1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 #include <sys/priv.h>
61 
62 #if defined(__DragonFly__)
63 /* empty */
64 #else
65 #include <machine/bus.h>
66 #endif
67 
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_types.h>
73 #include <net/if_arp.h>
74 #include <net/ethernet.h>
75 #include <net/if_llc.h>
76 
77 #include <netproto/802_11/ieee80211_var.h>
78 
79 #include <net/bpf.h>
80 
81 #include <dev/netif/ath/ath/if_athvar.h>
82 
83 #include <dev/netif/ath/ath/if_ath_debug.h>
84 #include <dev/netif/ath/ath/if_ath_keycache.h>
85 #include <dev/netif/ath/ath/if_ath_misc.h>
86 
87 #ifdef ATH_DEBUG
88 static void
89 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
90 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
91 {
92 	static const char *ciphers[] = {
93 		"WEP",
94 		"AES-OCB",
95 		"AES-CCM",
96 		"CKIP",
97 		"TKIP",
98 		"CLR",
99 	};
100 	int i, n;
101 
102 	kprintf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
103 	for (i = 0, n = hk->kv_len; i < n; i++)
104 		kprintf("%02x", hk->kv_val[i]);
105 	kprintf(" mac %s", ether_sprintf(mac));
106 	if (hk->kv_type == HAL_CIPHER_TKIP) {
107 		kprintf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
108 		for (i = 0; i < sizeof(hk->kv_mic); i++)
109 			kprintf("%02x", hk->kv_mic[i]);
110 		if (!sc->sc_splitmic) {
111 			kprintf(" txmic ");
112 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
113 				kprintf("%02x", hk->kv_txmic[i]);
114 		}
115 	}
116 	kprintf("\n");
117 }
118 #endif
119 
120 /*
121  * Set a TKIP key into the hardware.  This handles the
122  * potential distribution of key state to multiple key
123  * cache slots for TKIP.
124  */
125 static int
126 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
127 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
128 {
129 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
130 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
131 	struct ath_hal *ah = sc->sc_ah;
132 
133 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
134 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
135 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
136 		if (sc->sc_splitmic) {
137 			/*
138 			 * TX key goes at first index, RX key at the rx index.
139 			 * The hal handles the MIC keys at index+64.
140 			 */
141 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
142 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
143 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
144 				return 0;
145 
146 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
147 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
148 			/* XXX delete tx key on failure? */
149 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
150 		} else {
151 			/*
152 			 * Room for both TX+RX MIC keys in one key cache
153 			 * slot, just set key at the first index; the hal
154 			 * will handle the rest.
155 			 */
156 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
157 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
158 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
159 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
160 		}
161 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
162 		if (sc->sc_splitmic) {
163 			/*
164 			 * NB: must pass MIC key in expected location when
165 			 * the keycache only holds one MIC key per entry.
166 			 */
167 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
168 		} else
169 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
170 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
171 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
172 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
173 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
174 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
175 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
176 	}
177 	return 0;
178 #undef IEEE80211_KEY_XR
179 }
180 
181 /*
182  * Set a net80211 key into the hardware.  This handles the
183  * potential distribution of key state to multiple key
184  * cache slots for TKIP with hardware MIC support.
185  */
186 int
187 ath_keyset(struct ath_softc *sc, struct ieee80211vap *vap,
188 	const struct ieee80211_key *k,
189 	struct ieee80211_node *bss)
190 {
191 	static const u_int8_t ciphermap[] = {
192 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
193 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
194 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
195 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
196 		(u_int8_t) -1,		/* 4 is not allocated */
197 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
198 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
199 	};
200 	struct ath_hal *ah = sc->sc_ah;
201 	const struct ieee80211_cipher *cip = k->wk_cipher;
202 	u_int8_t gmac[IEEE80211_ADDR_LEN];
203 	const u_int8_t *mac;
204 	HAL_KEYVAL hk;
205 	int ret;
206 
207 	memset(&hk, 0, sizeof(hk));
208 	/*
209 	 * Software crypto uses a "clear key" so non-crypto
210 	 * state kept in the key cache are maintained and
211 	 * so that rx frames have an entry to match.
212 	 */
213 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
214 		KASSERT(cip->ic_cipher < nitems(ciphermap),
215 			("invalid cipher type %u", cip->ic_cipher));
216 		hk.kv_type = ciphermap[cip->ic_cipher];
217 		hk.kv_len = k->wk_keylen;
218 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
219 	} else
220 		hk.kv_type = HAL_CIPHER_CLR;
221 
222 	/*
223 	 * If we're installing a clear cipher key and
224 	 * the hardware doesn't support that, just succeed.
225 	 * Leave it up to the net80211 layer to figure it out.
226 	 */
227 	if (hk.kv_type == HAL_CIPHER_CLR && sc->sc_hasclrkey == 0) {
228 		return (1);
229 	}
230 
231 	/*
232 	 * XXX TODO: check this:
233 	 *
234 	 * Group keys on hardware that supports multicast frame
235 	 * key search should only be done in adhoc/hostap mode,
236 	 * not STA mode.
