xref: /dragonfly/sys/dev/netif/ath/ath/if_ath_rx.c (revision 31524921)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 
72 #include <net/if.h>
73 #include <net/if_var.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_types.h>
77 #include <net/if_arp.h>
78 #include <net/ethernet.h>
79 #include <net/if_llc.h>
80 #include <net/ifq_var.h>
81 
82 #include <netproto/802_11/ieee80211_var.h>
83 #include <netproto/802_11/ieee80211_regdomain.h>
84 #ifdef IEEE80211_SUPPORT_SUPERG
85 #include <netproto/802_11/ieee80211_superg.h>
86 #endif
87 #ifdef IEEE80211_SUPPORT_TDMA
88 #include <netproto/802_11/ieee80211_tdma.h>
89 #endif
90 
91 #include <net/bpf.h>
92 
93 #ifdef INET
94 #include <netinet/in.h>
95 #include <netinet/if_ether.h>
96 #endif
97 
98 #include <dev/netif/ath/ath/if_athvar.h>
99 #include <dev/netif/ath/ath_hal/ah_devid.h>		/* XXX for softled */
100 #include <dev/netif/ath/ath_hal/ah_diagcodes.h>
101 
102 #include <dev/netif/ath/ath/if_ath_debug.h>
103 #include <dev/netif/ath/ath/if_ath_misc.h>
104 #include <dev/netif/ath/ath/if_ath_tsf.h>
105 #include <dev/netif/ath/ath/if_ath_tx.h>
106 #include <dev/netif/ath/ath/if_ath_sysctl.h>
107 #include <dev/netif/ath/ath/if_ath_led.h>
108 #include <dev/netif/ath/ath/if_ath_keycache.h>
109 #include <dev/netif/ath/ath/if_ath_rx.h>
110 #include <dev/netif/ath/ath/if_ath_beacon.h>
111 #include <dev/netif/ath/ath/if_athdfs.h>
112 
113 #ifdef ATH_TX99_DIAG
114 #include <dev/netif/ath/ath/ath_tx99/ath_tx99.h>
115 #endif
116 
117 #ifdef	ATH_DEBUG_ALQ
118 #include <dev/netif/ath/ath/if_ath_alq.h>
119 #endif
120 
121 #include <dev/netif/ath/ath/if_ath_lna_div.h>
122 
123 /*
124  * Calculate the receive filter according to the
125  * operating mode and state:
126  *
127  * o always accept unicast, broadcast, and multicast traffic
128  * o accept PHY error frames when hardware doesn't have MIB support
129  *   to count and we need them for ANI (sta mode only until recently)
130  *   and we are not scanning (ANI is disabled)
131  *   NB: older hal's add rx filter bits out of sight and we need to
132  *	 blindly preserve them
133  * o probe request frames are accepted only when operating in
134  *   hostap, adhoc, mesh, or monitor modes
135  * o enable promiscuous mode
136  *   - when in monitor mode
137  *   - if interface marked PROMISC (assumes bridge setting is filtered)
138  * o accept beacons:
139  *   - when operating in station mode for collecting rssi data when
140  *     the station is otherwise quiet, or
141  *   - when operating in adhoc mode so the 802.11 layer creates
142  *     node table entries for peers,
143  *   - when scanning
144  *   - when doing s/w beacon miss (e.g. for ap+sta)
145  *   - when operating in ap mode in 11g to detect overlapping bss that
146  *     require protection
147  *   - when operating in mesh mode to detect neighbors
148  * o accept control frames:
149  *   - when in monitor mode
150  * XXX HT protection for 11n
151  */
152 u_int32_t
153 ath_calcrxfilter(struct ath_softc *sc)
154 {
155 	struct ifnet *ifp = sc->sc_ifp;
156 	struct ieee80211com *ic = ifp->if_l2com;
157 	u_int32_t rfilt;
158 
159 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
160 	if (!sc->sc_needmib && !sc->sc_scanning)
161 		rfilt |= HAL_RX_FILTER_PHYERR;
162 	if (ic->ic_opmode != IEEE80211_M_STA)
163 		rfilt |= HAL_RX_FILTER_PROBEREQ;
164 	/* XXX ic->ic_monvaps != 0? */
165 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
166 		rfilt |= HAL_RX_FILTER_PROM;
167 
168 	/*
169 	 * Only listen to all beacons if we're scanning.
170 	 *
171 	 * Otherwise we only really need to hear beacons from
172 	 * our own BSSID.
173 	 */
174 	if (ic->ic_opmode == IEEE80211_M_STA ||
175 	    ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
176 		if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
177 			rfilt |= HAL_RX_FILTER_MYBEACON;
178 		} else { /* scanning, non-mybeacon chips */
179 			rfilt |= HAL_RX_FILTER_BEACON;
180 		}
181 	}
182 
183 	/*
184 	 * NB: We don't recalculate the rx filter when
185 	 * ic_protmode changes; otherwise we could do
186 	 * this only when ic_protmode != NONE.
187 	 */
188 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
189 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
190 		rfilt |= HAL_RX_FILTER_BEACON;
191 
192 	/*
193 	 * Enable hardware PS-POLL RX only for hostap mode;
194 	 * STA mode sends PS-POLL frames but never
195 	 * receives them.
196 	 */
197 	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
198 	    0, NULL) == HAL_OK &&
199 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
200 		rfilt |= HAL_RX_FILTER_PSPOLL;
201 
202 	if (sc->sc_nmeshvaps) {
203 		rfilt |= HAL_RX_FILTER_BEACON;
204 		if (sc->sc_hasbmatch)
205 			rfilt |= HAL_RX_FILTER_BSSID;
206 		else
207 			rfilt |= HAL_RX_FILTER_PROM;
208 	}
209 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
210 		rfilt |= HAL_RX_FILTER_CONTROL;
211 
212 	/*
213 	 * Enable RX of compressed BAR frames only when doing
214 	 * 802.11n. Required for A-MPDU.
215 	 */
216 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
217 		rfilt |= HAL_RX_FILTER_COMPBAR;
218 
219 	/*
220 	 * Enable radar PHY errors if requested by the
221 	 * DFS module.
