xref: /dragonfly/sys/dev/netif/ath/ath/if_ath_rx.c (revision 2b3f93ea)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/kernel.h>
59 #include <sys/socket.h>
60 #include <sys/sockio.h>
61 #include <sys/errno.h>
62 #include <sys/callout.h>
63 #include <sys/bus.h>
64 #include <sys/endian.h>
65 #include <sys/kthread.h>
66 #include <sys/taskqueue.h>
67 #include <sys/caps.h>
68 #include <sys/module.h>
69 #include <sys/ktr.h>
70 
71 #if defined(__DragonFly__)
72 /* empty */
73 #else
74 #include <sys/smp.h>   /* for mp_ncpus */
75 #include <machine/bus.h>
76 #endif
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_dl.h>
81 #include <net/if_media.h>
82 #include <net/if_types.h>
83 #include <net/if_arp.h>
84 #include <net/ethernet.h>
85 #include <net/if_llc.h>
86 #if defined(__DragonFly__)
87 #include <net/ifq_var.h>
88 #endif
89 
90 #include <netproto/802_11/ieee80211_var.h>
91 #include <netproto/802_11/ieee80211_regdomain.h>
92 #ifdef IEEE80211_SUPPORT_SUPERG
93 #include <netproto/802_11/ieee80211_superg.h>
94 #endif
95 #ifdef IEEE80211_SUPPORT_TDMA
96 #include <netproto/802_11/ieee80211_tdma.h>
97 #endif
98 
99 #include <net/bpf.h>
100 
101 #ifdef INET
102 #include <netinet/in.h>
103 #include <netinet/if_ether.h>
104 #endif
105 
106 #include <dev/netif/ath/ath/if_athvar.h>
107 #include <dev/netif/ath/ath_hal/ah_devid.h>		/* XXX for softled */
108 #include <dev/netif/ath/ath_hal/ah_diagcodes.h>
109 
110 #include <dev/netif/ath/ath/if_ath_debug.h>
111 #include <dev/netif/ath/ath/if_ath_misc.h>
112 #include <dev/netif/ath/ath/if_ath_tsf.h>
113 #include <dev/netif/ath/ath/if_ath_tx.h>
114 #include <dev/netif/ath/ath/if_ath_sysctl.h>
115 #include <dev/netif/ath/ath/if_ath_led.h>
116 #include <dev/netif/ath/ath/if_ath_keycache.h>
117 #include <dev/netif/ath/ath/if_ath_rx.h>
118 #include <dev/netif/ath/ath/if_ath_beacon.h>
119 #include <dev/netif/ath/ath/if_athdfs.h>
120 #include <dev/netif/ath/ath/if_ath_descdma.h>
121 
122 #ifdef ATH_TX99_DIAG
123 #include <dev/netif/ath/ath/ath_tx99/ath_tx99.h>
124 #endif
125 
126 #ifdef	ATH_DEBUG_ALQ
127 #include <dev/netif/ath/ath/if_ath_alq.h>
128 #endif
129 
130 #include <dev/netif/ath/ath/if_ath_lna_div.h>
131 
132 /*
133  * Calculate the receive filter according to the
134  * operating mode and state:
135  *
136  * o always accept unicast, broadcast, and multicast traffic
137  * o accept PHY error frames when hardware doesn't have MIB support
138  *   to count and we need them for ANI (sta mode only until recently)
139  *   and we are not scanning (ANI is disabled)
140  *   NB: older hal's add rx filter bits out of sight and we need to
141  *	 blindly preserve them
142  * o probe request frames are accepted only when operating in
143  *   hostap, adhoc, mesh, or monitor modes
144  * o enable promiscuous mode
145  *   - when in monitor mode
146  *   - if interface marked PROMISC (assumes bridge setting is filtered)
147  * o accept beacons:
148  *   - when operating in station mode for collecting rssi data when
149  *     the station is otherwise quiet, or
150  *   - when operating in adhoc mode so the 802.11 layer creates
151  *     node table entries for peers,
152  *   - when scanning
153  *   - when doing s/w beacon miss (e.g. for ap+sta)
154  *   - when operating in ap mode in 11g to detect overlapping bss that
155  *     require protection
156  *   - when operating in mesh mode to detect neighbors
157  * o accept control frames:
158  *   - when in monitor mode
159  * XXX HT protection for 11n
160  */
161 u_int32_t
ath_calcrxfilter(struct ath_softc * sc)162 ath_calcrxfilter(struct ath_softc *sc)
163 {
164 	struct ieee80211com *ic = &sc->sc_ic;
165 	u_int32_t rfilt;
166 
167 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
168 	if (!sc->sc_needmib && !sc->sc_scanning)
169 		rfilt |= HAL_RX_FILTER_PHYERR;
170 	if (ic->ic_opmode != IEEE80211_M_STA)
171 		rfilt |= HAL_RX_FILTER_PROBEREQ;
172 	/* XXX ic->ic_monvaps != 0? */
173 	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0)
174 		rfilt |= HAL_RX_FILTER_PROM;
175 
176 	/*
177 	 * Only listen to all beacons if we're scanning.
178 	 *
179 	 * Otherwise we only really need to hear beacons from
180 	 * our own BSSID.
181 	 *
182 	 * IBSS? software beacon miss? Just receive all beacons.
183 	 * We need to hear beacons/probe requests from everyone so
184 	 * we can merge ibss.
185 	 */
186 	if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
187 		rfilt |= HAL_RX_FILTER_BEACON;
188 	} else if (ic->ic_opmode == IEEE80211_M_STA) {
189 		if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
190 			rfilt |= HAL_RX_FILTER_MYBEACON;
191 		} else { /* scanning, non-mybeacon chips */
192 			rfilt |= HAL_RX_FILTER_BEACON;
193 		}
194 	}
195 
196 	/*
197 	 * NB: We don't recalculate the rx filter when
198 	 * ic_protmode changes; otherwise we could do
199 	 * this only when ic_protmode != NONE.
200 	 */
201 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
202 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
203 		rfilt |= HAL_RX_FILTER_BEACON;
204 
205 	/*
206 	 * Enable hardware PS-POLL RX only for hostap mode;
207 	 * STA mode sends PS-POLL frames but never
208 	 * receives them.
