xref: /dragonfly/sys/dev/netif/ath/ath_hal/ah.c (revision cab8bf9b)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24 #include "ah_eeprom.h"			/* for 5ghz fast clock flag */
25 
26 #include "ar5416/ar5416reg.h"		/* NB: includes ar5212reg.h */
27 #include "ar9003/ar9300_devid.h"
28 
29 /* linker set of registered chips */
30 OS_SET_DECLARE(ah_chips, struct ath_hal_chip);
31 
32 /*
33  * Check the set of registered chips to see if any recognize
34  * the device as one they can support.
35  */
36 const char*
37 ath_hal_probe(uint16_t vendorid, uint16_t devid)
38 {
39 	struct ath_hal_chip * const *pchip;
40 
41 	OS_SET_FOREACH(pchip, ah_chips) {
42 		const char *name = (*pchip)->probe(vendorid, devid);
43 		if (name != AH_NULL)
44 			return name;
45 	}
46 	return AH_NULL;
47 }
48 
49 /*
50  * Attach detects device chip revisions, initializes the hwLayer
51  * function list, reads EEPROM information,
52  * selects reset vectors, and performs a short self test.
53  * Any failures will return an error that should cause a hardware
54  * disable.
55  */
56 struct ath_hal*
57 ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
58 	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_STATUS *error)
59 {
60 	struct ath_hal_chip * const *pchip;
61 
62 	OS_SET_FOREACH(pchip, ah_chips) {
63 		struct ath_hal_chip *chip = *pchip;
64 		struct ath_hal *ah;
65 
66 		/* XXX don't have vendorid, assume atheros one works */
67 		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
68 			continue;
69 		ah = chip->attach(devid, sc, st, sh, eepromdata, error);
70 		if (ah != AH_NULL) {
71 			/* copy back private state to public area */
72 			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
73 			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
74 			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
75 			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
76 			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
77 			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
78 			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
79 			return ah;
80 		}
81 	}
82 	return AH_NULL;
83 }
84 
85 const char *
86 ath_hal_mac_name(struct ath_hal *ah)
87 {
88 	switch (ah->ah_macVersion) {
89 	case AR_SREV_VERSION_CRETE:
90 	case AR_SREV_VERSION_MAUI_1:
91 		return "5210";
92 	case AR_SREV_VERSION_MAUI_2:
93 	case AR_SREV_VERSION_OAHU:
94 		return "5211";
95 	case AR_SREV_VERSION_VENICE:
96 		return "5212";
97 	case AR_SREV_VERSION_GRIFFIN:
98 		return "2413";
99 	case AR_SREV_VERSION_CONDOR:
100 		return "5424";
101 	case AR_SREV_VERSION_EAGLE:
102 		return "5413";
103 	case AR_SREV_VERSION_COBRA:
104 		return "2415";
105 	case AR_SREV_2425:	/* Swan */
106 		return "2425";
107 	case AR_SREV_2417:	/* Nala */
108 		return "2417";
109 	case AR_XSREV_VERSION_OWL_PCI:
110 		return "5416";
111 	case AR_XSREV_VERSION_OWL_PCIE:
112 		return "5418";
113 	case AR_XSREV_VERSION_HOWL:
114 		return "9130";
115 	case AR_XSREV_VERSION_SOWL:
116 		return "9160";
117 	case AR_XSREV_VERSION_MERLIN:
118 		if (AH_PRIVATE(ah)->ah_ispcie)
119 			return "9280";
120 		return "9220";
121 	case AR_XSREV_VERSION_KITE:
122 		return "9285";
123 	case AR_XSREV_VERSION_KIWI:
124 		if (AH_PRIVATE(ah)->ah_ispcie)
125 			return "9287";
126 		return "9227";
127 	case AR_SREV_VERSION_AR9380:
128 		if (ah->ah_macRev >= AR_SREV_REVISION_AR9580_10)
129 			return "9580";
130 		return "9380";
131 	case AR_SREV_VERSION_AR9460:
132 		return "9460";
133 	case AR_SREV_VERSION_AR9330:
134 		return "9330";
135 	case AR_SREV_VERSION_AR9340:
136 		return "9340";
137 	case AR_SREV_VERSION_QCA9550:
138 		/* XXX should say QCA, not AR */
139 		return "9550";
140 	case AR_SREV_VERSION_AR9485:
141 		return "9485";
142 	case AR_SREV_VERSION_QCA9565:
143 		/* XXX should say QCA, not AR */
144 		return "9565";
145 	}
146 	return "????";
147 }
148 
149 /*
150  * Return the mask of available modes based on the hardware capabilities.
151  */
152 u_int
153 ath_hal_getwirelessmodes(struct ath_hal*ah)
154 {
155 	return ath_hal_getWirelessModes(ah);
156 }
157 
158 /* linker set of registered RF backends */
159 OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);
160 
161 /*
162  * Check the set of registered RF backends to see if
163  * any recognize the device as one they can support.
164  */
165 struct ath_hal_rf *
166 ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
167 {
168 	struct ath_hal_rf * const *prf;
169 
170 	OS_SET_FOREACH(prf, ah_rfs) {
171 		struct ath_hal_rf *rf = *prf;
172 		if (rf->probe(ah))
173 			return rf;
174 	}
175 	*ecode = HAL_ENOTSUPP;
176 	return AH_NULL;
177 }
178 
179 const char *
180 ath_hal_rf_name(struct ath_hal *ah)
181 {
182 	switch (ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
183 	case 0:			/* 5210 */
184 		return "5110";	/* NB: made up */
185 	case AR_RAD5111_SREV_MAJOR:
186 	case AR_RAD5111_SREV_PROD:
187 		return "5111";
188 	case AR_RAD2111_SREV_MAJOR:
189 		return "2111";
190 	case AR_RAD5112_SREV_MAJOR:
191 	case AR_RAD5112_SREV_2_0:
192 	case AR_RAD5112_SREV_2_1:
193 		return "5112";
194 	case AR_RAD2112_SREV_MAJOR:
195 	case AR_RAD2112_SREV_2_0:
196 	case AR_RAD2112_SREV_2_1:
197 		return "2112";
198 	case AR_RAD2413_SREV_MAJOR:
199 		return "2413";
200 	case AR_RAD5413_SREV_MAJOR:
201 		return "5413";
202 	case AR_RAD2316_SREV_MAJOR:
203 		return "2316";
204 	case AR_RAD2317_SREV_MAJOR:
205 		return "2317";
206 	case AR_RAD5424_SREV_MAJOR:
207 		return "5424";
208 
209 	case AR_RAD5133_SREV_MAJOR:
210 		return "5133";
211 	case AR_RAD2133_SREV_MAJOR:
212 		return "2133";
213 	case AR_RAD5122_SREV_MAJOR:
214 		return "5122";
215 	case AR_RAD2122_SREV_MAJOR:
216 		return "2122";
217 	}
218 	return "????";
219 }
220 
221 /*
222  * Poll the register looking for a specific value.