222 	 */
223 	if (sc->sc_dodfs)
224 		rfilt |= HAL_RX_FILTER_PHYRADAR;
225 
226 	/*
227 	 * Enable spectral PHY errors if requested by the
228 	 * spectral module.
229 	 */
230 	if (sc->sc_dospectral)
231 		rfilt |= HAL_RX_FILTER_PHYRADAR;
232 
233 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
234 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
235 	return rfilt;
236 }
237 
238 static int
239 ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
240 {
241 	struct ath_hal *ah = sc->sc_ah;
242 	int error;
243 	struct mbuf *m;
244 	struct ath_desc *ds;
245 
246 	/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
247 
248 	m = bf->bf_m;
249 	if (m == NULL) {
250 		/*
251 		 * NB: by assigning a page to the rx dma buffer we
252 		 * implicitly satisfy the Atheros requirement that
253 		 * this buffer be cache-line-aligned and sized to be
254 		 * multiple of the cache line size.  Not doing this
255 		 * causes weird stuff to happen (for the 5210 at least).
256 		 */
257 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
258 		if (m == NULL) {
259 			DPRINTF(sc, ATH_DEBUG_ANY,
260 				"%s: no mbuf/cluster\n", __func__);
261 			sc->sc_stats.ast_rx_nombuf++;
262 			return ENOMEM;
263 		}
264 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
265 
266 #if defined(__DragonFly__)
267 		error = bus_dmamap_load_mbuf_segment(sc->sc_dmat,
268 					     bf->bf_dmamap, m,
269 					     bf->bf_segs, 1, &bf->bf_nseg,
270 					     BUS_DMA_NOWAIT);
271 #else
272 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
273 					     bf->bf_dmamap, m,
274 					     bf->bf_segs, &bf->bf_nseg,
275 					     BUS_DMA_NOWAIT);
276 #endif
277 		if (error != 0) {
278 			DPRINTF(sc, ATH_DEBUG_ANY,
279 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
280 			    __func__, error);
281 			sc->sc_stats.ast_rx_busdma++;
282 			m_freem(m);
283 			return error;
284 		}
285 		KASSERT(bf->bf_nseg == 1,
286 			("multi-segment packet; nseg %u", bf->bf_nseg));
287 		bf->bf_m = m;
288 	}
289 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
290 
291 	/*
292 	 * Setup descriptors.  For receive we always terminate
293 	 * the descriptor list with a self-linked entry so we'll
294 	 * not get overrun under high load (as can happen with a
295 	 * 5212 when ANI processing enables PHY error frames).
296 	 *
297 	 * To insure the last descriptor is self-linked we create
298 	 * each descriptor as self-linked and add it to the end.  As
299 	 * each additional descriptor is added the previous self-linked
300 	 * entry is ``fixed'' naturally.  This should be safe even
301 	 * if DMA is happening.  When processing RX interrupts we
302 	 * never remove/process the last, self-linked, entry on the
303 	 * descriptor list.  This insures the hardware always has
304 	 * someplace to write a new frame.
305 	 */
306 	/*
307 	 * 11N: we can no longer afford to self link the last descriptor.
308 	 * MAC acknowledges BA status as long as it copies frames to host
309 	 * buffer (or rx fifo). This can incorrectly acknowledge packets
310 	 * to a sender if last desc is self-linked.
311 	 */
312 	ds = bf->bf_desc;
313 	if (sc->sc_rxslink)
314 		ds->ds_link = bf->bf_daddr;	/* link to self */
315 	else
316 		ds->ds_link = 0;		/* terminate the list */
317 	ds->ds_data = bf->bf_segs[0].ds_addr;
318 	ath_hal_setuprxdesc(ah, ds
319 		, m->m_len		/* buffer size */
320 		, 0
321 	);
322 
323 	if (sc->sc_rxlink != NULL)
324 		*sc->sc_rxlink = bf->bf_daddr;
325 	sc->sc_rxlink = &ds->ds_link;
326 	return 0;
327 }
328 
329 /*
330  * Intercept management frames to collect beacon rssi data
331  * and to do ibss merges.
332  */
333 void
334 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
335 	int subtype, int rssi, int nf)
336 {
337 	struct ieee80211vap *vap = ni->ni_vap;
338 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
339 	uint64_t tsf_beacon_old, tsf_beacon;
340 	uint64_t nexttbtt;
341 	int64_t tsf_delta;
342 	int32_t tsf_delta_bmiss;
343 	int32_t tsf_remainder;
344 	uint64_t tsf_beacon_target;
345 	int tsf_intval;
346 
347 	tsf_beacon_old = ((uint64_t) LE_READ_4(ni->ni_tstamp.data + 4)) << 32;
348 	tsf_beacon_old |= LE_READ_4(ni->ni_tstamp.data);
349 
350 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
351 	tsf_intval = 1;
352 	if (ni->ni_intval > 0) {
353 		tsf_intval = TU_TO_TSF(ni->ni_intval);
354 	}
355 #undef	TU_TO_TSF
356 
357 	/*
358 	 * Call up first so subsequent work can use information
359 	 * potentially stored in the node (e.g. for ibss merge).
360 	 */
361 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
362 	switch (subtype) {
363 	case IEEE80211_FC0_SUBTYPE_BEACON:
364 		/* update rssi statistics for use by the hal */
365 		/* XXX unlocked check against vap->iv_bss? */
366 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
367 
368 		tsf_beacon = ((uint64_t) LE_READ_4(ni->ni_tstamp.data + 4)) << 32;
369 		tsf_beacon |= LE_READ_4(ni->ni_tstamp.data);
370 
371 		nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
372 
373 		/*
374 		 * Let's calculate the delta and remainder, so we can see
375 		 * if the beacon timer from the AP is varying by more than
376 		 * a few TU.  (Which would be a huge, huge problem.)
377 		 */
378 		tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
379 
380 		tsf_delta_bmiss = tsf_delta / tsf_intval;
381 
382 		/*
383 		 * If our delta is greater than half the beacon interval,
384 		 * let's round the bmiss value up to the next beacon
385 		 * interval.  Ie, we're running really, really early
386 		 * on the next beacon.
