xref: /dragonfly/sys/dev/netif/ath/ath_hal/ah.c (revision 82730a9c)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 #include "ah_eeprom.h"			/* for 5ghz fast clock flag */
25 
26 #include "ar5416/ar5416reg.h"		/* NB: includes ar5212reg.h */
27 #include "ar9003/ar9300_devid.h"
28 
29 /* linker set of registered chips */
30 OS_SET_DECLARE(ah_chips, struct ath_hal_chip);
31 
32 /*
33  * Check the set of registered chips to see if any recognize
34  * the device as one they can support.
35  */
36 const char*
37 ath_hal_probe(uint16_t vendorid, uint16_t devid)
38 {
39 	struct ath_hal_chip * const *pchip;
40 
41 	OS_SET_FOREACH(pchip, ah_chips) {
42 		const char *name = (*pchip)->probe(vendorid, devid);
43 		if (name != AH_NULL)
44 			return name;
45 	}
46 	return AH_NULL;
47 }
48 
49 /*
50  * Attach detects device chip revisions, initializes the hwLayer
51  * function list, reads EEPROM information,
52  * selects reset vectors, and performs a short self test.
53  * Any failures will return an error that should cause a hardware
54  * disable.
55  */
56 struct ath_hal*
57 ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
58 	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_STATUS *error)
59 {
60 	struct ath_hal_chip * const *pchip;
61 
62 	OS_SET_FOREACH(pchip, ah_chips) {
63 		struct ath_hal_chip *chip = *pchip;
64 		struct ath_hal *ah;
65 
66 		/* XXX don't have vendorid, assume atheros one works */
67 		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
68 			continue;
69 		ah = chip->attach(devid, sc, st, sh, eepromdata, error);
70 		if (ah != AH_NULL) {
71 			/* copy back private state to public area */
72 			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
73 			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
74 			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
75 			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
76 			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
77 			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
78 			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
79 			return ah;
80 		}
81 	}
82 	return AH_NULL;
83 }
84 
85 const char *
86 ath_hal_mac_name(struct ath_hal *ah)
87 {
88 	switch (ah->ah_macVersion) {
89 	case AR_SREV_VERSION_CRETE:
90 	case AR_SREV_VERSION_MAUI_1:
91 		return "5210";
92 	case AR_SREV_VERSION_MAUI_2:
93 	case AR_SREV_VERSION_OAHU:
94 		return "5211";
95 	case AR_SREV_VERSION_VENICE:
96 		return "5212";
97 	case AR_SREV_VERSION_GRIFFIN:
98 		return "2413";
99 	case AR_SREV_VERSION_CONDOR:
100 		return "5424";
101 	case AR_SREV_VERSION_EAGLE:
102 		return "5413";
103 	case AR_SREV_VERSION_COBRA:
104 		return "2415";
105 	case AR_SREV_2425:	/* Swan */
106 		return "2425";
107 	case AR_SREV_2417:	/* Nala */
108 		return "2417";
109 	case AR_XSREV_VERSION_OWL_PCI:
110 		return "5416";
111 	case AR_XSREV_VERSION_OWL_PCIE:
112 		return "5418";
113 	case AR_XSREV_VERSION_HOWL:
114 		return "9130";
115 	case AR_XSREV_VERSION_SOWL:
116 		return "9160";
117 	case AR_XSREV_VERSION_MERLIN:
118 		if (AH_PRIVATE(ah)->ah_ispcie)
119 			return "9280";
120 		return "9220";
121 	case AR_XSREV_VERSION_KITE:
122 		return "9285";
123 	case AR_XSREV_VERSION_KIWI:
124 		if (AH_PRIVATE(ah)->ah_ispcie)
125 			return "9287";
126 		return "9227";
127 	case AR_SREV_VERSION_AR9380:
128 		if (ah->ah_macRev >= AR_SREV_REVISION_AR9580_10)
129 			return "9580";
130 		return "9380";
131 	case AR_SREV_VERSION_AR9460:
132 		return "9460";
133 	case AR_SREV_VERSION_AR9330:
134 		return "9330";
135 	case AR_SREV_VERSION_AR9340:
136 		return "9340";
137 	case AR_SREV_VERSION_QCA9550:
138 		/* XXX should say QCA, not AR */
139 		return "9550";
140 	case AR_SREV_VERSION_AR9485:
141 		return "9485";
142 	case AR_SREV_VERSION_QCA9565:
143 		/* XXX should say QCA, not AR */
144 		return "9565";
145 	}
146 	return "????";
147 }
148 
149 /*
150  * Return the mask of available modes based on the hardware capabilities.
151  */
152 u_int
153 ath_hal_getwirelessmodes(struct ath_hal*ah)
154 {
155 	return ath_hal_getWirelessModes(ah);
156 }
157 
158 /* linker set of registered RF backends */
159 OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);
160 
161 /*
162  * Check the set of registered RF backends to see if
163  * any recognize the device as one they can support.
164  */
165 struct ath_hal_rf *
166 ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
167 {
168 	struct ath_hal_rf * const *prf;
169 
170 	OS_SET_FOREACH(prf, ah_rfs) {
171 		struct ath_hal_rf *rf = *prf;
172 		if (rf->probe(ah))
173 			return rf;
174 	}
175 	*ecode = HAL_ENOTSUPP;
176 	return AH_NULL;
177 }
178 
179 const char *
180 ath_hal_rf_name(struct ath_hal *ah)
181 {
182 	switch (ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
183 	case 0:			/* 5210 */
184 		return "5110";	/* NB: made up */
185 	case AR_RAD5111_SREV_MAJOR:
186 	case AR_RAD5111_SREV_PROD:
187 		return "5111";
188 	case AR_RAD2111_SREV_MAJOR:
189 		return "2111";
190 	case AR_RAD5112_SREV_MAJOR:
191 	case AR_RAD5112_SREV_2_0:
192 	case AR_RAD5112_SREV_2_1:
193 		return "5112";
194 	case AR_RAD2112_SREV_MAJOR:
195 	case AR_RAD2112_SREV_2_0:
196 	case AR_RAD2112_SREV_2_1:
197 		return "2112";
198 	case AR_RAD2413_SREV_MAJOR:
199 		return "2413";
200 	case AR_RAD5413_SREV_MAJOR:
201 		return "5413";
202 	case AR_RAD2316_SREV_MAJOR:
203 		return "2316";
204 	case AR_RAD2317_SREV_MAJOR:
205 		return "2317";
206 	case AR_RAD5424_SREV_MAJOR:
207 		return "5424";
208 
209 	case AR_RAD5133_SREV_MAJOR:
210 		return "5133";
211 	case AR_RAD2133_SREV_MAJOR:
212 		return "2133";
213 	case AR_RAD5122_SREV_MAJOR:
214 		return "5122";
215 	case AR_RAD2122_SREV_MAJOR:
216 		return "2122";
217 	}
218 	return "????";
219 }
220 
221 /*
222  * Poll the register looking for a specific value.
