xref: /dragonfly/sys/dev/netif/bce/if_bce.c (revision b5523eac)
1 /*-
2  * Copyright (c) 2006-2007 Broadcom Corporation
3  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
15  *    may be used to endorse or promote products derived from this software
16  *    without specific prior written consent.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
28  * THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/dev/bce/if_bce.c,v 1.31 2007/05/16 23:34:11 davidch Exp $
31  */
32 
33 /*
34  * The following controllers are supported by this driver:
35  *   BCM5706C A2, A3
36  *   BCM5706S A2, A3
37  *   BCM5708C B1, B2
38  *   BCM5708S B1, B2
39  *   BCM5709C A1, B2, C0
40  *   BCM5716  C0
41  *
42  * The following controllers are not supported by this driver:
43  *   BCM5706C A0, A1
44  *   BCM5706S A0, A1
45  *   BCM5708C A0, B0
46  *   BCM5708S A0, B0
47  *   BCM5709C A0, B0, B1
48  *   BCM5709S A0, A1, B0, B1, B2, C0
49  *
50  *
51  * Note about MSI-X on 5709/5716:
52  * - 9 MSI-X vectors are supported.
53  * - MSI-X vectors, RX/TX rings and status blocks' association
54  *   are fixed:
55  *   o  The first RX ring and the first TX ring use the first
56  *      status block.
57  *   o  The first MSI-X vector is associated with the first
58  *      status block.
59  *   o  The second RX ring and the second TX ring use the second
60  *      status block.
61  *   o  The second MSI-X vector is associated with the second
62  *      status block.
63  *   ...
64  *   and so on so forth.
65  * - Status blocks must reside in physically contiguous memory
66  *   and each status block consumes 128bytes.  In addition to
67  *   this, the memory for the status blocks is aligned on 128bytes
68  *   in this driver.  (see bce_dma_alloc() and HC_CONFIG)
69  * - Each status block has its own coalesce parameters, which also
70  *   serve as the related MSI-X vector's interrupt moderation
71  *   parameters.  (see bce_coal_change())
72  */
73 
74 #include "opt_bce.h"
75 #include "opt_ifpoll.h"
76 
77 #include <sys/param.h>
78 #include <sys/bus.h>
79 #include <sys/endian.h>
80 #include <sys/kernel.h>
81 #include <sys/interrupt.h>
82 #include <sys/mbuf.h>
83 #include <sys/malloc.h>
84 #include <sys/queue.h>
85 #include <sys/rman.h>
86 #include <sys/serialize.h>
87 #include <sys/socket.h>
88 #include <sys/sockio.h>
89 #include <sys/sysctl.h>
90 
91 #include <netinet/ip.h>
92 #include <netinet/tcp.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/if_types.h>
102 #include <net/ifq_var.h>
103 #include <net/toeplitz.h>
104 #include <net/toeplitz2.h>
105 #include <net/vlan/if_vlan_var.h>
106 #include <net/vlan/if_vlan_ether.h>
107 
108 #include <dev/netif/mii_layer/mii.h>
109 #include <dev/netif/mii_layer/miivar.h>
110 #include <dev/netif/mii_layer/brgphyreg.h>
111 
112 #include <bus/pci/pcireg.h>
113 #include <bus/pci/pcivar.h>
114 
115 #include "miibus_if.h"
116 
117 #include <dev/netif/bce/if_bcereg.h>
118 #include <dev/netif/bce/if_bcefw.h>
119 
120 #define BCE_MSI_CKINTVL		((10 * hz) / 1000)	/* 10ms */
121 
122 #ifdef BCE_RSS_DEBUG
123 #define BCE_RSS_DPRINTF(sc, lvl, fmt, ...) \
124 do { \
125 	if (sc->rss_debug >= lvl) \
126 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
127 } while (0)
128 #else	/* !BCE_RSS_DEBUG */
129 #define BCE_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
130 #endif	/* BCE_RSS_DEBUG */
131 
132 /****************************************************************************/
133 /* PCI Device ID Table                                                      */
134 /*                                                                          */
135 /* Used by bce_probe() to identify the devices supported by this driver.    */
136 /****************************************************************************/
137 #define BCE_DEVDESC_MAX		64
138 
139 static struct bce_type bce_devs[] = {
140 	/* BCM5706C Controllers and OEM boards. */
141 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
142 		"HP NC370T Multifunction Gigabit Server Adapter" },
143 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
144 		"HP NC370i Multifunction Gigabit Server Adapter" },
145 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
146 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
147 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
148 		"HP NC371i Multifunction Gigabit Server Adapter" },
149 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
150 		"Broadcom NetXtreme II BCM5706 1000Base-T" },
151 
152 	/* BCM5706S controllers and OEM boards. */
153 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
154 		"HP NC370F Multifunction Gigabit Server Adapter" },
155 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
156 		"Broadcom NetXtreme II BCM5706 1000Base-SX" },
157 
158 	/* BCM5708C controllers and OEM boards. */
159 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
160 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
161 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
162 		"HP NC373i Multifunction Gigabit Server Adapter" },
163 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
164 		"HP NC374m PCIe Multifunction Adapter" },
165 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
166 		"Broadcom NetXtreme II BCM5708 1000Base-T" },
167 
168 	/* BCM5708S controllers and OEM boards. */
169 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
170 		"HP NC373m Multifunction Gigabit Server Adapter" },
171 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
172 		"HP NC373i Multifunction Gigabit Server Adapter" },
173 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
174 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
175 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
176 		"Broadcom NetXtreme II BCM5708S 1000Base-T" },
177 
178 	/* BCM5709C controllers and OEM boards. */
179 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
180 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
181 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
182 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
183 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
184 		"Broadcom NetXtreme II BCM5709 1000Base-T" },
185 
186 	/* BCM5709S controllers and OEM boards. */
187 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
188 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
189 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
190 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
191 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
192 		"Broadcom NetXtreme II BCM5709 1000Base-SX" },
193 
194 	/* BCM5716 controllers and OEM boards. */
195 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,   PCI_ANY_ID,  PCI_ANY_ID,
196 		"Broadcom NetXtreme II BCM5716 1000Base-T" },
197 
198 	{ 0, 0, 0, 0, NULL }
199 };
200 
201 /****************************************************************************/
202 /* Supported Flash NVRAM device data.                                       */
203 /****************************************************************************/
204 static const struct flash_spec flash_table[] =
205 {
206 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
207 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
208 
209 	/* Slow EEPROM */
210 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
211 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
212 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
213 	 "EEPROM - slow"},
214 	/* Expansion entry 0001 */
215 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
216 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
217 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
218 	 "Entry 0001"},
219 	/* Saifun SA25F010 (non-buffered flash) */
220 	/* strap, cfg1, & write1 need updates */
221 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
222 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
223 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
224 	 "Non-buffered flash (128kB)"},
225 	/* Saifun SA25F020 (non-buffered flash) */
226 	/* strap, cfg1, & write1 need updates */
227 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
230 	 "Non-buffered flash (256kB)"},
231 	/* Expansion entry 0100 */
232 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
233 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
234 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
235 	 "Entry 0100"},
236 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
237 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
238 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
239 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
240 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
241 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
242 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
243 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
244 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
245 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
246 	/* Saifun SA25F005 (non-buffered flash) */
247 	/* strap, cfg1, & write1 need updates */
248 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
249 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
250 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
251 	 "Non-buffered flash (64kB)"},
252 	/* Fast EEPROM */
253 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
254 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
255 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
256 	 "EEPROM - fast"},
257 	/* Expansion entry 1001 */
258 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
259 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
260 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
261 	 "Entry 1001"},
262 	/* Expansion entry 1010 */
263 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
264 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
265 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
266 	 "Entry 1010"},
267 	/* ATMEL AT45DB011B (buffered flash) */
268 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
269 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
270 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
271 	 "Buffered flash (128kB)"},
272 	/* Expansion entry 1100 */
273 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
274 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
275 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
276 	 "Entry 1100"},
277 	/* Expansion entry 1101 */
278 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
279 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
280 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
281 	 "Entry 1101"},
282 	/* Ateml Expansion entry 1110 */
283 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
284 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
285 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
286 	 "Entry 1110 (Atmel)"},
287 	/* ATMEL AT45DB021B (buffered flash) */
288 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
289 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
290 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
291 	 "Buffered flash (256kB)"},
292 };
293 
294 /*
295  * The BCM5709 controllers transparently handle the
296  * differences between Atmel 264 byte pages and all
297  * flash devices which use 256 byte pages, so no
298  * logical-to-physical mapping is required in the
299  * driver.
300  */
301 static struct flash_spec flash_5709 = {
302 	.flags		= BCE_NV_BUFFERED,
303 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
304 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
305 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
306 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
307 	.name		= "5709/5716 buffered flash (256kB)",
308 };
309 
310 /****************************************************************************/
311 /* DragonFly device entry points.                                           */
312 /****************************************************************************/
313 static int	bce_probe(device_t);
314 static int	bce_attach(device_t);
315 static int	bce_detach(device_t);
316 static void	bce_shutdown(device_t);
317 static int	bce_miibus_read_reg(device_t, int, int);
318 static int	bce_miibus_write_reg(device_t, int, int, int);
319 static void	bce_miibus_statchg(device_t);
320 
321 /****************************************************************************/
322 /* BCE Register/Memory Access Routines                                      */
323 /****************************************************************************/
324 static uint32_t	bce_reg_rd_ind(struct bce_softc *, uint32_t);
325 static void	bce_reg_wr_ind(struct bce_softc *, uint32_t, uint32_t);
326 static void	bce_shmem_wr(struct bce_softc *, uint32_t, uint32_t);
327 static uint32_t	bce_shmem_rd(struct bce_softc *, u32);
328 static void	bce_ctx_wr(struct bce_softc *, uint32_t, uint32_t, uint32_t);
329 
330 /****************************************************************************/
331 /* BCE NVRAM Access Routines                                                */
332 /****************************************************************************/
333 static int	bce_acquire_nvram_lock(struct bce_softc *);
334 static int	bce_release_nvram_lock(struct bce_softc *);
335 static void	bce_enable_nvram_access(struct bce_softc *);
336 static void	bce_disable_nvram_access(struct bce_softc *);
337 static int	bce_nvram_read_dword(struct bce_softc *, uint32_t, uint8_t *,
338 		    uint32_t);
339 static int	bce_init_nvram(struct bce_softc *);
340 static int	bce_nvram_read(struct bce_softc *, uint32_t, uint8_t *, int);
341 static int	bce_nvram_test(struct bce_softc *);
342 
343 /****************************************************************************/
344 /* BCE DMA Allocate/Free Routines                                           */
345 /****************************************************************************/
346 static int	bce_dma_alloc(struct bce_softc *);
347 static void	bce_dma_free(struct bce_softc *);
348 static void	bce_dma_map_addr(void *, bus_dma_segment_t *, int, int);
349 
350 /****************************************************************************/
351 /* BCE Firmware Synchronization and Load                                    */
352 /****************************************************************************/
353 static int	bce_fw_sync(struct bce_softc *, uint32_t);
354 static void	bce_load_rv2p_fw(struct bce_softc *, uint32_t *,
355 		    uint32_t, uint32_t);
356 static void	bce_load_cpu_fw(struct bce_softc *, struct cpu_reg *,
357 		    struct fw_info *);
358 static void	bce_start_cpu(struct bce_softc *, struct cpu_reg *);
359 static void	bce_halt_cpu(struct bce_softc *, struct cpu_reg *);
360 static void	bce_start_rxp_cpu(struct bce_softc *);
361 static void	bce_init_rxp_cpu(struct bce_softc *);
362 static void	bce_init_txp_cpu(struct bce_softc *);
363 static void	bce_init_tpat_cpu(struct bce_softc *);
364 static void	bce_init_cp_cpu(struct bce_softc *);
365 static void	bce_init_com_cpu(struct bce_softc *);
366 static void	bce_init_cpus(struct bce_softc *);
367 static void	bce_setup_msix_table(struct bce_softc *);
368 static void	bce_init_rss(struct bce_softc *);
369 
370 static void	bce_stop(struct bce_softc *);
371 static int	bce_reset(struct bce_softc *, uint32_t);
372 static int	bce_chipinit(struct bce_softc *);
373 static int	bce_blockinit(struct bce_softc *);
374 static void	bce_probe_pci_caps(struct bce_softc *);
375 static void	bce_print_adapter_info(struct bce_softc *);
376 static void	bce_get_media(struct bce_softc *);
377 static void	bce_mgmt_init(struct bce_softc *);
378 static int	bce_init_ctx(struct bce_softc *);
379 static void	bce_get_mac_addr(struct bce_softc *);
380 static void	bce_set_mac_addr(struct bce_softc *);
381 static void	bce_set_rx_mode(struct bce_softc *);
382 static void	bce_coal_change(struct bce_softc *);
383 static void	bce_npoll_coal_change(struct bce_softc *);
384 static void	bce_setup_serialize(struct bce_softc *);
385 static void	bce_serialize_skipmain(struct bce_softc *);
386 static void	bce_deserialize_skipmain(struct bce_softc *);
387 static void	bce_set_timer_cpuid(struct bce_softc *, boolean_t);
388 static int	bce_alloc_intr(struct bce_softc *);
389 static void	bce_free_intr(struct bce_softc *);
390 static void	bce_try_alloc_msix(struct bce_softc *);
391 static void	bce_free_msix(struct bce_softc *, boolean_t);
392 static void	bce_setup_ring_cnt(struct bce_softc *);
393 static int	bce_setup_intr(struct bce_softc *);
394 static void	bce_teardown_intr(struct bce_softc *);
395 static int	bce_setup_msix(struct bce_softc *);
396 static void	bce_teardown_msix(struct bce_softc *, int);
397 
398 static int	bce_create_tx_ring(struct bce_tx_ring *);
399 static void	bce_destroy_tx_ring(struct bce_tx_ring *);
400 static void	bce_init_tx_context(struct bce_tx_ring *);
401 static int	bce_init_tx_chain(struct bce_tx_ring *);
402 static void	bce_free_tx_chain(struct bce_tx_ring *);
403 static void	bce_xmit(struct bce_tx_ring *);
404 static int	bce_encap(struct bce_tx_ring *, struct mbuf **, int *);
405 static int	bce_tso_setup(struct bce_tx_ring *, struct mbuf **,
406 		    uint16_t *, uint16_t *);
407 
408 static int	bce_create_rx_ring(struct bce_rx_ring *);
409 static void	bce_destroy_rx_ring(struct bce_rx_ring *);
410 static void	bce_init_rx_context(struct bce_rx_ring *);
411 static int	bce_init_rx_chain(struct bce_rx_ring *);
412 static void	bce_free_rx_chain(struct bce_rx_ring *);
413 static int	bce_newbuf_std(struct bce_rx_ring *, uint16_t *, uint16_t,
414 		    uint32_t *, int);
415 static void	bce_setup_rxdesc_std(struct bce_rx_ring *, uint16_t,
416 		    uint32_t *);
417 static struct pktinfo *bce_rss_pktinfo(struct pktinfo *, uint32_t,
418 		    const struct l2_fhdr *);
419 
420 static void	bce_start(struct ifnet *, struct ifaltq_subque *);
421 static int	bce_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
422 static void	bce_watchdog(struct ifaltq_subque *);
423 static int	bce_ifmedia_upd(struct ifnet *);
424 static void	bce_ifmedia_sts(struct ifnet *, struct ifmediareq *);
425 static void	bce_init(void *);
426 #ifdef IFPOLL_ENABLE
427 static void	bce_npoll(struct ifnet *, struct ifpoll_info *);
428 static void	bce_npoll_rx(struct ifnet *, void *, int);
429 static void	bce_npoll_tx(struct ifnet *, void *, int);
430 static void	bce_npoll_status(struct ifnet *);
431 static void	bce_npoll_rx_pack(struct ifnet *, void *, int);
432 #endif
433 static void	bce_serialize(struct ifnet *, enum ifnet_serialize);
434 static void	bce_deserialize(struct ifnet *, enum ifnet_serialize);
435 static int	bce_tryserialize(struct ifnet *, enum ifnet_serialize);
436 #ifdef INVARIANTS
437 static void	bce_serialize_assert(struct ifnet *, enum ifnet_serialize,
438 		    boolean_t);
439 #endif
440 
441 static void	bce_intr(struct bce_softc *);
442 static void	bce_intr_legacy(void *);
443 static void	bce_intr_msi(void *);
444 static void	bce_intr_msi_oneshot(void *);
445 static void	bce_intr_msix_rxtx(void *);
446 static void	bce_intr_msix_rx(void *);
447 static void	bce_tx_intr(struct bce_tx_ring *, uint16_t);
448 static void	bce_rx_intr(struct bce_rx_ring *, int, uint16_t);
449 static void	bce_phy_intr(struct bce_softc *);
450 static void	bce_disable_intr(struct bce_softc *);
451 static void	bce_enable_intr(struct bce_softc *);
452 static void	bce_reenable_intr(struct bce_rx_ring *);
453 static void	bce_check_msi(void *);
454 
455 static void	bce_stats_update(struct bce_softc *);
456 static void	bce_tick(void *);
457 static void	bce_tick_serialized(struct bce_softc *);
458 static void	bce_pulse(void *);
459 
460 static void	bce_add_sysctls(struct bce_softc *);
461 static int	bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS);
462 static int	bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS);
463 static int	bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS);
464 static int	bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS);
465 static int	bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS);
466 static int	bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS);
467 static int	bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS);
468 static int	bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS);
469 #ifdef IFPOLL_ENABLE
470 static int	bce_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS);
471 #endif
472 static int	bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS,
473 		    uint32_t *, uint32_t);
474 
475 /*
476  * NOTE:
477  * Don't set bce_tx_ticks_int/bce_tx_ticks to 1023.  Linux's bnx2
478  * takes 1023 as the TX ticks limit.  However, using 1023 will
479  * cause 5708(B2) to generate extra interrupts (~2000/s) even when
480  * there is _no_ network activity on the NIC.
481  */
482 static uint32_t	bce_tx_bds_int = 255;		/* bcm: 20 */
483 static uint32_t	bce_tx_bds = 255;		/* bcm: 20 */
484 static uint32_t	bce_tx_ticks_int = 1022;	/* bcm: 80 */
485 static uint32_t	bce_tx_ticks = 1022;		/* bcm: 80 */
486 static uint32_t	bce_rx_bds_int = 128;		/* bcm: 6 */
487 static uint32_t	bce_rx_bds = 0;			/* bcm: 6 */
488 static uint32_t	bce_rx_ticks_int = 150;		/* bcm: 18 */
489 static uint32_t	bce_rx_ticks = 150;		/* bcm: 18 */
490 
491 static int	bce_tx_wreg = 8;
492 
493 static int	bce_msi_enable = 1;
494 static int	bce_msix_enable = 1;
495 
496 static int	bce_rx_pages = RX_PAGES_DEFAULT;
497 static int	bce_tx_pages = TX_PAGES_DEFAULT;
498 
499 static int	bce_rx_rings = 0;	/* auto */
500 static int	bce_tx_rings = 0;	/* auto */
501 
502 TUNABLE_INT("hw.bce.tx_bds_int", &bce_tx_bds_int);
503 TUNABLE_INT("hw.bce.tx_bds", &bce_tx_bds);
504 TUNABLE_INT("hw.bce.tx_ticks_int", &bce_tx_ticks_int);
505 TUNABLE_INT("hw.bce.tx_ticks", &bce_tx_ticks);
506 TUNABLE_INT("hw.bce.rx_bds_int", &bce_rx_bds_int);
507 TUNABLE_INT("hw.bce.rx_bds", &bce_rx_bds);
508 TUNABLE_INT("hw.bce.rx_ticks_int", &bce_rx_ticks_int);
509 TUNABLE_INT("hw.bce.rx_ticks", &bce_rx_ticks);
510 TUNABLE_INT("hw.bce.msi.enable", &bce_msi_enable);
511 TUNABLE_INT("hw.bce.msix.enable", &bce_msix_enable);
512 TUNABLE_INT("hw.bce.rx_pages", &bce_rx_pages);
513 TUNABLE_INT("hw.bce.tx_pages", &bce_tx_pages);
514 TUNABLE_INT("hw.bce.tx_wreg", &bce_tx_wreg);
515 TUNABLE_INT("hw.bce.tx_rings", &bce_tx_rings);
516 TUNABLE_INT("hw.bce.rx_rings", &bce_rx_rings);
517 
518 /****************************************************************************/
519 /* DragonFly device dispatch table.                                         */
520 /****************************************************************************/
521 static device_method_t bce_methods[] = {
522 	/* Device interface */
523 	DEVMETHOD(device_probe,		bce_probe),
524 	DEVMETHOD(device_attach,	bce_attach),
525 	DEVMETHOD(device_detach,	bce_detach),
526 	DEVMETHOD(device_shutdown,	bce_shutdown),
527 
528 	/* bus interface */
529 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
530 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
531 
532 	/* MII interface */
533 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
534 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
535 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
536 
537 	DEVMETHOD_END
538 };
539 
540 static driver_t bce_driver = {
541 	"bce",
542 	bce_methods,
543 	sizeof(struct bce_softc)
544 };
545 
546 static devclass_t bce_devclass;
547 
548 DECLARE_DUMMY_MODULE(if_bce);
549 MODULE_DEPEND(bce, miibus, 1, 1, 1);
550 DRIVER_MODULE(if_bce, pci, bce_driver, bce_devclass, NULL, NULL);
551 DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, NULL, NULL);
552 
553 /****************************************************************************/
554 /* Device probe function.                                                   */
555 /*                                                                          */
556 /* Compares the device to the driver's list of supported devices and        */
557 /* reports back to the OS whether this is the right driver for the device.  */
558 /*                                                                          */
559 /* Returns:                                                                 */
560 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
561 /****************************************************************************/
562 static int
563 bce_probe(device_t dev)
564 {
565 	struct bce_type *t;
566 	uint16_t vid, did, svid, sdid;
567 
568 	/* Get the data for the device to be probed. */
569 	vid  = pci_get_vendor(dev);
570 	did  = pci_get_device(dev);
571 	svid = pci_get_subvendor(dev);
572 	sdid = pci_get_subdevice(dev);
573 
574 	/* Look through the list of known devices for a match. */
575 	for (t = bce_devs; t->bce_name != NULL; ++t) {
576 		if (vid == t->bce_vid && did == t->bce_did &&
577 		    (svid == t->bce_svid || t->bce_svid == PCI_ANY_ID) &&
578 		    (sdid == t->bce_sdid || t->bce_sdid == PCI_ANY_ID)) {
579 		    	uint32_t revid = pci_read_config(dev, PCIR_REVID, 4);
580 			char *descbuf;
581 
582 			descbuf = kmalloc(BCE_DEVDESC_MAX, M_TEMP, M_WAITOK);
583 
584 			/* Print out the device identity. */
585 			ksnprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d)",
586 				  t->bce_name,
587 				  ((revid & 0xf0) >> 4) + 'A', revid & 0xf);
588 
589 			device_set_desc_copy(dev, descbuf);
590 			kfree(descbuf, M_TEMP);
591 			return 0;
592 		}
593 	}
594 	return ENXIO;
595 }
596 
597 /****************************************************************************/
598 /* PCI Capabilities Probe Function.                                         */
599 /*                                                                          */
600 /* Walks the PCI capabiites list for the device to find what features are   */
601 /* supported.                                                               */
602 /*                                                                          */
603 /* Returns:                                                                 */
604 /*   None.                                                                  */
605 /****************************************************************************/
606 static void
607 bce_print_adapter_info(struct bce_softc *sc)
608 {
609 	device_printf(sc->bce_dev, "ASIC (0x%08X); ", sc->bce_chipid);
610 
611 	kprintf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
612 		((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
613 
614 	/* Bus info. */
615 	if (sc->bce_flags & BCE_PCIE_FLAG) {
616 		kprintf("Bus (PCIe x%d, ", sc->link_width);
617 		switch (sc->link_speed) {
618 		case 1:
619 			kprintf("2.5Gbps); ");
620 			break;
621 		case 2:
622 			kprintf("5Gbps); ");
623 			break;
624 		default:
625 			kprintf("Unknown link speed); ");
626 			break;
627 		}
628 	} else {
629 		kprintf("Bus (PCI%s, %s, %dMHz); ",
630 		    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
631 		    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
632 		    sc->bus_speed_mhz);
633 	}
634 
635 	/* Firmware version and device features. */
636 	kprintf("B/C (%s)", sc->bce_bc_ver);
637 
638 	if ((sc->bce_flags & BCE_MFW_ENABLE_FLAG) ||
639 	    (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)) {
640 		kprintf("; Flags(");
641 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
642 			kprintf("MFW[%s]", sc->bce_mfw_ver);
643 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
644 			kprintf(" 2.5G");
645 		kprintf(")");
646 	}
647 	kprintf("\n");
648 }
649 
650 /****************************************************************************/
651 /* PCI Capabilities Probe Function.                                         */
652 /*                                                                          */
653 /* Walks the PCI capabiites list for the device to find what features are   */
654 /* supported.                                                               */
655 /*                                                                          */
656 /* Returns:                                                                 */
657 /*   None.                                                                  */
658 /****************************************************************************/
659 static void
660 bce_probe_pci_caps(struct bce_softc *sc)
661 {
662 	device_t dev = sc->bce_dev;
663 	uint8_t ptr;
664 
665 	if (pci_is_pcix(dev))
666 		sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
667 
668 	ptr = pci_get_pciecap_ptr(dev);
669 	if (ptr) {
670 		uint16_t link_status = pci_read_config(dev, ptr + 0x12, 2);
671 
672 		sc->link_speed = link_status & 0xf;
673 		sc->link_width = (link_status >> 4) & 0x3f;
674 		sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
675 		sc->bce_flags |= BCE_PCIE_FLAG;
676 	}
677 }
678 
679 /****************************************************************************/
680 /* Device attach function.                                                  */
681 /*                                                                          */
682 /* Allocates device resources, performs secondary chip identification,      */
683 /* resets and initializes the hardware, and initializes driver instance     */
684 /* variables.                                                               */
685 /*                                                                          */
686 /* Returns:                                                                 */
687 /*   0 on success, positive value on failure.                               */
688 /****************************************************************************/
689 static int
690 bce_attach(device_t dev)
691 {
692 	struct bce_softc *sc = device_get_softc(dev);
693 	struct ifnet *ifp = &sc->arpcom.ac_if;
694 	uint32_t val;
695 	int rid, rc = 0;
696 	int i, j;
697 	struct mii_probe_args mii_args;
698 	uintptr_t mii_priv = 0;
699 #ifdef IFPOLL_ENABLE
700 	int offset, offset_def;
701 #endif
702 
703 	sc->bce_dev = dev;
704 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
705 
706 	lwkt_serialize_init(&sc->main_serialize);
707 	for (i = 0; i < BCE_MSIX_MAX; ++i) {
708 		struct bce_msix_data *msix = &sc->bce_msix[i];
709 
710 		msix->msix_cpuid = -1;
711 		msix->msix_rid = -1;
712 	}
713 
714 	pci_enable_busmaster(dev);
715 
716 	bce_probe_pci_caps(sc);
717 
718 	/* Allocate PCI memory resources. */
719 	rid = PCIR_BAR(0);
720 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
721 						 RF_ACTIVE | PCI_RF_DENSE);
722 	if (sc->bce_res_mem == NULL) {
723 		device_printf(dev, "PCI memory allocation failed\n");
724 		return ENXIO;
725 	}
726 	sc->bce_btag = rman_get_bustag(sc->bce_res_mem);
727 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
728 
729 	/*
730 	 * Configure byte swap and enable indirect register access.
731 	 * Rely on CPU to do target byte swapping on big endian systems.
732 	 * Access to registers outside of PCI configurtion space are not
733 	 * valid until this is done.
734 	 */
735 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
736 			 BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
737 			 BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
738 
739 	/* Save ASIC revsion info. */
740 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
741 
742 	/* Weed out any non-production controller revisions. */
743 	switch (BCE_CHIP_ID(sc)) {
744 	case BCE_CHIP_ID_5706_A0:
745 	case BCE_CHIP_ID_5706_A1:
746 	case BCE_CHIP_ID_5708_A0:
747 	case BCE_CHIP_ID_5708_B0:
748 	case BCE_CHIP_ID_5709_A0:
749 	case BCE_CHIP_ID_5709_B0:
750 	case BCE_CHIP_ID_5709_B1:
751 #ifdef foo
752 	/* 5709C B2 seems to work fine */
753 	case BCE_CHIP_ID_5709_B2:
754 #endif
755 		device_printf(dev, "Unsupported chip id 0x%08x!\n",
756 			      BCE_CHIP_ID(sc));
757 		rc = ENODEV;
758 		goto fail;
759 	}
760 
761 	mii_priv |= BRGPHY_FLAG_WIRESPEED;
762 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
763 		if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax ||
764 		    BCE_CHIP_REV(sc) == BCE_CHIP_REV_Bx)
765 			mii_priv |= BRGPHY_FLAG_NO_EARLYDAC;
766 	} else {
767 		mii_priv |= BRGPHY_FLAG_BER_BUG;
768 	}
769 
770 	/*
771 	 * Find the base address for shared memory access.
772 	 * Newer versions of bootcode use a signature and offset
773 	 * while older versions use a fixed address.
774 	 */
775 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
776 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) ==
777 	    BCE_SHM_HDR_SIGNATURE_SIG) {
778 		/* Multi-port devices use different offsets in shared memory. */
779 		sc->bce_shmem_base = REG_RD_IND(sc,
780 		    BCE_SHM_HDR_ADDR_0 + (pci_get_function(sc->bce_dev) << 2));
781 	} else {
782 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
783 	}
784 
785 	/* Fetch the bootcode revision. */
786 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
787 	for (i = 0, j = 0; i < 3; i++) {
788 		uint8_t num;
789 		int k, skip0;
790 
791 		num = (uint8_t)(val >> (24 - (i * 8)));
792 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
793 			if (num >= k || !skip0 || k == 1) {
794 				sc->bce_bc_ver[j++] = (num / k) + '0';
795 				skip0 = 0;
796 			}
797 		}
798 		if (i != 2)
799 			sc->bce_bc_ver[j++] = '.';
800 	}
801 
802 	/* Check if any management firwmare is running. */
803 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
804 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
805 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
806 
807 		/* Allow time for firmware to enter the running state. */
808 		for (i = 0; i < 30; i++) {
809 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
810 			if (val & BCE_CONDITION_MFW_RUN_MASK)
811 				break;
812 			DELAY(10000);
813 		}
814 	}
815 
816 	/* Check the current bootcode state. */
817 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION) &
818 	    BCE_CONDITION_MFW_RUN_MASK;
819 	if (val != BCE_CONDITION_MFW_RUN_UNKNOWN &&
820 	    val != BCE_CONDITION_MFW_RUN_NONE) {
821 		uint32_t addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
822 
823 		for (i = 0, j = 0; j < 3; j++) {
824 			val = bce_reg_rd_ind(sc, addr + j * 4);
825 			val = bswap32(val);
826 			memcpy(&sc->bce_mfw_ver[i], &val, 4);
827 			i += 4;
828 		}
829 	}
830 
831 	/* Get PCI bus information (speed and type). */
832 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
833 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
834 		uint32_t clkreg;
835 
836 		sc->bce_flags |= BCE_PCIX_FLAG;
837 
838 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS) &
839 			 BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
840 		switch (clkreg) {
841 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
842 			sc->bus_speed_mhz = 133;
843 			break;
844 
845 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
846 			sc->bus_speed_mhz = 100;
847 			break;
848 
849 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
850 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
851 			sc->bus_speed_mhz = 66;
852 			break;
853 
854 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
855 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
856 			sc->bus_speed_mhz = 50;
857 			break;
858 
859 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
860 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
861 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
862 			sc->bus_speed_mhz = 33;
863 			break;
864 		}
865 	} else {
866 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
867 			sc->bus_speed_mhz = 66;
868 		else
869 			sc->bus_speed_mhz = 33;
870 	}
871 
872 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
873 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
874 
875 	/* Reset the controller. */
876 	rc = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
877 	if (rc != 0)
878 		goto fail;
879 
880 	/* Initialize the controller. */
881 	rc = bce_chipinit(sc);
882 	if (rc != 0) {
883 		device_printf(dev, "Controller initialization failed!\n");
884 		goto fail;
885 	}
886 
887 	/* Perform NVRAM test. */
888 	rc = bce_nvram_test(sc);
889 	if (rc != 0) {
890 		device_printf(dev, "NVRAM test failed!\n");
891 		goto fail;
892 	}
893 
894 	/* Fetch the permanent Ethernet MAC address. */
895 	bce_get_mac_addr(sc);
896 
897 	/*
898 	 * Trip points control how many BDs
899 	 * should be ready before generating an
900 	 * interrupt while ticks control how long
901 	 * a BD can sit in the chain before
902 	 * generating an interrupt.  Set the default
903 	 * values for the RX and TX rings.