209 	 */
210 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
211 	    0, NULL) == HAL_OK &&
212 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
213 		rfilt |= HAL_RX_FILTER_PSPOLL;
214 
215 	if (sc->sc_nmeshvaps) {
216 		rfilt |= HAL_RX_FILTER_BEACON;
217 		if (sc->sc_hasbmatch)
218 			rfilt |= HAL_RX_FILTER_BSSID;
219 		else
220 			rfilt |= HAL_RX_FILTER_PROM;
221 	}
222 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
223 		rfilt |= HAL_RX_FILTER_CONTROL;
224 
225 	/*
226 	 * Enable RX of compressed BAR frames only when doing
227 	 * 802.11n. Required for A-MPDU.
228 	 */
229 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
230 		rfilt |= HAL_RX_FILTER_COMPBAR;
231 
232 	/*
233 	 * Enable radar PHY errors if requested by the
234 	 * DFS module.
235 	 */
236 	if (sc->sc_dodfs)
237 		rfilt |= HAL_RX_FILTER_PHYRADAR;
238 
239 	/*
240 	 * Enable spectral PHY errors if requested by the
241 	 * spectral module.
242 	 */
243 	if (sc->sc_dospectral)
244 		rfilt |= HAL_RX_FILTER_PHYRADAR;
245 
246 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n",
247 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]);
248 	return rfilt;
249 }
250 
251 static int
ath_legacy_rxbuf_init(struct ath_softc * sc,struct ath_buf * bf)252 ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
253 {
254 	struct ath_hal *ah = sc->sc_ah;
255 	int error;
256 	struct mbuf *m;
257 	struct ath_desc *ds;
258 
259 	/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
260 
261 	m = bf->bf_m;
262 	if (m == NULL) {
263 		/*
264 		 * NB: by assigning a page to the rx dma buffer we
265 		 * implicitly satisfy the Atheros requirement that
266 		 * this buffer be cache-line-aligned and sized to be
267 		 * multiple of the cache line size.  Not doing this
268 		 * causes weird stuff to happen (for the 5210 at least).
269 		 */
270 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
271 		if (m == NULL) {
272 			DPRINTF(sc, ATH_DEBUG_ANY,
273 				"%s: no mbuf/cluster\n", __func__);
274 			sc->sc_stats.ast_rx_nombuf++;
275 			return ENOMEM;
276 		}
277 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
278 
279 #if defined(__DragonFly__)
280 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat,
281 					     bf->bf_dmamap, m,
282 					     bf->bf_segs, 1, &bf->bf_nseg,
283 					     BUS_DMA_NOWAIT);
284 #else
285 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
286 					     bf->bf_dmamap, m,
287 					     bf->bf_segs, &bf->bf_nseg,
288 					     BUS_DMA_NOWAIT);
289 #endif
290 		if (error != 0) {
291 			DPRINTF(sc, ATH_DEBUG_ANY,
292 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
293 			    __func__, error);
294 			sc->sc_stats.ast_rx_busdma++;
295 			m_freem(m);
296 			return error;
297 		}
298 		KASSERT(bf->bf_nseg == 1,
299 			("multi-segment packet; nseg %u", bf->bf_nseg));
300 		bf->bf_m = m;
301 	}
302 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
303 
304 	/*
305 	 * Setup descriptors.  For receive we always terminate
306 	 * the descriptor list with a self-linked entry so we'll
307 	 * not get overrun under high load (as can happen with a
308 	 * 5212 when ANI processing enables PHY error frames).
309 	 *
310 	 * To insure the last descriptor is self-linked we create
311 	 * each descriptor as self-linked and add it to the end.  As
312 	 * each additional descriptor is added the previous self-linked
313 	 * entry is ``fixed'' naturally.  This should be safe even
314 	 * if DMA is happening.  When processing RX interrupts we
315 	 * never remove/process the last, self-linked, entry on the
316 	 * descriptor list.  This insures the hardware always has
317 	 * someplace to write a new frame.
318 	 */
319 	/*
320 	 * 11N: we can no longer afford to self link the last descriptor.
321 	 * MAC acknowledges BA status as long as it copies frames to host
322 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
323 	 * to a sender if last desc is self-linked.
324 	 */
325 	ds = bf->bf_desc;
326 	if (sc->sc_rxslink)
327 		ds->ds_link = bf->bf_daddr;	/* link to self */
328 	else
329 		ds->ds_link = 0;		/* terminate the list */
330 	ds->ds_data = bf->bf_segs[0].ds_addr;
331 	ath_hal_setuprxdesc(ah, ds
332 		, m->m_len		/* buffer size */
333 		, 0
334 	);
335 
336 	if (sc->sc_rxlink != NULL)
337 		*sc->sc_rxlink = bf->bf_daddr;
338 	sc->sc_rxlink = &ds->ds_link;
339 	return 0;
340 }
341 
342 /*
343  * Intercept management frames to collect beacon rssi data
344  * and to do ibss merges.
345  */
346 void
ath_recv_mgmt(struct ieee80211_node * ni,struct mbuf * m,int subtype,const struct ieee80211_rx_stats * rxs,int rssi,int nf)347 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
348 	int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
349 {
350 	struct ieee80211vap *vap = ni->ni_vap;
351 	struct ath_softc *sc = vap->iv_ic->ic_softc;
352 	uint64_t tsf_beacon_old, tsf_beacon;
353 	uint64_t nexttbtt;
354 	int64_t tsf_delta;
355 	int32_t tsf_delta_bmiss;
356 	int32_t tsf_remainder;
357 	uint64_t tsf_beacon_target;
358 	int tsf_intval;
359 
360 	tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
361 	tsf_beacon_old |= le32dec(ni->ni_tstamp.data);
362 
363 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
364 	tsf_intval = 1;
365 	if (ni->ni_intval > 0) {
366 		tsf_intval = TU_TO_TSF(ni->ni_intval);
367 	}
368 #undef	TU_TO_TSF
369 
370 	/*
371 	 * Call up first so subsequent work can use information
372 	 * potentially stored in the node (e.g. for ibss merge).
373 	 */
374 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
375 	switch (subtype) {
376 	case IEEE80211_FC0_SUBTYPE_BEACON:
377 
378 		/*
379 		 * Only do the following processing if it's for
380 		 * the current BSS.
