1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2004 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
27 
28 #include "ah_eeprom_v1.h"
29 
30 typedef struct {
31 	uint32_t	Offset;
32 	uint32_t	Value;
33 } REGISTER_VAL;
34 
35 static const REGISTER_VAL ar5k0007_init[] = {
36 #include "ar5210/ar5k_0007.ini"
37 };
38 
39 /* Default Power Settings for channels outside of EEPROM range */
40 static const uint8_t ar5k0007_pwrSettings[17] = {
41 /*	gain delta			pc dac */
42 /* 54  48  36  24  18  12   9   54  48  36  24  18  12   9   6  ob  db	  */
43     9,  9,  0,  0,  0,  0,  0,   2,  2,  6,  6,  6,  6,  6,  6,  2,  2
44 };
45 
46 /*
47  * The delay, in usecs, between writing AR_RC with a reset
48  * request and waiting for the chip to settle.  If this is
49  * too short then the chip does not come out of sleep state.
50  * Note this value was empirically derived and may be dependent
51  * on the host machine (don't know--the problem was identified
52  * on an IBM 570e laptop; 10us delays worked on other systems).
53  */
54 #define	AR_RC_SETTLE_TIME	20000
55 
56 static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
57 		uint32_t resetMask, u_int delay);
58 static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *);
59 static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
60 
61 /*
62  * Places the device in and out of reset and then places sane
63  * values in the registers based on EEPROM config, initialization
64  * vectors (as determined by the mode), and station configuration
65  *
66  * bChannelChange is used to preserve DMA/PCU registers across
67  * a HW Reset during channel change.
68  */
69 HAL_BOOL
70 ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
71 	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
72 	HAL_STATUS *status)
73 {
74 #define	N(a)	(sizeof (a) /sizeof (a[0]))
75 #define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
76 	struct ath_hal_5210 *ahp = AH5210(ah);
77 	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
78 	HAL_CHANNEL_INTERNAL *ichan;
79 	HAL_STATUS ecode;
80 	uint32_t ledstate;
81 	int i, q;
82 
83 	HALDEBUG(ah, HAL_DEBUG_RESET,
84 	    "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
85 	    opmode, chan->ic_freq, chan->ic_flags,
86 	    bChannelChange ? "change" : "same");
87 
88 	if (!IEEE80211_IS_CHAN_5GHZ(chan)) {
89 		/* Only 11a mode */
90 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__);
91 		FAIL(HAL_EINVAL);
92 	}
93 	/*
94 	 * Map public channel to private.
95 	 */
96 	ichan = ath_hal_checkchannel(ah, chan);
97 	if (ichan == AH_NULL) {
98 		HALDEBUG(ah, HAL_DEBUG_ANY,
99 		    "%s: invalid channel %u/0x%x; no mapping\n",
100 		    __func__, chan->ic_freq, chan->ic_flags);
101 		FAIL(HAL_EINVAL);
102 	}
103 	switch (opmode) {
104 	case HAL_M_STA:
105 	case HAL_M_IBSS:
106 	case HAL_M_HOSTAP:
107 	case HAL_M_MONITOR:
108 		break;
109 	default:
110 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
111 		    __func__, opmode);
112 		FAIL(HAL_EINVAL);
113 		break;
114 	}
115 
116 	ledstate = OS_REG_READ(ah, AR_PCICFG) &
117 		(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
118 
119 	if (!ar5210ChipReset(ah, chan)) {
120 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
121 		    __func__);
122 		FAIL(HAL_EIO);
123 	}
124 
125 	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
126 	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
127 	ar5210SetOperatingMode(ah, opmode);
128 
129 	switch (opmode) {
130 	case HAL_M_HOSTAP:
131 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
132 		OS_REG_WRITE(ah, AR_PCICFG,
133 			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
134 		break;
135 	case HAL_M_IBSS:
136 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
137 		OS_REG_WRITE(ah, AR_PCICFG,
138 			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
139 		break;
140 	case HAL_M_STA:
141 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
142 		OS_REG_WRITE(ah, AR_PCICFG,
143 			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
144 		break;
145 	case HAL_M_MONITOR:
146 		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
147 		OS_REG_WRITE(ah, AR_PCICFG,
148 			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
149 		break;
150 	}
151 
152 	/* Restore previous led state */
153 	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
154 
155 	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
156 	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
157 
158 	OS_REG_WRITE(ah, AR_TXDP0, 0);
159 	OS_REG_WRITE(ah, AR_TXDP1, 0);
160 	OS_REG_WRITE(ah, AR_RXDP, 0);
161 
162 	/*
163 	 * Initialize interrupt state.