904 	 */
905 
906 #ifdef BCE_DRBUG
907 	/* Force more frequent interrupts. */
908 	sc->bce_tx_quick_cons_trip_int = 1;
909 	sc->bce_tx_quick_cons_trip     = 1;
910 	sc->bce_tx_ticks_int           = 0;
911 	sc->bce_tx_ticks               = 0;
912 
913 	sc->bce_rx_quick_cons_trip_int = 1;
914 	sc->bce_rx_quick_cons_trip     = 1;
915 	sc->bce_rx_ticks_int           = 0;
916 	sc->bce_rx_ticks               = 0;
917 #else
918 	sc->bce_tx_quick_cons_trip_int = bce_tx_bds_int;
919 	sc->bce_tx_quick_cons_trip     = bce_tx_bds;
920 	sc->bce_tx_ticks_int           = bce_tx_ticks_int;
921 	sc->bce_tx_ticks               = bce_tx_ticks;
922 
923 	sc->bce_rx_quick_cons_trip_int = bce_rx_bds_int;
924 	sc->bce_rx_quick_cons_trip     = bce_rx_bds;
925 	sc->bce_rx_ticks_int           = bce_rx_ticks_int;
926 	sc->bce_rx_ticks               = bce_rx_ticks;
927 #endif
928 
929 	/* Update statistics once every second. */
930 	sc->bce_stats_ticks = 1000000 & 0xffff00;
931 
932 	/* Find the media type for the adapter. */
933 	bce_get_media(sc);
934 
935 	/* Find out RX/TX ring count */
936 	bce_setup_ring_cnt(sc);
937 
938 	/* Allocate DMA memory resources. */
939 	rc = bce_dma_alloc(sc);
940 	if (rc != 0) {
941 		device_printf(dev, "DMA resource allocation failed!\n");
942 		goto fail;
943 	}
944 
945 #ifdef IFPOLL_ENABLE
946 	/*
947 	 * NPOLLING RX/TX CPU offset
948 	 */
949 	if (sc->rx_ring_cnt2 == ncpus2) {
950 		offset = 0;
951 	} else {
952 		offset_def = (sc->rx_ring_cnt2 * device_get_unit(dev)) % ncpus2;
953 		offset = device_getenv_int(dev, "npoll.offset", offset_def);
954 		if (offset >= ncpus2 ||
955 		    offset % sc->rx_ring_cnt2 != 0) {
956 			device_printf(dev, "invalid npoll.offset %d, use %d\n",
957 			    offset, offset_def);
958 			offset = offset_def;
959 		}
960 	}
961 	sc->npoll_ofs = offset;
962 #endif
963 
964 	/* Allocate PCI IRQ resources. */
965 	rc = bce_alloc_intr(sc);
966 	if (rc != 0)
967 		goto fail;
968 
969 	/* Setup serializer */
970 	bce_setup_serialize(sc);
971 
972 	/* Initialize the ifnet interface. */
973 	ifp->if_softc = sc;
974 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
975 	ifp->if_ioctl = bce_ioctl;
976 	ifp->if_start = bce_start;
977 	ifp->if_init = bce_init;
978 	ifp->if_serialize = bce_serialize;
979 	ifp->if_deserialize = bce_deserialize;
980 	ifp->if_tryserialize = bce_tryserialize;
981 #ifdef INVARIANTS
982 	ifp->if_serialize_assert = bce_serialize_assert;
983 #endif
984 #ifdef IFPOLL_ENABLE
985 	ifp->if_npoll = bce_npoll;
986 #endif
987 
988 	ifp->if_mtu = ETHERMTU;
989 	ifp->if_hwassist = BCE_CSUM_FEATURES | CSUM_TSO;
990 	ifp->if_capabilities = BCE_IF_CAPABILITIES;
991 	if (sc->rx_ring_cnt > 1)
992 		ifp->if_capabilities |= IFCAP_RSS;
993 	ifp->if_capenable = ifp->if_capabilities;
994 
995 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
996 		ifp->if_baudrate = IF_Gbps(2.5);
997 	else
998 		ifp->if_baudrate = IF_Gbps(1);
999 
1000 	ifq_set_maxlen(&ifp->if_snd, USABLE_TX_BD(&sc->tx_rings[0]));
1001 	ifq_set_ready(&ifp->if_snd);
1002 	ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1003 
1004 	if (sc->tx_ring_cnt > 1) {
1005 		ifp->if_mapsubq = ifq_mapsubq_mask;
1006 		ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_cnt - 1);
1007 	}
1008 
1009 	/*
1010 	 * Look for our PHY.
1011 	 */
1012 	mii_probe_args_init(&mii_args, bce_ifmedia_upd, bce_ifmedia_sts);
1013 	mii_args.mii_probemask = 1 << sc->bce_phy_addr;
1014 	mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
1015 	mii_args.mii_priv = mii_priv;
1016 
1017 	rc = mii_probe(dev, &sc->bce_miibus, &mii_args);
1018 	if (rc != 0) {
1019 		device_printf(dev, "PHY probe failed!\n");
1020 		goto fail;
1021 	}
1022 
1023 	/* Attach to the Ethernet interface list. */
1024 	ether_ifattach(ifp, sc->eaddr, NULL);
1025 
1026 	/* Setup TX rings and subqueues */
1027 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
1028 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1029 		struct bce_tx_ring *txr = &sc->tx_rings[i];
1030 
1031 		ifsq_set_cpuid(ifsq, sc->bce_msix[i].msix_cpuid);
1032 		ifsq_set_priv(ifsq, txr);
1033 		ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1034 		txr->ifsq = ifsq;
1035 
1036 		ifsq_watchdog_init(&txr->tx_watchdog, ifsq, bce_watchdog);
1037 	}
1038 
1039 	callout_init_mp(&sc->bce_tick_callout);
1040 	callout_init_mp(&sc->bce_pulse_callout);
1041 	callout_init_mp(&sc->bce_ckmsi_callout);
1042 
1043 	rc = bce_setup_intr(sc);
1044 	if (rc != 0) {
1045 		device_printf(dev, "Failed to setup IRQ!\n");
1046 		ether_ifdetach(ifp);
1047 		goto fail;
1048 	}
1049 
1050 	/* Set timer CPUID */
1051 	bce_set_timer_cpuid(sc, FALSE);
1052 
1053 	/* Add the supported sysctls to the kernel. */
1054 	bce_add_sysctls(sc);
1055 
1056 	/*
1057 	 * The chip reset earlier notified the bootcode that
1058 	 * a driver is present.  We now need to start our pulse
1059 	 * routine so that the bootcode is reminded that we're
1060 	 * still running.
1061 	 */
1062 	bce_pulse(sc);
1063 
1064 	/* Get the firmware running so IPMI still works */
1065 	bce_mgmt_init(sc);
1066 
1067 	if (bootverbose)
1068 		bce_print_adapter_info(sc);
1069 
1070 	return 0;
1071 fail:
1072 	bce_detach(dev);
1073 	return(rc);
1074 }
1075 
1076 /****************************************************************************/
1077 /* Device detach function.                                                  */
1078 /*                                                                          */
1079 /* Stops the controller, resets the controller, and releases resources.     */
1080 /*                                                                          */
1081 /* Returns:                                                                 */
1082 /*   0 on success, positive value on failure.                               */
1083 /****************************************************************************/
1084 static int
1085 bce_detach(device_t dev)
1086 {
1087 	struct bce_softc *sc = device_get_softc(dev);
1088 
1089 	if (device_is_attached(dev)) {
1090 		struct ifnet *ifp = &sc->arpcom.ac_if;
1091 		uint32_t msg;
1092 
1093 		ifnet_serialize_all(ifp);
1094 
1095 		/* Stop and reset the controller. */
1096 		callout_stop(&sc->bce_pulse_callout);
1097 		bce_stop(sc);
1098 		if (sc->bce_flags & BCE_NO_WOL_FLAG)
1099 			msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1100 		else
1101 			msg = BCE_DRV_MSG_CODE_UNLOAD;
1102 		bce_reset(sc, msg);
1103 
1104 		bce_teardown_intr(sc);
1105 
1106 		ifnet_deserialize_all(ifp);
1107 
1108 		ether_ifdetach(ifp);
1109 	}
1110 
1111 	/* If we have a child device on the MII bus remove it too. */
1112 	if (sc->bce_miibus)
1113 		device_delete_child(dev, sc->bce_miibus);
1114 	bus_generic_detach(dev);
1115 
1116 	bce_free_intr(sc);
1117 
1118 	if (sc->bce_res_mem != NULL) {
1119 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
1120 				     sc->bce_res_mem);
1121 	}
1122 
1123 	bce_dma_free(sc);
1124 
1125 	if (sc->serializes != NULL)
1126 		kfree(sc->serializes, M_DEVBUF);
1127 
1128 	return 0;
1129 }
1130 
1131 /****************************************************************************/
1132 /* Device shutdown function.                                                */
1133 /*                                                                          */
1134 /* Stops and resets the controller.                                         */
1135 /*                                                                          */
1136 /* Returns:                                                                 */
1137 /*   Nothing                                                                */
1138 /****************************************************************************/
1139 static void
1140 bce_shutdown(device_t dev)
1141 {
1142 	struct bce_softc *sc = device_get_softc(dev);
1143 	struct ifnet *ifp = &sc->arpcom.ac_if;
1144 	uint32_t msg;
1145 
1146 	ifnet_serialize_all(ifp);
1147 
1148 	bce_stop(sc);
1149 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1150 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1151 	else
1152 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1153 	bce_reset(sc, msg);
1154 
1155 	ifnet_deserialize_all(ifp);
1156 }
1157 
1158 /****************************************************************************/
1159 /* Indirect register read.                                                  */
1160 /*                                                                          */
1161 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1162 /* configuration space.  Using this mechanism avoids issues with posted     */
1163 /* reads but is much slower than memory-mapped I/O.                         */
1164 /*                                                                          */
1165 /* Returns:                                                                 */
1166 /*   The value of the register.                                             */
1167 /****************************************************************************/
1168 static uint32_t
1169 bce_reg_rd_ind(struct bce_softc *sc, uint32_t offset)
1170 {
1171 	device_t dev = sc->bce_dev;
1172 
1173 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1174 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1175 }
1176 
1177 /****************************************************************************/
1178 /* Indirect register write.                                                 */
1179 /*                                                                          */
1180 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1181 /* configuration space.  Using this mechanism avoids issues with posted     */
1182 /* writes but is muchh slower than memory-mapped I/O.                       */
1183 /*                                                                          */
1184 /* Returns:                                                                 */
1185 /*   Nothing.                                                               */
1186 /****************************************************************************/
1187 static void
1188 bce_reg_wr_ind(struct bce_softc *sc, uint32_t offset, uint32_t val)
1189 {
1190 	device_t dev = sc->bce_dev;
1191 
1192 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1193 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1194 }
1195 
1196 /****************************************************************************/
1197 /* Shared memory write.                                                     */
1198 /*                                                                          */
1199 /* Writes NetXtreme II shared memory region.                                */
1200 /*                                                                          */
1201 /* Returns:                                                                 */
1202 /*   Nothing.                                                               */
1203 /****************************************************************************/
1204 static void
1205 bce_shmem_wr(struct bce_softc *sc, uint32_t offset, uint32_t val)
1206 {
1207 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1208 }
1209 
1210 /****************************************************************************/
1211 /* Shared memory read.                                                      */
1212 /*                                                                          */
1213 /* Reads NetXtreme II shared memory region.                                 */
1214 /*                                                                          */
1215 /* Returns:                                                                 */
1216 /*   The 32 bit value read.                                                 */
1217 /****************************************************************************/
1218 static u32
1219 bce_shmem_rd(struct bce_softc *sc, uint32_t offset)
1220 {
1221 	return bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1222 }
1223 
1224 /****************************************************************************/
1225 /* Context memory write.                                                    */
1226 /*                                                                          */
1227 /* The NetXtreme II controller uses context memory to track connection      */
1228 /* information for L2 and higher network protocols.                         */
1229 /*                                                                          */
1230 /* Returns:                                                                 */
1231 /*   Nothing.                                                               */
1232 /****************************************************************************/
1233 static void
1234 bce_ctx_wr(struct bce_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1235     uint32_t ctx_val)
1236 {
1237 	uint32_t idx, offset = ctx_offset + cid_addr;
1238 	uint32_t val, retry_cnt = 5;
1239 
1240 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1241 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1242 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1243 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1244 
1245 		for (idx = 0; idx < retry_cnt; idx++) {
1246 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1247 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1248 				break;
1249 			DELAY(5);
1250 		}
1251 
1252 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ) {
1253 			device_printf(sc->bce_dev,
1254 			    "Unable to write CTX memory: "
1255 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1256 			    cid_addr, ctx_offset);
1257 		}
1258 	} else {
1259 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1260 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1261 	}
1262 }
1263 
1264 /****************************************************************************/
1265 /* PHY register read.                                                       */
1266 /*                                                                          */
1267 /* Implements register reads on the MII bus.                                */
1268 /*                                                                          */
1269 /* Returns:                                                                 */
1270 /*   The value of the register.                                             */
1271 /****************************************************************************/
1272 static int
1273 bce_miibus_read_reg(device_t dev, int phy, int reg)
1274 {
1275 	struct bce_softc *sc = device_get_softc(dev);
1276 	uint32_t val;
1277 	int i;
1278 
1279 	/* Make sure we are accessing the correct PHY address. */
1280 	KASSERT(phy == sc->bce_phy_addr,
1281 	    ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1282 
1283 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1284 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1285 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1286 
1287 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1288 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1289 
1290 		DELAY(40);
1291 	}
1292 
1293 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1294 	      BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1295 	      BCE_EMAC_MDIO_COMM_START_BUSY;
1296 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1297 
1298 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1299 		DELAY(10);
1300 
1301 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1302 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1303 			DELAY(5);
1304 
1305 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1306 			val &= BCE_EMAC_MDIO_COMM_DATA;
1307 			break;
1308 		}
1309 	}
1310 
1311 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1312 		if_printf(&sc->arpcom.ac_if,
1313 			  "Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
1314 			  phy, reg);
1315 		val = 0x0;
1316 	} else {
1317 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1318 	}
1319 
1320 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1321 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1322 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1323 
1324 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1325 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1326 
1327 		DELAY(40);
1328 	}
1329 	return (val & 0xffff);
1330 }
1331 
1332 /****************************************************************************/
1333 /* PHY register write.                                                      */
1334 /*                                                                          */
1335 /* Implements register writes on the MII bus.                               */
1336 /*                                                                          */
1337 /* Returns:                                                                 */
1338 /*   The value of the register.                                             */
1339 /****************************************************************************/
1340 static int
1341 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1342 {
1343 	struct bce_softc *sc = device_get_softc(dev);
1344 	uint32_t val1;
1345 	int i;
1346 
1347 	/* Make sure we are accessing the correct PHY address. */
1348 	KASSERT(phy == sc->bce_phy_addr,
1349 	    ("invalid phyno %d, should be %d\n", phy, sc->bce_phy_addr));
1350 
1351 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1352 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1353 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1354 
1355 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1356 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1357 
1358 		DELAY(40);
1359 	}
1360 
1361 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1362 		BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1363 		BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1364 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1365 
1366 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1367 		DELAY(10);
1368 
1369 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1370 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1371 			DELAY(5);
1372 			break;
1373 		}
1374 	}
1375 
1376 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1377 		if_printf(&sc->arpcom.ac_if, "PHY write timeout!\n");
1378 
1379 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1380 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1381 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1382 
1383 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1384 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1385 
1386 		DELAY(40);
1387 	}
1388 	return 0;
1389 }
1390 
1391 /****************************************************************************/
1392 /* MII bus status change.                                                   */
1393 /*                                                                          */
1394 /* Called by the MII bus driver when the PHY establishes link to set the    */
1395 /* MAC interface registers.                                                 */
1396 /*                                                                          */
1397 /* Returns:                                                                 */
1398 /*   Nothing.                                                               */
1399 /****************************************************************************/
1400 static void
1401 bce_miibus_statchg(device_t dev)
1402 {
1403 	struct bce_softc *sc = device_get_softc(dev);
1404 	struct mii_data *mii = device_get_softc(sc->bce_miibus);
1405 
1406 	BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT);
1407 
1408 	/*
1409 	 * Set MII or GMII interface based on the speed negotiated
1410 	 * by the PHY.
1411 	 */
1412 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1413 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
1414 		BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_GMII);
1415 	} else {
1416 		BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_MII);
1417 	}
1418 
1419 	/*
1420 	 * Set half or full duplex based on the duplicity negotiated
1421 	 * by the PHY.
1422 	 */
1423 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1424 		BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1425 	} else {
1426 		BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
1427 	}
1428 }
1429 
1430 /****************************************************************************/
1431 /* Acquire NVRAM lock.                                                      */
1432 /*                                                                          */
1433 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1434 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1435 /* for use by the driver.                                                   */
1436 /*                                                                          */
1437 /* Returns:                                                                 */
1438 /*   0 on success, positive value on failure.                               */
1439 /****************************************************************************/
1440 static int
1441 bce_acquire_nvram_lock(struct bce_softc *sc)
1442 {
1443 	uint32_t val;
1444 	int j;
1445 
1446 	/* Request access to the flash interface. */
1447 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
1448 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1449 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1450 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
1451 			break;
1452 
1453 		DELAY(5);
1454 	}
1455 
1456 	if (j >= NVRAM_TIMEOUT_COUNT) {
1457 		return EBUSY;
1458 	}
1459 	return 0;
1460 }
1461 
1462 /****************************************************************************/
1463 /* Release NVRAM lock.                                                      */
1464 /*                                                                          */
1465 /* When the caller is finished accessing NVRAM the lock must be released.   */
1466 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1467 /* for use by the driver.                                                   */
1468 /*                                                                          */
1469 /* Returns:                                                                 */
1470 /*   0 on success, positive value on failure.                               */
1471 /****************************************************************************/
1472 static int
1473 bce_release_nvram_lock(struct bce_softc *sc)
1474 {
1475 	int j;
1476 	uint32_t val;
1477 
1478 	/*
1479 	 * Relinquish nvram interface.
1480 	 */
1481 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
1482 
1483 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1484 		val = REG_RD(sc, BCE_NVM_SW_ARB);
1485 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
1486 			break;
1487 
1488 		DELAY(5);
1489 	}
1490 
1491 	if (j >= NVRAM_TIMEOUT_COUNT) {
1492 		return EBUSY;
1493 	}
1494 	return 0;
1495 }
1496 
1497 /****************************************************************************/
1498 /* Enable NVRAM access.                                                     */
1499 /*                                                                          */
1500 /* Before accessing NVRAM for read or write operations the caller must      */
1501 /* enabled NVRAM access.                                                    */
1502 /*                                                                          */
1503 /* Returns:                                                                 */
1504 /*   Nothing.                                                               */
1505 /****************************************************************************/
1506 static void
1507 bce_enable_nvram_access(struct bce_softc *sc)
1508 {
1509 	uint32_t val;
1510 
1511 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1512 	/* Enable both bits, even on read. */
1513 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1514 	       val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
1515 }
1516 
1517 /****************************************************************************/
1518 /* Disable NVRAM access.                                                    */
1519 /*                                                                          */
1520 /* When the caller is finished accessing NVRAM access must be disabled.     */
1521 /*                                                                          */
1522 /* Returns:                                                                 */
1523 /*   Nothing.                                                               */
1524 /****************************************************************************/
1525 static void
1526 bce_disable_nvram_access(struct bce_softc *sc)
1527 {
1528 	uint32_t val;
1529 
1530 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
1531 
1532 	/* Disable both bits, even after read. */
1533 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
1534 	       val & ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
1535 }
1536 
1537 /****************************************************************************/
1538 /* Read a dword (32 bits) from NVRAM.                                       */
1539 /*                                                                          */
1540 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1541 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1542 /*                                                                          */
1543 /* Returns:                                                                 */
1544 /*   0 on success and the 32 bit value read, positive value on failure.     */
1545 /****************************************************************************/
1546 static int
1547 bce_nvram_read_dword(struct bce_softc *sc, uint32_t offset, uint8_t *ret_val,
1548 		     uint32_t cmd_flags)
1549 {
1550 	uint32_t cmd;
1551 	int i, rc = 0;
1552 
1553 	/* Build the command word. */
1554 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
1555 
1556 	/* Calculate the offset for buffered flash. */
1557 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
1558 		offset = ((offset / sc->bce_flash_info->page_size) <<
1559 			  sc->bce_flash_info->page_bits) +
1560 			 (offset % sc->bce_flash_info->page_size);
1561 	}
1562 
1563 	/*
1564 	 * Clear the DONE bit separately, set the address to read,
1565 	 * and issue the read.
1566 	 */
1567 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
1568 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
1569 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
1570 
1571 	/* Wait for completion. */
1572 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1573 		uint32_t val;
1574 
1575 		DELAY(5);
1576 
1577 		val = REG_RD(sc, BCE_NVM_COMMAND);
1578 		if (val & BCE_NVM_COMMAND_DONE) {
1579 			val = REG_RD(sc, BCE_NVM_READ);
1580 
1581 			val = be32toh(val);
1582 			memcpy(ret_val, &val, 4);
1583 			break;
1584 		}
1585 	}
1586 
1587 	/* Check for errors. */
1588 	if (i >= NVRAM_TIMEOUT_COUNT) {
1589 		if_printf(&sc->arpcom.ac_if,
1590 			  "Timeout error reading NVRAM at offset 0x%08X!\n",
1591 			  offset);
1592 		rc = EBUSY;
1593 	}
1594 	return rc;
1595 }
1596 
1597 /****************************************************************************/
1598 /* Initialize NVRAM access.                                                 */
1599 /*                                                                          */
1600 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1601 /* access that device.                                                      */
1602 /*                                                                          */
1603 /* Returns:                                                                 */
1604 /*   0 on success, positive value on failure.                               */
1605 /****************************************************************************/
1606 static int
1607 bce_init_nvram(struct bce_softc *sc)
1608 {
1609 	uint32_t val;
1610 	int j, entry_count, rc = 0;
1611 	const struct flash_spec *flash;
1612 
1613 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1614 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1615 		sc->bce_flash_info = &flash_5709;
1616 		goto bce_init_nvram_get_flash_size;
1617 	}
1618 
1619 	/* Determine the selected interface. */
1620 	val = REG_RD(sc, BCE_NVM_CFG1);
1621 
1622 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1623 
1624 	/*
1625 	 * Flash reconfiguration is required to support additional
1626 	 * NVRAM devices not directly supported in hardware.
1627 	 * Check if the flash interface was reconfigured
1628 	 * by the bootcode.
1629 	 */
1630 
1631 	if (val & 0x40000000) {
1632 		/* Flash interface reconfigured by bootcode. */
1633 		for (j = 0, flash = flash_table; j < entry_count;
1634 		     j++, flash++) {
1635 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1636 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1637 				sc->bce_flash_info = flash;
1638 				break;
1639 			}
1640 		}
1641 	} else {
1642 		/* Flash interface not yet reconfigured. */
1643 		uint32_t mask;
1644 
1645 		if (val & (1 << 23))
1646 			mask = FLASH_BACKUP_STRAP_MASK;
1647 		else
1648 			mask = FLASH_STRAP_MASK;
1649 
1650 		/* Look for the matching NVRAM device configuration data. */
1651 		for (j = 0, flash = flash_table; j < entry_count;
1652 		     j++, flash++) {
1653 			/* Check if the device matches any of the known devices. */
1654 			if ((val & mask) == (flash->strapping & mask)) {
1655 				/* Found a device match. */
1656 				sc->bce_flash_info = flash;
1657 
1658 				/* Request access to the flash interface. */
1659 				rc = bce_acquire_nvram_lock(sc);
1660 				if (rc != 0)
1661 					return rc;
1662 
1663 				/* Reconfigure the flash interface. */
1664 				bce_enable_nvram_access(sc);
1665 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
1666 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
1667 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
1668 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
1669 				bce_disable_nvram_access(sc);
1670 				bce_release_nvram_lock(sc);
1671 				break;
1672 			}
1673 		}
1674 	}
1675 
1676 	/* Check if a matching device was found. */
1677 	if (j == entry_count) {
1678 		sc->bce_flash_info = NULL;
1679 		if_printf(&sc->arpcom.ac_if, "Unknown Flash NVRAM found!\n");
1680 		return ENODEV;
1681 	}
1682 
1683 bce_init_nvram_get_flash_size:
1684 	/* Write the flash config data to the shared memory interface. */
1685 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2) &
1686 	    BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
1687 	if (val)
1688 		sc->bce_flash_size = val;
1689 	else
1690 		sc->bce_flash_size = sc->bce_flash_info->total_size;
1691 
1692 	return rc;
1693 }
1694 
1695 /****************************************************************************/
1696 /* Read an arbitrary range of data from NVRAM.                              */
1697 /*                                                                          */
1698 /* Prepares the NVRAM interface for access and reads the requested data     */
1699 /* into the supplied buffer.                                                */
1700 /*                                                                          */
1701 /* Returns:                                                                 */
1702 /*   0 on success and the data read, positive value on failure.             */
1703 /****************************************************************************/
1704 static int
1705 bce_nvram_read(struct bce_softc *sc, uint32_t offset, uint8_t *ret_buf,
1706 	       int buf_size)
1707 {
1708 	uint32_t cmd_flags, offset32, len32, extra;
1709 	int rc = 0;
1710 
1711 	if (buf_size == 0)
1712 		return 0;
1713 
1714 	/* Request access to the flash interface. */
1715 	rc = bce_acquire_nvram_lock(sc);
1716 	if (rc != 0)
1717 		return rc;
1718 
1719 	/* Enable access to flash interface */
1720 	bce_enable_nvram_access(sc);
1721 
1722 	len32 = buf_size;
1723 	offset32 = offset;
1724 	extra = 0;
1725 
1726 	cmd_flags = 0;
1727 
1728 	/* XXX should we release nvram lock if read_dword() fails? */
1729 	if (offset32 & 3) {
1730 		uint8_t buf[4];
1731 		uint32_t pre_len;
1732 
1733 		offset32 &= ~3;
1734 		pre_len = 4 - (offset & 3);
1735 
1736 		if (pre_len >= len32) {
1737 			pre_len = len32;
1738 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
1739 		} else {
1740 			cmd_flags = BCE_NVM_COMMAND_FIRST;
1741 		}
1742 
1743 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1744 		if (rc)
1745 			return rc;
1746 
1747 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1748 
1749 		offset32 += 4;
1750 		ret_buf += pre_len;
1751 		len32 -= pre_len;
1752 	}
1753 
1754 	if (len32 & 3) {
1755 		extra = 4 - (len32 & 3);
1756 		len32 = (len32 + 4) & ~3;
1757 	}
1758 
1759 	if (len32 == 4) {
1760 		uint8_t buf[4];
1761 
1762 		if (cmd_flags)
1763 			cmd_flags = BCE_NVM_COMMAND_LAST;
1764 		else
1765 			cmd_flags = BCE_NVM_COMMAND_FIRST |
1766 				    BCE_NVM_COMMAND_LAST;
1767 
1768 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1769 
1770 		memcpy(ret_buf, buf, 4 - extra);
1771 	} else if (len32 > 0) {
1772 		uint8_t buf[4];
1773 
1774 		/* Read the first word. */
1775 		if (cmd_flags)
1776 			cmd_flags = 0;
1777 		else
1778 			cmd_flags = BCE_NVM_COMMAND_FIRST;
1779 
1780 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1781 
1782 		/* Advance to the next dword. */
1783 		offset32 += 4;
1784 		ret_buf += 4;
1785 		len32 -= 4;
1786 
1787 		while (len32 > 4 && rc == 0) {
1788 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
1789 
1790 			/* Advance to the next dword. */
1791 			offset32 += 4;
1792 			ret_buf += 4;
1793 			len32 -= 4;
1794 		}
1795 
1796 		if (rc)
1797 			goto bce_nvram_read_locked_exit;
1798 
1799 		cmd_flags = BCE_NVM_COMMAND_LAST;
1800 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
1801 
1802 		memcpy(ret_buf, buf, 4 - extra);
1803 	}
1804 
1805 bce_nvram_read_locked_exit:
1806 	/* Disable access to flash interface and release the lock. */
1807 	bce_disable_nvram_access(sc);
1808 	bce_release_nvram_lock(sc);
1809 
1810 	return rc;
1811 }
1812 
1813 /****************************************************************************/
1814 /* Verifies that NVRAM is accessible and contains valid data.               */
1815 /*                                                                          */
1816 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1817 /* correct.                                                                 */
1818 /*                                                                          */
1819 /* Returns:                                                                 */
1820 /*   0 on success, positive value on failure.                               */
1821 /****************************************************************************/
1822 static int
1823 bce_nvram_test(struct bce_softc *sc)
1824 {
1825 	uint32_t buf[BCE_NVRAM_SIZE / 4];
1826 	uint32_t magic, csum;
1827 	uint8_t *data = (uint8_t *)buf;
1828 	int rc = 0;
1829 
1830 	/*
1831 	 * Check that the device NVRAM is valid by reading
1832 	 * the magic value at offset 0.
1833 	 */
1834 	rc = bce_nvram_read(sc, 0, data, 4);
1835 	if (rc != 0)
1836 		return rc;
1837 
1838 	magic = be32toh(buf[0]);
1839 	if (magic != BCE_NVRAM_MAGIC) {
1840 		if_printf(&sc->arpcom.ac_if,
1841 			  "Invalid NVRAM magic value! Expected: 0x%08X, "
1842 			  "Found: 0x%08X\n", BCE_NVRAM_MAGIC, magic);
1843 		return ENODEV;
1844 	}
1845 
1846 	/*
1847 	 * Verify that the device NVRAM includes valid
1848 	 * configuration data.
1849 	 */
1850 	rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE);
1851 	if (rc != 0)
1852 		return rc;
1853 
1854 	csum = ether_crc32_le(data, 0x100);
1855 	if (csum != BCE_CRC32_RESIDUAL) {
1856 		if_printf(&sc->arpcom.ac_if,
1857 			  "Invalid Manufacturing Information NVRAM CRC! "
1858 			  "Expected: 0x%08X, Found: 0x%08X\n",
1859 			  BCE_CRC32_RESIDUAL, csum);
1860 		return ENODEV;
1861 	}
1862 
1863 	csum = ether_crc32_le(data + 0x100, 0x100);
1864 	if (csum != BCE_CRC32_RESIDUAL) {
1865 		if_printf(&sc->arpcom.ac_if,
1866 			  "Invalid Feature Configuration Information "
1867 			  "NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1868 			  BCE_CRC32_RESIDUAL, csum);
1869 		rc = ENODEV;
1870 	}
1871 	return rc;
1872 }
1873 
1874 /****************************************************************************/
1875 /* Identifies the current media type of the controller and sets the PHY     */
1876 /* address.                                                                 */
1877 /*                                                                          */
1878 /* Returns:                                                                 */
1879 /*   Nothing.                                                               */
1880 /****************************************************************************/
1881 static void
1882 bce_get_media(struct bce_softc *sc)
1883 {
1884 	uint32_t val;
1885 
1886 	sc->bce_phy_addr = 1;
1887 
1888 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
1889 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
1890  		uint32_t val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
1891 		uint32_t bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1892 		uint32_t strap;
1893 
1894 		/*
1895 		 * The BCM5709S is software configurable
1896 		 * for Copper or SerDes operation.