237 	 *
238 	 * XXX TODO: what about mesh, tdma?
239 	 */
240 #if 0
241 	if ((vap->iv_opmode == IEEE80211_M_HOSTAP ||
242 	     vap->iv_opmode == IEEE80211_M_IBSS) &&
243 #else
244 	if (
245 #endif
246 	    (k->wk_flags & IEEE80211_KEY_GROUP) &&
247 	    sc->sc_mcastkey) {
248 		/*
249 		 * Group keys on hardware that supports multicast frame
250 		 * key search use a MAC that is the sender's address with
251 		 * the multicast bit set instead of the app-specified address.
252 		 */
253 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
254 		gmac[0] |= 0x01;
255 		mac = gmac;
256 	} else
257 		mac = k->wk_macaddr;
258 
259 	ATH_LOCK(sc);
260 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
261 	if (hk.kv_type == HAL_CIPHER_TKIP &&
262 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
263 		ret = ath_keyset_tkip(sc, k, &hk, mac);
264 	} else {
265 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
266 		ret = ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
267 	}
268 	ath_power_restore_power_state(sc);
269 	ATH_UNLOCK(sc);
270 
271 	return (ret);
272 }
273 
274 /*
275  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
276  * each key, one for decrypt/encrypt and the other for the MIC.
277  */
278 static u_int16_t
279 key_alloc_2pair(struct ath_softc *sc,
280 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
281 {
282 	u_int i, keyix;
283 
284 	KASSERT(sc->sc_splitmic, ("key cache !split"));
285 	/* XXX could optimize */
286 	for (i = 0; i < nitems(sc->sc_keymap)/4; i++) {
287 		u_int8_t b = sc->sc_keymap[i];
288 		if (b != 0xff) {
289 			/*
290 			 * One or more slots in this byte are free.
291 			 */
292 			keyix = i*NBBY;
293 			while (b & 1) {
294 		again:
295 				keyix++;
296 				b >>= 1;
297 			}
298 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
299 			if (isset(sc->sc_keymap, keyix+32) ||
300 			    isset(sc->sc_keymap, keyix+64) ||
301 			    isset(sc->sc_keymap, keyix+32+64)) {
302 				/* full pair unavailable */
303 				/* XXX statistic */
304 				if (keyix == (i+1)*NBBY) {
305 					/* no slots were appropriate, advance */
306 					continue;
307 				}
308 				goto again;
309 			}
310 			setbit(sc->sc_keymap, keyix);
311 			setbit(sc->sc_keymap, keyix+64);
312 			setbit(sc->sc_keymap, keyix+32);
313 			setbit(sc->sc_keymap, keyix+32+64);
314 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
315 				"%s: key pair %u,%u %u,%u\n",
316 				__func__, keyix, keyix+64,
317 				keyix+32, keyix+32+64);
318 			*txkeyix = keyix;
319 			*rxkeyix = keyix+32;
320 			return 1;
321 		}
322 	}
323 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
324 	return 0;
325 }
326 
327 /*
328  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
329  * each key, one for decrypt/encrypt and the other for the MIC.
330  */
331 static u_int16_t
332 key_alloc_pair(struct ath_softc *sc,
333 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
334 {
335 	u_int i, keyix;
336 
337 	KASSERT(!sc->sc_splitmic, ("key cache split"));
338 	/* XXX could optimize */
339 	for (i = 0; i < nitems(sc->sc_keymap)/4; i++) {
340 		u_int8_t b = sc->sc_keymap[i];
341 		if (b != 0xff) {
342 			/*
343 			 * One or more slots in this byte are free.
344 			 */
345 			keyix = i*NBBY;
346 			while (b & 1) {
347 		again:
348 				keyix++;
349 				b >>= 1;
350 			}
351 			if (isset(sc->sc_keymap, keyix+64)) {
352 				/* full pair unavailable */
353 				/* XXX statistic */
354 				if (keyix == (i+1)*NBBY) {
355 					/* no slots were appropriate, advance */
356 					continue;
357 				}
358 				goto again;
359 			}
360 			setbit(sc->sc_keymap, keyix);
361 			setbit(sc->sc_keymap, keyix+64);
362 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
363 				"%s: key pair %u,%u\n",
364 				__func__, keyix, keyix+64);
365 			*txkeyix = *rxkeyix = keyix;
366 			return 1;
367 		}
368 	}
369 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
370 	return 0;
371 }
372 
373 /*
374  * Allocate a single key cache slot.
375  */
376 static int
377 key_alloc_single(struct ath_softc *sc,
378 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
379 {
380 	u_int i, keyix;
381 
382 	if (sc->sc_hasclrkey == 0) {
383 		/*
384 		 * Map to slot 0 for the AR5210.
