xref: /dragonfly/sys/dev/netif/ath/ath/if_ath_rx_edma.c (revision 0db87cb7)
1 /*-
2  * Copyright (c) 2012 Adrian Chadd <adrian@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43  * This is needed for register operations which are performed
44  * by the driver - eg, calls to ath_hal_gettsf32().
45  *
46  * It's also required for any AH_DEBUG checks in here, eg the
47  * module dependencies.
48  */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 
72 #include <net/if.h>
73 #include <net/if_var.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_types.h>
77 #include <net/if_arp.h>
78 #include <net/ethernet.h>
79 #include <net/if_llc.h>
80 #include <net/ifq_var.h>
81 
82 #include <netproto/802_11/ieee80211_var.h>
83 #include <netproto/802_11/ieee80211_regdomain.h>
84 #ifdef IEEE80211_SUPPORT_SUPERG
85 #include <netproto/802_11/ieee80211_superg.h>
86 #endif
87 #ifdef IEEE80211_SUPPORT_TDMA
88 #include <netproto/802_11/ieee80211_tdma.h>
89 #endif
90 
91 #include <net/bpf.h>
92 
93 #ifdef INET
94 #include <netinet/in.h>
95 #include <netinet/if_ether.h>
96 #endif
97 
98 #include <dev/netif/ath/ath/if_athvar.h>
99 #include <dev/netif/ath/ath_hal/ah_devid.h>		/* XXX for softled */
100 #include <dev/netif/ath/ath_hal/ah_diagcodes.h>
101 
102 #include <dev/netif/ath/ath/if_ath_debug.h>
103 #include <dev/netif/ath/ath/if_ath_misc.h>
104 #include <dev/netif/ath/ath/if_ath_tsf.h>
105 #include <dev/netif/ath/ath/if_ath_tx.h>
106 #include <dev/netif/ath/ath/if_ath_sysctl.h>
107 #include <dev/netif/ath/ath/if_ath_led.h>
108 #include <dev/netif/ath/ath/if_ath_keycache.h>
109 #include <dev/netif/ath/ath/if_ath_rx.h>
110 #include <dev/netif/ath/ath/if_ath_beacon.h>
111 #include <dev/netif/ath/ath/if_athdfs.h>
112 
113 #ifdef ATH_TX99_DIAG
114 #include <dev/netif/ath/ath_tx99/ath_tx99.h>
115 #endif
116 
117 #include <dev/netif/ath/ath/if_ath_rx_edma.h>
118 
119 #ifdef	ATH_DEBUG_ALQ
120 #include <dev/netif/ath/ath/if_ath_alq.h>
121 #endif
122 
123 /*
124  * some general macros
125   */
126 #define	INCR(_l, _sz)		(_l) ++; (_l) &= ((_sz) - 1)
127 #define	DECR(_l, _sz)		(_l) --; (_l) &= ((_sz) - 1)
128 
129 MALLOC_DECLARE(M_ATHDEV);
130 
131 /*
132  * XXX TODO:
133  *
134  * + Make sure the FIFO is correctly flushed and reinitialised
135  *   through a reset;
136  * + Verify multi-descriptor frames work!
137  * + There's a "memory use after free" which needs to be tracked down
138  *   and fixed ASAP.  I've seen this in the legacy path too, so it
139  *   may be a generic RX path issue.
140  */
141 
142 /*
143  * XXX shuffle the function orders so these pre-declarations aren't
144  * required!
145  */
146 static	int ath_edma_rxfifo_alloc(struct ath_softc *sc, HAL_RX_QUEUE qtype,
147 	    int nbufs);
148 static	int ath_edma_rxfifo_flush(struct ath_softc *sc, HAL_RX_QUEUE qtype);
149 static	void ath_edma_rxbuf_free(struct ath_softc *sc, struct ath_buf *bf);
150 static	void ath_edma_recv_proc_queue(struct ath_softc *sc,
151 	    HAL_RX_QUEUE qtype, int dosched);
152 static	int ath_edma_recv_proc_deferred_queue(struct ath_softc *sc,
153 	    HAL_RX_QUEUE qtype, int dosched);
154 
155 static void
156 ath_edma_stoprecv(struct ath_softc *sc, int dodelay)
157 {
158 	struct ath_hal *ah = sc->sc_ah;
159 
160 	ATH_RX_LOCK(sc);
161 
162 	ath_hal_stoppcurecv(ah);
163 	ath_hal_setrxfilter(ah, 0);
164 
165 	/*
166 	 *
167 	 */
168 	if (ath_hal_stopdmarecv(ah) == AH_TRUE)
169 		sc->sc_rx_stopped = 1;
170 
171 	/*
172 	 * Give the various bus FIFOs (not EDMA descriptor FIFO)
173 	 * time to finish flushing out data.