1897 		 */
1898 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1899 			return;
1900 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1901 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1902 			return;
1903 		}
1904 
1905 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) {
1906 			strap = (val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1907 		} else {
1908 			strap =
1909 			(val & BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
1910 		}
1911 
1912 		if (pci_get_function(sc->bce_dev) == 0) {
1913 			switch (strap) {
1914 			case 0x4:
1915 			case 0x5:
1916 			case 0x6:
1917 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1918 				break;
1919 			}
1920 		} else {
1921 			switch (strap) {
1922 			case 0x1:
1923 			case 0x2:
1924 			case 0x4:
1925 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1926 				break;
1927 			}
1928 		}
1929 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
1930 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
1931 	}
1932 
1933 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
1934 		sc->bce_flags |= BCE_NO_WOL_FLAG;
1935 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
1936 			sc->bce_phy_addr = 2;
1937 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1938 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G)
1939 				sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
1940 		}
1941 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
1942 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)) {
1943 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
1944 	}
1945 }
1946 
1947 static void
1948 bce_destroy_tx_ring(struct bce_tx_ring *txr)
1949 {
1950 	int i;
1951 
1952 	/* Destroy the TX buffer descriptor DMA stuffs. */
1953 	if (txr->tx_bd_chain_tag != NULL) {
1954 		for (i = 0; i < txr->tx_pages; i++) {
1955 			if (txr->tx_bd_chain[i] != NULL) {
1956 				bus_dmamap_unload(txr->tx_bd_chain_tag,
1957 				    txr->tx_bd_chain_map[i]);
1958 				bus_dmamem_free(txr->tx_bd_chain_tag,
1959 				    txr->tx_bd_chain[i],
1960 				    txr->tx_bd_chain_map[i]);
1961 			}
1962 		}
1963 		bus_dma_tag_destroy(txr->tx_bd_chain_tag);
1964 	}
1965 
1966 	/* Destroy the TX mbuf DMA stuffs. */
1967 	if (txr->tx_mbuf_tag != NULL) {
1968 		for (i = 0; i < TOTAL_TX_BD(txr); i++) {
1969 			/* Must have been unloaded in bce_stop() */
1970 			KKASSERT(txr->tx_bufs[i].tx_mbuf_ptr == NULL);
1971 			bus_dmamap_destroy(txr->tx_mbuf_tag,
1972 			    txr->tx_bufs[i].tx_mbuf_map);
1973 		}
1974 		bus_dma_tag_destroy(txr->tx_mbuf_tag);
1975 	}
1976 
1977 	if (txr->tx_bd_chain_map != NULL)
1978 		kfree(txr->tx_bd_chain_map, M_DEVBUF);
1979 	if (txr->tx_bd_chain != NULL)
1980 		kfree(txr->tx_bd_chain, M_DEVBUF);
1981 	if (txr->tx_bd_chain_paddr != NULL)
1982 		kfree(txr->tx_bd_chain_paddr, M_DEVBUF);
1983 
1984 	if (txr->tx_bufs != NULL)
1985 		kfree(txr->tx_bufs, M_DEVBUF);
1986 }
1987 
1988 static void
1989 bce_destroy_rx_ring(struct bce_rx_ring *rxr)
1990 {
1991 	int i;
1992 
1993 	/* Destroy the RX buffer descriptor DMA stuffs. */
1994 	if (rxr->rx_bd_chain_tag != NULL) {
1995 		for (i = 0; i < rxr->rx_pages; i++) {
1996 			if (rxr->rx_bd_chain[i] != NULL) {
1997 				bus_dmamap_unload(rxr->rx_bd_chain_tag,
1998 				    rxr->rx_bd_chain_map[i]);
1999 				bus_dmamem_free(rxr->rx_bd_chain_tag,
2000 				    rxr->rx_bd_chain[i],
2001 				    rxr->rx_bd_chain_map[i]);
2002 			}
2003 		}
2004 		bus_dma_tag_destroy(rxr->rx_bd_chain_tag);
2005 	}
2006 
2007 	/* Destroy the RX mbuf DMA stuffs. */
2008 	if (rxr->rx_mbuf_tag != NULL) {
2009 		for (i = 0; i < TOTAL_RX_BD(rxr); i++) {
2010 			/* Must have been unloaded in bce_stop() */
2011 			KKASSERT(rxr->rx_bufs[i].rx_mbuf_ptr == NULL);
2012 			bus_dmamap_destroy(rxr->rx_mbuf_tag,
2013 			    rxr->rx_bufs[i].rx_mbuf_map);
2014 		}
2015 		bus_dmamap_destroy(rxr->rx_mbuf_tag, rxr->rx_mbuf_tmpmap);
2016 		bus_dma_tag_destroy(rxr->rx_mbuf_tag);
2017 	}
2018 
2019 	if (rxr->rx_bd_chain_map != NULL)
2020 		kfree(rxr->rx_bd_chain_map, M_DEVBUF);
2021 	if (rxr->rx_bd_chain != NULL)
2022 		kfree(rxr->rx_bd_chain, M_DEVBUF);
2023 	if (rxr->rx_bd_chain_paddr != NULL)
2024 		kfree(rxr->rx_bd_chain_paddr, M_DEVBUF);
2025 
2026 	if (rxr->rx_bufs != NULL)
2027 		kfree(rxr->rx_bufs, M_DEVBUF);
2028 }
2029 
2030 /****************************************************************************/
2031 /* Free any DMA memory owned by the driver.                                 */
2032 /*                                                                          */
2033 /* Scans through each data structre that requires DMA memory and frees      */
2034 /* the memory if allocated.                                                 */
2035 /*                                                                          */
2036 /* Returns:                                                                 */
2037 /*   Nothing.                                                               */
2038 /****************************************************************************/
2039 static void
2040 bce_dma_free(struct bce_softc *sc)
2041 {
2042 	int i;
2043 
2044 	/* Destroy the status block. */
2045 	if (sc->status_tag != NULL) {
2046 		if (sc->status_block != NULL) {
2047 			bus_dmamap_unload(sc->status_tag, sc->status_map);
2048 			bus_dmamem_free(sc->status_tag, sc->status_block,
2049 					sc->status_map);
2050 		}
2051 		bus_dma_tag_destroy(sc->status_tag);
2052 	}
2053 
2054 	/* Destroy the statistics block. */
2055 	if (sc->stats_tag != NULL) {
2056 		if (sc->stats_block != NULL) {
2057 			bus_dmamap_unload(sc->stats_tag, sc->stats_map);
2058 			bus_dmamem_free(sc->stats_tag, sc->stats_block,
2059 					sc->stats_map);
2060 		}
2061 		bus_dma_tag_destroy(sc->stats_tag);
2062 	}
2063 
2064 	/* Destroy the CTX DMA stuffs. */
2065 	if (sc->ctx_tag != NULL) {
2066 		for (i = 0; i < sc->ctx_pages; i++) {
2067 			if (sc->ctx_block[i] != NULL) {
2068 				bus_dmamap_unload(sc->ctx_tag, sc->ctx_map[i]);
2069 				bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2070 						sc->ctx_map[i]);
2071 			}
2072 		}
2073 		bus_dma_tag_destroy(sc->ctx_tag);
2074 	}
2075 
2076 	/* Free TX rings */
2077 	if (sc->tx_rings != NULL) {
2078 		for (i = 0; i < sc->tx_ring_cnt; ++i)
2079 			bce_destroy_tx_ring(&sc->tx_rings[i]);
2080 		kfree(sc->tx_rings, M_DEVBUF);
2081 	}
2082 
2083 	/* Free RX rings */
2084 	if (sc->rx_rings != NULL) {
2085 		for (i = 0; i < sc->rx_ring_cnt; ++i)
2086 			bce_destroy_rx_ring(&sc->rx_rings[i]);
2087 		kfree(sc->rx_rings, M_DEVBUF);
2088 	}
2089 
2090 	/* Destroy the parent tag */
2091 	if (sc->parent_tag != NULL)
2092 		bus_dma_tag_destroy(sc->parent_tag);
2093 }
2094 
2095 /****************************************************************************/
2096 /* Get DMA memory from the OS.                                              */
2097 /*                                                                          */
2098 /* Validates that the OS has provided DMA buffers in response to a          */
2099 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
2100 /* When the callback is used the OS will return 0 for the mapping function  */
2101 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
2102 /* failures back to the caller.                                             */
2103 /*                                                                          */
2104 /* Returns:                                                                 */
2105 /*   Nothing.                                                               */
2106 /****************************************************************************/
2107 static void
2108 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2109 {
2110 	bus_addr_t *busaddr = arg;
2111 
2112 	/* Check for an error and signal the caller that an error occurred. */
2113 	if (error)
2114 		return;
2115 
2116 	KASSERT(nseg == 1, ("only one segment is allowed"));
2117 	*busaddr = segs->ds_addr;
2118 }
2119 
2120 static int
2121 bce_create_tx_ring(struct bce_tx_ring *txr)
2122 {
2123 	int pages, rc, i;
2124 
2125 	lwkt_serialize_init(&txr->tx_serialize);
2126 	txr->tx_wreg = bce_tx_wreg;
2127 
2128 	pages = device_getenv_int(txr->sc->bce_dev, "tx_pages", bce_tx_pages);
2129 	if (pages <= 0 || pages > TX_PAGES_MAX || !powerof2(pages)) {
2130 		device_printf(txr->sc->bce_dev, "invalid # of TX pages\n");
2131 		pages = TX_PAGES_DEFAULT;
2132 	}
2133 	txr->tx_pages = pages;
2134 
2135 	txr->tx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * txr->tx_pages,
2136 	    M_DEVBUF, M_WAITOK | M_ZERO);
2137 	txr->tx_bd_chain = kmalloc(sizeof(struct tx_bd *) * txr->tx_pages,
2138 	    M_DEVBUF, M_WAITOK | M_ZERO);
2139 	txr->tx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * txr->tx_pages,
2140 	    M_DEVBUF, M_WAITOK | M_ZERO);
2141 
2142 	txr->tx_bufs = kmalloc_cachealign(
2143 	    sizeof(struct bce_tx_buf) * TOTAL_TX_BD(txr),
2144 	    M_DEVBUF, M_WAITOK | M_ZERO);
2145 
2146 	/*
2147 	 * Create a DMA tag for the TX buffer descriptor chain,
2148 	 * allocate and clear the  memory, and fetch the
2149 	 * physical address of the block.
2150 	 */
2151 	rc = bus_dma_tag_create(txr->sc->parent_tag, BCM_PAGE_SIZE, 0,
2152 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2153 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ,
2154 	    0, &txr->tx_bd_chain_tag);
2155 	if (rc != 0) {
2156 		device_printf(txr->sc->bce_dev, "Could not allocate "
2157 		    "TX descriptor chain DMA tag!\n");
2158 		return rc;
2159 	}
2160 
2161 	for (i = 0; i < txr->tx_pages; i++) {
2162 		bus_addr_t busaddr;
2163 
2164 		rc = bus_dmamem_alloc(txr->tx_bd_chain_tag,
2165 		    (void **)&txr->tx_bd_chain[i],
2166 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
2167 		    &txr->tx_bd_chain_map[i]);
2168 		if (rc != 0) {
2169 			device_printf(txr->sc->bce_dev,
2170 			    "Could not allocate %dth TX descriptor "
2171 			    "chain DMA memory!\n", i);
2172 			return rc;
2173 		}
2174 
2175 		rc = bus_dmamap_load(txr->tx_bd_chain_tag,
2176 		    txr->tx_bd_chain_map[i],
2177 		    txr->tx_bd_chain[i],
2178 		    BCE_TX_CHAIN_PAGE_SZ,
2179 		    bce_dma_map_addr, &busaddr,
2180 		    BUS_DMA_WAITOK);
2181 		if (rc != 0) {
2182 			if (rc == EINPROGRESS) {
2183 				panic("%s coherent memory loading "
2184 				    "is still in progress!",
2185 				    txr->sc->arpcom.ac_if.if_xname);
2186 			}
2187 			device_printf(txr->sc->bce_dev, "Could not map %dth "
2188 			    "TX descriptor chain DMA memory!\n", i);
2189 			bus_dmamem_free(txr->tx_bd_chain_tag,
2190 			    txr->tx_bd_chain[i],
2191 			    txr->tx_bd_chain_map[i]);
2192 			txr->tx_bd_chain[i] = NULL;
2193 			return rc;
2194 		}
2195 
2196 		txr->tx_bd_chain_paddr[i] = busaddr;
2197 	}
2198 
2199 	/* Create a DMA tag for TX mbufs. */
2200 	rc = bus_dma_tag_create(txr->sc->parent_tag, 1, 0,
2201 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2202 	    IP_MAXPACKET + sizeof(struct ether_vlan_header),
2203 	    BCE_MAX_SEGMENTS, PAGE_SIZE,
2204 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2205 	    &txr->tx_mbuf_tag);
2206 	if (rc != 0) {
2207 		device_printf(txr->sc->bce_dev,
2208 		    "Could not allocate TX mbuf DMA tag!\n");
2209 		return rc;
2210 	}
2211 
2212 	/* Create DMA maps for the TX mbufs clusters. */
2213 	for (i = 0; i < TOTAL_TX_BD(txr); i++) {
2214 		rc = bus_dmamap_create(txr->tx_mbuf_tag,
2215 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2216 		    &txr->tx_bufs[i].tx_mbuf_map);
2217 		if (rc != 0) {
2218 			int j;
2219 
2220 			for (j = 0; j < i; ++j) {
2221 				bus_dmamap_destroy(txr->tx_mbuf_tag,
2222 				    txr->tx_bufs[j].tx_mbuf_map);
2223 			}
2224 			bus_dma_tag_destroy(txr->tx_mbuf_tag);
2225 			txr->tx_mbuf_tag = NULL;
2226 
2227 			device_printf(txr->sc->bce_dev, "Unable to create "
2228 			    "%dth TX mbuf DMA map!\n", i);
2229 			return rc;
2230 		}
2231 	}
2232 	return 0;
2233 }
2234 
2235 static int
2236 bce_create_rx_ring(struct bce_rx_ring *rxr)
2237 {
2238 	int pages, rc, i;
2239 
2240 	lwkt_serialize_init(&rxr->rx_serialize);
2241 
2242 	pages = device_getenv_int(rxr->sc->bce_dev, "rx_pages", bce_rx_pages);
2243 	if (pages <= 0 || pages > RX_PAGES_MAX || !powerof2(pages)) {
2244 		device_printf(rxr->sc->bce_dev, "invalid # of RX pages\n");
2245 		pages = RX_PAGES_DEFAULT;
2246 	}
2247 	rxr->rx_pages = pages;
2248 
2249 	rxr->rx_bd_chain_map = kmalloc(sizeof(bus_dmamap_t) * rxr->rx_pages,
2250 	    M_DEVBUF, M_WAITOK | M_ZERO);
2251 	rxr->rx_bd_chain = kmalloc(sizeof(struct rx_bd *) * rxr->rx_pages,
2252 	    M_DEVBUF, M_WAITOK | M_ZERO);
2253 	rxr->rx_bd_chain_paddr = kmalloc(sizeof(bus_addr_t) * rxr->rx_pages,
2254 	    M_DEVBUF, M_WAITOK | M_ZERO);
2255 
2256 	rxr->rx_bufs = kmalloc_cachealign(
2257 	    sizeof(struct bce_rx_buf) * TOTAL_RX_BD(rxr),
2258 	    M_DEVBUF, M_WAITOK | M_ZERO);
2259 
2260 	/*
2261 	 * Create a DMA tag for the RX buffer descriptor chain,
2262 	 * allocate and clear the  memory, and fetch the physical
2263 	 * address of the blocks.
2264 	 */
2265 	rc = bus_dma_tag_create(rxr->sc->parent_tag, BCM_PAGE_SIZE, 0,
2266 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2267 	    BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
2268 	    0, &rxr->rx_bd_chain_tag);
2269 	if (rc != 0) {
2270 		device_printf(rxr->sc->bce_dev, "Could not allocate "
2271 		    "RX descriptor chain DMA tag!\n");
2272 		return rc;
2273 	}
2274 
2275 	for (i = 0; i < rxr->rx_pages; i++) {
2276 		bus_addr_t busaddr;
2277 
2278 		rc = bus_dmamem_alloc(rxr->rx_bd_chain_tag,
2279 		    (void **)&rxr->rx_bd_chain[i],
2280 		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
2281 		    &rxr->rx_bd_chain_map[i]);
2282 		if (rc != 0) {
2283 			device_printf(rxr->sc->bce_dev,
2284 			    "Could not allocate %dth RX descriptor "
2285 			    "chain DMA memory!\n", i);
2286 			return rc;
2287 		}
2288 
2289 		rc = bus_dmamap_load(rxr->rx_bd_chain_tag,
2290 		    rxr->rx_bd_chain_map[i],
2291 		    rxr->rx_bd_chain[i],
2292 		    BCE_RX_CHAIN_PAGE_SZ,
2293 		    bce_dma_map_addr, &busaddr,
2294 		    BUS_DMA_WAITOK);
2295 		if (rc != 0) {
2296 			if (rc == EINPROGRESS) {
2297 				panic("%s coherent memory loading "
2298 				    "is still in progress!",
2299 				    rxr->sc->arpcom.ac_if.if_xname);
2300 			}
2301 			device_printf(rxr->sc->bce_dev,
2302 			    "Could not map %dth RX descriptor "
2303 			    "chain DMA memory!\n", i);
2304 			bus_dmamem_free(rxr->rx_bd_chain_tag,
2305 			    rxr->rx_bd_chain[i],
2306 			    rxr->rx_bd_chain_map[i]);
2307 			rxr->rx_bd_chain[i] = NULL;
2308 			return rc;
2309 		}
2310 
2311 		rxr->rx_bd_chain_paddr[i] = busaddr;
2312 	}
2313 
2314 	/* Create a DMA tag for RX mbufs. */
2315 	rc = bus_dma_tag_create(rxr->sc->parent_tag, BCE_DMA_RX_ALIGN, 0,
2316 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
2317 	    MCLBYTES, 1, MCLBYTES,
2318 	    BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED | BUS_DMA_WAITOK,
2319 	    &rxr->rx_mbuf_tag);
2320 	if (rc != 0) {
2321 		device_printf(rxr->sc->bce_dev,
2322 		    "Could not allocate RX mbuf DMA tag!\n");
2323 		return rc;
2324 	}
2325 
2326 	/* Create tmp DMA map for RX mbuf clusters. */
2327 	rc = bus_dmamap_create(rxr->rx_mbuf_tag, BUS_DMA_WAITOK,
2328 	    &rxr->rx_mbuf_tmpmap);
2329 	if (rc != 0) {
2330 		bus_dma_tag_destroy(rxr->rx_mbuf_tag);
2331 		rxr->rx_mbuf_tag = NULL;
2332 
2333 		device_printf(rxr->sc->bce_dev,
2334 		    "Could not create RX mbuf tmp DMA map!\n");
2335 		return rc;
2336 	}
2337 
2338 	/* Create DMA maps for the RX mbuf clusters. */
2339 	for (i = 0; i < TOTAL_RX_BD(rxr); i++) {
2340 		rc = bus_dmamap_create(rxr->rx_mbuf_tag, BUS_DMA_WAITOK,
2341 		    &rxr->rx_bufs[i].rx_mbuf_map);
2342 		if (rc != 0) {
2343 			int j;
2344 
2345 			for (j = 0; j < i; ++j) {
2346 				bus_dmamap_destroy(rxr->rx_mbuf_tag,
2347 				    rxr->rx_bufs[j].rx_mbuf_map);
2348 			}
2349 			bus_dma_tag_destroy(rxr->rx_mbuf_tag);
2350 			rxr->rx_mbuf_tag = NULL;
2351 
2352 			device_printf(rxr->sc->bce_dev, "Unable to create "
2353 			    "%dth RX mbuf DMA map!\n", i);
2354 			return rc;
2355 		}
2356 	}
2357 	return 0;
2358 }
2359 
2360 /****************************************************************************/
2361 /* Allocate any DMA memory needed by the driver.                            */
2362 /*                                                                          */
2363 /* Allocates DMA memory needed for the various global structures needed by  */
2364 /* hardware.                                                                */
2365 /*                                                                          */
2366 /* Memory alignment requirements:                                           */
2367 /* -----------------+----------+----------+----------+----------+           */
2368 /*  Data Structure  |   5706   |   5708   |   5709   |   5716   |           */
2369 /* -----------------+----------+----------+----------+----------+           */
2370 /* Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2371 /* Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |           */
2372 /* RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |           */
2373 /* PG Buffers       |   none   |   none   |   none   |   none   |           */
2374 /* TX Buffers       |   none   |   none   |   none   |   none   |           */
2375 /* Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |           */
2376 /* Context Pages(1) |   N/A    |   N/A    |   4KiB   |   4KiB   |           */
2377 /* -----------------+----------+----------+----------+----------+           */
2378 /*                                                                          */
2379 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
2380 /*                                                                          */
2381 /* Returns:                                                                 */
2382 /*   0 for success, positive value for failure.                             */
2383 /****************************************************************************/
2384 static int
2385 bce_dma_alloc(struct bce_softc *sc)
2386 {
2387 	struct ifnet *ifp = &sc->arpcom.ac_if;
2388 	int i, rc = 0;
2389 	bus_addr_t busaddr, max_busaddr;
2390 	bus_size_t status_align, stats_align, status_size;
2391 
2392 	/*
2393 	 * The embedded PCIe to PCI-X bridge (EPB)
2394 	 * in the 5708 cannot address memory above
2395 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
2396 	 */
2397 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
2398 		max_busaddr = BCE_BUS_SPACE_MAXADDR;
2399 	else
2400 		max_busaddr = BUS_SPACE_MAXADDR;
2401 
2402 	/*
2403 	 * BCM5709 and BCM5716 uses host memory as cache for context memory.
2404 	 */
2405 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2406 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2407 		sc->ctx_pages = BCE_CTX_BLK_SZ / BCM_PAGE_SIZE;
2408 		if (sc->ctx_pages == 0)
2409 			sc->ctx_pages = 1;
2410 		if (sc->ctx_pages > BCE_CTX_PAGES) {
2411 			device_printf(sc->bce_dev, "excessive ctx pages %d\n",
2412 			    sc->ctx_pages);
2413 			return ENOMEM;
2414 		}
2415 		status_align = 16;
2416 		stats_align = 16;
2417 	} else {
2418 		status_align = 8;
2419 		stats_align = 8;
2420 	}
2421 
2422 	/*
2423 	 * Each MSI-X vector needs a status block; each status block
2424 	 * consumes 128bytes and is 128bytes aligned.
2425 	 */
2426 	if (sc->rx_ring_cnt > 1) {
2427 		status_size = BCE_MSIX_MAX * BCE_STATUS_BLK_MSIX_ALIGN;
2428 		status_align = BCE_STATUS_BLK_MSIX_ALIGN;
2429 	} else {
2430 		status_size = BCE_STATUS_BLK_SZ;
2431 	}
2432 
2433 	/*
2434 	 * Allocate the parent bus DMA tag appropriate for PCI.
2435 	 */
2436 	rc = bus_dma_tag_create(NULL, 1, BCE_DMA_BOUNDARY,
2437 				max_busaddr, BUS_SPACE_MAXADDR,
2438 				NULL, NULL,
2439 				BUS_SPACE_MAXSIZE_32BIT, 0,
2440 				BUS_SPACE_MAXSIZE_32BIT,
2441 				0, &sc->parent_tag);
2442 	if (rc != 0) {
2443 		if_printf(ifp, "Could not allocate parent DMA tag!\n");
2444 		return rc;
2445 	}
2446 
2447 	/*
2448 	 * Allocate status block.
2449 	 */
2450 	sc->status_block = bus_dmamem_coherent_any(sc->parent_tag,
2451 				status_align, status_size,
2452 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
2453 				&sc->status_tag, &sc->status_map,
2454 				&sc->status_block_paddr);
2455 	if (sc->status_block == NULL) {
2456 		if_printf(ifp, "Could not allocate status block!\n");
2457 		return ENOMEM;
2458 	}
2459 
2460 	/*
2461 	 * Allocate statistics block.
2462 	 */
2463 	sc->stats_block = bus_dmamem_coherent_any(sc->parent_tag,
2464 				stats_align, BCE_STATS_BLK_SZ,
2465 				BUS_DMA_WAITOK | BUS_DMA_ZERO,
2466 				&sc->stats_tag, &sc->stats_map,
2467 				&sc->stats_block_paddr);
2468 	if (sc->stats_block == NULL) {
2469 		if_printf(ifp, "Could not allocate statistics block!\n");
2470 		return ENOMEM;
2471 	}
2472 
2473 	/*
2474 	 * Allocate context block, if needed
2475 	 */
2476 	if (sc->ctx_pages != 0) {
2477 		rc = bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, 0,
2478 					BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2479 					NULL, NULL,
2480 					BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
2481 					0, &sc->ctx_tag);
2482 		if (rc != 0) {
2483 			if_printf(ifp, "Could not allocate "
2484 				  "context block DMA tag!\n");
2485 			return rc;
2486 		}
2487 
2488 		for (i = 0; i < sc->ctx_pages; i++) {
2489 			rc = bus_dmamem_alloc(sc->ctx_tag,
2490 					      (void **)&sc->ctx_block[i],
2491 					      BUS_DMA_WAITOK | BUS_DMA_ZERO |
2492 					      BUS_DMA_COHERENT,
2493 					      &sc->ctx_map[i]);
2494 			if (rc != 0) {
2495 				if_printf(ifp, "Could not allocate %dth context "
2496 					  "DMA memory!\n", i);
2497 				return rc;
2498 			}
2499 
2500 			rc = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
2501 					     sc->ctx_block[i], BCM_PAGE_SIZE,
2502 					     bce_dma_map_addr, &busaddr,
2503 					     BUS_DMA_WAITOK);
2504 			if (rc != 0) {
2505 				if (rc == EINPROGRESS) {
2506 					panic("%s coherent memory loading "
2507 					      "is still in progress!", ifp->if_xname);
2508 				}
2509 				if_printf(ifp, "Could not map %dth context "
2510 					  "DMA memory!\n", i);
2511 				bus_dmamem_free(sc->ctx_tag, sc->ctx_block[i],
2512 						sc->ctx_map[i]);
2513 				sc->ctx_block[i] = NULL;
2514 				return rc;
2515 			}
2516 			sc->ctx_paddr[i] = busaddr;
2517 		}
2518 	}
2519 
2520 	sc->tx_rings = kmalloc_cachealign(
2521 	    sizeof(struct bce_tx_ring) * sc->tx_ring_cnt, M_DEVBUF,
2522 	    M_WAITOK | M_ZERO);
2523 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
2524 		sc->tx_rings[i].sc = sc;
2525 		if (i == 0) {
2526 			sc->tx_rings[i].tx_cid = TX_CID;
2527 			sc->tx_rings[i].tx_hw_cons =
2528 			    &sc->status_block->status_tx_quick_consumer_index0;
2529 		} else {
2530 			struct status_block_msix *sblk =
2531 			    (struct status_block_msix *)
2532 			    (((uint8_t *)(sc->status_block)) +
2533 			     (i * BCE_STATUS_BLK_MSIX_ALIGN));
2534 
2535 			sc->tx_rings[i].tx_cid = TX_TSS_CID + i - 1;
2536 			sc->tx_rings[i].tx_hw_cons =
2537 			    &sblk->status_tx_quick_consumer_index;
2538 		}
2539 
2540 		rc = bce_create_tx_ring(&sc->tx_rings[i]);
2541 		if (rc != 0) {
2542 			device_printf(sc->bce_dev,
2543 			    "can't create %dth tx ring\n", i);
2544 			return rc;
2545 		}
2546 	}
2547 
2548 	sc->rx_rings = kmalloc_cachealign(
2549 	    sizeof(struct bce_rx_ring) * sc->rx_ring_cnt, M_DEVBUF,
2550 	    M_WAITOK | M_ZERO);
2551 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
2552 		sc->rx_rings[i].sc = sc;
2553 		sc->rx_rings[i].idx = i;
2554 		if (i == 0) {
2555 			sc->rx_rings[i].rx_cid = RX_CID;
2556 			sc->rx_rings[i].rx_hw_cons =
2557 			    &sc->status_block->status_rx_quick_consumer_index0;
2558 			sc->rx_rings[i].hw_status_idx =
2559 			    &sc->status_block->status_idx;
2560 		} else {
2561 			struct status_block_msix *sblk =
2562 			    (struct status_block_msix *)
2563 			    (((uint8_t *)(sc->status_block)) +
2564 			     (i * BCE_STATUS_BLK_MSIX_ALIGN));
2565 
2566 			sc->rx_rings[i].rx_cid = RX_RSS_CID + i - 1;
2567 			sc->rx_rings[i].rx_hw_cons =
2568 			    &sblk->status_rx_quick_consumer_index;
2569 			sc->rx_rings[i].hw_status_idx = &sblk->status_idx;
2570 		}
2571 
2572 		rc = bce_create_rx_ring(&sc->rx_rings[i]);
2573 		if (rc != 0) {
2574 			device_printf(sc->bce_dev,
2575 			    "can't create %dth rx ring\n", i);
2576 			return rc;
2577 		}
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 /****************************************************************************/
2584 /* Firmware synchronization.                                                */
2585 /*                                                                          */
2586 /* Before performing certain events such as a chip reset, synchronize with  */
2587 /* the firmware first.                                                      */
2588 /*                                                                          */
2589 /* Returns:                                                                 */
2590 /*   0 for success, positive value for failure.                             */
2591 /****************************************************************************/
2592 static int
2593 bce_fw_sync(struct bce_softc *sc, uint32_t msg_data)
2594 {
2595 	int i, rc = 0;
2596 	uint32_t val;
2597 
2598 	/* Don't waste any time if we've timed out before. */
2599 	if (sc->bce_fw_timed_out)
2600 		return EBUSY;
2601 
2602 	/* Increment the message sequence number. */
2603 	sc->bce_fw_wr_seq++;
2604 	msg_data |= sc->bce_fw_wr_seq;
2605 
2606 	/* Send the message to the bootcode driver mailbox. */
2607 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2608 
2609 	/* Wait for the bootcode to acknowledge the message. */
2610 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2611 		/* Check for a response in the bootcode firmware mailbox. */
2612 		val = bce_shmem_rd(sc, BCE_FW_MB);
2613 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
2614 			break;
2615 		DELAY(1000);
2616 	}
2617 
2618 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2619 	if ((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ) &&
2620 	    (msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0) {
2621 		if_printf(&sc->arpcom.ac_if,
2622 			  "Firmware synchronization timeout! "
2623 			  "msg_data = 0x%08X\n", msg_data);
2624 
2625 		msg_data &= ~BCE_DRV_MSG_CODE;
2626 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
2627 
2628 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
2629 
2630 		sc->bce_fw_timed_out = 1;
2631 		rc = EBUSY;
2632 	}
2633 	return rc;
2634 }
2635 
2636 /****************************************************************************/
2637 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2638 /*                                                                          */
2639 /* Returns:                                                                 */
2640 /*   Nothing.                                                               */
2641 /****************************************************************************/
2642 static void
2643 bce_load_rv2p_fw(struct bce_softc *sc, uint32_t *rv2p_code,
2644 		 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2645 {
2646 	int i;
2647 	uint32_t val;
2648 
2649 	for (i = 0; i < rv2p_code_len; i += 8) {
2650 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
2651 		rv2p_code++;
2652 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
2653 		rv2p_code++;
2654 
2655 		if (rv2p_proc == RV2P_PROC1) {
2656 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
2657 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
2658 		} else {
2659 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
2660 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
2661 		}
2662 	}
2663 
2664 	/* Reset the processor, un-stall is done later. */
2665 	if (rv2p_proc == RV2P_PROC1)
2666 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
2667 	else
2668 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
2669 }
2670 
2671 /****************************************************************************/
2672 /* Load RISC processor firmware.                                            */
2673 /*                                                                          */
2674 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
2675 /* associated with a particular processor.                                  */
2676 /*                                                                          */
2677 /* Returns:                                                                 */
2678 /*   Nothing.                                                               */
2679 /****************************************************************************/
2680 static void
2681 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
2682 		struct fw_info *fw)
2683 {
2684 	uint32_t offset;
2685 	int j;
2686 
2687 	bce_halt_cpu(sc, cpu_reg);
2688 
2689 	/* Load the Text area. */
2690 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2691 	if (fw->text) {
2692 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2693 			REG_WR_IND(sc, offset, fw->text[j]);
2694 	}
2695 
2696 	/* Load the Data area. */
2697 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2698 	if (fw->data) {
2699 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2700 			REG_WR_IND(sc, offset, fw->data[j]);
2701 	}
2702 
2703 	/* Load the SBSS area. */
2704 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2705 	if (fw->sbss) {
2706 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2707 			REG_WR_IND(sc, offset, fw->sbss[j]);
2708 	}
2709 
2710 	/* Load the BSS area. */
2711 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2712 	if (fw->bss) {
2713 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2714 			REG_WR_IND(sc, offset, fw->bss[j]);
2715 	}
2716 
2717 	/* Load the Read-Only area. */
2718 	offset = cpu_reg->spad_base +
2719 		(fw->rodata_addr - cpu_reg->mips_view_base);
2720 	if (fw->rodata) {
2721 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2722 			REG_WR_IND(sc, offset, fw->rodata[j]);
2723 	}
2724 
2725 	/* Clear the pre-fetch instruction and set the FW start address. */
2726 	REG_WR_IND(sc, cpu_reg->inst, 0);
2727 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2728 }
2729 
2730 /****************************************************************************/
2731 /* Starts the RISC processor.                                               */
2732 /*                                                                          */
2733 /* Assumes the CPU starting address has already been set.                   */
2734 /*                                                                          */
2735 /* Returns:                                                                 */
2736 /*   Nothing.                                                               */
2737 /****************************************************************************/
2738 static void
2739 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2740 {
2741 	uint32_t val;
2742 
2743 	/* Start the CPU. */
2744 	val = REG_RD_IND(sc, cpu_reg->mode);
2745 	val &= ~cpu_reg->mode_value_halt;
2746 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2747 	REG_WR_IND(sc, cpu_reg->mode, val);
2748 }
2749 
2750 /****************************************************************************/
2751 /* Halts the RISC processor.                                                */
2752 /*                                                                          */
2753 /* Returns:                                                                 */
2754 /*   Nothing.                                                               */
2755 /****************************************************************************/
2756 static void
2757 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
2758 {
2759 	uint32_t val;
2760 
2761 	/* Halt the CPU. */
2762 	val = REG_RD_IND(sc, cpu_reg->mode);
2763 	val |= cpu_reg->mode_value_halt;
2764 	REG_WR_IND(sc, cpu_reg->mode, val);
2765 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2766 }
2767 
2768 /****************************************************************************/
2769 /* Start the RX CPU.                                                        */
2770 /*                                                                          */
2771 /* Returns:                                                                 */
2772 /*   Nothing.                                                               */
2773 /****************************************************************************/
2774 static void
2775 bce_start_rxp_cpu(struct bce_softc *sc)
2776 {
2777 	struct cpu_reg cpu_reg;
2778 
2779 	cpu_reg.mode = BCE_RXP_CPU_MODE;
