xref: /dragonfly/sys/dev/netif/bge/if_bge.c (revision 1465342b)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.88 2007/12/02 07:41:10 sephe Exp $
35  *
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44 
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  *
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74 
75 #include "opt_polling.h"
76 #include <sys/param.h>
77 #include <sys/bus.h>
78 #include <sys/endian.h>
79 #include <sys/kernel.h>
80 #include <sys/ktr.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89 
90 #include <net/bpf.h>
91 #include <net/ethernet.h>
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_types.h>
97 #include <net/ifq_var.h>
98 #include <net/vlan/if_vlan_var.h>
99 
100 #include <dev/netif/mii_layer/mii.h>
101 #include <dev/netif/mii_layer/miivar.h>
102 #include <dev/netif/mii_layer/brgphyreg.h>
103 
104 #include <bus/pci/pcidevs.h>
105 #include <bus/pci/pcireg.h>
106 #include <bus/pci/pcivar.h>
107 
108 #include <dev/netif/bge/if_bgereg.h>
109 
110 /* "device miibus" required.  See GENERIC if you get errors here. */
111 #include "miibus_if.h"
112 
113 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
114 #define BGE_MIN_FRAME		60
115 
116 /*
117  * Various supported device vendors/types and their names. Note: the
118  * spec seems to indicate that the hardware still has Alteon's vendor
119  * ID burned into it, though it will always be overriden by the vendor
120  * ID in the EEPROM. Just to be safe, we cover all possibilities.
121  */
122 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
123 
124 static struct bge_type bge_devs[] = {
125 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
126 		"3COM 3C996 Gigabit Ethernet" },
127 
128 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
129 		"Alteon BCM5700 Gigabit Ethernet" },
130 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
131 		"Alteon BCM5701 Gigabit Ethernet" },
132 
133 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
134 		"Altima AC1000 Gigabit Ethernet" },
135 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
136 		"Altima AC1002 Gigabit Ethernet" },
137 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
138 		"Altima AC9100 Gigabit Ethernet" },
139 
140 	{ PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
141 		"Apple BCM5701 Gigabit Ethernet" },
142 
143 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
144 		"Broadcom BCM5700 Gigabit Ethernet" },
145 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
146 		"Broadcom BCM5701 Gigabit Ethernet" },
147 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
148 		"Broadcom BCM5702 Gigabit Ethernet" },
149 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
150 		"Broadcom BCM5702X Gigabit Ethernet" },
151 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
152 		"Broadcom BCM5702 Gigabit Ethernet" },
153 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
154 		"Broadcom BCM5703 Gigabit Ethernet" },
155 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
156 		"Broadcom BCM5703X Gigabit Ethernet" },
157 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
158 		"Broadcom BCM5703 Gigabit Ethernet" },
159 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
160 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
161 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
162 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
163 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
164 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
165 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
166 		"Broadcom BCM5705 Gigabit Ethernet" },
167 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
168 		"Broadcom BCM5705F Gigabit Ethernet" },
169 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
170 		"Broadcom BCM5705K Gigabit Ethernet" },
171 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
172 		"Broadcom BCM5705M Gigabit Ethernet" },
173 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
174 		"Broadcom BCM5705M Gigabit Ethernet" },
175 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
176 		"Broadcom BCM5714C Gigabit Ethernet" },
177 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
178 		"Broadcom BCM5714S Gigabit Ethernet" },
179 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
180 		"Broadcom BCM5715 Gigabit Ethernet" },
181 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
182 		"Broadcom BCM5715S Gigabit Ethernet" },
183 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
184 		"Broadcom BCM5720 Gigabit Ethernet" },
185 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
186 		"Broadcom BCM5721 Gigabit Ethernet" },
187 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
188 		"Broadcom BCM5722 Gigabit Ethernet" },
189 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
190 		"Broadcom BCM5750 Gigabit Ethernet" },
191 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
192 		"Broadcom BCM5750M Gigabit Ethernet" },
193 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
194 		"Broadcom BCM5751 Gigabit Ethernet" },
195 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
196 		"Broadcom BCM5751F Gigabit Ethernet" },
197 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
198 		"Broadcom BCM5751M Gigabit Ethernet" },
199 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
200 		"Broadcom BCM5752 Gigabit Ethernet" },
201 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
202 		"Broadcom BCM5752M Gigabit Ethernet" },
203 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
204 		"Broadcom BCM5753 Gigabit Ethernet" },
205 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
206 		"Broadcom BCM5753F Gigabit Ethernet" },
207 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
208 		"Broadcom BCM5753M Gigabit Ethernet" },
209 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
210 		"Broadcom BCM5754 Gigabit Ethernet" },
211 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
212 		"Broadcom BCM5754M Gigabit Ethernet" },
213 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
214 		"Broadcom BCM5755 Gigabit Ethernet" },
215 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
216 		"Broadcom BCM5755M Gigabit Ethernet" },
217 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
218 		"Broadcom BCM5756 Gigabit Ethernet" },
219 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
220 		"Broadcom BCM5780 Gigabit Ethernet" },
221 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
222 		"Broadcom BCM5780S Gigabit Ethernet" },
223 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
224 		"Broadcom BCM5781 Gigabit Ethernet" },
225 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
226 		"Broadcom BCM5782 Gigabit Ethernet" },
227 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
228 		"Broadcom BCM5786 Gigabit Ethernet" },
229 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
230 		"Broadcom BCM5787 Gigabit Ethernet" },
231 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
232 		"Broadcom BCM5787F Gigabit Ethernet" },
233 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
234 		"Broadcom BCM5787M Gigabit Ethernet" },
235 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
236 		"Broadcom BCM5788 Gigabit Ethernet" },
237 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
238 		"Broadcom BCM5789 Gigabit Ethernet" },
239 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
240 		"Broadcom BCM5901 Fast Ethernet" },
241 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
242 		"Broadcom BCM5901A2 Fast Ethernet" },
243 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
244 		"Broadcom BCM5903M Fast Ethernet" },
245 
246 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
247 		"SysKonnect Gigabit Ethernet" },
248 
249 	{ 0, 0, NULL }
250 };
251 
252 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
253 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
254 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
255 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
256 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
257 
258 static int	bge_probe(device_t);
259 static int	bge_attach(device_t);
260 static int	bge_detach(device_t);
261 static void	bge_txeof(struct bge_softc *);
262 static void	bge_rxeof(struct bge_softc *);
263 
264 static void	bge_tick(void *);
265 static void	bge_stats_update(struct bge_softc *);
266 static void	bge_stats_update_regs(struct bge_softc *);
267 static int	bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
268 
269 #ifdef DEVICE_POLLING
270 static void	bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
271 #endif
272 static void	bge_intr(void *);
273 static void	bge_enable_intr(struct bge_softc *);
274 static void	bge_disable_intr(struct bge_softc *);
275 static void	bge_start(struct ifnet *);
276 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
277 static void	bge_init(void *);
278 static void	bge_stop(struct bge_softc *);
279 static void	bge_watchdog(struct ifnet *);
280 static void	bge_shutdown(device_t);
281 static int	bge_suspend(device_t);
282 static int	bge_resume(device_t);
283 static int	bge_ifmedia_upd(struct ifnet *);
284 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
285 
286 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
287 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
288 
289 static void	bge_setmulti(struct bge_softc *);
290 static void	bge_setpromisc(struct bge_softc *);
291 
292 static int	bge_alloc_jumbo_mem(struct bge_softc *);
293 static void	bge_free_jumbo_mem(struct bge_softc *);
294 static struct bge_jslot
295 		*bge_jalloc(struct bge_softc *);
296 static void	bge_jfree(void *);
297 static void	bge_jref(void *);
298 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
299 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
300 static int	bge_init_rx_ring_std(struct bge_softc *);
301 static void	bge_free_rx_ring_std(struct bge_softc *);
302 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
303 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
304 static void	bge_free_tx_ring(struct bge_softc *);
305 static int	bge_init_tx_ring(struct bge_softc *);
306 
307 static int	bge_chipinit(struct bge_softc *);
308 static int	bge_blockinit(struct bge_softc *);
309 
310 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
311 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
312 #ifdef notdef
313 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
314 #endif
315 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
316 static void	bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
317 
318 static int	bge_miibus_readreg(device_t, int, int);
319 static int	bge_miibus_writereg(device_t, int, int, int);
320 static void	bge_miibus_statchg(device_t);
321 static void	bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
322 static void	bge_tbi_link_upd(struct bge_softc *, uint32_t);
323 static void	bge_copper_link_upd(struct bge_softc *, uint32_t);
324 
325 static void	bge_reset(struct bge_softc *);
326 
327 static void	bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
328 static void	bge_dma_map_mbuf(void *, bus_dma_segment_t *, int,
329 				 bus_size_t, int);
330 static int	bge_dma_alloc(struct bge_softc *);
331 static void	bge_dma_free(struct bge_softc *);
332 static int	bge_dma_block_alloc(struct bge_softc *, bus_size_t,
333 				    bus_dma_tag_t *, bus_dmamap_t *,
334 				    void **, bus_addr_t *);
335 static void	bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
336 
337 static void	bge_coal_change(struct bge_softc *);
338 static int	bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
339 static int	bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
340 static int	bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
341 static int	bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
342 static int	bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
343 
344 /*
345  * Set following tunable to 1 for some IBM blade servers with the DNLK
346  * switch module. Auto negotiation is broken for those configurations.
347  */
348 static int	bge_fake_autoneg = 0;
349 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
350 
351 /* Interrupt moderation control variables. */
352 static int	bge_rx_coal_ticks = 150;	/* usec */
353 static int	bge_tx_coal_ticks = 1000000;	/* usec */
354 static int	bge_rx_max_coal_bds = 16;
355 static int	bge_tx_max_coal_bds = 32;
356 
357 TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
358 TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
359 TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
360 TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
361 
362 #if !defined(KTR_IF_BGE)
363 #define KTR_IF_BGE	KTR_ALL
364 #endif
365 KTR_INFO_MASTER(if_bge);
366 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr", 0);
367 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt", 0);
368 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt", 0);
369 #define logif(name)	KTR_LOG(if_bge_ ## name)
370 
371 static device_method_t bge_methods[] = {
372 	/* Device interface */
373 	DEVMETHOD(device_probe,		bge_probe),
374 	DEVMETHOD(device_attach,	bge_attach),
375 	DEVMETHOD(device_detach,	bge_detach),
376 	DEVMETHOD(device_shutdown,	bge_shutdown),
377 	DEVMETHOD(device_suspend,	bge_suspend),
378 	DEVMETHOD(device_resume,	bge_resume),
379 
380 	/* bus interface */
381 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
382 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
383 
384 	/* MII interface */
385 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
386 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
387 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
388 
389 	{ 0, 0 }
390 };
391 
392 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
393 static devclass_t bge_devclass;
394 
395 DECLARE_DUMMY_MODULE(if_bge);
396 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
397 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
398 
399 static uint32_t
400 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
401 {
402 	device_t dev = sc->bge_dev;
403 	uint32_t val;
404 
405 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
406 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
407 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
408 	return (val);
409 }
410 
411 static void
412 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
413 {
414 	device_t dev = sc->bge_dev;
415 
416 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
417 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
418 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
419 }
420 
421 #ifdef notdef
422 static uint32_t
423 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
424 {
425 	device_t dev = sc->bge_dev;
426 
427 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
428 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
429 }
430 #endif
431 
432 static void
433 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
434 {
435 	device_t dev = sc->bge_dev;
436 
437 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
438 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
439 }
440 
441 static void
442 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
443 {
444 	CSR_WRITE_4(sc, off, val);
445 }
446 
447 /*
448  * Read a byte of data stored in the EEPROM at address 'addr.' The
449  * BCM570x supports both the traditional bitbang interface and an
450  * auto access interface for reading the EEPROM. We use the auto
451  * access method.