381 		 *
382 		 * In scan and IBSS mode we receive all beacons,
383 		 * which means we need to filter out stuff
384 		 * that isn't for us or we'll end up constantly
385 		 * trying to sync / merge to BSSes that aren't
386 		 * actually us.
387 		 */
388 		if (IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) {
389 			/* update rssi statistics for use by the hal */
390 			/* XXX unlocked check against vap->iv_bss? */
391 			ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
392 
393 
394 			tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
395 			tsf_beacon |= le32dec(ni->ni_tstamp.data);
396 
397 			nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
398 
399 			/*
400 			 * Let's calculate the delta and remainder, so we can see
401 			 * if the beacon timer from the AP is varying by more than
402 			 * a few TU.  (Which would be a huge, huge problem.)
403 			 */
404 			tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
405 
406 			tsf_delta_bmiss = tsf_delta / tsf_intval;
407 
408 			/*
409 			 * If our delta is greater than half the beacon interval,
410 			 * let's round the bmiss value up to the next beacon
411 			 * interval.  Ie, we're running really, really early
412 			 * on the next beacon.
413 			 */
414 			if (tsf_delta % tsf_intval > (tsf_intval / 2))
415 				tsf_delta_bmiss ++;
416 
417 			tsf_beacon_target = tsf_beacon_old +
418 			    (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
419 
420 			/*
421 			 * The remainder using '%' is between 0 .. intval-1.
422 			 * If we're actually running too fast, then the remainder
423 			 * will be some large number just under intval-1.
424 			 * So we need to look at whether we're running
425 			 * before or after the target beacon interval
426 			 * and if we are, modify how we do the remainder
427 			 * calculation.
428 			 */
429 			if (tsf_beacon < tsf_beacon_target) {
430 				tsf_remainder =
431 				    -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
432 			} else {
433 				tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
434 			}
435 
436 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: old_tsf=%llu, new_tsf=%llu, target_tsf=%llu, delta=%lld, bmiss=%d, remainder=%d\n",
437 			    __func__,
438 			    (unsigned long long) tsf_beacon_old,
439 			    (unsigned long long) tsf_beacon,
440 			    (unsigned long long) tsf_beacon_target,
441 			    (long long) tsf_delta,
442 			    tsf_delta_bmiss,
443 			    tsf_remainder);
444 
445 			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: tsf=%llu, nexttbtt=%llu, delta=%d\n",
446 			    __func__,
447 			    (unsigned long long) tsf_beacon,
448 			    (unsigned long long) nexttbtt,
449 			    (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
450 
451 			/* We only do syncbeacon on STA VAPs; not on IBSS */
452 			if (vap->iv_opmode == IEEE80211_M_STA &&
453 			    sc->sc_syncbeacon &&
454 			    ni == vap->iv_bss &&
455 			    (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
456 				DPRINTF(sc, ATH_DEBUG_BEACON,
457 				    "%s: syncbeacon=1; syncing\n",
458 				    __func__);
459 				/*
460 				 * Resync beacon timers using the tsf of the beacon
461 				 * frame we just received.
462 				 */
463 				ath_beacon_config(sc, vap);
464 				sc->sc_syncbeacon = 0;
465 			}
466 		}
467 
468 		/* fall thru... */
469 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
470 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
471 		    vap->iv_state == IEEE80211_S_RUN &&
472 		    ieee80211_ibss_merge_check(ni)) {
473 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
474 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
475 				ath_hal_gettsf64(sc->sc_ah));
476 			/*
477 			 * Handle ibss merge as needed; check the tsf on the
478 			 * frame before attempting the merge.  The 802.11 spec
479 			 * says the station should change it's bssid to match
480 			 * the oldest station with the same ssid, where oldest
481 			 * is determined by the tsf.  Note that hardware
482 			 * reconfiguration happens through callback to
483 			 * ath_newstate as the state machine will go from
484 			 * RUN -> RUN when this happens.
485 			 */
486 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
487 				DPRINTF(sc, ATH_DEBUG_STATE,
488 				    "ibss merge, rstamp %u tsf %ju "
489 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
490 				    (uintmax_t)ni->ni_tstamp.tsf);
491 				(void) ieee80211_ibss_merge(ni);
492 			}
493 		}
494 		break;
495 	}
496 }
497 
498 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
499 static void
ath_rx_tap_vendor(struct ath_softc * sc,struct mbuf * m,const struct ath_rx_status * rs,u_int64_t tsf,int16_t nf)500 ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m,
501     const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
502 {
503 
504 	/* Fill in the extension bitmap */
505 	sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
506 
507 	/* Fill in the vendor header */
508 	sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
509 	sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
510 	sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
511 
512 	/* XXX what should this be? */
513 	sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
514 	sc->sc_rx_th.wr_vh.vh_skip_len =
515 	    htole16(sizeof(struct ath_radiotap_vendor_hdr));
516 
517 	/* General version info */
518 	sc->sc_rx_th.wr_v.vh_version = 1;
519 
520 	sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
521 
522 	/* rssi */
523 	sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
524 	sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
525 	sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
526 	sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
527 	sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
528 	sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
529 
530 	/* evm */
531 	sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
532 	sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
533 	sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
534 	/* These are only populated from the AR9300 or later */
535 	sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
536 	sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
537 
538 	/* direction */
539 	sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
540 
541 	/* RX rate */
542 	sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
543 
544 	/* RX flags */
545 	sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
546 
547 	if (rs->rs_isaggr)
548 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
549 	if (rs->rs_moreaggr)
550 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
551 
552 	/* phyerr info */
553 	if (rs->rs_status & HAL_RXERR_PHY) {
554 		sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
555 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
556 	} else {
557 		sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
558 	}
559 	sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
560 	sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
561 }
562 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
563 
564 static void
ath_rx_tap(struct ath_softc * sc,struct mbuf * m,const struct ath_rx_status * rs,u_int64_t tsf,int16_t nf)565 ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
566 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
567 {
568 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
569 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
570 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
571 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
572 	const HAL_RATE_TABLE *rt;
573 	uint8_t rix;
574 
575 	rt = sc->sc_currates;
576 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
577 	rix = rt->rateCodeToIndex[rs->rs_rate];
578 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
579 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
580 #ifdef AH_SUPPORT_AR5416
581 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
582 	if (rs->rs_status & HAL_RXERR_PHY) {
583 		/*
584 		 * PHY error - make sure the channel flags
585 		 * reflect the actual channel configuration,
586 		 * not the received frame.