2780 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2781 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2782 	cpu_reg.state = BCE_RXP_CPU_STATE;
2783 	cpu_reg.state_value_clear = 0xffffff;
2784 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2785 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2786 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2787 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2788 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2789 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
2790 	cpu_reg.mips_view_base = 0x8000000;
2791 
2792 	bce_start_cpu(sc, &cpu_reg);
2793 }
2794 
2795 /****************************************************************************/
2796 /* Initialize the RX CPU.                                                   */
2797 /*                                                                          */
2798 /* Returns:                                                                 */
2799 /*   Nothing.                                                               */
2800 /****************************************************************************/
2801 static void
2802 bce_init_rxp_cpu(struct bce_softc *sc)
2803 {
2804 	struct cpu_reg cpu_reg;
2805 	struct fw_info fw;
2806 
2807 	cpu_reg.mode = BCE_RXP_CPU_MODE;
2808 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
2809 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
2810 	cpu_reg.state = BCE_RXP_CPU_STATE;
2811 	cpu_reg.state_value_clear = 0xffffff;
2812 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
2813 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
2814 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
2815 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
2816 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
2817 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
2818 	cpu_reg.mips_view_base = 0x8000000;
2819 
2820 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2821 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2822  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
2823 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
2824 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
2825 		fw.start_addr = bce_RXP_b09FwStartAddr;
2826 
2827 		fw.text_addr = bce_RXP_b09FwTextAddr;
2828 		fw.text_len = bce_RXP_b09FwTextLen;
2829 		fw.text_index = 0;
2830 		fw.text = bce_RXP_b09FwText;
2831 
2832 		fw.data_addr = bce_RXP_b09FwDataAddr;
2833 		fw.data_len = bce_RXP_b09FwDataLen;
2834 		fw.data_index = 0;
2835 		fw.data = bce_RXP_b09FwData;
2836 
2837 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
2838 		fw.sbss_len = bce_RXP_b09FwSbssLen;
2839 		fw.sbss_index = 0;
2840 		fw.sbss = bce_RXP_b09FwSbss;
2841 
2842 		fw.bss_addr = bce_RXP_b09FwBssAddr;
2843 		fw.bss_len = bce_RXP_b09FwBssLen;
2844 		fw.bss_index = 0;
2845 		fw.bss = bce_RXP_b09FwBss;
2846 
2847 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
2848 		fw.rodata_len = bce_RXP_b09FwRodataLen;
2849 		fw.rodata_index = 0;
2850 		fw.rodata = bce_RXP_b09FwRodata;
2851 	} else {
2852 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
2853 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
2854 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
2855 		fw.start_addr = bce_RXP_b06FwStartAddr;
2856 
2857 		fw.text_addr = bce_RXP_b06FwTextAddr;
2858 		fw.text_len = bce_RXP_b06FwTextLen;
2859 		fw.text_index = 0;
2860 		fw.text = bce_RXP_b06FwText;
2861 
2862 		fw.data_addr = bce_RXP_b06FwDataAddr;
2863 		fw.data_len = bce_RXP_b06FwDataLen;
2864 		fw.data_index = 0;
2865 		fw.data = bce_RXP_b06FwData;
2866 
2867 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
2868 		fw.sbss_len = bce_RXP_b06FwSbssLen;
2869 		fw.sbss_index = 0;
2870 		fw.sbss = bce_RXP_b06FwSbss;
2871 
2872 		fw.bss_addr = bce_RXP_b06FwBssAddr;
2873 		fw.bss_len = bce_RXP_b06FwBssLen;
2874 		fw.bss_index = 0;
2875 		fw.bss = bce_RXP_b06FwBss;
2876 
2877 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
2878 		fw.rodata_len = bce_RXP_b06FwRodataLen;
2879 		fw.rodata_index = 0;
2880 		fw.rodata = bce_RXP_b06FwRodata;
2881 	}
2882 
2883 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
2884 	/* Delay RXP start until initialization is complete. */
2885 }
2886 
2887 /****************************************************************************/
2888 /* Initialize the TX CPU.                                                   */
2889 /*                                                                          */
2890 /* Returns:                                                                 */
2891 /*   Nothing.                                                               */
2892 /****************************************************************************/
2893 static void
2894 bce_init_txp_cpu(struct bce_softc *sc)
2895 {
2896 	struct cpu_reg cpu_reg;
2897 	struct fw_info fw;
2898 
2899 	cpu_reg.mode = BCE_TXP_CPU_MODE;
2900 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
2901 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
2902 	cpu_reg.state = BCE_TXP_CPU_STATE;
2903 	cpu_reg.state_value_clear = 0xffffff;
2904 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
2905 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
2906 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
2907 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
2908 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
2909 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
2910 	cpu_reg.mips_view_base = 0x8000000;
2911 
2912 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
2913 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
2914 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
2915 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
2916 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
2917 		fw.start_addr = bce_TXP_b09FwStartAddr;
2918 
2919 		fw.text_addr = bce_TXP_b09FwTextAddr;
2920 		fw.text_len = bce_TXP_b09FwTextLen;
2921 		fw.text_index = 0;
2922 		fw.text = bce_TXP_b09FwText;
2923 
2924 		fw.data_addr = bce_TXP_b09FwDataAddr;
2925 		fw.data_len = bce_TXP_b09FwDataLen;
2926 		fw.data_index = 0;
2927 		fw.data = bce_TXP_b09FwData;
2928 
2929 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
2930 		fw.sbss_len = bce_TXP_b09FwSbssLen;
2931 		fw.sbss_index = 0;
2932 		fw.sbss = bce_TXP_b09FwSbss;
2933 
2934 		fw.bss_addr = bce_TXP_b09FwBssAddr;
2935 		fw.bss_len = bce_TXP_b09FwBssLen;
2936 		fw.bss_index = 0;
2937 		fw.bss = bce_TXP_b09FwBss;
2938 
2939 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
2940 		fw.rodata_len = bce_TXP_b09FwRodataLen;
2941 		fw.rodata_index = 0;
2942 		fw.rodata = bce_TXP_b09FwRodata;
2943 	} else {
2944 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
2945 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
2946 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
2947 		fw.start_addr = bce_TXP_b06FwStartAddr;
2948 
2949 		fw.text_addr = bce_TXP_b06FwTextAddr;
2950 		fw.text_len = bce_TXP_b06FwTextLen;
2951 		fw.text_index = 0;
2952 		fw.text = bce_TXP_b06FwText;
2953 
2954 		fw.data_addr = bce_TXP_b06FwDataAddr;
2955 		fw.data_len = bce_TXP_b06FwDataLen;
2956 		fw.data_index = 0;
2957 		fw.data = bce_TXP_b06FwData;
2958 
2959 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
2960 		fw.sbss_len = bce_TXP_b06FwSbssLen;
2961 		fw.sbss_index = 0;
2962 		fw.sbss = bce_TXP_b06FwSbss;
2963 
2964 		fw.bss_addr = bce_TXP_b06FwBssAddr;
2965 		fw.bss_len = bce_TXP_b06FwBssLen;
2966 		fw.bss_index = 0;
2967 		fw.bss = bce_TXP_b06FwBss;
2968 
2969 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
2970 		fw.rodata_len = bce_TXP_b06FwRodataLen;
2971 		fw.rodata_index = 0;
2972 		fw.rodata = bce_TXP_b06FwRodata;
2973 	}
2974 
2975 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
2976 	bce_start_cpu(sc, &cpu_reg);
2977 }
2978 
2979 /****************************************************************************/
2980 /* Initialize the TPAT CPU.                                                 */
2981 /*                                                                          */
2982 /* Returns:                                                                 */
2983 /*   Nothing.                                                               */
2984 /****************************************************************************/
2985 static void
2986 bce_init_tpat_cpu(struct bce_softc *sc)
2987 {
2988 	struct cpu_reg cpu_reg;
2989 	struct fw_info fw;
2990 
2991 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
2992 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
2993 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
2994 	cpu_reg.state = BCE_TPAT_CPU_STATE;
2995 	cpu_reg.state_value_clear = 0xffffff;
2996 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
2997 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
2998 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
2999 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
3000 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
3001 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
3002 	cpu_reg.mips_view_base = 0x8000000;
3003 
3004 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3005 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3006 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
3007 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
3008 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
3009 		fw.start_addr = bce_TPAT_b09FwStartAddr;
3010 
3011 		fw.text_addr = bce_TPAT_b09FwTextAddr;
3012 		fw.text_len = bce_TPAT_b09FwTextLen;
3013 		fw.text_index = 0;
3014 		fw.text = bce_TPAT_b09FwText;
3015 
3016 		fw.data_addr = bce_TPAT_b09FwDataAddr;
3017 		fw.data_len = bce_TPAT_b09FwDataLen;
3018 		fw.data_index = 0;
3019 		fw.data = bce_TPAT_b09FwData;
3020 
3021 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
3022 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
3023 		fw.sbss_index = 0;
3024 		fw.sbss = bce_TPAT_b09FwSbss;
3025 
3026 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
3027 		fw.bss_len = bce_TPAT_b09FwBssLen;
3028 		fw.bss_index = 0;
3029 		fw.bss = bce_TPAT_b09FwBss;
3030 
3031 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
3032 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
3033 		fw.rodata_index = 0;
3034 		fw.rodata = bce_TPAT_b09FwRodata;
3035 	} else {
3036 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
3037 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
3038 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
3039 		fw.start_addr = bce_TPAT_b06FwStartAddr;
3040 
3041 		fw.text_addr = bce_TPAT_b06FwTextAddr;
3042 		fw.text_len = bce_TPAT_b06FwTextLen;
3043 		fw.text_index = 0;
3044 		fw.text = bce_TPAT_b06FwText;
3045 
3046 		fw.data_addr = bce_TPAT_b06FwDataAddr;
3047 		fw.data_len = bce_TPAT_b06FwDataLen;
3048 		fw.data_index = 0;
3049 		fw.data = bce_TPAT_b06FwData;
3050 
3051 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
3052 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
3053 		fw.sbss_index = 0;
3054 		fw.sbss = bce_TPAT_b06FwSbss;
3055 
3056 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
3057 		fw.bss_len = bce_TPAT_b06FwBssLen;
3058 		fw.bss_index = 0;
3059 		fw.bss = bce_TPAT_b06FwBss;
3060 
3061 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
3062 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
3063 		fw.rodata_index = 0;
3064 		fw.rodata = bce_TPAT_b06FwRodata;
3065 	}
3066 
3067 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3068 	bce_start_cpu(sc, &cpu_reg);
3069 }
3070 
3071 /****************************************************************************/
3072 /* Initialize the CP CPU.                                                   */
3073 /*                                                                          */
3074 /* Returns:                                                                 */
3075 /*   Nothing.                                                               */
3076 /****************************************************************************/
3077 static void
3078 bce_init_cp_cpu(struct bce_softc *sc)
3079 {
3080 	struct cpu_reg cpu_reg;
3081 	struct fw_info fw;
3082 
3083 	cpu_reg.mode = BCE_CP_CPU_MODE;
3084 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
3085 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
3086 	cpu_reg.state = BCE_CP_CPU_STATE;
3087 	cpu_reg.state_value_clear = 0xffffff;
3088 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
3089 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
3090 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
3091 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
3092 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
3093 	cpu_reg.spad_base = BCE_CP_SCRATCH;
3094 	cpu_reg.mips_view_base = 0x8000000;
3095 
3096 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3097 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3098 		fw.ver_major = bce_CP_b09FwReleaseMajor;
3099 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
3100 		fw.ver_fix = bce_CP_b09FwReleaseFix;
3101 		fw.start_addr = bce_CP_b09FwStartAddr;
3102 
3103 		fw.text_addr = bce_CP_b09FwTextAddr;
3104 		fw.text_len = bce_CP_b09FwTextLen;
3105 		fw.text_index = 0;
3106 		fw.text = bce_CP_b09FwText;
3107 
3108 		fw.data_addr = bce_CP_b09FwDataAddr;
3109 		fw.data_len = bce_CP_b09FwDataLen;
3110 		fw.data_index = 0;
3111 		fw.data = bce_CP_b09FwData;
3112 
3113 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
3114 		fw.sbss_len = bce_CP_b09FwSbssLen;
3115 		fw.sbss_index = 0;
3116 		fw.sbss = bce_CP_b09FwSbss;
3117 
3118 		fw.bss_addr = bce_CP_b09FwBssAddr;
3119 		fw.bss_len = bce_CP_b09FwBssLen;
3120 		fw.bss_index = 0;
3121 		fw.bss = bce_CP_b09FwBss;
3122 
3123 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
3124 		fw.rodata_len = bce_CP_b09FwRodataLen;
3125 		fw.rodata_index = 0;
3126 		fw.rodata = bce_CP_b09FwRodata;
3127 	} else {
3128 		fw.ver_major = bce_CP_b06FwReleaseMajor;
3129 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
3130 		fw.ver_fix = bce_CP_b06FwReleaseFix;
3131 		fw.start_addr = bce_CP_b06FwStartAddr;
3132 
3133 		fw.text_addr = bce_CP_b06FwTextAddr;
3134 		fw.text_len = bce_CP_b06FwTextLen;
3135 		fw.text_index = 0;
3136 		fw.text = bce_CP_b06FwText;
3137 
3138 		fw.data_addr = bce_CP_b06FwDataAddr;
3139 		fw.data_len = bce_CP_b06FwDataLen;
3140 		fw.data_index = 0;
3141 		fw.data = bce_CP_b06FwData;
3142 
3143 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
3144 		fw.sbss_len = bce_CP_b06FwSbssLen;
3145 		fw.sbss_index = 0;
3146 		fw.sbss = bce_CP_b06FwSbss;
3147 
3148 		fw.bss_addr = bce_CP_b06FwBssAddr;
3149 		fw.bss_len = bce_CP_b06FwBssLen;
3150 		fw.bss_index = 0;
3151 		fw.bss = bce_CP_b06FwBss;
3152 
3153 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
3154 		fw.rodata_len = bce_CP_b06FwRodataLen;
3155 		fw.rodata_index = 0;
3156 		fw.rodata = bce_CP_b06FwRodata;
3157 	}
3158 
3159 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3160 	bce_start_cpu(sc, &cpu_reg);
3161 }
3162 
3163 /****************************************************************************/
3164 /* Initialize the COM CPU.                                                 */
3165 /*                                                                          */
3166 /* Returns:                                                                 */
3167 /*   Nothing.                                                               */
3168 /****************************************************************************/
3169 static void
3170 bce_init_com_cpu(struct bce_softc *sc)
3171 {
3172 	struct cpu_reg cpu_reg;
3173 	struct fw_info fw;
3174 
3175 	cpu_reg.mode = BCE_COM_CPU_MODE;
3176 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
3177 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
3178 	cpu_reg.state = BCE_COM_CPU_STATE;
3179 	cpu_reg.state_value_clear = 0xffffff;
3180 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
3181 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
3182 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
3183 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
3184 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
3185 	cpu_reg.spad_base = BCE_COM_SCRATCH;
3186 	cpu_reg.mips_view_base = 0x8000000;
3187 
3188 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3189 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3190 		fw.ver_major = bce_COM_b09FwReleaseMajor;
3191 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
3192 		fw.ver_fix = bce_COM_b09FwReleaseFix;
3193 		fw.start_addr = bce_COM_b09FwStartAddr;
3194 
3195 		fw.text_addr = bce_COM_b09FwTextAddr;
3196 		fw.text_len = bce_COM_b09FwTextLen;
3197 		fw.text_index = 0;
3198 		fw.text = bce_COM_b09FwText;
3199 
3200 		fw.data_addr = bce_COM_b09FwDataAddr;
3201 		fw.data_len = bce_COM_b09FwDataLen;
3202 		fw.data_index = 0;
3203 		fw.data = bce_COM_b09FwData;
3204 
3205 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
3206 		fw.sbss_len = bce_COM_b09FwSbssLen;
3207 		fw.sbss_index = 0;
3208 		fw.sbss = bce_COM_b09FwSbss;
3209 
3210 		fw.bss_addr = bce_COM_b09FwBssAddr;
3211 		fw.bss_len = bce_COM_b09FwBssLen;
3212 		fw.bss_index = 0;
3213 		fw.bss = bce_COM_b09FwBss;
3214 
3215 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
3216 		fw.rodata_len = bce_COM_b09FwRodataLen;
3217 		fw.rodata_index = 0;
3218 		fw.rodata = bce_COM_b09FwRodata;
3219 	} else {
3220 		fw.ver_major = bce_COM_b06FwReleaseMajor;
3221 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
3222 		fw.ver_fix = bce_COM_b06FwReleaseFix;
3223 		fw.start_addr = bce_COM_b06FwStartAddr;
3224 
3225 		fw.text_addr = bce_COM_b06FwTextAddr;
3226 		fw.text_len = bce_COM_b06FwTextLen;
3227 		fw.text_index = 0;
3228 		fw.text = bce_COM_b06FwText;
3229 
3230 		fw.data_addr = bce_COM_b06FwDataAddr;
3231 		fw.data_len = bce_COM_b06FwDataLen;
3232 		fw.data_index = 0;
3233 		fw.data = bce_COM_b06FwData;
3234 
3235 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
3236 		fw.sbss_len = bce_COM_b06FwSbssLen;
3237 		fw.sbss_index = 0;
3238 		fw.sbss = bce_COM_b06FwSbss;
3239 
3240 		fw.bss_addr = bce_COM_b06FwBssAddr;
3241 		fw.bss_len = bce_COM_b06FwBssLen;
3242 		fw.bss_index = 0;
3243 		fw.bss = bce_COM_b06FwBss;
3244 
3245 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
3246 		fw.rodata_len = bce_COM_b06FwRodataLen;
3247 		fw.rodata_index = 0;
3248 		fw.rodata = bce_COM_b06FwRodata;
3249 	}
3250 
3251 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
3252 	bce_start_cpu(sc, &cpu_reg);
3253 }
3254 
3255 /****************************************************************************/
3256 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
3257 /*                                                                          */
3258 /* Loads the firmware for each CPU and starts the CPU.                      */
3259 /*                                                                          */
3260 /* Returns:                                                                 */
3261 /*   Nothing.                                                               */
3262 /****************************************************************************/
3263 static void
3264 bce_init_cpus(struct bce_softc *sc)
3265 {
3266 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3267 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3268 		if (BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax) {
3269 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
3270 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
3271 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
3272 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
3273 		} else {
3274 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
3275 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
3276 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
3277 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
3278 		}
3279 	} else {
3280 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
3281 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
3282 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
3283 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
3284 	}
3285 
3286 	bce_init_rxp_cpu(sc);
3287 	bce_init_txp_cpu(sc);
3288 	bce_init_tpat_cpu(sc);
3289 	bce_init_com_cpu(sc);
3290 	bce_init_cp_cpu(sc);
3291 }
3292 
3293 /****************************************************************************/
3294 /* Initialize context memory.                                               */
3295 /*                                                                          */
3296 /* Clears the memory associated with each Context ID (CID).                 */
3297 /*                                                                          */
3298 /* Returns:                                                                 */
3299 /*   Nothing.                                                               */
3300 /****************************************************************************/
3301 static int
3302 bce_init_ctx(struct bce_softc *sc)
3303 {
3304 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3305 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3306 		/* DRC: Replace this constant value with a #define. */
3307 		int i, retry_cnt = 10;
3308 		uint32_t val;
3309 
3310 		/*
3311 		 * BCM5709 context memory may be cached
3312 		 * in host memory so prepare the host memory
3313 		 * for access.
3314 		 */
3315 		val = BCE_CTX_COMMAND_ENABLED | BCE_CTX_COMMAND_MEM_INIT |
3316 		    (1 << 12);
3317 		val |= (BCM_PAGE_BITS - 8) << 16;
3318 		REG_WR(sc, BCE_CTX_COMMAND, val);
3319 
3320 		/* Wait for mem init command to complete. */
3321 		for (i = 0; i < retry_cnt; i++) {
3322 			val = REG_RD(sc, BCE_CTX_COMMAND);
3323 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
3324 				break;
3325 			DELAY(2);
3326 		}
3327 		if (i == retry_cnt) {
3328 			device_printf(sc->bce_dev,
3329 			    "Context memory initialization failed!\n");
3330 			return ETIMEDOUT;
3331 		}
3332 
3333 		for (i = 0; i < sc->ctx_pages; i++) {
3334 			int j;
3335 
3336 			/*
3337 			 * Set the physical address of the context
3338 			 * memory cache.
3339 			 */
3340 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
3341 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
3342 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
3343 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
3344 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
3345 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL,
3346 			    i | BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3347 
3348 			/*
3349 			 * Verify that the context memory write was successful.
3350 			 */
3351 			for (j = 0; j < retry_cnt; j++) {
3352 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
3353 				if ((val &
3354 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3355 					break;
3356 				DELAY(5);
3357 			}
3358 			if (j == retry_cnt) {
3359 				device_printf(sc->bce_dev,
3360 				    "Failed to initialize context page!\n");
3361 				return ETIMEDOUT;
3362 			}
3363 		}
3364 	} else {
3365 		uint32_t vcid_addr, offset;
3366 
3367 		/*
3368 		 * For the 5706/5708, context memory is local to
3369 		 * the controller, so initialize the controller
3370 		 * context memory.
3371 		 */
3372 
3373 		vcid_addr = GET_CID_ADDR(96);
3374 		while (vcid_addr) {
3375 			vcid_addr -= PHY_CTX_SIZE;
3376 
3377 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
3378 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3379 
3380 			for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
3381 				CTX_WR(sc, 0x00, offset, 0);
3382 
3383 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
3384 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
3385 		}
3386 	}
3387 	return 0;
3388 }
3389 
3390 /****************************************************************************/
3391 /* Fetch the permanent MAC address of the controller.                       */
3392 /*                                                                          */
3393 /* Returns:                                                                 */
3394 /*   Nothing.                                                               */
3395 /****************************************************************************/
3396 static void
3397 bce_get_mac_addr(struct bce_softc *sc)
3398 {
3399 	uint32_t mac_lo = 0, mac_hi = 0;
3400 
3401 	/*
3402 	 * The NetXtreme II bootcode populates various NIC
3403 	 * power-on and runtime configuration items in a
3404 	 * shared memory area.  The factory configured MAC
3405 	 * address is available from both NVRAM and the
3406 	 * shared memory area so we'll read the value from
3407 	 * shared memory for speed.
3408 	 */
3409 
3410 	mac_hi = bce_shmem_rd(sc,  BCE_PORT_HW_CFG_MAC_UPPER);
3411 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
3412 
3413 	if (mac_lo == 0 && mac_hi == 0) {
3414 		if_printf(&sc->arpcom.ac_if, "Invalid Ethernet address!\n");
3415 	} else {
3416 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3417 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3418 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3419 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3420 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3421 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3422 	}
3423 }
3424 
3425 /****************************************************************************/
3426 /* Program the MAC address.                                                 */
3427 /*                                                                          */
3428 /* Returns:                                                                 */
3429 /*   Nothing.                                                               */
3430 /****************************************************************************/
3431 static void
3432 bce_set_mac_addr(struct bce_softc *sc)
3433 {
3434 	const uint8_t *mac_addr = sc->eaddr;
3435 	uint32_t val;
3436 
3437 	val = (mac_addr[0] << 8) | mac_addr[1];
3438 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
3439 
3440 	val = (mac_addr[2] << 24) |
3441 	      (mac_addr[3] << 16) |
3442 	      (mac_addr[4] << 8) |
3443 	      mac_addr[5];
3444 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
3445 }
3446 
3447 /****************************************************************************/
3448 /* Stop the controller.                                                     */
3449 /*                                                                          */
3450 /* Returns:                                                                 */
3451 /*   Nothing.                                                               */
3452 /****************************************************************************/
3453 static void
3454 bce_stop(struct bce_softc *sc)
3455 {
3456 	struct ifnet *ifp = &sc->arpcom.ac_if;
3457 	int i;
3458 
3459 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3460 
3461 	callout_stop(&sc->bce_tick_callout);
3462 
3463 	/* Disable the transmit/receive blocks. */
3464 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
3465 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3466 	DELAY(20);
3467 
3468 	bce_disable_intr(sc);
3469 
3470 	ifp->if_flags &= ~IFF_RUNNING;
3471 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
3472 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
3473 		ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
3474 	}
3475 
3476 	/* Free the RX lists. */
3477 	for (i = 0; i < sc->rx_ring_cnt; ++i)
3478 		bce_free_rx_chain(&sc->rx_rings[i]);
3479 
3480 	/* Free TX buffers. */
3481 	for (i = 0; i < sc->tx_ring_cnt; ++i)
3482 		bce_free_tx_chain(&sc->tx_rings[i]);
3483 
3484 	sc->bce_link = 0;
3485 	sc->bce_coalchg_mask = 0;
3486 }
3487 
3488 static int
3489 bce_reset(struct bce_softc *sc, uint32_t reset_code)
3490 {
3491 	uint32_t val;
3492 	int i, rc = 0;
3493 
3494 	/* Wait for pending PCI transactions to complete. */
3495 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
3496 	       BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3497 	       BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3498 	       BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3499 	       BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3500 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
3501 	DELAY(5);
3502 
3503 	/* Disable DMA */
3504 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3505 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3506 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3507 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3508 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3509 	}
3510 
3511 	/* Assume bootcode is running. */
3512 	sc->bce_fw_timed_out = 0;
3513 	sc->bce_drv_cardiac_arrest = 0;
3514 
3515 	/* Give the firmware a chance to prepare for the reset. */
3516 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
3517 	if (rc) {
3518 		if_printf(&sc->arpcom.ac_if,
3519 			  "Firmware is not ready for reset\n");
3520 		return rc;
3521 	}
3522 
3523 	/* Set a firmware reminder that this is a soft reset. */
3524 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE,
3525 	    BCE_DRV_RESET_SIGNATURE_MAGIC);
3526 
3527 	/* Dummy read to force the chip to complete all current transactions. */
3528 	val = REG_RD(sc, BCE_MISC_ID);
3529 
3530 	/* Chip reset. */
3531 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3532 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3533 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
3534 		REG_RD(sc, BCE_MISC_COMMAND);
3535 		DELAY(5);
3536 
3537 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3538 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3539 
3540 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
3541 	} else {
3542 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3543 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3544 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3545 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
3546 
3547 		/* Allow up to 30us for reset to complete. */
3548 		for (i = 0; i < 10; i++) {
3549 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
3550 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3551 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
3552 				break;
3553 			DELAY(10);
3554 		}
3555 
3556 		/* Check that reset completed successfully. */
3557 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3558 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3559 			if_printf(&sc->arpcom.ac_if, "Reset failed!\n");
3560 			return EBUSY;
3561 		}
3562 	}
3563 
3564 	/* Make sure byte swapping is properly configured. */
3565 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
3566 	if (val != 0x01020304) {
3567 		if_printf(&sc->arpcom.ac_if, "Byte swap is incorrect!\n");
3568 		return ENODEV;
3569 	}
3570 
3571 	/* Just completed a reset, assume that firmware is running again. */
3572 	sc->bce_fw_timed_out = 0;
3573 	sc->bce_drv_cardiac_arrest = 0;
3574 
3575 	/* Wait for the firmware to finish its initialization. */
3576 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
3577 	if (rc) {
3578 		if_printf(&sc->arpcom.ac_if,
3579 			  "Firmware did not complete initialization!\n");
3580 	}
3581 
3582 	if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) {
3583 		bce_setup_msix_table(sc);
3584 		/* Prevent MSIX table reads and write from timing out */
3585 		REG_WR(sc, BCE_MISC_ECO_HW_CTL,
3586 		    BCE_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
3587 
3588 	}
3589 	return rc;
3590 }
3591 
3592 static int
3593 bce_chipinit(struct bce_softc *sc)
3594 {
3595 	uint32_t val;
3596 	int rc = 0;
3597 
3598 	/* Make sure the interrupt is not active. */
3599 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
3600 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
3601 
3602 	/*
3603 	 * Initialize DMA byte/word swapping, configure the number of DMA
3604 	 * channels and PCI clock compensation delay.
3605 	 */
3606 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
3607 	      BCE_DMA_CONFIG_DATA_WORD_SWAP |
3608 #if BYTE_ORDER == BIG_ENDIAN
3609 	      BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
3610 #endif
3611 	      BCE_DMA_CONFIG_CNTL_WORD_SWAP |
3612 	      DMA_READ_CHANS << 12 |
3613 	      DMA_WRITE_CHANS << 16;
3614 
3615 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3616 
3617 	if ((sc->bce_flags & BCE_PCIX_FLAG) && sc->bus_speed_mhz == 133)
3618 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
3619 
3620 	/*
3621 	 * This setting resolves a problem observed on certain Intel PCI
3622 	 * chipsets that cannot handle multiple outstanding DMA operations.
3623 	 * See errata E9_5706A1_65.