174 	 */
175 	DELAY(3000);
176 
177 	/* Flush RX pending for each queue */
178 	/* XXX should generic-ify this */
179 	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending) {
180 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
181 		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
182 	}
183 
184 	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending) {
185 		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
186 		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
187 	}
188 	ATH_RX_UNLOCK(sc);
189 }
190 
191 /*
192  * Re-initialise the FIFO given the current buffer contents.
193  * Specifically, walk from head -> tail, pushing the FIFO contents
194  * back into the FIFO.
195  */
196 static void
197 ath_edma_reinit_fifo(struct ath_softc *sc, HAL_RX_QUEUE qtype)
198 {
199 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
200 	struct ath_buf *bf;
201 	int i, j;
202 
203 	ATH_RX_LOCK_ASSERT(sc);
204 
205 	i = re->m_fifo_head;
206 	for (j = 0; j < re->m_fifo_depth; j++) {
207 		bf = re->m_fifo[i];
208 		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
209 		    "%s: Q%d: pos=%i, addr=0x%jx\n",
210 		    __func__,
211 		    qtype,
212 		    i,
213 		    (uintmax_t)bf->bf_daddr);
214 		ath_hal_putrxbuf(sc->sc_ah, bf->bf_daddr, qtype);
215 		INCR(i, re->m_fifolen);
216 	}
217 
218 	/* Ensure this worked out right */
219 	if (i != re->m_fifo_tail) {
220 		device_printf(sc->sc_dev, "%s: i (%d) != tail! (%d)\n",
221 		    __func__,
222 		    i,
223 		    re->m_fifo_tail);
224 	}
225 }
226 
227 /*
228  * Start receive.
229  */
230 static int
231 ath_edma_startrecv(struct ath_softc *sc)
232 {
233 	struct ath_hal *ah = sc->sc_ah;
234 
235 	ATH_RX_LOCK(sc);
236 
237 	/*
238 	 * Sanity check - are we being called whilst RX
239 	 * isn't stopped?  If so, we may end up pushing
240 	 * too many entries into the RX FIFO and
241 	 * badness occurs.
242 	 */
243 
244 	/* Enable RX FIFO */
245 	ath_hal_rxena(ah);
246 
247 	/*
248 	 * In theory the hardware has been initialised, right?
249 	 */
250 	if (sc->sc_rx_resetted == 1) {
251 		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
252 		    "%s: Re-initing HP FIFO\n", __func__);
253 		ath_edma_reinit_fifo(sc, HAL_RX_QUEUE_HP);
254 		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
255 		    "%s: Re-initing LP FIFO\n", __func__);
256 		ath_edma_reinit_fifo(sc, HAL_RX_QUEUE_LP);
257 		sc->sc_rx_resetted = 0;
258 	} else {
259 		device_printf(sc->sc_dev,
260 		    "%s: called without resetting chip?\n",
261 		    __func__);
262 	}
263 
264 	/* Add up to m_fifolen entries in each queue */
265 	/*
266 	 * These must occur after the above write so the FIFO buffers
267 	 * are pushed/tracked in the same order as the hardware will
268 	 * process them.
269 	 *
270 	 * XXX TODO: is this really necessary? We should've stopped
271 	 * the hardware already and reinitialised it, so it's a no-op.
272 	 */
273 	ath_edma_rxfifo_alloc(sc, HAL_RX_QUEUE_HP,
274 	    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_fifolen);
275 
276 	ath_edma_rxfifo_alloc(sc, HAL_RX_QUEUE_LP,
277 	    sc->sc_rxedma[HAL_RX_QUEUE_LP].m_fifolen);
278 
279 	ath_mode_init(sc);
280 	ath_hal_startpcurecv(ah);
281 
282 	/*
283 	 * We're now doing RX DMA!
