xref: /dragonfly/sys/dev/netif/ath/ath_hal/ar5212/ar5413.c (revision d9f85b33)
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20 
21 #include "ah.h"
22 #include "ah_internal.h"
23 
24 #include "ah_eeprom_v3.h"
25 
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29 
30 #define AH_5212_5413
31 #include "ar5212/ar5212.ini"
32 
33 #define	N(a)	(sizeof(a)/sizeof(a[0]))
34 
35 struct ar5413State {
36 	RF_HAL_FUNCS	base;		/* public state, must be first */
37 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
38 
39 	uint32_t	Bank1Data[N(ar5212Bank1_5413)];
40 	uint32_t	Bank2Data[N(ar5212Bank2_5413)];
41 	uint32_t	Bank3Data[N(ar5212Bank3_5413)];
42 	uint32_t	Bank6Data[N(ar5212Bank6_5413)];
43 	uint32_t	Bank7Data[N(ar5212Bank7_5413)];
44 
45 	/*
46 	 * Private state for reduced stack usage.
47 	 */
48 	/* filled out Vpd table for all pdGains (chanL) */
49 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 			    [MAX_PWR_RANGE_IN_HALF_DB];
51 	/* filled out Vpd table for all pdGains (chanR) */
52 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 			    [MAX_PWR_RANGE_IN_HALF_DB];
54 	/* filled out Vpd table for all pdGains (interpolated) */
55 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 			    [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define	AR5413(ah)	((struct ar5413State *) AH5212(ah)->ah_rfHal)
59 
60 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 		uint32_t numBits, uint32_t firstBit, uint32_t column);
62 
63 static void
64 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 	int writes)
66 {
67 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
68 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
69 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
70 }
71 
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
78 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
81 	uint32_t channelSel  = 0;
82 	uint32_t bModeSynth  = 0;
83 	uint32_t aModeRefSel = 0;
84 	uint32_t reg32       = 0;
85 
86 	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87 
88 	if (freq < 4800) {
89 		uint32_t txctl;
90 
91 		if (((freq - 2192) % 5) == 0) {
92 			channelSel = ((freq - 672) * 2 - 3040)/10;
93 			bModeSynth = 0;
94 		} else if (((freq - 2224) % 5) == 0) {
95 			channelSel = ((freq - 704) * 2 - 3040) / 10;
96 			bModeSynth = 1;
97 		} else {
98 			HALDEBUG(ah, HAL_DEBUG_ANY,
99 			    "%s: invalid channel %u MHz\n",
100 			    __func__, freq);
101 			return AH_FALSE;
102 		}
103 
104 		channelSel = (channelSel << 2) & 0xff;
105 		channelSel = ath_hal_reverseBits(channelSel, 8);
106 
107 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 		if (freq == 2484) {
109 			/* Enable channel spreading for channel 14 */
110 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 		} else {
113 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 		}
116 	} else if (((freq % 5) == 2) && (freq <= 5435)) {
117 		freq = freq - 2; /* Align to even 5MHz raster */
118 		channelSel = ath_hal_reverseBits(
119 			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120             	aModeRefSel = ath_hal_reverseBits(0, 2);
121 	} else if ((freq % 20) == 0 && freq >= 5120) {
122 		channelSel = ath_hal_reverseBits(
123 			((freq - 4800) / 20 << 2), 8);
124 		aModeRefSel = ath_hal_reverseBits(1, 2);
125 	} else if ((freq % 10) == 0) {
126 		channelSel = ath_hal_reverseBits(
127 			((freq - 4800) / 10 << 1), 8);
128 		aModeRefSel = ath_hal_reverseBits(1, 2);
129 	} else if ((freq % 5) == 0) {
130 		channelSel = ath_hal_reverseBits(
131 			(freq - 4800) / 5, 8);
132 		aModeRefSel = ath_hal_reverseBits(1, 2);
133 	} else {
134 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 		    __func__, freq);
136 		return AH_FALSE;
137 	}
138 
139 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 			(1 << 12) | 0x1;
141 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142 