387 		 */
388 		if (tsf_delta % tsf_intval > (tsf_intval / 2))
389 			tsf_delta_bmiss ++;
390 
391 		tsf_beacon_target = tsf_beacon_old +
392 		    (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
393 
394 		/*
395 		 * The remainder using '%' is between 0 .. intval-1.
396 		 * If we're actually running too fast, then the remainder
397 		 * will be some large number just under intval-1.
398 		 * So we need to look at whether we're running
399 		 * before or after the target beacon interval
400 		 * and if we are, modify how we do the remainder
401 		 * calculation.
402 		 */
403 		if (tsf_beacon < tsf_beacon_target) {
404 			tsf_remainder =
405 			    -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
406 		} else {
407 			tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
408 		}
409 
410 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: old_tsf=%llu, new_tsf=%llu, target_tsf=%llu, delta=%lld, bmiss=%d, remainder=%d\n",
411 		    __func__,
412 		    (unsigned long long) tsf_beacon_old,
413 		    (unsigned long long) tsf_beacon,
414 		    (unsigned long long) tsf_beacon_target,
415 		    (long long) tsf_delta,
416 		    tsf_delta_bmiss,
417 		    tsf_remainder);
418 
419 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: tsf=%llu, nexttbtt=%llu, delta=%d\n",
420 		    __func__,
421 		    (unsigned long long) tsf_beacon,
422 		    (unsigned long long) nexttbtt,
423 		    (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
424 
425 		if (sc->sc_syncbeacon &&
426 		    ni == vap->iv_bss &&
427 		    (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
428 			DPRINTF(sc, ATH_DEBUG_BEACON,
429 			    "%s: syncbeacon=1; syncing\n",
430 			    __func__);
431 			/*
432 			 * Resync beacon timers using the tsf of the beacon
433 			 * frame we just received.
434 			 */
435 			ath_beacon_config(sc, vap);
436 			sc->sc_syncbeacon = 0;
437 		}
438 
439 
440 		/* fall thru... */
441 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
442 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
443 		    vap->iv_state == IEEE80211_S_RUN) {
444 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
445 			uint64_t tsf = ath_extend_tsf(sc, rstamp,
446 				ath_hal_gettsf64(sc->sc_ah));
447 			/*
448 			 * Handle ibss merge as needed; check the tsf on the
449 			 * frame before attempting the merge.  The 802.11 spec
450 			 * says the station should change it's bssid to match
451 			 * the oldest station with the same ssid, where oldest
452 			 * is determined by the tsf.  Note that hardware
453 			 * reconfiguration happens through callback to
454 			 * ath_newstate as the state machine will go from
455 			 * RUN -> RUN when this happens.
456 			 */
457 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
458 				DPRINTF(sc, ATH_DEBUG_STATE,
459 				    "ibss merge, rstamp %u tsf %ju "
460 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
461 				    (uintmax_t)ni->ni_tstamp.tsf);
462 				(void) ieee80211_ibss_merge(ni);
463 			}
464 		}
465 		break;
466 	}
467 }
468 
469 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
470 static void
471 ath_rx_tap_vendor(struct ifnet *ifp, struct mbuf *m,
472     const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
473 {
474 	struct ath_softc *sc = ifp->if_softc;
475 
476 	/* Fill in the extension bitmap */
477 	sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
478 
479 	/* Fill in the vendor header */
480 	sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
481 	sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
482 	sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
483 
484 	/* XXX what should this be? */
485 	sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
486 	sc->sc_rx_th.wr_vh.vh_skip_len =
487 	    htole16(sizeof(struct ath_radiotap_vendor_hdr));
488 
489 	/* General version info */
490 	sc->sc_rx_th.wr_v.vh_version = 1;
491 
492 	sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
493 
494 	/* rssi */
495 	sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
496 	sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
497 	sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
498 	sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
499 	sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
500 	sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
501 
502 	/* evm */
503 	sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
504 	sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
505 	sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
506 	/* These are only populated from the AR9300 or later */
507 	sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
508 	sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
509 
510 	/* direction */
511 	sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
512 
513 	/* RX rate */
514 	sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
515 
516 	/* RX flags */
517 	sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
518 
519 	if (rs->rs_isaggr)
520 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
521 	if (rs->rs_moreaggr)
522 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
523 
524 	/* phyerr info */
525 	if (rs->rs_status & HAL_RXERR_PHY) {
526 		sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
527 		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
528 	} else {
529 		sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
530 	}
531 	sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
532 	sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
533 }
534 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
535 
536 static void
537 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
538 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
539 {
540 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
541 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
542 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
543 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
544 	struct ath_softc *sc = ifp->if_softc;
545 	const HAL_RATE_TABLE *rt;
546 	uint8_t rix;
547 
548 	rt = sc->sc_currates;
549 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
550 	rix = rt->rateCodeToIndex[rs->rs_rate];
551 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
552 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
553 #ifdef AH_SUPPORT_AR5416
554 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
555 	if (rs->rs_status & HAL_RXERR_PHY) {
556 		/*
557 		 * PHY error - make sure the channel flags
558 		 * reflect the actual channel configuration,
559 		 * not the received frame.
560 		 */
561 		if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
562 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
563 		else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
564 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
565 		else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
566 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
567 	} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
568 		struct ieee80211com *ic = ifp->if_l2com;
569 
570 		if ((rs->rs_flags & HAL_RX_2040) == 0)
571 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
572 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
573 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
574 		else
575 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
576 		if ((rs->rs_flags & HAL_RX_GI) == 0)
577 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
578 	}
579 
580 #endif
581 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
582 	if (rs->rs_status & HAL_RXERR_CRC)
583 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
584 	/* XXX propagate other error flags from descriptor */
585 	sc->sc_rx_th.wr_antnoise = nf;
586 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
587 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
588 #undef CHAN_HT
589 #undef CHAN_HT20
590 #undef CHAN_HT40U
591 #undef CHAN_HT40D
592 }
593 
594 static void
595 ath_handle_micerror(struct ieee80211com *ic,
596 	struct ieee80211_frame *wh, int keyix)
597 {
598 	struct ieee80211_node *ni;
599 
600 	/* XXX recheck MIC to deal w/ chips that lie */
601 	/* XXX discard MIC errors on !data frames */
602 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
603 	if (ni != NULL) {
604 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
605 		ieee80211_free_node(ni);
606 	}
607 }
608 
609 /*
610  * Process a single packet.