284 	 */
285 	sc->sc_rx_stopped = 0;
286 
287 	ATH_RX_UNLOCK(sc);
288 
289 	return (0);
290 }
291 
292 static void
293 ath_edma_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
294     int dosched)
295 {
296 
297 	ATH_LOCK(sc);
298 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
299 	ATH_UNLOCK(sc);
300 
301 	ath_edma_recv_proc_queue(sc, qtype, dosched);
302 
303 	ATH_LOCK(sc);
304 	ath_power_restore_power_state(sc);
305 	ATH_UNLOCK(sc);
306 
307 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
308 }
309 
310 static void
311 ath_edma_recv_sched(struct ath_softc *sc, int dosched)
312 {
313 
314 	ATH_LOCK(sc);
315 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
316 	ATH_UNLOCK(sc);
317 
318 	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, dosched);
319 	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, dosched);
320 
321 	ATH_LOCK(sc);
322 	ath_power_restore_power_state(sc);
323 	ATH_UNLOCK(sc);
324 
325 	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
326 }
327 
328 static void
329 ath_edma_recv_flush(struct ath_softc *sc)
330 {
331 
332 	DPRINTF(sc, ATH_DEBUG_RECV, "%s: called\n", __func__);
333 
334 	ATH_PCU_LOCK(sc);
335 	sc->sc_rxproc_cnt++;
336 	ATH_PCU_UNLOCK(sc);
337 
338 	ATH_LOCK(sc);
339 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
340 	ATH_UNLOCK(sc);
341 
342 	/*
343 	 * Flush any active frames from FIFO -> deferred list
344 	 */
345 	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, 0);
346 	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, 0);
347 
348 	/*
349 	 * Process what's in the deferred queue
350 	 */
351 	/*
352 	 * XXX: If we read the tsf/channoise here and then pass it in,
353 	 * we could restore the power state before processing
354 	 * the deferred queue.
355 	 */
356 	ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_HP, 0);
357 	ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_LP, 0);
358 
359 	ATH_LOCK(sc);
360 	ath_power_restore_power_state(sc);
361 	ATH_UNLOCK(sc);
362 
363 	ATH_PCU_LOCK(sc);
364 	sc->sc_rxproc_cnt--;
365 	ATH_PCU_UNLOCK(sc);
366 }
367 
368 /*
369  * Process frames from the current queue into the deferred queue.
370  */
371 static void
372 ath_edma_recv_proc_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
373     int dosched)
374 {
375 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
376 	struct ath_rx_status *rs;
377 	struct ath_desc *ds;
378 	struct ath_buf *bf;
379 	struct mbuf *m;
380 	struct ath_hal *ah = sc->sc_ah;
381 	uint64_t tsf;
382 	uint16_t nf;
383 	int npkts = 0;
384 
385 	tsf = ath_hal_gettsf64(ah);
386 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
387 	sc->sc_stats.ast_rx_noise = nf;
388 
389 	ATH_RX_LOCK(sc);
390 
391 #if 1
392 	if (sc->sc_rx_resetted == 1) {
393 		/*
394 		 * XXX We shouldn't ever be scheduled if
395 		 * receive has been stopped - so complain
396 		 * loudly!
397 		 */
398 		device_printf(sc->sc_dev,
399 		    "%s: sc_rx_resetted=1! Bad!\n",
400 		    __func__);
401 		ATH_RX_UNLOCK(sc);
402 		return;
403 	}
404 #endif
405 
406 	do {
407 		bf = re->m_fifo[re->m_fifo_head];
408 		/* This shouldn't occur! */
409 		if (bf == NULL) {
410 			device_printf(sc->sc_dev, "%s: Q%d: NULL bf?\n",
411 			    __func__,
412 			    qtype);
413 			break;
414 		}
415 		m = bf->bf_m;
416 		ds = bf->bf_desc;
417 
418 		/*
419 		 * Sync descriptor memory - this also syncs the buffer for us.
420 		 * EDMA descriptors are in cached memory.