452  */
453 static uint8_t
454 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
455 {
456 	int i;
457 	uint32_t byte = 0;
458 
459 	/*
460 	 * Enable use of auto EEPROM access so we can avoid
461 	 * having to use the bitbang method.
462 	 */
463 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
464 
465 	/* Reset the EEPROM, load the clock period. */
466 	CSR_WRITE_4(sc, BGE_EE_ADDR,
467 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
468 	DELAY(20);
469 
470 	/* Issue the read EEPROM command. */
471 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
472 
473 	/* Wait for completion */
474 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
475 		DELAY(10);
476 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
477 			break;
478 	}
479 
480 	if (i == BGE_TIMEOUT) {
481 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
482 		return(1);
483 	}
484 
485 	/* Get result. */
486 	byte = CSR_READ_4(sc, BGE_EE_DATA);
487 
488         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
489 
490 	return(0);
491 }
492 
493 /*
494  * Read a sequence of bytes from the EEPROM.
495  */
496 static int
497 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
498 {
499 	size_t i;
500 	int err;
501 	uint8_t byte;
502 
503 	for (byte = 0, err = 0, i = 0; i < len; i++) {
504 		err = bge_eeprom_getbyte(sc, off + i, &byte);
505 		if (err)
506 			break;
507 		*(dest + i) = byte;
508 	}
509 
510 	return(err ? 1 : 0);
511 }
512 
513 static int
514 bge_miibus_readreg(device_t dev, int phy, int reg)
515 {
516 	struct bge_softc *sc;
517 	struct ifnet *ifp;
518 	uint32_t val, autopoll;
519 	int i;
520 
521 	sc = device_get_softc(dev);
522 	ifp = &sc->arpcom.ac_if;
523 
524 	/*
525 	 * Broadcom's own driver always assumes the internal
526 	 * PHY is at GMII address 1. On some chips, the PHY responds
527 	 * to accesses at all addresses, which could cause us to
528 	 * bogusly attach the PHY 32 times at probe type. Always
529 	 * restricting the lookup to address 1 is simpler than
530 	 * trying to figure out which chips revisions should be
531 	 * special-cased.
532 	 */
533 	if (phy != 1)
534 		return(0);
535 
536 	/* Reading with autopolling on may trigger PCI errors */
537 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
538 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
539 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
540 		DELAY(40);
541 	}
542 
543 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
544 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
545 
546 	for (i = 0; i < BGE_TIMEOUT; i++) {
547 		val = CSR_READ_4(sc, BGE_MI_COMM);
548 		if (!(val & BGE_MICOMM_BUSY))
549 			break;
550 	}
551 
552 	if (i == BGE_TIMEOUT) {
553 		if_printf(ifp, "PHY read timed out\n");
554 		val = 0;
555 		goto done;
556 	}
557 
558 	val = CSR_READ_4(sc, BGE_MI_COMM);
559 
560 done:
561 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
562 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
563 		DELAY(40);
564 	}
565 
566 	if (val & BGE_MICOMM_READFAIL)
567 		return(0);
568 
569 	return(val & 0xFFFF);
570 }
571 
572 static int
573 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
574 {
575 	struct bge_softc *sc;
576 	uint32_t autopoll;
577 	int i;
578 
579 	sc = device_get_softc(dev);
580 
581 	/* Reading with autopolling on may trigger PCI errors */
582 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
583 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
584 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
585 		DELAY(40);
586 	}
587 
588 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
589 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
590 
591 	for (i = 0; i < BGE_TIMEOUT; i++) {
592 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
593 			break;
594 	}
595 
596 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
597 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
598 		DELAY(40);
599 	}
600 
601 	if (i == BGE_TIMEOUT) {
602 		if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
603 		return(0);
604 	}
605 
606 	return(0);
607 }
608 
609 static void
610 bge_miibus_statchg(device_t dev)
611 {
612 	struct bge_softc *sc;
613 	struct mii_data *mii;
614 
615 	sc = device_get_softc(dev);
616 	mii = device_get_softc(sc->bge_miibus);
617 
618 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
619 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
620 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
621 	} else {
622 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
623 	}
624 
625 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
626 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
627 	} else {
628 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
629 	}
630 }
631 
632 /*
633  * Memory management for jumbo frames.
634  */
635 static int
636 bge_alloc_jumbo_mem(struct bge_softc *sc)
637 {
638 	struct ifnet *ifp = &sc->arpcom.ac_if;
639 	struct bge_jslot *entry;
640 	uint8_t *ptr;
641 	bus_addr_t paddr;
642 	int i, error;
643 
644 	/*
645 	 * Create tag for jumbo mbufs.
646 	 * This is really a bit of a kludge. We allocate a special
647 	 * jumbo buffer pool which (thanks to the way our DMA
648 	 * memory allocation works) will consist of contiguous
649 	 * pages. This means that even though a jumbo buffer might
650 	 * be larger than a page size, we don't really need to
651 	 * map it into more than one DMA segment. However, the
652 	 * default mbuf tag will result in multi-segment mappings,
653 	 * so we have to create a special jumbo mbuf tag that
654 	 * lets us get away with mapping the jumbo buffers as
655 	 * a single segment. I think eventually the driver should
656 	 * be changed so that it uses ordinary mbufs and cluster
657 	 * buffers, i.e. jumbo frames can span multiple DMA
658 	 * descriptors. But that's a project for another day.
659 	 */
660 
661 	/*
662 	 * Create DMA stuffs for jumbo RX ring.
663 	 */
664 	error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
665 				    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
666 				    &sc->bge_cdata.bge_rx_jumbo_ring_map,
667 				    (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
668 				    &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
669 	if (error) {
670 		if_printf(ifp, "could not create jumbo RX ring\n");
671 		return error;
672 	}
673 
674 	/*
675 	 * Create DMA stuffs for jumbo buffer block.
676 	 */
677 	error = bge_dma_block_alloc(sc, BGE_JMEM,
678 				    &sc->bge_cdata.bge_jumbo_tag,
679 				    &sc->bge_cdata.bge_jumbo_map,
680 				    (void **)&sc->bge_ldata.bge_jumbo_buf,
681 				    &paddr);
682 	if (error) {
683 		if_printf(ifp, "could not create jumbo buffer\n");
684 		return error;
685 	}
686 
687 	SLIST_INIT(&sc->bge_jfree_listhead);
688 
689 	/*
690 	 * Now divide it up into 9K pieces and save the addresses
691 	 * in an array. Note that we play an evil trick here by using
692 	 * the first few bytes in the buffer to hold the the address
693 	 * of the softc structure for this interface. This is because
694 	 * bge_jfree() needs it, but it is called by the mbuf management
695 	 * code which will not pass it to us explicitly.
696 	 */
697 	for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
698 		entry = &sc->bge_cdata.bge_jslots[i];
699 		entry->bge_sc = sc;
700 		entry->bge_buf = ptr;
701 		entry->bge_paddr = paddr;
702 		entry->bge_inuse = 0;
703 		entry->bge_slot = i;
704 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
705 
706 		ptr += BGE_JLEN;
707 		paddr += BGE_JLEN;
708 	}
709 	return 0;
710 }
711 
712 static void
713 bge_free_jumbo_mem(struct bge_softc *sc)
714 {
715 	/* Destroy jumbo RX ring. */
716 	bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
717 			   sc->bge_cdata.bge_rx_jumbo_ring_map,
718 			   sc->bge_ldata.bge_rx_jumbo_ring);
719 
720 	/* Destroy jumbo buffer block. */
721 	bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
722 			   sc->bge_cdata.bge_jumbo_map,
723 			   sc->bge_ldata.bge_jumbo_buf);
724 }
725 
726 /*
727  * Allocate a jumbo buffer.
728  */
729 static struct bge_jslot *
730 bge_jalloc(struct bge_softc *sc)
731 {
732 	struct bge_jslot *entry;
733 
734 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
735 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
736 	if (entry) {
737 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
738 		entry->bge_inuse = 1;
739 	} else {
740 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
741 	}
742 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
743 	return(entry);
744 }
745 
746 /*
747  * Adjust usage count on a jumbo buffer.
748  */
749 static void
750 bge_jref(void *arg)
751 {
752 	struct bge_jslot *entry = (struct bge_jslot *)arg;
753 	struct bge_softc *sc = entry->bge_sc;
754 
755 	if (sc == NULL)
756 		panic("bge_jref: can't find softc pointer!");
757 
758 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
759 		panic("bge_jref: asked to reference buffer "
760 		    "that we don't manage!");
761 	} else if (entry->bge_inuse == 0) {
762 		panic("bge_jref: buffer already free!");
763 	} else {
764 		atomic_add_int(&entry->bge_inuse, 1);
765 	}
766 }
767 
768 /*
769  * Release a jumbo buffer.
770  */
771 static void
772 bge_jfree(void *arg)
773 {
774 	struct bge_jslot *entry = (struct bge_jslot *)arg;
775 	struct bge_softc *sc = entry->bge_sc;
776 
777 	if (sc == NULL)
778 		panic("bge_jfree: can't find softc pointer!");
779 
780 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
781 		panic("bge_jfree: asked to free buffer that we don't manage!");
782 	} else if (entry->bge_inuse == 0) {
783 		panic("bge_jfree: buffer already free!");
784 	} else {
785 		/*
786 		 * Possible MP race to 0, use the serializer.  The atomic insn
787 		 * is still needed for races against bge_jref().
788 		 */
789 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
790 		atomic_subtract_int(&entry->bge_inuse, 1);
791 		if (entry->bge_inuse == 0) {
792 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
793 					  entry, jslot_link);
794 		}
795 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
796 	}
797 }
798 
799 
800 /*
801  * Intialize a standard receive ring descriptor.
802  */
803 static int
804 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
805 {
806 	struct mbuf *m_new = NULL;
807 	struct bge_dmamap_arg ctx;
808 	bus_dma_segment_t seg;
809 	struct bge_rx_bd *r;
810 	int error;
811 
812 	if (m == NULL) {
813 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
814 		if (m_new == NULL)
815 			return ENOBUFS;
816 	} else {
817 		m_new = m;
818 		m_new->m_data = m_new->m_ext.ext_buf;
819 	}
820 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
821 
822 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
823 		m_adj(m_new, ETHER_ALIGN);
824 
825 	ctx.bge_maxsegs = 1;
826 	ctx.bge_segs = &seg;
827 	error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag,
828 				     sc->bge_cdata.bge_rx_std_dmamap[i],
829 				     m_new, bge_dma_map_mbuf, &ctx,
830 				     BUS_DMA_NOWAIT);
831 	if (error || ctx.bge_maxsegs == 0) {
832 		if (m == NULL)
833 			m_freem(m_new);
834 		return ENOMEM;
835 	}
836 
837 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
838 
839 	r = &sc->bge_ldata.bge_rx_std_ring[i];
840 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[0].ds_addr);
841 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[0].ds_addr);
842 	r->bge_flags = BGE_RXBDFLAG_END;
843 	r->bge_len = m_new->m_len;
844 	r->bge_idx = i;
845 
846 	bus_dmamap_sync(sc->bge_cdata.bge_mtag,
847 			sc->bge_cdata.bge_rx_std_dmamap[i],
848 			BUS_DMASYNC_PREREAD);
849 	return 0;
850 }
851 
852 /*
853  * Initialize a jumbo receive ring descriptor. This allocates
854  * a jumbo buffer from the pool managed internally by the driver.