223  */
224 HAL_BOOL
225 ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
226 {
227 #define	AH_TIMEOUT	1000
228 	return ath_hal_waitfor(ah, reg, mask, val, AH_TIMEOUT);
229 #undef AH_TIMEOUT
230 }
231 
232 HAL_BOOL
233 ath_hal_waitfor(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout)
234 {
235 	int i;
236 
237 	for (i = 0; i < timeout; i++) {
238 		if ((OS_REG_READ(ah, reg) & mask) == val)
239 			return AH_TRUE;
240 		OS_DELAY(10);
241 	}
242 	HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
243 	    "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
244 	    __func__, reg, OS_REG_READ(ah, reg), mask, val);
245 	return AH_FALSE;
246 }
247 
248 /*
249  * Reverse the bits starting at the low bit for a value of
250  * bit_count in size
251  */
252 uint32_t
253 ath_hal_reverseBits(uint32_t val, uint32_t n)
254 {
255 	uint32_t retval;
256 	int i;
257 
258 	for (i = 0, retval = 0; i < n; i++) {
259 		retval = (retval << 1) | (val & 1);
260 		val >>= 1;
261 	}
262 	return retval;
263 }
264 
265 /* 802.11n related timing definitions */
266 
267 #define	OFDM_PLCP_BITS	22
268 #define	HT_L_STF	8
269 #define	HT_L_LTF	8
270 #define	HT_L_SIG	4
271 #define	HT_SIG		8
272 #define	HT_STF		4
273 #define	HT_LTF(n)	((n) * 4)
274 
275 #define	HT_RC_2_MCS(_rc)	((_rc) & 0xf)
276 #define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
277 #define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)
278 
279 /*
280  * Calculate the duration of a packet whether it is 11n or legacy.
281  */
282 uint32_t
283 ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen,
284     uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble)
285 {
286 	uint8_t rc;
287 	int numStreams;
288 
289 	rc = rates->info[rateix].rateCode;
290 
291 	/* Legacy rate? Return the old way */
292 	if (! IS_HT_RATE(rc))
293 		return ath_hal_computetxtime(ah, rates, frameLen, rateix, shortPreamble);
294 
295 	/* 11n frame - extract out the number of spatial streams */
296 	numStreams = HT_RC_2_STREAMS(rc);
297 	KASSERT(numStreams > 0 && numStreams <= 4,
298 	    ("number of spatial streams needs to be 1..3: MCS rate 0x%x!",
299 	    rateix));
300 
301 	return ath_computedur_ht(frameLen, rc, numStreams, isht40, shortPreamble);
302 }
303 
304 static const uint16_t ht20_bps[32] = {
305     26, 52, 78, 104, 156, 208, 234, 260,
306     52, 104, 156, 208, 312, 416, 468, 520,
307     78, 156, 234, 312, 468, 624, 702, 780,
308     104, 208, 312, 416, 624, 832, 936, 1040
309 };
310 static const uint16_t ht40_bps[32] = {
311     54, 108, 162, 216, 324, 432, 486, 540,
312     108, 216, 324, 432, 648, 864, 972, 1080,
313     162, 324, 486, 648, 972, 1296, 1458, 1620,
314     216, 432, 648, 864, 1296, 1728, 1944, 2160
315 };
316 
317 /*
318  * Calculate the transmit duration of an 11n frame.
319  */
320 uint32_t
321 ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams,
322     HAL_BOOL isht40, HAL_BOOL isShortGI)
323 {
324 	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
325 
326 	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
327 	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));
328 
329 	if (isht40)
330 		bitsPerSymbol = ht40_bps[rate & 0x1f];
331 	else
332 		bitsPerSymbol = ht20_bps[rate & 0x1f];
333 	numBits = OFDM_PLCP_BITS + (frameLen << 3);
334 	numSymbols = howmany(numBits, bitsPerSymbol);
335 	if (isShortGI)
336 		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
337 	else
338 		txTime = numSymbols * 4;                /* 4us */
339 	return txTime + HT_L_STF + HT_L_LTF +
340 	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
341 }
342 
343 /*
344  * Compute the time to transmit a frame of length frameLen bytes
345  * using the specified rate, phy, and short preamble setting.
346  */
347 uint16_t
348 ath_hal_computetxtime(struct ath_hal *ah,
349 	const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
350 	HAL_BOOL shortPreamble)
351 {
352 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
353 	uint32_t kbps;
354 
355 	/* Warn if this function is called for 11n rates; it should not be! */
356 	if (IS_HT_RATE(rates->info[rateix].rateCode))
357 		ath_hal_printf(ah, "%s: MCS rate? (index %d; hwrate 0x%x)\n",
358 		    __func__, rateix, rates->info[rateix].rateCode);
359 
360 	kbps = rates->info[rateix].rateKbps;
361 	/*
362 	 * index can be invalid duting dynamic Turbo transitions.