421 		 */
422 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
423 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
424 		rs = &bf->bf_status.ds_rxstat;
425 		bf->bf_rxstatus = ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
426 		    NULL, rs);
427 #ifdef	ATH_DEBUG
428 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
429 			ath_printrxbuf(sc, bf, 0, bf->bf_rxstatus == HAL_OK);
430 #endif /* ATH_DEBUG */
431 #ifdef	ATH_DEBUG_ALQ
432 		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
433 			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
434 			    sc->sc_rx_statuslen, (char *) ds);
435 #endif /* ATH_DEBUG */
436 		if (bf->bf_rxstatus == HAL_EINPROGRESS)
437 			break;
438 
439 		/*
440 		 * Completed descriptor.
441 		 */
442 		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
443 		    "%s: Q%d: completed!\n", __func__, qtype);
444 		npkts++;
445 
446 		/*
447 		 * We've been synced already, so unmap.
448 		 */
449 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
450 
451 		/*
452 		 * Remove the FIFO entry and place it on the completion
453 		 * queue.
454 		 */
455 		re->m_fifo[re->m_fifo_head] = NULL;
456 		TAILQ_INSERT_TAIL(&sc->sc_rx_rxlist[qtype], bf, bf_list);
457 
458 		/* Bump the descriptor FIFO stats */
459 		INCR(re->m_fifo_head, re->m_fifolen);
460 		re->m_fifo_depth--;
461 		/* XXX check it doesn't fall below 0 */
462 	} while (re->m_fifo_depth > 0);
463 
464 	/* Append some more fresh frames to the FIFO */
465 	if (dosched)
466 		ath_edma_rxfifo_alloc(sc, qtype, re->m_fifolen);
467 
468 	ATH_RX_UNLOCK(sc);
469 
470 	/* rx signal state monitoring */
471 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
472 
473 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1,
474 	    "ath edma rx proc: npkts=%d\n",
475 	    npkts);
476 
477 	return;
478 }
479 
480 /*
481  * Flush the deferred queue.
482  *
483  * This destructively flushes the deferred queue - it doesn't
484  * call the wireless stack on each mbuf.
485  */
486 static void
487 ath_edma_flush_deferred_queue(struct ath_softc *sc)
488 {
489 	struct ath_buf *bf;
490 
491 	ATH_RX_LOCK_ASSERT(sc);
492 
493 	/* Free in one set, inside the lock */
494 	while (! TAILQ_EMPTY(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP])) {
495 		bf = TAILQ_FIRST(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
496 		TAILQ_REMOVE(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP], bf, bf_list);
497 		/* Free the buffer/mbuf */
498 		ath_edma_rxbuf_free(sc, bf);
499 	}
500 	while (! TAILQ_EMPTY(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP])) {
501 		bf = TAILQ_FIRST(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
502 		TAILQ_REMOVE(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP], bf, bf_list);
503 		/* Free the buffer/mbuf */
504 		ath_edma_rxbuf_free(sc, bf);
505 	}
506 }
507 
508 static int
509 ath_edma_recv_proc_deferred_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
510     int dosched)
511 {
512 	int ngood = 0;
513 	uint64_t tsf;
514 	struct ath_buf *bf, *next;
515 	struct ath_rx_status *rs;
516 	int16_t nf;
517 	ath_bufhead rxlist;
518 	struct mbuf *m;
519 
520 	TAILQ_INIT(&rxlist);
521 
522 	nf = ath_hal_getchannoise(sc->sc_ah, sc->sc_curchan);
523 	/*
524 	 * XXX TODO: the NF/TSF should be stamped on the bufs themselves,
525 	 * otherwise we may end up adding in the wrong values if this
526 	 * is delayed too far..
527 	 */
528 	tsf = ath_hal_gettsf64(sc->sc_ah);
529 
530 	/* Copy the list over */
531 	ATH_RX_LOCK(sc);
532 	TAILQ_CONCAT(&rxlist, &sc->sc_rx_rxlist[qtype], bf_list);
533 	ATH_RX_UNLOCK(sc);
534 
535 	/* Handle the completed descriptors */
536 	/*
537 	 * XXX is this SAFE call needed? The ath_buf entries
538 	 * aren't modified by ath_rx_pkt, right?