611  *
612  * The mbuf must already be synced, unmapped and removed from bf->bf_m
613  * by this stage.
614  *
615  * The mbuf must be consumed by this routine - either passed up the
616  * net80211 stack, put on the holding queue, or freed.
617  */
618 int
619 ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
620     uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
621     struct mbuf *m)
622 {
623 	uint64_t rstamp;
624 	int len, type;
625 	struct ifnet *ifp = sc->sc_ifp;
626 	struct ieee80211com *ic = ifp->if_l2com;
627 	struct ieee80211_node *ni;
628 	int is_good = 0;
629 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
630 
631 	/*
632 	 * Calculate the correct 64 bit TSF given
633 	 * the TSF64 register value and rs_tstamp.
634 	 */
635 	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
636 
637 	/* These aren't specifically errors */
638 #ifdef	AH_SUPPORT_AR5416
639 	if (rs->rs_flags & HAL_RX_GI)
640 		sc->sc_stats.ast_rx_halfgi++;
641 	if (rs->rs_flags & HAL_RX_2040)
642 		sc->sc_stats.ast_rx_2040++;
643 	if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
644 		sc->sc_stats.ast_rx_pre_crc_err++;
645 	if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
646 		sc->sc_stats.ast_rx_post_crc_err++;
647 	if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
648 		sc->sc_stats.ast_rx_decrypt_busy_err++;
649 	if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
650 		sc->sc_stats.ast_rx_hi_rx_chain++;
651 	if (rs->rs_flags & HAL_RX_STBC)
652 		sc->sc_stats.ast_rx_stbc++;
653 #endif /* AH_SUPPORT_AR5416 */
654 
655 	if (rs->rs_status != 0) {
656 		if (rs->rs_status & HAL_RXERR_CRC)
657 			sc->sc_stats.ast_rx_crcerr++;
658 		if (rs->rs_status & HAL_RXERR_FIFO)
659 			sc->sc_stats.ast_rx_fifoerr++;
660 		if (rs->rs_status & HAL_RXERR_PHY) {
661 			sc->sc_stats.ast_rx_phyerr++;
662 			/* Process DFS radar events */
663 			if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
664 			    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
665 				/* Now pass it to the radar processing code */
666 				ath_dfs_process_phy_err(sc, m, rstamp, rs);
667 			}
668 
669 			/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
670 			if (rs->rs_phyerr < 64)
671 				sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
672 			goto rx_error;	/* NB: don't count in ierrors */
673 		}
674 		if (rs->rs_status & HAL_RXERR_DECRYPT) {
675 			/*
676 			 * Decrypt error.  If the error occurred
677 			 * because there was no hardware key, then
678 			 * let the frame through so the upper layers
679 			 * can process it.  This is necessary for 5210
680 			 * parts which have no way to setup a ``clear''
681 			 * key cache entry.
682 			 *
683 			 * XXX do key cache faulting
684 			 */
685 			if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
686 				goto rx_accept;
687 			sc->sc_stats.ast_rx_badcrypt++;
688 		}
689 		/*
690 		 * Similar as above - if the failure was a keymiss
691 		 * just punt it up to the upper layers for now.
692 		 */
693 		if (rs->rs_status & HAL_RXERR_KEYMISS) {
694 			sc->sc_stats.ast_rx_keymiss++;
695 			goto rx_accept;
696 		}
697 		if (rs->rs_status & HAL_RXERR_MIC) {
698 			sc->sc_stats.ast_rx_badmic++;
699 			/*
700 			 * Do minimal work required to hand off
701 			 * the 802.11 header for notification.
702 			 */
703 			/* XXX frag's and qos frames */
704 			len = rs->rs_datalen;
705 			if (len >= sizeof (struct ieee80211_frame)) {
706 				ath_handle_micerror(ic,
707 				    mtod(m, struct ieee80211_frame *),
708 				    sc->sc_splitmic ?
709 					rs->rs_keyix-32 : rs->rs_keyix);
710 			}
711 		}
712 #if defined(__DragonFly__)
713 		++ifp->if_ierrors;
714 #else
715 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
716 #endif
717 rx_error:
718 		/*
719 		 * Cleanup any pending partial frame.
720 		 */
721 		if (re->m_rxpending != NULL) {
722 			m_freem(re->m_rxpending);
723 			re->m_rxpending = NULL;
724 		}
725 		/*
726 		 * When a tap is present pass error frames
727 		 * that have been requested.  By default we
728 		 * pass decrypt+mic errors but others may be
729 		 * interesting (e.g. crc).
730 		 */
731 		if (ieee80211_radiotap_active(ic) &&
732 		    (rs->rs_status & sc->sc_monpass)) {
733 			/* NB: bpf needs the mbuf length setup */
734 			len = rs->rs_datalen;
735 			m->m_pkthdr.len = m->m_len = len;
736 			ath_rx_tap(ifp, m, rs, rstamp, nf);
737 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
738 			ath_rx_tap_vendor(ifp, m, rs, rstamp, nf);
739 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
740 			ieee80211_radiotap_rx_all(ic, m);
741 		}
742 		/* XXX pass MIC errors up for s/w reclaculation */
743 		m_freem(m); m = NULL;
744 		goto rx_next;
745 	}
746 rx_accept:
747 	len = rs->rs_datalen;
748 	m->m_len = len;
749 
750 	if (rs->rs_more) {
751 		/*
752 		 * Frame spans multiple descriptors; save
753 		 * it for the next completed descriptor, it
754 		 * will be used to construct a jumbogram.
