1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 
32 /*
33  * Driver for the Atheros Wireless LAN controller.
34  *
35  * This software is derived from work of Atsushi Onoe; his contribution
36  * is greatly appreciated.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ath.h"
41 #include "opt_wlan.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysctl.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/errno.h>
54 #include <sys/callout.h>
55 #include <sys/bus.h>
56 #include <sys/endian.h>
57 #include <sys/kthread.h>
58 #include <sys/taskqueue.h>
59 #include <sys/priv.h>
60 
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_dl.h>
64 #include <net/if_media.h>
65 #include <net/if_types.h>
66 #include <net/if_arp.h>
67 #include <net/ethernet.h>
68 #include <net/if_llc.h>
69 
70 #include <netproto/802_11/ieee80211_var.h>
71 
72 #include <net/bpf.h>
73 
74 #include <dev/netif/ath/ath/if_athvar.h>
75 
76 #include <dev/netif/ath/ath/if_ath_debug.h>
77 #include <dev/netif/ath/ath/if_ath_keycache.h>
78 #include <dev/netif/ath/ath/if_ath_misc.h>
79 
80 extern  const char* ath_hal_ether_sprintf(const uint8_t *mac);
81 
82 #ifdef ATH_DEBUG
83 static void
84 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
85 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
86 {
87 	static const char *ciphers[] = {
88 		"WEP",
89 		"AES-OCB",
90 		"AES-CCM",
91 		"CKIP",
92 		"TKIP",
93 		"CLR",
94 	};
95 	int i, n;
96 
97 	kprintf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
98 	for (i = 0, n = hk->kv_len; i < n; i++)
99 		kprintf("%02x", hk->kv_val[i]);
100 	kprintf(" mac %s", ath_hal_ether_sprintf(mac));
101 	if (hk->kv_type == HAL_CIPHER_TKIP) {
102 		kprintf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
103 		for (i = 0; i < sizeof(hk->kv_mic); i++)
104 			kprintf("%02x", hk->kv_mic[i]);
105 		if (!sc->sc_splitmic) {
106 			kprintf(" txmic ");
107 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
108 				kprintf("%02x", hk->kv_txmic[i]);
109 		}
110 	}
111 	kprintf("\n");
112 }
113 #endif
114 
115 /*
116  * Set a TKIP key into the hardware.  This handles the
117  * potential distribution of key state to multiple key
118  * cache slots for TKIP.
119  */
120 static int
121 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
122 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
123 {
124 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
125 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
126 	struct ath_hal *ah = sc->sc_ah;
127 
128 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
129 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
130 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
131 		if (sc->sc_splitmic) {
132 			/*
133 			 * TX key goes at first index, RX key at the rx index.
134 			 * The hal handles the MIC keys at index+64.
135 			 */
136 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
137 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
138 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
139 				return 0;
140 
141 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
142 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
143 			/* XXX delete tx key on failure? */
144 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
145 		} else {
146 			/*
147 			 * Room for both TX+RX MIC keys in one key cache
148 			 * slot, just set key at the first index; the hal
149 			 * will handle the rest.
150 			 */
151 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
152 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
153 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
154 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
155 		}
156 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
157 		if (sc->sc_splitmic) {
158 			/*
159 			 * NB: must pass MIC key in expected location when
160 			 * the keycache only holds one MIC key per entry.
161 			 */
162 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
163 		} else
164 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
165 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
166 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
167 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
168 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
169 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
170 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
171 	}
172 	return 0;
173 #undef IEEE80211_KEY_XR
174 }
175 
176 /*
177  * Set a net80211 key into the hardware.  This handles the
178  * potential distribution of key state to multiple key
179  * cache slots for TKIP with hardware MIC support.
180  */
181 int
182 ath_keyset(struct ath_softc *sc, struct ieee80211vap *vap,
183 	const struct ieee80211_key *k,
184 	struct ieee80211_node *bss)
185 {
186 #define	N(a)	(sizeof(a)/sizeof(a[0]))
187 	static const u_int8_t ciphermap[] = {
188 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
189 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
190 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
191 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
192 		(u_int8_t) -1,		/* 4 is not allocated */
193 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
194 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
195 	};
196 	struct ath_hal *ah = sc->sc_ah;
197 	const struct ieee80211_cipher *cip = k->wk_cipher;
198 	u_int8_t gmac[IEEE80211_ADDR_LEN];
199 	const u_int8_t *mac;
200 	HAL_KEYVAL hk;
201 	int ret;
202 
203 	memset(&hk, 0, sizeof(hk));
204 	/*
205 	 * Software crypto uses a "clear key" so non-crypto
206 	 * state kept in the key cache are maintained and
207 	 * so that rx frames have an entry to match.
208 	 */
209 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
210 		KASSERT(cip->ic_cipher < N(ciphermap),
211 			("invalid cipher type %u", cip->ic_cipher));
212 		hk.kv_type = ciphermap[cip->ic_cipher];
213 		hk.kv_len = k->wk_keylen;
214 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
215 	} else
216 		hk.kv_type = HAL_CIPHER_CLR;
217 
218 	/*
219 	 * If we're installing a clear cipher key and
220 	 * the hardware doesn't support that, just succeed.