143 	reg32 >>= 8;
144 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145 
146 	AH_PRIVATE(ah)->ah_curchan = chan;
147 	return AH_TRUE;
148 }
149 
150 /*
151  * Reads EEPROM header info from device structure and programs
152  * all rf registers
153  *
154  * REQUIRES: Access to the analog rf device
155  */
156 static HAL_BOOL
157 ar5413SetRfRegs(struct ath_hal *ah,
158 	const struct ieee80211_channel *chan,
159 	uint16_t modesIndex, uint16_t *rfXpdGain)
160 {
161 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
162 	int i;								    \
163 	for (i = 0; i < N(ar5212Bank##_ix##_5413); i++)			    \
164 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
165 } while (0)
166 	struct ath_hal_5212 *ahp = AH5212(ah);
167 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
168 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169 	uint16_t ob5GHz = 0, db5GHz = 0;
170 	uint16_t ob2GHz = 0, db2GHz = 0;
171 	struct ar5413State *priv = AR5413(ah);
172 	int regWrites = 0;
173 
174 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
175 	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
176 
177 	HALASSERT(priv != AH_NULL);
178 
179 	/* Setup rf parameters */
180 	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
181 	case IEEE80211_CHAN_A:
182 		if (freq > 4000 && freq < 5260) {
183 			ob5GHz = ee->ee_ob1;
184 			db5GHz = ee->ee_db1;
185 		} else if (freq >= 5260 && freq < 5500) {
186 			ob5GHz = ee->ee_ob2;
187 			db5GHz = ee->ee_db2;
188 		} else if (freq >= 5500 && freq < 5725) {
189 			ob5GHz = ee->ee_ob3;
190 			db5GHz = ee->ee_db3;
191 		} else if (freq >= 5725) {
192 			ob5GHz = ee->ee_ob4;
193 			db5GHz = ee->ee_db4;
194 		} else {
195 			/* XXX else */
196 		}
197 		break;
198 	case IEEE80211_CHAN_B:
199 		ob2GHz = ee->ee_obFor24;
200 		db2GHz = ee->ee_dbFor24;
201 		break;
202 	case IEEE80211_CHAN_G:
203 	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
204 		ob2GHz = ee->ee_obFor24g;
205 		db2GHz = ee->ee_dbFor24g;
206 		break;
207 	default:
208 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
209 		    __func__, chan->ic_flags);
210 		return AH_FALSE;
211 	}
212 
213 	/* Bank 1 Write */
214 	RF_BANK_SETUP(priv, 1, 1);
215 
216 	/* Bank 2 Write */
217 	RF_BANK_SETUP(priv, 2, modesIndex);
218 
219 	/* Bank 3 Write */
220 	RF_BANK_SETUP(priv, 3, modesIndex);
221 
222 	/* Bank 6 Write */
223 	RF_BANK_SETUP(priv, 6, modesIndex);
224 
225     	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
226 	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
227         	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
228         	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
229 
230 			/* TODO - only for Eagle 1.0 2GHz - remove for production */
231 			/* XXX: but without this bit G doesn't work. */
232 			ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
233 
234 			/* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
235 			if (AH_PRIVATE(ah)->ah_ispcie) {
236 				ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
237 						 3, 131, 3);
238 			}
239 	} else {
240         	ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
241         	ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
242 
243 	}
244 
245 	/* Bank 7 Setup */
246 	RF_BANK_SETUP(priv, 7, modesIndex);
247 
248 	/* Write Analog registers */
249 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
250 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
251 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
252 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
253 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
254 
255 	/* Now that we have reprogrammed rfgain value, clear the flag. */
256 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
257 
258 	return AH_TRUE;
259 #undef	RF_BANK_SETUP
260 }
261 
262 /*
263  * Return a reference to the requested RF Bank.
