1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 #include <sys/priv.h>
61 
62 #include <net/if.h>
63 #include <net/if_var.h>
64 #include <net/if_dl.h>
65 #include <net/if_media.h>
66 #include <net/if_types.h>
67 #include <net/if_arp.h>
68 #include <net/ethernet.h>
69 #include <net/if_llc.h>
70 
71 #include <netproto/802_11/ieee80211_var.h>
72 
73 #include <net/bpf.h>
74 
75 #include <dev/netif/ath/ath/if_athvar.h>
76 
77 #include <dev/netif/ath/ath/if_ath_debug.h>
78 #include <dev/netif/ath/ath/if_ath_keycache.h>
79 #include <dev/netif/ath/ath/if_ath_misc.h>
80 
81 #ifdef ATH_DEBUG
82 static void
83 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
84 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
85 {
86 	static const char *ciphers[] = {
87 		"WEP",
88 		"AES-OCB",
89 		"AES-CCM",
90 		"CKIP",
91 		"TKIP",
92 		"CLR",
93 	};
94 	int i, n;
95 
96 	kprintf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
97 	for (i = 0, n = hk->kv_len; i < n; i++)
98 		kprintf("%02x", hk->kv_val[i]);
99 	kprintf(" mac %s", ether_sprintf(mac));
100 	if (hk->kv_type == HAL_CIPHER_TKIP) {
101 		kprintf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
102 		for (i = 0; i < sizeof(hk->kv_mic); i++)
103 			kprintf("%02x", hk->kv_mic[i]);
104 		if (!sc->sc_splitmic) {
105 			kprintf(" txmic ");
106 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
107 				kprintf("%02x", hk->kv_txmic[i]);
108 		}
109 	}
110 	kprintf("\n");
111 }
112 #endif
113 
114 /*
115  * Set a TKIP key into the hardware.  This handles the
116  * potential distribution of key state to multiple key
117  * cache slots for TKIP.
118  */
119 static int
120 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
121 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
122 {
123 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
124 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
125 	struct ath_hal *ah = sc->sc_ah;
126 
127 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
128 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
129 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
130 		if (sc->sc_splitmic) {
131 			/*
132 			 * TX key goes at first index, RX key at the rx index.
133 			 * The hal handles the MIC keys at index+64.
134 			 */
135 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
136 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
137 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
138 				return 0;
139 
140 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
141 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
142 			/* XXX delete tx key on failure? */
143 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
144 		} else {
145 			/*
146 			 * Room for both TX+RX MIC keys in one key cache
147 			 * slot, just set key at the first index; the hal
148 			 * will handle the rest.
149 			 */
150 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
151 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
152 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
153 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
154 		}
155 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
156 		if (sc->sc_splitmic) {
157 			/*
158 			 * NB: must pass MIC key in expected location when
159 			 * the keycache only holds one MIC key per entry.
160 			 */
161 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
162 		} else
163 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
164 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
165 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
166 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
167 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
168 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
169 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
170 	}
171 	return 0;
172 #undef IEEE80211_KEY_XR
173 }
174 
175 /*
176  * Set a net80211 key into the hardware.  This handles the
177  * potential distribution of key state to multiple key
178  * cache slots for TKIP with hardware MIC support.
179  */
180 int
181 ath_keyset(struct ath_softc *sc, struct ieee80211vap *vap,
182 	const struct ieee80211_key *k,
183 	struct ieee80211_node *bss)
184 {
185 #define	N(a)	(sizeof(a)/sizeof(a[0]))
186 	static const u_int8_t ciphermap[] = {
187 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
188 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
189 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
190 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
191 		(u_int8_t) -1,		/* 4 is not allocated */
192 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
193 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
194 	};
195 	struct ath_hal *ah = sc->sc_ah;
196 	const struct ieee80211_cipher *cip = k->wk_cipher;
197 	u_int8_t gmac[IEEE80211_ADDR_LEN];
198 	const u_int8_t *mac;
199 	HAL_KEYVAL hk;
200 	int ret;
201 
202 	memset(&hk, 0, sizeof(hk));
203 	/*
204 	 * Software crypto uses a "clear key" so non-crypto
205 	 * state kept in the key cache are maintained and
206 	 * so that rx frames have an entry to match.
207 	 */
208 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
209 		KASSERT(cip->ic_cipher < N(ciphermap),
210 			("invalid cipher type %u", cip->ic_cipher));
211 		hk.kv_type = ciphermap[cip->ic_cipher];
212 		hk.kv_len = k->wk_keylen;
213 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
214 	} else
215 		hk.kv_type = HAL_CIPHER_CLR;
216 
217 	/*
218 	 * If we're installing a clear cipher key and
219 	 * the hardware doesn't support that, just succeed.
220 	 * Leave it up to the net80211 layer to figure it out.