363 	 * XXX
364 	 */
365 	if (kbps == 0)
366 		return 0;
367 	switch (rates->info[rateix].phy) {
368 	case IEEE80211_T_CCK:
369 		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
370 		if (shortPreamble && rates->info[rateix].shortPreamble)
371 			phyTime >>= 1;
372 		numBits		= frameLen << 3;
373 		txTime		= CCK_SIFS_TIME + phyTime
374 				+ ((numBits * 1000)/kbps);
375 		break;
376 	case IEEE80211_T_OFDM:
377 		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
378 		HALASSERT(bitsPerSymbol != 0);
379 
380 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
381 		numSymbols	= howmany(numBits, bitsPerSymbol);
382 		txTime		= OFDM_SIFS_TIME
383 				+ OFDM_PREAMBLE_TIME
384 				+ (numSymbols * OFDM_SYMBOL_TIME);
385 		break;
386 	case IEEE80211_T_OFDM_HALF:
387 		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
388 		HALASSERT(bitsPerSymbol != 0);
389 
390 		numBits		= OFDM_HALF_PLCP_BITS + (frameLen << 3);
391 		numSymbols	= howmany(numBits, bitsPerSymbol);
392 		txTime		= OFDM_HALF_SIFS_TIME
393 				+ OFDM_HALF_PREAMBLE_TIME
394 				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
395 		break;
396 	case IEEE80211_T_OFDM_QUARTER:
397 		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
398 		HALASSERT(bitsPerSymbol != 0);
399 
400 		numBits		= OFDM_QUARTER_PLCP_BITS + (frameLen << 3);
401 		numSymbols	= howmany(numBits, bitsPerSymbol);
402 		txTime		= OFDM_QUARTER_SIFS_TIME
403 				+ OFDM_QUARTER_PREAMBLE_TIME
404 				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
405 		break;
406 	case IEEE80211_T_TURBO:
407 		bitsPerSymbol	= (kbps * TURBO_SYMBOL_TIME) / 1000;
408 		HALASSERT(bitsPerSymbol != 0);
409 
410 		numBits		= TURBO_PLCP_BITS + (frameLen << 3);
411 		numSymbols	= howmany(numBits, bitsPerSymbol);
412 		txTime		= TURBO_SIFS_TIME
413 				+ TURBO_PREAMBLE_TIME
414 				+ (numSymbols * TURBO_SYMBOL_TIME);
415 		break;
416 	default:
417 		HALDEBUG(ah, HAL_DEBUG_PHYIO,
418 		    "%s: unknown phy %u (rate ix %u)\n",
419 		    __func__, rates->info[rateix].phy, rateix);
420 		txTime = 0;
421 		break;
422 	}
423 	return txTime;
424 }
425 
426 int
427 ath_hal_get_curmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
428 {
429 	/*
430 	 * Pick a default mode at bootup. A channel change is inevitable.
431 	 */
432 	if (!chan)
433 		return HAL_MODE_11NG_HT20;
434 
435 	if (IEEE80211_IS_CHAN_TURBO(chan))
436 		return HAL_MODE_TURBO;
437 
438 	/* check for NA_HT before plain A, since IS_CHAN_A includes NA_HT */
439 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
440 		return HAL_MODE_11NA_HT20;
441 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
442 		return HAL_MODE_11NA_HT40PLUS;
443 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
444 		return HAL_MODE_11NA_HT40MINUS;
445 	if (IEEE80211_IS_CHAN_A(chan))
446 		return HAL_MODE_11A;
447 
448 	/* check for NG_HT before plain G, since IS_CHAN_G includes NG_HT */
449 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
450 		return HAL_MODE_11NG_HT20;
451 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
452 		return HAL_MODE_11NG_HT40PLUS;
453 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
454 		return HAL_MODE_11NG_HT40MINUS;
455 
456 	/*
457 	 * XXX For FreeBSD, will this work correctly given the DYN
458 	 * chan mode (OFDM+CCK dynamic) ? We have pure-G versions DYN-BG..
459 	 */
460 	if (IEEE80211_IS_CHAN_G(chan))
461 		return HAL_MODE_11G;
462 	if (IEEE80211_IS_CHAN_B(chan))
463 		return HAL_MODE_11B;
464 
465 	HALASSERT(0);
466 	return HAL_MODE_11NG_HT20;
467 }
468 
469 
470 typedef enum {
471 	WIRELESS_MODE_11a   = 0,
472 	WIRELESS_MODE_TURBO = 1,
473 	WIRELESS_MODE_11b   = 2,
474 	WIRELESS_MODE_11g   = 3,
475 	WIRELESS_MODE_108g  = 4,
476 
477 	WIRELESS_MODE_MAX
478 } WIRELESS_MODE;
479 
480 static WIRELESS_MODE
481 ath_hal_chan2wmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
482 {
483 	if (IEEE80211_IS_CHAN_B(chan))
484 		return WIRELESS_MODE_11b;
485 	if (IEEE80211_IS_CHAN_G(chan))
486 		return WIRELESS_MODE_11g;
487 	if (IEEE80211_IS_CHAN_108G(chan))
488 		return WIRELESS_MODE_108g;
489 	if (IEEE80211_IS_CHAN_TURBO(chan))
490 		return WIRELESS_MODE_TURBO;
491 	return WIRELESS_MODE_11a;
492 }
493 
494 /*
495  * Convert between microseconds and core system clocks.
496  */
497                                      /* 11a Turbo  11b  11g  108g */
498 static const uint8_t CLOCK_RATE[]  = { 40,  80,   22,  44,   88  };
499 
500 #define	CLOCK_FAST_RATE_5GHZ_OFDM	44
501 
502 u_int
503 ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
504 {
505 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
506 	u_int clks;
507 
508 	/* NB: ah_curchan may be null when called attach time */
509 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
510 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
511 		clks = usecs * CLOCK_FAST_RATE_5GHZ_OFDM;
512 		if (IEEE80211_IS_CHAN_HT40(c))
513 			clks <<= 1;
514 	} else if (c != AH_NULL) {
515 		clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
516 		if (IEEE80211_IS_CHAN_HT40(c))
517 			clks <<= 1;
518 	} else
519 		clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];
520 
521 	/* Compensate for half/quarter rate */
522 	if (c != AH_NULL && IEEE80211_IS_CHAN_HALF(c))
523 		clks = clks / 2;
524 	else if (c != AH_NULL && IEEE80211_IS_CHAN_QUARTER(c))
525 		clks = clks / 4;
526 
527 	return clks;
528 }
529 
530 u_int
531 ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
532 {
533 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
534 	u_int usec;
535 
536 	/* NB: ah_curchan may be null when called attach time */
537 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
538 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
539 		usec = clks / CLOCK_FAST_RATE_5GHZ_OFDM;
540 		if (IEEE80211_IS_CHAN_HT40(c))
541 			usec >>= 1;
542 	} else if (c != AH_NULL) {
543 		usec = clks / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
544 		if (IEEE80211_IS_CHAN_HT40(c))
545 			usec >>= 1;
546 	} else
547 		usec = clks / CLOCK_RATE[WIRELESS_MODE_11b];
548 	return usec;
549 }
550 
551 /*
552  * Setup a h/w rate table's reverse lookup table and
553  * fill in ack durations.  This routine is called for
554  * each rate table returned through the ah_getRateTable
555  * method.  The reverse lookup tables are assumed to be
556  * initialized to zero (or at least the first entry).
557  * We use this as a key that indicates whether or not
558  * we've previously setup the reverse lookup table.
