5489 	 * Force the hardware awake for ANI work.
5490 	 */
5491 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5492 
5493 	wlan_serialize_enter();
5494 
5495 	/* Skip trying to do this if we're in reset */
5496 	if (sc->sc_inreset_cnt)
5497 		goto restart;
5498 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5499 		goto restart;
5500 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5501 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5502 	if (sc->sc_doresetcal)
5503 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5504 
5505 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5506 	if (aniCal) {
5507 		sc->sc_stats.ast_ani_cal++;
5508 		sc->sc_lastani = ticks;
5509 		ath_hal_ani_poll(ah, sc->sc_curchan);
5510 	}
5511 
5512 	if (longCal) {
5513 		sc->sc_stats.ast_per_cal++;
5514 		sc->sc_lastlongcal = ticks;
5515 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5516 			/*
5517 			 * Rfgain is out of bounds, reset the chip
5518 			 * to load new gain values.
5519 			 */
5520 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5521 				"%s: rfgain change\n", __func__);
5522 			sc->sc_stats.ast_per_rfgain++;
5523 			sc->sc_resetcal = 0;
5524 			sc->sc_doresetcal = AH_TRUE;
5525 			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5526 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5527 			goto done;
5528 		}
5529 		/*
5530 		 * If this long cal is after an idle period, then
5531 		 * reset the data collection state so we start fresh.
5532 		 */
5533 		if (sc->sc_resetcal) {
5534 			(void) ath_hal_calreset(ah, sc->sc_curchan);
5535 			sc->sc_lastcalreset = ticks;
5536 			sc->sc_lastshortcal = ticks;
5537 			sc->sc_resetcal = 0;
5538 			sc->sc_doresetcal = AH_TRUE;
5539 		}
5540 	}
5541 
5542 	/* Only call if we're doing a short/long cal, not for ANI calibration */
5543 	if (shortCal || longCal) {
5544 		isCalDone = AH_FALSE;
5545 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5546 			if (longCal) {
5547 				/*
5548 				 * Calibrate noise floor data again in case of change.
5549 				 */
5550 				ath_hal_process_noisefloor(ah);
5551 			}
5552 		} else {
5553 			DPRINTF(sc, ATH_DEBUG_ANY,
5554 				"%s: calibration of channel %u failed\n",
5555 				__func__, sc->sc_curchan->ic_freq);
5556 			sc->sc_stats.ast_per_calfail++;
5557 		}
5558 		if (shortCal)
5559 			sc->sc_lastshortcal = ticks;
5560 	}
5561 	if (!isCalDone) {
5562 restart:
5563 		/*
5564 		 * Use a shorter interval to potentially collect multiple
5565 		 * data samples required to complete calibration.  Once
5566 		 * we're told the work is done we drop back to a longer
5567 		 * interval between requests.  We're more aggressive doing
5568 		 * work when operating as an AP to improve operation right
5569 		 * after startup.
5570 		 */
5571 		sc->sc_lastshortcal = ticks;
5572 		nextcal = ath_shortcalinterval*hz/1000;
5573 		if (sc->sc_opmode != HAL_M_HOSTAP)
5574 			nextcal *= 10;
5575 		sc->sc_doresetcal = AH_TRUE;
5576 	} else {
5577 		/* nextcal should be the shortest time for next event */
5578 		nextcal = ath_longcalinterval*hz;
5579 		if (sc->sc_lastcalreset == 0)
5580 			sc->sc_lastcalreset = sc->sc_lastlongcal;
5581 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5582 			sc->sc_resetcal = 1;	/* setup reset next trip */
5583 		sc->sc_doresetcal = AH_FALSE;
5584 	}
5585 	/* ANI calibration may occur more often than short/long/resetcal */
5586 	if (ath_anicalinterval > 0)
5587 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5588 
5589 	if (nextcal != 0) {
5590 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5591 		    __func__, nextcal, isCalDone ? "" : "!");
5592 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5593 	} else {
5594 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5595 		    __func__);
5596 		/* NB: don't rearm timer */
5597 	}
5598 done:
5599 	/*
5600 	 * Restore power state now that we're done.
5601 	 */
5602 	ath_power_restore_power_state(sc);
5603 	wlan_serialize_exit();
5604 }
5605 
5606 static void
5607 ath_scan_start(struct ieee80211com *ic)
5608 {
5609 	struct ifnet *ifp = ic->ic_ifp;
5610 	struct ath_softc *sc = ifp->if_softc;
5611 	struct ath_hal *ah = sc->sc_ah;
5612 	u_int32_t rfilt;
5613 
5614 	/* XXX calibration timer? */
5615 
5616 	ATH_LOCK(sc);
5617 	sc->sc_scanning = 1;
5618 	sc->sc_syncbeacon = 0;
5619 	rfilt = ath_calcrxfilter(sc);
5620 	ATH_UNLOCK(sc);
5621 
5622 	ATH_PCU_LOCK(sc);
5623 	ath_hal_setrxfilter(ah, rfilt);
5624 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5625 	ATH_PCU_UNLOCK(sc);
5626 
5627 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5628 		 __func__, rfilt, ath_hal_ether_sprintf(ifp->if_broadcastaddr));
5629 }
5630 
5631 static void
5632 ath_scan_end(struct ieee80211com *ic)
5633 {
5634 	struct ifnet *ifp = ic->ic_ifp;
5635 	struct ath_softc *sc = ifp->if_softc;
5636 	struct ath_hal *ah = sc->sc_ah;
5637 	u_int32_t rfilt;
5638 
5639 	ATH_LOCK(sc);
5640 	sc->sc_scanning = 0;
5641 	rfilt = ath_calcrxfilter(sc);
5642 	ATH_UNLOCK(sc);
5643 
5644 	ATH_PCU_LOCK(sc);
5645 	ath_hal_setrxfilter(ah, rfilt);
5646 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5647 
5648 	ath_hal_process_noisefloor(ah);
5649 	ATH_PCU_UNLOCK(sc);
5650 
5651 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5652 		 __func__, rfilt, ath_hal_ether_sprintf(sc->sc_curbssid),
5653 		 sc->sc_curaid);
5654 }
5655 
5656 #ifdef	ATH_ENABLE_11N
5657 /*
5658  * For now, just do a channel change.
5659  *
5660  * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5661  * control state and resetting the hardware without dropping frames out
5662  * of the queue.
5663  *
5664  * The unfortunate trouble here is making absolutely sure that the
5665  * channel width change has propagated enough so the hardware
5666  * absolutely isn't handed bogus frames for it's current operating
5667  * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5668  * does occur in parallel, we need to make certain we've blocked
5669  * any further ongoing TX (and RX, that can cause raw TX)
5670  * before we do this.