755 		 */
756 		if (re->m_rxpending != NULL) {
757 			/* NB: max frame size is currently 2 clusters */
758 			sc->sc_stats.ast_rx_toobig++;
759 			m_freem(re->m_rxpending);
760 		}
761 		m->m_pkthdr.rcvif = ifp;
762 		m->m_pkthdr.len = len;
763 		re->m_rxpending = m;
764 		m = NULL;
765 		goto rx_next;
766 	} else if (re->m_rxpending != NULL) {
767 		/*
768 		 * This is the second part of a jumbogram,
769 		 * chain it to the first mbuf, adjust the
770 		 * frame length, and clear the rxpending state.
771 		 */
772 		re->m_rxpending->m_next = m;
773 		re->m_rxpending->m_pkthdr.len += len;
774 		m = re->m_rxpending;
775 		re->m_rxpending = NULL;
776 	} else {
777 		/*
778 		 * Normal single-descriptor receive; setup
779 		 * the rcvif and packet length.
780 		 */
781 		m->m_pkthdr.rcvif = ifp;
782 		m->m_pkthdr.len = len;
783 	}
784 
785 	/*
786 	 * Validate rs->rs_antenna.
787 	 *
788 	 * Some users w/ AR9285 NICs have reported crashes
789 	 * here because rs_antenna field is bogusly large.
790 	 * Let's enforce the maximum antenna limit of 8
791 	 * (and it shouldn't be hard coded, but that's a
792 	 * separate problem) and if there's an issue, print
793 	 * out an error and adjust rs_antenna to something
794 	 * sensible.
795 	 *
796 	 * This code should be removed once the actual
797 	 * root cause of the issue has been identified.
798 	 * For example, it may be that the rs_antenna
799 	 * field is only valid for the lsat frame of
800 	 * an aggregate and it just happens that it is
801 	 * "mostly" right. (This is a general statement -
802 	 * the majority of the statistics are only valid
803 	 * for the last frame in an aggregate.
804 	 */
805 	if (rs->rs_antenna > 7) {
806 		device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
807 		    __func__, rs->rs_antenna);
808 #ifdef	ATH_DEBUG
809 		ath_printrxbuf(sc, bf, 0, status == HAL_OK);
810 #endif /* ATH_DEBUG */
811 		rs->rs_antenna = 0;	/* XXX better than nothing */
812 	}
813 
814 	/*
815 	 * If this is an AR9285/AR9485, then the receive and LNA
816 	 * configuration is stored in RSSI[2] / EXTRSSI[2].
817 	 * We can extract this out to build a much better
818 	 * receive antenna profile.
819 	 *
820 	 * Yes, this just blurts over the above RX antenna field
821 	 * for now.  It's fine, the AR9285 doesn't really use
822 	 * that.
823 	 *
824 	 * Later on we should store away the fine grained LNA
825 	 * information and keep separate counters just for
826 	 * that.  It'll help when debugging the AR9285/AR9485
827 	 * combined diversity code.
828 	 */
829 	if (sc->sc_rx_lnamixer) {
830 		rs->rs_antenna = 0;
831 
832 		/* Bits 0:1 - the LNA configuration used */
833 		rs->rs_antenna |=
834 		    ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
835 		      >> HAL_RX_LNA_CFG_USED_S);
836 
837 		/* Bit 2 - the external RX antenna switch */
838 		if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
839 			rs->rs_antenna |= 0x4;
840 	}
841 
842 #if defined(__DragonFly__)
843 	++ifp->if_ipackets;
844 #else
845 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
846 #endif
847 	sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
848 
849 	/*
850 	 * Populate the rx status block.  When there are bpf
851 	 * listeners we do the additional work to provide
852 	 * complete status.  Otherwise we fill in only the
853 	 * material required by ieee80211_input.  Note that
854 	 * noise setting is filled in above.
855 	 */
856 	if (ieee80211_radiotap_active(ic)) {
857 		ath_rx_tap(ifp, m, rs, rstamp, nf);
858 #ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
859 		ath_rx_tap_vendor(ifp, m, rs, rstamp, nf);
860 #endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
861 	}
862 
863 	/*
864 	 * From this point on we assume the frame is at least
865 	 * as large as ieee80211_frame_min; verify that.
866 	 */
867 	if (len < IEEE80211_MIN_LEN) {
868 		if (!ieee80211_radiotap_active(ic)) {
869 			DPRINTF(sc, ATH_DEBUG_RECV,
870 			    "%s: short packet %d\n", __func__, len);
871 			sc->sc_stats.ast_rx_tooshort++;
872 		} else {
873 			/* NB: in particular this captures ack's */
874 			ieee80211_radiotap_rx_all(ic, m);
875 		}
876 		m_freem(m); m = NULL;
877 		goto rx_next;
878 	}
879 
880 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
881 		const HAL_RATE_TABLE *rt = sc->sc_currates;
882 		uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
883 
884 		ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
885 		    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
886 	}
887 
888 	m_adj(m, -IEEE80211_CRC_LEN);
889 
890 	/*
891 	 * Locate the node for sender, track state, and then
892 	 * pass the (referenced) node up to the 802.11 layer
893 	 * for its use.
894 	 */
895 	ni = ieee80211_find_rxnode_withkey(ic,
896 		mtod(m, const struct ieee80211_frame_min *),
897 		rs->rs_keyix == HAL_RXKEYIX_INVALID ?
898 			IEEE80211_KEYIX_NONE : rs->rs_keyix);
899 	sc->sc_lastrs = rs;
900 
901 #ifdef	AH_SUPPORT_AR5416
902 	if (rs->rs_isaggr)
903 		sc->sc_stats.ast_rx_agg++;
904 #endif /* AH_SUPPORT_AR5416 */
905 
906 	if (ni != NULL) {
907 		/*
908 		 * Only punt packets for ampdu reorder processing for
909 		 * 11n nodes; net80211 enforces that M_AMPDU is only
910 		 * set for 11n nodes.
911 		 */
912 		if (ni->ni_flags & IEEE80211_NODE_HT)
913 			m->m_flags |= M_AMPDU;
914 
915 		/*
916 		 * Sending station is known, dispatch directly.