855  */
856 static int
857 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
858 {
859 	struct mbuf *m_new = NULL;
860 	struct bge_jslot *buf;
861 	struct bge_rx_bd *r;
862 	bus_addr_t paddr;
863 
864 	if (m == NULL) {
865 		/* Allocate the mbuf. */
866 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
867 		if (m_new == NULL)
868 			return(ENOBUFS);
869 
870 		/* Allocate the jumbo buffer */
871 		buf = bge_jalloc(sc);
872 		if (buf == NULL) {
873 			m_freem(m_new);
874 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
875 			    "-- packet dropped!\n");
876 			return ENOBUFS;
877 		}
878 
879 		/* Attach the buffer to the mbuf. */
880 		m_new->m_ext.ext_arg = buf;
881 		m_new->m_ext.ext_buf = buf->bge_buf;
882 		m_new->m_ext.ext_free = bge_jfree;
883 		m_new->m_ext.ext_ref = bge_jref;
884 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
885 
886 		m_new->m_flags |= M_EXT;
887 	} else {
888 		KKASSERT(m->m_flags & M_EXT);
889 		m_new = m;
890 		buf = m_new->m_ext.ext_arg;
891 	}
892 	m_new->m_data = m_new->m_ext.ext_buf;
893 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
894 
895 	paddr = buf->bge_paddr;
896 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
897 		m_adj(m_new, ETHER_ALIGN);
898 		paddr += ETHER_ALIGN;
899 	}
900 
901 	/* Set up the descriptor. */
902 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
903 
904 	r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
905 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
906 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
907 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
908 	r->bge_len = m_new->m_len;
909 	r->bge_idx = i;
910 
911 	return 0;
912 }
913 
914 /*
915  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
916  * that's 1MB or memory, which is a lot. For now, we fill only the first
917  * 256 ring entries and hope that our CPU is fast enough to keep up with
918  * the NIC.
919  */
920 static int
921 bge_init_rx_ring_std(struct bge_softc *sc)
922 {
923 	int i;
924 
925 	for (i = 0; i < BGE_SSLOTS; i++) {
926 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
927 			return(ENOBUFS);
928 	};
929 
930 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
931 			sc->bge_cdata.bge_rx_std_ring_map,
932 			BUS_DMASYNC_PREWRITE);
933 
934 	sc->bge_std = i - 1;
935 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
936 
937 	return(0);
938 }
939 
940 static void
941 bge_free_rx_ring_std(struct bge_softc *sc)
942 {
943 	int i;
944 
945 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
946 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
947 			bus_dmamap_unload(sc->bge_cdata.bge_mtag,
948 					  sc->bge_cdata.bge_rx_std_dmamap[i]);
949 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
950 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
951 		}
952 		bzero(&sc->bge_ldata.bge_rx_std_ring[i],
953 		    sizeof(struct bge_rx_bd));
954 	}
955 }
956 
957 static int
958 bge_init_rx_ring_jumbo(struct bge_softc *sc)
959 {
960 	int i;
961 	struct bge_rcb *rcb;
962 
963 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
964 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
965 			return(ENOBUFS);
966 	};
967 
968 	bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
969 			sc->bge_cdata.bge_rx_jumbo_ring_map,
970 			BUS_DMASYNC_PREWRITE);
971 
972 	sc->bge_jumbo = i - 1;
973 
974 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
975 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
976 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
977 
978 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
979 
980 	return(0);
981 }
982 
983 static void
984 bge_free_rx_ring_jumbo(struct bge_softc *sc)
985 {
986 	int i;
987 
988 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
989 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
990 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
991 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
992 		}
993 		bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
994 		    sizeof(struct bge_rx_bd));
995 	}
996 }
997 
998 static void
999 bge_free_tx_ring(struct bge_softc *sc)
1000 {
1001 	int i;
1002 
1003 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1004 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1005 			bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1006 					  sc->bge_cdata.bge_tx_dmamap[i]);
1007 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1008 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1009 		}
1010 		bzero(&sc->bge_ldata.bge_tx_ring[i],
1011 		    sizeof(struct bge_tx_bd));
1012 	}
1013 }
1014 
1015 static int
1016 bge_init_tx_ring(struct bge_softc *sc)
1017 {
1018 	sc->bge_txcnt = 0;
1019 	sc->bge_tx_saved_considx = 0;
1020 	sc->bge_tx_prodidx = 0;
1021 
1022 	/* Initialize transmit producer index for host-memory send ring. */
1023 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1024 
1025 	/* 5700 b2 errata */
1026 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1027 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1028 
1029 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1030 	/* 5700 b2 errata */
1031 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1032 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1033 
1034 	return(0);
1035 }
1036 
1037 static void
1038 bge_setmulti(struct bge_softc *sc)
1039 {
1040 	struct ifnet *ifp;
1041 	struct ifmultiaddr *ifma;
1042 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1043 	int h, i;
1044 
1045 	ifp = &sc->arpcom.ac_if;
1046 
1047 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1048 		for (i = 0; i < 4; i++)
1049 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1050 		return;
1051 	}
1052 
1053 	/* First, zot all the existing filters. */
1054 	for (i = 0; i < 4; i++)
1055 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1056 
1057 	/* Now program new ones. */
1058 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1059 		if (ifma->ifma_addr->sa_family != AF_LINK)
1060 			continue;
1061 		h = ether_crc32_le(
1062 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1063 		    ETHER_ADDR_LEN) & 0x7f;
1064 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1065 	}
1066 
1067 	for (i = 0; i < 4; i++)
1068 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1069 }
1070 
1071 /*
1072  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1073  * self-test results.
1074  */
1075 static int
1076 bge_chipinit(struct bge_softc *sc)
1077 {
1078 	int i;
1079 	uint32_t dma_rw_ctl;
1080 
1081 	/* Set endian type before we access any non-PCI registers. */
1082 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1083 
1084 	/*
1085 	 * Check the 'ROM failed' bit on the RX CPU to see if
1086 	 * self-tests passed.
1087 	 */
1088 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1089 		if_printf(&sc->arpcom.ac_if,
1090 			  "RX CPU self-diagnostics failed!\n");
1091 		return(ENODEV);
1092 	}
1093 
1094 	/* Clear the MAC control register */
1095 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1096 
1097 	/*
1098 	 * Clear the MAC statistics block in the NIC's
1099 	 * internal memory.
1100 	 */
1101 	for (i = BGE_STATS_BLOCK;
1102 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1103 		BGE_MEMWIN_WRITE(sc, i, 0);
1104 
1105 	for (i = BGE_STATUS_BLOCK;
1106 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1107 		BGE_MEMWIN_WRITE(sc, i, 0);
1108 
1109 	/* Set up the PCI DMA control register. */
1110 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1111 		/* PCI Express */
1112 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1113 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1114 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1115 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1116 		/* PCI-X bus */
1117 		if (BGE_IS_5714_FAMILY(sc)) {
1118 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1119 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1120 			/* XXX magic values, Broadcom-supplied Linux driver */
1121 			if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1122 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
1123 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1124 			} else {
1125 				dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1126 			}
1127 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1128 			/*
1129 			 * The 5704 uses a different encoding of read/write
1130 			 * watermarks.
1131 			 */
1132 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1133 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1134 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1135 		} else {
1136 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1137 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1138 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1139 			    (0x0F);
1140 		}
1141 
1142 		/*
1143 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1144 		 * for hardware bugs.
1145 		 */
1146 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1147 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1148 			uint32_t tmp;
1149 
1150 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1151 			if (tmp == 0x6 || tmp == 0x7)
1152 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1153 		}
1154 	} else {
1155 		/* Conventional PCI bus */
1156 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1157 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1158 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1159 		    (0x0F);
1160 	}
1161 
1162 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1163 	    sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1164 	    sc->bge_asicrev == BGE_ASICREV_BCM5705)
1165 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1166 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1167 
1168 	/*
1169 	 * Set up general mode register.
1170 	 */
1171 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1172 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1173 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1174 
1175 	/*
1176 	 * Disable memory write invalidate.  Apparently it is not supported
1177 	 * properly by these devices.
1178 	 */
1179 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1180 
1181 	/* Set the timer prescaler (always 66Mhz) */
1182 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1183 
1184 	return(0);
1185 }
1186 
1187 static int
1188 bge_blockinit(struct bge_softc *sc)
1189 {
1190 	struct bge_rcb *rcb;
1191 	bus_size_t vrcb;
1192 	bge_hostaddr taddr;
1193 	uint32_t val;
1194 	int i;
1195 
1196 	/*
1197 	 * Initialize the memory window pointer register so that
1198 	 * we can access the first 32K of internal NIC RAM. This will
1199 	 * allow us to set up the TX send ring RCBs and the RX return
1200 	 * ring RCBs, plus other things which live in NIC memory.
1201 	 */
1202 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1203 
1204 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1205 
1206 	if (!BGE_IS_5705_PLUS(sc)) {
1207 		/* Configure mbuf memory pool */
1208 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1209 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1210 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1211 		else
1212 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1213 
1214 		/* Configure DMA resource pool */
1215 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1216 		    BGE_DMA_DESCRIPTORS);
1217 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1218 	}
1219 
1220 	/* Configure mbuf pool watermarks */
1221 	if (BGE_IS_5705_PLUS(sc)) {
1222 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1223 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1224 	} else {
1225 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1226 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1227 	}
1228 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1229 
1230 	/* Configure DMA resource watermarks */
1231 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1232 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1233 
1234 	/* Enable buffer manager */
1235 	if (!BGE_IS_5705_PLUS(sc)) {
1236 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1237 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1238 
1239 		/* Poll for buffer manager start indication */
1240 		for (i = 0; i < BGE_TIMEOUT; i++) {
1241 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1242 				break;
1243 			DELAY(10);
1244 		}
1245 
1246 		if (i == BGE_TIMEOUT) {
1247 			if_printf(&sc->arpcom.ac_if,
1248 				  "buffer manager failed to start\n");
1249 			return(ENXIO);
1250 		}
1251 	}
1252 
1253 	/* Enable flow-through queues */
1254 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1255 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1256 
1257 	/* Wait until queue initialization is complete */
1258 	for (i = 0; i < BGE_TIMEOUT; i++) {
1259 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1260 			break;
1261 		DELAY(10);
1262 	}
1263 
1264 	if (i == BGE_TIMEOUT) {
1265 		if_printf(&sc->arpcom.ac_if,
1266 			  "flow-through queue init failed\n");
1267 		return(ENXIO);
1268 	}
1269 
1270 	/* Initialize the standard RX ring control block */
1271 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1272 	rcb->bge_hostaddr.bge_addr_lo =
1273 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1274 	rcb->bge_hostaddr.bge_addr_hi =
1275 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1276 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1277 	    sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1278 	if (BGE_IS_5705_PLUS(sc))
1279 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1280 	else
1281 		rcb->bge_maxlen_flags =
1282 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1283 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1284 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1285 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1286 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1287 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1288 
1289 	/*
1290 	 * Initialize the jumbo RX ring control block
1291 	 * We set the 'ring disabled' bit in the flags
1292 	 * field until we're actually ready to start
1293 	 * using this ring (i.e. once we set the MTU
1294 	 * high enough to require it).
1295 	 */
1296 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1297 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1298 
1299 		rcb->bge_hostaddr.bge_addr_lo =
1300 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1301 		rcb->bge_hostaddr.bge_addr_hi =
1302 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1303 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1304 		    sc->bge_cdata.bge_rx_jumbo_ring_map,
1305 		    BUS_DMASYNC_PREREAD);
1306 		rcb->bge_maxlen_flags =
1307 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1308 		    BGE_RCB_FLAG_RING_DISABLED);
1309 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1310 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1311 		    rcb->bge_hostaddr.bge_addr_hi);
1312 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1313 		    rcb->bge_hostaddr.bge_addr_lo);
1314 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1315 		    rcb->bge_maxlen_flags);
1316 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1317 
1318 		/* Set up dummy disabled mini ring RCB */
1319 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1320 		rcb->bge_maxlen_flags =
1321 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1322 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1323 		    rcb->bge_maxlen_flags);
1324 	}
1325 
1326 	/*
1327 	 * Set the BD ring replentish thresholds. The recommended
1328 	 * values are 1/8th the number of descriptors allocated to
1329 	 * each ring.