221 	 */
222 	if (hk.kv_type == HAL_CIPHER_CLR && sc->sc_hasclrkey == 0) {
223 		return (1);
224 	}
225 
226 	/*
227 	 * XXX TODO: check this:
228 	 *
229 	 * Group keys on hardware that supports multicast frame
230 	 * key search should only be done in adhoc/hostap mode,
231 	 * not STA mode.
232 	 *
233 	 * XXX TODO: what about mesh, tdma?
234 	 */
235 #if 0
236 	if ((vap->iv_opmode == IEEE80211_M_HOSTAP ||
237 	     vap->iv_opmode == IEEE80211_M_IBSS) &&
238 #else
239 	if (
240 #endif
241 	    (k->wk_flags & IEEE80211_KEY_GROUP) &&
242 	    sc->sc_mcastkey) {
243 		/*
244 		 * Group keys on hardware that supports multicast frame
245 		 * key search use a MAC that is the sender's address with
246 		 * the multicast bit set instead of the app-specified address.
247 		 */
248 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
249 		gmac[0] |= 0x01;
250 		mac = gmac;
251 	} else
252 		mac = k->wk_macaddr;
253 
254 	ATH_LOCK(sc);
255 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
256 	if (hk.kv_type == HAL_CIPHER_TKIP &&
257 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
258 		ret = ath_keyset_tkip(sc, k, &hk, mac);
259 	} else {
260 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
261 		ret = ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
262 	}
263 	ath_power_restore_power_state(sc);
264 	ATH_UNLOCK(sc);
265 
266 	return (ret);
267 #undef N
268 }
269 
270 /*
271  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
272  * each key, one for decrypt/encrypt and the other for the MIC.
273  */
274 static u_int16_t
275 key_alloc_2pair(struct ath_softc *sc,
276 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
277 {
278 #define	N(a)	(sizeof(a)/sizeof(a[0]))
279 	u_int i, keyix;
280 
281 	KASSERT(sc->sc_splitmic, ("key cache !split"));
282 	/* XXX could optimize */
283 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
284 		u_int8_t b = sc->sc_keymap[i];
285 		if (b != 0xff) {
286 			/*
287 			 * One or more slots in this byte are free.
288 			 */
289 			keyix = i*NBBY;
290 			while (b & 1) {
291 		again:
292 				keyix++;
293 				b >>= 1;
294 			}
295 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
296 			if (isset(sc->sc_keymap, keyix+32) ||
297 			    isset(sc->sc_keymap, keyix+64) ||
298 			    isset(sc->sc_keymap, keyix+32+64)) {
299 				/* full pair unavailable */
300 				/* XXX statistic */
301 				if (keyix == (i+1)*NBBY) {
302 					/* no slots were appropriate, advance */
303 					continue;
304 				}
305 				goto again;
306 			}
307 			setbit(sc->sc_keymap, keyix);
308 			setbit(sc->sc_keymap, keyix+64);
309 			setbit(sc->sc_keymap, keyix+32);
310 			setbit(sc->sc_keymap, keyix+32+64);
311 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
312 				"%s: key pair %u,%u %u,%u\n",
313 				__func__, keyix, keyix+64,
314 				keyix+32, keyix+32+64);
315 			*txkeyix = keyix;
316 			*rxkeyix = keyix+32;
317 			return 1;
318 		}
319 	}
320 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
321 	return 0;
322 #undef N
323 }
324 
325 /*
326  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
327  * each key, one for decrypt/encrypt and the other for the MIC.
328  */
329 static u_int16_t
330 key_alloc_pair(struct ath_softc *sc,
331 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
332 {
333 #define	N(a)	(sizeof(a)/sizeof(a[0]))
334 	u_int i, keyix;
335 
336 	KASSERT(!sc->sc_splitmic, ("key cache split"));
337 	/* XXX could optimize */
338 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
339 		u_int8_t b = sc->sc_keymap[i];
340 		if (b != 0xff) {
341 			/*
342 			 * One or more slots in this byte are free.
343 			 */
344 			keyix = i*NBBY;
345 			while (b & 1) {
346 		again:
347 				keyix++;
348 				b >>= 1;
349 			}
350 			if (isset(sc->sc_keymap, keyix+64)) {
351 				/* full pair unavailable */
352 				/* XXX statistic */
353 				if (keyix == (i+1)*NBBY) {
354 					/* no slots were appropriate, advance */
355 					continue;
356 				}
357 				goto again;
358 			}
359 			setbit(sc->sc_keymap, keyix);
360 			setbit(sc->sc_keymap, keyix+64);
361 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
362 				"%s: key pair %u,%u\n",
363 				__func__, keyix, keyix+64);
364 			*txkeyix = *rxkeyix = keyix;
365 			return 1;
366 		}
367 	}
368 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
369 	return 0;
370 #undef N
371 }
372 
373 /*
374  * Allocate a single key cache slot.
375  */
376 static int
377 key_alloc_single(struct ath_softc *sc,
378 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
379 {
380 #define	N(a)	(sizeof(a)/sizeof(a[0]))
381 	u_int i, keyix;
382 
383 	if (sc->sc_hasclrkey == 0) {
384 		/*
385 		 * Map to slot 0 for the AR5210.