5671  */
5672 static void
5673 ath_update_chw(struct ieee80211com *ic)
5674 {
5675 	struct ifnet *ifp = ic->ic_ifp;
5676 	struct ath_softc *sc = ifp->if_softc;
5677 
5678 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5679 	ath_set_channel(ic);
5680 }
5681 #endif	/* ATH_ENABLE_11N */
5682 
5683 static void
5684 ath_set_channel(struct ieee80211com *ic)
5685 {
5686 	struct ifnet *ifp = ic->ic_ifp;
5687 	struct ath_softc *sc = ifp->if_softc;
5688 
5689 	(void) ath_chan_set(sc, ic->ic_curchan);
5690 	/*
5691 	 * If we are returning to our bss channel then mark state
5692 	 * so the next recv'd beacon's tsf will be used to sync the
5693 	 * beacon timers.  Note that since we only hear beacons in
5694 	 * sta/ibss mode this has no effect in other operating modes.
5695 	 */
5696 	ATH_LOCK(sc);
5697 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5698 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5699 		sc->sc_syncbeacon = 1;
5700 	ath_power_restore_power_state(sc);
5701 	ATH_UNLOCK(sc);
5702 }
5703 
5704 /*
5705  * Walk the vap list and check if there any vap's in RUN state.
5706  */
5707 static int
5708 ath_isanyrunningvaps(struct ieee80211vap *this)
5709 {
5710 	struct ieee80211com *ic = this->iv_ic;
5711 	struct ieee80211vap *vap;
5712 
5713 	IEEE80211_LOCK_ASSERT(ic);
5714 
5715 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5716 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5717 			return 1;
5718 	}
5719 	return 0;
5720 }
5721 
5722 static int
5723 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5724 {
5725 	struct ieee80211com *ic = vap->iv_ic;
5726 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5727 	struct ath_vap *avp = ATH_VAP(vap);
5728 	struct ath_hal *ah = sc->sc_ah;
5729 	struct ieee80211_node *ni = NULL;
5730 	int i, error, stamode;
5731 	u_int32_t rfilt;
5732 	int csa_run_transition = 0;
5733 	enum ieee80211_state ostate = vap->iv_state;
5734 
5735 	static const HAL_LED_STATE leds[] = {
5736 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5737 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5738 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5739 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5740 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5741 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5742 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5743 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5744 	};
5745 
5746 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5747 		ieee80211_state_name[ostate],
5748 		ieee80211_state_name[nstate]);
5749 
5750 	/*
5751 	 * net80211 _should_ have the comlock asserted at this point.
5752 	 * There are some comments around the calls to vap->iv_newstate
5753 	 * which indicate that it (newstate) may end up dropping the
5754 	 * lock.  This and the subsequent lock assert check after newstate
5755 	 * are an attempt to catch these and figure out how/why.
5756 	 */
5757 	IEEE80211_LOCK_ASSERT(ic);
5758 
5759 	/* Before we touch the hardware - wake it up */
5760 	/*
5761 	 * If the NIC is in anything other than SLEEP state,
5762 	 * we need to ensure that self-generated frames are
5763 	 * set for PWRMGT=0.  Otherwise we may end up with
5764 	 * strange situations.
5765 	 *
5766 	 * XXX TODO: is this actually the case? :-)
5767 	 */
5768 	if (nstate != IEEE80211_S_SLEEP)
5769 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5770 
5771 	/*
5772 	 * Now, wake the thing up.
5773 	 */
5774 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5775 
5776 	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5777 		csa_run_transition = 1;
5778 
5779 	wlan_serialize_exit();
5780 	callout_stop_sync(&sc->sc_cal_ch);
5781 	wlan_serialize_enter();
5782 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5783 
5784 	if (nstate == IEEE80211_S_SCAN) {
5785 		/*
5786 		 * Scanning: turn off beacon miss and don't beacon.
5787 		 * Mark beacon state so when we reach RUN state we'll
5788 		 * [re]setup beacons.  Unblock the task q thread so
5789 		 * deferred interrupt processing is done.
5790 		 */
5791 
5792 		/* Ensure we stay awake during scan */
5793 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5794 		ath_power_setpower(sc, HAL_PM_AWAKE);
5795 
5796 		ath_hal_intrset(ah,
5797 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5798 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5799 		sc->sc_beacons = 0;
5800 		taskqueue_unblock(sc->sc_tq);
5801 	}
5802 
5803 	ni = ieee80211_ref_node(vap->iv_bss);
5804 	rfilt = ath_calcrxfilter(sc);
5805 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5806 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5807 		   vap->iv_opmode == IEEE80211_M_IBSS);
5808 
5809 	/*
5810 	 * XXX Dont need to do this (and others) if we've transitioned
5811 	 * from SLEEP->RUN.
5812 	 */
5813 	if (stamode && nstate == IEEE80211_S_RUN) {
5814 		sc->sc_curaid = ni->ni_associd;
5815 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5816 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5817 	}
5818 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5819 	   __func__, rfilt,
5820 	   ath_hal_ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5821 	ath_hal_setrxfilter(ah, rfilt);
5822 
5823 	/* XXX is this to restore keycache on resume? */
5824 	if (vap->iv_opmode != IEEE80211_M_STA &&
5825 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5826 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5827 			if (ath_hal_keyisvalid(ah, i))
5828 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5829 	}
5830 
5831 	/*
5832 	 * Invoke the parent method to do net80211 work.
5833 	 */
5834 	error = avp->av_newstate(vap, nstate, arg);
5835 	if (error != 0)
5836 		goto bad;
5837 
5838 	/*
5839 	 * See above: ensure av_newstate() doesn't drop the lock
5840 	 * on us.
5841 	 */
5842 	IEEE80211_LOCK_ASSERT(ic);
5843 
5844 	if (nstate == IEEE80211_S_RUN) {
5845 		/* NB: collect bss node again, it may have changed */
5846 		ieee80211_free_node(ni);
5847 		ni = ieee80211_ref_node(vap->iv_bss);
5848 
5849 		DPRINTF(sc, ATH_DEBUG_STATE,
5850 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5851 		    "capinfo 0x%04x chan %d\n", __func__,
5852 		    vap->iv_flags, ni->ni_intval,
5853 		    ath_hal_ether_sprintf(ni->ni_bssid),
5854 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5855 
5856 		switch (vap->iv_opmode) {
5857 #ifdef IEEE80211_SUPPORT_TDMA
5858 		case IEEE80211_M_AHDEMO:
5859 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5860 				break;
5861 			/* fall thru... */
5862 #endif
5863 		case IEEE80211_M_HOSTAP:
5864 		case IEEE80211_M_IBSS:
5865 		case IEEE80211_M_MBSS:
5866 			/*
5867 			 * Allocate and setup the beacon frame.
5868 			 *
5869 			 * Stop any previous beacon DMA.  This may be
5870 			 * necessary, for example, when an ibss merge
5871 			 * causes reconfiguration; there will be a state
5872 			 * transition from RUN->RUN that means we may
5873 			 * be called with beacon transmission active.