164 	 */
165 	(void) OS_REG_READ(ah, AR_ISR);		/* cleared on read */
166 	OS_REG_WRITE(ah, AR_IMR, 0);
167 	OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
168 	ahp->ah_maskReg = 0;
169 
170 	(void) OS_REG_READ(ah, AR_BSR);		/* cleared on read */
171 	OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
172 	OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
173 
174 	OS_REG_WRITE(ah, AR_TOPS, 8);		/* timeout prescale */
175 	OS_REG_WRITE(ah, AR_RXNOFRM, 8);	/* RX no frame timeout */
176 	OS_REG_WRITE(ah, AR_RPGTO, 0);		/* RX frame gap timeout */
177 	OS_REG_WRITE(ah, AR_TXNOFRM, 0);	/* TX no frame timeout */
178 
179 	OS_REG_WRITE(ah, AR_SFR, 0);
180 	OS_REG_WRITE(ah, AR_MIBC, 0);		/* unfreeze ctrs + clr state */
181 	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
182 	OS_REG_WRITE(ah, AR_CFP_DUR, 0);
183 
184 	ar5210SetRxFilter(ah, 0);		/* nothing for now */
185 	OS_REG_WRITE(ah, AR_MCAST_FIL0, 0);	/* multicast filter */
186 	OS_REG_WRITE(ah, AR_MCAST_FIL1, 0);	/* XXX was 2 */
187 
188 	OS_REG_WRITE(ah, AR_TX_MASK0, 0);
189 	OS_REG_WRITE(ah, AR_TX_MASK1, 0);
190 	OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
191 	OS_REG_WRITE(ah, AR_TRIG_LEV, 1);	/* minimum */
192 
193 	ar5210UpdateDiagReg(ah, 0);
194 
195 	OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
196 	OS_REG_WRITE(ah, AR_TIMER0, 0);		/* next beacon time */
197 	OS_REG_WRITE(ah, AR_TSF_L32, 0);	/* local clock */
198 	OS_REG_WRITE(ah, AR_TIMER1, ~0);	/* next DMA beacon alert */
199 	OS_REG_WRITE(ah, AR_TIMER2, ~0);	/* next SW beacon alert */
200 	OS_REG_WRITE(ah, AR_TIMER3, 1);		/* next ATIM window */
201 
202 	/* Write the INI values for PHYreg initialization */
203 	for (i = 0; i < N(ar5k0007_init); i++) {
204 		uint32_t reg = ar5k0007_init[i].Offset;
205 		/* On channel change, don't reset the PCU registers */
206 		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
207 			OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
208 	}
209 
210 	/* Setup the transmit power values for cards since 0x0[0-2]05 */
211 	if (!ar5210SetTransmitPower(ah, chan)) {
212 		HALDEBUG(ah, HAL_DEBUG_ANY,
213 		    "%s: error init'ing transmit power\n", __func__);
214 		FAIL(HAL_EIO);
215 	}
216 
217 	OS_REG_WRITE(ah, AR_PHY(10),
218 		(OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
219 		(ee->ee_xlnaOn << 8));
220 	OS_REG_WRITE(ah, AR_PHY(13),
221 		(ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
222 		(ee->ee_xpaOn << 8) | ee->ee_xpaOn);
223 	OS_REG_WRITE(ah, AR_PHY(17),
224 		(OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
225 		((ee->ee_antenna >> 1) & 0x3F80));
226 	OS_REG_WRITE(ah, AR_PHY(18),
227 		(OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
228 		((ee->ee_antenna << 10) & 0x3F000));
229 	OS_REG_WRITE(ah, AR_PHY(25),
230 		(OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
231 		((ee->ee_thresh62 << 12) & 0x7F000));
232 	OS_REG_WRITE(ah, AR_PHY(68),
233 		(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
234 		(ee->ee_antenna & 0x3));
235 
236 	if (!ar5210SetChannel(ah, chan)) {
237 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
238 		    __func__);
239 		FAIL(HAL_EIO);
240 	}
241 	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
242 		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
243 
244 	/* Activate the PHY */
245 	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
246 
247 	OS_DELAY(1000);		/* Wait a bit (1 msec) */
248 
249 	/* calibrate the HW and poll the bit going to 0 for completion */
250 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
251 		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
252 	(void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
253 
254 	/* Perform noise floor calibration and set status */
255 	if (!ar5210CalNoiseFloor(ah, ichan)) {
256 		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
257 		HALDEBUG(ah, HAL_DEBUG_ANY,
258 		    "%s: noise floor calibration failed\n", __func__);
259 		FAIL(HAL_EIO);
260 	}
261 
262 	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
263 		ar5210ResetTxQueue(ah, q);
264 
265 	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
266 		ar5210EnableRfKill(ah);
267 
268 	/*
269 	 * Writing to AR_BEACON will start timers. Hence it should be
270 	 * the last register to be written. Do not reset tsf, do not
271 	 * enable beacons at this point, but preserve other values
272 	 * like beaconInterval.