3624 	 */
3625 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706 &&
3626 	    BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0 &&
3627 	    !(sc->bce_flags & BCE_PCIX_FLAG))
3628 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
3629 
3630 	REG_WR(sc, BCE_DMA_CONFIG, val);
3631 
3632 	/* Enable the RX_V2P and Context state machines before access. */
3633 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3634 	       BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3635 	       BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3636 	       BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3637 
3638 	/* Initialize context mapping and zero out the quick contexts. */
3639 	rc = bce_init_ctx(sc);
3640 	if (rc != 0)
3641 		return rc;
3642 
3643 	/* Initialize the on-boards CPUs */
3644 	bce_init_cpus(sc);
3645 
3646 	/* Enable management frames (NC-SI) to flow to the MCP. */
3647 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3648 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) |
3649 		    BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3650 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3651 	}
3652 
3653 	/* Prepare NVRAM for access. */
3654 	rc = bce_init_nvram(sc);
3655 	if (rc != 0)
3656 		return rc;
3657 
3658 	/* Set the kernel bypass block size */
3659 	val = REG_RD(sc, BCE_MQ_CONFIG);
3660 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3661 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3662 
3663 	/* Enable bins used on the 5709/5716. */
3664 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3665 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3666 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
3667 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
3668 			val |= BCE_MQ_CONFIG_HALT_DIS;
3669 	}
3670 
3671 	REG_WR(sc, BCE_MQ_CONFIG, val);
3672 
3673 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3674 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
3675 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
3676 
3677 	/* Set the page size and clear the RV2P processor stall bits. */
3678 	val = (BCM_PAGE_BITS - 8) << 24;
3679 	REG_WR(sc, BCE_RV2P_CONFIG, val);
3680 
3681 	/* Configure page size. */
3682 	val = REG_RD(sc, BCE_TBDR_CONFIG);
3683 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
3684 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3685 	REG_WR(sc, BCE_TBDR_CONFIG, val);
3686 
3687 	/* Set the perfect match control register to default. */
3688 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
3689 
3690 	return 0;
3691 }
3692 
3693 /****************************************************************************/
3694 /* Initialize the controller in preparation to send/receive traffic.        */
3695 /*                                                                          */
3696 /* Returns:                                                                 */
3697 /*   0 for success, positive value for failure.                             */
3698 /****************************************************************************/
3699 static int
3700 bce_blockinit(struct bce_softc *sc)
3701 {
3702 	uint32_t reg, val;
3703 	int i;
3704 
3705 	/* Load the hardware default MAC address. */
3706 	bce_set_mac_addr(sc);
3707 
3708 	/* Set the Ethernet backoff seed value */
3709 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3710 	      sc->eaddr[3] + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3711 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
3712 
3713 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
3714 
3715 	/* Set up link change interrupt generation. */
3716 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
3717 
3718 	/* Program the physical address of the status block. */
3719 	REG_WR(sc, BCE_HC_STATUS_ADDR_L, BCE_ADDR_LO(sc->status_block_paddr));
3720 	REG_WR(sc, BCE_HC_STATUS_ADDR_H, BCE_ADDR_HI(sc->status_block_paddr));
3721 
3722 	/* Program the physical address of the statistics block. */
3723 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
3724 	       BCE_ADDR_LO(sc->stats_block_paddr));
3725 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
3726 	       BCE_ADDR_HI(sc->stats_block_paddr));
3727 
3728 	/* Program various host coalescing parameters. */
3729 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
3730 	       (sc->bce_tx_quick_cons_trip_int << 16) |
3731 	       sc->bce_tx_quick_cons_trip);
3732 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
3733 	       (sc->bce_rx_quick_cons_trip_int << 16) |
3734 	       sc->bce_rx_quick_cons_trip);
3735 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
3736 	       (sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
3737 	REG_WR(sc, BCE_HC_TX_TICKS,
3738 	       (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
3739 	REG_WR(sc, BCE_HC_RX_TICKS,
3740 	       (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
3741 	REG_WR(sc, BCE_HC_COM_TICKS,
3742 	       (sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
3743 	REG_WR(sc, BCE_HC_CMD_TICKS,
3744 	       (sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
3745 	REG_WR(sc, BCE_HC_STATS_TICKS, (sc->bce_stats_ticks & 0xffff00));
3746 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);	/* 3ms */
3747 
3748 	if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX)
3749 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
3750 
3751 	val = BCE_HC_CONFIG_TX_TMR_MODE | BCE_HC_CONFIG_COLLECT_STATS;
3752 	if ((sc->bce_flags & BCE_ONESHOT_MSI_FLAG) ||
3753 	    sc->bce_irq_type == PCI_INTR_TYPE_MSIX) {
3754 		if (bootverbose) {
3755 			if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX) {
3756 				if_printf(&sc->arpcom.ac_if,
3757 				    "using MSI-X\n");
3758 			} else {
3759 				if_printf(&sc->arpcom.ac_if,
3760 				    "using oneshot MSI\n");
3761 			}
3762 		}
3763 		val |= BCE_HC_CONFIG_ONE_SHOT | BCE_HC_CONFIG_USE_INT_PARAM;
3764 		if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX)
3765 			val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
3766 	}
3767 	REG_WR(sc, BCE_HC_CONFIG, val);
3768 
3769 	for (i = 1; i < sc->rx_ring_cnt; ++i) {
3770 		uint32_t base;
3771 
3772 		base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) + BCE_HC_SB_CONFIG_1;
3773 		KKASSERT(base <= BCE_HC_SB_CONFIG_8);
3774 
3775 		REG_WR(sc, base,
3776 		    BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
3777 		    /* BCE_HC_SB_CONFIG_1_RX_TMR_MODE | */
3778 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
3779 
3780 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
3781 		    (sc->bce_tx_quick_cons_trip_int << 16) |
3782 		    sc->bce_tx_quick_cons_trip);
3783 		REG_WR(sc, base + BCE_HC_RX_QUICK_CONS_TRIP_OFF,
3784 		    (sc->bce_rx_quick_cons_trip_int << 16) |
3785 		    sc->bce_rx_quick_cons_trip);
3786 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
3787 		    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
3788 		REG_WR(sc, base + BCE_HC_RX_TICKS_OFF,
3789 		    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
3790 	}
3791 
3792 	/* Clear the internal statistics counters. */
3793 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
3794 
3795 	/* Verify that bootcode is running. */
3796 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
3797 
3798 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3799 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
3800 		if_printf(&sc->arpcom.ac_if,
3801 			  "Bootcode not running! Found: 0x%08X, "
3802 			  "Expected: 08%08X\n",
3803 			  reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK,
3804 			  BCE_DEV_INFO_SIGNATURE_MAGIC);
3805 		return ENODEV;
3806 	}
3807 
3808 	/* Enable DMA */
3809 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3810 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3811 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
3812 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
3813 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
3814 	}
3815 
3816 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3817 	bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
3818 
3819 	/* Enable link state change interrupt generation. */
3820 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3821 
3822 	/* Enable the RXP. */
3823 	bce_start_rxp_cpu(sc);
3824 
3825 	/* Disable management frames (NC-SI) from flowing to the MCP. */
3826 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
3827 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
3828 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
3829 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
3830 	}
3831 
3832 	/* Enable all remaining blocks in the MAC. */
3833 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
3834 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
3835 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
3836 		    BCE_MISC_ENABLE_DEFAULT_XI);
3837 	} else {
3838 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
3839 	}
3840 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
3841 	DELAY(20);
3842 
3843 	/* Save the current host coalescing block settings. */
3844 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
3845 
3846 	return 0;
3847 }
3848 
3849 /****************************************************************************/
3850 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3851 /*                                                                          */
3852 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3853 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3854 /* necessary.                                                               */
3855 /*                                                                          */
3856 /* Returns:                                                                 */
3857 /*   0 for success, positive value for failure.                             */
3858 /****************************************************************************/
3859 static int
3860 bce_newbuf_std(struct bce_rx_ring *rxr, uint16_t *prod, uint16_t chain_prod,
3861     uint32_t *prod_bseq, int init)
3862 {
3863 	struct bce_rx_buf *rx_buf;
3864 	bus_dmamap_t map;
3865 	bus_dma_segment_t seg;
3866 	struct mbuf *m_new;
3867 	int error, nseg;
3868 
3869 	/* This is a new mbuf allocation. */
3870 	m_new = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3871 	if (m_new == NULL)
3872 		return ENOBUFS;
3873 
3874 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
3875 
3876 	/* Map the mbuf cluster into device memory. */
3877 	error = bus_dmamap_load_mbuf_segment(rxr->rx_mbuf_tag,
3878 	    rxr->rx_mbuf_tmpmap, m_new, &seg, 1, &nseg, BUS_DMA_NOWAIT);
3879 	if (error) {
3880 		m_freem(m_new);
3881 		if (init) {
3882 			if_printf(&rxr->sc->arpcom.ac_if,
3883 			    "Error mapping mbuf into RX chain!\n");
3884 		}
3885 		return error;
3886 	}
3887 
3888 	rx_buf = &rxr->rx_bufs[chain_prod];
3889 	if (rx_buf->rx_mbuf_ptr != NULL)
3890 		bus_dmamap_unload(rxr->rx_mbuf_tag, rx_buf->rx_mbuf_map);
3891 
3892 	map = rx_buf->rx_mbuf_map;
3893 	rx_buf->rx_mbuf_map = rxr->rx_mbuf_tmpmap;
3894 	rxr->rx_mbuf_tmpmap = map;
3895 
3896 	/* Save the mbuf and update our counter. */
3897 	rx_buf->rx_mbuf_ptr = m_new;
3898 	rx_buf->rx_mbuf_paddr = seg.ds_addr;
3899 	rxr->free_rx_bd--;
3900 
3901 	bce_setup_rxdesc_std(rxr, chain_prod, prod_bseq);
3902 
3903 	return 0;
3904 }
3905 
3906 static void
3907 bce_setup_rxdesc_std(struct bce_rx_ring *rxr, uint16_t chain_prod,
3908     uint32_t *prod_bseq)
3909 {
3910 	const struct bce_rx_buf *rx_buf;
3911 	struct rx_bd *rxbd;
3912 	bus_addr_t paddr;
3913 	int len;
3914 
3915 	rx_buf = &rxr->rx_bufs[chain_prod];
3916 	paddr = rx_buf->rx_mbuf_paddr;
3917 	len = rx_buf->rx_mbuf_ptr->m_len;
3918 
3919 	/* Setup the rx_bd for the first segment. */
3920 	rxbd = &rxr->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
3921 
3922 	rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(paddr));
3923 	rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(paddr));
3924 	rxbd->rx_bd_len = htole32(len);
3925 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3926 	*prod_bseq += len;
3927 
3928 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3929 }
3930 
3931 /****************************************************************************/
3932 /* Initialize the TX context memory.                                        */
3933 /*                                                                          */
3934 /* Returns:                                                                 */
3935 /*   Nothing                                                                */
3936 /****************************************************************************/
3937 static void
3938 bce_init_tx_context(struct bce_tx_ring *txr)
3939 {
3940 	uint32_t val;
3941 
3942 	/* Initialize the context ID for an L2 TX chain. */
3943 	if (BCE_CHIP_NUM(txr->sc) == BCE_CHIP_NUM_5709 ||
3944 	    BCE_CHIP_NUM(txr->sc) == BCE_CHIP_NUM_5716) {
3945 		/* Set the CID type to support an L2 connection. */
3946 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3947 		CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3948 		    BCE_L2CTX_TX_TYPE_XI, val);
3949 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3950 		CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3951 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
3952 
3953 		/* Point the hardware to the first page in the chain. */
3954 		val = BCE_ADDR_HI(txr->tx_bd_chain_paddr[0]);
3955 		CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3956 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
3957 		val = BCE_ADDR_LO(txr->tx_bd_chain_paddr[0]);
3958 		CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3959 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
3960 	} else {
3961 		/* Set the CID type to support an L2 connection. */
3962 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
3963 		CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3964 		    BCE_L2CTX_TX_TYPE, val);
3965 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
3966 		CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3967 		    BCE_L2CTX_TX_CMD_TYPE, val);
3968 
3969 		/* Point the hardware to the first page in the chain. */
3970 		val = BCE_ADDR_HI(txr->tx_bd_chain_paddr[0]);
3971 		CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3972 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
3973 		val = BCE_ADDR_LO(txr->tx_bd_chain_paddr[0]);
3974 		CTX_WR(txr->sc, GET_CID_ADDR(txr->tx_cid),
3975 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
3976 	}
3977 }
3978 
3979 /****************************************************************************/
3980 /* Allocate memory and initialize the TX data structures.                   */
3981 /*                                                                          */
3982 /* Returns:                                                                 */
3983 /*   0 for success, positive value for failure.                             */
3984 /****************************************************************************/
3985 static int
3986 bce_init_tx_chain(struct bce_tx_ring *txr)
3987 {
3988 	struct tx_bd *txbd;
3989 	int i, rc = 0;
3990 
3991 	/* Set the initial TX producer/consumer indices. */
3992 	txr->tx_prod = 0;
3993 	txr->tx_cons = 0;
3994 	txr->tx_prod_bseq = 0;
3995 	txr->used_tx_bd = 0;
3996 	txr->max_tx_bd = USABLE_TX_BD(txr);
3997 
3998 	/*
3999 	 * The NetXtreme II supports a linked-list structre called
4000 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
4001 	 * consists of a series of 1 or more chain pages, each of which
4002 	 * consists of a fixed number of BD entries.
4003 	 * The last BD entry on each page is a pointer to the next page
4004 	 * in the chain, and the last pointer in the BD chain
4005 	 * points back to the beginning of the chain.
4006 	 */
4007 
4008 	/* Set the TX next pointer chain entries. */
4009 	for (i = 0; i < txr->tx_pages; i++) {
4010 		int j;
4011 
4012 		txbd = &txr->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4013 
4014 		/* Check if we've reached the last page. */
4015 		if (i == (txr->tx_pages - 1))
4016 			j = 0;
4017 		else
4018 			j = i + 1;
4019 
4020 		txbd->tx_bd_haddr_hi =
4021 		    htole32(BCE_ADDR_HI(txr->tx_bd_chain_paddr[j]));
4022 		txbd->tx_bd_haddr_lo =
4023 		    htole32(BCE_ADDR_LO(txr->tx_bd_chain_paddr[j]));
4024 	}
4025 	bce_init_tx_context(txr);
4026 
4027 	return(rc);
4028 }
4029 
4030 /****************************************************************************/
4031 /* Free memory and clear the TX data structures.                            */
4032 /*                                                                          */
4033 /* Returns:                                                                 */
4034 /*   Nothing.                                                               */
4035 /****************************************************************************/
4036 static void
4037 bce_free_tx_chain(struct bce_tx_ring *txr)
4038 {
4039 	int i;
4040 
4041 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4042 	for (i = 0; i < TOTAL_TX_BD(txr); i++) {
4043 		struct bce_tx_buf *tx_buf = &txr->tx_bufs[i];
4044 
4045 		if (tx_buf->tx_mbuf_ptr != NULL) {
4046 			bus_dmamap_unload(txr->tx_mbuf_tag,
4047 			    tx_buf->tx_mbuf_map);
4048 			m_freem(tx_buf->tx_mbuf_ptr);
4049 			tx_buf->tx_mbuf_ptr = NULL;
4050 		}
4051 	}
4052 
4053 	/* Clear each TX chain page. */
4054 	for (i = 0; i < txr->tx_pages; i++)
4055 		bzero(txr->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
4056 	txr->used_tx_bd = 0;
4057 }
4058 
4059 /****************************************************************************/
4060 /* Initialize the RX context memory.                                        */
4061 /*                                                                          */
4062 /* Returns:                                                                 */
4063 /*   Nothing                                                                */
4064 /****************************************************************************/
4065 static void
4066 bce_init_rx_context(struct bce_rx_ring *rxr)
4067 {
4068 	uint32_t val;
4069 
4070 	/* Initialize the context ID for an L2 RX chain. */
4071 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4072 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4073 
4074 	/*
4075 	 * Set the level for generating pause frames
4076 	 * when the number of available rx_bd's gets
4077 	 * too low (the low watermark) and the level
4078 	 * when pause frames can be stopped (the high
4079 	 * watermark).
4080 	 */
4081 	if (BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5709 ||
4082 	    BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5716) {
4083 		uint32_t lo_water, hi_water;
4084 
4085 		lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4086 		hi_water = USABLE_RX_BD(rxr) / 4;
4087 
4088 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
4089 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
4090 
4091 		if (hi_water > 0xf)
4092 			hi_water = 0xf;
4093 		else if (hi_water == 0)
4094 			lo_water = 0;
4095 		val |= lo_water |
4096 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
4097 	}
4098 
4099  	CTX_WR(rxr->sc, GET_CID_ADDR(rxr->rx_cid),
4100 	    BCE_L2CTX_RX_CTX_TYPE, val);
4101 
4102 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4103 	if (BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5709 ||
4104 	    BCE_CHIP_NUM(rxr->sc) == BCE_CHIP_NUM_5716) {
4105 		val = REG_RD(rxr->sc, BCE_MQ_MAP_L2_5);
4106 		REG_WR(rxr->sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
4107 	}
4108 
4109 	/* Point the hardware to the first page in the chain. */
4110 	val = BCE_ADDR_HI(rxr->rx_bd_chain_paddr[0]);
4111 	CTX_WR(rxr->sc, GET_CID_ADDR(rxr->rx_cid),
4112 	    BCE_L2CTX_RX_NX_BDHADDR_HI, val);
4113 	val = BCE_ADDR_LO(rxr->rx_bd_chain_paddr[0]);
4114 	CTX_WR(rxr->sc, GET_CID_ADDR(rxr->rx_cid),
4115 	    BCE_L2CTX_RX_NX_BDHADDR_LO, val);
4116 }
4117 
4118 /****************************************************************************/
4119 /* Allocate memory and initialize the RX data structures.                   */
4120 /*                                                                          */
4121 /* Returns:                                                                 */
4122 /*   0 for success, positive value for failure.                             */
4123 /****************************************************************************/
4124 static int
4125 bce_init_rx_chain(struct bce_rx_ring *rxr)
4126 {
4127 	struct rx_bd *rxbd;
4128 	int i, rc = 0;
4129 	uint16_t prod, chain_prod;
4130 	uint32_t prod_bseq;
4131 
4132 	/* Initialize the RX producer and consumer indices. */
4133 	rxr->rx_prod = 0;
4134 	rxr->rx_cons = 0;
4135 	rxr->rx_prod_bseq = 0;
4136 	rxr->free_rx_bd = USABLE_RX_BD(rxr);
4137 	rxr->max_rx_bd = USABLE_RX_BD(rxr);
4138 
4139 	/* Clear cache status index */
4140 	rxr->last_status_idx = 0;
4141 
4142 	/* Initialize the RX next pointer chain entries. */
4143 	for (i = 0; i < rxr->rx_pages; i++) {
4144 		int j;
4145 
4146 		rxbd = &rxr->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4147 
4148 		/* Check if we've reached the last page. */
4149 		if (i == (rxr->rx_pages - 1))
4150 			j = 0;
4151 		else
4152 			j = i + 1;
4153 
4154 		/* Setup the chain page pointers. */
4155 		rxbd->rx_bd_haddr_hi =
4156 		    htole32(BCE_ADDR_HI(rxr->rx_bd_chain_paddr[j]));
4157 		rxbd->rx_bd_haddr_lo =
4158 		    htole32(BCE_ADDR_LO(rxr->rx_bd_chain_paddr[j]));
4159 	}
4160 
4161 	/* Allocate mbuf clusters for the rx_bd chain. */
4162 	prod = prod_bseq = 0;
4163 	while (prod < TOTAL_RX_BD(rxr)) {
4164 		chain_prod = RX_CHAIN_IDX(rxr, prod);
4165 		if (bce_newbuf_std(rxr, &prod, chain_prod, &prod_bseq, 1)) {
4166 			if_printf(&rxr->sc->arpcom.ac_if,
4167 			    "Error filling RX chain: rx_bd[0x%04X]!\n",
4168 			    chain_prod);
4169 			rc = ENOBUFS;
4170 			break;
4171 		}
4172 		prod = NEXT_RX_BD(prod);
4173 	}
4174 
4175 	/* Save the RX chain producer index. */
4176 	rxr->rx_prod = prod;
4177 	rxr->rx_prod_bseq = prod_bseq;
4178 
4179 	/* Tell the chip about the waiting rx_bd's. */
4180 	REG_WR16(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BDIDX,
4181 	    rxr->rx_prod);
4182 	REG_WR(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BSEQ,
4183 	    rxr->rx_prod_bseq);
4184 
4185 	bce_init_rx_context(rxr);
4186 
4187 	return(rc);
4188 }
4189 
4190 /****************************************************************************/
4191 /* Free memory and clear the RX data structures.                            */
4192 /*                                                                          */
4193 /* Returns:                                                                 */
4194 /*   Nothing.                                                               */
4195 /****************************************************************************/
4196 static void
4197 bce_free_rx_chain(struct bce_rx_ring *rxr)
4198 {
4199 	int i;
4200 
4201 	/* Free any mbufs still in the RX mbuf chain. */
4202 	for (i = 0; i < TOTAL_RX_BD(rxr); i++) {
4203 		struct bce_rx_buf *rx_buf = &rxr->rx_bufs[i];
4204 
4205 		if (rx_buf->rx_mbuf_ptr != NULL) {
4206 			bus_dmamap_unload(rxr->rx_mbuf_tag,
4207 			    rx_buf->rx_mbuf_map);
4208 			m_freem(rx_buf->rx_mbuf_ptr);
4209 			rx_buf->rx_mbuf_ptr = NULL;
4210 		}
4211 	}
4212 
4213 	/* Clear each RX chain page. */
4214 	for (i = 0; i < rxr->rx_pages; i++)
4215 		bzero(rxr->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
4216 }
4217 
4218 /****************************************************************************/
4219 /* Set media options.                                                       */
4220 /*                                                                          */
4221 /* Returns:                                                                 */
4222 /*   0 for success, positive value for failure.                             */
4223 /****************************************************************************/
4224 static int
4225 bce_ifmedia_upd(struct ifnet *ifp)
4226 {
4227 	struct bce_softc *sc = ifp->if_softc;
4228 	struct mii_data *mii = device_get_softc(sc->bce_miibus);
4229 	int error = 0;
4230 
4231 	/*
4232 	 * 'mii' will be NULL, when this function is called on following
4233 	 * code path: bce_attach() -> bce_mgmt_init()
4234 	 */
4235 	if (mii != NULL) {
4236 		/* Make sure the MII bus has been enumerated. */
4237 		sc->bce_link = 0;
4238 		if (mii->mii_instance) {
4239 			struct mii_softc *miisc;
4240 
4241 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4242 				mii_phy_reset(miisc);
4243 		}
4244 		error = mii_mediachg(mii);
4245 	}
4246 	return error;
4247 }
4248 
4249 /****************************************************************************/
4250 /* Reports current media status.                                            */
4251 /*                                                                          */
4252 /* Returns:                                                                 */
4253 /*   Nothing.                                                               */
4254 /****************************************************************************/
4255 static void
4256 bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4257 {
4258 	struct bce_softc *sc = ifp->if_softc;
4259 	struct mii_data *mii = device_get_softc(sc->bce_miibus);
4260 
4261 	mii_pollstat(mii);
4262 	ifmr->ifm_active = mii->mii_media_active;
4263 	ifmr->ifm_status = mii->mii_media_status;
4264 }
4265 
4266 /****************************************************************************/
4267 /* Handles PHY generated interrupt events.                                  */
4268 /*                                                                          */
4269 /* Returns:                                                                 */
4270 /*   Nothing.                                                               */
4271 /****************************************************************************/
4272 static void
4273 bce_phy_intr(struct bce_softc *sc)
4274 {
4275 	uint32_t new_link_state, old_link_state;
4276 	struct ifnet *ifp = &sc->arpcom.ac_if;
4277 
4278 	ASSERT_SERIALIZED(&sc->main_serialize);
4279 
4280 	new_link_state = sc->status_block->status_attn_bits &
4281 			 STATUS_ATTN_BITS_LINK_STATE;
4282 	old_link_state = sc->status_block->status_attn_bits_ack &
4283 			 STATUS_ATTN_BITS_LINK_STATE;
4284 
4285 	/* Handle any changes if the link state has changed. */
4286 	if (new_link_state != old_link_state) {	/* XXX redundant? */
4287 		/* Update the status_attn_bits_ack field in the status block. */
4288 		if (new_link_state) {
4289 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
4290 			       STATUS_ATTN_BITS_LINK_STATE);
4291 			if (bootverbose)
4292 				if_printf(ifp, "Link is now UP.\n");
4293 		} else {
4294 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
4295 			       STATUS_ATTN_BITS_LINK_STATE);
4296 			if (bootverbose)
4297 				if_printf(ifp, "Link is now DOWN.\n");
4298 		}
4299 
4300 		/*
4301 		 * Assume link is down and allow tick routine to
4302 		 * update the state based on the actual media state.
4303 		 */
4304 		sc->bce_link = 0;
4305 		callout_stop(&sc->bce_tick_callout);
4306 		bce_tick_serialized(sc);
4307 	}
4308 
4309 	/* Acknowledge the link change interrupt. */
4310 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
4311 }
4312 
4313 /****************************************************************************/
4314 /* Reads the receive consumer value from the status block (skipping over    */
4315 /* chain page pointer if necessary).                                        */
4316 /*                                                                          */
4317 /* Returns:                                                                 */
4318 /*   hw_cons                                                                */
4319 /****************************************************************************/
4320 static __inline uint16_t
4321 bce_get_hw_rx_cons(struct bce_rx_ring *rxr)
4322 {
4323 	uint16_t hw_cons = *rxr->rx_hw_cons;
4324 
4325 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4326 		hw_cons++;
4327 	return hw_cons;
4328 }
4329 
4330 /****************************************************************************/
4331 /* Handles received frame interrupt events.                                 */
4332 /*                                                                          */
4333 /* Returns:                                                                 */
4334 /*   Nothing.                                                               */
4335 /****************************************************************************/
4336 static void
4337 bce_rx_intr(struct bce_rx_ring *rxr, int count, uint16_t hw_cons)
4338 {
4339 	struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
4340 	uint16_t sw_cons, sw_chain_cons, sw_prod, sw_chain_prod;
4341 	uint32_t sw_prod_bseq;
4342 	int cpuid = mycpuid;
4343 
4344 	ASSERT_SERIALIZED(&rxr->rx_serialize);
4345 
4346 	/* Get working copies of the driver's view of the RX indices. */
4347 	sw_cons = rxr->rx_cons;
4348 	sw_prod = rxr->rx_prod;
4349 	sw_prod_bseq = rxr->rx_prod_bseq;
4350 
4351 	/* Scan through the receive chain as long as there is work to do. */
4352 	while (sw_cons != hw_cons) {
4353 		struct pktinfo pi0, *pi = NULL;
4354 		struct bce_rx_buf *rx_buf;
4355 		struct mbuf *m = NULL;
4356 		struct l2_fhdr *l2fhdr = NULL;
4357 		unsigned int len;
4358 		uint32_t status = 0;
4359 
4360 #ifdef IFPOLL_ENABLE
4361 		if (count >= 0 && count-- == 0)
4362 			break;
4363 #endif
4364 
4365 		/*
4366 		 * Convert the producer/consumer indices
4367 		 * to an actual rx_bd index.
4368 		 */
4369 		sw_chain_cons = RX_CHAIN_IDX(rxr, sw_cons);
4370 		sw_chain_prod = RX_CHAIN_IDX(rxr, sw_prod);
4371 		rx_buf = &rxr->rx_bufs[sw_chain_cons];
4372 
4373 		rxr->free_rx_bd++;
4374 
4375 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4376 		if (rx_buf->rx_mbuf_ptr != NULL) {
4377 			if (sw_chain_cons != sw_chain_prod) {
4378 				if_printf(ifp, "RX cons(%d) != prod(%d), "
4379 				    "drop!\n", sw_chain_cons, sw_chain_prod);
4380 				IFNET_STAT_INC(ifp, ierrors, 1);
4381 
4382 				bce_setup_rxdesc_std(rxr, sw_chain_cons,
4383 				    &sw_prod_bseq);
4384 				m = NULL;
4385 				goto bce_rx_int_next_rx;
4386 			}
4387 
4388 			/* Unmap the mbuf from DMA space. */
4389 			bus_dmamap_sync(rxr->rx_mbuf_tag, rx_buf->rx_mbuf_map,
4390 			    BUS_DMASYNC_POSTREAD);
4391 
4392 			/* Save the mbuf from the driver's chain. */
4393 			m = rx_buf->rx_mbuf_ptr;
4394 
4395 			/*
4396 			 * Frames received on the NetXteme II are prepended
4397 			 * with an l2_fhdr structure which provides status
4398 			 * information about the received frame (including
4399 			 * VLAN tags and checksum info).  The frames are also
4400 			 * automatically adjusted to align the IP header
4401 			 * (i.e. two null bytes are inserted before the
4402 			 * Ethernet header).  As a result the data DMA'd by
4403 			 * the controller into the mbuf is as follows:
4404 			 *
4405 			 * +---------+-----+---------------------+-----+
4406 			 * | l2_fhdr | pad | packet data         | FCS |
4407 			 * +---------+-----+---------------------+-----+
4408 			 *
4409 			 * The l2_fhdr needs to be checked and skipped and the
4410 			 * FCS needs to be stripped before sending the packet
4411 			 * up the stack.
4412 			 */
4413 			l2fhdr = mtod(m, struct l2_fhdr *);
4414 
4415 			len = l2fhdr->l2_fhdr_pkt_len;
4416 			status = l2fhdr->l2_fhdr_status;
4417 
4418 			len -= ETHER_CRC_LEN;
4419 
4420 			/* Check the received frame for errors. */
4421 			if (status & (L2_FHDR_ERRORS_BAD_CRC |
4422 				      L2_FHDR_ERRORS_PHY_DECODE |
4423 				      L2_FHDR_ERRORS_ALIGNMENT |
4424 				      L2_FHDR_ERRORS_TOO_SHORT |
4425 				      L2_FHDR_ERRORS_GIANT_FRAME)) {
4426 				IFNET_STAT_INC(ifp, ierrors, 1);
4427 
4428 				/* Reuse the mbuf for a new frame. */
4429 				bce_setup_rxdesc_std(rxr, sw_chain_prod,
4430 				    &sw_prod_bseq);
4431 				m = NULL;
4432 				goto bce_rx_int_next_rx;
4433 			}
4434 
4435 			/*
4436 			 * Get a new mbuf for the rx_bd.   If no new
4437 			 * mbufs are available then reuse the current mbuf,
4438 			 * log an ierror on the interface, and generate
4439 			 * an error in the system log.
4440 			 */
4441 			if (bce_newbuf_std(rxr, &sw_prod, sw_chain_prod,
4442 			    &sw_prod_bseq, 0)) {
4443 				IFNET_STAT_INC(ifp, ierrors, 1);
4444 
4445 				/* Try and reuse the exisitng mbuf. */
4446 				bce_setup_rxdesc_std(rxr, sw_chain_prod,
4447 				    &sw_prod_bseq);
4448 				m = NULL;
4449 				goto bce_rx_int_next_rx;
4450 			}
4451 
4452 			/*
4453 			 * Skip over the l2_fhdr when passing
4454 			 * the data up the stack.
4455 			 */
4456 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4457 
4458 			m->m_pkthdr.len = m->m_len = len;
4459 			m->m_pkthdr.rcvif = ifp;
4460 
4461 			/* Validate the checksum if offload enabled. */
4462 			if (ifp->if_capenable & IFCAP_RXCSUM) {
4463 				/* Check for an IP datagram. */
4464 				if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4465 					m->m_pkthdr.csum_flags |=
4466 						CSUM_IP_CHECKED;
4467 
4468 					/* Check if the IP checksum is valid. */
4469 					if ((l2fhdr->l2_fhdr_ip_xsum ^
4470 					     0xffff) == 0) {
4471 						m->m_pkthdr.csum_flags |=
4472 							CSUM_IP_VALID;
4473 					}
4474 				}
4475 
4476 				/* Check for a valid TCP/UDP frame. */
4477 				if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4478 					      L2_FHDR_STATUS_UDP_DATAGRAM)) {
4479 
4480 					/* Check for a good TCP/UDP checksum. */
4481 					if ((status &
4482 					     (L2_FHDR_ERRORS_TCP_XSUM |
4483 					      L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4484 						m->m_pkthdr.csum_data =
4485 						l2fhdr->l2_fhdr_tcp_udp_xsum;
4486 						m->m_pkthdr.csum_flags |=
4487 							CSUM_DATA_VALID |
4488 							CSUM_PSEUDO_HDR;
4489 					}
4490 				}
4491 			}
4492 			if (ifp->if_capenable & IFCAP_RSS) {
4493 				pi = bce_rss_pktinfo(&pi0, status, l2fhdr);
4494 				if (pi != NULL &&
4495 				    (status & L2_FHDR_STATUS_RSS_HASH)) {
4496 					m->m_flags |= M_HASH;
4497 					m->m_pkthdr.hash =
4498 					    toeplitz_hash(l2fhdr->l2_fhdr_hash);
4499 				}
4500 			}
4501 
4502 			IFNET_STAT_INC(ifp, ipackets, 1);
4503 bce_rx_int_next_rx:
4504 			sw_prod = NEXT_RX_BD(sw_prod);
4505 		}
4506 
4507 		sw_cons = NEXT_RX_BD(sw_cons);
4508 
4509 		/* If we have a packet, pass it up the stack */
4510 		if (m) {
4511 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
4512 				m->m_flags |= M_VLANTAG;
4513 				m->m_pkthdr.ether_vlantag =
4514 					l2fhdr->l2_fhdr_vlan_tag;
4515 			}
4516 			ifp->if_input(ifp, m, pi, cpuid);
4517 #ifdef BCE_RSS_DEBUG
4518 			rxr->rx_pkts++;
4519 #endif
4520 		}
4521 	}
4522 
4523 	rxr->rx_cons = sw_cons;
4524 	rxr->rx_prod = sw_prod;
4525 	rxr->rx_prod_bseq = sw_prod_bseq;
4526 
4527 	REG_WR16(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BDIDX,
4528 	    rxr->rx_prod);
4529 	REG_WR(rxr->sc, MB_GET_CID_ADDR(rxr->rx_cid) + BCE_L2MQ_RX_HOST_BSEQ,
4530 	    rxr->rx_prod_bseq);
4531 }
4532 
4533 /****************************************************************************/
4534 /* Reads the transmit consumer value from the status block (skipping over   */
4535 /* chain page pointer if necessary).                                        */
4536 /*                                                                          */
4537 /* Returns:                                                                 */
4538 /*   hw_cons                                                                */
4539 /****************************************************************************/
4540 static __inline uint16_t
4541 bce_get_hw_tx_cons(struct bce_tx_ring *txr)
4542 {
4543 	uint16_t hw_cons = *txr->tx_hw_cons;
4544 
4545 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4546 		hw_cons++;
4547 	return hw_cons;
4548 }
4549 
4550 /****************************************************************************/
4551 /* Handles transmit completion interrupt events.                            */
4552 /*                                                                          */
4553 /* Returns:                                                                 */
4554 /*   Nothing.                                                               */
4555 /****************************************************************************/
4556 static void
4557 bce_tx_intr(struct bce_tx_ring *txr, uint16_t hw_tx_cons)
4558 {
4559 	struct ifnet *ifp = &txr->sc->arpcom.ac_if;
4560 	uint16_t sw_tx_cons, sw_tx_chain_cons;
4561 
4562 	ASSERT_SERIALIZED(&txr->tx_serialize);
4563 
4564 	/* Get the hardware's view of the TX consumer index. */
4565 	sw_tx_cons = txr->tx_cons;
4566 
4567 	/* Cycle through any completed TX chain page entries. */
4568 	while (sw_tx_cons != hw_tx_cons) {
4569 		struct bce_tx_buf *tx_buf;
4570 
4571 		sw_tx_chain_cons = TX_CHAIN_IDX(txr, sw_tx_cons);
4572 		tx_buf = &txr->tx_bufs[sw_tx_chain_cons];
4573 
4574 		/*
4575 		 * Free the associated mbuf. Remember
4576 		 * that only the last tx_bd of a packet
4577 		 * has an mbuf pointer and DMA map.