5874 			 */
5875 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5876 
5877 			error = ath_beacon_alloc(sc, ni);
5878 			if (error != 0)
5879 				goto bad;
5880 			/*
5881 			 * If joining an adhoc network defer beacon timer
5882 			 * configuration to the next beacon frame so we
5883 			 * have a current TSF to use.  Otherwise we're
5884 			 * starting an ibss/bss so there's no need to delay;
5885 			 * if this is the first vap moving to RUN state, then
5886 			 * beacon state needs to be [re]configured.
5887 			 */
5888 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5889 			    ni->ni_tstamp.tsf != 0) {
5890 				sc->sc_syncbeacon = 1;
5891 			} else if (!sc->sc_beacons) {
5892 #ifdef IEEE80211_SUPPORT_TDMA
5893 				if (vap->iv_caps & IEEE80211_C_TDMA)
5894 					ath_tdma_config(sc, vap);
5895 				else
5896 #endif
5897 					ath_beacon_config(sc, vap);
5898 				sc->sc_beacons = 1;
5899 			}
5900 			break;
5901 		case IEEE80211_M_STA:
5902 			/*
5903 			 * Defer beacon timer configuration to the next
5904 			 * beacon frame so we have a current TSF to use
5905 			 * (any TSF collected when scanning is likely old).
5906 			 * However if it's due to a CSA -> RUN transition,
5907 			 * force a beacon update so we pick up a lack of
5908 			 * beacons from an AP in CAC and thus force a
5909 			 * scan.
5910 			 *
5911 			 * And, there's also corner cases here where
5912 			 * after a scan, the AP may have disappeared.
5913 			 * In that case, we may not receive an actual
5914 			 * beacon to update the beacon timer and thus we
5915 			 * won't get notified of the missing beacons.
5916 			 */
5917 			if (ostate != IEEE80211_S_RUN &&
5918 			    ostate != IEEE80211_S_SLEEP) {
5919 				DPRINTF(sc, ATH_DEBUG_BEACON,
5920 					"%s: STA; syncbeacon=1\n", __func__);
5921 				sc->sc_syncbeacon = 1;
5922 
5923 				if (csa_run_transition)
5924 					ath_beacon_config(sc, vap);
5925 
5926 				/*
5927 				 * PR: kern/175227
5928 				 *
5929 				 * Reconfigure beacons during reset; as
5930 				 * otherwise
5931 				 * we won't get the beacon timers reprogrammed
5932 				 * after a reset and thus we won't pick up a
5933 				 * beacon miss interrupt.
5934 				 *
5935 				 * Hopefully we'll see a beacon before the BMISS
5936 				 * timer fires (too often), leading to a STA
5937 				 * disassociation.
5938 				 */
5939 				sc->sc_beacons = 1;
5940 			}
5941 			break;
5942 		case IEEE80211_M_MONITOR:
5943 			/*
5944 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5945 			 * transitions so we must re-enable interrupts here to
5946 			 * handle the case of a single monitor mode vap.
5947 			 */
5948 			ath_hal_intrset(ah, sc->sc_imask);
5949 			break;
5950 		case IEEE80211_M_WDS:
5951 			break;
5952 		default:
5953 			break;
5954 		}
5955 		/*
5956 		 * Let the hal process statistics collected during a
5957 		 * scan so it can provide calibrated noise floor data.
5958 		 */
5959 		ath_hal_process_noisefloor(ah);
5960 		/*
5961 		 * Reset rssi stats; maybe not the best place...
5962 		 */
5963 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5964 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5965 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5966 
5967 		/*
5968 		 * Force awake for RUN mode
5969 		 */
5970 		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5971 		ath_power_setpower(sc, HAL_PM_AWAKE);
5972 
5973 		/*
5974 		 * Finally, start any timers and the task q thread
5975 		 * (in case we didn't go through SCAN state).
5976 		 */
5977 		if (ath_longcalinterval != 0) {
5978 			/* start periodic recalibration timer */
5979 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5980 		} else {
5981 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5982 			    "%s: calibration disabled\n", __func__);
5983 		}
5984 
5985 		taskqueue_unblock(sc->sc_tq);
5986 	} else if (nstate == IEEE80211_S_INIT) {
5987 		/*
5988 		 * If there are no vaps left in RUN state then
5989 		 * shutdown host/driver operation:
5990 		 * o disable interrupts
5991 		 * o disable the task queue thread
5992 		 * o mark beacon processing as stopped
5993 		 */
5994 		if (!ath_isanyrunningvaps(vap)) {
5995 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5996 			/* disable interrupts  */
5997 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5998 			taskqueue_block(sc->sc_tq);
5999 			sc->sc_beacons = 0;
6000 		}
6001 #ifdef IEEE80211_SUPPORT_TDMA
6002 		ath_hal_setcca(ah, AH_TRUE);
6003 #endif
6004 	} else if (nstate == IEEE80211_S_SLEEP) {
6005 		/* We're going to sleep, so transition appropriately */
6006 		/* For now, only do this if we're a single STA vap */
6007 		if (sc->sc_nvaps == 1 &&
6008 		    vap->iv_opmode == IEEE80211_M_STA) {
6009 			DPRINTF(sc, ATH_DEBUG_BEACON,
6010 				"%s: syncbeacon=%d\n",
6011 				__func__, sc->sc_syncbeacon);
6012 			/*
6013 			 * Always at least set the self-generated
6014 			 * frame config to set PWRMGT=1.
6015 			 */
6016 			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6017 
6018 			/*
6019 			 * If we're not syncing beacons, transition
6020 			 * to NETWORK_SLEEP.
6021 			 *
6022 			 * We stay awake if syncbeacon > 0 in case
6023 			 * we need to listen for some beacons otherwise
6024 			 * our beacon timer config may be wrong.
6025 			 */
6026 			if (sc->sc_syncbeacon == 0) {
6027 				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6028 			}
6029 		}
6030 	}
6031 bad:
6032 	ieee80211_free_node(ni);
6033 
6034 	/*
6035 	 * Restore the power state - either to what it was, or
6036 	 * to network_sleep if it's alright.
6037 	 */
6038 	ath_power_restore_power_state(sc);
6039 
6040 	return error;
6041 }
6042 
6043 /*
6044  * Allocate a key cache slot to the station so we can
6045  * setup a mapping from key index to node. The key cache
6046  * slot is needed for managing antenna state and for
6047  * compression when stations do not use crypto.  We do
6048  * it uniliaterally here; if crypto is employed this slot
6049  * will be reassigned.
6050  */
6051 static void
6052 ath_setup_stationkey(struct ieee80211_node *ni)
6053 {
6054 	struct ieee80211vap *vap = ni->ni_vap;
6055 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6056 	ieee80211_keyix keyix, rxkeyix;
6057 
6058 	/* XXX should take a locked ref to vap->iv_bss */
6059 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6060 		/*
6061 		 * Key cache is full; we'll fall back to doing
6062 		 * the more expensive lookup in software.  Note
6063 		 * this also means no h/w compression.