264  */
265 static uint32_t *
266 ar5413GetRfBank(struct ath_hal *ah, int bank)
267 {
268 	struct ar5413State *priv = AR5413(ah);
269 
270 	HALASSERT(priv != AH_NULL);
271 	switch (bank) {
272 	case 1: return priv->Bank1Data;
273 	case 2: return priv->Bank2Data;
274 	case 3: return priv->Bank3Data;
275 	case 6: return priv->Bank6Data;
276 	case 7: return priv->Bank7Data;
277 	}
278 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
279 	    __func__, bank);
280 	return AH_NULL;
281 }
282 
283 /*
284  * Return indices surrounding the value in sorted integer lists.
285  *
286  * NB: the input list is assumed to be sorted in ascending order
287  */
288 static void
289 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
290                           uint32_t *vlo, uint32_t *vhi)
291 {
292 	int16_t target = v;
293 	const uint16_t *ep = lp+listSize;
294 	const uint16_t *tp;
295 
296 	*vlo = 0;	/* avoid gcc warnings */
297 	*vhi = 0;	/* avoid gcc warnings */
298 
299 	/*
300 	 * Check first and last elements for out-of-bounds conditions.
301 	 */
302 	if (target < lp[0]) {
303 		*vlo = *vhi = 0;
304 		return;
305 	}
306 	if (target >= ep[-1]) {
307 		*vlo = *vhi = listSize - 1;
308 		return;
309 	}
310 
311 	/* look for value being near or between 2 values in list */
312 	for (tp = lp; tp < ep; tp++) {
313 		/*
314 		 * If value is close to the current value of the list
315 		 * then target is not between values, it is one of the values
316 		 */
317 		if (*tp == target) {
318 			*vlo = *vhi = tp - (const uint16_t *) lp;
319 			return;
320 		}
321 		/*
322 		 * Look for value being between current value and next value
323 		 * if so return these 2 values
324 		 */
325 		if (target < tp[1]) {
326 			*vlo = tp - (const uint16_t *) lp;
327 			*vhi = *vlo + 1;
328 			return;
329 		}
330 	}
331 }
332 
333 /*
334  * Fill the Vpdlist for indices Pmax-Pmin
335  */
336 static HAL_BOOL
337 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
338 		   const int16_t *pwrList, const uint16_t *VpdList,
339 		   uint16_t numIntercepts,
340 		   uint16_t retVpdList[][64])
341 {
342 	uint16_t ii, jj, kk;
343 	int16_t currPwr = (int16_t)(2*Pmin);
344 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
345 	uint32_t  idxL, idxR;
346 
347 	ii = 0;
348 	jj = 0;
349 
350 	if (numIntercepts < 2)
351 		return AH_FALSE;
352 
353 	while (ii <= (uint16_t)(Pmax - Pmin)) {
354 		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
355 				   numIntercepts, &(idxL), &(idxR));
356 		if (idxR < 1)
357 			idxR = 1;			/* extrapolate below */
358 		if (idxL == (uint32_t)(numIntercepts - 1))
359 			idxL = numIntercepts - 2;	/* extrapolate above */
360 		if (pwrList[idxL] == pwrList[idxR])
361 			kk = VpdList[idxL];
362 		else
363 			kk = (uint16_t)
364 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
365 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
366 				 (pwrList[idxR] - pwrList[idxL]));
367 		retVpdList[pdGainIdx][ii] = kk;
368 		ii++;
369 		currPwr += 2;				/* half dB steps */
370 	}
371 
372 	return AH_TRUE;
373 }
374 
375 /*
376  * Returns interpolated or the scaled up interpolated value
377  */
378 static int16_t
379 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
380 	int16_t targetLeft, int16_t targetRight)
381 {
382 	int16_t rv;
383 
384 	if (srcRight != srcLeft) {
385 		rv = ((target - srcLeft)*targetRight +
386 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
387 	} else {
388 		rv = targetLeft;
389 	}
390 	return rv;
391 }
392 
393 /*
394  * Uses the data points read from EEPROM to reconstruct the pdadc power table
395  * Called by ar5413SetPowerTable()
396  */
397 static int
398 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
399 		const RAW_DATA_STRUCT_2413 *pRawDataset,
400 		uint16_t pdGainOverlap_t2,
401 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
402 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
403 {
404 	struct ar5413State *priv = AR5413(ah);
405 #define	VpdTable_L	priv->vpdTable_L
406 #define	VpdTable_R	priv->vpdTable_R
407 #define	VpdTable_I	priv->vpdTable_I
408 	uint32_t ii, jj, kk;
409 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
410 	uint32_t idxL, idxR;
411 	uint32_t numPdGainsUsed = 0;
412 	/*
413 	 * If desired to support -ve power levels in future, just
414 	 * change pwr_I_0 to signed 5-bits.
