xref: /dragonfly/sys/dev/netif/ath/ath_hal/ar5212/ar2413.c (revision 9348a738)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27 
28 #include "ah_eeprom_v3.h"
29 
30 #define AH_5212_2413
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 struct ar2413State {
36 	RF_HAL_FUNCS	base;		/* public state, must be first */
37 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
38 
39 	uint32_t	Bank1Data[N(ar5212Bank1_2413)];
40 	uint32_t	Bank2Data[N(ar5212Bank2_2413)];
41 	uint32_t	Bank3Data[N(ar5212Bank3_2413)];
42 	uint32_t	Bank6Data[N(ar5212Bank6_2413)];
43 	uint32_t	Bank7Data[N(ar5212Bank7_2413)];
44 
45 	/*
46 	 * Private state for reduced stack usage.
47 	 */
48 	/* filled out Vpd table for all pdGains (chanL) */
49 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 			    [MAX_PWR_RANGE_IN_HALF_DB];
51 	/* filled out Vpd table for all pdGains (chanR) */
52 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 			    [MAX_PWR_RANGE_IN_HALF_DB];
54 	/* filled out Vpd table for all pdGains (interpolated) */
55 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 			    [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define	AR2413(ah)	((struct ar2413State *) AH5212(ah)->ah_rfHal)
59 
60 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 		uint32_t numBits, uint32_t firstBit, uint32_t column);
62 
63 static void
64 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 	int writes)
66 {
67 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
68 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
69 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
70 }
71 
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
78 ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
81 	uint32_t channelSel  = 0;
82 	uint32_t bModeSynth  = 0;
83 	uint32_t aModeRefSel = 0;
84 	uint32_t reg32       = 0;
85 
86 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87 
88 	if (freq < 4800) {
89 		uint32_t txctl;
90 
91 		if (((freq - 2192) % 5) == 0) {
92 			channelSel = ((freq - 672) * 2 - 3040)/10;
93 			bModeSynth = 0;
94 		} else if (((freq - 2224) % 5) == 0) {
95 			channelSel = ((freq - 704) * 2 - 3040) / 10;
96 			bModeSynth = 1;
97 		} else {
98 			HALDEBUG(ah, HAL_DEBUG_ANY,
99 			    "%s: invalid channel %u MHz\n",
100 			    __func__, freq);
101 			return AH_FALSE;
102 		}
103 
104 		channelSel = (channelSel << 2) & 0xff;
105 		channelSel = ath_hal_reverseBits(channelSel, 8);
106 
107 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 		if (freq == 2484) {
109 			/* Enable channel spreading for channel 14 */
110 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 		} else {
113 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 		}
116 	} else if (((freq % 5) == 2) && (freq <= 5435)) {
117 		freq = freq - 2; /* Align to even 5MHz raster */
118 		channelSel = ath_hal_reverseBits(
119 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120             	aModeRefSel = ath_hal_reverseBits(0, 2);
121 	} else if ((freq % 20) == 0 && freq >= 5120) {
122 		channelSel = ath_hal_reverseBits(
123 			((freq - 4800) / 20 << 2), 8);
124 		aModeRefSel = ath_hal_reverseBits(3, 2);
125 	} else if ((freq % 10) == 0) {
126 		channelSel = ath_hal_reverseBits(
127 			((freq - 4800) / 10 << 1), 8);
128 		aModeRefSel = ath_hal_reverseBits(2, 2);
129 	} else if ((freq % 5) == 0) {
130 		channelSel = ath_hal_reverseBits(
131 			(freq - 4800) / 5, 8);
132 		aModeRefSel = ath_hal_reverseBits(1, 2);
133 	} else {
134 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 		    __func__, freq);
136 		return AH_FALSE;
137 	}
138 
139 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 			(1 << 12) | 0x1;
141 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142 
143 	reg32 >>= 8;
144 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145 
146 	AH_PRIVATE(ah)->ah_curchan = chan;
147 
148 	return AH_TRUE;
149 }
150 
151 /*
152  * Reads EEPROM header info from device structure and programs
153  * all rf registers
154  *
155  * REQUIRES: Access to the analog rf device
156  */
157 static HAL_BOOL
158 ar2413SetRfRegs(struct ath_hal *ah,
159 	const struct ieee80211_channel *chan,
160 	uint16_t modesIndex, uint16_t *rfXpdGain)
161 {
162 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
163 	int i;								    \
164 	for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)			    \
165 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
166 } while (0)
167 	struct ath_hal_5212 *ahp = AH5212(ah);
168 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169 	uint16_t ob2GHz = 0, db2GHz = 0;
170 	struct ar2413State *priv = AR2413(ah);
171 	int regWrites = 0;
172 
173 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
174 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
175 
176 	HALASSERT(priv);
177 
178 	/* Setup rf parameters */
179 	if (IEEE80211_IS_CHAN_B(chan)) {