559  *
560  * XXX not reentrant, but shouldn't matter
561  */
562 void
563 ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
564 {
565 #define	N(a)	(sizeof(a)/sizeof(a[0]))
566 	int i;
567 
568 	if (rt->rateCodeToIndex[0] != 0)	/* already setup */
569 		return;
570 	for (i = 0; i < N(rt->rateCodeToIndex); i++)
571 		rt->rateCodeToIndex[i] = (uint8_t) -1;
572 	for (i = 0; i < rt->rateCount; i++) {
573 		uint8_t code = rt->info[i].rateCode;
574 		uint8_t cix = rt->info[i].controlRate;
575 
576 		HALASSERT(code < N(rt->rateCodeToIndex));
577 		rt->rateCodeToIndex[code] = i;
578 		HALASSERT((code | rt->info[i].shortPreamble) <
579 		    N(rt->rateCodeToIndex));
580 		rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
581 		/*
582 		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
583 		 *     depends on whether they are marked as basic rates;
584 		 *     the static tables are setup with an 11b-compatible
585 		 *     2Mb/s rate which will work but is suboptimal
586 		 */
587 		rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
588 			WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE);
589 		rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
590 			WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE);
591 	}
592 #undef N
593 }
594 
595 HAL_STATUS
596 ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
597 	uint32_t capability, uint32_t *result)
598 {
599 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
600 
601 	switch (type) {
602 	case HAL_CAP_REG_DMN:		/* regulatory domain */
603 		*result = AH_PRIVATE(ah)->ah_currentRD;
604 		return HAL_OK;
605 	case HAL_CAP_DFS_DMN:		/* DFS Domain */
606 		*result = AH_PRIVATE(ah)->ah_dfsDomain;
607 		return HAL_OK;
608 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
609 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
610 		return HAL_ENOTSUPP;
611 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
612 		return HAL_ENOTSUPP;
613 	case HAL_CAP_PHYCOUNTERS:	/* hardware PHY error counters */
614 		return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
615 	case HAL_CAP_WME_TKIPMIC:   /* hardware can do TKIP MIC when WMM is turned on */
616 		return HAL_ENOTSUPP;
617 	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
618 		return HAL_ENOTSUPP;
619 	case HAL_CAP_KEYCACHE_SIZE:	/* hardware key cache size */
620 		*result =  pCap->halKeyCacheSize;
621 		return HAL_OK;
622 	case HAL_CAP_NUM_TXQUEUES:	/* number of hardware tx queues */
623 		*result = pCap->halTotalQueues;
624 		return HAL_OK;
625 	case HAL_CAP_VEOL:		/* hardware supports virtual EOL */
626 		return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
627 	case HAL_CAP_PSPOLL:		/* hardware PS-Poll support works */
628 		return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
629 	case HAL_CAP_COMPRESSION:
630 		return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
631 	case HAL_CAP_BURST:
632 		return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
633 	case HAL_CAP_FASTFRAME:
634 		return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
635 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
636 		*result = AH_PRIVATE(ah)->ah_diagreg;
637 		return HAL_OK;
638 	case HAL_CAP_TXPOW:		/* global tx power limit  */
639 		switch (capability) {
640 		case 0:			/* facility is supported */
641 			return HAL_OK;
642 		case 1:			/* current limit */
643 			*result = AH_PRIVATE(ah)->ah_powerLimit;
644 			return HAL_OK;
645 		case 2:			/* current max tx power */
646 			*result = AH_PRIVATE(ah)->ah_maxPowerLevel;
647 			return HAL_OK;
648 		case 3:			/* scale factor */
649 			*result = AH_PRIVATE(ah)->ah_tpScale;
650 			return HAL_OK;
651 		}
652 		return HAL_ENOTSUPP;
653 	case HAL_CAP_BSSIDMASK:		/* hardware supports bssid mask */
654 		return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
655 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
656 		return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
657 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
658 		return HAL_ENOTSUPP;
659 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
660 		switch (capability) {
661 		case 0:			/* facility is supported */
662 			return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
663 		case 1:			/* current setting */
664 			return AH_PRIVATE(ah)->ah_rfkillEnabled ?
665 				HAL_OK : HAL_ENOTSUPP;
666 		case 2:			/* rfsilent config */
667 			*result = AH_PRIVATE(ah)->ah_rfsilent;
668 			return HAL_OK;
669 		}
670 		return HAL_ENOTSUPP;
671 	case HAL_CAP_11D:
672 		return HAL_OK;
673 
674 	case HAL_CAP_HT:
675 		return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
676 	case HAL_CAP_GTXTO:
677 		return pCap->halGTTSupport ? HAL_OK : HAL_ENOTSUPP;
678 	case HAL_CAP_FAST_CC:
679 		return pCap->halFastCCSupport ? HAL_OK : HAL_ENOTSUPP;
680 	case HAL_CAP_TX_CHAINMASK:	/* mask of TX chains supported */
681 		*result = pCap->halTxChainMask;
682 		return HAL_OK;
683 	case HAL_CAP_RX_CHAINMASK:	/* mask of RX chains supported */
684 		*result = pCap->halRxChainMask;
685 		return HAL_OK;
686 	case HAL_CAP_NUM_GPIO_PINS:
687 		*result = pCap->halNumGpioPins;
688 		return HAL_OK;
689 	case HAL_CAP_CST:
690 		return pCap->halCSTSupport ? HAL_OK : HAL_ENOTSUPP;
691 	case HAL_CAP_RTS_AGGR_LIMIT:
692 		*result = pCap->halRtsAggrLimit;
693 		return HAL_OK;
694 	case HAL_CAP_4ADDR_AGGR:
695 		return pCap->hal4AddrAggrSupport ? HAL_OK : HAL_ENOTSUPP;