1330 	 */
1331 	if (BGE_IS_5705_PLUS(sc))
1332 		val = 8;
1333 	else
1334 		val = BGE_STD_RX_RING_CNT / 8;
1335 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1336 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1337 
1338 	/*
1339 	 * Disable all unused send rings by setting the 'ring disabled'
1340 	 * bit in the flags field of all the TX send ring control blocks.
1341 	 * These are located in NIC memory.
1342 	 */
1343 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1344 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1345 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1346 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1347 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1348 		vrcb += sizeof(struct bge_rcb);
1349 	}
1350 
1351 	/* Configure TX RCB 0 (we use only the first ring) */
1352 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1353 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1354 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1355 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1356 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1357 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1358 	if (!BGE_IS_5705_PLUS(sc)) {
1359 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1360 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1361 	}
1362 
1363 	/* Disable all unused RX return rings */
1364 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1365 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1366 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1367 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1368 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1369 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1370 		    BGE_RCB_FLAG_RING_DISABLED));
1371 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1372 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1373 		    (i * (sizeof(uint64_t))), 0);
1374 		vrcb += sizeof(struct bge_rcb);
1375 	}
1376 
1377 	/* Initialize RX ring indexes */
1378 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1379 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1380 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1381 
1382 	/*
1383 	 * Set up RX return ring 0
1384 	 * Note that the NIC address for RX return rings is 0x00000000.
1385 	 * The return rings live entirely within the host, so the
1386 	 * nicaddr field in the RCB isn't used.
1387 	 */
1388 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1389 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1390 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1391 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1392 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1393 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1394 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1395 
1396 	/* Set random backoff seed for TX */
1397 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1398 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1399 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1400 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1401 	    BGE_TX_BACKOFF_SEED_MASK);
1402 
1403 	/* Set inter-packet gap */
1404 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1405 
1406 	/*
1407 	 * Specify which ring to use for packets that don't match
1408 	 * any RX rules.
1409 	 */
1410 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1411 
1412 	/*
1413 	 * Configure number of RX lists. One interrupt distribution
1414 	 * list, sixteen active lists, one bad frames class.
1415 	 */
1416 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1417 
1418 	/* Inialize RX list placement stats mask. */
1419 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1420 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1421 
1422 	/* Disable host coalescing until we get it set up */
1423 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1424 
1425 	/* Poll to make sure it's shut down. */
1426 	for (i = 0; i < BGE_TIMEOUT; i++) {
1427 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1428 			break;
1429 		DELAY(10);
1430 	}
1431 
1432 	if (i == BGE_TIMEOUT) {
1433 		if_printf(&sc->arpcom.ac_if,
1434 			  "host coalescing engine failed to idle\n");
1435 		return(ENXIO);
1436 	}
1437 
1438 	/* Set up host coalescing defaults */
1439 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1440 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1441 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1442 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1443 	if (!BGE_IS_5705_PLUS(sc)) {
1444 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1445 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1446 	}
1447 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1448 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1449 
1450 	/* Set up address of statistics block */
1451 	if (!BGE_IS_5705_PLUS(sc)) {
1452 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1453 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1454 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1455 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1456 
1457 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1458 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1459 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1460 	}
1461 
1462 	/* Set up address of status block */
1463 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1464 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1465 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1466 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1467 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1468 	sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1469 
1470 	/* Turn on host coalescing state machine */
1471 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1472 
1473 	/* Turn on RX BD completion state machine and enable attentions */
1474 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1475 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1476 
1477 	/* Turn on RX list placement state machine */
1478 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1479 
1480 	/* Turn on RX list selector state machine. */
1481 	if (!BGE_IS_5705_PLUS(sc))
1482 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1483 
1484 	/* Turn on DMA, clear stats */
1485 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1486 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1487 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1488 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1489 	    ((sc->bge_flags & BGE_FLAG_TBI) ?
1490 	     BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1491 
1492 	/* Set misc. local control, enable interrupts on attentions */
1493 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1494 
1495 #ifdef notdef
1496 	/* Assert GPIO pins for PHY reset */
1497 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1498 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1499 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1500 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1501 #endif
1502 
1503 	/* Turn on DMA completion state machine */
1504 	if (!BGE_IS_5705_PLUS(sc))
1505 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1506 
1507 	/* Turn on write DMA state machine */
1508 	val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1509 	if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1510 	    sc->bge_asicrev == BGE_ASICREV_BCM5787)
1511 		val |= (1 << 29);	/* Enable host coalescing bug fix. */
1512 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1513 
1514 	/* Turn on read DMA state machine */
1515 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1516 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1517 
1518 	/* Turn on RX data completion state machine */
1519 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1520 
1521 	/* Turn on RX BD initiator state machine */
1522 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1523 
1524 	/* Turn on RX data and RX BD initiator state machine */
1525 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1526 
1527 	/* Turn on Mbuf cluster free state machine */
1528 	if (!BGE_IS_5705_PLUS(sc))
1529 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1530 
1531 	/* Turn on send BD completion state machine */
1532 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1533 
1534 	/* Turn on send data completion state machine */
1535 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1536 
1537 	/* Turn on send data initiator state machine */
1538 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1539 
1540 	/* Turn on send BD initiator state machine */
1541 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1542 
1543 	/* Turn on send BD selector state machine */
1544 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1545 
1546 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1547 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1548 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1549 
1550 	/* ack/clear link change events */
1551 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1552 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1553 	    BGE_MACSTAT_LINK_CHANGED);
1554 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1555 
1556 	/* Enable PHY auto polling (for MII/GMII only) */
1557 	if (sc->bge_flags & BGE_FLAG_TBI) {
1558 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1559  	} else {
1560 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1561 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1562 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1563 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1564 			    BGE_EVTENB_MI_INTERRUPT);
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * Clear any pending link state attention.
1570 	 * Otherwise some link state change events may be lost until attention
1571 	 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1572 	 * It's not necessary on newer BCM chips - perhaps enabling link
1573 	 * state change attentions implies clearing pending attention.
1574 	 */
1575 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1576 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1577 	    BGE_MACSTAT_LINK_CHANGED);
1578 
1579 	/* Enable link state change attentions. */
1580 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1581 
1582 	return(0);
1583 }
1584 
1585 /*
1586  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1587  * against our list and return its name if we find a match. Note
1588  * that since the Broadcom controller contains VPD support, we
1589  * can get the device name string from the controller itself instead
1590  * of the compiled-in string. This is a little slow, but it guarantees
1591  * we'll always announce the right product name.
1592  */
1593 static int
1594 bge_probe(device_t dev)
1595 {
1596 	struct bge_softc *sc;
1597 	struct bge_type *t;
1598 	char *descbuf;
1599 	uint16_t product, vendor;
1600 
1601 	product = pci_get_device(dev);
1602 	vendor = pci_get_vendor(dev);
1603 
1604 	for (t = bge_devs; t->bge_name != NULL; t++) {
1605 		if (vendor == t->bge_vid && product == t->bge_did)
1606 			break;
1607 	}
1608 
1609 	if (t->bge_name == NULL)
1610 		return(ENXIO);
1611 
1612 	sc = device_get_softc(dev);
1613 	descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1614 	ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1615 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1616 	device_set_desc_copy(dev, descbuf);
1617 	if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1618 		sc->bge_flags |= BGE_FLAG_NO_3LED;
1619 	kfree(descbuf, M_TEMP);
1620 	return(0);
1621 }
1622 
1623 static int
1624 bge_attach(device_t dev)
1625 {
1626 	struct ifnet *ifp;
1627 	struct bge_softc *sc;
1628 	uint32_t hwcfg = 0;
1629 	uint32_t mac_addr = 0;
1630 	int error = 0, rid;
1631 	uint8_t ether_addr[ETHER_ADDR_LEN];
1632 
1633 	sc = device_get_softc(dev);
1634 	sc->bge_dev = dev;
1635 	callout_init(&sc->bge_stat_timer);
1636 	lwkt_serialize_init(&sc->bge_jslot_serializer);
1637 
1638 	/*
1639 	 * Map control/status registers.
1640 	 */
1641 	pci_enable_busmaster(dev);
1642 
1643 	rid = BGE_PCI_BAR0;
1644 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1645 	    RF_ACTIVE);
1646 
1647 	if (sc->bge_res == NULL) {
1648 		device_printf(dev, "couldn't map memory\n");
1649 		return ENXIO;
1650 	}
1651 
1652 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1653 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1654 
1655 	/* Save ASIC rev. */
1656 	sc->bge_chipid =
1657 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1658 	    BGE_PCIMISCCTL_ASICREV;
1659 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1660 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1661 
1662 	/* Save chipset family. */
1663 	switch (sc->bge_asicrev) {
1664 	case BGE_ASICREV_BCM5700:
1665 	case BGE_ASICREV_BCM5701:
1666 	case BGE_ASICREV_BCM5703:
1667 	case BGE_ASICREV_BCM5704:
1668 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1669 		break;
1670 
1671 	case BGE_ASICREV_BCM5714_A0:
1672 	case BGE_ASICREV_BCM5780:
1673 	case BGE_ASICREV_BCM5714:
1674 		sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1675 		/* Fall through */
1676 
1677 	case BGE_ASICREV_BCM5750:
1678 	case BGE_ASICREV_BCM5752:
1679 	case BGE_ASICREV_BCM5755:
1680 	case BGE_ASICREV_BCM5787:
1681 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
1682 		/* Fall through */
1683 
1684 	case BGE_ASICREV_BCM5705:
1685 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
1686 		break;
1687 	}
1688 
1689 	/*
1690 	 * Set various quirk flags.
1691 	 */
1692 
1693 	sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1694 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1695 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1696 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1697 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1698 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
1699 		sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1700 
1701 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1702 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1703 		sc->bge_flags |= BGE_FLAG_CRC_BUG;
1704 
1705 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1706 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1707 		sc->bge_flags |= BGE_FLAG_ADC_BUG;
1708 
1709 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1710 		sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1711 
1712 	if (BGE_IS_5705_PLUS(sc)) {
1713 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1714 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1715 			uint32_t product = pci_get_device(dev);
1716 
1717 			if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
1718 			    product != PCI_PRODUCT_BROADCOM_BCM5756)
1719 				sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1720 			if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
1721 				sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1722 		} else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1723 			sc->bge_flags |= BGE_FLAG_BER_BUG;
1724 		}
1725 	}
1726 
1727 	/* Allocate interrupt */
1728 	rid = 0;
1729 
1730 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1731 	    RF_SHAREABLE | RF_ACTIVE);
1732 
1733 	if (sc->bge_irq == NULL) {
1734 		device_printf(dev, "couldn't map interrupt\n");
1735 		error = ENXIO;
1736 		goto fail;
1737 	}
1738 
1739   	/*
1740 	 * Check if this is a PCI-X or PCI Express device.
1741   	 */
1742 	if (BGE_IS_5705_PLUS(sc)) {
1743 		uint32_t reg;
1744 
1745 		reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
1746 		if ((reg & 0xff) == BGE_PCIE_CAPID)
1747 			sc->bge_flags |= BGE_FLAG_PCIE;
1748 	} else {
1749 		/*
1750 		 * Check if the device is in PCI-X Mode.
1751 		 * (This bit is not valid on PCI Express controllers.)
1752 		 */
1753 		if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1754 		    BGE_PCISTATE_PCI_BUSMODE) == 0)
1755 			sc->bge_flags |= BGE_FLAG_PCIX;
1756  	}
1757 
1758 	ifp = &sc->arpcom.ac_if;
1759 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1760 
1761 	/* Try to reset the chip. */
1762 	bge_reset(sc);
1763 
1764 	if (bge_chipinit(sc)) {
1765 		device_printf(dev, "chip initialization failed\n");
1766 		error = ENXIO;
1767 		goto fail;
1768 	}
1769 
1770 	/*
1771 	 * Get station address from the EEPROM.