223  */
224 HAL_BOOL
225 ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
226 {
227 #define	AH_TIMEOUT	1000
228 	return ath_hal_waitfor(ah, reg, mask, val, AH_TIMEOUT);
229 #undef AH_TIMEOUT
230 }
231 
232 HAL_BOOL
233 ath_hal_waitfor(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout)
234 {
235 	int i;
236 
237 	for (i = 0; i < timeout; i++) {
238 		if ((OS_REG_READ(ah, reg) & mask) == val)
239 			return AH_TRUE;
240 		OS_DELAY(10);
241 	}
242 	HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
243 	    "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
244 	    __func__, reg, OS_REG_READ(ah, reg), mask, val);
245 	return AH_FALSE;
246 }
247 
248 /*
249  * Reverse the bits starting at the low bit for a value of
250  * bit_count in size
251  */
252 uint32_t
253 ath_hal_reverseBits(uint32_t val, uint32_t n)
254 {
255 	uint32_t retval;
256 	int i;
257 
258 	for (i = 0, retval = 0; i < n; i++) {
259 		retval = (retval << 1) | (val & 1);
260 		val >>= 1;
261 	}
262 	return retval;
263 }
264 
265 /* 802.11n related timing definitions */
266 
267 #define	OFDM_PLCP_BITS	22
268 #define	HT_L_STF	8
269 #define	HT_L_LTF	8
270 #define	HT_L_SIG	4
271 #define	HT_SIG		8
272 #define	HT_STF		4
273 #define	HT_LTF(n)	((n) * 4)
274 
275 #define	HT_RC_2_MCS(_rc)	((_rc) & 0xf)
276 #define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
277 #define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)
278 
279 /*
280  * Calculate the duration of a packet whether it is 11n or legacy.
281  */
282 uint32_t
283 ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen,
284     uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble)
285 {
286 	uint8_t rc;
287 	int numStreams;
288 
289 	rc = rates->info[rateix].rateCode;
290 
291 	/* Legacy rate? Return the old way */
292 	if (! IS_HT_RATE(rc))
293 		return ath_hal_computetxtime(ah, rates, frameLen, rateix, shortPreamble);
294 
295 	/* 11n frame - extract out the number of spatial streams */
296 	numStreams = HT_RC_2_STREAMS(rc);
297 	KASSERT(numStreams > 0 && numStreams <= 4,
298 	    ("number of spatial streams needs to be 1..3: MCS rate 0x%x!",
299 	    rateix));
300 
301 	return ath_computedur_ht(frameLen, rc, numStreams, isht40, shortPreamble);
302 }
303 
304 static const uint16_t ht20_bps[32] = {
305     26, 52, 78, 104, 156, 208, 234, 260,
306     52, 104, 156, 208, 312, 416, 468, 520,
307     78, 156, 234, 312, 468, 624, 702, 780,
308     104, 208, 312, 416, 624, 832, 936, 1040
309 };
310 static const uint16_t ht40_bps[32] = {
311     54, 108, 162, 216, 324, 432, 486, 540,
312     108, 216, 324, 432, 648, 864, 972, 1080,
313     162, 324, 486, 648, 972, 1296, 1458, 1620,
314     216, 432, 648, 864, 1296, 1728, 1944, 2160
315 };
316 
317 /*
318  * Calculate the transmit duration of an 11n frame.
319  */
320 uint32_t
321 ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams,
322     HAL_BOOL isht40, HAL_BOOL isShortGI)
323 {
324 	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
325 
326 	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
327 	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));
328 
329 	if (isht40)
330 		bitsPerSymbol = ht40_bps[rate & 0x1f];
331 	else
332 		bitsPerSymbol = ht20_bps[rate & 0x1f];
333 	numBits = OFDM_PLCP_BITS + (frameLen << 3);
334 	numSymbols = howmany(numBits, bitsPerSymbol);
335 	if (isShortGI)
336 		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
337 	else
338 		txTime = numSymbols * 4;                /* 4us */
339 	return txTime + HT_L_STF + HT_L_LTF +
340 	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
341 }
342 
343 /*
344  * Compute the time to transmit a frame of length frameLen bytes
345  * using the specified rate, phy, and short preamble setting.
346  */
347 uint16_t
348 ath_hal_computetxtime(struct ath_hal *ah,
349 	const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
350 	HAL_BOOL shortPreamble)
351 {
352 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
353 	uint32_t kbps;
354 
355 	/* Warn if this function is called for 11n rates; it should not be! */
356 	if (IS_HT_RATE(rates->info[rateix].rateCode))
357 		ath_hal_printf(ah, "%s: MCS rate? (index %d; hwrate 0x%x)\n",
358 		    __func__, rateix, rates->info[rateix].rateCode);
359 
360 	kbps = rates->info[rateix].rateKbps;
361 	/*
362 	 * index can be invalid duting dynamic Turbo transitions.
363 	 * XXX
364 	 */
365 	if (kbps == 0)
366 		return 0;
367 	switch (rates->info[rateix].phy) {
368 	case IEEE80211_T_CCK:
369 		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
370 		if (shortPreamble && rates->info[rateix].shortPreamble)
371 			phyTime >>= 1;
372 		numBits		= frameLen << 3;
373 		txTime		= CCK_SIFS_TIME + phyTime
374 				+ ((numBits * 1000)/kbps);
375 		break;
376 	case IEEE80211_T_OFDM:
377 		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
378 		HALASSERT(bitsPerSymbol != 0);
379 
380 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
381 		numSymbols	= howmany(numBits, bitsPerSymbol);
382 		txTime		= OFDM_SIFS_TIME
383 				+ OFDM_PREAMBLE_TIME
384 				+ (numSymbols * OFDM_SYMBOL_TIME);
385 		break;
386 	case IEEE80211_T_OFDM_HALF:
387 		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
388 		HALASSERT(bitsPerSymbol != 0);
389 
390 		numBits		= OFDM_HALF_PLCP_BITS + (frameLen << 3);
391 		numSymbols	= howmany(numBits, bitsPerSymbol);
392 		txTime		= OFDM_HALF_SIFS_TIME
393 				+ OFDM_HALF_PREAMBLE_TIME
394 				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
395 		break;
396 	case IEEE80211_T_OFDM_QUARTER:
397 		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
398 		HALASSERT(bitsPerSymbol != 0);
399 
400 		numBits		= OFDM_QUARTER_PLCP_BITS + (frameLen << 3);
401 		numSymbols	= howmany(numBits, bitsPerSymbol);
402 		txTime		= OFDM_QUARTER_SIFS_TIME
403 				+ OFDM_QUARTER_PREAMBLE_TIME
404 				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
405 		break;
406 	case IEEE80211_T_TURBO:
407 		bitsPerSymbol	= (kbps * TURBO_SYMBOL_TIME) / 1000;
408 		HALASSERT(bitsPerSymbol != 0);
409 
410 		numBits		= TURBO_PLCP_BITS + (frameLen << 3);
411 		numSymbols	= howmany(numBits, bitsPerSymbol);
412 		txTime		= TURBO_SIFS_TIME
413 				+ TURBO_PREAMBLE_TIME
414 				+ (numSymbols * TURBO_SYMBOL_TIME);
415 		break;
416 	default:
417 		HALDEBUG(ah, HAL_DEBUG_PHYIO,
418 		    "%s: unknown phy %u (rate ix %u)\n",
419 		    __func__, rates->info[rateix].phy, rateix);
420 		txTime = 0;
421 		break;
422 	}
423 	return txTime;
424 }
425 
426 int
427 ath_hal_get_curmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
428 {
429 	/*
430 	 * Pick a default mode at bootup. A channel change is inevitable.