587 		 */
588 		if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
589 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
590 		else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
591 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
592 		else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
593 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
594 	} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
595 		struct ieee80211com *ic = &sc->sc_ic;
596 
597 		if ((rs->rs_flags & HAL_RX_2040) == 0)
598 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
599 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
600 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
601 		else
602 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
603 		if ((rs->rs_flags & HAL_RX_GI) == 0)
604 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
605 	}
606 
607 #endif
608 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
609 	if (rs->rs_status & HAL_RXERR_CRC)
610 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
611 	/* XXX propagate other error flags from descriptor */
612 	sc->sc_rx_th.wr_antnoise = nf;
613 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
614 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
615 #undef CHAN_HT
616 #undef CHAN_HT20
617 #undef CHAN_HT40U
618 #undef CHAN_HT40D
619 }
620 
621 static void
ath_handle_micerror(struct ieee80211com * ic,struct ieee80211_frame * wh,int keyix)622 ath_handle_micerror(struct ieee80211com *ic,
623 	struct ieee80211_frame *wh, int keyix)
624 {
625 	struct ieee80211_node *ni;
626 
627 	/* XXX recheck MIC to deal w/ chips that lie */
628 	/* XXX discard MIC errors on !data frames */
629 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
630 	if (ni != NULL) {
631 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
632 		ieee80211_free_node(ni);
633 	}
634 }
635 
636 /*
637  * Process a single packet.
638  *
639  * The mbuf must already be synced, unmapped and removed from bf->bf_m
640  * by this stage.
641  *
642  * The mbuf must be consumed by this routine - either passed up the
643  * net80211 stack, put on the holding queue, or freed.
644  */
645 int
ath_rx_pkt(struct ath_softc * sc,struct ath_rx_status * rs,HAL_STATUS status,uint64_t tsf,int nf,HAL_RX_QUEUE qtype,struct ath_buf * bf,struct mbuf * m)646 ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
647     uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
648     struct mbuf *m)
649 {
650 	uint64_t rstamp;
651 	int len, type;
652 	struct ieee80211com *ic = &sc->sc_ic;
653 	struct ieee80211_node *ni;
654 	int is_good = 0;
655 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
656 
657 	/*
658 	 * Calculate the correct 64 bit TSF given
659 	 * the TSF64 register value and rs_tstamp.
660 	 */
661 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
662 
663 	/* These aren't specifically errors */
664 #ifdef	AH_SUPPORT_AR5416
665 	if (rs->rs_flags & HAL_RX_GI)
666 		sc->sc_stats.ast_rx_halfgi++;
667 	if (rs->rs_flags & HAL_RX_2040)
668 		sc->sc_stats.ast_rx_2040++;
669 	if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
670 		sc->sc_stats.ast_rx_pre_crc_err++;
671 	if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
672 		sc->sc_stats.ast_rx_post_crc_err++;
673 	if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
674 		sc->sc_stats.ast_rx_decrypt_busy_err++;
675 	if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
676 		sc->sc_stats.ast_rx_hi_rx_chain++;
677 	if (rs->rs_flags & HAL_RX_STBC)
678 		sc->sc_stats.ast_rx_stbc++;
679 #endif /* AH_SUPPORT_AR5416 */
680 
681 	if (rs->rs_status != 0) {
682 		if (rs->rs_status & HAL_RXERR_CRC)
683 			sc->sc_stats.ast_rx_crcerr++;
684 		if (rs->rs_status & HAL_RXERR_FIFO)
685 			sc->sc_stats.ast_rx_fifoerr++;
686 		if (rs->rs_status & HAL_RXERR_PHY) {
687 			sc->sc_stats.ast_rx_phyerr++;
688 			/* Process DFS radar events */
689 			if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
690 			    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
691 				/* Now pass it to the radar processing code */
692 				ath_dfs_process_phy_err(sc, m, rstamp, rs);
693 			}
694 
695 			/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
696 			if (rs->rs_phyerr < 64)
697 				sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
698 			goto rx_error;	/* NB: don't count in ierrors */
699 		}
700 		if (rs->rs_status & HAL_RXERR_DECRYPT) {
701 			/*
702 			 * Decrypt error.  If the error occurred
703 			 * because there was no hardware key, then
704 			 * let the frame through so the upper layers
705 			 * can process it.  This is necessary for 5210
706 			 * parts which have no way to setup a ``clear''
707 			 * key cache entry.
708 			 *
709 			 * XXX do key cache faulting
710 			 */
711 			if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
712 				goto rx_accept;
713 			sc->sc_stats.ast_rx_badcrypt++;
714 		}
715 		/*
716 		 * Similar as above - if the failure was a keymiss
717 		 * just punt it up to the upper layers for now.
718 		 */
719 		if (rs->rs_status & HAL_RXERR_KEYMISS) {
720 			sc->sc_stats.ast_rx_keymiss++;
721 			goto rx_accept;
722 		}
723 		if (rs->rs_status & HAL_RXERR_MIC) {
724 			sc->sc_stats.ast_rx_badmic++;
725 			/*
726 			 * Do minimal work required to hand off
727 			 * the 802.11 header for notification.
728 			 */
729 			/* XXX frag's and qos frames */
730 			len = rs->rs_datalen;
731 			if (len >= sizeof (struct ieee80211_frame)) {
732 				ath_handle_micerror(ic,
733 				    mtod(m, struct ieee80211_frame *),
734 				    sc->sc_splitmic ?
735 					rs->rs_keyix-32 : rs->rs_keyix);
736 			}
737 		}
738 #if defined(__DragonFly__)
739 		++ic->ic_ierrors;	/* don't care about SMP races */
740 #else
741 		counter_u64_add(ic->ic_ierrors, 1);
742 #endif
743 rx_error:
744 		/*
745 		 * Cleanup any pending partial frame.
746 		 */
747 		if (re->m_rxpending != NULL) {
748 			m_freem(re->m_rxpending);
749 			re->m_rxpending = NULL;
750 		}
751 		/*
752 		 * When a tap is present pass error frames
753 		 * that have been requested.  By default we
754 		 * pass decrypt+mic errors but others may be
755 		 * interesting (e.g. crc).