273 	 */
274 	OS_REG_WRITE(ah, AR_BEACON,
275 		(OS_REG_READ(ah, AR_BEACON) &
276 			~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
277 
278 	/* Restore user-specified slot time and timeouts */
279 	if (ahp->ah_sifstime != (u_int) -1)
280 		ar5210SetSifsTime(ah, ahp->ah_sifstime);
281 	if (ahp->ah_slottime != (u_int) -1)
282 		ar5210SetSlotTime(ah, ahp->ah_slottime);
283 	if (ahp->ah_acktimeout != (u_int) -1)
284 		ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
285 	if (ahp->ah_ctstimeout != (u_int) -1)
286 		ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
287 	if (AH_PRIVATE(ah)->ah_diagreg != 0)
288 		ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg);
289 
290 	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
291 
292 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
293 
294 	return AH_TRUE;
295 bad:
296 	if (status != AH_NULL)
297 		*status = ecode;
298 	return AH_FALSE;
299 #undef FAIL
300 #undef N
301 }
302 
303 static void
304 ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
305 {
306 	struct ath_hal_5210 *ahp = AH5210(ah);
307 	uint32_t val;
308 
309 	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
310 	switch (opmode) {
311 	case HAL_M_HOSTAP:
312 		OS_REG_WRITE(ah, AR_STA_ID1, val
313 			| AR_STA_ID1_AP
314 			| AR_STA_ID1_NO_PSPOLL
315 			| AR_STA_ID1_DESC_ANTENNA
316 			| ahp->ah_staId1Defaults);
317 		break;
318 	case HAL_M_IBSS:
319 		OS_REG_WRITE(ah, AR_STA_ID1, val
320 			| AR_STA_ID1_ADHOC
321 			| AR_STA_ID1_NO_PSPOLL
322 			| AR_STA_ID1_DESC_ANTENNA
323 			| ahp->ah_staId1Defaults);
324 		break;
325 	case HAL_M_STA:
326 		OS_REG_WRITE(ah, AR_STA_ID1, val
327 			| AR_STA_ID1_NO_PSPOLL
328 			| AR_STA_ID1_PWR_SV
329 			| ahp->ah_staId1Defaults);
330 		break;
331 	case HAL_M_MONITOR:
332 		OS_REG_WRITE(ah, AR_STA_ID1, val
333 			| AR_STA_ID1_NO_PSPOLL
334 			| ahp->ah_staId1Defaults);
335 		break;
336 	}
337 }
338 
339 void
340 ar5210SetPCUConfig(struct ath_hal *ah)
341 {
342 	ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
343 }
344 
345 /*
346  * Places the PHY and Radio chips into reset.  A full reset
347  * must be called to leave this state.  The PCI/MAC/PCU are
348  * not placed into reset as we must receive interrupt to
349  * re-enable the hardware.