6064 		 */
6065 		/* XXX msg+statistic */
6066 	} else {
6067 		/* XXX locking? */
6068 		ni->ni_ucastkey.wk_keyix = keyix;
6069 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6070 		/* NB: must mark device key to get called back on delete */
6071 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6072 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6073 		/* NB: this will create a pass-thru key entry */
6074 		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6075 	}
6076 }
6077 
6078 /*
6079  * Setup driver-specific state for a newly associated node.
6080  * Note that we're called also on a re-associate, the isnew
6081  * param tells us if this is the first time or not.
6082  */
6083 static void
6084 ath_newassoc(struct ieee80211_node *ni, int isnew)
6085 {
6086 	struct ath_node *an = ATH_NODE(ni);
6087 	struct ieee80211vap *vap = ni->ni_vap;
6088 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6089 	const struct ieee80211_txparam *tp = ni->ni_txparms;
6090 
6091 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6092 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6093 
6094 	DPRINTF(sc, ATH_DEBUG_NODE,
6095 		"%s: %s: reassoc; isnew=%d, is_powersave=%d\n",
6096 		__func__,
6097 		ath_hal_ether_sprintf(ni->ni_macaddr),
6098 		isnew,
6099 		an->an_is_powersave);
6100 
6101 	ATH_NODE_LOCK(an);
6102 	ath_rate_newassoc(sc, an, isnew);
6103 	ATH_NODE_UNLOCK(an);
6104 
6105 	if (isnew &&
6106 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6107 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6108 		ath_setup_stationkey(ni);
6109 
6110 	/*
6111 	 * If we're reassociating, make sure that any paused queues
6112 	 * get unpaused.
6113 	 *
6114 	 * Now, we may hvae frames in the hardware queue for this node.
6115 	 * So if we are reassociating and there are frames in the queue,
6116 	 * we need to go through the cleanup path to ensure that they're
6117 	 * marked as non-aggregate.
6118 	 */
6119 	if (! isnew) {
6120 		DPRINTF(sc, ATH_DEBUG_NODE,
6121 		    "%s: %s: reassoc; is_powersave=%d\n",
6122 		    __func__,
6123 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6124 		    an->an_is_powersave);
6125 
6126 		/* XXX for now, we can't hold the lock across assoc */
6127 		ath_tx_node_reassoc(sc, an);
6128 
6129 		/* XXX for now, we can't hold the lock across wakeup */
6130 		if (an->an_is_powersave)
6131 			ath_tx_node_wakeup(sc, an);
6132 	}
6133 }
6134 
6135 static int
6136 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6137 	int nchans, struct ieee80211_channel chans[])
6138 {
6139 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6140 	struct ath_hal *ah = sc->sc_ah;
6141 	HAL_STATUS status;
6142 
6143 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6144 	    "%s: rd %u cc %u location %c%s\n",
6145 	    __func__, reg->regdomain, reg->country, reg->location,
6146 	    reg->ecm ? " ecm" : "");
6147 
6148 	status = ath_hal_set_channels(ah, chans, nchans,
6149 	    reg->country, reg->regdomain);
6150 	if (status != HAL_OK) {
6151 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6152 		    __func__, status);
6153 		return EINVAL;		/* XXX */
6154 	}
6155 
6156 	return 0;
6157 }
6158 
6159 static void
6160 ath_getradiocaps(struct ieee80211com *ic,
6161 	int maxchans, int *nchans, struct ieee80211_channel chans[])
6162 {
6163 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6164 	struct ath_hal *ah = sc->sc_ah;
6165 
6166 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6167 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6168 
6169 	/* XXX check return */
6170 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6171 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6172 
6173 }
6174 
6175 static int
6176 ath_getchannels(struct ath_softc *sc)
6177 {
6178 	struct ifnet *ifp = sc->sc_ifp;
6179 	struct ieee80211com *ic = ifp->if_l2com;
6180 	struct ath_hal *ah = sc->sc_ah;
6181 	HAL_STATUS status;
6182 
6183 	/*
6184 	 * Collect channel set based on EEPROM contents.
6185 	 */
6186 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6187 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6188 	if (status != HAL_OK) {
6189 		if_printf(ifp, "%s: unable to collect channel list from hal, "
6190 		    "status %d\n", __func__, status);
6191 		return EINVAL;
6192 	}
6193 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6194 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6195 	/* XXX map Atheros sku's to net80211 SKU's */
6196 	/* XXX net80211 types too small */
6197 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6198 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6199 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6200 	ic->ic_regdomain.isocc[1] = ' ';
6201 
6202 	ic->ic_regdomain.ecm = 1;
6203 	ic->ic_regdomain.location = 'I';
6204 
6205 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6206 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6207 	    __func__, sc->sc_eerd, sc->sc_eecc,
6208 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6209 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6210 	return 0;
6211 }
6212 
6213 static int
6214 ath_rate_setup(struct ath_softc *sc, u_int mode)
6215 {
6216 	struct ath_hal *ah = sc->sc_ah;
6217 	const HAL_RATE_TABLE *rt;
6218 
6219 	switch (mode) {
6220 	case IEEE80211_MODE_11A:
6221 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6222 		break;
6223 	case IEEE80211_MODE_HALF:
6224 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6225 		break;
6226 	case IEEE80211_MODE_QUARTER:
6227 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6228 		break;
6229 	case IEEE80211_MODE_11B:
6230 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6231 		break;
6232 	case IEEE80211_MODE_11G:
6233 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6234 		break;
6235 	case IEEE80211_MODE_TURBO_A:
6236 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6237 		break;
6238 	case IEEE80211_MODE_TURBO_G:
6239 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6240 		break;
6241 	case IEEE80211_MODE_STURBO_A:
6242 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6243 		break;
6244 	case IEEE80211_MODE_11NA:
6245 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6246 		break;
6247 	case IEEE80211_MODE_11NG:
6248 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6249 		break;
6250 	default:
6251 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6252 			__func__, mode);
6253 		return 0;
6254 	}
6255 	sc->sc_rates[mode] = rt;
6256 	return (rt != NULL);
6257 }
6258 
6259 static void
6260 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6261 {
6262 #define	N(a)	(sizeof(a)/sizeof(a[0]))
6263 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6264 	static const struct {
6265 		u_int		rate;		/* tx/rx 802.11 rate */
6266 		u_int16_t	timeOn;		/* LED on time (ms) */
6267 		u_int16_t	timeOff;	/* LED off time (ms) */
6268 	} blinkrates[] = {
6269 		{ 108,  40,  10 },
6270 		{  96,  44,  11 },
6271 		{  72,  50,  13 },
6272 		{  48,  57,  14 },
6273 		{  36,  67,  16 },
6274 		{  24,  80,  20 },
6275 		{  22, 100,  25 },
6276 		{  18, 133,  34 },
6277 		{  12, 160,  40 },
6278 		{  10, 200,  50 },
6279 		{   6, 240,  58 },
6280 		{   4, 267,  66 },
6281 		{   2, 400, 100 },
6282 		{   0, 500, 130 },
6283 		/* XXX half/quarter rates */
6284 	};
6285 	const HAL_RATE_TABLE *rt;
6286 	int i, j;
6287 
6288 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6289 	rt = sc->sc_rates[mode];
6290 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6291 	for (i = 0; i < rt->rateCount; i++) {
6292 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6293 		if (rt->info[i].phy != IEEE80211_T_HT)
6294 			sc->sc_rixmap[ieeerate] = i;
6295 		else
6296 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6297 	}
6298 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6299 	for (i = 0; i < N(sc->sc_hwmap); i++) {
6300 		if (i >= rt->rateCount) {
6301 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6302 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6303 			continue;
6304 		}
6305 		sc->sc_hwmap[i].ieeerate =
6306 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6307 		if (rt->info[i].phy == IEEE80211_T_HT)
6308 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6309 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6310 		if (rt->info[i].shortPreamble ||
6311 		    rt->info[i].phy == IEEE80211_T_OFDM)
6312 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6313 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6314 		for (j = 0; j < N(blinkrates)-1; j++)
6315 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6316 				break;
6317 		/* NB: this uses the last entry if the rate isn't found */
6318 		/* XXX beware of overlow */
6319 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6320 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6321 	}
6322 	sc->sc_currates = rt;
6323 	sc->sc_curmode = mode;
6324 	/*
6325 	 * All protection frames are transmited at 2Mb/s for
6326 	 * 11g, otherwise at 1Mb/s.