221 	 * Leave it up to the net80211 layer to figure it out.
222 	 */
223 	if (hk.kv_type == HAL_CIPHER_CLR && sc->sc_hasclrkey == 0) {
224 		return (1);
225 	}
226 
227 	/*
228 	 * XXX TODO: check this:
229 	 *
230 	 * Group keys on hardware that supports multicast frame
231 	 * key search should only be done in adhoc/hostap mode,
232 	 * not STA mode.
233 	 *
234 	 * XXX TODO: what about mesh, tdma?
235 	 */
236 #if 0
237 	if ((vap->iv_opmode == IEEE80211_M_HOSTAP ||
238 	     vap->iv_opmode == IEEE80211_M_IBSS) &&
239 #else
240 	if (
241 #endif
242 	    (k->wk_flags & IEEE80211_KEY_GROUP) &&
243 	    sc->sc_mcastkey) {
244 		/*
245 		 * Group keys on hardware that supports multicast frame
246 		 * key search use a MAC that is the sender's address with
247 		 * the multicast bit set instead of the app-specified address.
248 		 */
249 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
250 		gmac[0] |= 0x01;
251 		mac = gmac;
252 	} else
253 		mac = k->wk_macaddr;
254 
255 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
256 	if (hk.kv_type == HAL_CIPHER_TKIP &&
257 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
258 		ret = ath_keyset_tkip(sc, k, &hk, mac);
259 	} else {
260 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
261 		ret = ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
262 	}
263 	ath_power_restore_power_state(sc);
264 
265 	return (ret);
266 #undef N
267 }
268 
269 /*
270  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
271  * each key, one for decrypt/encrypt and the other for the MIC.
272  */
273 static u_int16_t
274 key_alloc_2pair(struct ath_softc *sc,
275 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
276 {
277 #define	N(a)	(sizeof(a)/sizeof(a[0]))
278 	u_int i, keyix;
279 
280 	KASSERT(sc->sc_splitmic, ("key cache !split"));
281 	/* XXX could optimize */
282 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
283 		u_int8_t b = sc->sc_keymap[i];
284 		if (b != 0xff) {
285 			/*
286 			 * One or more slots in this byte are free.
287 			 */
288 			keyix = i*NBBY;
289 			while (b & 1) {
290 		again:
291 				keyix++;
292 				b >>= 1;
293 			}
294 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
295 			if (isset(sc->sc_keymap, keyix+32) ||
296 			    isset(sc->sc_keymap, keyix+64) ||
297 			    isset(sc->sc_keymap, keyix+32+64)) {
298 				/* full pair unavailable */
299 				/* XXX statistic */
300 				if (keyix == (i+1)*NBBY) {
301 					/* no slots were appropriate, advance */
302 					continue;
303 				}
304 				goto again;
305 			}
306 			setbit(sc->sc_keymap, keyix);
307 			setbit(sc->sc_keymap, keyix+64);
308 			setbit(sc->sc_keymap, keyix+32);
309 			setbit(sc->sc_keymap, keyix+32+64);
310 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
311 				"%s: key pair %u,%u %u,%u\n",
312 				__func__, keyix, keyix+64,
313 				keyix+32, keyix+32+64);
314 			*txkeyix = keyix;
315 			*rxkeyix = keyix+32;
316 			return 1;
317 		}
318 	}
319 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
320 	return 0;
321 #undef N
322 }
323 
324 /*
325  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
326  * each key, one for decrypt/encrypt and the other for the MIC.
327  */
328 static u_int16_t
329 key_alloc_pair(struct ath_softc *sc,
330 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
331 {
332 #define	N(a)	(sizeof(a)/sizeof(a[0]))
333 	u_int i, keyix;
334 
335 	KASSERT(!sc->sc_splitmic, ("key cache split"));
336 	/* XXX could optimize */
337 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
338 		u_int8_t b = sc->sc_keymap[i];
339 		if (b != 0xff) {
340 			/*
341 			 * One or more slots in this byte are free.
342 			 */
343 			keyix = i*NBBY;
344 			while (b & 1) {
345 		again:
346 				keyix++;
347 				b >>= 1;
348 			}
349 			if (isset(sc->sc_keymap, keyix+64)) {
350 				/* full pair unavailable */
351 				/* XXX statistic */
352 				if (keyix == (i+1)*NBBY) {
353 					/* no slots were appropriate, advance */
354 					continue;
355 				}
356 				goto again;
357 			}
358 			setbit(sc->sc_keymap, keyix);
359 			setbit(sc->sc_keymap, keyix+64);
360 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
361 				"%s: key pair %u,%u\n",
362 				__func__, keyix, keyix+64);
363 			*txkeyix = *rxkeyix = keyix;
364 			return 1;
365 		}
366 	}
367 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
368 	return 0;
369 #undef N
370 }
371 
372 /*
373  * Allocate a single key cache slot.