350  */
351 HAL_BOOL
352 ar5210PhyDisable(struct ath_hal *ah)
353 {
354 	return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
355 }
356 
357 /*
358  * Places all of hardware into reset
359  */
360 HAL_BOOL
361 ar5210Disable(struct ath_hal *ah)
362 {
363 #define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
364 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
365 		return AH_FALSE;
366 
367 	/*
368 	 * Reset the HW - PCI must be reset after the rest of the
369 	 * device has been reset
370 	 */
371 	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
372 		return AH_FALSE;
373 	OS_DELAY(1000);
374 	(void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
375 	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
376 
377 	return AH_TRUE;
378 #undef AR_RC_HW
379 }
380 
381 /*
382  * Places the hardware into reset and then pulls it out of reset
383  */
384 HAL_BOOL
385 ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan)
386 {
387 #define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
388 
389 	HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
390 		chan && IEEE80211_IS_CHAN_TURBO(chan) ?
391 		"enabled" : "disabled");
392 
393 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
394 		return AH_FALSE;
395 
396 	/* Place chip in turbo before reset to cleanly reset clocks */
397 	OS_REG_WRITE(ah, AR_PHY_FRCTL,
398 		chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
399 
400 	/*
401 	 * Reset the HW.
402 	 * PCI must be reset after the rest of the device has been reset.
403 	 */
404 	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
405 		return AH_FALSE;
406 	OS_DELAY(1000);
407 	if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
408 		return AH_FALSE;
409 	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
410 
411 	/*
412 	 * Bring out of sleep mode (AGAIN)
413 	 *
414 	 * WARNING WARNING WARNING
415 	 *
416 	 * There is a problem with the chip where it doesn't always indicate
417 	 * that it's awake, so initializePowerUp() will fail.
418 	 */
419 	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
420 		return AH_FALSE;
421 
422 	/* Clear warm reset reg */
423 	return ar5210SetResetReg(ah, 0, 10);
424 #undef AR_RC_HW
425 }
426 
427 enum {
428 	FIRPWR_M	= 0x03fc0000,
429 	FIRPWR_S	= 18,
430 	KCOARSEHIGH_M   = 0x003f8000,
431 	KCOARSEHIGH_S   = 15,
432 	KCOARSELOW_M	= 0x00007f80,
433 	KCOARSELOW_S	= 7,
434 	ADCSAT_ICOUNT_M	= 0x0001f800,
435 	ADCSAT_ICOUNT_S	= 11,
436 	ADCSAT_THRESH_M	= 0x000007e0,
437 	ADCSAT_THRESH_S	= 5
438 };
439 
440 /*
441  * Recalibrate the lower PHY chips to account for temperature/environment
442  * changes.
443  */
444 HAL_BOOL
445 ar5210PerCalibrationN(struct ath_hal *ah,
446 	struct ieee80211_channel *chan, u_int chainMask,
447 	HAL_BOOL longCal, HAL_BOOL *isCalDone)
448 {
449 	uint32_t regBeacon;
450 	uint32_t reg9858, reg985c, reg9868;
451 	HAL_CHANNEL_INTERNAL *ichan;
452 
453 	ichan = ath_hal_checkchannel(ah, chan);
454 	if (ichan == AH_NULL)
455 		return AH_FALSE;
456 	/* Disable tx and rx */
457 	ar5210UpdateDiagReg(ah,
458 		OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
459 
460 	/* Disable Beacon Enable */
461 	regBeacon = OS_REG_READ(ah, AR_BEACON);
462 	OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
463 
464 	/* Delay 4ms to ensure that all tx and rx activity has ceased */
465 	OS_DELAY(4000);
466 
467 	/* Disable AGC to radio traffic */
468 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
469 	/* Wait for the AGC traffic to cease. */
470 	OS_DELAY(10);
471 
472 	/* Change Channel to relock synth */
473 	if (!ar5210SetChannel(ah, chan))
474 		return AH_FALSE;
475 
476 	/* wait for the synthesizer lock to stabilize */
477 	OS_DELAY(1000);
478 
479 	/* Re-enable AGC to radio traffic */
480 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
481 
482 	/*
483 	 * Configure the AGC so that it is highly unlikely (if not
484 	 * impossible) for it to send any gain changes to the analog