6327 	 */
6328 	if (mode == IEEE80211_MODE_11G)
6329 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6330 	else
6331 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6332 	/* NB: caller is responsible for resetting rate control state */
6333 #undef N
6334 }
6335 
6336 static void
6337 ath_watchdog(void *arg)
6338 {
6339 	struct ath_softc *sc = arg;
6340 	int do_reset = 0;
6341 
6342 	wlan_serialize_enter();
6343 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6344 		struct ifnet *ifp = sc->sc_ifp;
6345 		uint32_t hangs;
6346 
6347 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6348 
6349 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6350 		    hangs != 0) {
6351 			if_printf(ifp, "%s hang detected (0x%x)\n",
6352 			    hangs & 0xff ? "bb" : "mac", hangs);
6353 		} else
6354 			if_printf(ifp, "device timeout\n");
6355 		do_reset = 1;
6356 		ifp->if_oerrors++;
6357 		sc->sc_stats.ast_watchdog++;
6358 		ath_power_restore_power_state(sc);
6359 	}
6360 
6361 	/*
6362 	 * We can't hold the lock across the ath_reset() call.
6363 	 *
6364 	 * And since this routine can't hold a lock and sleep,
6365 	 * do the reset deferred.
6366 	 */
6367 	if (do_reset) {
6368 		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6369 	}
6370 
6371 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
6372 	wlan_serialize_exit();
6373 }
6374 
6375 /*
6376  * (DragonFly network start)
6377  */
6378 static void
6379 ath_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
6380 {
6381 	struct ath_softc *sc = ifp->if_softc;
6382 	struct mbuf *m;
6383 
6384 	wlan_assert_serialized();
6385 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
6386 
6387 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) {
6388 		ifq_purge(&ifp->if_snd);
6389 		return;
6390 	}
6391 	ifq_set_oactive(&ifp->if_snd);
6392 	for (;;) {
6393 		m = ifq_dequeue(&ifp->if_snd);
6394 		if (m == NULL)
6395 			break;
6396 		ath_transmit(ifp, m);
6397 	}
6398 	ifq_clr_oactive(&ifp->if_snd);
6399 }
6400 
6401 /*
6402  * Fetch the rate control statistics for the given node.
6403  */
6404 static int
6405 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6406 {
6407 	struct ath_node *an;
6408 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6409 	struct ieee80211_node *ni;
6410 	int error = 0;
6411 
6412 	/* Perform a lookup on the given node */
6413 	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6414 	if (ni == NULL) {
6415 		error = EINVAL;
6416 		goto bad;
6417 	}
6418 
6419 	/* Lock the ath_node */
6420 	an = ATH_NODE(ni);
6421 	ATH_NODE_LOCK(an);
6422 
6423 	/* Fetch the rate control stats for this node */
6424 	error = ath_rate_fetch_node_stats(sc, an, rs);
6425 
6426 	/* No matter what happens here, just drop through */
6427 
6428 	/* Unlock the ath_node */
6429 	ATH_NODE_UNLOCK(an);
6430 
6431 	/* Unref the node */
6432 	ieee80211_node_decref(ni);
6433 
6434 bad:
6435 	return (error);
6436 }
6437 
6438 #ifdef ATH_DIAGAPI
6439 /*
6440  * Diagnostic interface to the HAL.  This is used by various
6441  * tools to do things like retrieve register contents for
6442  * debugging.  The mechanism is intentionally opaque so that
6443  * it can change frequently w/o concern for compatiblity.
6444  */
6445 static int
6446 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6447 {
6448 	struct ath_hal *ah = sc->sc_ah;
6449 	u_int id = ad->ad_id & ATH_DIAG_ID;
6450 	void *indata = NULL;
6451 	void *outdata = NULL;
6452 	u_int32_t insize = ad->ad_in_size;
6453 	u_int32_t outsize = ad->ad_out_size;
6454 	int error = 0;
6455 
6456 	if (ad->ad_id & ATH_DIAG_IN) {
6457 		/*
6458 		 * Copy in data.
6459 		 */
6460 		indata = kmalloc(insize, M_TEMP, M_INTWAIT);
6461 		if (indata == NULL) {
6462 			error = ENOMEM;
6463 			goto bad;
6464 		}
6465 		error = copyin(ad->ad_in_data, indata, insize);
6466 		if (error)
6467 			goto bad;
6468 	}
6469 	if (ad->ad_id & ATH_DIAG_DYN) {
6470 		/*
6471 		 * Allocate a buffer for the results (otherwise the HAL
6472 		 * returns a pointer to a buffer where we can read the
6473 		 * results).  Note that we depend on the HAL leaving this
6474 		 * pointer for us to use below in reclaiming the buffer;
6475 		 * may want to be more defensive.