917 		 */
918 		type = ieee80211_input(ni, m, rs->rs_rssi, nf);
919 		ieee80211_free_node(ni);
920 		m = NULL;
921 		/*
922 		 * Arrange to update the last rx timestamp only for
923 		 * frames from our ap when operating in station mode.
924 		 * This assumes the rx key is always setup when
925 		 * associated.
926 		 */
927 		if (ic->ic_opmode == IEEE80211_M_STA &&
928 		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
929 			is_good = 1;
930 	} else {
931 		type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
932 		m = NULL;
933 	}
934 
935 	/*
936 	 * At this point we have passed the frame up the stack; thus
937 	 * the mbuf is no longer ours.
938 	 */
939 
940 	/*
941 	 * Track rx rssi and do any rx antenna management.
942 	 */
943 	ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
944 	if (sc->sc_diversity) {
945 		/*
946 		 * When using fast diversity, change the default rx
947 		 * antenna if diversity chooses the other antenna 3
948 		 * times in a row.
949 		 */
950 		if (sc->sc_defant != rs->rs_antenna) {
951 			if (++sc->sc_rxotherant >= 3)
952 				ath_setdefantenna(sc, rs->rs_antenna);
953 		} else
954 			sc->sc_rxotherant = 0;
955 	}
956 
957 	/* Handle slow diversity if enabled */
958 	if (sc->sc_dolnadiv) {
959 		ath_lna_rx_comb_scan(sc, rs, ticks, hz);
960 	}
961 
962 	if (sc->sc_softled) {
963 		/*
964 		 * Blink for any data frame.  Otherwise do a
965 		 * heartbeat-style blink when idle.  The latter
966 		 * is mainly for station mode where we depend on
967 		 * periodic beacon frames to trigger the poll event.
968 		 */
969 		if (type == IEEE80211_FC0_TYPE_DATA) {
970 			const HAL_RATE_TABLE *rt = sc->sc_currates;
971 			ath_led_event(sc,
972 			    rt->rateCodeToIndex[rs->rs_rate]);
973 		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
974 			ath_led_event(sc, 0);
975 		}
976 rx_next:
977 	/*
978 	 * Debugging - complain if we didn't NULL the mbuf pointer
979 	 * here.
980 	 */
981 	if (m != NULL) {
982 		device_printf(sc->sc_dev,
983 		    "%s: mbuf %p should've been freed!\n",
984 		    __func__,
985 		    m);
986 	}
987 	return (is_good);
988 }
989 
990 #define	ATH_RX_MAX		128
991 
992 /*
993  * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
994  * the EDMA code does.
995  *
996  * XXX TODO: then, do all of the RX list management stuff inside
997  * ATH_RX_LOCK() so we don't end up potentially racing.  The EDMA
998  * code is doing it right.
999  */
1000 static void
1001 ath_rx_proc(struct ath_softc *sc, int resched)
1002 {
1003 #define	PA2DESC(_sc, _pa) \
1004 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1005 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1006 	struct ath_buf *bf;
1007 	struct ifnet *ifp = sc->sc_ifp;
1008 	struct ath_hal *ah = sc->sc_ah;
1009 #ifdef IEEE80211_SUPPORT_SUPERG
1010 	struct ieee80211com *ic = ifp->if_l2com;
1011 #endif
1012 	struct ath_desc *ds;
1013 	struct ath_rx_status *rs;
1014 	struct mbuf *m;
1015 	int ngood;
1016 	HAL_STATUS status;
1017 	int16_t nf;
1018 	u_int64_t tsf;
1019 	int npkts = 0;
1020 	int kickpcu = 0;
1021 	int ret;
1022 
1023 	/* XXX we must not hold the ATH_LOCK here */
1024 	ATH_UNLOCK_ASSERT(sc);
1025 	ATH_PCU_UNLOCK_ASSERT(sc);
1026 
1027 	ATH_PCU_LOCK(sc);
1028 	sc->sc_rxproc_cnt++;
1029 	kickpcu = sc->sc_kickpcu;
1030 	ATH_PCU_UNLOCK(sc);
1031 
1032 	ATH_LOCK(sc);
1033 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1034 	ATH_UNLOCK(sc);
1035 
1036 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
1037 	ngood = 0;
1038 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
1039 	sc->sc_stats.ast_rx_noise = nf;
1040 	tsf = ath_hal_gettsf64(ah);
1041 	do {
1042 		/*
1043 		 * Don't process too many packets at a time; give the
1044 		 * TX thread time to also run - otherwise the TX
1045 		 * latency can jump by quite a bit, causing throughput
1046 		 * degredation.
1047 		 */
1048 		if (!kickpcu && npkts >= ATH_RX_MAX)
1049 			break;
1050 
1051 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1052 		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
1053 			if_printf(ifp, "%s: no buffer!\n", __func__);
1054 			break;
1055 		} else if (bf == NULL) {
1056 			/*
1057 			 * End of List:
1058 			 * this can happen for non-self-linked RX chains
1059 			 */
1060 			sc->sc_stats.ast_rx_hitqueueend++;
1061 			break;
1062 		}
1063 		m = bf->bf_m;
1064 		if (m == NULL) {		/* NB: shouldn't happen */
1065 			/*
1066 			 * If mbuf allocation failed previously there
1067 			 * will be no mbuf; try again to re-populate it.
1068 			 */
1069 			/* XXX make debug msg */
1070 			if_printf(ifp, "%s: no mbuf!\n", __func__);
1071 			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1072 			goto rx_proc_next;
1073 		}
1074 		ds = bf->bf_desc;
1075 		if (ds->ds_link == bf->bf_daddr) {
1076 			/* NB: never process the self-linked entry at the end */
1077 			sc->sc_stats.ast_rx_hitqueueend++;
1078 			break;
1079 		}
1080 		/* XXX sync descriptor memory */
1081 		/*
1082 		 * Must provide the virtual address of the current
1083 		 * descriptor, the physical address, and the virtual
1084 		 * address of the next descriptor in the h/w chain.