485 	 * chip.  We store off the current values so that they can
486 	 * be rewritten below. Setting the following values:
487 	 * firpwr	 = -1
488 	 * Kcoursehigh   = -1
489 	 * Kcourselow	 = -127
490 	 * ADCsat_icount = 2
491 	 * ADCsat_thresh = 12
492 	 */
493 	reg9858 = OS_REG_READ(ah, 0x9858);
494 	reg985c = OS_REG_READ(ah, 0x985c);
495 	reg9868 = OS_REG_READ(ah, 0x9868);
496 
497 	OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
498 					 ((-1 << FIRPWR_S) & FIRPWR_M));
499 	OS_REG_WRITE(ah, 0x985c,
500 		 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
501 		 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
502 		 ((-127 << KCOARSELOW_S) & KCOARSELOW_M));
503 	OS_REG_WRITE(ah, 0x9868,
504 		 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
505 		 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
506 		 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
507 
508 	/* Wait for AGC changes to be enacted */
509 	OS_DELAY(20);
510 
511 	/*
512 	 * We disable RF mix/gain stages for the PGA to avoid a
513 	 * race condition that will occur with receiving a frame
514 	 * and performing the AGC calibration.  This will be
515 	 * re-enabled at the end of offset cal.  We turn off AGC
516 	 * writes during this write as it will go over the analog bus.
517 	 */
518 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
519 	OS_DELAY(10);		 /* wait for the AGC traffic to cease */
520 	OS_REG_WRITE(ah, 0x98D4, 0x21);
521 	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
522 
523 	/* wait to make sure that additional AGC traffic has quiesced */
524 	OS_DELAY(1000);
525 
526 	/* AGC calibration (this was added to make the NF threshold check work) */
527 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
528 		 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
529 	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
530 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
531 		    __func__);
532 	}
533 
534 	/* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
535 	OS_REG_WRITE(ah, 0x9858, reg9858);
536 	OS_REG_WRITE(ah, 0x985c, reg985c);
537 	OS_REG_WRITE(ah, 0x9868, reg9868);
538 
539 	/* Perform noise floor and set status */
540 	if (!ar5210CalNoiseFloor(ah, ichan)) {
541 		/*
542 		 * Delay 5ms before retrying the noise floor -
543 		 * just to make sure.  We're in an error
544 		 * condition here
545 		 */
546 		HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
547 		    "%s: Performing 2nd Noise Cal\n", __func__);
548 		OS_DELAY(5000);
549 		if (!ar5210CalNoiseFloor(ah, ichan))
550 			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
551 	}
552 
553 	/* Clear tx and rx disable bit */
554 	ar5210UpdateDiagReg(ah,
555 		 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
556 
557 	/* Re-enable Beacons */
558 	OS_REG_WRITE(ah, AR_BEACON, regBeacon);
559 
560 	*isCalDone = AH_TRUE;
561 
562 	return AH_TRUE;
563 }
564 
565 HAL_BOOL
566 ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
567 	HAL_BOOL *isIQdone)
568 {
569 	return ar5210PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
570 }
571 
572 HAL_BOOL
573 ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
574 {
575 	return AH_TRUE;
576 }
577 
578 /*
579  * Writes the given reset bit mask into the reset register
580  */
581 static HAL_BOOL
582 ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay)
583 {
584 	uint32_t mask = resetMask ? resetMask : ~0;
585 	HAL_BOOL rt;
586 
587 	OS_REG_WRITE(ah, AR_RC, resetMask);
588 	/* need to wait at least 128 clocks when reseting PCI before read */
589 	OS_DELAY(delay);
590 
591 	resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
592 	mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
593 	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
594         if ((resetMask & AR_RC_RMAC) == 0) {
595 		if (isBigEndian()) {
596 			/*
597 			 * Set CFG, little-endian for descriptor accesses.