415 	 */
416 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
417 	/* to accommodate -ve power levels later on. */
418 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
419 	/* to accommodate -ve power levels later on */
420 	uint16_t numVpd = 0;
421 	uint16_t Vpd_step;
422 	int16_t tmpVal ;
423 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
424 
425 	/* Get upper lower index */
426 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
427 				 pRawDataset->numChannels, &(idxL), &(idxR));
428 
429 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
430 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
431 		/* work backwards 'cause highest pdGain for lowest power */
432 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
433 		if (numVpd > 0) {
434 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
435 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
436 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
437 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
438 			}
439 			Pmin_t2[numPdGainsUsed] = (int16_t)
440 				(Pmin_t2[numPdGainsUsed] / 2);
441 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
442 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
443 				Pmax_t2[numPdGainsUsed] =
444 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
445 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
446 			ar5413FillVpdTable(
447 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
448 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
449 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
450 					   );
451 			ar5413FillVpdTable(
452 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
453 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
454 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
455 					   );
456 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
457 				VpdTable_I[numPdGainsUsed][kk] =
458 					interpolate_signed(
459 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
460 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
461 			}
462 			/* fill VpdTable_I for this pdGain */
463 			numPdGainsUsed++;
464 		}
465 		/* if this pdGain is used */
466 	}
467 
468 	*pMinCalPower = Pmin_t2[0];
469 	kk = 0; /* index for the final table */
470 	for (ii = 0; ii < numPdGainsUsed; ii++) {
471 		if (ii == (numPdGainsUsed - 1))
472 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
473 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
474 		else
475 			pPdGainBoundaries[ii] = (uint16_t)
476 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
477 		if (pPdGainBoundaries[ii] > 63) {
478 			HALDEBUG(ah, HAL_DEBUG_ANY,
479 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
480 			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
481 			pPdGainBoundaries[ii] = 63;
482 		}
483 
484 		/* Find starting index for this pdGain */
485 		if (ii == 0)
486 			ss = 0; /* for the first pdGain, start from index 0 */
487 		else
488 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
489 				pdGainOverlap_t2;
490 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
491 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
492 		/*
493 		 *-ve ss indicates need to extrapolate data below for this pdGain
494 		 */
495 		while (ss < 0) {
496 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
497 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
498 			ss++;
499 		}
500 
501 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
502 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
503 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
504 
505 		while (ss < (int16_t)maxIndex)
506 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
507 
508 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
509 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
510 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
511 		/*
512 		 * for last gain, pdGainBoundary == Pmax_t2, so will
513 		 * have to extrapolate
514 		 */
515 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
516 			while(ss < (int16_t)tgtIndex) {
517 				tmpVal = (uint16_t)
518 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
519 					 (ss-maxIndex)*Vpd_step);
520 				pPDADCValues[kk++] = (tmpVal > 127) ?