6476 		 */
6477 		outdata = kmalloc(outsize, M_TEMP, M_INTWAIT);
6478 		if (outdata == NULL) {
6479 			error = ENOMEM;
6480 			goto bad;
6481 		}
6482 	}
6483 
6484 	if (id != HAL_DIAG_REGS)
6485 		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6486 
6487 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6488 		if (outsize < ad->ad_out_size)
6489 			ad->ad_out_size = outsize;
6490 		if (outdata != NULL)
6491 			error = copyout(outdata, ad->ad_out_data,
6492 					ad->ad_out_size);
6493 	} else {
6494 		error = EINVAL;
6495 	}
6496 	if (id != HAL_DIAG_REGS)
6497 		ath_power_restore_power_state(sc);
6498 bad:
6499 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6500 		kfree(indata, M_TEMP);
6501 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6502 		kfree(outdata, M_TEMP);
6503 	return error;
6504 }
6505 #endif /* ATH_DIAGAPI */
6506 
6507 static int
6508 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data,
6509 	  struct ucred *cr __unused)
6510 {
6511 #define	IS_RUNNING(ifp) \
6512 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
6513 	struct ath_softc *sc = ifp->if_softc;
6514 	struct ieee80211com *ic = ifp->if_l2com;
6515 	struct ifreq *ifr = (struct ifreq *)data;
6516 	const HAL_RATE_TABLE *rt;
6517 	int error = 0;
6518 
6519 	switch (cmd) {
6520 	case SIOCSIFFLAGS:
6521 		ATH_LOCK(sc);
6522 		if (IS_RUNNING(ifp)) {
6523 			/*
6524 			 * To avoid rescanning another access point,
6525 			 * do not call ath_init() here.  Instead,
6526 			 * only reflect promisc mode settings.
6527 			 */
6528 			ath_mode_init(sc);
6529 		} else if (ifp->if_flags & IFF_UP) {
6530 			/*
6531 			 * Beware of being called during attach/detach
6532 			 * to reset promiscuous mode.  In that case we
6533 			 * will still be marked UP but not RUNNING.
6534 			 * However trying to re-init the interface
6535 			 * is the wrong thing to do as we've already
6536 			 * torn down much of our state.  There's
6537 			 * probably a better way to deal with this.
6538 			 */
6539 			if (!sc->sc_invalid)
6540 				ath_init(sc);	/* XXX lose error */
6541 		} else {
6542 			ath_stop_locked(ifp);
6543 			if (!sc->sc_invalid)
6544 				ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6545 		}
6546 		ATH_UNLOCK(sc);
6547 		break;
6548 	case SIOCGIFMEDIA:
6549 	case SIOCSIFMEDIA:
6550 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6551 		break;
6552 	case SIOCGATHSTATS:
6553 		/* NB: embed these numbers to get a consistent view */
6554 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6555 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6556 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6557 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6558 #ifdef IEEE80211_SUPPORT_TDMA
6559 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6560 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6561 #endif
6562 		rt = sc->sc_currates;
6563 		sc->sc_stats.ast_tx_rate =
6564 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6565 		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6566 			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6567 		return copyout(&sc->sc_stats,
6568 		    ifr->ifr_data, sizeof (sc->sc_stats));
6569 	case SIOCGATHAGSTATS:
6570 		return copyout(&sc->sc_aggr_stats,
6571 		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6572 	case SIOCZATHSTATS:
6573 		error = priv_check(curthread, PRIV_DRIVER);
6574 		if (error == 0) {
6575 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6576 			memset(&sc->sc_aggr_stats, 0,
6577 			    sizeof(sc->sc_aggr_stats));
6578 			memset(&sc->sc_intr_stats, 0,
6579 			    sizeof(sc->sc_intr_stats));
6580 		}
6581 		break;
6582 #ifdef ATH_DIAGAPI
6583 	case SIOCGATHDIAG:
6584 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6585 		break;
6586 	case SIOCGATHPHYERR:
6587 		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6588 		break;
6589 #endif
6590 	case SIOCGATHSPECTRAL:
6591 		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6592 		break;
6593 	case SIOCGATHNODERATESTATS:
6594 		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6595 		break;
6596 	case SIOCGIFADDR:
6597 		error = ether_ioctl(ifp, cmd, data);
6598 		break;
6599 	default:
6600 		error = EINVAL;
6601 		break;
6602 	}
6603 	return error;
6604 #undef IS_RUNNING
6605 }
6606 
6607 /*
6608  * Announce various information on device/driver attach.
6609  */
6610 static void
6611 ath_announce(struct ath_softc *sc)
6612 {
6613 	struct ifnet *ifp = sc->sc_ifp;
6614 	struct ath_hal *ah = sc->sc_ah;
6615 
6616 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6617 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6618 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6619 	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6620 		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6621 	if (bootverbose) {
6622 		int i;
6623 		for (i = 0; i <= WME_AC_VO; i++) {
6624 			struct ath_txq *txq = sc->sc_ac2q[i];
6625 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6626 				txq->axq_qnum, ieee80211_wme_acnames[i]);
6627 		}
6628 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6629 			sc->sc_cabq->axq_qnum);
6630 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6631 	}
6632 	if (ath_rxbuf != ATH_RXBUF)
6633 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6634 	if (ath_txbuf != ATH_TXBUF)
6635 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6636 	if (sc->sc_mcastkey && bootverbose)
6637 		if_printf(ifp, "using multicast key search\n");
6638 }
6639 
6640 static void
6641 ath_dfs_tasklet(void *p, int npending)
6642 {
6643 	struct ath_softc *sc = (struct ath_softc *) p;
6644 	struct ifnet *ifp = sc->sc_ifp;
6645 	struct ieee80211com *ic = ifp->if_l2com;
6646 
6647 	/*
6648 	 * If previous processing has found a radar event,
6649 	 * signal this to the net80211 layer to begin DFS
6650 	 * processing.
6651 	 */
6652 	wlan_serialize_enter();
6653 	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6654 		/* DFS event found, initiate channel change */
6655 		/*
6656 		 * XXX doesn't currently tell us whether the event
6657 		 * XXX was found in the primary or extension
6658 		 * XXX channel!
6659 		 */
6660 		IEEE80211_LOCK(ic);
6661 		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6662 		IEEE80211_UNLOCK(ic);
6663 	}
6664 	wlan_serialize_exit();
6665 }
6666 
6667 #if 0
6668 /*
6669  * Enable/disable power save.  This must be called with
6670  * no TX driver locks currently held, so it should only
6671  * be called from the RX path (which doesn't hold any
6672  * TX driver locks.)
6673  */
6674 static void
6675 ath_node_powersave(struct ieee80211_node *ni, int enable)
6676 {
6677 #ifdef	ATH_SW_PSQ
6678 	struct ath_node *an = ATH_NODE(ni);
6679 	struct ieee80211com *ic = ni->ni_ic;
6680 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6681 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6682 
6683 	/* XXX and no TXQ locks should be held here */
6684 
6685 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6s: enable=%d\n",
6686 	    __func__,
6687 	    ath_hal_ether_sprintf(ni->ni_macaddr),
6688 	    !! enable);
6689 
6690 	/* Suspend or resume software queue handling */
6691 	if (enable)
6692 		ath_tx_node_sleep(sc, an);
6693 	else
6694 		ath_tx_node_wakeup(sc, an);
6695 
6696 	/* Update net80211 state */
6697 	if (avp->av_node_ps)
6698 		avp->av_node_ps(ni, enable);
6699 #else
6700 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6701 
6702 	/* Update net80211 state */
6703 	if (avp->av_node_ps)
6704 		avp->av_node_ps(ni, enable);
6705 #endif/* ATH_SW_PSQ */
6706 }
6707 
6708 #endif
6709 
6710 /*
6711  * Notification from net80211 that the powersave queue state has
6712  * changed.