696 	case HAL_CAP_EXT_CHAN_DFS:
697 		return pCap->halExtChanDfsSupport ? HAL_OK : HAL_ENOTSUPP;
698 	case HAL_CAP_RX_STBC:
699 		return pCap->halRxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
700 	case HAL_CAP_TX_STBC:
701 		return pCap->halTxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
702 	case HAL_CAP_COMBINED_RADAR_RSSI:
703 		return pCap->halUseCombinedRadarRssi ? HAL_OK : HAL_ENOTSUPP;
704 	case HAL_CAP_AUTO_SLEEP:
705 		return pCap->halAutoSleepSupport ? HAL_OK : HAL_ENOTSUPP;
706 	case HAL_CAP_MBSSID_AGGR_SUPPORT:
707 		return pCap->halMbssidAggrSupport ? HAL_OK : HAL_ENOTSUPP;
708 	case HAL_CAP_SPLIT_4KB_TRANS:	/* hardware handles descriptors straddling 4k page boundary */
709 		return pCap->hal4kbSplitTransSupport ? HAL_OK : HAL_ENOTSUPP;
710 	case HAL_CAP_REG_FLAG:
711 		*result = AH_PRIVATE(ah)->ah_currentRDext;
712 		return HAL_OK;
713 	case HAL_CAP_ENHANCED_DMA_SUPPORT:
714 		return pCap->halEnhancedDmaSupport ? HAL_OK : HAL_ENOTSUPP;
715 	case HAL_CAP_NUM_TXMAPS:
716 		*result = pCap->halNumTxMaps;
717 		return HAL_OK;
718 	case HAL_CAP_TXDESCLEN:
719 		*result = pCap->halTxDescLen;
720 		return HAL_OK;
721 	case HAL_CAP_TXSTATUSLEN:
722 		*result = pCap->halTxStatusLen;
723 		return HAL_OK;
724 	case HAL_CAP_RXSTATUSLEN:
725 		*result = pCap->halRxStatusLen;
726 		return HAL_OK;
727 	case HAL_CAP_RXFIFODEPTH:
728 		switch (capability) {
729 		case HAL_RX_QUEUE_HP:
730 			*result = pCap->halRxHpFifoDepth;
731 			return HAL_OK;
732 		case HAL_RX_QUEUE_LP:
733 			*result = pCap->halRxLpFifoDepth;
734 			return HAL_OK;
735 		default:
736 			return HAL_ENOTSUPP;
737 	}
738 	case HAL_CAP_RXBUFSIZE:
739 	case HAL_CAP_NUM_MR_RETRIES:
740 		*result = pCap->halNumMRRetries;
741 		return HAL_OK;
742 	case HAL_CAP_BT_COEX:
743 		return pCap->halBtCoexSupport ? HAL_OK : HAL_ENOTSUPP;
744 	case HAL_CAP_SPECTRAL_SCAN:
745 		return pCap->halSpectralScanSupport ? HAL_OK : HAL_ENOTSUPP;
746 	case HAL_CAP_HT20_SGI:
747 		return pCap->halHTSGI20Support ? HAL_OK : HAL_ENOTSUPP;
748 	case HAL_CAP_RXTSTAMP_PREC:	/* rx desc tstamp precision (bits) */
749 		*result = pCap->halTstampPrecision;
750 		return HAL_OK;
751 	case HAL_CAP_ANT_DIV_COMB:	/* AR9285/AR9485 LNA diversity */
752 		return pCap->halAntDivCombSupport ? HAL_OK  : HAL_ENOTSUPP;
753 
754 	case HAL_CAP_ENHANCED_DFS_SUPPORT:
755 		return pCap->halEnhancedDfsSupport ? HAL_OK : HAL_ENOTSUPP;
756 
757 	/* FreeBSD-specific entries for now */
758 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
759 		return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
760 	case HAL_CAP_INTRMASK:		/* mask of supported interrupts */
761 		*result = pCap->halIntrMask;
762 		return HAL_OK;
763 	case HAL_CAP_BSSIDMATCH:	/* hardware has disable bssid match */
764 		return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
765 	case HAL_CAP_STREAMS:		/* number of 11n spatial streams */
766 		switch (capability) {
767 		case 0:			/* TX */
768 			*result = pCap->halTxStreams;
769 			return HAL_OK;
770 		case 1:			/* RX */
771 			*result = pCap->halRxStreams;
772 			return HAL_OK;
773 		default:
774 			return HAL_ENOTSUPP;
775 		}
776 	case HAL_CAP_RXDESC_SELFLINK:	/* hardware supports self-linked final RX descriptors correctly */
777 		return pCap->halHasRxSelfLinkedTail ? HAL_OK : HAL_ENOTSUPP;
778 	case HAL_CAP_LONG_RXDESC_TSF:		/* 32 bit TSF in RX descriptor? */
779 		return pCap->halHasLongRxDescTsf ? HAL_OK : HAL_ENOTSUPP;
780 	case HAL_CAP_BB_READ_WAR:		/* Baseband read WAR */
781 		return pCap->halHasBBReadWar? HAL_OK : HAL_ENOTSUPP;
782 	case HAL_CAP_SERIALISE_WAR:		/* PCI register serialisation */
783 		return pCap->halSerialiseRegWar ? HAL_OK : HAL_ENOTSUPP;
784 	case HAL_CAP_MFP:			/* Management frame protection setting */
785 		*result = pCap->halMfpSupport;
786 		return HAL_OK;
787 	case HAL_CAP_RX_LNA_MIXING:	/* Hardware uses an RX LNA mixer to map 2 antennas to a 1 stream receiver */
788 		return pCap->halRxUsingLnaMixing ? HAL_OK : HAL_ENOTSUPP;
789 	default:
790 		return HAL_EINVAL;
791 	}
792 }
793 
794 HAL_BOOL
795 ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
796 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
797 {
798 
799 	switch (type) {
800 	case HAL_CAP_TXPOW:
801 		switch (capability) {
802 		case 3:
803 			if (setting <= HAL_TP_SCALE_MIN) {
804 				AH_PRIVATE(ah)->ah_tpScale = setting;
805 				return AH_TRUE;
806 			}
807 			break;
808 		}
809 		break;
810 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
811 		/*
812 		 * NB: allow even if halRfSilentSupport is false
813 		 *     in case the EEPROM is misprogrammed.
814 		 */
815 		switch (capability) {
816 		case 1:			/* current setting */
817 			AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
818 			return AH_TRUE;
819 		case 2:			/* rfsilent config */
820 			/* XXX better done per-chip for validation? */
821 			AH_PRIVATE(ah)->ah_rfsilent = setting;
822 			return AH_TRUE;
823 		}
824 		break;
825 	case HAL_CAP_REG_DMN:		/* regulatory domain */
826 		AH_PRIVATE(ah)->ah_currentRD = setting;
827 		return AH_TRUE;
828 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
829 		AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
830 		return AH_TRUE;
831 	default:
832 		break;
833 	}
834 	if (status)
835 		*status = HAL_EINVAL;
836 	return AH_FALSE;
837 }
838 
839 /*
840  * Common support for getDiagState method.