385 		 */
386 		*txkeyix = *rxkeyix = 0;
387 		return (1);
388 	}
389 
390 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
391 	for (i = 0; i < nitems(sc->sc_keymap); i++) {
392 		u_int8_t b = sc->sc_keymap[i];
393 		if (b != 0xff) {
394 			/*
395 			 * One or more slots are free.
396 			 */
397 			keyix = i*NBBY;
398 			while (b & 1)
399 				keyix++, b >>= 1;
400 			setbit(sc->sc_keymap, keyix);
401 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
402 				__func__, keyix);
403 			*txkeyix = *rxkeyix = keyix;
404 			return 1;
405 		}
406 	}
407 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
408 	return 0;
409 }
410 
411 /*
412  * Allocate one or more key cache slots for a uniacst key.  The
413  * key itself is needed only to identify the cipher.  For hardware
414  * TKIP with split cipher+MIC keys we allocate two key cache slot
415  * pairs so that we can setup separate TX and RX MIC keys.  Note
416  * that the MIC key for a TKIP key at slot i is assumed by the
417  * hardware to be at slot i+64.  This limits TKIP keys to the first
418  * 64 entries.
419  */
420 int
421 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
422 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
423 {
424 	struct ath_softc *sc = vap->iv_ic->ic_softc;
425 
426 	/*
427 	 * Group key allocation must be handled specially for
428 	 * parts that do not support multicast key cache search
429 	 * functionality.  For those parts the key id must match
430 	 * the h/w key index so lookups find the right key.  On
431 	 * parts w/ the key search facility we install the sender's
432 	 * mac address (with the high bit set) and let the hardware
433 	 * find the key w/o using the key id.  This is preferred as
434 	 * it permits us to support multiple users for adhoc and/or
435 	 * multi-station operation.
436 	 */
437 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
438 		/*
439 		 * Only global keys should have key index assigned.
440 		 */
441 		if (!(&vap->iv_nw_keys[0] <= k &&
442 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
443 			/* should not happen */
444 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
445 				"%s: bogus group key\n", __func__);
446 			return 0;
447 		}
448 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
449 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
450 		    !sc->sc_mcastkey) {
451 			/*
452 			 * XXX we pre-allocate the global keys so
453 			 * have no way to check if they've already
454 			 * been allocated.
455 			 */
456 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
457 			return 1;
458 		}
459 		/*
460 		 * Group key and device supports multicast key search.
461 		 */
462 		k->wk_keyix = IEEE80211_KEYIX_NONE;
463 	}
464 
465 	/*
466 	 * We allocate two pair for TKIP when using the h/w to do
467 	 * the MIC.  For everything else, including software crypto,
468 	 * we allocate a single entry.  Note that s/w crypto requires
469 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
470 	 * not support pass-through cache entries and we map all
471 	 * those requests to slot 0.
472 	 */
473 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
474 		return key_alloc_single(sc, keyix, rxkeyix);
475 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
476 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
477 		if (sc->sc_splitmic)
478 			return key_alloc_2pair(sc, keyix, rxkeyix);
479 		else
480 			return key_alloc_pair(sc, keyix, rxkeyix);
481 	} else {
482 		return key_alloc_single(sc, keyix, rxkeyix);
483 	}
484 }
485 
486 /*
487  * Delete an entry in the key cache allocated by ath_key_alloc.
488  */
489 int
490 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
491 {
492 	struct ath_softc *sc = vap->iv_ic->ic_softc;
493 	struct ath_hal *ah = sc->sc_ah;
494 	const struct ieee80211_cipher *cip = k->wk_cipher;
495 	u_int keyix = k->wk_keyix;
496 
497 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
498 
499 	ATH_LOCK(sc);
500 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
501 	ath_hal_keyreset(ah, keyix);
502 	/*
503 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
504 	 */
505 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
506 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
507 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
508 	if (keyix >= IEEE80211_WEP_NKID) {
509 		/*
510 		 * Don't touch keymap entries for global keys so
511 		 * they are never considered for dynamic allocation.
512 		 */
513 		clrbit(sc->sc_keymap, keyix);
514 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
515 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
516 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
517 			if (sc->sc_splitmic) {
518 				/* +32 for RX key, +32+64 for RX key MIC */
519 				clrbit(sc->sc_keymap, keyix+32);
520 				clrbit(sc->sc_keymap, keyix+32+64);
521 			}
522 		}
523 	}
524 	ath_power_restore_power_state(sc);
525 	ATH_UNLOCK(sc);
526 	return 1;
527 }
528 
529 /*
530  * Set the key cache contents for the specified key.  Key cache
531  * slot(s) must already have been allocated by ath_key_alloc.
532  */
533 int
534 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
535 {
536 	struct ath_softc *sc = vap->iv_ic->ic_softc;
537 
538 	return ath_keyset(sc, vap, k, vap->iv_bss);
539 }
540