1085 		 * This allows the HAL to look ahead to see if the
1086 		 * hardware is done with a descriptor by checking the
1087 		 * done bit in the following descriptor and the address
1088 		 * of the current descriptor the DMA engine is working
1089 		 * on.  All this is necessary because of our use of
1090 		 * a self-linked list to avoid rx overruns.
1091 		 */
1092 		rs = &bf->bf_status.ds_rxstat;
1093 		status = ath_hal_rxprocdesc(ah, ds,
1094 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1095 #ifdef ATH_DEBUG
1096 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
1097 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
1098 #endif
1099 
1100 #ifdef	ATH_DEBUG_ALQ
1101 		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
1102 		    if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
1103 		    sc->sc_rx_statuslen, (char *) ds);
1104 #endif	/* ATH_DEBUG_ALQ */
1105 
1106 		if (status == HAL_EINPROGRESS)
1107 			break;
1108 
1109 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1110 		npkts++;
1111 
1112 		/*
1113 		 * Process a single frame.
1114 		 */
1115 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
1116 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1117 		bf->bf_m = NULL;
1118 		if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
1119 			ngood++;
1120 rx_proc_next:
1121 		/*
1122 		 * If there's a holding buffer, insert that onto
1123 		 * the RX list; the hardware is now definitely not pointing
1124 		 * to it now.
1125 		 */
1126 		ret = 0;
1127 		if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
1128 			TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
1129 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
1130 			    bf_list);
1131 			ret = ath_rxbuf_init(sc,
1132 			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
1133 		}
1134 		/*
1135 		 * Next, throw our buffer into the holding entry.  The hardware
1136 		 * may use the descriptor to read the link pointer before
1137 		 * DMAing the next descriptor in to write out a packet.
1138 		 */
1139 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
1140 	} while (ret == 0);
1141 
1142 	/* rx signal state monitoring */
1143 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1144 	if (ngood)
1145 		sc->sc_lastrx = tsf;
1146 
1147 	ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1148 	/* Queue DFS tasklet if needed */
1149 	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1150 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1151 
1152 	/*
1153 	 * Now that all the RX frames were handled that
1154 	 * need to be handled, kick the PCU if there's
1155 	 * been an RXEOL condition.
1156 	 */
1157 	if (resched && kickpcu) {
1158 		ATH_PCU_LOCK(sc);
1159 		ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1160 		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1161 		    __func__, npkts);
1162 
1163 		/*
1164 		 * Go through the process of fully tearing down
1165 		 * the RX buffers and reinitialising them.
1166 		 *
1167 		 * There's a hardware bug that causes the RX FIFO
1168 		 * to get confused under certain conditions and
1169 		 * constantly write over the same frame, leading
1170 		 * the RX driver code here to get heavily confused.
1171 		 */
1172 		/*
1173 		 * XXX Has RX DMA stopped enough here to just call
1174 		 *     ath_startrecv()?
1175 		 * XXX Do we need to use the holding buffer to restart
1176 		 *     RX DMA by appending entries to the final
1177 		 *     descriptor?  Quite likely.
1178 		 */
1179 #if 1
1180 		ath_startrecv(sc);
1181 #else
1182 		/*
1183 		 * Disabled for now - it'd be nice to be able to do
1184 		 * this in order to limit the amount of CPU time spent
1185 		 * reinitialising the RX side (and thus minimise RX
1186 		 * drops) however there's a hardware issue that
1187 		 * causes things to get too far out of whack.
1188 		 */
1189 		/*
1190 		 * XXX can we hold the PCU lock here?
1191 		 * Are there any net80211 buffer calls involved?
1192 		 */
1193 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1194 		ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1195 		ath_hal_rxena(ah);		/* enable recv descriptors */
1196 		ath_mode_init(sc);		/* set filters, etc. */
1197 		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1198 #endif
1199 
1200 		ath_hal_intrset(ah, sc->sc_imask);
1201 		sc->sc_kickpcu = 0;
1202 		ATH_PCU_UNLOCK(sc);
1203 	}
1204 
1205 	/* XXX check this inside of IF_LOCK? */
1206 #if defined(__DragonFly__)
1207 	if (resched && !ifq_is_oactive(&ifp->if_snd)) {
1208 #else
1209 	if (resched && (ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
1210 #endif
1211 #ifdef IEEE80211_SUPPORT_SUPERG
1212 		ieee80211_ff_age_all(ic, 100);
1213 #endif
1214 #if defined(__DragonFly__)
1215 		if (!ifq_is_empty(&ifp->if_snd))
1216 			ath_tx_kick(sc);
1217 #else
1218 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1219 			ath_tx_kick(sc);
1220 #endif
1221 	}
1222 #undef PA2DESC
1223 
1224 	/*
1225 	 * Put the hardware to sleep again if we're done with it.
1226 	 */
1227 	ATH_LOCK(sc);
1228 	ath_power_restore_power_state(sc);
1229 	ATH_UNLOCK(sc);
1230 
1231 	/*
1232 	 * If we hit the maximum number of frames in this round,
1233 	 * reschedule for another immediate pass.  This gives
1234 	 * the TX and TX completion routines time to run, which
1235 	 * will reduce latency.
1236 	 */
1237 	if (npkts >= ATH_RX_MAX)
1238 		sc->sc_rx.recv_sched(sc, resched);
1239 
1240 	ATH_PCU_LOCK(sc);
1241 	sc->sc_rxproc_cnt--;
1242 	ATH_PCU_UNLOCK(sc);
1243 }
1244 
1245 #undef	ATH_RX_MAX
1246 
1247 /*
1248  * Only run the RX proc if it's not already running.
1249  * Since this may get run as part of the reset/flush path,
1250  * the task can't clash with an existing, running tasklet.