539 	 */
540 	TAILQ_FOREACH_SAFE(bf, &rxlist, bf_list, next) {
541 		/*
542 		 * Skip the RX descriptor status - start at the data offset
543 		 */
544 		m_adj(bf->bf_m, sc->sc_rx_statuslen);
545 
546 		/* Handle the frame */
547 
548 		rs = &bf->bf_status.ds_rxstat;
549 		m = bf->bf_m;
550 		bf->bf_m = NULL;
551 		if (ath_rx_pkt(sc, rs, bf->bf_rxstatus, tsf, nf, qtype, bf, m))
552 			ngood++;
553 	}
554 
555 	if (ngood) {
556 		sc->sc_lastrx = tsf;
557 	}
558 
559 	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1,
560 	    "ath edma rx deferred proc: ngood=%d\n",
561 	    ngood);
562 
563 	/* Free in one set, inside the lock */
564 	ATH_RX_LOCK(sc);
565 	while (! TAILQ_EMPTY(&rxlist)) {
566 		bf = TAILQ_FIRST(&rxlist);
567 		TAILQ_REMOVE(&rxlist, bf, bf_list);
568 		/* Free the buffer/mbuf */
569 		ath_edma_rxbuf_free(sc, bf);
570 	}
571 	ATH_RX_UNLOCK(sc);
572 
573 	return (ngood);
574 }
575 
576 static void
577 ath_edma_recv_tasklet(void *arg, int npending)
578 {
579 	struct ath_softc *sc = (struct ath_softc *) arg;
580 	struct ifnet *ifp = sc->sc_ifp;
581 #ifdef	IEEE80211_SUPPORT_SUPERG
582 	struct ieee80211com *ic = ifp->if_l2com;
583 #endif
584 
585 	DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called; npending=%d\n",
586 	    __func__,
587 	    npending);
588 
589 	ATH_PCU_LOCK(sc);
590 	if (sc->sc_inreset_cnt > 0) {
591 		device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; skipping\n",
592 		    __func__);
593 		ATH_PCU_UNLOCK(sc);
594 		return;
595 	}
596 	sc->sc_rxproc_cnt++;
597 	ATH_PCU_UNLOCK(sc);
598 
599 	ATH_LOCK(sc);
600 	ath_power_set_power_state(sc, HAL_PM_AWAKE);
601 	ATH_UNLOCK(sc);
602 
603 	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, 1);
604 	ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, 1);
605 
606 	ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_HP, 1);
607 	ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_LP, 1);
608 
609 	/*
610 	 * XXX: If we read the tsf/channoise here and then pass it in,
611 	 * we could restore the power state before processing
612 	 * the deferred queue.
613 	 */
614 	ATH_LOCK(sc);
615 	ath_power_restore_power_state(sc);
616 	ATH_UNLOCK(sc);
617 
618 	/* XXX inside IF_LOCK ? */
619 #if defined(__DragonFly__)
620 	if (!ifq_is_oactive(&ifp->if_snd)) {
621 #else
622 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
623 #endif
624 #ifdef	IEEE80211_SUPPORT_SUPERG
625 		ieee80211_ff_age_all(ic, 100);
626 #endif
627 #if defined(__DragonFly__)
628 		if (! ifq_is_empty(&ifp->if_snd))
629 			ath_tx_kick(sc);
630 #else
631 		if (! IFQ_IS_EMPTY(&ifp->if_snd))
632 			ath_tx_kick(sc);
633 #endif
634 	}
635 	if (ath_dfs_tasklet_needed(sc, sc->sc_curchan))
636 		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
637 
638 	ATH_PCU_LOCK(sc);
639 	sc->sc_rxproc_cnt--;
640 	ATH_PCU_UNLOCK(sc);
641 }
642 
643 /*
644  * Allocate an RX mbuf for the given ath_buf and initialise
645  * it for EDMA.
646  *
647  * + Allocate a 4KB mbuf;
648  * + Setup the DMA map for the given buffer;
649  * + Return that.
650  */
651 static int
652 ath_edma_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
653 {
654 
655 	struct mbuf *m;
656 	int error;
657 	int len;
658 
659 	ATH_RX_LOCK_ASSERT(sc);
660 
661 #if defined(__DragonFly__)
662 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, sc->sc_edma_bufsize);
663 #else
664 	m = m_getm(NULL, sc->sc_edma_bufsize, M_NOWAIT, MT_DATA);
665 #endif
666 	if (! m)
667 		return (ENOBUFS);		/* XXX ?*/
668 
669 	/* XXX warn/enforce alignment */
670 
671 	len = m->m_ext.ext_size;
672 #if 0
673 	device_printf(sc->sc_dev, "%s: called: m=%p, size=%d, mtod=%p\n",
674 	    __func__,
675 	    m,
676 	    len,
677 	    mtod(m, char *));
678 #endif
679 
680 	m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
681 
682 	/*
683 	 * Populate ath_buf fields.