756 		 */
757 		if (ieee80211_radiotap_active(ic) &&
758 		    (rs->rs_status & sc->sc_monpass)) {
759 			/* NB: bpf needs the mbuf length setup */
760 			len = rs->rs_datalen;
761 			m->m_pkthdr.len = m->m_len = len;
762 			ath_rx_tap(sc, m, rs, rstamp, nf);
763 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
764 			ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
765 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
766 			ieee80211_radiotap_rx_all(ic, m);
767 		}
768 		/* XXX pass MIC errors up for s/w reclaculation */
769 		m_freem(m); m = NULL;
770 		goto rx_next;
771 	}
772 rx_accept:
773 	len = rs->rs_datalen;
774 	m->m_len = len;
775 
776 	if (rs->rs_more) {
777 		/*
778 		 * Frame spans multiple descriptors; save
779 		 * it for the next completed descriptor, it
780 		 * will be used to construct a jumbogram.
781 		 */
782 		if (re->m_rxpending != NULL) {
783 			/* NB: max frame size is currently 2 clusters */
784 			sc->sc_stats.ast_rx_toobig++;
785 			m_freem(re->m_rxpending);
786 		}
787 		m->m_pkthdr.len = len;
788 		re->m_rxpending = m;
789 		m = NULL;
790 		goto rx_next;
791 	} else if (re->m_rxpending != NULL) {
792 		/*
793 		 * This is the second part of a jumbogram,
794 		 * chain it to the first mbuf, adjust the
795 		 * frame length, and clear the rxpending state.
796 		 */
797 		re->m_rxpending->m_next = m;
798 		re->m_rxpending->m_pkthdr.len += len;
799 		m = re->m_rxpending;
800 		re->m_rxpending = NULL;
801 	} else {
802 		/*
803 		 * Normal single-descriptor receive; setup packet length.
804 		 */
805 		m->m_pkthdr.len = len;
806 	}
807 
808 	/*
809 	 * Validate rs->rs_antenna.
810 	 *
811 	 * Some users w/ AR9285 NICs have reported crashes
812 	 * here because rs_antenna field is bogusly large.
813 	 * Let's enforce the maximum antenna limit of 8
814 	 * (and it shouldn't be hard coded, but that's a
815 	 * separate problem) and if there's an issue, print
816 	 * out an error and adjust rs_antenna to something
817 	 * sensible.
818 	 *
819 	 * This code should be removed once the actual
820 	 * root cause of the issue has been identified.
821 	 * For example, it may be that the rs_antenna
822 	 * field is only valid for the last frame of
823 	 * an aggregate and it just happens that it is
824 	 * "mostly" right. (This is a general statement -
825 	 * the majority of the statistics are only valid
826 	 * for the last frame in an aggregate.
827 	 */
828 	if (rs->rs_antenna > 7) {
829 		device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
830 		    __func__, rs->rs_antenna);
831 #ifdef	ATH_DEBUG
832 		ath_printrxbuf(sc, bf, 0, status == HAL_OK);
833 #endif /* ATH_DEBUG */
834 		rs->rs_antenna = 0;	/* XXX better than nothing */
835 	}
836 
837 	/*
838 	 * If this is an AR9285/AR9485, then the receive and LNA
839 	 * configuration is stored in RSSI[2] / EXTRSSI[2].
840 	 * We can extract this out to build a much better
841 	 * receive antenna profile.
842 	 *
843 	 * Yes, this just blurts over the above RX antenna field
844 	 * for now.  It's fine, the AR9285 doesn't really use
845 	 * that.
846 	 *
847 	 * Later on we should store away the fine grained LNA
848 	 * information and keep separate counters just for
849 	 * that.  It'll help when debugging the AR9285/AR9485
850 	 * combined diversity code.
851 	 */
852 	if (sc->sc_rx_lnamixer) {
853 		rs->rs_antenna = 0;
854 
855 		/* Bits 0:1 - the LNA configuration used */
856 		rs->rs_antenna |=
857 		    ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
858 		      >> HAL_RX_LNA_CFG_USED_S);
859 
860 		/* Bit 2 - the external RX antenna switch */
861 		if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
862 			rs->rs_antenna |= 0x4;
863 	}
864 
865 	sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
866 
867 	/*
868 	 * Populate the rx status block.  When there are bpf
869 	 * listeners we do the additional work to provide
870 	 * complete status.  Otherwise we fill in only the
871 	 * material required by ieee80211_input.  Note that
872 	 * noise setting is filled in above.
873 	 */
874 	if (ieee80211_radiotap_active(ic)) {
875 		ath_rx_tap(sc, m, rs, rstamp, nf);
876 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
877 		ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
878 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
879 	}
880 
881 	/*
882 	 * From this point on we assume the frame is at least
883 	 * as large as ieee80211_frame_min; verify that.
884 	 */
885 	if (len < IEEE80211_MIN_LEN) {
886 		if (!ieee80211_radiotap_active(ic)) {
887 			DPRINTF(sc, ATH_DEBUG_RECV,
888 			    "%s: short packet %d\n", __func__, len);
889 			sc->sc_stats.ast_rx_tooshort++;
890 		} else {
891 			/* NB: in particular this captures ack's */
892 			ieee80211_radiotap_rx_all(ic, m);
893 		}
894 		m_freem(m); m = NULL;
895 		goto rx_next;
896 	}
897 
898 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
899 		const HAL_RATE_TABLE *rt = sc->sc_currates;
900 		uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
901 
902 		ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
903 		    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
904 	}
905 
906 	m_adj(m, -IEEE80211_CRC_LEN);
907 
908 	/*
909 	 * Locate the node for sender, track state, and then
910 	 * pass the (referenced) node up to the 802.11 layer
911 	 * for its use.
912 	 */
913 	ni = ieee80211_find_rxnode_withkey(ic,
914 		mtod(m, const struct ieee80211_frame_min *),
915 		rs->rs_keyix == HAL_RXKEYIX_INVALID ?
916 			IEEE80211_KEYIX_NONE : rs->rs_keyix);
917 	sc->sc_lastrs = rs;
918 
919 #ifdef	AH_SUPPORT_AR5416
920 	if (rs->rs_isaggr)
921 		sc->sc_stats.ast_rx_agg++;
922 #endif /* AH_SUPPORT_AR5416 */
923 
924 	if (ni != NULL) {
925 		/*
926 		 * Only punt packets for ampdu reorder processing for
927 		 * 11n nodes; net80211 enforces that M_AMPDU is only
928 		 * set for 11n nodes.