6713  *
6714  * Since the software queue also may have some frames:
6715  *
6716  * + if the node software queue has frames and the TID state
6717  *   is 0, we set the TIM;
6718  * + if the node and the stack are both empty, we clear the TIM bit.
6719  * + If the stack tries to set the bit, always set it.
6720  * + If the stack tries to clear the bit, only clear it if the
6721  *   software queue in question is also cleared.
6722  *
6723  * TODO: this is called during node teardown; so let's ensure this
6724  * is all correctly handled and that the TIM bit is cleared.
6725  * It may be that the node flush is called _AFTER_ the net80211
6726  * stack clears the TIM.
6727  *
6728  * Here is the racy part.  Since it's possible >1 concurrent,
6729  * overlapping TXes will appear complete with a TX completion in
6730  * another thread, it's possible that the concurrent TIM calls will
6731  * clash.  We can't hold the node lock here because setting the
6732  * TIM grabs the net80211 comlock and this may cause a LOR.
6733  * The solution is either to totally serialise _everything_ at
6734  * this point (ie, all TX, completion and any reset/flush go into
6735  * one taskqueue) or a new "ath TIM lock" needs to be created that
6736  * just wraps the driver state change and this call to avp->av_set_tim().
6737  *
6738  * The same race exists in the net80211 power save queue handling
6739  * as well.  Since multiple transmitting threads may queue frames
6740  * into the driver, as well as ps-poll and the driver transmitting
6741  * frames (and thus clearing the psq), it's quite possible that
6742  * a packet entering the PSQ and a ps-poll being handled will
6743  * race, causing the TIM to be cleared and not re-set.
6744  */
6745 static int
6746 ath_node_set_tim(struct ieee80211_node *ni, int enable)
6747 {
6748 #ifdef	ATH_SW_PSQ
6749 	struct ieee80211com *ic = ni->ni_ic;
6750 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6751 	struct ath_node *an = ATH_NODE(ni);
6752 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6753 	int changed = 0;
6754 
6755 	ATH_TX_LOCK(sc);
6756 	an->an_stack_psq = enable;
6757 
6758 	/*
6759 	 * This will get called for all operating modes,
6760 	 * even if avp->av_set_tim is unset.
6761 	 * It's currently set for hostap/ibss modes; but
6762 	 * the same infrastructure is used for both STA
6763 	 * and AP/IBSS node power save.
6764 	 */
6765 	if (avp->av_set_tim == NULL) {
6766 		ATH_TX_UNLOCK(sc);
6767 		return (0);
6768 	}
6769 
6770 	/*
6771 	 * If setting the bit, always set it here.
6772 	 * If clearing the bit, only clear it if the
6773 	 * software queue is also empty.
6774 	 *
6775 	 * If the node has left power save, just clear the TIM
6776 	 * bit regardless of the state of the power save queue.
6777 	 *
6778 	 * XXX TODO: although atomics are used, it's quite possible
6779 	 * that a race will occur between this and setting/clearing
6780 	 * in another thread.  TX completion will occur always in
6781 	 * one thread, however setting/clearing the TIM bit can come
6782 	 * from a variety of different process contexts!
6783 	 */
6784 	if (enable && an->an_tim_set == 1) {
6785 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6786 		    "%s: %s: enable=%d, tim_set=1, ignoring\n",
6787 		    __func__,
6788 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6789 		    enable);
6790 		ATH_TX_UNLOCK(sc);
6791 	} else if (enable) {
6792 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6793 		    "%s: %s: enable=%d, enabling TIM\n",
6794 		    __func__,
6795 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6796 		    enable);
6797 		an->an_tim_set = 1;
6798 		ATH_TX_UNLOCK(sc);
6799 		changed = avp->av_set_tim(ni, enable);
6800 	} else if (an->an_swq_depth == 0) {
6801 		/* disable */
6802 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6803 		    "%s: %s: enable=%d, an_swq_depth == 0, disabling\n",
6804 		    __func__,
6805 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6806 		    enable);
6807 		an->an_tim_set = 0;
6808 		ATH_TX_UNLOCK(sc);
6809 		changed = avp->av_set_tim(ni, enable);
6810 	} else if (! an->an_is_powersave) {
6811 		/*
6812 		 * disable regardless; the node isn't in powersave now
6813 		 */
6814 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6815 		    "%s: %s: enable=%d, an_pwrsave=0, disabling\n",
6816 		    __func__,
6817 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6818 		    enable);
6819 		an->an_tim_set = 0;
6820 		ATH_TX_UNLOCK(sc);
6821 		changed = avp->av_set_tim(ni, enable);
6822 	} else {
6823 		/*
6824 		 * psq disable, node is currently in powersave, node
6825 		 * software queue isn't empty, so don't clear the TIM bit
6826 		 * for now.
6827 		 */
6828 		ATH_TX_UNLOCK(sc);
6829 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6830 		    "%s: %s: enable=%d, an_swq_depth > 0, ignoring\n",
6831 		    __func__,
6832 		    ath_hal_ether_sprintf(ni->ni_macaddr),
6833 		    enable);
6834 		changed = 0;
6835 	}
6836 
6837 	return (changed);
6838 #else
6839 	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6840 
6841 	/*
6842 	 * Some operating modes don't set av_set_tim(), so don't
6843 	 * update it here.
6844 	 */
6845 	if (avp->av_set_tim == NULL)
6846 		return (0);
6847 
6848 	return (avp->av_set_tim(ni, enable));
6849 #endif /* ATH_SW_PSQ */
6850 }
6851 
6852 /*
6853  * Set or update the TIM from the software queue.
6854  *
6855  * Check the software queue depth before attempting to do lock
6856  * anything; that avoids trying to obtain the lock.  Then,
6857  * re-check afterwards to ensure nothing has changed in the
6858  * meantime.
6859  *
6860  * set:   This is designed to be called from the TX path, after
6861  *        a frame has been queued; to see if the swq > 0.
6862  *
6863  * clear: This is designed to be called from the buffer completion point
6864  *        (right now it's ath_tx_default_comp()) where the state of
6865  *        a software queue has changed.
6866  *
6867  * It makes sense to place it at buffer free / completion rather
6868  * than after each software queue operation, as there's no real
6869  * point in churning the TIM bit as the last frames in the software
6870  * queue are transmitted.  If they fail and we retry them, we'd
6871  * just be setting the TIM bit again anyway.
6872  */
6873 void
6874 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6875      int enable)
6876 {
6877 #ifdef	ATH_SW_PSQ
6878 	struct ath_node *an;
6879 	struct ath_vap *avp;
6880 
6881 	/* Don't do this for broadcast/etc frames */
6882 	if (ni == NULL)
6883 		return;
6884 
6885 	an = ATH_NODE(ni);
6886 	avp = ATH_VAP(ni->ni_vap);
6887 
6888 	/*
6889 	 * And for operating modes without the TIM handler set, let's
6890 	 * just skip those.