1772 	 */
1773 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1774 	if ((mac_addr >> 16) == 0x484b) {
1775 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
1776 		ether_addr[1] = (uint8_t)mac_addr;
1777 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1778 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
1779 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
1780 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
1781 		ether_addr[5] = (uint8_t)mac_addr;
1782 	} else if (bge_read_eeprom(sc, ether_addr,
1783 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1784 		device_printf(dev, "failed to read station address\n");
1785 		error = ENXIO;
1786 		goto fail;
1787 	}
1788 
1789 	/* 5705/5750 limits RX return ring to 512 entries. */
1790 	if (BGE_IS_5705_PLUS(sc))
1791 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1792 	else
1793 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1794 
1795 	error = bge_dma_alloc(sc);
1796 	if (error)
1797 		goto fail;
1798 
1799 	/* Set default tuneable values. */
1800 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1801 	sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1802 	sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1803 	sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1804 	sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1805 
1806 	/* Set up ifnet structure */
1807 	ifp->if_softc = sc;
1808 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1809 	ifp->if_ioctl = bge_ioctl;
1810 	ifp->if_start = bge_start;
1811 #ifdef DEVICE_POLLING
1812 	ifp->if_poll = bge_poll;
1813 #endif
1814 	ifp->if_watchdog = bge_watchdog;
1815 	ifp->if_init = bge_init;
1816 	ifp->if_mtu = ETHERMTU;
1817 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1818 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1819 	ifq_set_ready(&ifp->if_snd);
1820 
1821 	/*
1822 	 * 5700 B0 chips do not support checksumming correctly due
1823 	 * to hardware bugs.
1824 	 */
1825 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1826 		ifp->if_capabilities |= IFCAP_HWCSUM;
1827 		ifp->if_hwassist = BGE_CSUM_FEATURES;
1828 	}
1829 	ifp->if_capenable = ifp->if_capabilities;
1830 
1831 	/*
1832 	 * Figure out what sort of media we have by checking the
1833 	 * hardware config word in the first 32k of NIC internal memory,
1834 	 * or fall back to examining the EEPROM if necessary.
1835 	 * Note: on some BCM5700 cards, this value appears to be unset.
1836 	 * If that's the case, we have to rely on identifying the NIC
1837 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1838 	 * SK-9D41.
1839 	 */
1840 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1841 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1842 	else {
1843 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
1844 				    sizeof(hwcfg))) {
1845 			device_printf(dev, "failed to read EEPROM\n");
1846 			error = ENXIO;
1847 			goto fail;
1848 		}
1849 		hwcfg = ntohl(hwcfg);
1850 	}
1851 
1852 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1853 		sc->bge_flags |= BGE_FLAG_TBI;
1854 
1855 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1856 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1857 		sc->bge_flags |= BGE_FLAG_TBI;
1858 
1859 	if (sc->bge_flags & BGE_FLAG_TBI) {
1860 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1861 		    bge_ifmedia_upd, bge_ifmedia_sts);
1862 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1863 		ifmedia_add(&sc->bge_ifmedia,
1864 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1865 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1866 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1867 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1868 	} else {
1869 		/*
1870 		 * Do transceiver setup.
1871 		 */
1872 		if (mii_phy_probe(dev, &sc->bge_miibus,
1873 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1874 			device_printf(dev, "MII without any PHY!\n");
1875 			error = ENXIO;
1876 			goto fail;
1877 		}
1878 	}
1879 
1880 	/*
1881 	 * When using the BCM5701 in PCI-X mode, data corruption has
1882 	 * been observed in the first few bytes of some received packets.
1883 	 * Aligning the packet buffer in memory eliminates the corruption.
1884 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1885 	 * which do not support unaligned accesses, we will realign the
1886 	 * payloads by copying the received packets.
1887 	 */
1888 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1889 	    (sc->bge_flags & BGE_FLAG_PCIX))
1890 		sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
1891 
1892 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1893 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1894 		sc->bge_link_upd = bge_bcm5700_link_upd;
1895 		sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
1896 	} else if (sc->bge_flags & BGE_FLAG_TBI) {
1897 		sc->bge_link_upd = bge_tbi_link_upd;
1898 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1899 	} else {
1900 		sc->bge_link_upd = bge_copper_link_upd;
1901 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
1902 	}
1903 
1904 	/*
1905 	 * Create sysctl nodes.
1906 	 */
1907 	sysctl_ctx_init(&sc->bge_sysctl_ctx);
1908 	sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
1909 					      SYSCTL_STATIC_CHILDREN(_hw),
1910 					      OID_AUTO,
1911 					      device_get_nameunit(dev),
1912 					      CTLFLAG_RD, 0, "");
1913 	if (sc->bge_sysctl_tree == NULL) {
1914 		device_printf(dev, "can't add sysctl node\n");
1915 		error = ENXIO;
1916 		goto fail;
1917 	}
1918 
1919 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1920 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1921 			OID_AUTO, "rx_coal_ticks",
1922 			CTLTYPE_INT | CTLFLAG_RW,
1923 			sc, 0, bge_sysctl_rx_coal_ticks, "I",
1924 			"Receive coalescing ticks (usec).");
1925 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1926 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1927 			OID_AUTO, "tx_coal_ticks",
1928 			CTLTYPE_INT | CTLFLAG_RW,
1929 			sc, 0, bge_sysctl_tx_coal_ticks, "I",
1930 			"Transmit coalescing ticks (usec).");
1931 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1932 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1933 			OID_AUTO, "rx_max_coal_bds",
1934 			CTLTYPE_INT | CTLFLAG_RW,
1935 			sc, 0, bge_sysctl_rx_max_coal_bds, "I",
1936 			"Receive max coalesced BD count.");
1937 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
1938 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
1939 			OID_AUTO, "tx_max_coal_bds",
1940 			CTLTYPE_INT | CTLFLAG_RW,
1941 			sc, 0, bge_sysctl_tx_max_coal_bds, "I",
1942 			"Transmit max coalesced BD count.");
1943 
1944 	/*
1945 	 * Call MI attach routine.
1946 	 */
1947 	ether_ifattach(ifp, ether_addr, NULL);
1948 
1949 	error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1950 			       bge_intr, sc, &sc->bge_intrhand,
1951 			       ifp->if_serializer);
1952 	if (error) {
1953 		ether_ifdetach(ifp);
1954 		device_printf(dev, "couldn't set up irq\n");
1955 		goto fail;
1956 	}
1957 	return(0);
1958 fail:
1959 	bge_detach(dev);
1960 	return(error);
1961 }
1962 
1963 static int
1964 bge_detach(device_t dev)
1965 {
1966 	struct bge_softc *sc = device_get_softc(dev);
1967 
1968 	if (device_is_attached(dev)) {
1969 		struct ifnet *ifp = &sc->arpcom.ac_if;
1970 
1971 		lwkt_serialize_enter(ifp->if_serializer);
1972 		bge_stop(sc);
1973 		bge_reset(sc);
1974 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1975 		lwkt_serialize_exit(ifp->if_serializer);
1976 
1977 		ether_ifdetach(ifp);
1978 	}
1979 
1980 	if (sc->bge_flags & BGE_FLAG_TBI)
1981 		ifmedia_removeall(&sc->bge_ifmedia);
1982 	if (sc->bge_miibus)
1983 		device_delete_child(dev, sc->bge_miibus);
1984 	bus_generic_detach(dev);
1985 
1986         if (sc->bge_irq != NULL)
1987 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1988 
1989         if (sc->bge_res != NULL)
1990 		bus_release_resource(dev, SYS_RES_MEMORY,
1991 		    BGE_PCI_BAR0, sc->bge_res);
1992 
1993 	if (sc->bge_sysctl_tree != NULL)
1994 		sysctl_ctx_free(&sc->bge_sysctl_ctx);
1995 
1996 	bge_dma_free(sc);
1997 
1998 	return 0;
1999 }
2000 
2001 static void
2002 bge_reset(struct bge_softc *sc)
2003 {
2004 	device_t dev;
2005 	uint32_t cachesize, command, pcistate, reset;
2006 	void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2007 	int i, val = 0;
2008 
2009 	dev = sc->bge_dev;
2010 
2011 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc)) {
2012 		if (sc->bge_flags & BGE_FLAG_PCIE)
2013 			write_op = bge_writemem_direct;
2014 		else
2015 			write_op = bge_writemem_ind;
2016 	} else {
2017 		write_op = bge_writereg_ind;
2018 	}
2019 
2020 	/* Save some important PCI state. */
2021 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2022 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2023 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2024 
2025 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2026 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2027 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2028 
2029 	/* Disable fastboot on controllers that support it. */
2030 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2031 	    sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2032 	    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2033 		if (bootverbose)
2034 			if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2035 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2036 	}
2037 
2038 	/*
2039 	 * Write the magic number to SRAM at offset 0xB50.
2040 	 * When firmware finishes its initialization it will
2041 	 * write ~BGE_MAGIC_NUMBER to the same location.
2042 	 */
2043 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2044 
2045 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2046 
2047 	/* XXX: Broadcom Linux driver. */
2048 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2049 		if (CSR_READ_4(sc, 0x7e2c) == 0x60)	/* PCIE 1.0 */
2050 			CSR_WRITE_4(sc, 0x7e2c, 0x20);
2051 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2052 			/* Prevent PCIE link training during global reset */
2053 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2054 			reset |= (1<<29);
2055 		}
2056 	}
2057 
2058 	/*
2059 	 * Set GPHY Power Down Override to leave GPHY
2060 	 * powered up in D0 uninitialized.
2061 	 */
2062 	if (BGE_IS_5705_PLUS(sc))
2063 		reset |= 0x04000000;
2064 
2065 	/* Issue global reset */
2066 	write_op(sc, BGE_MISC_CFG, reset);
2067 
2068 	DELAY(1000);
2069 
2070 	/* XXX: Broadcom Linux driver. */
2071 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2072 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2073 			uint32_t v;
2074 
2075 			DELAY(500000); /* wait for link training to complete */
2076 			v = pci_read_config(dev, 0xc4, 4);
2077 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
2078 		}
2079 		/*
2080 		 * Set PCIE max payload size to 128 bytes and
2081 		 * clear error status.
2082 		 */
2083 		pci_write_config(dev, 0xd8, 0xf5000, 4);
2084 	}
2085 
2086 	/* Reset some of the PCI state that got zapped by reset */
2087 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2088 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2089 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2090 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2091 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2092 	write_op(sc, BGE_MISC_CFG, (65 << 1));
2093 
2094 	/* Enable memory arbiter. */
2095 	if (BGE_IS_5714_FAMILY(sc)) {
2096 		uint32_t val;
2097 
2098 		val = CSR_READ_4(sc, BGE_MARB_MODE);
2099 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2100 	} else {
2101 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2102 	}
2103 
2104 	/*
2105 	 * Poll until we see the 1's complement of the magic number.
2106 	 * This indicates that the firmware initialization
2107 	 * is complete.
2108 	 */
2109 	for (i = 0; i < BGE_TIMEOUT; i++) {
2110 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2111 		if (val == ~BGE_MAGIC_NUMBER)
2112 			break;
2113 		DELAY(10);
2114 	}
2115 
2116 	if (i == BGE_TIMEOUT) {
2117 		if_printf(&sc->arpcom.ac_if, "firmware handshake timed out,"
2118 			  "found 0x%08x\n", val);
2119 		return;
2120 	}
2121 
2122 	/*
2123 	 * XXX Wait for the value of the PCISTATE register to
2124 	 * return to its original pre-reset state. This is a
2125 	 * fairly good indicator of reset completion. If we don't
2126 	 * wait for the reset to fully complete, trying to read
2127 	 * from the device's non-PCI registers may yield garbage
2128 	 * results.