929 		 */
930 		if (ni->ni_flags & IEEE80211_NODE_HT)
931 			m->m_flags |= M_AMPDU;
932 
933 		/*
934 		 * Sending station is known, dispatch directly.
935 		 */
936 		type = ieee80211_input(ni, m, rs->rs_rssi, nf);
937 		ieee80211_free_node(ni);
938 		m = NULL;
939 		/*
940 		 * Arrange to update the last rx timestamp only for
941 		 * frames from our ap when operating in station mode.
942 		 * This assumes the rx key is always setup when
943 		 * associated.
944 		 */
945 		if (ic->ic_opmode == IEEE80211_M_STA &&
946 		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
947 			is_good = 1;
948 	} else {
949 		type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
950 		m = NULL;
951 	}
952 
953 	/*
954 	 * At this point we have passed the frame up the stack; thus
955 	 * the mbuf is no longer ours.
956 	 */
957 
958 	/*
959 	 * Track rx rssi and do any rx antenna management.
960 	 */
961 	ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
962 	if (sc->sc_diversity) {
963 		/*
964 		 * When using fast diversity, change the default rx
965 		 * antenna if diversity chooses the other antenna 3
966 		 * times in a row.
967 		 */
968 		if (sc->sc_defant != rs->rs_antenna) {
969 			if (++sc->sc_rxotherant >= 3)
970 				ath_setdefantenna(sc, rs->rs_antenna);
971 		} else
972 			sc->sc_rxotherant = 0;
973 	}
974 
975 	/* Handle slow diversity if enabled */
976 	if (sc->sc_dolnadiv) {
977 		ath_lna_rx_comb_scan(sc, rs, ticks, hz);
978 	}
979 
980 	if (sc->sc_softled) {
981 		/*
982 		 * Blink for any data frame.  Otherwise do a
983 		 * heartbeat-style blink when idle.  The latter
984 		 * is mainly for station mode where we depend on
985 		 * periodic beacon frames to trigger the poll event.
986 		 */
987 		if (type == IEEE80211_FC0_TYPE_DATA) {
988 			const HAL_RATE_TABLE *rt = sc->sc_currates;
989 			ath_led_event(sc,
990 			    rt->rateCodeToIndex[rs->rs_rate]);
991 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
992 			ath_led_event(sc, 0);
993 		}
994 rx_next:
995 	/*
996 	 * Debugging - complain if we didn't NULL the mbuf pointer
997 	 * here.
998 	 */
999 	if (m != NULL) {
1000 		device_printf(sc->sc_dev,
1001 		    "%s: mbuf %p should've been freed!\n",
1002 		    __func__,
1003 		    m);
1004 	}
1005 	return (is_good);
1006 }
1007 
1008 #define	ATH_RX_MAX		128
1009 
1010 /*
1011  * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
1012  * the EDMA code does.
1013  *
1014  * XXX TODO: then, do all of the RX list management stuff inside
1015  * ATH_RX_LOCK() so we don't end up potentially racing.  The EDMA
1016  * code is doing it right.
1017  */
1018 static void
ath_rx_proc(struct ath_softc * sc,int resched)1019 ath_rx_proc(struct ath_softc *sc, int resched)
1020 {
1021 #define	PA2DESC(_sc, _pa) \
1022 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1023 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1024 	struct ath_buf *bf;
1025 	struct ath_hal *ah = sc->sc_ah;
1026 #ifdef IEEE80211_SUPPORT_SUPERG
1027 	struct ieee80211com *ic = &sc->sc_ic;
1028 #endif
1029 	struct ath_desc *ds;
1030 	struct ath_rx_status *rs;
1031 	struct mbuf *m;
1032 	int ngood;
1033 	HAL_STATUS status;
1034 	int16_t nf;
1035 	u_int64_t tsf;
1036 	int npkts = 0;
1037 	int kickpcu = 0;
1038 	int ret;
1039 
1040 	/* XXX we must not hold the ATH_LOCK here */
1041 	ATH_UNLOCK_ASSERT(sc);
1042 	ATH_PCU_UNLOCK_ASSERT(sc);
1043 
1044 	ATH_PCU_LOCK(sc);
1045 	sc->sc_rxproc_cnt++;
1046 	kickpcu = sc->sc_kickpcu;
1047 	ATH_PCU_UNLOCK(sc);
1048 
1049 	ATH_LOCK(sc);
1050 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1051 	ATH_UNLOCK(sc);
1052 
1053 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
1054 	ngood = 0;
1055 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
1056 	sc->sc_stats.ast_rx_noise = nf;
1057 	tsf = ath_hal_gettsf64(ah);
1058 	do {
1059 		/*
1060 		 * Don't process too many packets at a time; give the
1061 		 * TX thread time to also run - otherwise the TX
1062 		 * latency can jump by quite a bit, causing throughput
1063 		 * degredation.
1064 		 */
1065 		if (!kickpcu && npkts >= ATH_RX_MAX)
1066 			break;
1067 
1068 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1069 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
1070 			device_printf(sc->sc_dev, "%s: no buffer!\n", __func__);
1071 			break;
1072 		} else if (bf == NULL) {
1073 			/*
1074 			 * End of List:
1075 			 * this can happen for non-self-linked RX chains
1076 			 */
1077 			sc->sc_stats.ast_rx_hitqueueend++;
1078 			break;
1079 		}
1080 		m = bf->bf_m;
1081 		if (m == NULL) {		/* NB: shouldn't happen */
1082 			/*
1083 			 * If mbuf allocation failed previously there
1084 			 * will be no mbuf; try again to re-populate it.
1085 			 */
1086 			/* XXX make debug msg */
1087 			device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__);
1088 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1089 			goto rx_proc_next;
1090 		}
1091 		ds = bf->bf_desc;
1092 		if (ds->ds_link == bf->bf_daddr) {
1093 			/* NB: never process the self-linked entry at the end */
1094 			sc->sc_stats.ast_rx_hitqueueend++;
1095 			break;
1096 		}
1097 		/* XXX sync descriptor memory */
1098 		/*
1099 		 * Must provide the virtual address of the current
1100 		 * descriptor, the physical address, and the virtual
1101 		 * address of the next descriptor in the h/w chain.