841  */
842 
843 static u_int
844 ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
845 	void *dstbuf, int space)
846 {
847 	uint32_t *dp = dstbuf;
848 	int i;
849 
850 	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
851 		u_int r = regs[i].start;
852 		u_int e = regs[i].end;
853 		*dp++ = (r<<16) | e;
854 		space -= sizeof(uint32_t);
855 		do {
856 			*dp++ = OS_REG_READ(ah, r);
857 			r += sizeof(uint32_t);
858 			space -= sizeof(uint32_t);
859 		} while (r <= e && space >= sizeof(uint32_t));
860 	}
861 	return (char *) dp - (char *) dstbuf;
862 }
863 
864 static void
865 ath_hal_setregs(struct ath_hal *ah, const HAL_REGWRITE *regs, int space)
866 {
867 	while (space >= sizeof(HAL_REGWRITE)) {
868 		OS_REG_WRITE(ah, regs->addr, regs->value);
869 		regs++, space -= sizeof(HAL_REGWRITE);
870 	}
871 }
872 
873 HAL_BOOL
874 ath_hal_getdiagstate(struct ath_hal *ah, int request,
875 	const void *args, uint32_t argsize,
876 	void **result, uint32_t *resultsize)
877 {
878 	switch (request) {
879 	case HAL_DIAG_REVS:
880 		*result = &AH_PRIVATE(ah)->ah_devid;
881 		*resultsize = sizeof(HAL_REVS);
882 		return AH_TRUE;
883 	case HAL_DIAG_REGS:
884 		*resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
885 		return AH_TRUE;
886 	case HAL_DIAG_SETREGS:
887 		ath_hal_setregs(ah, args, argsize);
888 		*resultsize = 0;
889 		return AH_TRUE;
890 	case HAL_DIAG_FATALERR:
891 		*result = &AH_PRIVATE(ah)->ah_fatalState[0];
892 		*resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
893 		return AH_TRUE;
894 	case HAL_DIAG_EEREAD:
895 		if (argsize != sizeof(uint16_t))
896 			return AH_FALSE;
897 		if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
898 			return AH_FALSE;
899 		*resultsize = sizeof(uint16_t);
900 		return AH_TRUE;
901 #ifdef AH_PRIVATE_DIAG
902 	case HAL_DIAG_SETKEY: {
903 		const HAL_DIAG_KEYVAL *dk;
904 
905 		if (argsize != sizeof(HAL_DIAG_KEYVAL))
906 			return AH_FALSE;
907 		dk = (const HAL_DIAG_KEYVAL *)args;
908 		return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
909 			&dk->dk_keyval, dk->dk_mac, dk->dk_xor);
910 	}
911 	case HAL_DIAG_RESETKEY:
912 		if (argsize != sizeof(uint16_t))
913 			return AH_FALSE;
914 		return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
915 #ifdef AH_SUPPORT_WRITE_EEPROM
916 	case HAL_DIAG_EEWRITE: {
917 		const HAL_DIAG_EEVAL *ee;
918 		if (argsize != sizeof(HAL_DIAG_EEVAL))
919 			return AH_FALSE;
920 		ee = (const HAL_DIAG_EEVAL *)args;
921 		return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
922 	}
923 #endif /* AH_SUPPORT_WRITE_EEPROM */
924 #endif /* AH_PRIVATE_DIAG */
925 	case HAL_DIAG_11NCOMPAT:
926 		if (argsize == 0) {
927 			*resultsize = sizeof(uint32_t);
928 			*((uint32_t *)(*result)) =
929 				AH_PRIVATE(ah)->ah_11nCompat;
930 		} else if (argsize == sizeof(uint32_t)) {
931 			AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
932 		} else
933 			return AH_FALSE;
934 		return AH_TRUE;
935 	}
936 	return AH_FALSE;
937 }
938 
939 /*
940  * Set the properties of the tx queue with the parameters
941  * from qInfo.
942  */
943 HAL_BOOL
944 ath_hal_setTxQProps(struct ath_hal *ah,
945 	HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
946 {
947 	uint32_t cw;
948 
949 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
950 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
951 		    "%s: inactive queue\n", __func__);
952 		return AH_FALSE;
953 	}
954 	/* XXX validate parameters */
955 	qi->tqi_ver = qInfo->tqi_ver;
956 	qi->tqi_subtype = qInfo->tqi_subtype;
957 	qi->tqi_qflags = qInfo->tqi_qflags;
958 	qi->tqi_priority = qInfo->tqi_priority;
959 	if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
960 		qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
961 	else
962 		qi->tqi_aifs = INIT_AIFS;
963 	if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
964 		cw = AH_MIN(qInfo->tqi_cwmin, 1024);
965 		/* make sure that the CWmin is of the form (2^n - 1) */
966 		qi->tqi_cwmin = 1;
967 		while (qi->tqi_cwmin < cw)
968 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
969 	} else
970 		qi->tqi_cwmin = qInfo->tqi_cwmin;
971 	if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
972 		cw = AH_MIN(qInfo->tqi_cwmax, 1024);
973 		/* make sure that the CWmax is of the form (2^n - 1) */
974 		qi->tqi_cwmax = 1;
975 		while (qi->tqi_cwmax < cw)
976 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
977 	} else
978 		qi->tqi_cwmax = INIT_CWMAX;
979 	/* Set retry limit values */
980 	if (qInfo->tqi_shretry != 0)
981 		qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
982 	else
983 		qi->tqi_shretry = INIT_SH_RETRY;
984 	if (qInfo->tqi_lgretry != 0)
985 		qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
986 	else
987 		qi->tqi_lgretry = INIT_LG_RETRY;
988 	qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
989 	qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
990 	qi->tqi_burstTime = qInfo->tqi_burstTime;
991 	qi->tqi_readyTime = qInfo->tqi_readyTime;
992 
993 	switch (qInfo->tqi_subtype) {
994 	case HAL_WME_UPSD:
995 		if (qi->tqi_type == HAL_TX_QUEUE_DATA)
996 			qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
997 		break;
998 	default:
999 		break;		/* NB: silence compiler */
1000 	}
1001 	return AH_TRUE;
1002 }
1003 
1004 HAL_BOOL
1005 ath_hal_getTxQProps(struct ath_hal *ah,
1006 	HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
1007 {
1008 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1009 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1010 		    "%s: inactive queue\n", __func__);
1011 		return AH_FALSE;
1012 	}
1013 
1014 	qInfo->tqi_qflags = qi->tqi_qflags;
1015 	qInfo->tqi_ver = qi->tqi_ver;
1016 	qInfo->tqi_subtype = qi->tqi_subtype;
1017 	qInfo->tqi_qflags = qi->tqi_qflags;
1018 	qInfo->tqi_priority = qi->tqi_priority;
1019 	qInfo->tqi_aifs = qi->tqi_aifs;
1020 	qInfo->tqi_cwmin = qi->tqi_cwmin;
1021 	qInfo->tqi_cwmax = qi->tqi_cwmax;
1022 	qInfo->tqi_shretry = qi->tqi_shretry;
1023 	qInfo->tqi_lgretry = qi->tqi_lgretry;
1024 	qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
1025 	qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
1026 	qInfo->tqi_burstTime = qi->tqi_burstTime;
1027 	qInfo->tqi_readyTime = qi->tqi_readyTime;
1028 	return AH_TRUE;
1029 }
1030 
1031                                      /* 11a Turbo  11b  11g  108g */
1032 static const int16_t NOISE_FLOOR[] = { -96, -93,  -98, -96,  -93 };
1033 
1034 /*
1035  * Read the current channel noise floor and return.