684 	 */
685 	bf->bf_desc = mtod(m, struct ath_desc *);
686 	bf->bf_lastds = bf->bf_desc;	/* XXX only really for TX? */
687 	bf->bf_m = m;
688 
689 	/*
690 	 * Zero the descriptor and ensure it makes it out to the
691 	 * bounce buffer if one is required.
692 	 *
693 	 * XXX PREWRITE will copy the whole buffer; we only needed it
694 	 * to sync the first 32 DWORDS.  Oh well.
695 	 */
696 	memset(bf->bf_desc, '\0', sc->sc_rx_statuslen);
697 
698 	/*
699 	 * Create DMA mapping.
700 	 */
701 #if defined(__DragonFly__)
702 	error = bus_dmamap_load_mbuf_segment(
703 				sc->sc_dmat, bf->bf_dmamap, m,
704 				bf->bf_segs, 1, &bf->bf_nseg, BUS_DMA_NOWAIT);
705 #else
706 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
707 	    bf->bf_dmamap, m, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT);
708 #endif
709 
710 	if (error != 0) {
711 		device_printf(sc->sc_dev, "%s: failed; error=%d\n",
712 		    __func__,
713 		    error);
714 		m_freem(m);
715 		return (error);
716 	}
717 
718 	/*
719 	 * Set daddr to the physical mapping page.
720 	 */
721 	bf->bf_daddr = bf->bf_segs[0].ds_addr;
722 
723 	/*
724 	 * Prepare for the upcoming read.
725 	 *
726 	 * We need to both sync some data into the buffer (the zero'ed
727 	 * descriptor payload) and also prepare for the read that's going
728 	 * to occur.
729 	 */
730 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
731 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
732 
733 	/* Finish! */
734 	return (0);
735 }
736 
737 /*
738  * Allocate a RX buffer.
739  */
740 static struct ath_buf *
741 ath_edma_rxbuf_alloc(struct ath_softc *sc)
742 {
743 	struct ath_buf *bf;
744 	int error;
745 
746 	ATH_RX_LOCK_ASSERT(sc);
747 
748 	/* Allocate buffer */
749 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
750 	/* XXX shouldn't happen upon startup? */
751 	if (bf == NULL) {
752 		device_printf(sc->sc_dev, "%s: nothing on rxbuf?!\n",
753 		    __func__);
754 		return (NULL);
755 	}
756 
757 	/* Remove it from the free list */
758 	TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
759 
760 	/* Assign RX mbuf to it */
761 	error = ath_edma_rxbuf_init(sc, bf);
762 	if (error != 0) {
763 		device_printf(sc->sc_dev,
764 		    "%s: bf=%p, rxbuf alloc failed! error=%d\n",
765 		    __func__,
766 		    bf,
767 		    error);
768 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
769 		return (NULL);
770 	}
771 
772 	return (bf);
773 }
774 
775 static void
776 ath_edma_rxbuf_free(struct ath_softc *sc, struct ath_buf *bf)
777 {
778 
779 	ATH_RX_LOCK_ASSERT(sc);
780 
781 	/*
782 	 * Only unload the frame if we haven't consumed
783 	 * the mbuf via ath_rx_pkt().
784 	 */
785 	if (bf->bf_m) {
786 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
787 		m_freem(bf->bf_m);
788 		bf->bf_m = NULL;
789 	}
790 
791 	/* XXX lock? */
792 	TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
793 }
794 
795 /*
796  * Allocate up to 'n' entries and push them onto the hardware FIFO.
797  *
798  * Return how many entries were successfully pushed onto the
799  * FIFO.
800  */
801 static int
802 ath_edma_rxfifo_alloc(struct ath_softc *sc, HAL_RX_QUEUE qtype, int nbufs)
803 {
804 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
805 	struct ath_buf *bf;
806 	int i;
807 
808 	ATH_RX_LOCK_ASSERT(sc);
809 
810 	/*
811 	 * Allocate buffers until the FIFO is full or nbufs is reached.