598 			 */
599 			mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
600 			OS_REG_WRITE(ah, AR_CFG, mask);
601 		} else
602 			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
603 	}
604 	return rt;
605 }
606 
607 
608 /*
609  * Returns: the pcdac value
610  */
611 static uint8_t
612 getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
613 {
614 	int32_t	 i;
615 	int useNextEntry = AH_FALSE;
616 	uint32_t interp;
617 
618 	for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
619 		/* Check for exact entry */
620 		if (dBm == AR_I2DBM(i)) {
621 			if (pRD->pcdac[i] != 63)
622 				return pRD->pcdac[i];
623 			useNextEntry = AH_TRUE;
624 		} else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
625 			/* Interpolate for between entry with a logish scale */
626 			if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
627 				interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
628 				interp = (interp / 1000) + pRD->pcdac[i-1];
629 				return interp;
630 			}
631 			useNextEntry = AH_TRUE;
632 		} else if (useNextEntry == AH_TRUE) {
633 			/* Grab the next lowest */
634 			if (pRD->pcdac[i] != 63)
635 				return pRD->pcdac[i];
636 		}
637 	}
638 
639 	/* Return the lowest Entry if we haven't returned */
640 	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
641 		if (pRD->pcdac[i] != 63)
642 			return pRD->pcdac[i];
643 
644 	/* No value to return from table */
645 #ifdef AH_DEBUG
646 	ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
647 #endif
648 	return 1;
649 }
650 
651 /*
652  * Find or interpolates the gainF value from the table ptr.
653  */
654 static uint8_t
655 getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
656 	uint8_t pcdac, uint8_t *dBm)
657 {
658 	uint32_t interp;
659 	int low, high, i;
660 
661 	low = high = -1;
662 
663 	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
664 		if(pRD->pcdac[i] == 63)
665 			continue;
666 		if (pcdac == pRD->pcdac[i]) {
667 			*dBm = AR_I2DBM(i);
668 			return pRD->gainF[i];  /* Exact Match */
669 		}
670 		if (pcdac > pRD->pcdac[i])
671 			low = i;
672 		if (pcdac < pRD->pcdac[i]) {
673 			high = i;
674 			if (low == -1) {
675 				*dBm = AR_I2DBM(i);
676 				/* PCDAC is lower than lowest setting */
677 				return pRD->gainF[i];
678 			}
679 			break;
680 		}
681 	}
682 	if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
683 		/* No settings were found */
684 #ifdef AH_DEBUG
685 		ath_hal_printf(ah,
686 			"%s: no valid entries in the pcdac table: %d\n",
687 			__func__, pcdac);
688 #endif
689 		return 63;
690 	}
691 	if (i >= AR_TP_SCALING_ENTRIES) {
692 		/* PCDAC setting was above the max setting in the table */
693 		*dBm = AR_I2DBM(low);
694 		return pRD->gainF[low];
695 	}
696 	/* Only exact if table has no missing entries */
697 	*dBm = (low + high) + 3;
698 
699 	/*
700 	 * Perform interpolation between low and high values to find gainF
701 	 * linearly scale the pcdac between low and high
702 	 */
703 	interp = ((pcdac - pRD->pcdac[low]) * 1000) /
704 		  (pRD->pcdac[high] - pRD->pcdac[low]);
705 	/*
706 	 * Multiply the scale ratio by the gainF difference
707 	 * (plus a rnd up factor)
708 	 */
709 	interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
710 
711 	/* Add ratioed gain_f to low gain_f value */
712 	return interp + pRD->gainF[low];
713 }
714 
715 HAL_BOOL
716 ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
717 {
718 	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
719 	/* XXX flush to h/w */
720 	return AH_TRUE;
721 }
722 
723 /*
724  * Get TXPower values and set them in the radio
725  */
726 static HAL_BOOL
727 setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan,
728 	uint8_t cp[17])
729 {
730 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
731 	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
732 	uint8_t gainFRD, gainF36, gainF48, gainF54;
733 	uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
734 	uint32_t rd, group;
735 	const struct tpcMap  *pRD;
736 
737 	/* Set OB/DB Values regardless of channel */
738 	cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
739 	cp[16] = ee->ee_biasCurrents & 0x7;
740 
741 	if (freq < 5170 || freq > 5320) {
742 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
