1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2004 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
27 
28 #include "ah_eeprom_v1.h"
29 
30 #define	AR_NUM_GPIO	6		/* 6 GPIO bits */
31 #define	AR_GPIOD_MASK	0x2f		/* 6-bit mask */
32 
33 void
34 ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
35 {
36 	struct ath_hal_5210 *ahp = AH5210(ah);
37 
38 	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
39 }
40 
41 HAL_BOOL
42 ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
43 {
44 	struct ath_hal_5210 *ahp = AH5210(ah);
45 
46 	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
47 	return AH_TRUE;
48 }
49 
50 void
51 ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
52 {
53 	static const uint8_t ones[IEEE80211_ADDR_LEN] =
54 		{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55 	OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
56 }
57 
58 HAL_BOOL
59 ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
60 {
61 	return AH_FALSE;
62 }
63 
64 /*
65  * Read 16 bits of data from the specified EEPROM offset.
66  */
67 HAL_BOOL
68 ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
69 {
70 	(void) OS_REG_READ(ah, AR_EP_AIR(off));	/* activate read op */
71 	if (!ath_hal_wait(ah, AR_EP_STA,
72 	    AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
73 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
74 		    __func__, AR_EP_AIR(off));
75 		return AH_FALSE;
76 	}
77 	*data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
78 	return AH_TRUE;
79 }
80 
81 #ifdef AH_SUPPORT_WRITE_EEPROM
82 /*
83  * Write 16 bits of data to the specified EEPROM offset.
84  */
85 HAL_BOOL
86 ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
87 {
88 	return AH_FALSE;
89 }
90 #endif /* AH_SUPPORT_WRITE_EEPROM */
91 
92 /*
93  * Attempt to change the cards operating regulatory domain to the given value
94  */
95 HAL_BOOL
96 ar5210SetRegulatoryDomain(struct ath_hal *ah,
97 	uint16_t regDomain, HAL_STATUS *status)
98 {
99 	HAL_STATUS ecode;
100 
101 	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
102 		ecode = HAL_EINVAL;
103 		goto bad;
104 	}
105 	/*
106 	 * Check if EEPROM is configured to allow this; must
107 	 * be a proper version and the protection bits must
108 	 * permit re-writing that segment of the EEPROM.
109 	 */
110 	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
111 		ecode = HAL_EEWRITE;
112 		goto bad;
113 	}
114 	ecode = HAL_EIO;		/* disallow all writes */
115 bad:
116 	if (status)
117 		*status = ecode;
118 	return AH_FALSE;
119 }
120 
121 /*
122  * Return the wireless modes (a,b,g,t) supported by hardware.
123  *
124  * This value is what is actually supported by the hardware
125  * and is unaffected by regulatory/country code settings.
126  *
127  */
128 u_int
129 ar5210GetWirelessModes(struct ath_hal *ah)
130 {
131 	/* XXX could enable turbo mode but can't do all rates */
132 	return HAL_MODE_11A;
133 }
134 
135 /*
136  * Called if RfKill is supported (according to EEPROM).  Set the interrupt and
137  * GPIO values so the ISR and can disable RF on a switch signal
138  */
139 void
140 ar5210EnableRfKill(struct ath_hal *ah)
141 {
142 	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
143 	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
144 	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
145 
146 	/*
147 	 * If radio disable switch connection to GPIO bit 0 is enabled
148 	 * program GPIO interrupt.
149 	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
150 	 * verified that it is a later version of eeprom, it has a place for
151 	 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
152 	 * connection is present.