431 	 */
432 	if (!chan)
433 		return HAL_MODE_11NG_HT20;
434 
435 	if (IEEE80211_IS_CHAN_TURBO(chan))
436 		return HAL_MODE_TURBO;
437 
438 	/* check for NA_HT before plain A, since IS_CHAN_A includes NA_HT */
439 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
440 		return HAL_MODE_11NA_HT20;
441 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
442 		return HAL_MODE_11NA_HT40PLUS;
443 	if (IEEE80211_IS_CHAN_5GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
444 		return HAL_MODE_11NA_HT40MINUS;
445 	if (IEEE80211_IS_CHAN_A(chan))
446 		return HAL_MODE_11A;
447 
448 	/* check for NG_HT before plain G, since IS_CHAN_G includes NG_HT */
449 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT20(chan))
450 		return HAL_MODE_11NG_HT20;
451 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40U(chan))
452 		return HAL_MODE_11NG_HT40PLUS;
453 	if (IEEE80211_IS_CHAN_2GHZ(chan) && IEEE80211_IS_CHAN_HT40D(chan))
454 		return HAL_MODE_11NG_HT40MINUS;
455 
456 	/*
457 	 * XXX For FreeBSD, will this work correctly given the DYN
458 	 * chan mode (OFDM+CCK dynamic) ? We have pure-G versions DYN-BG..
459 	 */
460 	if (IEEE80211_IS_CHAN_G(chan))
461 		return HAL_MODE_11G;
462 	if (IEEE80211_IS_CHAN_B(chan))
463 		return HAL_MODE_11B;
464 
465 	HALASSERT(0);
466 	return HAL_MODE_11NG_HT20;
467 }
468 
469 
470 typedef enum {
471 	WIRELESS_MODE_11a   = 0,
472 	WIRELESS_MODE_TURBO = 1,
473 	WIRELESS_MODE_11b   = 2,
474 	WIRELESS_MODE_11g   = 3,
475 	WIRELESS_MODE_108g  = 4,
476 
477 	WIRELESS_MODE_MAX
478 } WIRELESS_MODE;
479 
480 static WIRELESS_MODE
481 ath_hal_chan2wmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
482 {
483 	if (IEEE80211_IS_CHAN_B(chan))
484 		return WIRELESS_MODE_11b;
485 	if (IEEE80211_IS_CHAN_G(chan))
486 		return WIRELESS_MODE_11g;
487 	if (IEEE80211_IS_CHAN_108G(chan))
488 		return WIRELESS_MODE_108g;
489 	if (IEEE80211_IS_CHAN_TURBO(chan))
490 		return WIRELESS_MODE_TURBO;
491 	return WIRELESS_MODE_11a;
492 }
493 
494 /*
495  * Convert between microseconds and core system clocks.
496  */
497                                      /* 11a Turbo  11b  11g  108g */
498 static const uint8_t CLOCK_RATE[]  = { 40,  80,   22,  44,   88  };
499 
500 #define	CLOCK_FAST_RATE_5GHZ_OFDM	44
501 
502 u_int
503 ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
504 {
505 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
506 	u_int clks;
507 
508 	/* NB: ah_curchan may be null when called attach time */
509 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
510 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
511 		clks = usecs * CLOCK_FAST_RATE_5GHZ_OFDM;
512 		if (IEEE80211_IS_CHAN_HT40(c))
513 			clks <<= 1;
514 	} else if (c != AH_NULL) {
515 		clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
516 		if (IEEE80211_IS_CHAN_HT40(c))
517 			clks <<= 1;
518 	} else
519 		clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];
520 
521 	/* Compensate for half/quarter rate */
522 	if (c != AH_NULL && IEEE80211_IS_CHAN_HALF(c))
523 		clks = clks / 2;
524 	else if (c != AH_NULL && IEEE80211_IS_CHAN_QUARTER(c))
525 		clks = clks / 4;
526 
527 	return clks;
528 }
529 
530 u_int
531 ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
532 {
533 	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
534 	u_int usec;
535 
536 	/* NB: ah_curchan may be null when called attach time */
537 	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
538 	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
539 		usec = clks / CLOCK_FAST_RATE_5GHZ_OFDM;
540 		if (IEEE80211_IS_CHAN_HT40(c))
541 			usec >>= 1;
542 	} else if (c != AH_NULL) {
543 		usec = clks / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
544 		if (IEEE80211_IS_CHAN_HT40(c))
545 			usec >>= 1;
546 	} else
547 		usec = clks / CLOCK_RATE[WIRELESS_MODE_11b];
548 	return usec;
549 }
550 
551 /*
552  * Setup a h/w rate table's reverse lookup table and
553  * fill in ack durations.  This routine is called for
554  * each rate table returned through the ah_getRateTable
555  * method.  The reverse lookup tables are assumed to be
556  * initialized to zero (or at least the first entry).
557  * We use this as a key that indicates whether or not
558  * we've previously setup the reverse lookup table.