180 		ob2GHz = ee->ee_obFor24;
181 		db2GHz = ee->ee_dbFor24;
182 	} else {
183 		ob2GHz = ee->ee_obFor24g;
184 		db2GHz = ee->ee_dbFor24g;
185 	}
186 
187 	/* Bank 1 Write */
188 	RF_BANK_SETUP(priv, 1, 1);
189 
190 	/* Bank 2 Write */
191 	RF_BANK_SETUP(priv, 2, modesIndex);
192 
193 	/* Bank 3 Write */
194 	RF_BANK_SETUP(priv, 3, modesIndex);
195 
196 	/* Bank 6 Write */
197 	RF_BANK_SETUP(priv, 6, modesIndex);
198 
199 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
200 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
201 
202 	/* Bank 7 Setup */
203 	RF_BANK_SETUP(priv, 7, modesIndex);
204 
205 	/* Write Analog registers */
206 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
207 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
208 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
209 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
210 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
211 
212 	/* Now that we have reprogrammed rfgain value, clear the flag. */
213 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
214 
215 	return AH_TRUE;
216 #undef	RF_BANK_SETUP
217 }
218 
219 /*
220  * Return a reference to the requested RF Bank.
221  */
222 static uint32_t *
223 ar2413GetRfBank(struct ath_hal *ah, int bank)
224 {
225 	struct ar2413State *priv = AR2413(ah);
226 
227 	HALASSERT(priv != AH_NULL);
228 	switch (bank) {
229 	case 1: return priv->Bank1Data;
230 	case 2: return priv->Bank2Data;
231 	case 3: return priv->Bank3Data;
232 	case 6: return priv->Bank6Data;
233 	case 7: return priv->Bank7Data;
234 	}
235 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
236 	    __func__, bank);
237 	return AH_NULL;
238 }
239 
240 /*
241  * Return indices surrounding the value in sorted integer lists.
242  *
243  * NB: the input list is assumed to be sorted in ascending order
244  */
245 static void
246 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
247                           uint32_t *vlo, uint32_t *vhi)
248 {
249 	int16_t target = v;
250 	const uint16_t *ep = lp+listSize;
251 	const uint16_t *tp;
252 
253 	*vlo = 0;	/* avoid gcc warnings */
254 	*vhi = 0;	/* avoid gcc warnings */
255 
256 	/*
257 	 * Check first and last elements for out-of-bounds conditions.
258 	 */
259 	if (target < lp[0]) {
260 		*vlo = *vhi = 0;
261 		return;
262 	}
263 	if (target >= ep[-1]) {
264 		*vlo = *vhi = listSize - 1;
265 		return;
266 	}
267 
268 	/* look for value being near or between 2 values in list */
269 	for (tp = lp; tp < ep; tp++) {
270 		/*
271 		 * If value is close to the current value of the list
272 		 * then target is not between values, it is one of the values
273 		 */
274 		if (*tp == target) {
275 			*vlo = *vhi = tp - (const uint16_t *) lp;
276 			return;
277 		}
278 		/*
279 		 * Look for value being between current value and next value
280 		 * if so return these 2 values
281 		 */
282 		if (target < tp[1]) {
283 			*vlo = tp - (const uint16_t *) lp;
284 			*vhi = *vlo + 1;
285 			return;
286 		}
287 	}
288 }
289 
290 /*
291  * Fill the Vpdlist for indices Pmax-Pmin
292  */
293 static HAL_BOOL
294 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
295 		   const int16_t *pwrList, const uint16_t *VpdList,
296 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
297 {
298 	uint16_t ii, jj, kk;
299 	int16_t currPwr = (int16_t)(2*Pmin);
300 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
301 	uint32_t  idxL, idxR;
302 
303 	ii = 0;
304 	jj = 0;
305 
306 	if (numIntercepts < 2)
307 		return AH_FALSE;
308 
309 	while (ii <= (uint16_t)(Pmax - Pmin)) {
310 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
311 				   numIntercepts, &(idxL), &(idxR));
312 		if (idxR < 1)
313 			idxR = 1;			/* extrapolate below */
314 		if (idxL == (uint32_t)(numIntercepts - 1))
315 			idxL = numIntercepts - 2;	/* extrapolate above */
316 		if (pwrList[idxL] == pwrList[idxR])
317 			kk = VpdList[idxL];
318 		else
319 			kk = (uint16_t)
320 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
321 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
322 				 (pwrList[idxR] - pwrList[idxL]));
323 		retVpdList[pdGainIdx][ii] = kk;
324 		ii++;
325 		currPwr += 2;				/* half dB steps */
326 	}
327 
328 	return AH_TRUE;
329 }
330 
331 /*
332  * Returns interpolated or the scaled up interpolated value
333  */
334 static int16_t
335 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
336 	int16_t targetLeft, int16_t targetRight)
337 {
338 	int16_t rv;
339 
340 	if (srcRight != srcLeft) {
341 		rv = ((target - srcLeft)*targetRight +
342 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
343 	} else {
344 		rv = targetLeft;
345 	}
346 	return rv;
347 }
348 
349 /*
350  * Uses the data points read from EEPROM to reconstruct the pdadc power table
351  * Called by ar2413SetPowerTable()
352  */
353 static int
354 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