1036  * If nf cal hasn't finished, channel noise floor should be 0
1037  * and we return a nominal value based on band and frequency.
1038  *
1039  * NB: This is a private routine used by per-chip code to
1040  *     implement the ah_getChanNoise method.
1041  */
1042 int16_t
1043 ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
1044 {
1045 	HAL_CHANNEL_INTERNAL *ichan;
1046 
1047 	ichan = ath_hal_checkchannel(ah, chan);
1048 	if (ichan == AH_NULL) {
1049 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1050 		    "%s: invalid channel %u/0x%x; no mapping\n",
1051 		    __func__, chan->ic_freq, chan->ic_flags);
1052 		return 0;
1053 	}
1054 	if (ichan->rawNoiseFloor == 0) {
1055 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1056 
1057 		HALASSERT(mode < WIRELESS_MODE_MAX);
1058 		return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
1059 	} else
1060 		return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
1061 }
1062 
1063 /*
1064  * Fetch the current setup of ctl/ext noise floor values.
1065  *
1066  * If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
1067  * populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
1068  *
1069  * The caller must supply ctl/ext NF arrays which are at least
1070  * AH_MAX_CHAINS entries long.
1071  */
1072 int
1073 ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
1074     const struct ieee80211_channel *chan, int16_t *nf_ctl,
1075     int16_t *nf_ext)
1076 {
1077 #ifdef	AH_SUPPORT_AR5416
1078 	HAL_CHANNEL_INTERNAL *ichan;
1079 	int i;
1080 
1081 	ichan = ath_hal_checkchannel(ah, chan);
1082 	if (ichan == AH_NULL) {
1083 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1084 		    "%s: invalid channel %u/0x%x; no mapping\n",
1085 		    __func__, chan->ic_freq, chan->ic_flags);
1086 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1087 			nf_ctl[i] = nf_ext[i] = 0;
1088 		}
1089 		return 0;
1090 	}
1091 
1092 	/* Return 0 if there's no valid MIMO values (yet) */
1093 	if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
1094 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1095 			nf_ctl[i] = nf_ext[i] = 0;
1096 		}
1097 		return 0;
1098 	}
1099 	if (ichan->rawNoiseFloor == 0) {
1100 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1101 		HALASSERT(mode < WIRELESS_MODE_MAX);
1102 		/*
1103 		 * See the comment below - this could cause issues for
1104 		 * stations which have a very low RSSI, below the
1105 		 * 'normalised' NF values in NOISE_FLOOR[].
1106 		 */
1107 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1108 			nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
1109 			    ath_hal_getNfAdjust(ah, ichan);
1110 		}
1111 		return 1;
1112 	} else {
1113 		/*
1114 		 * The value returned here from a MIMO radio is presumed to be
1115 		 * "good enough" as a NF calculation. As RSSI values are calculated
1116 		 * against this, an adjusted NF may be higher than the RSSI value
1117 		 * returned from a vary weak station, resulting in an obscenely
1118 		 * high signal strength calculation being returned.
1119 		 *
1120 		 * This should be re-evaluated at a later date, along with any
1121 		 * signal strength calculations which are made. Quite likely the
1122 		 * RSSI values will need to be adjusted to ensure the calculations
1123 		 * don't "wrap" when RSSI is less than the "adjusted" NF value.
1124 		 * ("Adjust" here is via ichan->noiseFloorAdjust.)
1125 		 */
1126 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1127 			nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
1128 			nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
1129 		}
1130 		return 1;
1131 	}
1132 #else
1133 	return 0;
1134 #endif	/* AH_SUPPORT_AR5416 */
1135 }
1136 
1137 /*
1138  * Process all valid raw noise floors into the dBm noise floor values.
1139  * Though our device has no reference for a dBm noise floor, we perform
1140  * a relative minimization of NF's based on the lowest NF found across a
1141  * channel scan.
1142  */
1143 void
1144 ath_hal_process_noisefloor(struct ath_hal *ah)
1145 {
1146 	HAL_CHANNEL_INTERNAL *c;
1147 	int16_t correct2, correct5;
1148 	int16_t lowest2, lowest5;
1149 	int i;
1150 
1151 	/*
1152 	 * Find the lowest 2GHz and 5GHz noise floor values after adjusting
1153 	 * for statistically recorded NF/channel deviation.
1154 	 */
1155 	correct2 = lowest2 = 0;
1156 	correct5 = lowest5 = 0;
1157 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1158 		WIRELESS_MODE mode;
1159 		int16_t nf;
1160 
1161 		c = &AH_PRIVATE(ah)->ah_channels[i];
1162 		if (c->rawNoiseFloor >= 0)
1163 			continue;
1164 		/* XXX can't identify proper mode */
1165 		mode = IS_CHAN_5GHZ(c) ? WIRELESS_MODE_11a : WIRELESS_MODE_11g;
1166 		nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
1167 			ath_hal_getNfAdjust(ah, c);
1168 		if (IS_CHAN_5GHZ(c)) {
1169 			if (nf < lowest5) {
1170 				lowest5 = nf;
1171 				correct5 = NOISE_FLOOR[mode] -
1172 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1173 			}
1174 		} else {
1175 			if (nf < lowest2) {
1176 				lowest2 = nf;
1177 				correct2 = NOISE_FLOOR[mode] -
1178 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1179 			}
1180 		}
1181 	}
1182 
1183 	/* Correct the channels to reach the expected NF value */
1184 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1185 		c = &AH_PRIVATE(ah)->ah_channels[i];
1186 		if (c->rawNoiseFloor >= 0)
1187 			continue;
1188 		/* Apply correction factor */
1189 		c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
1190 			(IS_CHAN_5GHZ(c) ? correct5 : correct2);
1191 		HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u raw nf %d adjust %d\n",
1192 		    c->channel, c->rawNoiseFloor, c->noiseFloorAdjust);
1193 	}
1194 }
1195 
1196 /*
1197  * INI support routines.