743 		    __func__, freq);
744 		return AH_FALSE;
745 	}
746 
747 	HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
748 	    ee->ee_version < AR_EEPROM_VER3);
749 
750 	/* Match regulatory domain */
751 	for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
752 		if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
753 			break;
754 	if (rd == AR_REG_DOMAINS_MAX) {
755 #ifdef AH_DEBUG
756 		ath_hal_printf(ah,
757 			"%s: no calibrated regulatory domain matches the "
758 			"current regularly domain (0x%0x)\n", __func__,
759 			AH_PRIVATE(ah)->ah_currentRD);
760 #endif
761 		return AH_FALSE;
762 	}
763 	group = ((freq - 5170) / 10);
764 
765 	if (group > 11) {
766 		/* Pull 5.29 into the 5.27 group */
767 		group--;
768 	}
769 
770 	/* Integer divide will set group from 0 to 4 */
771 	group = group / 3;
772 	pRD   = &ee->ee_tpc[group];
773 
774 	/* Set PC DAC Values */
775 	cp[14] = pRD->regdmn[rd];
776 	cp[9]  = AH_MIN(pRD->regdmn[rd], pRD->rate36);
777 	cp[8]  = AH_MIN(pRD->regdmn[rd], pRD->rate48);
778 	cp[7]  = AH_MIN(pRD->regdmn[rd], pRD->rate54);
779 
780 	/* Find Corresponding gainF values for RD, 36, 48, 54 */
781 	gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
782 	gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
783 	gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
784 	gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
785 
786 	/* Power Scale if requested */
787 	if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
788 		static const uint16_t tpcScaleReductionTable[5] =
789 			{ 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
790 		uint16_t tpScale;
791 
792 		tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
793 		if (dBmRD < tpScale+3)
794 			dBmRD = 3;		/* min */
795 		else
796 			dBmRD -= tpScale;
797 		cp[14]  = getPcdac(ah, pRD, dBmRD);
798 		gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
799 		dBm36   = AH_MIN(dBm36, dBmRD);
800 		cp[9]   = getPcdac(ah, pRD, dBm36);
801 		gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
802 		dBm48   = AH_MIN(dBm48, dBmRD);
803 		cp[8]   = getPcdac(ah, pRD, dBm48);
804 		gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
805 		dBm54   = AH_MIN(dBm54, dBmRD);
806 		cp[7]   = getPcdac(ah, pRD, dBm54);
807 		gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
808 	}
809 	/* Record current dBm at rate 6 */
810 	AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
811 
812 	cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
813 
814 	/* Set GainF Values */
815 	cp[0] = gainFRD - gainF54;
816 	cp[1] = gainFRD - gainF48;
817 	cp[2] = gainFRD - gainF36;
818 	/* 9, 12, 18, 24 have no gain_delta from 6 */
819 	cp[3] = cp[4] = cp[5] = cp[6] = 0;
820 	return AH_TRUE;
821 }
822 
823 /*
824  * Places the device in and out of reset and then places sane
825  * values in the registers based on EEPROM config, initialization
826  * vectors (as determined by the mode), and station configuration
827  */
828 HAL_BOOL
829 ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
830 {
831 #define	N(a)	(sizeof (a) / sizeof (a[0]))
832 	static const uint32_t pwr_regs_start[17] = {
833 		0x00000000, 0x00000000, 0x00000000,
834 		0x00000000, 0x00000000, 0xf0000000,
835 		0xcc000000, 0x00000000, 0x00000000,
836 		0x00000000, 0x0a000000, 0x000000e2,
837 		0x0a000020, 0x01000002, 0x01000018,
838 		0x40000000, 0x00000418
839 	};
840 	uint16_t i;
841 	uint8_t cp[sizeof(ar5k0007_pwrSettings)];
842 	uint32_t pwr_regs[17];
843 
844 	OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
845 	OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
846 
847 	/* Check the EEPROM tx power calibration settings */
848 	if (!setupPowerSettings(ah, chan, cp)) {
849 #ifdef AH_DEBUG
850 		ath_hal_printf(ah, "%s: unable to setup power settings\n",
851 			__func__);
852 #endif
853 		return AH_FALSE;
854 	}
855 	if (cp[15] < 1 || cp[15] > 5) {
856 #ifdef AH_DEBUG
857 		ath_hal_printf(ah, "%s: OB out of range (%u)\n",
858 			__func__, cp[15]);
859 #endif
860 		return AH_FALSE;
861 	}
862 	if (cp[16] < 1 || cp[16] > 5) {
863 #ifdef AH_DEBUG
864 		ath_hal_printf(ah, "%s: DB out of range (%u)\n",
865 			__func__, cp[16]);
866 #endif
867 		return AH_FALSE;
868 	}
869 
870 	/* reverse bits of the transmit power array */