521 					127 : tmpVal;
522 				ss++;
523 			}
524 		}				/* extrapolated above */
525 	}					/* for all pdGainUsed */
526 
527 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
528 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
529 		ii++;
530 	}
531 	while (kk < 128) {
532 		pPDADCValues[kk] = pPDADCValues[kk-1];
533 		kk++;
534 	}
535 
536 	return numPdGainsUsed;
537 #undef VpdTable_L
538 #undef VpdTable_R
539 #undef VpdTable_I
540 }
541 
542 static HAL_BOOL
543 ar5413SetPowerTable(struct ath_hal *ah,
544 	int16_t *minPower, int16_t *maxPower,
545 	const struct ieee80211_channel *chan,
546 	uint16_t *rfXpdGain)
547 {
548 	struct ath_hal_5212 *ahp = AH5212(ah);
549 	uint16_t freq = ath_hal_gethwchannel(ah, chan);
550 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
551 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
552 	uint16_t pdGainOverlap_t2;
553 	int16_t minCalPower5413_t2;
554 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
555 	uint16_t gainBoundaries[4];
556 	uint32_t reg32, regoffset;
557 	int i, numPdGainsUsed;
558 #ifndef AH_USE_INIPDGAIN
559 	uint32_t tpcrg1;
560 #endif
561 
562 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
563 	    __func__, chan->ic_freq, chan->ic_flags);
564 
565 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
566 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
567 	else if (IEEE80211_IS_CHAN_B(chan))
568 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
569 	else {
570 		HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
571 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
572 	}
573 
574 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
575 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
576 
577 	numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
578 		freq, pRawDataset, pdGainOverlap_t2,
579 		&minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
580 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
581 
582 #ifdef AH_USE_INIPDGAIN
583 	/*
584 	 * Use pd_gains curve from eeprom; Atheros always uses
585 	 * the default curve from the ini file but some vendors
586 	 * (e.g. Zcomax) want to override this curve and not
587 	 * honoring their settings results in tx power 5dBm low.
588 	 */
589 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
590 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
591 #else
592 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
593 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
594 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
595 	switch (numPdGainsUsed) {
596 	case 3:
597 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
598 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
599 		/* fall thru... */
600 	case 2:
601 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
602 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
603 		/* fall thru... */
604 	case 1:
605 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
606 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
607 		break;
608 	}
609 #ifdef AH_DEBUG
610 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
611 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
612 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
613 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
614 #endif
615 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
616 #endif
617 
618 	/*
619 	 * Note the pdadc table may not start at 0 dBm power, could be
620 	 * negative or greater than 0.  Need to offset the power
621 	 * values by the amount of minPower for griffin
622 	 */
623 	if (minCalPower5413_t2 != 0)
624 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
625 	else
626 		ahp->ah_txPowerIndexOffset = 0;
627 
628 	/* Finally, write the power values into the baseband power table */
629 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
630 	for (i = 0; i < 32; i++) {
631 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
632 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
633 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
634 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
635 		OS_REG_WRITE(ah, regoffset, reg32);
636 		regoffset += 4;
637 	}
638 
639 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
640 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
641 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
642 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
643 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
644 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
645 
646 	return AH_TRUE;
647 }
648 
649 static int16_t
650 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
651 {
652 	uint32_t ii,jj;
653 	uint16_t Pmin=0,numVpd;
654 
655 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
656 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