386 		 */
387 		*txkeyix = *rxkeyix = 0;
388 		return (1);
389 	}
390 
391 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
392 	for (i = 0; i < N(sc->sc_keymap); i++) {
393 		u_int8_t b = sc->sc_keymap[i];
394 		if (b != 0xff) {
395 			/*
396 			 * One or more slots are free.
397 			 */
398 			keyix = i*NBBY;
399 			while (b & 1)
400 				keyix++, b >>= 1;
401 			setbit(sc->sc_keymap, keyix);
402 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
403 				__func__, keyix);
404 			*txkeyix = *rxkeyix = keyix;
405 			return 1;
406 		}
407 	}
408 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
409 	return 0;
410 #undef N
411 }
412 
413 /*
414  * Allocate one or more key cache slots for a uniacst key.  The
415  * key itself is needed only to identify the cipher.  For hardware
416  * TKIP with split cipher+MIC keys we allocate two key cache slot
417  * pairs so that we can setup separate TX and RX MIC keys.  Note
418  * that the MIC key for a TKIP key at slot i is assumed by the
419  * hardware to be at slot i+64.  This limits TKIP keys to the first
420  * 64 entries.
421  */
422 int
423 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
424 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
425 {
426 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
427 
428 	/*
429 	 * Group key allocation must be handled specially for
430 	 * parts that do not support multicast key cache search
431 	 * functionality.  For those parts the key id must match
432 	 * the h/w key index so lookups find the right key.  On
433 	 * parts w/ the key search facility we install the sender's
434 	 * mac address (with the high bit set) and let the hardware
435 	 * find the key w/o using the key id.  This is preferred as
436 	 * it permits us to support multiple users for adhoc and/or
437 	 * multi-station operation.
438 	 */
439 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
440 		/*
441 		 * Only global keys should have key index assigned.
442 		 */
443 		if (!(&vap->iv_nw_keys[0] <= k &&
444 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
445 			/* should not happen */
446 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
447 				"%s: bogus group key\n", __func__);
448 			return 0;
449 		}
450 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
451 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
452 		    !sc->sc_mcastkey) {
453 			/*
454 			 * XXX we pre-allocate the global keys so
455 			 * have no way to check if they've already
456 			 * been allocated.
457 			 */
458 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
459 			return 1;
460 		}
461 		/*
462 		 * Group key and device supports multicast key search.
463 		 */
464 		k->wk_keyix = IEEE80211_KEYIX_NONE;
465 	}
466 
467 	/*
468 	 * We allocate two pair for TKIP when using the h/w to do
469 	 * the MIC.  For everything else, including software crypto,
470 	 * we allocate a single entry.  Note that s/w crypto requires
471 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
472 	 * not support pass-through cache entries and we map all
473 	 * those requests to slot 0.
474 	 */
475 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
476 		return key_alloc_single(sc, keyix, rxkeyix);
477 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
478 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
479 		if (sc->sc_splitmic)
480 			return key_alloc_2pair(sc, keyix, rxkeyix);
481 		else
482 			return key_alloc_pair(sc, keyix, rxkeyix);
483 	} else {
484 		return key_alloc_single(sc, keyix, rxkeyix);
485 	}
486 }
487 
488 /*
489  * Delete an entry in the key cache allocated by ath_key_alloc.
490  */
491 int
492 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
493 {
494 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
495 	struct ath_hal *ah = sc->sc_ah;
496 	const struct ieee80211_cipher *cip = k->wk_cipher;
497 	u_int keyix = k->wk_keyix;
498 
499 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
500 
501 	ATH_LOCK(sc);
502 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
503 	ath_hal_keyreset(ah, keyix);
504 	/*
505 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
506 	 */
507 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
508 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
509 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
510 	if (keyix >= IEEE80211_WEP_NKID) {
511 		/*
512 		 * Don't touch keymap entries for global keys so
513 		 * they are never considered for dynamic allocation.
514 		 */
515 		clrbit(sc->sc_keymap, keyix);
516 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
517 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
518 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
519 			if (sc->sc_splitmic) {
520 				/* +32 for RX key, +32+64 for RX key MIC */
521 				clrbit(sc->sc_keymap, keyix+32);
522 				clrbit(sc->sc_keymap, keyix+32+64);
523 			}
524 		}
525 	}
526 	ath_power_restore_power_state(sc);
527 	ATH_UNLOCK(sc);
528 	return 1;
529 }
530 
531 /*
532  * Set the key cache contents for the specified key.  Key cache
533  * slot(s) must already have been allocated by ath_key_alloc.
534  */
535 int
536 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
537 	const u_int8_t mac[IEEE80211_ADDR_LEN])
538 {
539 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
540 
541 	return ath_keyset(sc, vap, k, vap->iv_bss);
542 }
543