812 	 */
813 	for (i = 0; i < nbufs && re->m_fifo_depth < re->m_fifolen; i++) {
814 		/* Ensure the FIFO is already blank, complain loudly! */
815 		if (re->m_fifo[re->m_fifo_tail] != NULL) {
816 			device_printf(sc->sc_dev,
817 			    "%s: Q%d: fifo[%d] != NULL (%p)\n",
818 			    __func__,
819 			    qtype,
820 			    re->m_fifo_tail,
821 			    re->m_fifo[re->m_fifo_tail]);
822 
823 			/* Free the slot */
824 			ath_edma_rxbuf_free(sc, re->m_fifo[re->m_fifo_tail]);
825 			re->m_fifo_depth--;
826 			/* XXX check it's not < 0 */
827 			re->m_fifo[re->m_fifo_tail] = NULL;
828 		}
829 
830 		bf = ath_edma_rxbuf_alloc(sc);
831 		/* XXX should ensure the FIFO is not NULL? */
832 		if (bf == NULL) {
833 			device_printf(sc->sc_dev,
834 			    "%s: Q%d: alloc failed: i=%d, nbufs=%d?\n",
835 			    __func__,
836 			    qtype,
837 			    i,
838 			    nbufs);
839 			break;
840 		}
841 
842 		re->m_fifo[re->m_fifo_tail] = bf;
843 
844 		/* Write to the RX FIFO */
845 		DPRINTF(sc, ATH_DEBUG_EDMA_RX,
846 		    "%s: Q%d: putrxbuf=%p (0x%jx)\n",
847 		    __func__,
848 		    qtype,
849 		    bf->bf_desc,
850 		    (uintmax_t) bf->bf_daddr);
851 		ath_hal_putrxbuf(sc->sc_ah, bf->bf_daddr, qtype);
852 
853 		re->m_fifo_depth++;
854 		INCR(re->m_fifo_tail, re->m_fifolen);
855 	}
856 
857 	/*
858 	 * Return how many were allocated.
859 	 */
860 	DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: Q%d: nbufs=%d, nalloced=%d\n",
861 	    __func__,
862 	    qtype,
863 	    nbufs,
864 	    i);
865 	return (i);
866 }
867 
868 static int
869 ath_edma_rxfifo_flush(struct ath_softc *sc, HAL_RX_QUEUE qtype)
870 {
871 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
872 	int i;
873 
874 	ATH_RX_LOCK_ASSERT(sc);
875 
876 	for (i = 0; i < re->m_fifolen; i++) {
877 		if (re->m_fifo[i] != NULL) {
878 #ifdef	ATH_DEBUG
879 			struct ath_buf *bf = re->m_fifo[i];
880 
881 			if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
882 				ath_printrxbuf(sc, bf, 0, HAL_OK);
883 #endif
884 			ath_edma_rxbuf_free(sc, re->m_fifo[i]);
885 			re->m_fifo[i] = NULL;
886 			re->m_fifo_depth--;
887 		}
888 	}
889 
890 	if (re->m_rxpending != NULL) {
891 		m_freem(re->m_rxpending);
892 		re->m_rxpending = NULL;
893 	}
894 	re->m_fifo_head = re->m_fifo_tail = re->m_fifo_depth = 0;
895 
896 	return (0);
897 }
898 
899 /*
900  * Setup the initial RX FIFO structure.
901  */
902 static int
903 ath_edma_setup_rxfifo(struct ath_softc *sc, HAL_RX_QUEUE qtype)
904 {
905 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
906 
907 	ATH_RX_LOCK_ASSERT(sc);
908 
909 	if (! ath_hal_getrxfifodepth(sc->sc_ah, qtype, &re->m_fifolen)) {
910 		device_printf(sc->sc_dev, "%s: qtype=%d, failed\n",
911 		    __func__,
912 		    qtype);
913 		return (-EINVAL);
914 	}
915 
916 	if (bootverbose)
917 		device_printf(sc->sc_dev,
918 		    "%s: type=%d, FIFO depth = %d entries\n",
919 		    __func__,
920 		    qtype,
921 		    re->m_fifolen);
922 
923 	/* Allocate ath_buf FIFO array, pre-zero'ed */
924 	re->m_fifo = kmalloc(sizeof(struct ath_buf *) * re->m_fifolen,
925 			     M_ATHDEV, M_INTWAIT | M_ZERO);
926 	if (re->m_fifo == NULL) {
927 		device_printf(sc->sc_dev, "%s: malloc failed\n",
928 		    __func__);
929 		return (-ENOMEM);
930 	}
931 
932 	/*
933 	 * Set initial "empty" state.