657 		/* work backwards 'cause highest pdGain for lowest power */
658 		numVpd = data->pDataPerPDGain[jj].numVpd;
659 		if (numVpd > 0) {
660 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
661 			return(Pmin);
662 		}
663 	}
664 	return(Pmin);
665 }
666 
667 static int16_t
668 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
669 {
670 	uint32_t ii;
671 	uint16_t Pmax=0,numVpd;
672 
673 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
674 		/* work forwards cuase lowest pdGain for highest power */
675 		numVpd = data->pDataPerPDGain[ii].numVpd;
676 		if (numVpd > 0) {
677 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
678 			return(Pmax);
679 		}
680 	}
681 	return(Pmax);
682 }
683 
684 static HAL_BOOL
685 ar5413GetChannelMaxMinPower(struct ath_hal *ah,
686 	const struct ieee80211_channel *chan,
687 	int16_t *maxPow, int16_t *minPow)
688 {
689 	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
690 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
691 	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
692 	const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
693 	uint16_t numChannels;
694 	int totalD,totalF, totalMin,last, i;
695 
696 	*maxPow = 0;
697 
698 	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
699 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
700 	else if (IEEE80211_IS_CHAN_B(chan))
701 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
702 	else {
703 		HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
704 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
705 	}
706 
707 	numChannels = pRawDataset->numChannels;
708 	data = pRawDataset->pDataPerChannel;
709 
710 	/* Make sure the channel is in the range of the TP values
711 	 *  (freq piers)
712 	 */
713 	if (numChannels < 1)
714 		return(AH_FALSE);
715 
716 	if ((freq < data[0].channelValue) ||
717 	    (freq > data[numChannels-1].channelValue)) {
718 		if (freq < data[0].channelValue) {
719 			*maxPow = ar5413GetMaxPower(ah, &data[0]);
720 			*minPow = ar5413GetMinPower(ah, &data[0]);
721 			return(AH_TRUE);
722 		} else {
723 			*maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
724 			*minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
725 			return(AH_TRUE);
726 		}
727 	}
728 
729 	/* Linearly interpolate the power value now */
730 	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
731 	     last = i++);
732 	totalD = data[i].channelValue - data[last].channelValue;
733 	if (totalD > 0) {
734 		totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
735 		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
736 				     ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
737 		totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
738 		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
739 				     ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
740 		return(AH_TRUE);
741 	} else {
742 		if (freq == data[i].channelValue) {
743 			*maxPow = ar5413GetMaxPower(ah, &data[i]);
744 			*minPow = ar5413GetMinPower(ah, &data[i]);
745 			return(AH_TRUE);
746 		} else
747 			return(AH_FALSE);
748 	}
749 }
750 
751 /*
752  * Free memory for analog bank scratch buffers
753  */
754 static void
755 ar5413RfDetach(struct ath_hal *ah)
756 {
757 	struct ath_hal_5212 *ahp = AH5212(ah);
758 
759 	HALASSERT(ahp->ah_rfHal != AH_NULL);
760 	ath_hal_free(ahp->ah_rfHal);
761 	ahp->ah_rfHal = AH_NULL;
762 }
763 
764 /*
765  * Allocate memory for analog bank scratch buffers
766  * Scratch Buffer will be reinitialized every reset so no need to zero now
767  */
768 static HAL_BOOL
769 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
770 {
771 	struct ath_hal_5212 *ahp = AH5212(ah);
772 	struct ar5413State *priv;
773 
774 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
775 
776 	HALASSERT(ahp->ah_rfHal == AH_NULL);
777 	priv = ath_hal_malloc(sizeof(struct ar5413State));
778 	if (priv == AH_NULL) {
779 		HALDEBUG(ah, HAL_DEBUG_ANY,
780 		    "%s: cannot allocate private state\n", __func__);
781 		*status = HAL_ENOMEM;		/* XXX */
782 		return AH_FALSE;
783 	}
784 	priv->base.rfDetach		= ar5413RfDetach;
785 	priv->base.writeRegs		= ar5413WriteRegs;
786 	priv->base.getRfBank		= ar5413GetRfBank;
787 	priv->base.setChannel		= ar5413SetChannel;
788 	priv->base.setRfRegs		= ar5413SetRfRegs;
789 	priv->base.setPowerTable	= ar5413SetPowerTable;
790 	priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
791 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
792 
793 	ahp->ah_pcdacTable = priv->pcdacTable;
794 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
795 	ahp->ah_rfHal = &priv->base;
796 
797 	return AH_TRUE;
798 }
799 
800 static HAL_BOOL
801 ar5413Probe(struct ath_hal *ah)
802 {
803 	return IS_5413(ah);
804 }
805 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);
806