1251  */
1252 static void
1253 ath_legacy_rx_tasklet(void *arg, int npending)
1254 {
1255 	struct ath_softc *sc = arg;
1256 
1257 	ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1258 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1259 	ATH_PCU_LOCK(sc);
1260 	if (sc->sc_inreset_cnt > 0) {
1261 		device_printf(sc->sc_dev,
1262 		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1263 		ATH_PCU_UNLOCK(sc);
1264 		return;
1265 	}
1266 	ATH_PCU_UNLOCK(sc);
1267 
1268 	ath_rx_proc(sc, 1);
1269 }
1270 
1271 static void
1272 ath_legacy_flushrecv(struct ath_softc *sc)
1273 {
1274 
1275 	ath_rx_proc(sc, 0);
1276 }
1277 
1278 static void
1279 ath_legacy_flush_rxpending(struct ath_softc *sc)
1280 {
1281 
1282 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1283 
1284 	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1285 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1286 		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1287 	}
1288 	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1289 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1290 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1291 	}
1292 }
1293 
1294 static int
1295 ath_legacy_flush_rxholdbf(struct ath_softc *sc)
1296 {
1297 	struct ath_buf *bf;
1298 
1299 	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1300 	/*
1301 	 * If there are RX holding buffers, free them here and return
1302 	 * them to the list.
1303 	 *
1304 	 * XXX should just verify that bf->bf_m is NULL, as it must
1305 	 * be at this point!
1306 	 */
1307 	bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
1308 	if (bf != NULL) {
1309 		if (bf->bf_m != NULL)
1310 			m_freem(bf->bf_m);
1311 		bf->bf_m = NULL;
1312 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1313 		(void) ath_rxbuf_init(sc, bf);
1314 	}
1315 	sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
1316 
1317 	bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
1318 	if (bf != NULL) {
1319 		if (bf->bf_m != NULL)
1320 			m_freem(bf->bf_m);
1321 		bf->bf_m = NULL;
1322 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1323 		(void) ath_rxbuf_init(sc, bf);
1324 	}
1325 	sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
1326 
1327 	return (0);
1328 }
1329 
1330 /*
1331  * Disable the receive h/w in preparation for a reset.
1332  */
1333 static void
1334 ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1335 {
1336 #define	PA2DESC(_sc, _pa) \
1337 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1338 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1339 	struct ath_hal *ah = sc->sc_ah;
1340 
1341 	ATH_RX_LOCK(sc);
1342 
1343 	ath_hal_stoppcurecv(ah);	/* disable PCU */
1344 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
1345 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
1346 	/*
1347 	 * TODO: see if this particular DELAY() is required; it may be
1348 	 * masking some missing FIFO flush or DMA sync.
1349 	 */
1350 #if 0
1351 	if (dodelay)
1352 #endif
1353 		DELAY(3000);		/* 3ms is long enough for 1 frame */
1354 #ifdef ATH_DEBUG
1355 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1356 		struct ath_buf *bf;
1357 		u_int ix;
1358 
1359 		device_printf(sc->sc_dev,
1360 		    "%s: rx queue %p, link %p\n",
1361 		    __func__,
1362 		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1363 		    sc->sc_rxlink);
1364 		ix = 0;
1365 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1366 			struct ath_desc *ds = bf->bf_desc;
1367 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1368 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1369 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1370 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1371 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1372 			ix++;
1373 		}
1374 	}
1375 #endif
1376 
1377 	(void) ath_legacy_flush_rxpending(sc);
1378 	(void) ath_legacy_flush_rxholdbf(sc);
1379 
1380 	sc->sc_rxlink = NULL;		/* just in case */
1381 
1382 	ATH_RX_UNLOCK(sc);
1383 #undef PA2DESC
1384 }
1385 
1386 /*
1387  * XXX TODO: something was calling startrecv without calling
1388  * stoprecv.  Let's figure out what/why.  It was showing up
1389  * as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
1390  */
1391 
1392 /*
1393  * Enable the receive h/w following a reset.
1394  */
1395 static int
1396 ath_legacy_startrecv(struct ath_softc *sc)
1397 {
1398 	struct ath_hal *ah = sc->sc_ah;
1399 	struct ath_buf *bf;
1400 
1401 	ATH_RX_LOCK(sc);
1402 
1403 	/*
1404 	 * XXX should verify these are already all NULL!
1405 	 */
1406 	sc->sc_rxlink = NULL;
1407 	(void) ath_legacy_flush_rxpending(sc);
1408 	(void) ath_legacy_flush_rxholdbf(sc);
1409 
1410 	/*
1411 	 * Re-chain all of the buffers in the RX buffer list.
1412 	 */
1413 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1414 		int error = ath_rxbuf_init(sc, bf);
1415 		if (error != 0) {
1416 			DPRINTF(sc, ATH_DEBUG_RECV,
1417 				"%s: ath_rxbuf_init failed %d\n",
1418 				__func__, error);
1419 			return error;
1420 		}
1421 	}
1422 
1423 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
1424 	ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1425 	ath_hal_rxena(ah);		/* enable recv descriptors */
1426 	ath_mode_init(sc);		/* set filters, etc. */
1427 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1428 
1429 	ATH_RX_UNLOCK(sc);
1430 	return 0;
1431 }
1432 
1433 static int
1434 ath_legacy_dma_rxsetup(struct ath_softc *sc)
1435 {
1436 	int error;
1437 
1438 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1439 	    "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1440 	if (error != 0)
1441 		return (error);
1442 
1443 	return (0);
1444 }
1445 
1446 static int
1447 ath_legacy_dma_rxteardown(struct ath_softc *sc)
1448 {
1449 
1450 	if (sc->sc_rxdma.dd_desc_len != 0)
1451 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1452 	return (0);
1453 }
1454 
1455 static void
1456 ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1457 {
1458 
1459 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1460 }
1461 
1462 static void
1463 ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1464     int dosched)
1465 {
1466 
1467 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1468 }
1469 
1470 void
1471 ath_recv_setup_legacy(struct ath_softc *sc)
1472 {
1473 
1474 	/* Sensible legacy defaults */
1475 	/*
1476 	 * XXX this should be changed to properly support the
1477 	 * exact RX descriptor size for each HAL.
1478 	 */
1479 	sc->sc_rx_statuslen = sizeof(struct ath_desc);
1480 
1481 	sc->sc_rx.recv_start = ath_legacy_startrecv;
1482 	sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1483 	sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1484 	sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1485 	sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1486 
1487 	sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1488 	sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1489 	sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1490 	sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1491 }
1492