1102 		 * This allows the HAL to look ahead to see if the
1103 		 * hardware is done with a descriptor by checking the
1104 		 * done bit in the following descriptor and the address
1105 		 * of the current descriptor the DMA engine is working
1106 		 * on.  All this is necessary because of our use of
1107 		 * a self-linked list to avoid rx overruns.
1108 		 */
1109 		rs = &bf->bf_status.ds_rxstat;
1110 		status = ath_hal_rxprocdesc(ah, ds,
1111 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1112 #ifdef ATH_DEBUG
1113 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
1114 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
1115 #endif
1116 
1117 #ifdef	ATH_DEBUG_ALQ
1118 		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
1119 		    if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
1120 		    sc->sc_rx_statuslen, (char *) ds);
1121 #endif	/* ATH_DEBUG_ALQ */
1122 
1123 		if (status == HAL_EINPROGRESS)
1124 			break;
1125 
1126 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1127 		npkts++;
1128 
1129 		/*
1130 		 * Process a single frame.
1131 		 */
1132 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
1133 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1134 		bf->bf_m = NULL;
1135 		if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
1136 			ngood++;
1137 rx_proc_next:
1138 		/*
1139 		 * If there's a holding buffer, insert that onto
1140 		 * the RX list; the hardware is now definitely not pointing
1141 		 * to it now.
1142 		 */
1143 		ret = 0;
1144 		if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
1145 			TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
1146 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
1147 			    bf_list);
1148 			ret = ath_rxbuf_init(sc,
1149 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
1150 		}
1151 		/*
1152 		 * Next, throw our buffer into the holding entry.  The hardware
1153 		 * may use the descriptor to read the link pointer before
1154 		 * DMAing the next descriptor in to write out a packet.
1155 		 */
1156 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
1157 	} while (ret == 0);
1158 
1159 	/* rx signal state monitoring */
1160 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1161 	if (ngood)
1162 		sc->sc_lastrx = tsf;
1163 
1164 	ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1165 	/* Queue DFS tasklet if needed */
1166 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1167 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1168 
1169 	/*
1170 	 * Now that all the RX frames were handled that
1171 	 * need to be handled, kick the PCU if there's
1172 	 * been an RXEOL condition.
1173 	 */
1174 	if (resched && kickpcu) {
1175 		ATH_PCU_LOCK(sc);
1176 		ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1177 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1178 		    __func__, npkts);
1179 
1180 		/*
1181 		 * Go through the process of fully tearing down
1182 		 * the RX buffers and reinitialising them.
1183 		 *
1184 		 * There's a hardware bug that causes the RX FIFO
1185 		 * to get confused under certain conditions and
1186 		 * constantly write over the same frame, leading
1187 		 * the RX driver code here to get heavily confused.
1188 		 */
1189 		/*
1190 		 * XXX Has RX DMA stopped enough here to just call
1191 		 *     ath_startrecv()?
1192 		 * XXX Do we need to use the holding buffer to restart
1193 		 *     RX DMA by appending entries to the final
1194 		 *     descriptor?  Quite likely.
1195 		 */
1196 #if 1
1197 		ath_startrecv(sc);
1198 #else
1199 		/*
1200 		 * Disabled for now - it'd be nice to be able to do
1201 		 * this in order to limit the amount of CPU time spent
1202 		 * reinitialising the RX side (and thus minimise RX
1203 		 * drops) however there's a hardware issue that
1204 		 * causes things to get too far out of whack.
1205 		 */
1206 		/*
1207 		 * XXX can we hold the PCU lock here?
1208 		 * Are there any net80211 buffer calls involved?
1209 		 */
1210 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1211 		ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1212 		ath_hal_rxena(ah);		/* enable recv descriptors */
1213 		ath_mode_init(sc);		/* set filters, etc. */
1214 		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1215 #endif
1216 
1217 		ath_hal_intrset(ah, sc->sc_imask);
1218 		sc->sc_kickpcu = 0;
1219 		ATH_PCU_UNLOCK(sc);
1220 	}
1221 
1222 #ifdef IEEE80211_SUPPORT_SUPERG
1223 	if (resched)
1224 		ieee80211_ff_age_all(ic, 100);
1225 #endif
1226 
1227 	/*
1228 	 * Put the hardware to sleep again if we're done with it.
1229 	 */
1230 	ATH_LOCK(sc);
1231 	ath_power_restore_power_state(sc);
1232 	ATH_UNLOCK(sc);
1233 
1234 	/*
1235 	 * If we hit the maximum number of frames in this round,
1236 	 * reschedule for another immediate pass.  This gives
1237 	 * the TX and TX completion routines time to run, which
1238 	 * will reduce latency.
1239 	 */
1240 	if (npkts >= ATH_RX_MAX)
1241 		sc->sc_rx.recv_sched(sc, resched);
1242 
1243 	ATH_PCU_LOCK(sc);
1244 	sc->sc_rxproc_cnt--;
1245 	ATH_PCU_UNLOCK(sc);
1246 }
1247 #undef	PA2DESC
1248 #undef	ATH_RX_MAX
1249 
1250 /*
1251  * Only run the RX proc if it's not already running.
1252  * Since this may get run as part of the reset/flush path,
1253  * the task can't clash with an existing, running tasklet.
1254  */
1255 static void
ath_legacy_rx_tasklet(void * arg,int npending)1256 ath_legacy_rx_tasklet(void *arg, int npending)
1257 {
1258 	struct ath_softc *sc = arg;
1259 
1260 	ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1261 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1262 	ATH_PCU_LOCK(sc);
1263 	if (sc->sc_inreset_cnt > 0) {
1264 		device_printf(sc->sc_dev,
1265 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1266 		ATH_PCU_UNLOCK(sc);
1267 		return;
1268 	}
1269 	ATH_PCU_UNLOCK(sc);
1270 
1271 	ath_rx_proc(sc, 1);
1272 }
1273 
1274 static void
ath_legacy_flushrecv(struct ath_softc * sc)1275 ath_legacy_flushrecv(struct ath_softc *sc)
1276 {
1277 
1278 	ath_rx_proc(sc, 0);
1279 }
1280 
1281 static void
ath_legacy_flush_rxpending(struct ath_softc * sc)1282 ath_legacy_flush_rxpending(struct ath_softc *sc)
1283 {
1284 
1285 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1286 
1287 	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1288 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1289 		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1290 	}
1291 	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1292 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1293 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1294 	}
1295 }
1296 
1297 static int
ath_legacy_flush_rxholdbf(struct ath_softc * sc)1298 ath_legacy_flush_rxholdbf(struct ath_softc *sc)
1299 {
1300 	struct ath_buf *bf;
1301 
1302 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1303 	/*
1304 	 * If there are RX holding buffers, free them here and return
1305 	 * them to the list.