871 	for (i = 0; i < 7; i++)
872 		cp[i] = ath_hal_reverseBits(cp[i], 5);
873 	for (i = 7; i < 15; i++)
874 		cp[i] = ath_hal_reverseBits(cp[i], 6);
875 
876 	/* merge transmit power values into the register - quite gross */
877 	pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
878 	pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
879 			((cp[1] >> 3) & 0x03);
880 	pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
881 	pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
882 		       ((cp[4] >> 4) & 0x01);
883 	pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
884 	pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
885 			((cp[7] >> 5) & 0x01);
886 	pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
887 	pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
888 	pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
889 	pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
890 	pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
891 	pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
892 
893 	/* Set OB */
894 	pwr_regs[8] |=  (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
895 	pwr_regs[9] |=  (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
896 
897 	/* Set DB */
898 	pwr_regs[9] |=  (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
899 
900 	/* Write the registers */
901 	for (i = 0; i < N(pwr_regs)-1; i++)
902 		OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
903 	/* last write is a flush */
904 	OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
905 
906 	return AH_TRUE;
907 #undef N
908 }
909 
910 /*
911  * Takes the MHz channel value and sets the Channel value
912  *
913  * ASSUMES: Writes enabled to analog bus before AGC is active
914  *   or by disabling the AGC.
915  */
916 static HAL_BOOL
917 ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan)
918 {
919 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
920 	uint32_t data;
921 
922 	/* Set the Channel */
923 	data = ath_hal_reverseBits((freq - 5120)/10, 5);
924 	data = (data << 1) | 0x41;
925 	OS_REG_WRITE(ah, AR_PHY(0x27), data);
926 	OS_REG_WRITE(ah, AR_PHY(0x30), 0);
927 	AH_PRIVATE(ah)->ah_curchan = chan;
928 	return AH_TRUE;
929 }
930 
931 int16_t
932 ar5210GetNoiseFloor(struct ath_hal *ah)
933 {
934 	int16_t nf;
935 
936 	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
937 	if (nf & 0x100)
938 		nf = 0 - ((nf ^ 0x1ff) + 1);
939 	return nf;
940 }
941 
942 #define NORMAL_NF_THRESH (-72)
943 /*
944  * Peform the noisefloor calibration and check for
945  * any constant channel interference
946  *
947  * Returns: TRUE for a successful noise floor calibration; else FALSE
948  */
949 HAL_BOOL
950 ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
951 {
952 	int32_t nf, nfLoops;
953 
954 	/* Calibrate the noise floor */
955 	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
956 		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
957 
958 	/* Do not read noise floor until it has done the first update */
959 	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
960 #ifdef ATH_HAL_DEBUG
961 		ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
962 			OS_REG_READ(ah, AR_PHY_AGCCTL));
963 		ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
964 			OS_REG_READ(ah, AR_RC));
965 		ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
966 			OS_REG_READ(ah, AR_PHY_ACTIVE));
967 #endif /* ATH_HAL_DEBUG */
968 		return AH_FALSE;
969 	}
970 
971 	nf = 0;
972 	/* Keep checking until the floor is below the threshold or the nf is done */
973 	for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
974 		OS_DELAY(1000); /* Sleep for 1 ms */
975 		nf = ar5210GetNoiseFloor(ah);
976 	}
977 
978 	if (nf > NORMAL_NF_THRESH) {
979 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
980 		    __func__, nf);
981 		ichan->rawNoiseFloor = 0;
982 		return AH_FALSE;
983 	}
984 	ichan->rawNoiseFloor = nf;
985 	return AH_TRUE;
986 }
987 
988 /*
989  * Adjust NF based on statistical values for 5GHz frequencies.
990  */
991 int16_t
992 ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
993 {
994 	return 0;
995 }
996 
997 HAL_RFGAIN
998 ar5210GetRfgain(struct ath_hal *ah)
999 {
1000 	return HAL_RFGAIN_INACTIVE;
1001 }
1002