4578 		 */
4579 		if (tx_buf->tx_mbuf_ptr != NULL) {
4580 			/* Unmap the mbuf. */
4581 			bus_dmamap_unload(txr->tx_mbuf_tag,
4582 			    tx_buf->tx_mbuf_map);
4583 
4584 			/* Free the mbuf. */
4585 			m_freem(tx_buf->tx_mbuf_ptr);
4586 			tx_buf->tx_mbuf_ptr = NULL;
4587 
4588 			IFNET_STAT_INC(ifp, opackets, 1);
4589 #ifdef BCE_TSS_DEBUG
4590 			txr->tx_pkts++;
4591 #endif
4592 		}
4593 
4594 		txr->used_tx_bd--;
4595 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4596 	}
4597 
4598 	if (txr->used_tx_bd == 0) {
4599 		/* Clear the TX timeout timer. */
4600 		txr->tx_watchdog.wd_timer = 0;
4601 	}
4602 
4603 	/* Clear the tx hardware queue full flag. */
4604 	if (txr->max_tx_bd - txr->used_tx_bd >= BCE_TX_SPARE_SPACE)
4605 		ifsq_clr_oactive(txr->ifsq);
4606 	txr->tx_cons = sw_tx_cons;
4607 }
4608 
4609 /****************************************************************************/
4610 /* Disables interrupt generation.                                           */
4611 /*                                                                          */
4612 /* Returns:                                                                 */
4613 /*   Nothing.                                                               */
4614 /****************************************************************************/
4615 static void
4616 bce_disable_intr(struct bce_softc *sc)
4617 {
4618 	int i;
4619 
4620 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4621 		REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
4622 		    (sc->rx_rings[i].idx << 24) |
4623 		    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
4624 	}
4625 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
4626 
4627 	callout_stop(&sc->bce_ckmsi_callout);
4628 	sc->bce_msi_maylose = FALSE;
4629 	sc->bce_check_rx_cons = 0;
4630 	sc->bce_check_tx_cons = 0;
4631 	sc->bce_check_status_idx = 0xffff;
4632 
4633 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4634 		lwkt_serialize_handler_disable(sc->bce_msix[i].msix_serialize);
4635 }
4636 
4637 /****************************************************************************/
4638 /* Enables interrupt generation.                                            */
4639 /*                                                                          */
4640 /* Returns:                                                                 */
4641 /*   Nothing.                                                               */
4642 /****************************************************************************/
4643 static void
4644 bce_enable_intr(struct bce_softc *sc)
4645 {
4646 	int i;
4647 
4648 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4649 		lwkt_serialize_handler_enable(sc->bce_msix[i].msix_serialize);
4650 
4651 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
4652 		struct bce_rx_ring *rxr = &sc->rx_rings[i];
4653 
4654 		REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, (rxr->idx << 24) |
4655 		       BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4656 		       BCE_PCICFG_INT_ACK_CMD_MASK_INT |
4657 		       rxr->last_status_idx);
4658 		REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, (rxr->idx << 24) |
4659 		       BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
4660 		       rxr->last_status_idx);
4661 	}
4662 	REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
4663 
4664 	if (sc->bce_flags & BCE_CHECK_MSI_FLAG) {
4665 		sc->bce_msi_maylose = FALSE;
4666 		sc->bce_check_rx_cons = 0;
4667 		sc->bce_check_tx_cons = 0;
4668 		sc->bce_check_status_idx = 0xffff;
4669 
4670 		if (bootverbose)
4671 			if_printf(&sc->arpcom.ac_if, "check msi\n");
4672 
4673 		callout_reset_bycpu(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL,
4674 		    bce_check_msi, sc, sc->bce_msix[0].msix_cpuid);
4675 	}
4676 }
4677 
4678 /****************************************************************************/
4679 /* Reenables interrupt generation during interrupt handling.                */
4680 /*                                                                          */
4681 /* Returns:                                                                 */
4682 /*   Nothing.                                                               */
4683 /****************************************************************************/
4684 static void
4685 bce_reenable_intr(struct bce_rx_ring *rxr)
4686 {
4687 	REG_WR(rxr->sc, BCE_PCICFG_INT_ACK_CMD, (rxr->idx << 24) |
4688 	       BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | rxr->last_status_idx);
4689 }
4690 
4691 /****************************************************************************/
4692 /* Handles controller initialization.                                       */
4693 /*                                                                          */
4694 /* Returns:                                                                 */
4695 /*   Nothing.                                                               */
4696 /****************************************************************************/
4697 static void
4698 bce_init(void *xsc)
4699 {
4700 	struct bce_softc *sc = xsc;
4701 	struct ifnet *ifp = &sc->arpcom.ac_if;
4702 	uint32_t ether_mtu;
4703 	int error, i;
4704 	boolean_t polling;
4705 
4706 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4707 
4708 	/* Check if the driver is still running and bail out if it is. */
4709 	if (ifp->if_flags & IFF_RUNNING)
4710 		return;
4711 
4712 	bce_stop(sc);
4713 
4714 	error = bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
4715 	if (error) {
4716 		if_printf(ifp, "Controller reset failed!\n");
4717 		goto back;
4718 	}
4719 
4720 	error = bce_chipinit(sc);
4721 	if (error) {
4722 		if_printf(ifp, "Controller initialization failed!\n");
4723 		goto back;
4724 	}
4725 
4726 	error = bce_blockinit(sc);
4727 	if (error) {
4728 		if_printf(ifp, "Block initialization failed!\n");
4729 		goto back;
4730 	}
4731 
4732 	/* Load our MAC address. */
4733 	bcopy(IF_LLADDR(ifp), sc->eaddr, ETHER_ADDR_LEN);
4734 	bce_set_mac_addr(sc);
4735 
4736 	/* Calculate and program the Ethernet MTU size. */
4737 	ether_mtu = ETHER_HDR_LEN + EVL_ENCAPLEN + ifp->if_mtu + ETHER_CRC_LEN;
4738 
4739 	/*
4740 	 * Program the mtu, enabling jumbo frame
4741 	 * support if necessary.  Also set the mbuf
4742 	 * allocation count for RX frames.
4743 	 */
4744 	if (ether_mtu > ETHER_MAX_LEN + EVL_ENCAPLEN) {
4745 #ifdef notyet
4746 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
4747 		       min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
4748 		       BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4749 #else
4750 		panic("jumbo buffer is not supported yet");
4751 #endif
4752 	} else {
4753 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
4754 	}
4755 
4756 	/* Program appropriate promiscuous/multicast filtering. */
4757 	bce_set_rx_mode(sc);
4758 
4759 	/*
4760 	 * Init RX buffer descriptor chain.
4761 	 */
4762 	REG_WR(sc, BCE_RLUP_RSS_CONFIG, 0);
4763 	bce_reg_wr_ind(sc, BCE_RXP_SCRATCH_RSS_TBL_SZ, 0);
4764 
4765 	for (i = 0; i < sc->rx_ring_cnt; ++i)
4766 		bce_init_rx_chain(&sc->rx_rings[i]);	/* XXX return value */
4767 
4768 	if (sc->rx_ring_cnt > 1)
4769 		bce_init_rss(sc);
4770 
4771 	/*
4772 	 * Init TX buffer descriptor chain.
4773 	 */
4774 	REG_WR(sc, BCE_TSCH_TSS_CFG, 0);
4775 
4776 	for (i = 0; i < sc->tx_ring_cnt; ++i)
4777 		bce_init_tx_chain(&sc->tx_rings[i]);
4778 
4779 	if (sc->tx_ring_cnt > 1) {
4780 		REG_WR(sc, BCE_TSCH_TSS_CFG,
4781 		    ((sc->tx_ring_cnt - 1) << 24) | (TX_TSS_CID << 7));
4782 	}
4783 
4784 	polling = FALSE;
4785 #ifdef IFPOLL_ENABLE
4786 	if (ifp->if_flags & IFF_NPOLLING)
4787 		polling = TRUE;
4788 #endif
4789 
4790 	if (polling) {
4791 		/* Disable interrupts if we are polling. */
4792 		bce_disable_intr(sc);
4793 
4794 		/* Change coalesce parameters */
4795 		bce_npoll_coal_change(sc);
4796 	} else {
4797 		/* Enable host interrupts. */
4798 		bce_enable_intr(sc);
4799 	}
4800 	bce_set_timer_cpuid(sc, polling);
4801 
4802 	bce_ifmedia_upd(ifp);
4803 
4804 	ifp->if_flags |= IFF_RUNNING;
4805 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
4806 		ifsq_clr_oactive(sc->tx_rings[i].ifsq);
4807 		ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
4808 	}
4809 
4810 	callout_reset_bycpu(&sc->bce_tick_callout, hz, bce_tick, sc,
4811 	    sc->bce_timer_cpuid);
4812 back:
4813 	if (error)
4814 		bce_stop(sc);
4815 }
4816 
4817 /****************************************************************************/
4818 /* Initialize the controller just enough so that any management firmware    */
4819 /* running on the device will continue to operate corectly.                 */
4820 /*                                                                          */
4821 /* Returns:                                                                 */
4822 /*   Nothing.                                                               */
4823 /****************************************************************************/
4824 static void
4825 bce_mgmt_init(struct bce_softc *sc)
4826 {
4827 	struct ifnet *ifp = &sc->arpcom.ac_if;
4828 
4829 	/* Bail out if management firmware is not running. */
4830 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
4831 		return;
4832 
4833 	/* Enable all critical blocks in the MAC. */
4834 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
4835 	    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
4836 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
4837 		    BCE_MISC_ENABLE_DEFAULT_XI);
4838 	} else {
4839 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
4840 	}
4841 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
4842 	DELAY(20);
4843 
4844 	bce_ifmedia_upd(ifp);
4845 }
4846 
4847 /****************************************************************************/
4848 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4849 /* memory visible to the controller.                                        */
4850 /*                                                                          */
4851 /* Returns:                                                                 */
4852 /*   0 for success, positive value for failure.                             */
4853 /****************************************************************************/
4854 static int
4855 bce_encap(struct bce_tx_ring *txr, struct mbuf **m_head, int *nsegs_used)
4856 {
4857 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
4858 	bus_dmamap_t map, tmp_map;
4859 	struct mbuf *m0 = *m_head;
4860 	struct tx_bd *txbd = NULL;
4861 	uint16_t vlan_tag = 0, flags = 0, mss = 0;
4862 	uint16_t chain_prod, chain_prod_start, prod;
4863 	uint32_t prod_bseq;
4864 	int i, error, maxsegs, nsegs;
4865 
4866 	/* Transfer any checksum offload flags to the bd. */
4867 	if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
4868 		error = bce_tso_setup(txr, m_head, &flags, &mss);
4869 		if (error)
4870 			return ENOBUFS;
4871 		m0 = *m_head;
4872 	} else if (m0->m_pkthdr.csum_flags & BCE_CSUM_FEATURES) {
4873 		if (m0->m_pkthdr.csum_flags & CSUM_IP)
4874 			flags |= TX_BD_FLAGS_IP_CKSUM;
4875 		if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
4876 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4877 	}
4878 
4879 	/* Transfer any VLAN tags to the bd. */
4880 	if (m0->m_flags & M_VLANTAG) {
4881 		flags |= TX_BD_FLAGS_VLAN_TAG;
4882 		vlan_tag = m0->m_pkthdr.ether_vlantag;
4883 	}
4884 
4885 	prod = txr->tx_prod;
4886 	chain_prod_start = chain_prod = TX_CHAIN_IDX(txr, prod);
4887 
4888 	/* Map the mbuf into DMAable memory. */
4889 	map = txr->tx_bufs[chain_prod_start].tx_mbuf_map;
4890 
4891 	maxsegs = txr->max_tx_bd - txr->used_tx_bd;
4892 	KASSERT(maxsegs >= BCE_TX_SPARE_SPACE,
4893 		("not enough segments %d", maxsegs));
4894 	if (maxsegs > BCE_MAX_SEGMENTS)
4895 		maxsegs = BCE_MAX_SEGMENTS;
4896 
4897 	/* Map the mbuf into our DMA address space. */
4898 	error = bus_dmamap_load_mbuf_defrag(txr->tx_mbuf_tag, map, m_head,
4899 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
4900 	if (error)
4901 		goto back;
4902 	bus_dmamap_sync(txr->tx_mbuf_tag, map, BUS_DMASYNC_PREWRITE);
4903 
4904 	*nsegs_used += nsegs;
4905 
4906 	/* Reset m0 */
4907 	m0 = *m_head;
4908 
4909 	/* prod points to an empty tx_bd at this point. */
4910 	prod_bseq  = txr->tx_prod_bseq;
4911 
4912 	/*
4913 	 * Cycle through each mbuf segment that makes up
4914 	 * the outgoing frame, gathering the mapping info
4915 	 * for that segment and creating a tx_bd to for
4916 	 * the mbuf.
4917 	 */
4918 	for (i = 0; i < nsegs; i++) {
4919 		chain_prod = TX_CHAIN_IDX(txr, prod);
4920 		txbd =
4921 		&txr->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4922 
4923 		txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
4924 		txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
4925 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
4926 		    htole16(segs[i].ds_len);
4927 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4928 		txbd->tx_bd_flags = htole16(flags);
4929 
4930 		prod_bseq += segs[i].ds_len;
4931 		if (i == 0)
4932 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4933 		prod = NEXT_TX_BD(prod);
4934 	}
4935 
4936 	/* Set the END flag on the last TX buffer descriptor. */
4937 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4938 
4939 	/*
4940 	 * Ensure that the mbuf pointer for this transmission
4941 	 * is placed at the array index of the last
4942 	 * descriptor in this chain.  This is done
4943 	 * because a single map is used for all
4944 	 * segments of the mbuf and we don't want to
4945 	 * unload the map before all of the segments
4946 	 * have been freed.
4947 	 */
4948 	txr->tx_bufs[chain_prod].tx_mbuf_ptr = m0;
4949 
4950 	tmp_map = txr->tx_bufs[chain_prod].tx_mbuf_map;
4951 	txr->tx_bufs[chain_prod].tx_mbuf_map = map;
4952 	txr->tx_bufs[chain_prod_start].tx_mbuf_map = tmp_map;
4953 
4954 	txr->used_tx_bd += nsegs;
4955 
4956 	/* prod points to the next free tx_bd at this point. */
4957 	txr->tx_prod = prod;
4958 	txr->tx_prod_bseq = prod_bseq;
4959 back:
4960 	if (error) {
4961 		m_freem(*m_head);
4962 		*m_head = NULL;
4963 	}
4964 	return error;
4965 }
4966 
4967 static void
4968 bce_xmit(struct bce_tx_ring *txr)
4969 {
4970 	/* Start the transmit. */
4971 	REG_WR16(txr->sc, MB_GET_CID_ADDR(txr->tx_cid) + BCE_L2CTX_TX_HOST_BIDX,
4972 	    txr->tx_prod);
4973 	REG_WR(txr->sc, MB_GET_CID_ADDR(txr->tx_cid) + BCE_L2CTX_TX_HOST_BSEQ,
4974 	    txr->tx_prod_bseq);
4975 }
4976 
4977 /****************************************************************************/
4978 /* Main transmit routine when called from another routine with a lock.      */
4979 /*                                                                          */
4980 /* Returns:                                                                 */
4981 /*   Nothing.                                                               */
4982 /****************************************************************************/
4983 static void
4984 bce_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
4985 {
4986 	struct bce_softc *sc = ifp->if_softc;
4987 	struct bce_tx_ring *txr = ifsq_get_priv(ifsq);
4988 	int count = 0;
4989 
4990 	KKASSERT(txr->ifsq == ifsq);
4991 	ASSERT_SERIALIZED(&txr->tx_serialize);
4992 
4993 	/* If there's no link or the transmit queue is empty then just exit. */
4994 	if (!sc->bce_link) {
4995 		ifsq_purge(ifsq);
4996 		return;
4997 	}
4998 
4999 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
5000 		return;
5001 
5002 	for (;;) {
5003 		struct mbuf *m_head;
5004 
5005 		/*
5006 		 * We keep BCE_TX_SPARE_SPACE entries, so bce_encap() is
5007 		 * unlikely to fail.
5008 		 */
5009 		if (txr->max_tx_bd - txr->used_tx_bd < BCE_TX_SPARE_SPACE) {
5010 			ifsq_set_oactive(ifsq);
5011 			break;
5012 		}
5013 
5014 		/* Check for any frames to send. */
5015 		m_head = ifsq_dequeue(ifsq);
5016 		if (m_head == NULL)
5017 			break;
5018 
5019 		/*
5020 		 * Pack the data into the transmit ring. If we
5021 		 * don't have room, place the mbuf back at the
5022 		 * head of the queue and set the OACTIVE flag
5023 		 * to wait for the NIC to drain the chain.
5024 		 */
5025 		if (bce_encap(txr, &m_head, &count)) {
5026 			IFNET_STAT_INC(ifp, oerrors, 1);
5027 			if (txr->used_tx_bd == 0) {
5028 				continue;
5029 			} else {
5030 				ifsq_set_oactive(ifsq);
5031 				break;
5032 			}
5033 		}
5034 
5035 		if (count >= txr->tx_wreg) {
5036 			bce_xmit(txr);
5037 			count = 0;
5038 		}
5039 
5040 		/* Send a copy of the frame to any BPF listeners. */
5041 		ETHER_BPF_MTAP(ifp, m_head);
5042 
5043 		/* Set the tx timeout. */
5044 		txr->tx_watchdog.wd_timer = BCE_TX_TIMEOUT;
5045 	}
5046 	if (count > 0)
5047 		bce_xmit(txr);
5048 }
5049 
5050 /****************************************************************************/
5051 /* Handles any IOCTL calls from the operating system.                       */
5052 /*                                                                          */
5053 /* Returns:                                                                 */
5054 /*   0 for success, positive value for failure.                             */
5055 /****************************************************************************/
5056 static int
5057 bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
5058 {
5059 	struct bce_softc *sc = ifp->if_softc;
5060 	struct ifreq *ifr = (struct ifreq *)data;
5061 	struct mii_data *mii;
5062 	int mask, error = 0;
5063 
5064 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
5065 
5066 	switch(command) {
5067 	case SIOCSIFMTU:
5068 		/* Check that the MTU setting is supported. */
5069 		if (ifr->ifr_mtu < BCE_MIN_MTU ||
5070 #ifdef notyet
5071 		    ifr->ifr_mtu > BCE_MAX_JUMBO_MTU
5072 #else
5073 		    ifr->ifr_mtu > ETHERMTU
5074 #endif
5075 		   ) {
5076 			error = EINVAL;
5077 			break;
5078 		}
5079 
5080 		ifp->if_mtu = ifr->ifr_mtu;
5081 		ifp->if_flags &= ~IFF_RUNNING;	/* Force reinitialize */
5082 		bce_init(sc);
5083 		break;
5084 
5085 	case SIOCSIFFLAGS:
5086 		if (ifp->if_flags & IFF_UP) {
5087 			if (ifp->if_flags & IFF_RUNNING) {
5088 				mask = ifp->if_flags ^ sc->bce_if_flags;
5089 
5090 				if (mask & (IFF_PROMISC | IFF_ALLMULTI))
5091 					bce_set_rx_mode(sc);
5092 			} else {
5093 				bce_init(sc);
5094 			}
5095 		} else if (ifp->if_flags & IFF_RUNNING) {
5096 			bce_stop(sc);
5097 
5098 			/* If MFW is running, restart the controller a bit. */
5099 			if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5100 				bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
5101 				bce_chipinit(sc);
5102 				bce_mgmt_init(sc);
5103 			}
5104 		}
5105 		sc->bce_if_flags = ifp->if_flags;
5106 		break;
5107 
5108 	case SIOCADDMULTI:
5109 	case SIOCDELMULTI:
5110 		if (ifp->if_flags & IFF_RUNNING)
5111 			bce_set_rx_mode(sc);
5112 		break;
5113 
5114 	case SIOCSIFMEDIA:
5115 	case SIOCGIFMEDIA:
5116 		mii = device_get_softc(sc->bce_miibus);
5117 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5118 		break;
5119 
5120 	case SIOCSIFCAP:
5121 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
5122 		if (mask & IFCAP_HWCSUM) {
5123 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
5124 			if (ifp->if_capenable & IFCAP_TXCSUM)
5125 				ifp->if_hwassist |= BCE_CSUM_FEATURES;
5126 			else
5127 				ifp->if_hwassist &= ~BCE_CSUM_FEATURES;
5128 		}
5129 		if (mask & IFCAP_TSO) {
5130 			ifp->if_capenable ^= IFCAP_TSO;
5131 			if (ifp->if_capenable & IFCAP_TSO)
5132 				ifp->if_hwassist |= CSUM_TSO;
5133 			else
5134 				ifp->if_hwassist &= ~CSUM_TSO;
5135 		}
5136 		if (mask & IFCAP_RSS)
5137 			ifp->if_capenable ^= IFCAP_RSS;
5138 		break;
5139 
5140 	default:
5141 		error = ether_ioctl(ifp, command, data);
5142 		break;
5143 	}
5144 	return error;
5145 }
5146 
5147 /****************************************************************************/
5148 /* Transmit timeout handler.                                                */
5149 /*                                                                          */
5150 /* Returns:                                                                 */
5151 /*   Nothing.                                                               */
5152 /****************************************************************************/
5153 static void
5154 bce_watchdog(struct ifaltq_subque *ifsq)
5155 {
5156 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
5157 	struct bce_softc *sc = ifp->if_softc;
5158 	int i;
5159 
5160 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
5161 
5162 	/*
5163 	 * If we are in this routine because of pause frames, then
5164 	 * don't reset the hardware.
5165 	 */
5166 	if (REG_RD(sc, BCE_EMAC_TX_STATUS) & BCE_EMAC_TX_STATUS_XOFFED)
5167 		return;
5168 
5169 	if_printf(ifp, "Watchdog timeout occurred, resetting!\n");
5170 
5171 	ifp->if_flags &= ~IFF_RUNNING;	/* Force reinitialize */
5172 	bce_init(sc);
5173 
5174 	IFNET_STAT_INC(ifp, oerrors, 1);
5175 
5176 	for (i = 0; i < sc->tx_ring_cnt; ++i)
5177 		ifsq_devstart_sched(sc->tx_rings[i].ifsq);
5178 }
5179 
5180 #ifdef IFPOLL_ENABLE
5181 
5182 static void
5183 bce_npoll_status(struct ifnet *ifp)
5184 {
5185 	struct bce_softc *sc = ifp->if_softc;
5186 	struct status_block *sblk = sc->status_block;
5187 	uint32_t status_attn_bits;
5188 
5189 	ASSERT_SERIALIZED(&sc->main_serialize);
5190 
5191 	status_attn_bits = sblk->status_attn_bits;
5192 
5193 	/* Was it a link change interrupt? */
5194 	if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5195 	    (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5196 		bce_phy_intr(sc);
5197 
5198 		/*
5199 		 * Clear any transient status updates during link state change.
5200 		 */
5201 		REG_WR(sc, BCE_HC_COMMAND,
5202 		    sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5203 		REG_RD(sc, BCE_HC_COMMAND);
5204 	}
5205 
5206 	/*
5207 	 * If any other attention is asserted then the chip is toast.
5208 	 */
5209 	if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5210 	     (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE)) {
5211 		if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5212 		    sblk->status_attn_bits);
5213 		bce_serialize_skipmain(sc);
5214 		bce_init(sc);
5215 		bce_deserialize_skipmain(sc);
5216 	}
5217 }
5218 
5219 static void
5220 bce_npoll_rx(struct ifnet *ifp, void *arg, int count)
5221 {
5222 	struct bce_rx_ring *rxr = arg;
5223 	uint16_t hw_rx_cons;
5224 
5225 	ASSERT_SERIALIZED(&rxr->rx_serialize);
5226 
5227 	/*
5228 	 * Save the status block index value for use when enabling
5229 	 * the interrupt.
5230 	 */
5231 	rxr->last_status_idx = *rxr->hw_status_idx;
5232 
5233 	/* Make sure status index is extracted before RX/TX cons */
5234 	cpu_lfence();
5235 
5236 	hw_rx_cons = bce_get_hw_rx_cons(rxr);
5237 
5238 	/* Check for any completed RX frames. */
5239 	if (hw_rx_cons != rxr->rx_cons)
5240 		bce_rx_intr(rxr, count, hw_rx_cons);
5241 }
5242 
5243 static void
5244 bce_npoll_rx_pack(struct ifnet *ifp, void *arg, int count)
5245 {
5246 	struct bce_rx_ring *rxr = arg;
5247 
5248 	KASSERT(rxr->idx == 0, ("not the first RX ring, but %d", rxr->idx));
5249 	bce_npoll_rx(ifp, rxr, count);
5250 
5251 	KASSERT(rxr->sc->rx_ring_cnt != rxr->sc->rx_ring_cnt2,
5252 	    ("RX ring count %d, count2 %d", rxr->sc->rx_ring_cnt,
5253 	     rxr->sc->rx_ring_cnt2));
5254 
5255 	/* Last ring carries packets whose masked hash is 0 */
5256 	rxr = &rxr->sc->rx_rings[rxr->sc->rx_ring_cnt - 1];
5257 
5258 	lwkt_serialize_enter(&rxr->rx_serialize);
5259 	bce_npoll_rx(ifp, rxr, count);
5260 	lwkt_serialize_exit(&rxr->rx_serialize);
5261 }
5262 
5263 static void
5264 bce_npoll_tx(struct ifnet *ifp, void *arg, int count __unused)
5265 {
5266 	struct bce_tx_ring *txr = arg;
5267 	uint16_t hw_tx_cons;
5268 
5269 	ASSERT_SERIALIZED(&txr->tx_serialize);
5270 
5271 	hw_tx_cons = bce_get_hw_tx_cons(txr);
5272 
5273 	/* Check for any completed TX frames. */
5274 	if (hw_tx_cons != txr->tx_cons) {
5275 		bce_tx_intr(txr, hw_tx_cons);
5276 		if (!ifsq_is_empty(txr->ifsq))
5277 			ifsq_devstart(txr->ifsq);
5278 	}
5279 }
5280 
5281 static void
5282 bce_npoll(struct ifnet *ifp, struct ifpoll_info *info)
5283 {
5284 	struct bce_softc *sc = ifp->if_softc;
5285 	int i;
5286 
5287 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
5288 
5289 	if (info != NULL) {
5290 		info->ifpi_status.status_func = bce_npoll_status;
5291 		info->ifpi_status.serializer = &sc->main_serialize;
5292 
5293 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
5294 			struct bce_tx_ring *txr = &sc->tx_rings[i];
5295 			int idx = i + sc->npoll_ofs;
5296 
5297 			KKASSERT(idx < ncpus2);
5298 			info->ifpi_tx[idx].poll_func = bce_npoll_tx;
5299 			info->ifpi_tx[idx].arg = txr;
5300 			info->ifpi_tx[idx].serializer = &txr->tx_serialize;
5301 			ifsq_set_cpuid(txr->ifsq, idx);
5302 		}
5303 
5304 		for (i = 0; i < sc->rx_ring_cnt2; ++i) {
5305 			struct bce_rx_ring *rxr = &sc->rx_rings[i];
5306 			int idx = i + sc->npoll_ofs;
5307 
5308 			KKASSERT(idx < ncpus2);
5309 			if (i == 0 && sc->rx_ring_cnt2 != sc->rx_ring_cnt) {
5310 				/*
5311 				 * If RSS is enabled, the packets whose
5312 				 * masked hash are 0 are queued to the
5313 				 * last RX ring; piggyback the last RX
5314 				 * ring's processing in the first RX
5315 				 * polling handler. (see also: comment
5316 				 * in bce_setup_ring_cnt())
5317 				 */
5318 				if (bootverbose) {
5319 					if_printf(ifp, "npoll pack last "
5320 					    "RX ring on cpu%d\n", idx);
5321 				}
5322 				info->ifpi_rx[idx].poll_func =
5323 				    bce_npoll_rx_pack;
5324 			} else {
5325 				info->ifpi_rx[idx].poll_func = bce_npoll_rx;
5326 			}
5327 			info->ifpi_rx[idx].arg = rxr;
5328 			info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
5329 		}
5330 
5331 		if (ifp->if_flags & IFF_RUNNING) {
5332 			bce_set_timer_cpuid(sc, TRUE);
5333 			bce_disable_intr(sc);
5334 			bce_npoll_coal_change(sc);
5335 		}
5336 	} else {
5337 		for (i = 0; i < sc->tx_ring_cnt; ++i) {
5338 			ifsq_set_cpuid(sc->tx_rings[i].ifsq,
5339 			    sc->bce_msix[i].msix_cpuid);
5340 		}
5341 
5342 		if (ifp->if_flags & IFF_RUNNING) {
5343 			bce_set_timer_cpuid(sc, FALSE);
5344 			bce_enable_intr(sc);
5345 
5346 			sc->bce_coalchg_mask |= BCE_COALMASK_TX_BDS_INT |
5347 			    BCE_COALMASK_RX_BDS_INT;
5348 			bce_coal_change(sc);
5349 		}
5350 	}
5351 }
5352 
5353 #endif	/* IFPOLL_ENABLE */
5354 
5355 /*
5356  * Interrupt handler.
5357  */
5358 /****************************************************************************/
5359 /* Main interrupt entry point.  Verifies that the controller generated the  */
5360 /* interrupt and then calls a separate routine for handle the various       */
5361 /* interrupt causes (PHY, TX, RX).                                          */
5362 /*                                                                          */
5363 /* Returns:                                                                 */
5364 /*   0 for success, positive value for failure.                             */
5365 /****************************************************************************/
5366 static void
5367 bce_intr(struct bce_softc *sc)
5368 {
5369 	struct ifnet *ifp = &sc->arpcom.ac_if;
5370 	struct status_block *sblk;
5371 	uint16_t hw_rx_cons, hw_tx_cons;
5372 	uint32_t status_attn_bits;
5373 	struct bce_tx_ring *txr = &sc->tx_rings[0];
5374 	struct bce_rx_ring *rxr = &sc->rx_rings[0];
5375 
5376 	ASSERT_SERIALIZED(&sc->main_serialize);
5377 
5378 	sblk = sc->status_block;
5379 
5380 	/*
5381 	 * Save the status block index value for use during
5382 	 * the next interrupt.
5383 	 */
5384 	rxr->last_status_idx = *rxr->hw_status_idx;
5385 
5386 	/* Make sure status index is extracted before RX/TX cons */
5387 	cpu_lfence();
5388 
5389 	/* Check if the hardware has finished any work. */
5390 	hw_rx_cons = bce_get_hw_rx_cons(rxr);
5391 	hw_tx_cons = bce_get_hw_tx_cons(txr);
5392 
5393 	status_attn_bits = sblk->status_attn_bits;
5394 
5395 	/* Was it a link change interrupt? */
5396 	if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5397 	    (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5398 		bce_phy_intr(sc);
5399 
5400 		/*
5401 		 * Clear any transient status updates during link state
5402 		 * change.
5403 		 */
5404 		REG_WR(sc, BCE_HC_COMMAND,
5405 		    sc->hc_command | BCE_HC_COMMAND_COAL_NOW_WO_INT);
5406 		REG_RD(sc, BCE_HC_COMMAND);
5407 	}
5408 
5409 	/*
5410 	 * If any other attention is asserted then
5411 	 * the chip is toast.
5412 	 */
5413 	if ((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5414 	    (sblk->status_attn_bits_ack & ~STATUS_ATTN_BITS_LINK_STATE)) {
5415 		if_printf(ifp, "Fatal attention detected: 0x%08X\n",
5416 			  sblk->status_attn_bits);
5417 		bce_serialize_skipmain(sc);
5418 		bce_init(sc);
5419 		bce_deserialize_skipmain(sc);
5420 		return;
5421 	}
5422 
5423 	/* Check for any completed RX frames. */
5424 	lwkt_serialize_enter(&rxr->rx_serialize);
5425 	if (hw_rx_cons != rxr->rx_cons)
5426 		bce_rx_intr(rxr, -1, hw_rx_cons);
5427 	lwkt_serialize_exit(&rxr->rx_serialize);
5428 
5429 	/* Check for any completed TX frames. */
5430 	lwkt_serialize_enter(&txr->tx_serialize);
5431 	if (hw_tx_cons != txr->tx_cons) {
5432 		bce_tx_intr(txr, hw_tx_cons);
5433 		if (!ifsq_is_empty(txr->ifsq))
5434 			ifsq_devstart(txr->ifsq);
5435 	}
5436 	lwkt_serialize_exit(&txr->tx_serialize);
5437 }
5438 
5439 static void
5440 bce_intr_legacy(void *xsc)
5441 {
5442 	struct bce_softc *sc = xsc;
5443 	struct bce_rx_ring *rxr = &sc->rx_rings[0];
5444 	struct status_block *sblk;
5445 
5446 	sblk = sc->status_block;
5447 
5448 	/*
5449 	 * If the hardware status block index matches the last value
5450 	 * read by the driver and we haven't asserted our interrupt
5451 	 * then there's nothing to do.
5452 	 */
5453 	if (sblk->status_idx == rxr->last_status_idx &&
5454 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
5455 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE))
5456 		return;
5457 
5458 	/* Ack the interrupt and stop others from occuring. */
5459 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5460 	       BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5461 	       BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5462 
5463 	/*
5464 	 * Read back to deassert IRQ immediately to avoid too
5465 	 * many spurious interrupts.