6891 	 */
6892 	if (avp->av_set_tim == NULL)
6893 		return;
6894 
6895 	ATH_TX_LOCK_ASSERT(sc);
6896 
6897 	if (enable) {
6898 		if (an->an_is_powersave &&
6899 		    an->an_tim_set == 0 &&
6900 		    an->an_swq_depth != 0) {
6901 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6902 			    "%s: %s: swq_depth>0, tim_set=0, set!\n",
6903 			    __func__,
6904 			    ath_hal_ether_sprintf(ni->ni_macaddr));
6905 			an->an_tim_set = 1;
6906 			(void) avp->av_set_tim(ni, 1);
6907 		}
6908 	} else {
6909 		/*
6910 		 * Don't bother grabbing the lock unless the queue is empty.
6911 		 */
6912 		if (&an->an_swq_depth != 0)
6913 			return;
6914 
6915 		if (an->an_is_powersave &&
6916 		    an->an_stack_psq == 0 &&
6917 		    an->an_tim_set == 1 &&
6918 		    an->an_swq_depth == 0) {
6919 			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6920 			    "%s: %s: swq_depth=0, tim_set=1, psq_set=0,"
6921 			    " clear!\n",
6922 			    __func__,
6923 			    ath_hal_ether_sprintf(ni->ni_macaddr));
6924 			an->an_tim_set = 0;
6925 			(void) avp->av_set_tim(ni, 0);
6926 		}
6927 	}
6928 #else
6929 	return;
6930 #endif	/* ATH_SW_PSQ */
6931 }
6932 
6933 #if 0
6934 /*
6935  * Received a ps-poll frame from net80211.
6936  *
6937  * Here we get a chance to serve out a software-queued frame ourselves
6938  * before we punt it to net80211 to transmit us one itself - either
6939  * because there's traffic in the net80211 psq, or a NULL frame to
6940  * indicate there's nothing else.
6941  */
6942 static void
6943 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6944 {
6945 #ifdef	ATH_SW_PSQ
6946 	struct ath_node *an;
6947 	struct ath_vap *avp;
6948 	struct ieee80211com *ic = ni->ni_ic;
6949 	struct ath_softc *sc = ic->ic_ifp->if_softc;
6950 	int tid;
6951 
6952 	/* Just paranoia */
6953 	if (ni == NULL)
6954 		return;
6955 
6956 	/*
6957 	 * Unassociated (temporary node) station.
6958 	 */
6959 	if (ni->ni_associd == 0)
6960 		return;
6961 
6962 	/*
6963 	 * We do have an active node, so let's begin looking into it.
6964 	 */
6965 	an = ATH_NODE(ni);
6966 	avp = ATH_VAP(ni->ni_vap);
6967 
6968 	/*
6969 	 * For now, we just call the original ps-poll method.
6970 	 * Once we're ready to flip this on:
6971 	 *
6972 	 * + Set leak to 1, as no matter what we're going to have
6973 	 *   to send a frame;
6974 	 * + Check the software queue and if there's something in it,
6975 	 *   schedule the highest TID thas has traffic from this node.
6976 	 *   Then make sure we schedule the software scheduler to
6977 	 *   run so it picks up said frame.
6978 	 *
6979 	 * That way whatever happens, we'll at least send _a_ frame
6980 	 * to the given node.
6981 	 *
6982 	 * Again, yes, it's crappy QoS if the node has multiple
6983 	 * TIDs worth of traffic - but let's get it working first
6984 	 * before we optimise it.
6985 	 *
6986 	 * Also yes, there's definitely latency here - we're not
6987 	 * direct dispatching to the hardware in this path (and
6988 	 * we're likely being called from the packet receive path,
6989 	 * so going back into TX may be a little hairy!) but again
6990 	 * I'd like to get this working first before optimising
6991 	 * turn-around time.
6992 	 */
6993 
6994 	ATH_TX_LOCK(sc);
6995 
6996 	/*
6997 	 * Legacy - we're called and the node isn't asleep.
6998 	 * Immediately punt.
6999 	 */
7000 	if (! an->an_is_powersave) {
7001 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7002 		    "%s: %6D: not in powersave?\n",
7003 		    __func__,
7004 		    ni->ni_macaddr,
7005 		    ":");
7006 		ATH_TX_UNLOCK(sc);
7007 		if (avp->av_recv_pspoll)
7008 			avp->av_recv_pspoll(ni, m);
7009 		return;
7010 	}
7011 
7012 	/*
7013 	 * We're in powersave.
7014 	 *
7015 	 * Leak a frame.
7016 	 */
7017 	an->an_leak_count = 1;
7018 
7019 	/*
7020 	 * Now, if there's no frames in the node, just punt to
7021 	 * recv_pspoll.
7022 	 *
7023 	 * Don't bother checking if the TIM bit is set, we really
7024 	 * only care if there are any frames here!
7025 	 */
7026 	if (an->an_swq_depth == 0) {
7027 		ATH_TX_UNLOCK(sc);
7028 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7029 		    "%s: %6D: SWQ empty; punting to net80211\n",
7030 		    __func__,
7031 		    ni->ni_macaddr,
7032 		    ":");
7033 		if (avp->av_recv_pspoll)
7034 			avp->av_recv_pspoll(ni, m);
7035 		return;
7036 	}
7037 
7038 	/*
7039 	 * Ok, let's schedule the highest TID that has traffic
7040 	 * and then schedule something.
7041 	 */
7042 	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7043 		struct ath_tid *atid = &an->an_tid[tid];
7044 		/*
7045 		 * No frames? Skip.
7046 		 */
7047 		if (atid->axq_depth == 0)
7048 			continue;
7049 		ath_tx_tid_sched(sc, atid);
7050 		/*
7051 		 * XXX we could do a direct call to the TXQ
7052 		 * scheduler code here to optimise latency
7053 		 * at the expense of a REALLY deep callstack.
7054 		 */
7055 		ATH_TX_UNLOCK(sc);
7056 		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7057 		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7058 		    "%s: %6D: leaking frame to TID %d\n",
7059 		    __func__,
7060 		    ni->ni_macaddr,
7061 		    ":",
7062 		    tid);
7063 		return;
7064 	}
7065 
7066 	ATH_TX_UNLOCK(sc);
7067 
7068 	/*
7069 	 * XXX nothing in the TIDs at this point? Eek.
7070 	 */
7071 	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7072 	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7073 	    __func__,
7074 	    ni->ni_macaddr,
7075 	    ":");
7076 	if (avp->av_recv_pspoll)
7077 		avp->av_recv_pspoll(ni, m);
7078 #else
7079 	if (avp->av_recv_pspoll)
7080 		avp->av_recv_pspoll(ni, m);
7081 #endif	/* ATH_SW_PSQ */
7082 }
7083 
7084 #endif
7085 
7086 MODULE_VERSION(if_ath, 1);
7087 MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7088 #if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
7089 MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7090 #endif
7091