559  *
560  * XXX not reentrant, but shouldn't matter
561  */
562 void
563 ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
564 {
565 #define	N(a)	(sizeof(a)/sizeof(a[0]))
566 	int i;
567 
568 	if (rt->rateCodeToIndex[0] != 0)	/* already setup */
569 		return;
570 	for (i = 0; i < N(rt->rateCodeToIndex); i++)
571 		rt->rateCodeToIndex[i] = (uint8_t) -1;
572 	for (i = 0; i < rt->rateCount; i++) {
573 		uint8_t code = rt->info[i].rateCode;
574 		uint8_t cix = rt->info[i].controlRate;
575 
576 		HALASSERT(code < N(rt->rateCodeToIndex));
577 		rt->rateCodeToIndex[code] = i;
578 		HALASSERT((code | rt->info[i].shortPreamble) <
579 		    N(rt->rateCodeToIndex));
580 		rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
581 		/*
582 		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
583 		 *     depends on whether they are marked as basic rates;
584 		 *     the static tables are setup with an 11b-compatible
585 		 *     2Mb/s rate which will work but is suboptimal
586 		 */
587 		rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
588 			WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE);
589 		rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
590 			WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE);
591 	}
592 #undef N
593 }
594 
595 HAL_STATUS
596 ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
597 	uint32_t capability, uint32_t *result)
598 {
599 	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
600 
601 	switch (type) {
602 	case HAL_CAP_REG_DMN:		/* regulatory domain */
603 		*result = AH_PRIVATE(ah)->ah_currentRD;
604 		return HAL_OK;
605 	case HAL_CAP_DFS_DMN:		/* DFS Domain */
606 		*result = AH_PRIVATE(ah)->ah_dfsDomain;
607 		return HAL_OK;
608 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
609 	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
610 		return HAL_ENOTSUPP;
611 	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
612 		return HAL_ENOTSUPP;
613 	case HAL_CAP_PHYCOUNTERS:	/* hardware PHY error counters */
614 		return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
615 	case HAL_CAP_WME_TKIPMIC:   /* hardware can do TKIP MIC when WMM is turned on */
616 		return HAL_ENOTSUPP;
617 	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
618 		return HAL_ENOTSUPP;
619 	case HAL_CAP_KEYCACHE_SIZE:	/* hardware key cache size */
620 		*result =  pCap->halKeyCacheSize;
621 		return HAL_OK;
622 	case HAL_CAP_NUM_TXQUEUES:	/* number of hardware tx queues */
623 		*result = pCap->halTotalQueues;
624 		return HAL_OK;
625 	case HAL_CAP_VEOL:		/* hardware supports virtual EOL */
626 		return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
627 	case HAL_CAP_PSPOLL:		/* hardware PS-Poll support works */
628 		return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
629 	case HAL_CAP_COMPRESSION:
630 		return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
631 	case HAL_CAP_BURST:
632 		return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
633 	case HAL_CAP_FASTFRAME:
634 		return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
635 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
636 		*result = AH_PRIVATE(ah)->ah_diagreg;
637 		return HAL_OK;
638 	case HAL_CAP_TXPOW:		/* global tx power limit  */
639 		switch (capability) {
640 		case 0:			/* facility is supported */
641 			return HAL_OK;
642 		case 1:			/* current limit */
643 			*result = AH_PRIVATE(ah)->ah_powerLimit;
644 			return HAL_OK;
645 		case 2:			/* current max tx power */
646 			*result = AH_PRIVATE(ah)->ah_maxPowerLevel;
647 			return HAL_OK;
648 		case 3:			/* scale factor */
649 			*result = AH_PRIVATE(ah)->ah_tpScale;
650 			return HAL_OK;
651 		}
652 		return HAL_ENOTSUPP;
653 	case HAL_CAP_BSSIDMASK:		/* hardware supports bssid mask */
654 		return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
655 	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
656 		return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
657 	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
658 		return HAL_ENOTSUPP;
659 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
660 		switch (capability) {
661 		case 0:			/* facility is supported */
662 			return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
663 		case 1:			/* current setting */
664 			return AH_PRIVATE(ah)->ah_rfkillEnabled ?
665 				HAL_OK : HAL_ENOTSUPP;
666 		case 2:			/* rfsilent config */
667 			*result = AH_PRIVATE(ah)->ah_rfsilent;
668 			return HAL_OK;
669 		}
670 		return HAL_ENOTSUPP;
671 	case HAL_CAP_11D:
672 		return HAL_OK;
673 
674 	case HAL_CAP_HT:
675 		return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
676 	case HAL_CAP_GTXTO:
677 		return pCap->halGTTSupport ? HAL_OK : HAL_ENOTSUPP;
678 	case HAL_CAP_FAST_CC:
679 		return pCap->halFastCCSupport ? HAL_OK : HAL_ENOTSUPP;
680 	case HAL_CAP_TX_CHAINMASK:	/* mask of TX chains supported */
681 		*result = pCap->halTxChainMask;
682 		return HAL_OK;
683 	case HAL_CAP_RX_CHAINMASK:	/* mask of RX chains supported */
684 		*result = pCap->halRxChainMask;
685 		return HAL_OK;
686 	case HAL_CAP_NUM_GPIO_PINS:
687 		*result = pCap->halNumGpioPins;
688 		return HAL_OK;
689 	case HAL_CAP_CST:
690 		return pCap->halCSTSupport ? HAL_OK : HAL_ENOTSUPP;
691 	case HAL_CAP_RTS_AGGR_LIMIT:
692 		*result = pCap->halRtsAggrLimit;
693 		return HAL_OK;
694 	case HAL_CAP_4ADDR_AGGR:
695 		return pCap->hal4AddrAggrSupport ? HAL_OK : HAL_ENOTSUPP;
696 	case HAL_CAP_EXT_CHAN_DFS:
697 		return pCap->halExtChanDfsSupport ? HAL_OK : HAL_ENOTSUPP;
698 	case HAL_CAP_RX_STBC:
699 		return pCap->halRxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
700 	case HAL_CAP_TX_STBC:
701 		return pCap->halTxStbcSupport ? HAL_OK : HAL_ENOTSUPP;
702 	case HAL_CAP_COMBINED_RADAR_RSSI:
703 		return pCap->halUseCombinedRadarRssi ? HAL_OK : HAL_ENOTSUPP;
704 	case HAL_CAP_AUTO_SLEEP:
705 		return pCap->halAutoSleepSupport ? HAL_OK : HAL_ENOTSUPP;
706 	case HAL_CAP_MBSSID_AGGR_SUPPORT:
707 		return pCap->halMbssidAggrSupport ? HAL_OK : HAL_ENOTSUPP;
708 	case HAL_CAP_SPLIT_4KB_TRANS:	/* hardware handles descriptors straddling 4k page boundary */
709 		return pCap->hal4kbSplitTransSupport ? HAL_OK : HAL_ENOTSUPP;
710 	case HAL_CAP_REG_FLAG:
711 		*result = AH_PRIVATE(ah)->ah_currentRDext;
712 		return HAL_OK;
713 	case HAL_CAP_ENHANCED_DMA_SUPPORT:
714 		return pCap->halEnhancedDmaSupport ? HAL_OK : HAL_ENOTSUPP;
715 	case HAL_CAP_NUM_TXMAPS:
716 		*result = pCap->halNumTxMaps;
717 		return HAL_OK;
718 	case HAL_CAP_TXDESCLEN:
719 		*result = pCap->halTxDescLen;
720 		return HAL_OK;
721 	case HAL_CAP_TXSTATUSLEN:
722 		*result = pCap->halTxStatusLen;
723 		return HAL_OK;
724 	case HAL_CAP_RXSTATUSLEN:
725 		*result = pCap->halRxStatusLen;
726 		return HAL_OK;
727 	case HAL_CAP_RXFIFODEPTH:
728 		switch (capability) {
729 		case HAL_RX_QUEUE_HP:
730 			*result = pCap->halRxHpFifoDepth;
731 			return HAL_OK;
732 		case HAL_RX_QUEUE_LP:
733 			*result = pCap->halRxLpFifoDepth;
734 			return HAL_OK;
735 		default:
736 			return HAL_ENOTSUPP;
737 	}
738 	case HAL_CAP_RXBUFSIZE:
739 	case HAL_CAP_NUM_MR_RETRIES:
740 		*result = pCap->halNumMRRetries;
741 		return HAL_OK;
742 	case HAL_CAP_BT_COEX:
743 		return pCap->halBtCoexSupport ? HAL_OK : HAL_ENOTSUPP;
744 	case HAL_CAP_SPECTRAL_SCAN:
745 		return pCap->halSpectralScanSupport ? HAL_OK : HAL_ENOTSUPP;
746 	case HAL_CAP_HT20_SGI:
747 		return pCap->halHTSGI20Support ? HAL_OK : HAL_ENOTSUPP;
748 	case HAL_CAP_RXTSTAMP_PREC:	/* rx desc tstamp precision (bits) */
749 		*result = pCap->halTstampPrecision;
750 		return HAL_OK;
751 	case HAL_CAP_ANT_DIV_COMB:	/* AR9285/AR9485 LNA diversity */
752 		return pCap->halAntDivCombSupport ? HAL_OK  : HAL_ENOTSUPP;
753 
754 	case HAL_CAP_ENHANCED_DFS_SUPPORT:
755 		return pCap->halEnhancedDfsSupport ? HAL_OK : HAL_ENOTSUPP;
756 
757 	/* FreeBSD-specific entries for now */
758 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
759 		return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
760 	case HAL_CAP_INTRMASK:		/* mask of supported interrupts */
761 		*result = pCap->halIntrMask;
762 		return HAL_OK;
763 	case HAL_CAP_BSSIDMATCH:	/* hardware has disable bssid match */
764 		return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
765 	case HAL_CAP_STREAMS:		/* number of 11n spatial streams */
766 		switch (capability) {
767 		case 0:			/* TX */
768 			*result = pCap->halTxStreams;
769 			return HAL_OK;
770 		case 1:			/* RX */
771 			*result = pCap->halRxStreams;
772 			return HAL_OK;
773 		default:
774 			return HAL_ENOTSUPP;
775 		}
776 	case HAL_CAP_RXDESC_SELFLINK:	/* hardware supports self-linked final RX descriptors correctly */
777 		return pCap->halHasRxSelfLinkedTail ? HAL_OK : HAL_ENOTSUPP;
778 	case HAL_CAP_LONG_RXDESC_TSF:		/* 32 bit TSF in RX descriptor? */
779 		return pCap->halHasLongRxDescTsf ? HAL_OK : HAL_ENOTSUPP;
780 	case HAL_CAP_BB_READ_WAR:		/* Baseband read WAR */
781 		return pCap->halHasBBReadWar? HAL_OK : HAL_ENOTSUPP;
782 	case HAL_CAP_SERIALISE_WAR:		/* PCI register serialisation */
783 		return pCap->halSerialiseRegWar ? HAL_OK : HAL_ENOTSUPP;
784 	case HAL_CAP_MFP:			/* Management frame protection setting */
785 		*result = pCap->halMfpSupport;
786 		return HAL_OK;
787 	case HAL_CAP_RX_LNA_MIXING:	/* Hardware uses an RX LNA mixer to map 2 antennas to a 1 stream receiver */
788 		return pCap->halRxUsingLnaMixing ? HAL_OK : HAL_ENOTSUPP;
789 	case HAL_CAP_DO_MYBEACON:	/* Hardware supports filtering my-beacons */
790 		return pCap->halRxDoMyBeacon ? HAL_OK : HAL_ENOTSUPP;
791 	default:
792 		return HAL_EINVAL;
793 	}
794 }
795 
796 HAL_BOOL
797 ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
798 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
799 {
800 
801 	switch (type) {
802 	case HAL_CAP_TXPOW:
803 		switch (capability) {
804 		case 3:
805 			if (setting <= HAL_TP_SCALE_MIN) {
806 				AH_PRIVATE(ah)->ah_tpScale = setting;
807 				return AH_TRUE;
808 			}
809 			break;
810 		}
811 		break;
812 	case HAL_CAP_RFSILENT:		/* rfsilent support  */
813 		/*
814 		 * NB: allow even if halRfSilentSupport is false
815 		 *     in case the EEPROM is misprogrammed.
816 		 */
817 		switch (capability) {
818 		case 1:			/* current setting */
819 			AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
820 			return AH_TRUE;
821 		case 2:			/* rfsilent config */
822 			/* XXX better done per-chip for validation? */
823 			AH_PRIVATE(ah)->ah_rfsilent = setting;
824 			return AH_TRUE;
825 		}
826 		break;
827 	case HAL_CAP_REG_DMN:		/* regulatory domain */
828 		AH_PRIVATE(ah)->ah_currentRD = setting;
829 		return AH_TRUE;
830 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
831 		AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
832 		return AH_TRUE;
833 	default:
834 		break;
835 	}
836 	if (status)
837 		*status = HAL_EINVAL;
838 	return AH_FALSE;
839 }
840 
841 /*
842  * Common support for getDiagState method.