5466 	 */
5467 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
5468 
5469 	bce_intr(sc);
5470 
5471 	/* Re-enable interrupts. */
5472 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5473 	       BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
5474 	       BCE_PCICFG_INT_ACK_CMD_MASK_INT | rxr->last_status_idx);
5475 	bce_reenable_intr(rxr);
5476 }
5477 
5478 static void
5479 bce_intr_msi(void *xsc)
5480 {
5481 	struct bce_softc *sc = xsc;
5482 
5483 	/* Ack the interrupt and stop others from occuring. */
5484 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
5485 	       BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5486 	       BCE_PCICFG_INT_ACK_CMD_MASK_INT);
5487 
5488 	bce_intr(sc);
5489 
5490 	/* Re-enable interrupts */
5491 	bce_reenable_intr(&sc->rx_rings[0]);
5492 }
5493 
5494 static void
5495 bce_intr_msi_oneshot(void *xsc)
5496 {
5497 	struct bce_softc *sc = xsc;
5498 
5499 	bce_intr(sc);
5500 
5501 	/* Re-enable interrupts */
5502 	bce_reenable_intr(&sc->rx_rings[0]);
5503 }
5504 
5505 static void
5506 bce_intr_msix_rxtx(void *xrxr)
5507 {
5508 	struct bce_rx_ring *rxr = xrxr;
5509 	struct bce_tx_ring *txr;
5510 	uint16_t hw_rx_cons, hw_tx_cons;
5511 
5512 	ASSERT_SERIALIZED(&rxr->rx_serialize);
5513 
5514 	KKASSERT(rxr->idx < rxr->sc->tx_ring_cnt);
5515 	txr = &rxr->sc->tx_rings[rxr->idx];
5516 
5517 	/*
5518 	 * Save the status block index value for use during
5519 	 * the next interrupt.
5520 	 */
5521 	rxr->last_status_idx = *rxr->hw_status_idx;
5522 
5523 	/* Make sure status index is extracted before RX/TX cons */
5524 	cpu_lfence();
5525 
5526 	/* Check if the hardware has finished any work. */
5527 	hw_rx_cons = bce_get_hw_rx_cons(rxr);
5528 	if (hw_rx_cons != rxr->rx_cons)
5529 		bce_rx_intr(rxr, -1, hw_rx_cons);
5530 
5531 	/* Check for any completed TX frames. */
5532 	hw_tx_cons = bce_get_hw_tx_cons(txr);
5533 	lwkt_serialize_enter(&txr->tx_serialize);
5534 	if (hw_tx_cons != txr->tx_cons) {
5535 		bce_tx_intr(txr, hw_tx_cons);
5536 		if (!ifsq_is_empty(txr->ifsq))
5537 			ifsq_devstart(txr->ifsq);
5538 	}
5539 	lwkt_serialize_exit(&txr->tx_serialize);
5540 
5541 	/* Re-enable interrupts */
5542 	bce_reenable_intr(rxr);
5543 }
5544 
5545 static void
5546 bce_intr_msix_rx(void *xrxr)
5547 {
5548 	struct bce_rx_ring *rxr = xrxr;
5549 	uint16_t hw_rx_cons;
5550 
5551 	ASSERT_SERIALIZED(&rxr->rx_serialize);
5552 
5553 	/*
5554 	 * Save the status block index value for use during
5555 	 * the next interrupt.
5556 	 */
5557 	rxr->last_status_idx = *rxr->hw_status_idx;
5558 
5559 	/* Make sure status index is extracted before RX cons */
5560 	cpu_lfence();
5561 
5562 	/* Check if the hardware has finished any work. */
5563 	hw_rx_cons = bce_get_hw_rx_cons(rxr);
5564 	if (hw_rx_cons != rxr->rx_cons)
5565 		bce_rx_intr(rxr, -1, hw_rx_cons);
5566 
5567 	/* Re-enable interrupts */
5568 	bce_reenable_intr(rxr);
5569 }
5570 
5571 /****************************************************************************/
5572 /* Programs the various packet receive modes (broadcast and multicast).     */
5573 /*                                                                          */
5574 /* Returns:                                                                 */
5575 /*   Nothing.                                                               */
5576 /****************************************************************************/
5577 static void
5578 bce_set_rx_mode(struct bce_softc *sc)
5579 {
5580 	struct ifnet *ifp = &sc->arpcom.ac_if;
5581 	struct ifmultiaddr *ifma;
5582 	uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5583 	uint32_t rx_mode, sort_mode;
5584 	int h, i;
5585 
5586 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
5587 
5588 	/* Initialize receive mode default settings. */
5589 	rx_mode = sc->rx_mode &
5590 		  ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
5591 		    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
5592 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
5593 
5594 	/*
5595 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5596 	 * be enbled.
5597 	 */
5598 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
5599 	    !(sc->bce_flags & BCE_MFW_ENABLE_FLAG))
5600 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
5601 
5602 	/*
5603 	 * Check for promiscuous, all multicast, or selected
5604 	 * multicast address filtering.
5605 	 */
5606 	if (ifp->if_flags & IFF_PROMISC) {
5607 		/* Enable promiscuous mode. */
5608 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
5609 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
5610 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5611 		/* Enable all multicast addresses. */
5612 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5613 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5614 			       0xffffffff);
5615 		}
5616 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
5617 	} else {
5618 		/* Accept one or more multicast(s). */
5619 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
5620 			if (ifma->ifma_addr->sa_family != AF_LINK)
5621 				continue;
5622 			h = ether_crc32_le(
5623 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
5624 			    ETHER_ADDR_LEN) & 0xFF;
5625 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5626 		}
5627 
5628 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
5629 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
5630 			       hashes[i]);
5631 		}
5632 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
5633 	}
5634 
5635 	/* Only make changes if the recive mode has actually changed. */
5636 	if (rx_mode != sc->rx_mode) {
5637 		sc->rx_mode = rx_mode;
5638 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
5639 	}
5640 
5641 	/* Disable and clear the exisitng sort before enabling a new sort. */
5642 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
5643 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
5644 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
5645 }
5646 
5647 /****************************************************************************/
5648 /* Called periodically to updates statistics from the controllers           */
5649 /* statistics block.                                                        */
5650 /*                                                                          */
5651 /* Returns:                                                                 */
5652 /*   Nothing.                                                               */
5653 /****************************************************************************/
5654 static void
5655 bce_stats_update(struct bce_softc *sc)
5656 {
5657 	struct ifnet *ifp = &sc->arpcom.ac_if;
5658 	struct statistics_block *stats = sc->stats_block;
5659 
5660 	ASSERT_SERIALIZED(&sc->main_serialize);
5661 
5662 	/*
5663 	 * Certain controllers don't report carrier sense errors correctly.
5664 	 * See errata E11_5708CA0_1165.
5665 	 */
5666 	if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5667 	    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0)) {
5668 		IFNET_STAT_INC(ifp, oerrors,
5669 			(u_long)stats->stat_Dot3StatsCarrierSenseErrors);
5670 	}
5671 
5672 	/*
5673 	 * Update the sysctl statistics from the hardware statistics.
5674 	 */
5675 	sc->stat_IfHCInOctets =
5676 		((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5677 		 (uint64_t)stats->stat_IfHCInOctets_lo;
5678 
5679 	sc->stat_IfHCInBadOctets =
5680 		((uint64_t)stats->stat_IfHCInBadOctets_hi << 32) +
5681 		 (uint64_t)stats->stat_IfHCInBadOctets_lo;
5682 
5683 	sc->stat_IfHCOutOctets =
5684 		((uint64_t)stats->stat_IfHCOutOctets_hi << 32) +
5685 		 (uint64_t)stats->stat_IfHCOutOctets_lo;
5686 
5687 	sc->stat_IfHCOutBadOctets =
5688 		((uint64_t)stats->stat_IfHCOutBadOctets_hi << 32) +
5689 		 (uint64_t)stats->stat_IfHCOutBadOctets_lo;
5690 
5691 	sc->stat_IfHCInUcastPkts =
5692 		((uint64_t)stats->stat_IfHCInUcastPkts_hi << 32) +
5693 		 (uint64_t)stats->stat_IfHCInUcastPkts_lo;
5694 
5695 	sc->stat_IfHCInMulticastPkts =
5696 		((uint64_t)stats->stat_IfHCInMulticastPkts_hi << 32) +
5697 		 (uint64_t)stats->stat_IfHCInMulticastPkts_lo;
5698 
5699 	sc->stat_IfHCInBroadcastPkts =
5700 		((uint64_t)stats->stat_IfHCInBroadcastPkts_hi << 32) +
5701 		 (uint64_t)stats->stat_IfHCInBroadcastPkts_lo;
5702 
5703 	sc->stat_IfHCOutUcastPkts =
5704 		((uint64_t)stats->stat_IfHCOutUcastPkts_hi << 32) +
5705 		 (uint64_t)stats->stat_IfHCOutUcastPkts_lo;
5706 
5707 	sc->stat_IfHCOutMulticastPkts =
5708 		((uint64_t)stats->stat_IfHCOutMulticastPkts_hi << 32) +
5709 		 (uint64_t)stats->stat_IfHCOutMulticastPkts_lo;
5710 
5711 	sc->stat_IfHCOutBroadcastPkts =
5712 		((uint64_t)stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5713 		 (uint64_t)stats->stat_IfHCOutBroadcastPkts_lo;
5714 
5715 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5716 		stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5717 
5718 	sc->stat_Dot3StatsCarrierSenseErrors =
5719 		stats->stat_Dot3StatsCarrierSenseErrors;
5720 
5721 	sc->stat_Dot3StatsFCSErrors =
5722 		stats->stat_Dot3StatsFCSErrors;
5723 
5724 	sc->stat_Dot3StatsAlignmentErrors =
5725 		stats->stat_Dot3StatsAlignmentErrors;
5726 
5727 	sc->stat_Dot3StatsSingleCollisionFrames =
5728 		stats->stat_Dot3StatsSingleCollisionFrames;
5729 
5730 	sc->stat_Dot3StatsMultipleCollisionFrames =
5731 		stats->stat_Dot3StatsMultipleCollisionFrames;
5732 
5733 	sc->stat_Dot3StatsDeferredTransmissions =
5734 		stats->stat_Dot3StatsDeferredTransmissions;
5735 
5736 	sc->stat_Dot3StatsExcessiveCollisions =
5737 		stats->stat_Dot3StatsExcessiveCollisions;
5738 
5739 	sc->stat_Dot3StatsLateCollisions =
5740 		stats->stat_Dot3StatsLateCollisions;
5741 
5742 	sc->stat_EtherStatsCollisions =
5743 		stats->stat_EtherStatsCollisions;
5744 
5745 	sc->stat_EtherStatsFragments =
5746 		stats->stat_EtherStatsFragments;
5747 
5748 	sc->stat_EtherStatsJabbers =
5749 		stats->stat_EtherStatsJabbers;
5750 
5751 	sc->stat_EtherStatsUndersizePkts =
5752 		stats->stat_EtherStatsUndersizePkts;
5753 
5754 	sc->stat_EtherStatsOverrsizePkts =
5755 		stats->stat_EtherStatsOverrsizePkts;
5756 
5757 	sc->stat_EtherStatsPktsRx64Octets =
5758 		stats->stat_EtherStatsPktsRx64Octets;
5759 
5760 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5761 		stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5762 
5763 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5764 		stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5765 
5766 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5767 		stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5768 
5769 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5770 		stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5771 
5772 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5773 		stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5774 
5775 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5776 		stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5777 
5778 	sc->stat_EtherStatsPktsTx64Octets =
5779 		stats->stat_EtherStatsPktsTx64Octets;
5780 
5781 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5782 		stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5783 
5784 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5785 		stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5786 
5787 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5788 		stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5789 
5790 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5791 		stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5792 
5793 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5794 		stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5795 
5796 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5797 		stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5798 
5799 	sc->stat_XonPauseFramesReceived =
5800 		stats->stat_XonPauseFramesReceived;
5801 
5802 	sc->stat_XoffPauseFramesReceived =
5803 		stats->stat_XoffPauseFramesReceived;
5804 
5805 	sc->stat_OutXonSent =
5806 		stats->stat_OutXonSent;
5807 
5808 	sc->stat_OutXoffSent =
5809 		stats->stat_OutXoffSent;
5810 
5811 	sc->stat_FlowControlDone =
5812 		stats->stat_FlowControlDone;
5813 
5814 	sc->stat_MacControlFramesReceived =
5815 		stats->stat_MacControlFramesReceived;
5816 
5817 	sc->stat_XoffStateEntered =
5818 		stats->stat_XoffStateEntered;
5819 
5820 	sc->stat_IfInFramesL2FilterDiscards =
5821 		stats->stat_IfInFramesL2FilterDiscards;
5822 
5823 	sc->stat_IfInRuleCheckerDiscards =
5824 		stats->stat_IfInRuleCheckerDiscards;
5825 
5826 	sc->stat_IfInFTQDiscards =
5827 		stats->stat_IfInFTQDiscards;
5828 
5829 	sc->stat_IfInMBUFDiscards =
5830 		stats->stat_IfInMBUFDiscards;
5831 
5832 	sc->stat_IfInRuleCheckerP4Hit =
5833 		stats->stat_IfInRuleCheckerP4Hit;
5834 
5835 	sc->stat_CatchupInRuleCheckerDiscards =
5836 		stats->stat_CatchupInRuleCheckerDiscards;
5837 
5838 	sc->stat_CatchupInFTQDiscards =
5839 		stats->stat_CatchupInFTQDiscards;
5840 
5841 	sc->stat_CatchupInMBUFDiscards =
5842 		stats->stat_CatchupInMBUFDiscards;
5843 
5844 	sc->stat_CatchupInRuleCheckerP4Hit =
5845 		stats->stat_CatchupInRuleCheckerP4Hit;
5846 
5847 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
5848 
5849 	/*
5850 	 * Update the interface statistics from the
5851 	 * hardware statistics.
5852 	 */
5853 	IFNET_STAT_SET(ifp, collisions, (u_long)sc->stat_EtherStatsCollisions);
5854 
5855 	IFNET_STAT_SET(ifp, ierrors, (u_long)sc->stat_EtherStatsUndersizePkts +
5856 	    (u_long)sc->stat_EtherStatsOverrsizePkts +
5857 	    (u_long)sc->stat_IfInMBUFDiscards +
5858 	    (u_long)sc->stat_Dot3StatsAlignmentErrors +
5859 	    (u_long)sc->stat_Dot3StatsFCSErrors +
5860 	    (u_long)sc->stat_IfInRuleCheckerDiscards +
5861 	    (u_long)sc->stat_IfInFTQDiscards +
5862 	    (u_long)sc->com_no_buffers);
5863 
5864 	IFNET_STAT_SET(ifp, oerrors,
5865 	    (u_long)sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5866 	    (u_long)sc->stat_Dot3StatsExcessiveCollisions +
5867 	    (u_long)sc->stat_Dot3StatsLateCollisions);
5868 }
5869 
5870 /****************************************************************************/
5871 /* Periodic function to notify the bootcode that the driver is still        */
5872 /* present.                                                                 */
5873 /*                                                                          */
5874 /* Returns:                                                                 */
5875 /*   Nothing.                                                               */
5876 /****************************************************************************/
5877 static void
5878 bce_pulse(void *xsc)
5879 {
5880 	struct bce_softc *sc = xsc;
5881 	struct ifnet *ifp = &sc->arpcom.ac_if;
5882 	uint32_t msg;
5883 
5884 	lwkt_serialize_enter(&sc->main_serialize);
5885 
5886 	/* Tell the firmware that the driver is still running. */
5887 	msg = (uint32_t)++sc->bce_fw_drv_pulse_wr_seq;
5888 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
5889 
5890 	/* Update the bootcode condition. */
5891 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
5892 
5893 	/* Report whether the bootcode still knows the driver is running. */
5894 	if (!sc->bce_drv_cardiac_arrest) {
5895 		if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
5896 			sc->bce_drv_cardiac_arrest = 1;
5897 			if_printf(ifp, "Bootcode lost the driver pulse! "
5898 			    "(bc_state = 0x%08X)\n", sc->bc_state);
5899 		}
5900 	} else {
5901  		/*
5902  		 * Not supported by all bootcode versions.
5903  		 * (v5.0.11+ and v5.2.1+)  Older bootcode
5904  		 * will require the driver to reset the
5905  		 * controller to clear this condition.
5906 		 */
5907 		if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
5908 			sc->bce_drv_cardiac_arrest = 0;
5909 			if_printf(ifp, "Bootcode found the driver pulse! "
5910 			    "(bc_state = 0x%08X)\n", sc->bc_state);
5911 		}
5912 	}
5913 
5914 	/* Schedule the next pulse. */
5915 	callout_reset_bycpu(&sc->bce_pulse_callout, hz, bce_pulse, sc,
5916 	    sc->bce_timer_cpuid);
5917 
5918 	lwkt_serialize_exit(&sc->main_serialize);
5919 }
5920 
5921 /****************************************************************************/
5922 /* Periodic function to check whether MSI is lost                           */
5923 /*                                                                          */
5924 /* Returns:                                                                 */
5925 /*   Nothing.                                                               */
5926 /****************************************************************************/
5927 static void
5928 bce_check_msi(void *xsc)
5929 {
5930 	struct bce_softc *sc = xsc;
5931 	struct ifnet *ifp = &sc->arpcom.ac_if;
5932 	struct status_block *sblk = sc->status_block;
5933 	struct bce_tx_ring *txr = &sc->tx_rings[0];
5934 	struct bce_rx_ring *rxr = &sc->rx_rings[0];
5935 
5936 	lwkt_serialize_enter(&sc->main_serialize);
5937 
5938 	KKASSERT(mycpuid == sc->bce_msix[0].msix_cpuid);
5939 
5940 	if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
5941 		lwkt_serialize_exit(&sc->main_serialize);
5942 		return;
5943 	}
5944 
5945 	if (bce_get_hw_rx_cons(rxr) != rxr->rx_cons ||
5946 	    bce_get_hw_tx_cons(txr) != txr->tx_cons ||
5947 	    (sblk->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5948 	    (sblk->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE)) {
5949 		if (sc->bce_check_rx_cons == rxr->rx_cons &&
5950 		    sc->bce_check_tx_cons == txr->tx_cons &&
5951 		    sc->bce_check_status_idx == rxr->last_status_idx) {
5952 			uint32_t msi_ctrl;
5953 
5954 			if (!sc->bce_msi_maylose) {
5955 				sc->bce_msi_maylose = TRUE;
5956 				goto done;
5957 			}
5958 
5959 			msi_ctrl = REG_RD(sc, BCE_PCICFG_MSI_CONTROL);
5960 			if (msi_ctrl & BCE_PCICFG_MSI_CONTROL_ENABLE) {
5961 				if (bootverbose)
5962 					if_printf(ifp, "lost MSI\n");
5963 
5964 				REG_WR(sc, BCE_PCICFG_MSI_CONTROL,
5965 				    msi_ctrl & ~BCE_PCICFG_MSI_CONTROL_ENABLE);
5966 				REG_WR(sc, BCE_PCICFG_MSI_CONTROL, msi_ctrl);
5967 
5968 				bce_intr_msi(sc);
5969 			} else if (bootverbose) {
5970 				if_printf(ifp, "MSI may be lost\n");
5971 			}
5972 		}
5973 	}
5974 	sc->bce_msi_maylose = FALSE;
5975 	sc->bce_check_rx_cons = rxr->rx_cons;
5976 	sc->bce_check_tx_cons = txr->tx_cons;
5977 	sc->bce_check_status_idx = rxr->last_status_idx;
5978 
5979 done:
5980 	callout_reset(&sc->bce_ckmsi_callout, BCE_MSI_CKINTVL,
5981 	    bce_check_msi, sc);
5982 	lwkt_serialize_exit(&sc->main_serialize);
5983 }
5984 
5985 /****************************************************************************/
5986 /* Periodic function to perform maintenance tasks.                          */
5987 /*                                                                          */
5988 /* Returns:                                                                 */
5989 /*   Nothing.                                                               */
5990 /****************************************************************************/
5991 static void
5992 bce_tick_serialized(struct bce_softc *sc)
5993 {
5994 	struct mii_data *mii;
5995 
5996 	ASSERT_SERIALIZED(&sc->main_serialize);
5997 
5998 	/* Update the statistics from the hardware statistics block. */
5999 	bce_stats_update(sc);
6000 
6001 	/* Schedule the next tick. */
6002 	callout_reset_bycpu(&sc->bce_tick_callout, hz, bce_tick, sc,
6003 	    sc->bce_timer_cpuid);
6004 
6005 	/* If link is up already up then we're done. */
6006 	if (sc->bce_link)
6007 		return;
6008 
6009 	mii = device_get_softc(sc->bce_miibus);
6010 	mii_tick(mii);
6011 
6012 	/* Check if the link has come up. */
6013 	if ((mii->mii_media_status & IFM_ACTIVE) &&
6014 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6015 		int i;
6016 
6017 		sc->bce_link++;
6018 		/* Now that link is up, handle any outstanding TX traffic. */
6019 		for (i = 0; i < sc->tx_ring_cnt; ++i)
6020 			ifsq_devstart_sched(sc->tx_rings[i].ifsq);
6021 	}
6022 }
6023 
6024 static void
6025 bce_tick(void *xsc)
6026 {
6027 	struct bce_softc *sc = xsc;
6028 
6029 	lwkt_serialize_enter(&sc->main_serialize);
6030 	bce_tick_serialized(sc);
6031 	lwkt_serialize_exit(&sc->main_serialize);
6032 }
6033 
6034 /****************************************************************************/
6035 /* Adds any sysctl parameters for tuning or debugging purposes.             */
6036 /*                                                                          */
6037 /* Returns:                                                                 */
6038 /*   0 for success, positive value for failure.                             */
6039 /****************************************************************************/
6040 static void
6041 bce_add_sysctls(struct bce_softc *sc)
6042 {
6043 	struct sysctl_ctx_list *ctx;
6044 	struct sysctl_oid_list *children;
6045 #if defined(BCE_TSS_DEBUG) || defined(BCE_RSS_DEBUG)
6046 	char node[32];
6047 	int i;
6048 #endif
6049 
6050 	ctx = device_get_sysctl_ctx(sc->bce_dev);
6051 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
6052 
6053 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds_int",
6054 			CTLTYPE_INT | CTLFLAG_RW,
6055 			sc, 0, bce_sysctl_tx_bds_int, "I",
6056 			"Send max coalesced BD count during interrupt");
6057 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_bds",
6058 			CTLTYPE_INT | CTLFLAG_RW,
6059 			sc, 0, bce_sysctl_tx_bds, "I",
6060 			"Send max coalesced BD count");
6061 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks_int",
6062 			CTLTYPE_INT | CTLFLAG_RW,
6063 			sc, 0, bce_sysctl_tx_ticks_int, "I",
6064 			"Send coalescing ticks during interrupt");
6065 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_ticks",
6066 			CTLTYPE_INT | CTLFLAG_RW,
6067 			sc, 0, bce_sysctl_tx_ticks, "I",
6068 			"Send coalescing ticks");
6069 
6070 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds_int",
6071 			CTLTYPE_INT | CTLFLAG_RW,
6072 			sc, 0, bce_sysctl_rx_bds_int, "I",
6073 			"Receive max coalesced BD count during interrupt");
6074 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_bds",
6075 			CTLTYPE_INT | CTLFLAG_RW,
6076 			sc, 0, bce_sysctl_rx_bds, "I",
6077 			"Receive max coalesced BD count");
6078 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks_int",
6079 			CTLTYPE_INT | CTLFLAG_RW,
6080 			sc, 0, bce_sysctl_rx_ticks_int, "I",
6081 			"Receive coalescing ticks during interrupt");
6082 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_ticks",
6083 			CTLTYPE_INT | CTLFLAG_RW,
6084 			sc, 0, bce_sysctl_rx_ticks, "I",
6085 			"Receive coalescing ticks");
6086 
6087 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_rings",
6088 		CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
6089 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_pages",
6090 		CTLFLAG_RD, &sc->rx_rings[0].rx_pages, 0, "# of RX pages");
6091 
6092 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_rings",
6093 		CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
6094 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_pages",
6095 		CTLFLAG_RD, &sc->tx_rings[0].tx_pages, 0, "# of TX pages");
6096 
6097 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_wreg",
6098 	    	CTLFLAG_RW, &sc->tx_rings[0].tx_wreg, 0,
6099 		"# segments before write to hardware registers");
6100 
6101 #ifdef IFPOLL_ENABLE
6102 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "npoll_offset",
6103 	    CTLTYPE_INT|CTLFLAG_RW, sc, 0, bce_sysctl_npoll_offset,
6104 	    "I", "NPOLLING cpu offset");
6105 #endif
6106 
6107 #ifdef BCE_RSS_DEBUG
6108 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rss_debug",
6109 	    CTLFLAG_RW, &sc->rss_debug, 0, "RSS debug level");
6110 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
6111 		ksnprintf(node, sizeof(node), "rx%d_pkt", i);
6112 		SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, node,
6113 		    CTLFLAG_RW, &sc->rx_rings[i].rx_pkts,
6114 		    "RXed packets");
6115 	}
6116 #endif
6117 
6118 #ifdef BCE_TSS_DEBUG
6119 	for (i = 0; i < sc->tx_ring_cnt; ++i) {
6120 		ksnprintf(node, sizeof(node), "tx%d_pkt", i);
6121 		SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, node,
6122 		    CTLFLAG_RW, &sc->tx_rings[i].tx_pkts,
6123 		    "TXed packets");
6124 	}
6125 #endif
6126 
6127 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6128 		"stat_IfHCInOctets",
6129 		CTLFLAG_RD, &sc->stat_IfHCInOctets,
6130 		"Bytes received");
6131 
6132 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6133 		"stat_IfHCInBadOctets",
6134 		CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
6135 		"Bad bytes received");
6136 
6137 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6138 		"stat_IfHCOutOctets",
6139 		CTLFLAG_RD, &sc->stat_IfHCOutOctets,
6140 		"Bytes sent");
6141 
6142 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6143 		"stat_IfHCOutBadOctets",
6144 		CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
6145 		"Bad bytes sent");
6146 
6147 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6148 		"stat_IfHCInUcastPkts",
6149 		CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
6150 		"Unicast packets received");
6151 
6152 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6153 		"stat_IfHCInMulticastPkts",
6154 		CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
6155 		"Multicast packets received");
6156 
6157 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6158 		"stat_IfHCInBroadcastPkts",
6159 		CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
6160 		"Broadcast packets received");
6161 
6162 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6163 		"stat_IfHCOutUcastPkts",
6164 		CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
6165 		"Unicast packets sent");
6166 
6167 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6168 		"stat_IfHCOutMulticastPkts",
6169 		CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
6170 		"Multicast packets sent");
6171 
6172 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
6173 		"stat_IfHCOutBroadcastPkts",
6174 		CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
6175 		"Broadcast packets sent");
6176 
6177 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6178 		"stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
6179 		CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
6180 		0, "Internal MAC transmit errors");
6181 
6182 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6183 		"stat_Dot3StatsCarrierSenseErrors",
6184 		CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
6185 		0, "Carrier sense errors");
6186 
6187 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6188 		"stat_Dot3StatsFCSErrors",
6189 		CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
6190 		0, "Frame check sequence errors");
6191 
6192 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6193 		"stat_Dot3StatsAlignmentErrors",
6194 		CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
6195 		0, "Alignment errors");
6196 
6197 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6198 		"stat_Dot3StatsSingleCollisionFrames",
6199 		CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
6200 		0, "Single Collision Frames");
6201 
6202 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6203 		"stat_Dot3StatsMultipleCollisionFrames",
6204 		CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
6205 		0, "Multiple Collision Frames");
6206 
6207 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6208 		"stat_Dot3StatsDeferredTransmissions",
6209 		CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
6210 		0, "Deferred Transmissions");
6211 
6212 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6213 		"stat_Dot3StatsExcessiveCollisions",
6214 		CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
6215 		0, "Excessive Collisions");
6216 
6217 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6218 		"stat_Dot3StatsLateCollisions",
6219 		CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
6220 		0, "Late Collisions");
6221 
6222 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6223 		"stat_EtherStatsCollisions",
6224 		CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
6225 		0, "Collisions");
6226 
6227 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6228 		"stat_EtherStatsFragments",
6229 		CTLFLAG_RD, &sc->stat_EtherStatsFragments,
6230 		0, "Fragments");
6231 
6232 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6233 		"stat_EtherStatsJabbers",
6234 		CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
6235 		0, "Jabbers");
6236 
6237 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6238 		"stat_EtherStatsUndersizePkts",
6239 		CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
6240 		0, "Undersize packets");
6241 
6242 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6243 		"stat_EtherStatsOverrsizePkts",
6244 		CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts,
6245 		0, "stat_EtherStatsOverrsizePkts");
6246 
6247 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6248 		"stat_EtherStatsPktsRx64Octets",
6249 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
6250 		0, "Bytes received in 64 byte packets");
6251 
6252 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6253 		"stat_EtherStatsPktsRx65Octetsto127Octets",
6254 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
6255 		0, "Bytes received in 65 to 127 byte packets");
6256 
6257 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6258 		"stat_EtherStatsPktsRx128Octetsto255Octets",
6259 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
6260 		0, "Bytes received in 128 to 255 byte packets");
6261 
6262 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6263 		"stat_EtherStatsPktsRx256Octetsto511Octets",
6264 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
6265 		0, "Bytes received in 256 to 511 byte packets");
6266 
6267 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6268 		"stat_EtherStatsPktsRx512Octetsto1023Octets",
6269 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
6270 		0, "Bytes received in 512 to 1023 byte packets");
6271 