153 	 */
154 	ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
155 }
156 
157 /*
158  * Configure GPIO Output lines
159  */
160 HAL_BOOL
161 ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
162 {
163 	HALASSERT(gpio < AR_NUM_GPIO);
164 
165 	OS_REG_WRITE(ah, AR_GPIOCR,
166 		  (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
167 		| AR_GPIOCR_OUT1(gpio));
168 
169 	return AH_TRUE;
170 }
171 
172 /*
173  * Configure GPIO Input lines
174  */
175 HAL_BOOL
176 ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
177 {
178 	HALASSERT(gpio < AR_NUM_GPIO);
179 
180 	OS_REG_WRITE(ah, AR_GPIOCR,
181 		  (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
182 		| AR_GPIOCR_IN(gpio));
183 
184 	return AH_TRUE;
185 }
186 
187 /*
188  * Once configured for I/O - set output lines
189  */
190 HAL_BOOL
191 ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
192 {
193 	uint32_t reg;
194 
195 	HALASSERT(gpio < AR_NUM_GPIO);
196 
197 	reg =  OS_REG_READ(ah, AR_GPIODO);
198 	reg &= ~(1 << gpio);
199 	reg |= (val&1) << gpio;
200 
201 	OS_REG_WRITE(ah, AR_GPIODO, reg);
202 	return AH_TRUE;
203 }
204 
205 /*
206  * Once configured for I/O - get input lines
207  */
208 uint32_t
209 ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
210 {
211 	if (gpio < AR_NUM_GPIO) {
212 		uint32_t val = OS_REG_READ(ah, AR_GPIODI);
213 		val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
214 		return val;
215 	} else  {
216 		return 0xffffffff;
217 	}
218 }
219 
220 /*
221  * Set the GPIO 0 Interrupt
222  */
223 void
224 ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
225 {
226 	uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
227 
228 	/* Clear the bits that we will modify. */
229 	val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
230 			AR_GPIOCR_ALL(gpio));
231 
232 	val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
233 	if (ilevel)
234 		val |= AR_GPIOCR_INT_SELH;
235 
236 	/* Don't need to change anything for low level interrupt. */
237 	OS_REG_WRITE(ah, AR_GPIOCR, val);
238 
239 	/* Change the interrupt mask. */
240 	ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
241 }
242 
243 /*
244  * Change the LED blinking pattern to correspond to the connectivity
245  */
246 void
247 ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
248 {
249 	uint32_t val;
250 
251 	val = OS_REG_READ(ah, AR_PCICFG);
252 	switch (state) {
253 	case HAL_LED_INIT:
254 		val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
255 		break;
256 	case HAL_LED_RUN:
257 		/* normal blink when connected */
258 		val &= ~AR_PCICFG_LED_PEND;
259 		val |= AR_PCICFG_LED_ACT;
260 		break;
261 	default:
262 		val |= AR_PCICFG_LED_PEND;
263 		val &= ~AR_PCICFG_LED_ACT;
264 		break;
265 	}
266 	OS_REG_WRITE(ah, AR_PCICFG, val);
267 }
268 
269 /*
270  * Return 1 or 2 for the corresponding antenna that is in use
271  */
272 u_int
273 ar5210GetDefAntenna(struct ath_hal *ah)
274 {
275 	uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
276 	return (val & AR_STA_ID1_DEFAULT_ANTENNA ?  2 : 1);
277 }
278 
279 void
280 ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
281 {
282 	uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
283 
284 	if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ?  2 : 1)) {
285 		/*
286 		 * Antenna change requested, force a toggle of the default.
287 		 */
288 		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
289 	}
290 }
291 
292 HAL_ANT_SETTING
293 ar5210GetAntennaSwitch(struct ath_hal *ah)
294 {
295 	return HAL_ANT_VARIABLE;
296 }
297 
298 HAL_BOOL
299 ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
300 {
301 	/* XXX not sure how to fix antenna */
302 	return (settings == HAL_ANT_VARIABLE);
303 }
304 
305 /*
306  * Change association related fields programmed into the hardware.
307  * Writing a valid BSSID to the hardware effectively enables the hardware
308  * to synchronize its TSF to the correct beacons and receive frames coming
309  * from that BSSID. It is called by the SME JOIN operation.
310  */
311 void
312 ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
313 {
314 	struct ath_hal_5210 *ahp = AH5210(ah);
315 
316 	/* XXX save bssid for possible re-use on reset */
317 	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
318 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
319 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
320 				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
321 	if (assocId == 0)
322 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
323 	else
324 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
325 }
326 
327 /*
328  * Get the current hardware tsf for stamlme.
329  */
330 uint64_t
331 ar5210GetTsf64(struct ath_hal *ah)
332 {
333 	uint32_t low1, low2, u32;
334 
335 	/* sync multi-word read */
336 	low1 = OS_REG_READ(ah, AR_TSF_L32);
337 	u32 = OS_REG_READ(ah, AR_TSF_U32);
338 	low2 = OS_REG_READ(ah, AR_TSF_L32);
339 	if (low2 < low1) {	/* roll over */
340 		/*
341 		 * If we are not preempted this will work.  If we are
342 		 * then we re-reading AR_TSF_U32 does no good as the
343 		 * low bits will be meaningless.  Likewise reading
344 		 * L32, U32, U32, then comparing the last two reads
345 		 * to check for rollover doesn't help if preempted--so
346 		 * we take this approach as it costs one less PCI
347 		 * read which can be noticeable when doing things
348 		 * like timestamping packets in monitor mode.