374  */
375 static int
376 key_alloc_single(struct ath_softc *sc,
377 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
378 {
379 #define	N(a)	(sizeof(a)/sizeof(a[0]))
380 	u_int i, keyix;
381 
382 	if (sc->sc_hasclrkey == 0) {
383 		/*
384 		 * Map to slot 0 for the AR5210.
385 		 */
386 		*txkeyix = *rxkeyix = 0;
387 		return (1);
388 	}
389 
390 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
391 	for (i = 0; i < N(sc->sc_keymap); i++) {
392 		u_int8_t b = sc->sc_keymap[i];
393 		if (b != 0xff) {
394 			/*
395 			 * One or more slots are free.
396 			 */
397 			keyix = i*NBBY;
398 			while (b & 1)
399 				keyix++, b >>= 1;
400 			setbit(sc->sc_keymap, keyix);
401 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
402 				__func__, keyix);
403 			*txkeyix = *rxkeyix = keyix;
404 			return 1;
405 		}
406 	}
407 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
408 	return 0;
409 #undef N
410 }
411 
412 /*
413  * Allocate one or more key cache slots for a uniacst key.  The
414  * key itself is needed only to identify the cipher.  For hardware
415  * TKIP with split cipher+MIC keys we allocate two key cache slot
416  * pairs so that we can setup separate TX and RX MIC keys.  Note
417  * that the MIC key for a TKIP key at slot i is assumed by the
418  * hardware to be at slot i+64.  This limits TKIP keys to the first
419  * 64 entries.
420  */
421 int
422 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
423 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
424 {
425 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
426 
427 	/*
428 	 * Group key allocation must be handled specially for
429 	 * parts that do not support multicast key cache search
430 	 * functionality.  For those parts the key id must match
431 	 * the h/w key index so lookups find the right key.  On
432 	 * parts w/ the key search facility we install the sender's
433 	 * mac address (with the high bit set) and let the hardware
434 	 * find the key w/o using the key id.  This is preferred as
435 	 * it permits us to support multiple users for adhoc and/or
436 	 * multi-station operation.
437 	 */
438 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
439 		/*
440 		 * Only global keys should have key index assigned.
441 		 */
442 		if (!(&vap->iv_nw_keys[0] <= k &&
443 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
444 			/* should not happen */
445 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
446 				"%s: bogus group key\n", __func__);
447 			return 0;
448 		}
449 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
450 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
451 		    !sc->sc_mcastkey) {
452 			/*
453 			 * XXX we pre-allocate the global keys so
454 			 * have no way to check if they've already
455 			 * been allocated.
456 			 */
457 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
458 			return 1;
459 		}
460 		/*
461 		 * Group key and device supports multicast key search.
462 		 */
463 		k->wk_keyix = IEEE80211_KEYIX_NONE;
464 	}
465 
466 	/*
467 	 * We allocate two pair for TKIP when using the h/w to do
468 	 * the MIC.  For everything else, including software crypto,
469 	 * we allocate a single entry.  Note that s/w crypto requires
470 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
471 	 * not support pass-through cache entries and we map all
472 	 * those requests to slot 0.
473 	 */
474 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
475 		return key_alloc_single(sc, keyix, rxkeyix);
476 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
477 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
478 		if (sc->sc_splitmic)
479 			return key_alloc_2pair(sc, keyix, rxkeyix);
480 		else
481 			return key_alloc_pair(sc, keyix, rxkeyix);
482 	} else {
483 		return key_alloc_single(sc, keyix, rxkeyix);
484 	}
485 }
486 
487 /*
488  * Delete an entry in the key cache allocated by ath_key_alloc.
489  */
490 int
491 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
492 {
493 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
494 	struct ath_hal *ah = sc->sc_ah;
495 	const struct ieee80211_cipher *cip = k->wk_cipher;
496 	u_int keyix = k->wk_keyix;
497 
498 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
499 
500 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
501 	ath_hal_keyreset(ah, keyix);
502 	/*
503 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
504 	 */
505 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
506 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
507 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
508 	if (keyix >= IEEE80211_WEP_NKID) {
509 		/*
510 		 * Don't touch keymap entries for global keys so
511 		 * they are never considered for dynamic allocation.
512 		 */
513 		clrbit(sc->sc_keymap, keyix);
514 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
515 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
516 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
517 			if (sc->sc_splitmic) {
518 				/* +32 for RX key, +32+64 for RX key MIC */
519 				clrbit(sc->sc_keymap, keyix+32);
520 				clrbit(sc->sc_keymap, keyix+32+64);
521 			}
522 		}
523 	}
524 	ath_power_restore_power_state(sc);
525 	return 1;
526 }
527 
528 /*
529  * Set the key cache contents for the specified key.  Key cache
530  * slot(s) must already have been allocated by ath_key_alloc.
531  */
532 int
533 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
534 	const u_int8_t mac[IEEE80211_ADDR_LEN])
535 {
536 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
537 
538 	return ath_keyset(sc, vap, k, vap->iv_bss);
539 }
540