355 		const RAW_DATA_STRUCT_2413 *pRawDataset,
356 		uint16_t pdGainOverlap_t2,
357 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
358 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
359 {
360 	struct ar2413State *priv = AR2413(ah);
361 #define	VpdTable_L	priv->vpdTable_L
362 #define	VpdTable_R	priv->vpdTable_R
363 #define	VpdTable_I	priv->vpdTable_I
364 	uint32_t ii, jj, kk;
365 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
366 	uint32_t idxL, idxR;
367 	uint32_t numPdGainsUsed = 0;
368 	/*
369 	 * If desired to support -ve power levels in future, just
370 	 * change pwr_I_0 to signed 5-bits.
371 	 */
372 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
373 	/* to accommodate -ve power levels later on. */
374 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
375 	/* to accommodate -ve power levels later on */
376 	uint16_t numVpd = 0;
377 	uint16_t Vpd_step;
378 	int16_t tmpVal ;
379 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
380 
381 	/* Get upper lower index */
382 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
383 				 pRawDataset->numChannels, &(idxL), &(idxR));
384 
385 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
386 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
387 		/* work backwards 'cause highest pdGain for lowest power */
388 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
389 		if (numVpd > 0) {
390 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
391 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
392 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
393 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
394 			}
395 			Pmin_t2[numPdGainsUsed] = (int16_t)
396 				(Pmin_t2[numPdGainsUsed] / 2);
397 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
398 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
399 				Pmax_t2[numPdGainsUsed] =
400 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
401 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
402 			ar2413FillVpdTable(
403 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
404 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
405 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
406 					   );
407 			ar2413FillVpdTable(
408 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
409 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
410 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
411 					   );
412 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
413 				VpdTable_I[numPdGainsUsed][kk] =
414 					interpolate_signed(
415 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
416 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
417 			}
418 			/* fill VpdTable_I for this pdGain */
419 			numPdGainsUsed++;
420 		}
421 		/* if this pdGain is used */
422 	}
423 
424 	*pMinCalPower = Pmin_t2[0];
425 	kk = 0; /* index for the final table */
426 	for (ii = 0; ii < numPdGainsUsed; ii++) {
427 		if (ii == (numPdGainsUsed - 1))
428 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
429 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
430 		else
431 			pPdGainBoundaries[ii] = (uint16_t)
432 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
433 		if (pPdGainBoundaries[ii] > 63) {
434 			HALDEBUG(ah, HAL_DEBUG_ANY,
435 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
436 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
437 			pPdGainBoundaries[ii] = 63;
438 		}
439 
440 		/* Find starting index for this pdGain */
441 		if (ii == 0)
442 			ss = 0; /* for the first pdGain, start from index 0 */
443 		else
444 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
445 				pdGainOverlap_t2;
446 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
447 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
448 		/*
449 		 *-ve ss indicates need to extrapolate data below for this pdGain
450 		 */
451 		while (ss < 0) {
452 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
453 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
454 			ss++;
455 		}
456 
457 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
458 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
459 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
460 
461 		while (ss < (int16_t)maxIndex)
462 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
463 
464 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
465 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
466 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
467 		/*
468 		 * for last gain, pdGainBoundary == Pmax_t2, so will
469 		 * have to extrapolate
470 		 */
471 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
472 			while(ss < (int16_t)tgtIndex) {
473 				tmpVal = (uint16_t)
474 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
475 					 (ss-maxIndex)*Vpd_step);
476 				pPDADCValues[kk++] = (tmpVal > 127) ?