349 		 */
350 		u32++;
351 	}
352 	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
353 }
354 
355 /*
356  * Get the current hardware tsf for stamlme.
357  */
358 uint32_t
359 ar5210GetTsf32(struct ath_hal *ah)
360 {
361 	return OS_REG_READ(ah, AR_TSF_L32);
362 }
363 
364 /*
365  * Reset the current hardware tsf for stamlme
366  */
367 void
368 ar5210ResetTsf(struct ath_hal *ah)
369 {
370 	uint32_t val = OS_REG_READ(ah, AR_BEACON);
371 
372 	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
373 }
374 
375 /*
376  * Grab a semi-random value from hardware registers - may not
377  * change often
378  */
379 uint32_t
380 ar5210GetRandomSeed(struct ath_hal *ah)
381 {
382 	uint32_t nf;
383 
384 	nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
385 	if (nf & 0x100)
386 		nf = 0 - ((nf ^ 0x1ff) + 1);
387 	return (OS_REG_READ(ah, AR_TSF_U32) ^
388 		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
389 }
390 
391 /*
392  * Detect if our card is present
393  */
394 HAL_BOOL
395 ar5210DetectCardPresent(struct ath_hal *ah)
396 {
397 	/*
398 	 * Read the Silicon Revision register and compare that
399 	 * to what we read at attach time.  If the same, we say
400 	 * a card/device is present.
401 	 */
402 	return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
403 }
404 
405 /*
406  * Update MIB Counters
407  */
408 void
409 ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
410 {
411 	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
412 	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
413 	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
414 	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
415 	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
416 }
417 
418 HAL_BOOL
419 ar5210SetSifsTime(struct ath_hal *ah, u_int us)
420 {
421 	struct ath_hal_5210 *ahp = AH5210(ah);
422 
423 	if (us > ath_hal_mac_usec(ah, 0x7ff)) {
424 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
425 		    __func__, us);
426 		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
427 		return AH_FALSE;
428 	} else {
429 		/* convert to system clocks */
430 		OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
431 		    ath_hal_mac_clks(ah, us));
432 		ahp->ah_sifstime = us;
433 		return AH_TRUE;
434 	}
435 }
436 
437 u_int
438 ar5210GetSifsTime(struct ath_hal *ah)
439 {
440 	u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
441 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
442 }
443 
444 HAL_BOOL
445 ar5210SetSlotTime(struct ath_hal *ah, u_int us)
446 {
447 	struct ath_hal_5210 *ahp = AH5210(ah);
448 
449 	if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
450 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
451 		    __func__, us);
452 		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
453 		return AH_FALSE;
454 	} else {
455 		/* convert to system clocks */
456 		OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
457 		ahp->ah_slottime = us;
458 		return AH_TRUE;
459 	}
460 }
461 
462 u_int
463 ar5210GetSlotTime(struct ath_hal *ah)
464 {
465 	u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
466 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
467 }
468 
469 HAL_BOOL
470 ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
471 {
472 	struct ath_hal_5210 *ahp = AH5210(ah);
473 
474 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
475 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
476 		    __func__, us);
477 		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
478 		return AH_FALSE;
479 	} else {
480 		/* convert to system clocks */
481 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
482 			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
483 		ahp->ah_acktimeout = us;
484 		return AH_TRUE;
485 	}
486 }
487 
488 u_int
489 ar5210GetAckTimeout(struct ath_hal *ah)
490 {
491 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
492 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
493 }
494 
495 u_int
496 ar5210GetAckCTSRate(struct ath_hal *ah)
497 {
498 	return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
499 }
500 
501 HAL_BOOL
502 ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
503 {
504 	struct ath_hal_5210 *ahp = AH5210(ah);
505 
506 	if (high) {
507 		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
508 		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
509 	} else {
510 		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
511 		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
512 	}
513 	return AH_TRUE;
514 }
515 
516 HAL_BOOL
517 ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
518 {
519 	struct ath_hal_5210 *ahp = AH5210(ah);