1306 	 *
1307 	 * XXX should just verify that bf->bf_m is NULL, as it must
1308 	 * be at this point!
1309 	 */
1310 	bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
1311 	if (bf != NULL) {
1312 		if (bf->bf_m != NULL)
1313 			m_freem(bf->bf_m);
1314 		bf->bf_m = NULL;
1315 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1316 		(void) ath_rxbuf_init(sc, bf);
1317 	}
1318 	sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
1319 
1320 	bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
1321 	if (bf != NULL) {
1322 		if (bf->bf_m != NULL)
1323 			m_freem(bf->bf_m);
1324 		bf->bf_m = NULL;
1325 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1326 		(void) ath_rxbuf_init(sc, bf);
1327 	}
1328 	sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
1329 
1330 	return (0);
1331 }
1332 
1333 /*
1334  * Disable the receive h/w in preparation for a reset.
1335  */
1336 static void
ath_legacy_stoprecv(struct ath_softc * sc,int dodelay)1337 ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1338 {
1339 #define	PA2DESC(_sc, _pa) \
1340 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1341 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1342 	struct ath_hal *ah = sc->sc_ah;
1343 
1344 	ATH_RX_LOCK(sc);
1345 
1346 	ath_hal_stoppcurecv(ah);	/* disable PCU */
1347 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
1348 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
1349 	/*
1350 	 * TODO: see if this particular DELAY() is required; it may be
1351 	 * masking some missing FIFO flush or DMA sync.
1352 	 */
1353 #if 0
1354 	if (dodelay)
1355 #endif
1356 		DELAY(3000);		/* 3ms is long enough for 1 frame */
1357 #ifdef ATH_DEBUG
1358 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1359 		struct ath_buf *bf;
1360 		u_int ix;
1361 
1362 		device_printf(sc->sc_dev,
1363 		    "%s: rx queue %p, link %p\n",
1364 		    __func__,
1365 		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1366 		    sc->sc_rxlink);
1367 		ix = 0;
1368 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1369 			struct ath_desc *ds = bf->bf_desc;
1370 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1371 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1372 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1373 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1374 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1375 			ix++;
1376 		}
1377 	}
1378 #endif
1379 
1380 	(void) ath_legacy_flush_rxpending(sc);
1381 	(void) ath_legacy_flush_rxholdbf(sc);
1382 
1383 	sc->sc_rxlink = NULL;		/* just in case */
1384 
1385 	ATH_RX_UNLOCK(sc);
1386 #undef PA2DESC
1387 }
1388 
1389 /*
1390  * XXX TODO: something was calling startrecv without calling
1391  * stoprecv.  Let's figure out what/why.  It was showing up
1392  * as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
1393  */
1394 
1395 /*
1396  * Enable the receive h/w following a reset.
1397  */
1398 static int
ath_legacy_startrecv(struct ath_softc * sc)1399 ath_legacy_startrecv(struct ath_softc *sc)
1400 {
1401 	struct ath_hal *ah = sc->sc_ah;
1402 	struct ath_buf *bf;
1403 
1404 	ATH_RX_LOCK(sc);
1405 
1406 	/*
1407 	 * XXX should verify these are already all NULL!
1408 	 */
1409 	sc->sc_rxlink = NULL;
1410 	(void) ath_legacy_flush_rxpending(sc);
1411 	(void) ath_legacy_flush_rxholdbf(sc);
1412 
1413 	/*
1414 	 * Re-chain all of the buffers in the RX buffer list.
1415 	 */
1416 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1417 		int error = ath_rxbuf_init(sc, bf);
1418 		if (error != 0) {
1419 			DPRINTF(sc, ATH_DEBUG_RECV,
1420 				"%s: ath_rxbuf_init failed %d\n",
1421 				__func__, error);
1422 			return error;
1423 		}
1424 	}
1425 
1426 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
1427 	ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1428 	ath_hal_rxena(ah);		/* enable recv descriptors */
1429 	ath_mode_init(sc);		/* set filters, etc. */
1430 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1431 
1432 	ATH_RX_UNLOCK(sc);
1433 	return 0;
1434 }
1435 
1436 static int
ath_legacy_dma_rxsetup(struct ath_softc * sc)1437 ath_legacy_dma_rxsetup(struct ath_softc *sc)
1438 {
1439 	int error;
1440 
1441 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1442 	    "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1443 	if (error != 0)
1444 		return (error);
1445 
1446 	return (0);
1447 }
1448 
1449 static int
ath_legacy_dma_rxteardown(struct ath_softc * sc)1450 ath_legacy_dma_rxteardown(struct ath_softc *sc)
1451 {
1452 
1453 	if (sc->sc_rxdma.dd_desc_len != 0)
1454 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1455 	return (0);
1456 }
1457 
1458 static void
ath_legacy_recv_sched(struct ath_softc * sc,int dosched)1459 ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1460 {
1461 
1462 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1463 }
1464 
1465 static void
ath_legacy_recv_sched_queue(struct ath_softc * sc,HAL_RX_QUEUE q,int dosched)1466 ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1467     int dosched)
1468 {
1469 
1470 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1471 }
1472 
1473 void
ath_recv_setup_legacy(struct ath_softc * sc)1474 ath_recv_setup_legacy(struct ath_softc *sc)
1475 {
1476 
1477 	/* Sensible legacy defaults */
1478 	/*
1479 	 * XXX this should be changed to properly support the
1480 	 * exact RX descriptor size for each HAL.
1481 	 */
1482 	sc->sc_rx_statuslen = sizeof(struct ath_desc);
1483 
1484 	sc->sc_rx.recv_start = ath_legacy_startrecv;
1485 	sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1486 	sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1487 	sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1488 	sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1489 
1490 	sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1491 	sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1492 	sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1493 	sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1494 }
1495