934 	 */
935 	re->m_rxpending = NULL;
936 	re->m_fifo_head = re->m_fifo_tail = re->m_fifo_depth = 0;
937 
938 	return (0);
939 }
940 
941 static int
942 ath_edma_rxfifo_free(struct ath_softc *sc, HAL_RX_QUEUE qtype)
943 {
944 	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
945 
946 	device_printf(sc->sc_dev, "%s: called; qtype=%d\n",
947 	    __func__,
948 	    qtype);
949 
950 	kfree(re->m_fifo, M_ATHDEV);
951 
952 	return (0);
953 }
954 
955 static int
956 ath_edma_dma_rxsetup(struct ath_softc *sc)
957 {
958 	int error;
959 
960 	/*
961 	 * Create RX DMA tag and buffers.
962 	 */
963 	error = ath_descdma_setup_rx_edma(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
964 	    "rx", ath_rxbuf, sc->sc_rx_statuslen);
965 	if (error != 0)
966 		return error;
967 
968 	ATH_RX_LOCK(sc);
969 	(void) ath_edma_setup_rxfifo(sc, HAL_RX_QUEUE_HP);
970 	(void) ath_edma_setup_rxfifo(sc, HAL_RX_QUEUE_LP);
971 	ATH_RX_UNLOCK(sc);
972 
973 	return (0);
974 }
975 
976 static int
977 ath_edma_dma_rxteardown(struct ath_softc *sc)
978 {
979 
980 	ATH_RX_LOCK(sc);
981 	ath_edma_flush_deferred_queue(sc);
982 	ath_edma_rxfifo_flush(sc, HAL_RX_QUEUE_HP);
983 	ath_edma_rxfifo_free(sc, HAL_RX_QUEUE_HP);
984 
985 	ath_edma_rxfifo_flush(sc, HAL_RX_QUEUE_LP);
986 	ath_edma_rxfifo_free(sc, HAL_RX_QUEUE_LP);
987 	ATH_RX_UNLOCK(sc);
988 
989 	/* Free RX ath_buf */
990 	/* Free RX DMA tag */
991 	if (sc->sc_rxdma.dd_desc_len != 0)
992 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
993 
994 	return (0);
995 }
996 
997 void
998 ath_recv_setup_edma(struct ath_softc *sc)
999 {
1000 
1001 	/* Set buffer size to 4k */
1002 	sc->sc_edma_bufsize = 4096;
1003 
1004 	/* Fetch EDMA field and buffer sizes */
1005 	(void) ath_hal_getrxstatuslen(sc->sc_ah, &sc->sc_rx_statuslen);
1006 
1007 	/* Configure the hardware with the RX buffer size */
1008 	(void) ath_hal_setrxbufsize(sc->sc_ah, sc->sc_edma_bufsize -
1009 	    sc->sc_rx_statuslen);
1010 
1011 	if (bootverbose) {
1012 		device_printf(sc->sc_dev, "RX status length: %d\n",
1013 		    sc->sc_rx_statuslen);
1014 		device_printf(sc->sc_dev, "RX buffer size: %d\n",
1015 		    sc->sc_edma_bufsize);
1016 	}
1017 
1018 	sc->sc_rx.recv_stop = ath_edma_stoprecv;
1019 	sc->sc_rx.recv_start = ath_edma_startrecv;
1020 	sc->sc_rx.recv_flush = ath_edma_recv_flush;
1021 	sc->sc_rx.recv_tasklet = ath_edma_recv_tasklet;
1022 	sc->sc_rx.recv_rxbuf_init = ath_edma_rxbuf_init;
1023 
1024 	sc->sc_rx.recv_setup = ath_edma_dma_rxsetup;
1025 	sc->sc_rx.recv_teardown = ath_edma_dma_rxteardown;
1026 
1027 	sc->sc_rx.recv_sched = ath_edma_recv_sched;
1028 	sc->sc_rx.recv_sched_queue = ath_edma_recv_sched_queue;
1029 }
1030