520 
521 	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
522 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
523 		    __func__, us);
524 		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
525 		return AH_FALSE;
526 	} else {
527 		/* convert to system clocks */
528 		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
529 			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
530 		ahp->ah_ctstimeout = us;
531 		return AH_TRUE;
532 	}
533 }
534 
535 u_int
536 ar5210GetCTSTimeout(struct ath_hal *ah)
537 {
538 	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
539 	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
540 }
541 
542 HAL_BOOL
543 ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
544 {
545 	/* nothing to do */
546         return AH_TRUE;
547 }
548 
549 void
550 ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
551 {
552 }
553 
554 /*
555  * Control Adaptive Noise Immunity Parameters
556  */
557 HAL_BOOL
558 ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
559 {
560 	return AH_FALSE;
561 }
562 
563 void
564 ar5210RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
565 	const struct ieee80211_channel *chan)
566 {
567 }
568 
569 void
570 ar5210AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
571 {
572 }
573 
574 void
575 ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
576 {
577 }
578 
579 HAL_STATUS
580 ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
581 	uint32_t capability, uint32_t *result)
582 {
583 
584 	switch (type) {
585 	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
586 #if 0
587 		return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
588 #else
589 		return HAL_ENOTSUPP;
590 #endif
591 	default:
592 		return ath_hal_getcapability(ah, type, capability, result);
593 	}
594 }
595 
596 HAL_BOOL
597 ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
598 	uint32_t capability, uint32_t setting, HAL_STATUS *status)
599 {
600 
601 	switch (type) {
602 	case HAL_CAP_DIAG:		/* hardware diagnostic support */
603 		/*
604 		 * NB: could split this up into virtual capabilities,
605 		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
606 		 *     seems worth the additional complexity.
607 		 */
608 #ifdef AH_DEBUG
609 		AH_PRIVATE(ah)->ah_diagreg = setting;
610 #else
611 		AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;	/* ACK+CTS */
612 #endif
613 		ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg);
614 		return AH_TRUE;
615 	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
616 		return AH_FALSE;	/* NB: disallow */
617 	default:
618 		return ath_hal_setcapability(ah, type, capability,
619 			setting, status);
620 	}
621 }
622 
623 HAL_BOOL
624 ar5210GetDiagState(struct ath_hal *ah, int request,
625 	const void *args, uint32_t argsize,
626 	void **result, uint32_t *resultsize)
627 {
628 #ifdef AH_PRIVATE_DIAG
629 	uint32_t pcicfg;
630 	HAL_BOOL ok;
631 
632 	switch (request) {
633 	case HAL_DIAG_EEPROM:
634 		/* XXX */
635 		break;
636 	case HAL_DIAG_EEREAD:
637 		if (argsize != sizeof(uint16_t))
638 			return AH_FALSE;
639 		pcicfg = OS_REG_READ(ah, AR_PCICFG);
640 		OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
641 		ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
642 		OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
643 		if (ok)
644 			*resultsize = sizeof(uint16_t);
645 		return ok;
646 	}
647 #endif
648 	return ath_hal_getdiagstate(ah, request,
649 		args, argsize, result, resultsize);
650 }
651 
652 /*
653  * Return what percentage of the extension channel is busy.
654  * This is always disabled for AR5210 series NICs.
655  */
656 uint32_t
657 ar5210Get11nExtBusy(struct ath_hal *ah)
658 {
659 
660 	return (0);
661 }
662 
663 /*
664  * There's no channel survey support for the AR5210.
665  */
666 HAL_BOOL
667 ar5210GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
668 {
669 
670 	return (AH_FALSE);
671 }
672 
673 void
674 ar5210SetChainMasks(struct ath_hal *ah, uint32_t txchainmask,
675     uint32_t rxchainmask)
676 {
677 }
678 
679 void
680 ar5210EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
681 {
682 }
683 
684 void
685 ar5210GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
686 {
687 }
688 
689 /*
690  * Update the diagnostic register.
691  *
692  * This merges in the diagnostic register setting with the default
693  * value, which may or may not involve disabling hardware encryption.
694  */
695 void
696 ar5210UpdateDiagReg(struct ath_hal *ah, uint32_t val)
697 {
698 
699 	/* Disable all hardware encryption */
700 	val |= AR_DIAG_SW_DIS_CRYPTO;
701 	OS_REG_WRITE(ah, AR_DIAG_SW, val);
702 }
703