2129 	 */
2130 	for (i = 0; i < BGE_TIMEOUT; i++) {
2131 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2132 			break;
2133 		DELAY(10);
2134 	}
2135 
2136 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2137 		reset = bge_readmem_ind(sc, 0x7c00);
2138 		bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2139 	}
2140 
2141 	/* Fix up byte swapping */
2142 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2143 	    BGE_MODECTL_BYTESWAP_DATA);
2144 
2145 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2146 
2147 	/*
2148 	 * The 5704 in TBI mode apparently needs some special
2149 	 * adjustment to insure the SERDES drive level is set
2150 	 * to 1.2V.
2151 	 */
2152 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2153 	    (sc->bge_flags & BGE_FLAG_TBI)) {
2154 		uint32_t serdescfg;
2155 
2156 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2157 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
2158 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2159 	}
2160 
2161 	/* XXX: Broadcom Linux driver. */
2162 	if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2163 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2164 		uint32_t v;
2165 
2166 		v = CSR_READ_4(sc, 0x7c00);
2167 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2168 	}
2169 
2170 	DELAY(10000);
2171 }
2172 
2173 /*
2174  * Frame reception handling. This is called if there's a frame
2175  * on the receive return list.
2176  *
2177  * Note: we have to be able to handle two possibilities here:
2178  * 1) the frame is from the jumbo recieve ring
2179  * 2) the frame is from the standard receive ring
2180  */
2181 
2182 static void
2183 bge_rxeof(struct bge_softc *sc)
2184 {
2185 	struct ifnet *ifp;
2186 	int stdcnt = 0, jumbocnt = 0;
2187 
2188 	if (sc->bge_rx_saved_considx ==
2189 	    sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2190 		return;
2191 
2192 	ifp = &sc->arpcom.ac_if;
2193 
2194 	bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
2195 			sc->bge_cdata.bge_rx_return_ring_map,
2196 			BUS_DMASYNC_POSTREAD);
2197 	bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2198 			sc->bge_cdata.bge_rx_std_ring_map,
2199 			BUS_DMASYNC_POSTREAD);
2200 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2201 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2202 				sc->bge_cdata.bge_rx_jumbo_ring_map,
2203 				BUS_DMASYNC_POSTREAD);
2204 	}
2205 
2206 	while (sc->bge_rx_saved_considx !=
2207 	       sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2208 		struct bge_rx_bd	*cur_rx;
2209 		uint32_t		rxidx;
2210 		struct mbuf		*m = NULL;
2211 		uint16_t		vlan_tag = 0;
2212 		int			have_tag = 0;
2213 
2214 		cur_rx =
2215 	    &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2216 
2217 		rxidx = cur_rx->bge_idx;
2218 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2219 		logif(rx_pkt);
2220 
2221 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2222 			have_tag = 1;
2223 			vlan_tag = cur_rx->bge_vlan_tag;
2224 		}
2225 
2226 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2227 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2228 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2229 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2230 			jumbocnt++;
2231 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2232 				ifp->if_ierrors++;
2233 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2234 				continue;
2235 			}
2236 			if (bge_newbuf_jumbo(sc,
2237 			    sc->bge_jumbo, NULL) == ENOBUFS) {
2238 				ifp->if_ierrors++;
2239 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2240 				continue;
2241 			}
2242 		} else {
2243 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2244 			bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2245 					sc->bge_cdata.bge_rx_std_dmamap[rxidx],
2246 					BUS_DMASYNC_POSTREAD);
2247 			bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2248 				sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
2249 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2250 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2251 			stdcnt++;
2252 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2253 				ifp->if_ierrors++;
2254 				bge_newbuf_std(sc, sc->bge_std, m);
2255 				continue;
2256 			}
2257 			if (bge_newbuf_std(sc, sc->bge_std,
2258 			    NULL) == ENOBUFS) {
2259 				ifp->if_ierrors++;
2260 				bge_newbuf_std(sc, sc->bge_std, m);
2261 				continue;
2262 			}
2263 		}
2264 
2265 		ifp->if_ipackets++;
2266 #ifndef __i386__
2267 		/*
2268 		 * The i386 allows unaligned accesses, but for other
2269 		 * platforms we must make sure the payload is aligned.
2270 		 */
2271 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2272 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2273 			    cur_rx->bge_len);
2274 			m->m_data += ETHER_ALIGN;
2275 		}
2276 #endif
2277 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2278 		m->m_pkthdr.rcvif = ifp;
2279 
2280 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2281 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2282 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2283 				if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2284 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2285 			}
2286 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2287 			    m->m_pkthdr.len >= BGE_MIN_FRAME) {
2288 				m->m_pkthdr.csum_data =
2289 					cur_rx->bge_tcp_udp_csum;
2290 				m->m_pkthdr.csum_flags |=
2291 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2292 			}
2293 		}
2294 
2295 		/*
2296 		 * If we received a packet with a vlan tag, pass it
2297 		 * to vlan_input() instead of ether_input().
2298 		 */
2299 		if (have_tag) {
2300 			VLAN_INPUT_TAG(m, vlan_tag);
2301 			have_tag = vlan_tag = 0;
2302 		} else {
2303 			ifp->if_input(ifp, m);
2304 		}
2305 	}
2306 
2307 	if (stdcnt > 0) {
2308 		bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2309 				sc->bge_cdata.bge_rx_std_ring_map,
2310 				BUS_DMASYNC_PREWRITE);
2311 	}
2312 
2313 	if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0) {
2314 		bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2315 				sc->bge_cdata.bge_rx_jumbo_ring_map,
2316 				BUS_DMASYNC_PREWRITE);
2317 	}
2318 
2319 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2320 	if (stdcnt)
2321 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2322 	if (jumbocnt)
2323 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2324 }
2325 
2326 static void
2327 bge_txeof(struct bge_softc *sc)
2328 {
2329 	struct bge_tx_bd *cur_tx = NULL;
2330 	struct ifnet *ifp;
2331 
2332 	if (sc->bge_tx_saved_considx ==
2333 	    sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2334 		return;
2335 
2336 	ifp = &sc->arpcom.ac_if;
2337 
2338 	bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
2339 			sc->bge_cdata.bge_tx_ring_map,
2340 			BUS_DMASYNC_POSTREAD);
2341 
2342 	/*
2343 	 * Go through our tx ring and free mbufs for those
2344 	 * frames that have been sent.
2345 	 */
2346 	while (sc->bge_tx_saved_considx !=
2347 	       sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2348 		uint32_t idx = 0;
2349 
2350 		idx = sc->bge_tx_saved_considx;
2351 		cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2352 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2353 			ifp->if_opackets++;
2354 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2355 			bus_dmamap_sync(sc->bge_cdata.bge_mtag,
2356 					sc->bge_cdata.bge_tx_dmamap[idx],
2357 					BUS_DMASYNC_POSTWRITE);
2358 			bus_dmamap_unload(sc->bge_cdata.bge_mtag,
2359 			    sc->bge_cdata.bge_tx_dmamap[idx]);
2360 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2361 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2362 		}
2363 		sc->bge_txcnt--;
2364 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2365 		logif(tx_pkt);
2366 	}
2367 
2368 	if (cur_tx != NULL &&
2369 	    (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2370 	    (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2371 		ifp->if_flags &= ~IFF_OACTIVE;
2372 
2373 	if (sc->bge_txcnt == 0)
2374 		ifp->if_timer = 0;
2375 
2376 	if (!ifq_is_empty(&ifp->if_snd))
2377 		ifp->if_start(ifp);
2378 }
2379 
2380 #ifdef DEVICE_POLLING
2381 
2382 static void
2383 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2384 {
2385 	struct bge_softc *sc = ifp->if_softc;
2386  	uint32_t status;
2387 
2388 	switch(cmd) {
2389 	case POLL_REGISTER:
2390 		bge_disable_intr(sc);
2391 		break;
2392 	case POLL_DEREGISTER:
2393 		bge_enable_intr(sc);
2394 		break;
2395 	case POLL_AND_CHECK_STATUS:
2396 		bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2397 				sc->bge_cdata.bge_status_map,
2398 				BUS_DMASYNC_POSTREAD);
2399 
2400 		/*
2401 		 * Process link state changes.
2402 		 */
2403 		status = CSR_READ_4(sc, BGE_MAC_STS);
2404 		if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2405 			sc->bge_link_evt = 0;
2406 			sc->bge_link_upd(sc, status);
2407 		}
2408 		/* fall through */
2409 	case POLL_ONLY:
2410 		if (ifp->if_flags & IFF_RUNNING) {
2411 			bge_rxeof(sc);
2412 			bge_txeof(sc);
2413 		}
2414 		break;
2415 	}
2416 }
2417 
2418 #endif
2419 
2420 static void
2421 bge_intr(void *xsc)
2422 {
2423 	struct bge_softc *sc = xsc;
2424 	struct ifnet *ifp = &sc->arpcom.ac_if;
2425 	uint32_t status;
2426 
2427 	logif(intr);
2428 
2429  	/*
2430 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
2431 	 * disable interrupts by writing nonzero like we used to, since with
2432 	 * our current organization this just gives complications and
2433 	 * pessimizations for re-enabling interrupts.  We used to have races
2434 	 * instead of the necessary complications.  Disabling interrupts
2435 	 * would just reduce the chance of a status update while we are
2436 	 * running (by switching to the interrupt-mode coalescence
2437 	 * parameters), but this chance is already very low so it is more
2438 	 * efficient to get another interrupt than prevent it.
2439 	 *
2440 	 * We do the ack first to ensure another interrupt if there is a
2441 	 * status update after the ack.  We don't check for the status
2442 	 * changing later because it is more efficient to get another
2443 	 * interrupt than prevent it, not quite as above (not checking is
2444 	 * a smaller optimization than not toggling the interrupt enable,
2445 	 * since checking doesn't involve PCI accesses and toggling require
2446 	 * the status check).  So toggling would probably be a pessimization
2447 	 * even with MSI.  It would only be needed for using a task queue.
2448 	 */
2449 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2450 
2451 	bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2452 			sc->bge_cdata.bge_status_map,
2453 			BUS_DMASYNC_POSTREAD);
2454 
2455 	/*
2456 	 * Process link state changes.
2457 	 */
2458 	status = CSR_READ_4(sc, BGE_MAC_STS);
2459 	if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2460 		sc->bge_link_evt = 0;
2461 		sc->bge_link_upd(sc, status);
2462 	}
2463 
2464 	if (ifp->if_flags & IFF_RUNNING) {
2465 		/* Check RX return ring producer/consumer */
2466 		bge_rxeof(sc);
2467 
2468 		/* Check TX ring producer/consumer */
2469 		bge_txeof(sc);
2470 	}
2471 
2472 	if (sc->bge_coal_chg)
2473 		bge_coal_change(sc);
2474 }
2475 
2476 static void
2477 bge_tick(void *xsc)
2478 {
2479 	struct bge_softc *sc = xsc;
2480 	struct ifnet *ifp = &sc->arpcom.ac_if;
2481 
2482 	lwkt_serialize_enter(ifp->if_serializer);
2483 
2484 	if (BGE_IS_5705_PLUS(sc))
2485 		bge_stats_update_regs(sc);
2486 	else
2487 		bge_stats_update(sc);
2488 
2489 	if (sc->bge_flags & BGE_FLAG_TBI) {
2490 		/*
2491 		 * Since in TBI mode auto-polling can't be used we should poll
2492 		 * link status manually. Here we register pending link event
2493 		 * and trigger interrupt.