843  */
844 
845 static u_int
846 ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
847 	void *dstbuf, int space)
848 {
849 	uint32_t *dp = dstbuf;
850 	int i;
851 
852 	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
853 		u_int r = regs[i].start;
854 		u_int e = regs[i].end;
855 		*dp++ = (r<<16) | e;
856 		space -= sizeof(uint32_t);
857 		do {
858 			*dp++ = OS_REG_READ(ah, r);
859 			r += sizeof(uint32_t);
860 			space -= sizeof(uint32_t);
861 		} while (r <= e && space >= sizeof(uint32_t));
862 	}
863 	return (char *) dp - (char *) dstbuf;
864 }
865 
866 static void
867 ath_hal_setregs(struct ath_hal *ah, const HAL_REGWRITE *regs, int space)
868 {
869 	while (space >= sizeof(HAL_REGWRITE)) {
870 		OS_REG_WRITE(ah, regs->addr, regs->value);
871 		regs++, space -= sizeof(HAL_REGWRITE);
872 	}
873 }
874 
875 HAL_BOOL
876 ath_hal_getdiagstate(struct ath_hal *ah, int request,
877 	const void *args, uint32_t argsize,
878 	void **result, uint32_t *resultsize)
879 {
880 	switch (request) {
881 	case HAL_DIAG_REVS:
882 		*result = &AH_PRIVATE(ah)->ah_devid;
883 		*resultsize = sizeof(HAL_REVS);
884 		return AH_TRUE;
885 	case HAL_DIAG_REGS:
886 		*resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
887 		return AH_TRUE;
888 	case HAL_DIAG_SETREGS:
889 		ath_hal_setregs(ah, args, argsize);
890 		*resultsize = 0;
891 		return AH_TRUE;
892 	case HAL_DIAG_FATALERR:
893 		*result = &AH_PRIVATE(ah)->ah_fatalState[0];
894 		*resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
895 		return AH_TRUE;
896 	case HAL_DIAG_EEREAD:
897 		if (argsize != sizeof(uint16_t))
898 			return AH_FALSE;
899 		if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
900 			return AH_FALSE;
901 		*resultsize = sizeof(uint16_t);
902 		return AH_TRUE;
903 #ifdef AH_PRIVATE_DIAG
904 	case HAL_DIAG_SETKEY: {
905 		const HAL_DIAG_KEYVAL *dk;
906 
907 		if (argsize != sizeof(HAL_DIAG_KEYVAL))
908 			return AH_FALSE;
909 		dk = (const HAL_DIAG_KEYVAL *)args;
910 		return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
911 			&dk->dk_keyval, dk->dk_mac, dk->dk_xor);
912 	}
913 	case HAL_DIAG_RESETKEY:
914 		if (argsize != sizeof(uint16_t))
915 			return AH_FALSE;
916 		return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
917 #ifdef AH_SUPPORT_WRITE_EEPROM
918 	case HAL_DIAG_EEWRITE: {
919 		const HAL_DIAG_EEVAL *ee;
920 		if (argsize != sizeof(HAL_DIAG_EEVAL))
921 			return AH_FALSE;
922 		ee = (const HAL_DIAG_EEVAL *)args;
923 		return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
924 	}
925 #endif /* AH_SUPPORT_WRITE_EEPROM */
926 #endif /* AH_PRIVATE_DIAG */
927 	case HAL_DIAG_11NCOMPAT:
928 		if (argsize == 0) {
929 			*resultsize = sizeof(uint32_t);
930 			*((uint32_t *)(*result)) =
931 				AH_PRIVATE(ah)->ah_11nCompat;
932 		} else if (argsize == sizeof(uint32_t)) {
933 			AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
934 		} else
935 			return AH_FALSE;
936 		return AH_TRUE;
937 	}
938 	return AH_FALSE;
939 }
940 
941 /*
942  * Set the properties of the tx queue with the parameters
943  * from qInfo.
944  */
945 HAL_BOOL
946 ath_hal_setTxQProps(struct ath_hal *ah,
947 	HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
948 {
949 	uint32_t cw;
950 
951 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
952 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
953 		    "%s: inactive queue\n", __func__);
954 		return AH_FALSE;
955 	}
956 	/* XXX validate parameters */
957 	qi->tqi_ver = qInfo->tqi_ver;
958 	qi->tqi_subtype = qInfo->tqi_subtype;
959 	qi->tqi_qflags = qInfo->tqi_qflags;
960 	qi->tqi_priority = qInfo->tqi_priority;
961 	if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
962 		qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
963 	else
964 		qi->tqi_aifs = INIT_AIFS;
965 	if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
966 		cw = AH_MIN(qInfo->tqi_cwmin, 1024);
967 		/* make sure that the CWmin is of the form (2^n - 1) */
968 		qi->tqi_cwmin = 1;
969 		while (qi->tqi_cwmin < cw)
970 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
971 	} else
972 		qi->tqi_cwmin = qInfo->tqi_cwmin;
973 	if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
974 		cw = AH_MIN(qInfo->tqi_cwmax, 1024);
975 		/* make sure that the CWmax is of the form (2^n - 1) */
976 		qi->tqi_cwmax = 1;
977 		while (qi->tqi_cwmax < cw)
978 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
979 	} else
980 		qi->tqi_cwmax = INIT_CWMAX;
981 	/* Set retry limit values */
982 	if (qInfo->tqi_shretry != 0)
983 		qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
984 	else
985 		qi->tqi_shretry = INIT_SH_RETRY;
986 	if (qInfo->tqi_lgretry != 0)
987 		qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
988 	else
989 		qi->tqi_lgretry = INIT_LG_RETRY;
990 	qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
991 	qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
992 	qi->tqi_burstTime = qInfo->tqi_burstTime;
993 	qi->tqi_readyTime = qInfo->tqi_readyTime;
994 
995 	switch (qInfo->tqi_subtype) {
996 	case HAL_WME_UPSD:
997 		if (qi->tqi_type == HAL_TX_QUEUE_DATA)
998 			qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
999 		break;
1000 	default:
1001 		break;		/* NB: silence compiler */
1002 	}
1003 	return AH_TRUE;
1004 }
1005 
1006 HAL_BOOL
1007 ath_hal_getTxQProps(struct ath_hal *ah,
1008 	HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
1009 {
1010 	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
1011 		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
1012 		    "%s: inactive queue\n", __func__);
1013 		return AH_FALSE;
1014 	}
1015 
1016 	qInfo->tqi_qflags = qi->tqi_qflags;
1017 	qInfo->tqi_ver = qi->tqi_ver;
1018 	qInfo->tqi_subtype = qi->tqi_subtype;
1019 	qInfo->tqi_qflags = qi->tqi_qflags;
1020 	qInfo->tqi_priority = qi->tqi_priority;
1021 	qInfo->tqi_aifs = qi->tqi_aifs;
1022 	qInfo->tqi_cwmin = qi->tqi_cwmin;
1023 	qInfo->tqi_cwmax = qi->tqi_cwmax;
1024 	qInfo->tqi_shretry = qi->tqi_shretry;
1025 	qInfo->tqi_lgretry = qi->tqi_lgretry;
1026 	qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
1027 	qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
1028 	qInfo->tqi_burstTime = qi->tqi_burstTime;
1029 	qInfo->tqi_readyTime = qi->tqi_readyTime;
1030 	return AH_TRUE;
1031 }
1032 
1033                                      /* 11a Turbo  11b  11g  108g */
1034 static const int16_t NOISE_FLOOR[] = { -96, -93,  -98, -96,  -93 };
1035 
1036 /*
1037  * Read the current channel noise floor and return.