6272 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6273 		"stat_EtherStatsPktsRx1024Octetsto1522Octets",
6274 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
6275 		0, "Bytes received in 1024 t0 1522 byte packets");
6276 
6277 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6278 		"stat_EtherStatsPktsRx1523Octetsto9022Octets",
6279 		CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
6280 		0, "Bytes received in 1523 to 9022 byte packets");
6281 
6282 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6283 		"stat_EtherStatsPktsTx64Octets",
6284 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
6285 		0, "Bytes sent in 64 byte packets");
6286 
6287 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6288 		"stat_EtherStatsPktsTx65Octetsto127Octets",
6289 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
6290 		0, "Bytes sent in 65 to 127 byte packets");
6291 
6292 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6293 		"stat_EtherStatsPktsTx128Octetsto255Octets",
6294 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
6295 		0, "Bytes sent in 128 to 255 byte packets");
6296 
6297 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6298 		"stat_EtherStatsPktsTx256Octetsto511Octets",
6299 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
6300 		0, "Bytes sent in 256 to 511 byte packets");
6301 
6302 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6303 		"stat_EtherStatsPktsTx512Octetsto1023Octets",
6304 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
6305 		0, "Bytes sent in 512 to 1023 byte packets");
6306 
6307 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6308 		"stat_EtherStatsPktsTx1024Octetsto1522Octets",
6309 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
6310 		0, "Bytes sent in 1024 to 1522 byte packets");
6311 
6312 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6313 		"stat_EtherStatsPktsTx1523Octetsto9022Octets",
6314 		CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
6315 		0, "Bytes sent in 1523 to 9022 byte packets");
6316 
6317 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6318 		"stat_XonPauseFramesReceived",
6319 		CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
6320 		0, "XON pause frames receved");
6321 
6322 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6323 		"stat_XoffPauseFramesReceived",
6324 		CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
6325 		0, "XOFF pause frames received");
6326 
6327 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6328 		"stat_OutXonSent",
6329 		CTLFLAG_RD, &sc->stat_OutXonSent,
6330 		0, "XON pause frames sent");
6331 
6332 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6333 		"stat_OutXoffSent",
6334 		CTLFLAG_RD, &sc->stat_OutXoffSent,
6335 		0, "XOFF pause frames sent");
6336 
6337 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6338 		"stat_FlowControlDone",
6339 		CTLFLAG_RD, &sc->stat_FlowControlDone,
6340 		0, "Flow control done");
6341 
6342 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6343 		"stat_MacControlFramesReceived",
6344 		CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
6345 		0, "MAC control frames received");
6346 
6347 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6348 		"stat_XoffStateEntered",
6349 		CTLFLAG_RD, &sc->stat_XoffStateEntered,
6350 		0, "XOFF state entered");
6351 
6352 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6353 		"stat_IfInFramesL2FilterDiscards",
6354 		CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
6355 		0, "Received L2 packets discarded");
6356 
6357 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6358 		"stat_IfInRuleCheckerDiscards",
6359 		CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
6360 		0, "Received packets discarded by rule");
6361 
6362 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6363 		"stat_IfInFTQDiscards",
6364 		CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
6365 		0, "Received packet FTQ discards");
6366 
6367 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6368 		"stat_IfInMBUFDiscards",
6369 		CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
6370 		0, "Received packets discarded due to lack of controller buffer memory");
6371 
6372 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6373 		"stat_IfInRuleCheckerP4Hit",
6374 		CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
6375 		0, "Received packets rule checker hits");
6376 
6377 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6378 		"stat_CatchupInRuleCheckerDiscards",
6379 		CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
6380 		0, "Received packets discarded in Catchup path");
6381 
6382 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6383 		"stat_CatchupInFTQDiscards",
6384 		CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
6385 		0, "Received packets discarded in FTQ in Catchup path");
6386 
6387 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6388 		"stat_CatchupInMBUFDiscards",
6389 		CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
6390 		0, "Received packets discarded in controller buffer memory in Catchup path");
6391 
6392 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6393 		"stat_CatchupInRuleCheckerP4Hit",
6394 		CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
6395 		0, "Received packets rule checker hits in Catchup path");
6396 
6397 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
6398 		"com_no_buffers",
6399 		CTLFLAG_RD, &sc->com_no_buffers,
6400 		0, "Valid packets received but no RX buffers available");
6401 }
6402 
6403 static int
6404 bce_sysctl_tx_bds_int(SYSCTL_HANDLER_ARGS)
6405 {
6406 	struct bce_softc *sc = arg1;
6407 
6408 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6409 			&sc->bce_tx_quick_cons_trip_int,
6410 			BCE_COALMASK_TX_BDS_INT);
6411 }
6412 
6413 static int
6414 bce_sysctl_tx_bds(SYSCTL_HANDLER_ARGS)
6415 {
6416 	struct bce_softc *sc = arg1;
6417 
6418 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6419 			&sc->bce_tx_quick_cons_trip,
6420 			BCE_COALMASK_TX_BDS);
6421 }
6422 
6423 static int
6424 bce_sysctl_tx_ticks_int(SYSCTL_HANDLER_ARGS)
6425 {
6426 	struct bce_softc *sc = arg1;
6427 
6428 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6429 			&sc->bce_tx_ticks_int,
6430 			BCE_COALMASK_TX_TICKS_INT);
6431 }
6432 
6433 static int
6434 bce_sysctl_tx_ticks(SYSCTL_HANDLER_ARGS)
6435 {
6436 	struct bce_softc *sc = arg1;
6437 
6438 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6439 			&sc->bce_tx_ticks,
6440 			BCE_COALMASK_TX_TICKS);
6441 }
6442 
6443 static int
6444 bce_sysctl_rx_bds_int(SYSCTL_HANDLER_ARGS)
6445 {
6446 	struct bce_softc *sc = arg1;
6447 
6448 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6449 			&sc->bce_rx_quick_cons_trip_int,
6450 			BCE_COALMASK_RX_BDS_INT);
6451 }
6452 
6453 static int
6454 bce_sysctl_rx_bds(SYSCTL_HANDLER_ARGS)
6455 {
6456 	struct bce_softc *sc = arg1;
6457 
6458 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6459 			&sc->bce_rx_quick_cons_trip,
6460 			BCE_COALMASK_RX_BDS);
6461 }
6462 
6463 static int
6464 bce_sysctl_rx_ticks_int(SYSCTL_HANDLER_ARGS)
6465 {
6466 	struct bce_softc *sc = arg1;
6467 
6468 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6469 			&sc->bce_rx_ticks_int,
6470 			BCE_COALMASK_RX_TICKS_INT);
6471 }
6472 
6473 static int
6474 bce_sysctl_rx_ticks(SYSCTL_HANDLER_ARGS)
6475 {
6476 	struct bce_softc *sc = arg1;
6477 
6478 	return bce_sysctl_coal_change(oidp, arg1, arg2, req,
6479 			&sc->bce_rx_ticks,
6480 			BCE_COALMASK_RX_TICKS);
6481 }
6482 
6483 static int
6484 bce_sysctl_coal_change(SYSCTL_HANDLER_ARGS, uint32_t *coal,
6485     uint32_t coalchg_mask)
6486 {
6487 	struct bce_softc *sc = arg1;
6488 	struct ifnet *ifp = &sc->arpcom.ac_if;
6489 	int error = 0, v;
6490 
6491 	ifnet_serialize_all(ifp);
6492 
6493 	v = *coal;
6494 	error = sysctl_handle_int(oidp, &v, 0, req);
6495 	if (!error && req->newptr != NULL) {
6496 		if (v < 0) {
6497 			error = EINVAL;
6498 		} else {
6499 			*coal = v;
6500 			sc->bce_coalchg_mask |= coalchg_mask;
6501 
6502 			/* Commit changes */
6503 			bce_coal_change(sc);
6504 		}
6505 	}
6506 
6507 	ifnet_deserialize_all(ifp);
6508 	return error;
6509 }
6510 
6511 static void
6512 bce_coal_change(struct bce_softc *sc)
6513 {
6514 	struct ifnet *ifp = &sc->arpcom.ac_if;
6515 	int i;
6516 
6517 	ASSERT_SERIALIZED(&sc->main_serialize);
6518 
6519 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
6520 		sc->bce_coalchg_mask = 0;
6521 		return;
6522 	}
6523 
6524 	if (sc->bce_coalchg_mask &
6525 	    (BCE_COALMASK_TX_BDS | BCE_COALMASK_TX_BDS_INT)) {
6526 		REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
6527 		       (sc->bce_tx_quick_cons_trip_int << 16) |
6528 		       sc->bce_tx_quick_cons_trip);
6529 		for (i = 1; i < sc->rx_ring_cnt; ++i) {
6530 			uint32_t base;
6531 
6532 			base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) +
6533 			    BCE_HC_SB_CONFIG_1;
6534 			REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
6535 			    (sc->bce_tx_quick_cons_trip_int << 16) |
6536 			    sc->bce_tx_quick_cons_trip);
6537 		}
6538 		if (bootverbose) {
6539 			if_printf(ifp, "tx_bds %u, tx_bds_int %u\n",
6540 				  sc->bce_tx_quick_cons_trip,
6541 				  sc->bce_tx_quick_cons_trip_int);
6542 		}
6543 	}
6544 
6545 	if (sc->bce_coalchg_mask &
6546 	    (BCE_COALMASK_TX_TICKS | BCE_COALMASK_TX_TICKS_INT)) {
6547 		REG_WR(sc, BCE_HC_TX_TICKS,
6548 		       (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
6549 		for (i = 1; i < sc->rx_ring_cnt; ++i) {
6550 			uint32_t base;
6551 
6552 			base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) +
6553 			    BCE_HC_SB_CONFIG_1;
6554 			REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
6555 			    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
6556 		}
6557 		if (bootverbose) {
6558 			if_printf(ifp, "tx_ticks %u, tx_ticks_int %u\n",
6559 				  sc->bce_tx_ticks, sc->bce_tx_ticks_int);
6560 		}
6561 	}
6562 
6563 	if (sc->bce_coalchg_mask &
6564 	    (BCE_COALMASK_RX_BDS | BCE_COALMASK_RX_BDS_INT)) {
6565 		REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
6566 		       (sc->bce_rx_quick_cons_trip_int << 16) |
6567 		       sc->bce_rx_quick_cons_trip);
6568 		for (i = 1; i < sc->rx_ring_cnt; ++i) {
6569 			uint32_t base;
6570 
6571 			base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) +
6572 			    BCE_HC_SB_CONFIG_1;
6573 			REG_WR(sc, base + BCE_HC_RX_QUICK_CONS_TRIP_OFF,
6574 			    (sc->bce_rx_quick_cons_trip_int << 16) |
6575 			    sc->bce_rx_quick_cons_trip);
6576 		}
6577 		if (bootverbose) {
6578 			if_printf(ifp, "rx_bds %u, rx_bds_int %u\n",
6579 				  sc->bce_rx_quick_cons_trip,
6580 				  sc->bce_rx_quick_cons_trip_int);
6581 		}
6582 	}
6583 
6584 	if (sc->bce_coalchg_mask &
6585 	    (BCE_COALMASK_RX_TICKS | BCE_COALMASK_RX_TICKS_INT)) {
6586 		REG_WR(sc, BCE_HC_RX_TICKS,
6587 		       (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
6588 		for (i = 1; i < sc->rx_ring_cnt; ++i) {
6589 			uint32_t base;
6590 
6591 			base = ((i - 1) * BCE_HC_SB_CONFIG_SIZE) +
6592 			    BCE_HC_SB_CONFIG_1;
6593 			REG_WR(sc, base + BCE_HC_RX_TICKS_OFF,
6594 			    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
6595 		}
6596 		if (bootverbose) {
6597 			if_printf(ifp, "rx_ticks %u, rx_ticks_int %u\n",
6598 				  sc->bce_rx_ticks, sc->bce_rx_ticks_int);
6599 		}
6600 	}
6601 
6602 	sc->bce_coalchg_mask = 0;
6603 }
6604 
6605 static int
6606 bce_tso_setup(struct bce_tx_ring *txr, struct mbuf **mp,
6607     uint16_t *flags0, uint16_t *mss0)
6608 {
6609 	struct mbuf *m;
6610 	uint16_t flags;
6611 	int thoff, iphlen, hoff;
6612 
6613 	m = *mp;
6614 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
6615 
6616 	hoff = m->m_pkthdr.csum_lhlen;
6617 	iphlen = m->m_pkthdr.csum_iphlen;
6618 	thoff = m->m_pkthdr.csum_thlen;
6619 
6620 	KASSERT(hoff >= sizeof(struct ether_header),
6621 	    ("invalid ether header len %d", hoff));
6622 	KASSERT(iphlen >= sizeof(struct ip),
6623 	    ("invalid ip header len %d", iphlen));
6624 	KASSERT(thoff >= sizeof(struct tcphdr),
6625 	    ("invalid tcp header len %d", thoff));
6626 
6627 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
6628 		m = m_pullup(m, hoff + iphlen + thoff);
6629 		if (m == NULL) {
6630 			*mp = NULL;
6631 			return ENOBUFS;
6632 		}
6633 		*mp = m;
6634 	}
6635 
6636 	/* Set the LSO flag in the TX BD */
6637 	flags = TX_BD_FLAGS_SW_LSO;
6638 
6639 	/* Set the length of IP + TCP options (in 32 bit words) */
6640 	flags |= (((iphlen + thoff -
6641 	    sizeof(struct ip) - sizeof(struct tcphdr)) >> 2) << 8);
6642 
6643 	*mss0 = htole16(m->m_pkthdr.tso_segsz);
6644 	*flags0 = flags;
6645 
6646 	return 0;
6647 }
6648 
6649 static void
6650 bce_setup_serialize(struct bce_softc *sc)
6651 {
6652 	int i, j;
6653 
6654 	/*
6655 	 * Allocate serializer array
6656 	 */
6657 
6658 	/* Main + TX + RX */
6659 	sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
6660 
6661 	sc->serializes =
6662 	    kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
6663 	        M_DEVBUF, M_WAITOK | M_ZERO);
6664 
6665 	/*
6666 	 * Setup serializers
6667 	 *
6668 	 * NOTE: Order is critical
6669 	 */
6670 
6671 	i = 0;
6672 
6673 	KKASSERT(i < sc->serialize_cnt);
6674 	sc->serializes[i++] = &sc->main_serialize;
6675 
6676 	for (j = 0; j < sc->rx_ring_cnt; ++j) {
6677 		KKASSERT(i < sc->serialize_cnt);
6678 		sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
6679 	}
6680 
6681 	for (j = 0; j < sc->tx_ring_cnt; ++j) {
6682 		KKASSERT(i < sc->serialize_cnt);
6683 		sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
6684 	}
6685 
6686 	KKASSERT(i == sc->serialize_cnt);
6687 }
6688 
6689 static void
6690 bce_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
6691 {
6692 	struct bce_softc *sc = ifp->if_softc;
6693 
6694 	ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
6695 }
6696 
6697 static void
6698 bce_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
6699 {
6700 	struct bce_softc *sc = ifp->if_softc;
6701 
6702 	ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
6703 }
6704 
6705 static int
6706 bce_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
6707 {
6708 	struct bce_softc *sc = ifp->if_softc;
6709 
6710 	return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
6711 	    slz);
6712 }
6713 
6714 #ifdef INVARIANTS
6715 
6716 static void
6717 bce_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
6718     boolean_t serialized)
6719 {
6720 	struct bce_softc *sc = ifp->if_softc;
6721 
6722 	ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
6723 	    slz, serialized);
6724 }
6725 
6726 #endif	/* INVARIANTS */
6727 
6728 static void
6729 bce_serialize_skipmain(struct bce_softc *sc)
6730 {
6731 	lwkt_serialize_array_enter(sc->serializes, sc->serialize_cnt, 1);
6732 }
6733 
6734 static void
6735 bce_deserialize_skipmain(struct bce_softc *sc)
6736 {
6737 	lwkt_serialize_array_exit(sc->serializes, sc->serialize_cnt, 1);
6738 }
6739 
6740 #ifdef IFPOLL_ENABLE
6741 
6742 static int
6743 bce_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS)
6744 {
6745 	struct bce_softc *sc = (void *)arg1;
6746 	struct ifnet *ifp = &sc->arpcom.ac_if;
6747 	int error, off;
6748 
6749 	off = sc->npoll_ofs;
6750 	error = sysctl_handle_int(oidp, &off, 0, req);
6751 	if (error || req->newptr == NULL)
6752 		return error;
6753 	if (off < 0)
6754 		return EINVAL;
6755 
6756 	ifnet_serialize_all(ifp);
6757 	if (off >= ncpus2 || off % sc->rx_ring_cnt2 != 0) {
6758 		error = EINVAL;
6759 	} else {
6760 		error = 0;
6761 		sc->npoll_ofs = off;
6762 	}
6763 	ifnet_deserialize_all(ifp);
6764 
6765 	return error;
6766 }
6767 
6768 #endif	/* IFPOLL_ENABLE */
6769 
6770 static void
6771 bce_set_timer_cpuid(struct bce_softc *sc, boolean_t polling)
6772 {
6773 	if (polling)
6774 		sc->bce_timer_cpuid = 0; /* XXX */
6775 	else
6776 		sc->bce_timer_cpuid = sc->bce_msix[0].msix_cpuid;
6777 }
6778 
6779 static int
6780 bce_alloc_intr(struct bce_softc *sc)
6781 {
6782 	u_int irq_flags;
6783 
6784 	bce_try_alloc_msix(sc);
6785 	if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX)
6786 		return 0;
6787 
6788 	sc->bce_irq_type = pci_alloc_1intr(sc->bce_dev, bce_msi_enable,
6789 	    &sc->bce_irq_rid, &irq_flags);
6790 
6791 	sc->bce_res_irq = bus_alloc_resource_any(sc->bce_dev, SYS_RES_IRQ,
6792 	    &sc->bce_irq_rid, irq_flags);
6793 	if (sc->bce_res_irq == NULL) {
6794 		device_printf(sc->bce_dev, "PCI map interrupt failed\n");
6795 		return ENXIO;
6796 	}
6797 	sc->bce_msix[0].msix_cpuid = rman_get_cpuid(sc->bce_res_irq);
6798 	sc->bce_msix[0].msix_serialize = &sc->main_serialize;
6799 
6800 	return 0;
6801 }
6802 
6803 static void
6804 bce_try_alloc_msix(struct bce_softc *sc)
6805 {
6806 	struct bce_msix_data *msix;
6807 	int offset, i, error;
6808 	boolean_t setup = FALSE;
6809 
6810 	if (sc->rx_ring_cnt == 1)
6811 		return;
6812 
6813 	if (sc->rx_ring_cnt2 == ncpus2) {
6814 		offset = 0;
6815 	} else {
6816 		int offset_def =
6817 		    (sc->rx_ring_cnt2 * device_get_unit(sc->bce_dev)) % ncpus2;
6818 
6819 		offset = device_getenv_int(sc->bce_dev,
6820 		    "msix.offset", offset_def);
6821 		if (offset >= ncpus2 || offset % sc->rx_ring_cnt2 != 0) {
6822 			device_printf(sc->bce_dev,
6823 			    "invalid msix.offset %d, use %d\n",
6824 			    offset, offset_def);
6825 			offset = offset_def;
6826 		}
6827 	}
6828 
6829 	msix = &sc->bce_msix[0];
6830 	msix->msix_serialize = &sc->main_serialize;
6831 	msix->msix_func = bce_intr_msi_oneshot;
6832 	msix->msix_arg = sc;
6833 	KKASSERT(offset < ncpus2);
6834 	msix->msix_cpuid = offset;
6835 	ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s combo",
6836 	    device_get_nameunit(sc->bce_dev));
6837 
6838 	for (i = 1; i < sc->rx_ring_cnt; ++i) {
6839 		struct bce_rx_ring *rxr = &sc->rx_rings[i];
6840 
6841 		msix = &sc->bce_msix[i];
6842 
6843 		msix->msix_serialize = &rxr->rx_serialize;
6844 		msix->msix_arg = rxr;
6845 		msix->msix_cpuid = offset + (i % sc->rx_ring_cnt2);
6846 		KKASSERT(msix->msix_cpuid < ncpus2);
6847 
6848 		if (i < sc->tx_ring_cnt) {
6849 			msix->msix_func = bce_intr_msix_rxtx;
6850 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
6851 			    "%s rxtx%d", device_get_nameunit(sc->bce_dev), i);
6852 		} else {
6853 			msix->msix_func = bce_intr_msix_rx;
6854 			ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
6855 			    "%s rx%d", device_get_nameunit(sc->bce_dev), i);
6856 		}
6857 	}
6858 
6859 	/*
6860 	 * Setup MSI-X table
6861 	 */
6862 	bce_setup_msix_table(sc);
6863 	REG_WR(sc, BCE_PCI_MSIX_CONTROL, BCE_MSIX_MAX - 1);
6864 	REG_WR(sc, BCE_PCI_MSIX_TBL_OFF_BIR, BCE_PCI_GRC_WINDOW2_BASE);
6865 	REG_WR(sc, BCE_PCI_MSIX_PBA_OFF_BIT, BCE_PCI_GRC_WINDOW3_BASE);
6866 	/* Flush */
6867 	REG_RD(sc, BCE_PCI_MSIX_CONTROL);
6868 
6869 	error = pci_setup_msix(sc->bce_dev);
6870 	if (error) {
6871 		device_printf(sc->bce_dev, "Setup MSI-X failed\n");
6872 		goto back;
6873 	}
6874 	setup = TRUE;
6875 
6876 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
6877 		msix = &sc->bce_msix[i];
6878 
6879 		error = pci_alloc_msix_vector(sc->bce_dev, i, &msix->msix_rid,
6880 		    msix->msix_cpuid);
6881 		if (error) {
6882 			device_printf(sc->bce_dev,
6883 			    "Unable to allocate MSI-X %d on cpu%d\n",
6884 			    i, msix->msix_cpuid);
6885 			goto back;
6886 		}
6887 
6888 		msix->msix_res = bus_alloc_resource_any(sc->bce_dev,
6889 		    SYS_RES_IRQ, &msix->msix_rid, RF_ACTIVE);
6890 		if (msix->msix_res == NULL) {
6891 			device_printf(sc->bce_dev,
6892 			    "Unable to allocate MSI-X %d resource\n", i);
6893 			error = ENOMEM;
6894 			goto back;
6895 		}
6896 	}
6897 
6898 	pci_enable_msix(sc->bce_dev);
6899 	sc->bce_irq_type = PCI_INTR_TYPE_MSIX;
6900 back:
6901 	if (error)
6902 		bce_free_msix(sc, setup);
6903 }
6904 
6905 static void
6906 bce_setup_ring_cnt(struct bce_softc *sc)
6907 {
6908 	int msix_enable, ring_max, msix_cnt2, msix_cnt, i;
6909 
6910 	sc->rx_ring_cnt = 1;
6911 	sc->rx_ring_cnt2 = 1;
6912 	sc->tx_ring_cnt = 1;
6913 
6914 	if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5709 &&
6915 	    BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5716)
6916 		return;
6917 
6918 	msix_enable = device_getenv_int(sc->bce_dev, "msix.enable",
6919 	    bce_msix_enable);
6920 	if (!msix_enable)
6921 		return;
6922 
6923 	if (ncpus2 == 1)
6924 		return;
6925 
6926 	msix_cnt = pci_msix_count(sc->bce_dev);
6927 	if (msix_cnt <= 1)
6928 		return;
6929 
6930 	i = 0;
6931 	while ((1 << (i + 1)) <= msix_cnt)
6932 		++i;
6933 	msix_cnt2 = 1 << i;
6934 
6935 	/*
6936 	 * One extra RX ring will be needed (see below), so make sure
6937 	 * that there are enough MSI-X vectors.
6938 	 */
6939 	if (msix_cnt == msix_cnt2) {
6940 		/*
6941 		 * XXX
6942 		 * This probably will not happen; 5709/5716
6943 		 * come with 9 MSI-X vectors.
6944 		 */
6945 		msix_cnt2 >>= 1;
6946 		if (msix_cnt2 <= 1) {
6947 			device_printf(sc->bce_dev,
6948 			    "MSI-X count %d could not be used\n", msix_cnt);
6949 			return;
6950 		}
6951 		device_printf(sc->bce_dev, "MSI-X count %d is power of 2\n",
6952 		    msix_cnt);
6953 	}
6954 
6955 	/*
6956 	 * Setup RX ring count
6957 	 */
6958 	ring_max = BCE_RX_RING_MAX;
6959 	if (ring_max > msix_cnt2)
6960 		ring_max = msix_cnt2;
6961 	sc->rx_ring_cnt2 = device_getenv_int(sc->bce_dev, "rx_rings",
6962 	    bce_rx_rings);
6963 	sc->rx_ring_cnt2 = if_ring_count2(sc->rx_ring_cnt2, ring_max);
6964 
6965 	/*
6966 	 * Don't use MSI-X, if the effective RX ring count is 1.
6967 	 * Since if the effective RX ring count is 1, the TX ring
6968 	 * count will be 1.  This RX ring and the TX ring must be
6969 	 * bundled into one MSI-X vector, so the hot path will be
6970 	 * exact same as using MSI.  Besides, the first RX ring
6971 	 * must be fully populated, which only accepts packets whose
6972 	 * RSS hash can't calculated, e.g. ARP packets; waste of
6973 	 * resource at least.
6974 	 */
6975 	if (sc->rx_ring_cnt2 == 1)
6976 		return;
6977 
6978 	/*
6979 	 * One extra RX ring is allocated, since the first RX ring
6980 	 * could not be used for RSS hashed packets whose masked
6981 	 * hash is 0.  The first RX ring is only used for packets
6982 	 * whose RSS hash could not be calculated, e.g. ARP packets.
6983 	 * This extra RX ring will be used for packets whose masked
6984 	 * hash is 0.  The effective RX ring count involved in RSS
6985 	 * is still sc->rx_ring_cnt2.
6986 	 */
6987 	KKASSERT(sc->rx_ring_cnt2 + 1 <= msix_cnt);
6988 	sc->rx_ring_cnt = sc->rx_ring_cnt2 + 1;
6989 
6990 	/*
6991 	 * Setup TX ring count
6992 	 *
6993 	 * NOTE:
6994 	 * TX ring count must be less than the effective RSS RX ring
6995 	 * count, since we use RX ring software data struct to save
6996 	 * status index and various other MSI-X related stuffs.
6997 	 */
6998 	ring_max = BCE_TX_RING_MAX;
6999 	if (ring_max > msix_cnt2)
7000 		ring_max = msix_cnt2;
7001 	if (ring_max > sc->rx_ring_cnt2)
7002 		ring_max = sc->rx_ring_cnt2;
7003 	sc->tx_ring_cnt = device_getenv_int(sc->bce_dev, "tx_rings",
7004 	    bce_tx_rings);
7005 	sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
7006 }
7007 
7008 static void
7009 bce_free_msix(struct bce_softc *sc, boolean_t setup)
7010 {
7011 	int i;
7012 
7013 	KKASSERT(sc->rx_ring_cnt > 1);
7014 
7015 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
7016 		struct bce_msix_data *msix = &sc->bce_msix[i];
7017 
7018 		if (msix->msix_res != NULL) {
7019 			bus_release_resource(sc->bce_dev, SYS_RES_IRQ,
7020 			    msix->msix_rid, msix->msix_res);
7021 		}
7022 		if (msix->msix_rid >= 0)
7023 			pci_release_msix_vector(sc->bce_dev, msix->msix_rid);
7024 	}
7025 	if (setup)
7026 		pci_teardown_msix(sc->bce_dev);
7027 }
7028 
7029 static void
7030 bce_free_intr(struct bce_softc *sc)
7031 {
7032 	if (sc->bce_irq_type != PCI_INTR_TYPE_MSIX) {
7033 		if (sc->bce_res_irq != NULL) {
7034 			bus_release_resource(sc->bce_dev, SYS_RES_IRQ,
7035 			    sc->bce_irq_rid, sc->bce_res_irq);
7036 		}
7037 		if (sc->bce_irq_type == PCI_INTR_TYPE_MSI)
7038 			pci_release_msi(sc->bce_dev);
7039 	} else {
7040 		bce_free_msix(sc, TRUE);
7041 	}
7042 }
7043 
7044 static void
7045 bce_setup_msix_table(struct bce_softc *sc)
7046 {
7047 	REG_WR(sc, BCE_PCI_GRC_WINDOW_ADDR, BCE_PCI_GRC_WINDOW_ADDR_SEP_WIN);
7048 	REG_WR(sc, BCE_PCI_GRC_WINDOW2_ADDR, BCE_MSIX_TABLE_ADDR);
7049 	REG_WR(sc, BCE_PCI_GRC_WINDOW3_ADDR, BCE_MSIX_PBA_ADDR);
7050 }
7051 
7052 static int
7053 bce_setup_intr(struct bce_softc *sc)
7054 {
7055 	void (*irq_handle)(void *);
7056 	int error;
7057 
7058 	if (sc->bce_irq_type == PCI_INTR_TYPE_MSIX)
7059 		return bce_setup_msix(sc);
7060 
7061 	if (sc->bce_irq_type == PCI_INTR_TYPE_LEGACY) {
7062 		irq_handle = bce_intr_legacy;
7063 	} else if (sc->bce_irq_type == PCI_INTR_TYPE_MSI) {
7064 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709 ||
7065 		    BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5716) {
7066 			irq_handle = bce_intr_msi_oneshot;
7067 			sc->bce_flags |= BCE_ONESHOT_MSI_FLAG;
7068 		} else {
7069 			irq_handle = bce_intr_msi;
7070 			sc->bce_flags |= BCE_CHECK_MSI_FLAG;
7071 		}
7072 	} else {
7073 		panic("%s: unsupported intr type %d",
7074 		    device_get_nameunit(sc->bce_dev), sc->bce_irq_type);
7075 	}
7076 
7077 	error = bus_setup_intr(sc->bce_dev, sc->bce_res_irq, INTR_MPSAFE,
7078 	    irq_handle, sc, &sc->bce_intrhand, &sc->main_serialize);
7079 	if (error != 0) {
7080 		device_printf(sc->bce_dev, "Failed to setup IRQ!\n");
7081 		return error;
7082 	}
7083 
7084 	return 0;
7085 }
7086 
7087 static void
7088 bce_teardown_intr(struct bce_softc *sc)
7089 {
7090 	if (sc->bce_irq_type != PCI_INTR_TYPE_MSIX)
7091 		bus_teardown_intr(sc->bce_dev, sc->bce_res_irq, sc->bce_intrhand);
7092 	else
7093 		bce_teardown_msix(sc, sc->rx_ring_cnt);
7094 }
7095 
7096 static int
7097 bce_setup_msix(struct bce_softc *sc)
7098 {
7099 	int i;
7100 
7101 	for (i = 0; i < sc->rx_ring_cnt; ++i) {
7102 		struct bce_msix_data *msix = &sc->bce_msix[i];
7103 		int error;
7104 
7105 		error = bus_setup_intr_descr(sc->bce_dev, msix->msix_res,
7106 		    INTR_MPSAFE, msix->msix_func, msix->msix_arg,
7107 		    &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
7108 		if (error) {
7109 			device_printf(sc->bce_dev, "could not set up %s "
7110 			    "interrupt handler.\n", msix->msix_desc);
7111 			bce_teardown_msix(sc, i);
7112 			return error;
7113 		}
7114 	}
7115 	return 0;
7116 }
7117 
7118 static void
7119 bce_teardown_msix(struct bce_softc *sc, int msix_cnt)
7120 {
7121 	int i;
7122 
7123 	for (i = 0; i < msix_cnt; ++i) {
7124 		struct bce_msix_data *msix = &sc->bce_msix[i];
7125 
7126 		bus_teardown_intr(sc->bce_dev, msix->msix_res,
7127 		    msix->msix_handle);
7128 	}
7129 }
7130 
7131 static void
7132 bce_init_rss(struct bce_softc *sc)
7133 {
7134 	uint8_t key[BCE_RLUP_RSS_KEY_CNT * BCE_RLUP_RSS_KEY_SIZE];
7135 	uint32_t tbl = 0;
7136 	int i;
7137 
7138 	KKASSERT(sc->rx_ring_cnt > 2);
7139 
7140 	/*
7141 	 * Configure RSS keys
7142 	 */
7143 	toeplitz_get_key(key, sizeof(key));
7144 	for (i = 0; i < BCE_RLUP_RSS_KEY_CNT; ++i) {
7145 		uint32_t rss_key;
7146 
7147 		rss_key = BCE_RLUP_RSS_KEYVAL(key, i);
7148 		BCE_RSS_DPRINTF(sc, 1, "rss_key%d 0x%08x\n", i, rss_key);
7149 
7150 		REG_WR(sc, BCE_RLUP_RSS_KEY(i), rss_key);
7151 	}
7152 
7153 	/*
7154 	 * Configure the redirect table
7155 	 *
7156 	 * NOTE:
7157 	 * - The "queue ID" in redirect table is the software RX ring's
7158 	 *   index _minus_ one.
7159 	 * - The last RX ring, whose "queue ID" is (sc->rx_ring_cnt - 2)
7160 	 *   will be used for packets whose masked hash is 0.
7161 	 *   (see also: comment in bce_setup_ring_cnt())
7162 	 *
7163 	 * The redirect table is configured in following fashion, except
7164 	 * for the masked hash 0, which is noted above:
7165 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
7166 	 */
7167 	for (i = 0; i < BCE_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
7168 		int shift = (i % 8) << 2, qid;
7169 
7170 		qid = i % sc->rx_ring_cnt2;
7171 		if (qid > 0)
7172 			--qid;
7173 		else
7174 			qid = sc->rx_ring_cnt - 2;
7175 		KKASSERT(qid < (sc->rx_ring_cnt - 1));
7176 
7177 		tbl |= qid << shift;
7178 		if (i % 8 == 7) {
7179 			BCE_RSS_DPRINTF(sc, 1, "tbl 0x%08x\n", tbl);
7180 			REG_WR(sc, BCE_RLUP_RSS_DATA, tbl);
7181 			REG_WR(sc, BCE_RLUP_RSS_COMMAND, (i >> 3) |
7182 			    BCE_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
7183 			    BCE_RLUP_RSS_COMMAND_WRITE |
7184 			    BCE_RLUP_RSS_COMMAND_HASH_MASK);
7185 			tbl = 0;
7186 		}
7187 	}
7188 	REG_WR(sc, BCE_RLUP_RSS_CONFIG,
7189 	    BCE_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI);
7190 }
7191 
7192 static void
7193 bce_npoll_coal_change(struct bce_softc *sc)
7194 {
7195 	uint32_t old_rx_cons, old_tx_cons;
7196 
7197 	old_rx_cons = sc->bce_rx_quick_cons_trip_int;
7198 	old_tx_cons = sc->bce_tx_quick_cons_trip_int;
7199 	sc->bce_rx_quick_cons_trip_int = 1;
7200 	sc->bce_tx_quick_cons_trip_int = 1;
7201 
7202 	sc->bce_coalchg_mask |= BCE_COALMASK_TX_BDS_INT |
7203 	    BCE_COALMASK_RX_BDS_INT;
7204 	bce_coal_change(sc);
7205 
7206 	sc->bce_rx_quick_cons_trip_int = old_rx_cons;
7207 	sc->bce_tx_quick_cons_trip_int = old_tx_cons;
7208 }
7209 
7210 static struct pktinfo *
7211 bce_rss_pktinfo(struct pktinfo *pi, uint32_t status,
7212     const struct l2_fhdr *l2fhdr)
7213 {
7214 	/* Check for an IP datagram. */
7215 	if ((status & L2_FHDR_STATUS_IP_DATAGRAM) == 0)
7216 		return NULL;
7217 
7218 	/* Check if the IP checksum is valid. */
7219 	if (l2fhdr->l2_fhdr_ip_xsum != 0xffff)
7220 		return NULL;
7221 
7222 	/* Check for a valid TCP/UDP frame. */
7223 	if (status & L2_FHDR_STATUS_TCP_SEGMENT) {
7224 		if (status & L2_FHDR_ERRORS_TCP_XSUM)
7225 			return NULL;
7226 		if (l2fhdr->l2_fhdr_tcp_udp_xsum != 0xffff)
7227 			return NULL;
7228 		pi->pi_l3proto = IPPROTO_TCP;
7229 	} else if (status & L2_FHDR_STATUS_UDP_DATAGRAM) {
7230 		if (status & L2_FHDR_ERRORS_UDP_XSUM)
7231 			return NULL;
7232 		if (l2fhdr->l2_fhdr_tcp_udp_xsum != 0xffff)
7233 			return NULL;
7234 		pi->pi_l3proto = IPPROTO_UDP;
7235 	} else {
7236 		return NULL;
7237 	}
7238 	pi->pi_netisr = NETISR_IP;
7239 	pi->pi_flags = 0;
7240 
7241 	return pi;
7242 }
7243