2494 		 */
2495 		sc->bge_link_evt++;
2496 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2497 	} else if (!sc->bge_link) {
2498 		mii_tick(device_get_softc(sc->bge_miibus));
2499 	}
2500 
2501 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2502 
2503 	lwkt_serialize_exit(ifp->if_serializer);
2504 }
2505 
2506 static void
2507 bge_stats_update_regs(struct bge_softc *sc)
2508 {
2509 	struct ifnet *ifp = &sc->arpcom.ac_if;
2510 	struct bge_mac_stats_regs stats;
2511 	uint32_t *s;
2512 	int i;
2513 
2514 	s = (uint32_t *)&stats;
2515 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2516 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
2517 		s++;
2518 	}
2519 
2520 	ifp->if_collisions +=
2521 	   (stats.dot3StatsSingleCollisionFrames +
2522 	   stats.dot3StatsMultipleCollisionFrames +
2523 	   stats.dot3StatsExcessiveCollisions +
2524 	   stats.dot3StatsLateCollisions) -
2525 	   ifp->if_collisions;
2526 }
2527 
2528 static void
2529 bge_stats_update(struct bge_softc *sc)
2530 {
2531 	struct ifnet *ifp = &sc->arpcom.ac_if;
2532 	bus_size_t stats;
2533 
2534 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2535 
2536 #define READ_STAT(sc, stats, stat)	\
2537 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2538 
2539 	ifp->if_collisions +=
2540 	   (READ_STAT(sc, stats,
2541 		txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2542 	    READ_STAT(sc, stats,
2543 		txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2544 	    READ_STAT(sc, stats,
2545 		txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2546 	    READ_STAT(sc, stats,
2547 		txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2548 	   ifp->if_collisions;
2549 
2550 #undef READ_STAT
2551 
2552 #ifdef notdef
2553 	ifp->if_collisions +=
2554 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2555 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2556 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2557 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2558 	   ifp->if_collisions;
2559 #endif
2560 }
2561 
2562 /*
2563  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2564  * pointers to descriptors.
2565  */
2566 static int
2567 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
2568 {
2569 	struct bge_tx_bd *d = NULL;
2570 	uint16_t csum_flags = 0;
2571 	struct ifvlan *ifv = NULL;
2572 	struct bge_dmamap_arg ctx;
2573 	bus_dma_segment_t segs[BGE_NSEG_NEW];
2574 	bus_dmamap_t map;
2575 	int error, maxsegs, idx, i;
2576 	struct mbuf *m_head = *m_head0;
2577 
2578 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2579 	    m_head->m_pkthdr.rcvif != NULL &&
2580 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2581 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2582 
2583 	if (m_head->m_pkthdr.csum_flags) {
2584 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2585 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2586 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2587 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2588 		if (m_head->m_flags & M_LASTFRAG)
2589 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2590 		else if (m_head->m_flags & M_FRAG)
2591 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2592 	}
2593 
2594 	idx = *txidx;
2595 	map = sc->bge_cdata.bge_tx_dmamap[idx];
2596 
2597 	maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2598 	KASSERT(maxsegs >= BGE_NSEG_SPARE,
2599 		("not enough segments %d\n", maxsegs));
2600 
2601 	if (maxsegs > BGE_NSEG_NEW)
2602 		maxsegs = BGE_NSEG_NEW;
2603 
2604 	/*
2605 	 * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2606 	 * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2607 	 * but when such padded frames employ the bge IP/TCP checksum
2608 	 * offload, the hardware checksum assist gives incorrect results
2609 	 * (possibly from incorporating its own padding into the UDP/TCP
2610 	 * checksum; who knows).  If we pad such runts with zeros, the
2611 	 * onboard checksum comes out correct.  We do this by pretending
2612 	 * the mbuf chain has too many fragments so the coalescing code
2613 	 * below can assemble the packet into a single buffer that's
2614 	 * padded out to the mininum frame size.
2615 	 */
2616 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2617 	    m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2618 		error = EFBIG;
2619 	} else {
2620 		ctx.bge_segs = segs;
2621 		ctx.bge_maxsegs = maxsegs;
2622 		error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2623 					     m_head, bge_dma_map_mbuf, &ctx,
2624 					     BUS_DMA_NOWAIT);
2625 	}
2626 	if (error == EFBIG || ctx.bge_maxsegs == 0) {
2627 		struct mbuf *m_new;
2628 
2629 		m_new = m_defrag(m_head, MB_DONTWAIT);
2630 		if (m_new == NULL) {
2631 			if_printf(&sc->arpcom.ac_if,
2632 				  "could not defrag TX mbuf\n");
2633 			error = ENOBUFS;
2634 			goto back;
2635 		} else {
2636 			m_head = m_new;
2637 			*m_head0 = m_head;
2638 		}
2639 
2640 		/*
2641 		 * Manually pad short frames, and zero the pad space
2642 		 * to avoid leaking data.
2643 		 */
2644 		if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2645 		    m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2646 			int pad_len = BGE_MIN_FRAME - m_head->m_pkthdr.len;
2647 
2648 			bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
2649 			      pad_len);
2650 			m_head->m_pkthdr.len += pad_len;
2651 			m_head->m_len = m_head->m_pkthdr.len;
2652 		}
2653 
2654 		ctx.bge_segs = segs;
2655 		ctx.bge_maxsegs = maxsegs;
2656 		error = bus_dmamap_load_mbuf(sc->bge_cdata.bge_mtag, map,
2657 					     m_head, bge_dma_map_mbuf, &ctx,
2658 					     BUS_DMA_NOWAIT);
2659 		if (error || ctx.bge_maxsegs == 0) {
2660 			if_printf(&sc->arpcom.ac_if,
2661 				  "could not defrag TX mbuf\n");
2662 			if (error == 0)
2663 				error = EFBIG;
2664 			goto back;
2665 		}
2666 	} else if (error) {
2667 		if_printf(&sc->arpcom.ac_if, "could not map TX mbuf\n");
2668 		goto back;
2669 	}
2670 
2671 	bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
2672 
2673 	for (i = 0; ; i++) {
2674 		d = &sc->bge_ldata.bge_tx_ring[idx];
2675 
2676 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_segs[i].ds_addr);
2677 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_segs[i].ds_addr);
2678 		d->bge_len = segs[i].ds_len;
2679 		d->bge_flags = csum_flags;
2680 
2681 		if (i == ctx.bge_maxsegs - 1)
2682 			break;
2683 		BGE_INC(idx, BGE_TX_RING_CNT);
2684 	}
2685 	/* Mark the last segment as end of packet... */
2686 	d->bge_flags |= BGE_TXBDFLAG_END;
2687 
2688 	/* Set vlan tag to the first segment of the packet. */
2689 	d = &sc->bge_ldata.bge_tx_ring[*txidx];
2690 	if (ifv != NULL) {
2691 		d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2692 		d->bge_vlan_tag = ifv->ifv_tag;
2693 	} else {
2694 		d->bge_vlan_tag = 0;
2695 	}
2696 
2697 	/*
2698 	 * Insure that the map for this transmission is placed at
2699 	 * the array index of the last descriptor in this chain.
2700 	 */
2701 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2702 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
2703 	sc->bge_cdata.bge_tx_chain[idx] = m_head;
2704 	sc->bge_txcnt += ctx.bge_maxsegs;
2705 
2706 	BGE_INC(idx, BGE_TX_RING_CNT);
2707 	*txidx = idx;
2708 back:
2709 	if (error) {
2710 		m_freem(m_head);
2711 		*m_head0 = NULL;
2712 	}
2713 	return error;
2714 }
2715 
2716 /*
2717  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2718  * to the mbuf data regions directly in the transmit descriptors.
2719  */
2720 static void
2721 bge_start(struct ifnet *ifp)
2722 {
2723 	struct bge_softc *sc = ifp->if_softc;
2724 	struct mbuf *m_head = NULL;
2725 	uint32_t prodidx;
2726 	int need_trans;
2727 
2728 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2729 		return;
2730 
2731 	prodidx = sc->bge_tx_prodidx;
2732 
2733 	need_trans = 0;
2734 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2735 		m_head = ifq_poll(&ifp->if_snd);
2736 		if (m_head == NULL)
2737 			break;
2738 
2739 		/*
2740 		 * XXX
2741 		 * The code inside the if() block is never reached since we
2742 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2743 		 * requests to checksum TCP/UDP in a fragmented packet.
2744 		 *
2745 		 * XXX
2746 		 * safety overkill.  If this is a fragmented packet chain
2747 		 * with delayed TCP/UDP checksums, then only encapsulate
2748 		 * it if we have enough descriptors to handle the entire
2749 		 * chain at once.
2750 		 * (paranoia -- may not actually be needed)
2751 		 */
2752 		if (m_head->m_flags & M_FIRSTFRAG &&
2753 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2754 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2755 			    m_head->m_pkthdr.csum_data + 16) {
2756 				ifp->if_flags |= IFF_OACTIVE;
2757 				break;
2758 			}
2759 		}
2760 
2761 		/*
2762 		 * Sanity check: avoid coming within BGE_NSEG_RSVD
2763 		 * descriptors of the end of the ring.  Also make
2764 		 * sure there are BGE_NSEG_SPARE descriptors for
2765 		 * jumbo buffers' defragmentation.
2766 		 */
2767 		if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2768 		    (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2769 			ifp->if_flags |= IFF_OACTIVE;
2770 			break;
2771 		}
2772 
2773 		/*
2774 		 * Dequeue the packet before encapsulation, since
2775 		 * bge_encap() may free the packet if error happens.
2776 		 */
2777 		ifq_dequeue(&ifp->if_snd, m_head);
2778 
2779 		/*
2780 		 * Pack the data into the transmit ring. If we
2781 		 * don't have room, set the OACTIVE flag and wait
2782 		 * for the NIC to drain the ring.
2783 		 */
2784 		if (bge_encap(sc, &m_head, &prodidx)) {
2785 			ifp->if_flags |= IFF_OACTIVE;
2786 			break;
2787 		}
2788 		need_trans = 1;
2789 
2790 		BPF_MTAP(ifp, m_head);
2791 	}
2792 
2793 	if (!need_trans)
2794 		return;
2795 
2796 	/* Transmit */
2797 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2798 	/* 5700 b2 errata */
2799 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2800 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2801 
2802 	sc->bge_tx_prodidx = prodidx;
2803 
2804 	/*
2805 	 * Set a timeout in case the chip goes out to lunch.
2806 	 */
2807 	ifp->if_timer = 5;
2808 }
2809 
2810 static void
2811 bge_init(void *xsc)
2812 {
2813 	struct bge_softc *sc = xsc;
2814 	struct ifnet *ifp = &sc->arpcom.ac_if;
2815 	uint16_t *m;
2816 
2817 	ASSERT_SERIALIZED(ifp->if_serializer);
2818 
2819 	if (ifp->if_flags & IFF_RUNNING)
2820 		return;
2821 
2822 	/* Cancel pending I/O and flush buffers. */
2823 	bge_stop(sc);
2824 	bge_reset(sc);
2825 	bge_chipinit(sc);
2826 
2827 	/*
2828 	 * Init the various state machines, ring
2829 	 * control blocks and firmware.
2830 	 */
2831 	if (bge_blockinit(sc)) {
2832 		if_printf(ifp, "initialization failure\n");
2833 		return;
2834 	}
2835 
2836 	/* Specify MTU. */
2837 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2838 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2839 
2840 	/* Load our MAC address. */
2841 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2842 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2843 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2844 
2845 	/* Enable or disable promiscuous mode as needed. */
2846 	bge_setpromisc(sc);
2847 
2848 	/* Program multicast filter. */
2849 	bge_setmulti(sc);
2850 
2851 	/* Init RX ring. */
2852 	bge_init_rx_ring_std(sc);
2853 
2854 	/*
2855 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2856 	 * memory to insure that the chip has in fact read the first
2857 	 * entry of the ring.