1038  * If nf cal hasn't finished, channel noise floor should be 0
1039  * and we return a nominal value based on band and frequency.
1040  *
1041  * NB: This is a private routine used by per-chip code to
1042  *     implement the ah_getChanNoise method.
1043  */
1044 int16_t
1045 ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
1046 {
1047 	HAL_CHANNEL_INTERNAL *ichan;
1048 
1049 	ichan = ath_hal_checkchannel(ah, chan);
1050 	if (ichan == AH_NULL) {
1051 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1052 		    "%s: invalid channel %u/0x%x; no mapping\n",
1053 		    __func__, chan->ic_freq, chan->ic_flags);
1054 		return 0;
1055 	}
1056 	if (ichan->rawNoiseFloor == 0) {
1057 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1058 
1059 		HALASSERT(mode < WIRELESS_MODE_MAX);
1060 		return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
1061 	} else
1062 		return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
1063 }
1064 
1065 /*
1066  * Fetch the current setup of ctl/ext noise floor values.
1067  *
1068  * If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
1069  * populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
1070  *
1071  * The caller must supply ctl/ext NF arrays which are at least
1072  * AH_MAX_CHAINS entries long.
1073  */
1074 int
1075 ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
1076     const struct ieee80211_channel *chan, int16_t *nf_ctl,
1077     int16_t *nf_ext)
1078 {
1079 #ifdef	AH_SUPPORT_AR5416
1080 	HAL_CHANNEL_INTERNAL *ichan;
1081 	int i;
1082 
1083 	ichan = ath_hal_checkchannel(ah, chan);
1084 	if (ichan == AH_NULL) {
1085 		HALDEBUG(ah, HAL_DEBUG_NFCAL,
1086 		    "%s: invalid channel %u/0x%x; no mapping\n",
1087 		    __func__, chan->ic_freq, chan->ic_flags);
1088 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1089 			nf_ctl[i] = nf_ext[i] = 0;
1090 		}
1091 		return 0;
1092 	}
1093 
1094 	/* Return 0 if there's no valid MIMO values (yet) */
1095 	if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
1096 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1097 			nf_ctl[i] = nf_ext[i] = 0;
1098 		}
1099 		return 0;
1100 	}
1101 	if (ichan->rawNoiseFloor == 0) {
1102 		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
1103 		HALASSERT(mode < WIRELESS_MODE_MAX);
1104 		/*
1105 		 * See the comment below - this could cause issues for
1106 		 * stations which have a very low RSSI, below the
1107 		 * 'normalised' NF values in NOISE_FLOOR[].
1108 		 */
1109 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1110 			nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
1111 			    ath_hal_getNfAdjust(ah, ichan);
1112 		}
1113 		return 1;
1114 	} else {
1115 		/*
1116 		 * The value returned here from a MIMO radio is presumed to be
1117 		 * "good enough" as a NF calculation. As RSSI values are calculated
1118 		 * against this, an adjusted NF may be higher than the RSSI value
1119 		 * returned from a vary weak station, resulting in an obscenely
1120 		 * high signal strength calculation being returned.
1121 		 *
1122 		 * This should be re-evaluated at a later date, along with any
1123 		 * signal strength calculations which are made. Quite likely the
1124 		 * RSSI values will need to be adjusted to ensure the calculations
1125 		 * don't "wrap" when RSSI is less than the "adjusted" NF value.
1126 		 * ("Adjust" here is via ichan->noiseFloorAdjust.)
1127 		 */
1128 		for (i = 0; i < AH_MAX_CHAINS; i++) {
1129 			nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
1130 			nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
1131 		}
1132 		return 1;
1133 	}
1134 #else
1135 	return 0;
1136 #endif	/* AH_SUPPORT_AR5416 */
1137 }
1138 
1139 /*
1140  * Process all valid raw noise floors into the dBm noise floor values.
1141  * Though our device has no reference for a dBm noise floor, we perform
1142  * a relative minimization of NF's based on the lowest NF found across a
1143  * channel scan.
1144  */
1145 void
1146 ath_hal_process_noisefloor(struct ath_hal *ah)
1147 {
1148 	HAL_CHANNEL_INTERNAL *c;
1149 	int16_t correct2, correct5;
1150 	int16_t lowest2, lowest5;
1151 	int i;
1152 
1153 	/*
1154 	 * Find the lowest 2GHz and 5GHz noise floor values after adjusting
1155 	 * for statistically recorded NF/channel deviation.
1156 	 */
1157 	correct2 = lowest2 = 0;
1158 	correct5 = lowest5 = 0;
1159 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1160 		WIRELESS_MODE mode;
1161 		int16_t nf;
1162 
1163 		c = &AH_PRIVATE(ah)->ah_channels[i];
1164 		if (c->rawNoiseFloor >= 0)
1165 			continue;
1166 		/* XXX can't identify proper mode */
1167 		mode = IS_CHAN_5GHZ(c) ? WIRELESS_MODE_11a : WIRELESS_MODE_11g;
1168 		nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
1169 			ath_hal_getNfAdjust(ah, c);
1170 		if (IS_CHAN_5GHZ(c)) {
1171 			if (nf < lowest5) {
1172 				lowest5 = nf;
1173 				correct5 = NOISE_FLOOR[mode] -
1174 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1175 			}
1176 		} else {
1177 			if (nf < lowest2) {
1178 				lowest2 = nf;
1179 				correct2 = NOISE_FLOOR[mode] -
1180 				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1181 			}
1182 		}
1183 	}
1184 
1185 	/* Correct the channels to reach the expected NF value */
1186 	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1187 		c = &AH_PRIVATE(ah)->ah_channels[i];
1188 		if (c->rawNoiseFloor >= 0)
1189 			continue;
1190 		/* Apply correction factor */
1191 		c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
1192 			(IS_CHAN_5GHZ(c) ? correct5 : correct2);
1193 		HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u raw nf %d adjust %d\n",
1194 		    c->channel, c->rawNoiseFloor, c->noiseFloorAdjust);
1195 	}
1196 }
1197 
1198 /*
1199  * INI support routines.