477 					127 : tmpVal;
478 				ss++;
479 			}
480 		}				/* extrapolated above */
481 	}					/* for all pdGainUsed */
482 
483 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
484 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
485 		ii++;
486 	}
487 	while (kk < 128) {
488 		pPDADCValues[kk] = pPDADCValues[kk-1];
489 		kk++;
490 	}
491 
492 	return numPdGainsUsed;
493 #undef VpdTable_L
494 #undef VpdTable_R
495 #undef VpdTable_I
496 }
497 
498 static HAL_BOOL
499 ar2413SetPowerTable(struct ath_hal *ah,
500 	int16_t *minPower, int16_t *maxPower,
501 	const struct ieee80211_channel *chan,
502 	uint16_t *rfXpdGain)
503 {
504 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
505 	struct ath_hal_5212 *ahp = AH5212(ah);
506 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
507 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
508 	uint16_t pdGainOverlap_t2;
509 	int16_t minCalPower2413_t2;
510 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
511 	uint16_t gainBoundaries[4];
512 	uint32_t reg32, regoffset;
513 	int i, numPdGainsUsed;
514 #ifndef AH_USE_INIPDGAIN
515 	uint32_t tpcrg1;
516 #endif
517 
518 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
519 	    __func__, freq, chan->ic_flags);
520 
521 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
522 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
523 	else if (IEEE80211_IS_CHAN_B(chan))
524 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
525 	else {
526 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
527 		return AH_FALSE;
528 	}
529 
530 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
531 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
532 
533 	numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
534 		freq, pRawDataset, pdGainOverlap_t2,
535 		&minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
536 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
537 
538 #ifdef AH_USE_INIPDGAIN
539 	/*
540 	 * Use pd_gains curve from eeprom; Atheros always uses
541 	 * the default curve from the ini file but some vendors
542 	 * (e.g. Zcomax) want to override this curve and not
543 	 * honoring their settings results in tx power 5dBm low.
544 	 */
545 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
546 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
547 #else
548 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
549 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
550 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
551 	switch (numPdGainsUsed) {
552 	case 3:
553 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
554 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
555 		/* fall thru... */
556 	case 2:
557 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
558 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
559 		/* fall thru... */
560 	case 1:
561 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
562 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
563 		break;
564 	}
565 #ifdef AH_DEBUG
566 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
567 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
568 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
569 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
570 #endif
571 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
572 #endif
573 
574 	/*
575 	 * Note the pdadc table may not start at 0 dBm power, could be
576 	 * negative or greater than 0.  Need to offset the power
577 	 * values by the amount of minPower for griffin
578 	 */
579 	if (minCalPower2413_t2 != 0)
580 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
581 	else
582 		ahp->ah_txPowerIndexOffset = 0;
583 
584 	/* Finally, write the power values into the baseband power table */
585 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
586 	for (i = 0; i < 32; i++) {
587 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
588 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
589 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
590 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
591 		OS_REG_WRITE(ah, regoffset, reg32);
592 		regoffset += 4;
593 	}
594 
595 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
596 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
597 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
598 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
599 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
600 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
601 
602 	return AH_TRUE;
603 }
604 
605 static int16_t
606 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
607 {
608 	uint32_t ii,jj;
609 	uint16_t Pmin=0,numVpd;
610 
611 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