1198  */
1199 
1200 int
1201 ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1202 	int col, int regWr)
1203 {
1204 	int r;
1205 
1206 	HALASSERT(col < ia->cols);
1207 	for (r = 0; r < ia->rows; r++) {
1208 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
1209 		    HAL_INI_VAL(ia, r, col));
1210 
1211 		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
1212 		if (HAL_INI_VAL(ia, r, 0) >= 0x7800 && HAL_INI_VAL(ia, r, 0) < 0x7900)
1213 			OS_DELAY(100);
1214 
1215 		DMA_YIELD(regWr);
1216 	}
1217 	return regWr;
1218 }
1219 
1220 void
1221 ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
1222 {
1223 	int r;
1224 
1225 	HALASSERT(col < ia->cols);
1226 	for (r = 0; r < ia->rows; r++)
1227 		data[r] = HAL_INI_VAL(ia, r, col);
1228 }
1229 
1230 int
1231 ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1232 	const uint32_t data[], int regWr)
1233 {
1234 	int r;
1235 
1236 	for (r = 0; r < ia->rows; r++) {
1237 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
1238 		DMA_YIELD(regWr);
1239 	}
1240 	return regWr;
1241 }
1242 
1243 /*
1244  * These are EEPROM board related routines which should likely live in
1245  * a helper library of some sort.
1246  */
1247 
1248 /**************************************************************
1249  * ath_ee_getLowerUppderIndex
1250  *
1251  * Return indices surrounding the value in sorted integer lists.
1252  * Requirement: the input list must be monotonically increasing
1253  *     and populated up to the list size
1254  * Returns: match is set if an index in the array matches exactly
1255  *     or a the target is before or after the range of the array.
1256  */
1257 HAL_BOOL
1258 ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
1259                    uint16_t *indexL, uint16_t *indexR)
1260 {
1261     uint16_t i;
1262 
1263     /*
1264      * Check first and last elements for beyond ordered array cases.
1265      */
1266     if (target <= pList[0]) {
1267         *indexL = *indexR = 0;
1268         return AH_TRUE;
1269     }
1270     if (target >= pList[listSize-1]) {
1271         *indexL = *indexR = (uint16_t)(listSize - 1);
1272         return AH_TRUE;
1273     }
1274 
1275     /* look for value being near or between 2 values in list */
1276     for (i = 0; i < listSize - 1; i++) {
1277         /*
1278          * If value is close to the current value of the list
1279          * then target is not between values, it is one of the values
1280          */
1281         if (pList[i] == target) {
1282             *indexL = *indexR = i;
1283             return AH_TRUE;
1284         }
1285         /*
1286          * Look for value being between current value and next value
1287          * if so return these 2 values
1288          */
1289         if (target < pList[i + 1]) {
1290             *indexL = i;
1291             *indexR = (uint16_t)(i + 1);
1292             return AH_FALSE;
1293         }
1294     }
1295     HALASSERT(0);
1296     *indexL = *indexR = 0;
1297     return AH_FALSE;
1298 }
1299 
1300 /**************************************************************
1301  * ath_ee_FillVpdTable
1302  *
1303  * Fill the Vpdlist for indices Pmax-Pmin
1304  * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
1305  */
1306 HAL_BOOL
1307 ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
1308                    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
1309 {
1310     uint16_t  i, k;
1311     uint8_t   currPwr = pwrMin;
1312     uint16_t  idxL, idxR;
1313 
1314     HALASSERT(pwrMax > pwrMin);
1315     for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
1316         ath_ee_getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
1317                            &(idxL), &(idxR));
1318         if (idxR < 1)
1319             idxR = 1;           /* extrapolate below */
1320         if (idxL == numIntercepts - 1)
1321             idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
1322         if (pPwrList[idxL] == pPwrList[idxR])
1323             k = pVpdList[idxL];
1324         else
1325             k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
1326                   (pPwrList[idxR] - pPwrList[idxL]) );
1327         HALASSERT(k < 256);
1328         pRetVpdList[i] = (uint8_t)k;
1329         currPwr += 2;               /* half dB steps */
1330     }
1331 
1332     return AH_TRUE;
1333 }
1334 
1335 /**************************************************************************
1336  * ath_ee_interpolate
1337  *
1338  * Returns signed interpolated or the scaled up interpolated value
1339  */
1340 int16_t
1341 ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
1342             int16_t targetLeft, int16_t targetRight)
1343 {
1344     int16_t rv;
1345 
1346     if (srcRight == srcLeft) {
1347         rv = targetLeft;
1348     } else {
1349         rv = (int16_t)( ((target - srcLeft) * targetRight +
1350               (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
1351     }
1352     return rv;
1353 }
1354 
1355 /*
1356  * Adjust the TSF.
1357  */
1358 void
1359 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
1360 {
1361 	/* XXX handle wrap/overflow */
1362 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
1363 }
1364 
1365 /*
1366  * Enable or disable CCA.
1367  */
1368 void
1369 ath_hal_setcca(struct ath_hal *ah, int ena)
1370 {
1371 	/*
1372 	 * NB: fill me in; this is not provided by default because disabling
1373 	 *     CCA in most locales violates regulatory.
1374 	 */
1375 }
1376 
1377 /*
1378  * Get CCA setting.
1379  */
1380 int
1381 ath_hal_getcca(struct ath_hal *ah)
1382 {
1383 	u_int32_t diag;
1384 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
1385 		return 1;
1386 	return ((diag & 0x500000) == 0);
1387 }
1388 
1389 /*
1390  * This routine is only needed when supporting EEPROM-in-RAM setups
1391  * (eg embedded SoCs and on-board PCI/PCIe devices.)
1392  */
1393 /* NB: This is in 16 bit words; not bytes */
1394 /* XXX This doesn't belong here!  */
1395 #define ATH_DATA_EEPROM_SIZE    2048
1396 
1397 HAL_BOOL
1398 ath_hal_EepromDataRead(struct ath_hal *ah, u_int off, uint16_t *data)
1399 {
1400 	if (ah->ah_eepromdata == AH_NULL) {
1401 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no eeprom data!\n", __func__);
1402 		return AH_FALSE;
1403 	}
1404 	if (off > ATH_DATA_EEPROM_SIZE) {
1405 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: offset %x > %x\n",
1406 		    __func__, off, ATH_DATA_EEPROM_SIZE);
1407 		return AH_FALSE;
1408 	}
1409 	(*data) = ah->ah_eepromdata[off];
1410 	return AH_TRUE;
1411 }
1412 
1413 /*
1414  * Do a 2GHz specific MHz->IEEE based on the hardware
1415  * frequency.
1416  *
1417  * This is the unmapped frequency which is programmed into the hardware.
1418  */
1419 int
1420 ath_hal_mhz2ieee_2ghz(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
1421 {
1422 
1423 	if (ichan->channel == 2484)
1424 		return 14;
1425 	if (ichan->channel < 2484)
1426 		return ((int) ichan->channel - 2407) / 5;
1427 	else
1428 		return 15 + ((ichan->channel - 2512) / 20);
1429 }
1430