1200  */
1201 
1202 int
1203 ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1204 	int col, int regWr)
1205 {
1206 	int r;
1207 
1208 	HALASSERT(col < ia->cols);
1209 	for (r = 0; r < ia->rows; r++) {
1210 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
1211 		    HAL_INI_VAL(ia, r, col));
1212 
1213 		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
1214 		if (HAL_INI_VAL(ia, r, 0) >= 0x7800 && HAL_INI_VAL(ia, r, 0) < 0x7900)
1215 			OS_DELAY(100);
1216 
1217 		DMA_YIELD(regWr);
1218 	}
1219 	return regWr;
1220 }
1221 
1222 void
1223 ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
1224 {
1225 	int r;
1226 
1227 	HALASSERT(col < ia->cols);
1228 	for (r = 0; r < ia->rows; r++)
1229 		data[r] = HAL_INI_VAL(ia, r, col);
1230 }
1231 
1232 int
1233 ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1234 	const uint32_t data[], int regWr)
1235 {
1236 	int r;
1237 
1238 	for (r = 0; r < ia->rows; r++) {
1239 		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
1240 		DMA_YIELD(regWr);
1241 	}
1242 	return regWr;
1243 }
1244 
1245 /*
1246  * These are EEPROM board related routines which should likely live in
1247  * a helper library of some sort.
1248  */
1249 
1250 /**************************************************************
1251  * ath_ee_getLowerUppderIndex
1252  *
1253  * Return indices surrounding the value in sorted integer lists.
1254  * Requirement: the input list must be monotonically increasing
1255  *     and populated up to the list size
1256  * Returns: match is set if an index in the array matches exactly
1257  *     or a the target is before or after the range of the array.
1258  */
1259 HAL_BOOL
1260 ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
1261                    uint16_t *indexL, uint16_t *indexR)
1262 {
1263     uint16_t i;
1264 
1265     /*
1266      * Check first and last elements for beyond ordered array cases.
1267      */
1268     if (target <= pList[0]) {
1269         *indexL = *indexR = 0;
1270         return AH_TRUE;
1271     }
1272     if (target >= pList[listSize-1]) {
1273         *indexL = *indexR = (uint16_t)(listSize - 1);
1274         return AH_TRUE;
1275     }
1276 
1277     /* look for value being near or between 2 values in list */
1278     for (i = 0; i < listSize - 1; i++) {
1279         /*
1280          * If value is close to the current value of the list
1281          * then target is not between values, it is one of the values
1282          */
1283         if (pList[i] == target) {
1284             *indexL = *indexR = i;
1285             return AH_TRUE;
1286         }
1287         /*
1288          * Look for value being between current value and next value
1289          * if so return these 2 values
1290          */
1291         if (target < pList[i + 1]) {
1292             *indexL = i;
1293             *indexR = (uint16_t)(i + 1);
1294             return AH_FALSE;
1295         }
1296     }
1297     HALASSERT(0);
1298     *indexL = *indexR = 0;
1299     return AH_FALSE;
1300 }
1301 
1302 /**************************************************************
1303  * ath_ee_FillVpdTable
1304  *
1305  * Fill the Vpdlist for indices Pmax-Pmin
1306  * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
1307  */
1308 HAL_BOOL
1309 ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
1310                    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
1311 {
1312     uint16_t  i, k;
1313     uint8_t   currPwr = pwrMin;
1314     uint16_t  idxL, idxR;
1315 
1316     HALASSERT(pwrMax > pwrMin);
1317     for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
1318         ath_ee_getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
1319                            &(idxL), &(idxR));
1320         if (idxR < 1)
1321             idxR = 1;           /* extrapolate below */
1322         if (idxL == numIntercepts - 1)
1323             idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
1324         if (pPwrList[idxL] == pPwrList[idxR])
1325             k = pVpdList[idxL];
1326         else
1327             k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
1328                   (pPwrList[idxR] - pPwrList[idxL]) );
1329         HALASSERT(k < 256);
1330         pRetVpdList[i] = (uint8_t)k;
1331         currPwr += 2;               /* half dB steps */
1332     }
1333 
1334     return AH_TRUE;
1335 }
1336 
1337 /**************************************************************************
1338  * ath_ee_interpolate
1339  *
1340  * Returns signed interpolated or the scaled up interpolated value
1341  */
1342 int16_t
1343 ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
1344             int16_t targetLeft, int16_t targetRight)
1345 {
1346     int16_t rv;
1347 
1348     if (srcRight == srcLeft) {
1349         rv = targetLeft;
1350     } else {
1351         rv = (int16_t)( ((target - srcLeft) * targetRight +
1352               (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
1353     }
1354     return rv;
1355 }
1356 
1357 /*
1358  * Adjust the TSF.
1359  */
1360 void
1361 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
1362 {
1363 	/* XXX handle wrap/overflow */
1364 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
1365 }
1366 
1367 /*
1368  * Enable or disable CCA.
1369  */
1370 void
1371 ath_hal_setcca(struct ath_hal *ah, int ena)
1372 {
1373 	/*
1374 	 * NB: fill me in; this is not provided by default because disabling
1375 	 *     CCA in most locales violates regulatory.
1376 	 */
1377 }
1378 
1379 /*
1380  * Get CCA setting.
1381  */
1382 int
1383 ath_hal_getcca(struct ath_hal *ah)
1384 {
1385 	u_int32_t diag;
1386 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
1387 		return 1;
1388 	return ((diag & 0x500000) == 0);
1389 }
1390 
1391 /*
1392  * This routine is only needed when supporting EEPROM-in-RAM setups
1393  * (eg embedded SoCs and on-board PCI/PCIe devices.)
1394  */
1395 /* NB: This is in 16 bit words; not bytes */
1396 /* XXX This doesn't belong here!  */
1397 #define ATH_DATA_EEPROM_SIZE    2048
1398 
1399 HAL_BOOL
1400 ath_hal_EepromDataRead(struct ath_hal *ah, u_int off, uint16_t *data)
1401 {
1402 	if (ah->ah_eepromdata == AH_NULL) {
1403 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no eeprom data!\n", __func__);
1404 		return AH_FALSE;
1405 	}
1406 	if (off > ATH_DATA_EEPROM_SIZE) {
1407 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: offset %x > %x\n",
1408 		    __func__, off, ATH_DATA_EEPROM_SIZE);
1409 		return AH_FALSE;
1410 	}
1411 	(*data) = ah->ah_eepromdata[off];
1412 	return AH_TRUE;
1413 }
1414 
1415 /*
1416  * Do a 2GHz specific MHz->IEEE based on the hardware
1417  * frequency.
1418  *
1419  * This is the unmapped frequency which is programmed into the hardware.
1420  */
1421 int
1422 ath_hal_mhz2ieee_2ghz(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
1423 {
1424 
1425 	if (ichan->channel == 2484)
1426 		return 14;
1427 	if (ichan->channel < 2484)
1428 		return ((int) ichan->channel - 2407) / 5;
1429 	else
1430 		return 15 + ((ichan->channel - 2512) / 20);
1431 }
1432