612 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
613 		/* work backwards 'cause highest pdGain for lowest power */
614 		numVpd = data->pDataPerPDGain[jj].numVpd;
615 		if (numVpd > 0) {
616 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
617 			return(Pmin);
618 		}
619 	}
620 	return(Pmin);
621 }
622 
623 static int16_t
624 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
625 {
626 	uint32_t ii;
627 	uint16_t Pmax=0,numVpd;
628 
629 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
630 		/* work forwards cuase lowest pdGain for highest power */
631 		numVpd = data->pDataPerPDGain[ii].numVpd;
632 		if (numVpd > 0) {
633 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
634 			return(Pmax);
635 		}
636 	}
637 	return(Pmax);
638 }
639 
640 static HAL_BOOL
641 ar2413GetChannelMaxMinPower(struct ath_hal *ah,
642 	const struct ieee80211_channel *chan,
643 	int16_t *maxPow, int16_t *minPow)
644 {
645 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
646 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
647 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
648 	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
649 	uint16_t numChannels;
650 	int totalD,totalF, totalMin,last, i;
651 
652 	*maxPow = 0;
653 
654 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
655 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
656 	else if (IEEE80211_IS_CHAN_B(chan))
657 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
658 	else
659 		return(AH_FALSE);
660 
661 	numChannels = pRawDataset->numChannels;
662 	data = pRawDataset->pDataPerChannel;
663 
664 	/* Make sure the channel is in the range of the TP values
665 	 *  (freq piers)
666 	 */
667 	if (numChannels < 1)
668 		return(AH_FALSE);
669 
670 	if ((freq < data[0].channelValue) ||
671 	    (freq > data[numChannels-1].channelValue)) {
672 		if (freq < data[0].channelValue) {
673 			*maxPow = ar2413GetMaxPower(ah, &data[0]);
674 			*minPow = ar2413GetMinPower(ah, &data[0]);
675 			return(AH_TRUE);
676 		} else {
677 			*maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
678 			*minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
679 			return(AH_TRUE);
680 		}
681 	}
682 
683 	/* Linearly interpolate the power value now */
684 	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
685 	     last = i++);
686 	totalD = data[i].channelValue - data[last].channelValue;
687 	if (totalD > 0) {
688 		totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
689 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
690 				     ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
691 		totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
692 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
693 				     ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
694 		return(AH_TRUE);
695 	} else {
696 		if (freq == data[i].channelValue) {
697 			*maxPow = ar2413GetMaxPower(ah, &data[i]);
698 			*minPow = ar2413GetMinPower(ah, &data[i]);
699 			return(AH_TRUE);
700 		} else
701 			return(AH_FALSE);
702 	}
703 }
704 
705 /*
706  * Free memory for analog bank scratch buffers
707  */
708 static void
709 ar2413RfDetach(struct ath_hal *ah)
710 {
711 	struct ath_hal_5212 *ahp = AH5212(ah);
712 
713 	HALASSERT(ahp->ah_rfHal != AH_NULL);
714 	ath_hal_free(ahp->ah_rfHal);
715 	ahp->ah_rfHal = AH_NULL;
716 }
717 
718 /*
719  * Allocate memory for analog bank scratch buffers
720  * Scratch Buffer will be reinitialized every reset so no need to zero now
721  */
722 static HAL_BOOL
723 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
724 {
725 	struct ath_hal_5212 *ahp = AH5212(ah);
726 	struct ar2413State *priv;
727 
728 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
729 
730 	HALASSERT(ahp->ah_rfHal == AH_NULL);
731 	priv = ath_hal_malloc(sizeof(struct ar2413State));
732 	if (priv == AH_NULL) {
733 		HALDEBUG(ah, HAL_DEBUG_ANY,
734 		    "%s: cannot allocate private state\n", __func__);
735 		*status = HAL_ENOMEM;		/* XXX */
736 		return AH_FALSE;
737 	}
738 	priv->base.rfDetach		= ar2413RfDetach;
739 	priv->base.writeRegs		= ar2413WriteRegs;
740 	priv->base.getRfBank		= ar2413GetRfBank;
741 	priv->base.setChannel		= ar2413SetChannel;
742 	priv->base.setRfRegs		= ar2413SetRfRegs;
743 	priv->base.setPowerTable	= ar2413SetPowerTable;
744 	priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
745 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
746 
747 	ahp->ah_pcdacTable = priv->pcdacTable;
748 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
749 	ahp->ah_rfHal = &priv->base;
750 
751 	return AH_TRUE;
752 }
753 
754 static HAL_BOOL
755 ar2413Probe(struct ath_hal *ah)
756 {
757 	return IS_2413(ah);
758 }
759 AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
760