2858 	 */
2859 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2860 		uint32_t		v, i;
2861 		for (i = 0; i < 10; i++) {
2862 			DELAY(20);
2863 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2864 			if (v == (MCLBYTES - ETHER_ALIGN))
2865 				break;
2866 		}
2867 		if (i == 10)
2868 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2869 	}
2870 
2871 	/* Init jumbo RX ring. */
2872 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2873 		bge_init_rx_ring_jumbo(sc);
2874 
2875 	/* Init our RX return ring index */
2876 	sc->bge_rx_saved_considx = 0;
2877 
2878 	/* Init TX ring. */
2879 	bge_init_tx_ring(sc);
2880 
2881 	/* Turn on transmitter */
2882 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2883 
2884 	/* Turn on receiver */
2885 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2886 
2887 	/* Tell firmware we're alive. */
2888 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2889 
2890 	/* Enable host interrupts if polling(4) is not enabled. */
2891 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2892 #ifdef DEVICE_POLLING
2893 	if (ifp->if_flags & IFF_POLLING)
2894 		bge_disable_intr(sc);
2895 	else
2896 #endif
2897 	bge_enable_intr(sc);
2898 
2899 	bge_ifmedia_upd(ifp);
2900 
2901 	ifp->if_flags |= IFF_RUNNING;
2902 	ifp->if_flags &= ~IFF_OACTIVE;
2903 
2904 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2905 }
2906 
2907 /*
2908  * Set media options.
2909  */
2910 static int
2911 bge_ifmedia_upd(struct ifnet *ifp)
2912 {
2913 	struct bge_softc *sc = ifp->if_softc;
2914 
2915 	/* If this is a 1000baseX NIC, enable the TBI port. */
2916 	if (sc->bge_flags & BGE_FLAG_TBI) {
2917 		struct ifmedia *ifm = &sc->bge_ifmedia;
2918 
2919 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2920 			return(EINVAL);
2921 
2922 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2923 		case IFM_AUTO:
2924 			/*
2925 			 * The BCM5704 ASIC appears to have a special
2926 			 * mechanism for programming the autoneg
2927 			 * advertisement registers in TBI mode.
2928 			 */
2929 			if (!bge_fake_autoneg &&
2930 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2931 				uint32_t sgdig;
2932 
2933 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2934 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2935 				sgdig |= BGE_SGDIGCFG_AUTO |
2936 					 BGE_SGDIGCFG_PAUSE_CAP |
2937 					 BGE_SGDIGCFG_ASYM_PAUSE;
2938 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2939 					    sgdig | BGE_SGDIGCFG_SEND);
2940 				DELAY(5);
2941 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2942 			}
2943 			break;
2944 		case IFM_1000_SX:
2945 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2946 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2947 				    BGE_MACMODE_HALF_DUPLEX);
2948 			} else {
2949 				BGE_SETBIT(sc, BGE_MAC_MODE,
2950 				    BGE_MACMODE_HALF_DUPLEX);
2951 			}
2952 			break;
2953 		default:
2954 			return(EINVAL);
2955 		}
2956 	} else {
2957 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
2958 
2959 		sc->bge_link_evt++;
2960 		sc->bge_link = 0;
2961 		if (mii->mii_instance) {
2962 			struct mii_softc *miisc;
2963 
2964 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2965 				mii_phy_reset(miisc);
2966 		}
2967 		mii_mediachg(mii);
2968 	}
2969 	return(0);
2970 }
2971 
2972 /*
2973  * Report current media status.
2974  */
2975 static void
2976 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2977 {
2978 	struct bge_softc *sc = ifp->if_softc;
2979 
2980 	if (sc->bge_flags & BGE_FLAG_TBI) {
2981 		ifmr->ifm_status = IFM_AVALID;
2982 		ifmr->ifm_active = IFM_ETHER;
2983 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2984 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2985 			ifmr->ifm_status |= IFM_ACTIVE;
2986 		} else {
2987 			ifmr->ifm_active |= IFM_NONE;
2988 			return;
2989 		}
2990 
2991 		ifmr->ifm_active |= IFM_1000_SX;
2992 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2993 			ifmr->ifm_active |= IFM_HDX;
2994 		else
2995 			ifmr->ifm_active |= IFM_FDX;
2996 	} else {
2997 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
2998 
2999 		mii_pollstat(mii);
3000 		ifmr->ifm_active = mii->mii_media_active;
3001 		ifmr->ifm_status = mii->mii_media_status;
3002 	}
3003 }
3004 
3005 static int
3006 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3007 {
3008 	struct bge_softc *sc = ifp->if_softc;
3009 	struct ifreq *ifr = (struct ifreq *)data;
3010 	int mask, error = 0;
3011 
3012 	ASSERT_SERIALIZED(ifp->if_serializer);
3013 
3014 	switch (command) {
3015 	case SIOCSIFMTU:
3016 		if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3017 		    (BGE_IS_JUMBO_CAPABLE(sc) &&
3018 		     ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3019 			error = EINVAL;
3020 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
3021 			ifp->if_mtu = ifr->ifr_mtu;
3022 			ifp->if_flags &= ~IFF_RUNNING;
3023 			bge_init(sc);
3024 		}
3025 		break;
3026 	case SIOCSIFFLAGS:
3027 		if (ifp->if_flags & IFF_UP) {
3028 			if (ifp->if_flags & IFF_RUNNING) {
3029 				mask = ifp->if_flags ^ sc->bge_if_flags;
3030 
3031 				/*
3032 				 * If only the state of the PROMISC flag
3033 				 * changed, then just use the 'set promisc
3034 				 * mode' command instead of reinitializing
3035 				 * the entire NIC. Doing a full re-init
3036 				 * means reloading the firmware and waiting
3037 				 * for it to start up, which may take a
3038 				 * second or two.  Similarly for ALLMULTI.
3039 				 */
3040 				if (mask & IFF_PROMISC)
3041 					bge_setpromisc(sc);
3042 				if (mask & IFF_ALLMULTI)
3043 					bge_setmulti(sc);
3044 			} else {
3045 				bge_init(sc);
3046 			}
3047 		} else {
3048 			if (ifp->if_flags & IFF_RUNNING)
3049 				bge_stop(sc);
3050 		}
3051 		sc->bge_if_flags = ifp->if_flags;
3052 		break;
3053 	case SIOCADDMULTI:
3054 	case SIOCDELMULTI:
3055 		if (ifp->if_flags & IFF_RUNNING)
3056 			bge_setmulti(sc);
3057 		break;
3058 	case SIOCSIFMEDIA:
3059 	case SIOCGIFMEDIA:
3060 		if (sc->bge_flags & BGE_FLAG_TBI) {
3061 			error = ifmedia_ioctl(ifp, ifr,
3062 			    &sc->bge_ifmedia, command);
3063 		} else {
3064 			struct mii_data *mii;
3065 
3066 			mii = device_get_softc(sc->bge_miibus);
3067 			error = ifmedia_ioctl(ifp, ifr,
3068 					      &mii->mii_media, command);
3069 		}
3070 		break;
3071         case SIOCSIFCAP:
3072 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3073 		if (mask & IFCAP_HWCSUM) {
3074 			ifp->if_capenable ^= IFCAP_HWCSUM;
3075 			if (IFCAP_HWCSUM & ifp->if_capenable)
3076 				ifp->if_hwassist = BGE_CSUM_FEATURES;
3077 			else
3078 				ifp->if_hwassist = 0;
3079 		}
3080 		break;
3081 	default:
3082 		error = ether_ioctl(ifp, command, data);
3083 		break;
3084 	}
3085 	return error;
3086 }
3087 
3088 static void
3089 bge_watchdog(struct ifnet *ifp)
3090 {
3091 	struct bge_softc *sc = ifp->if_softc;
3092 
3093 	if_printf(ifp, "watchdog timeout -- resetting\n");
3094 
3095 	ifp->if_flags &= ~IFF_RUNNING;
3096 	bge_init(sc);
3097 
3098 	ifp->if_oerrors++;
3099 
3100 	if (!ifq_is_empty(&ifp->if_snd))
3101 		ifp->if_start(ifp);
3102 }
3103 
3104 /*
3105  * Stop the adapter and free any mbufs allocated to the
3106  * RX and TX lists.
3107  */
3108 static void
3109 bge_stop(struct bge_softc *sc)
3110 {
3111 	struct ifnet *ifp = &sc->arpcom.ac_if;
3112 	struct ifmedia_entry *ifm;
3113 	struct mii_data *mii = NULL;
3114 	int mtmp, itmp;
3115 
3116 	ASSERT_SERIALIZED(ifp->if_serializer);
3117 
3118 	if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3119 		mii = device_get_softc(sc->bge_miibus);
3120 
3121 	callout_stop(&sc->bge_stat_timer);
3122 
3123 	/*
3124 	 * Disable all of the receiver blocks
3125 	 */
3126 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3127 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3128 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3129 	if (!BGE_IS_5705_PLUS(sc))
3130 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3131 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3132 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3133 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3134 
3135 	/*
3136 	 * Disable all of the transmit blocks
3137 	 */
3138 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3139 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3140 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3141 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3142 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3143 	if (!BGE_IS_5705_PLUS(sc))
3144 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3145 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3146 
3147 	/*
3148 	 * Shut down all of the memory managers and related
3149 	 * state machines.
3150 	 */
3151 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3152 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3153 	if (!BGE_IS_5705_PLUS(sc))
3154 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3155 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3156 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3157 	if (!BGE_IS_5705_PLUS(sc)) {
3158 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3159 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3160 	}
3161 
3162 	/* Disable host interrupts. */
3163 	bge_disable_intr(sc);
3164 
3165 	/*
3166 	 * Tell firmware we're shutting down.
3167 	 */
3168 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3169 
3170 	/* Free the RX lists. */
3171 	bge_free_rx_ring_std(sc);
3172 
3173 	/* Free jumbo RX list. */
3174 	if (BGE_IS_JUMBO_CAPABLE(sc))
3175 		bge_free_rx_ring_jumbo(sc);
3176 
3177 	/* Free TX buffers. */
3178 	bge_free_tx_ring(sc);
3179 
3180 	/*
3181 	 * Isolate/power down the PHY, but leave the media selection
3182 	 * unchanged so that things will be put back to normal when
3183 	 * we bring the interface back up.
3184 	 *
3185 	 * 'mii' may be NULL in the following cases:
3186 	 * - The device uses TBI.
3187 	 * - bge_stop() is called by bge_detach().
3188 	 */
3189 	if (mii != NULL) {
3190 		itmp = ifp->if_flags;
3191 		ifp->if_flags |= IFF_UP;
3192 		ifm = mii->mii_media.ifm_cur;
3193 		mtmp = ifm->ifm_media;
3194 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
3195 		mii_mediachg(mii);
3196 		ifm->ifm_media = mtmp;
3197 		ifp->if_flags = itmp;
3198 	}
3199 
3200 	sc->bge_link = 0;
3201 	sc->bge_coal_chg = 0;
3202 
3203 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3204 
3205 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3206 	ifp->if_timer = 0;
3207 }
3208 
3209 /*
3210  * Stop all chip I/O so that the kernel's probe routines don't
3211  * get confused by errant DMAs when rebooting.
3212  */
3213 static void
3214 bge_shutdown(device_t dev)
3215 {
3216 	struct bge_softc *sc = device_get_softc(dev);
3217 	struct ifnet *ifp = &sc->arpcom.ac_if;
3218 
3219 	lwkt_serialize_enter(ifp->if_serializer);
3220 	bge_stop(sc);
3221 	bge_reset(sc);
3222 	lwkt_serialize_exit(ifp->if_serializer);
3223 }
3224 
3225 static int
3226 bge_suspend(device_t dev)
3227 {
3228 	struct bge_softc *sc = device_get_softc(dev);
3229 	struct ifnet *ifp = &sc->arpcom.ac_if;
3230 
3231 	lwkt_serialize_enter(ifp->if_serializer);
3232 	bge_stop(sc);
3233 	lwkt_serialize_exit(ifp->if_serializer);
3234 
3235 	return 0;
3236 }
3237 
3238 static int
3239 bge_resume(device_t dev)
3240 {
3241 	struct bge_softc *sc = device_get_softc(dev);
3242 	struct ifnet *ifp = &sc->arpcom.ac_if;
3243 
3244 	lwkt_serialize_enter(ifp->if_serializer);
3245 
3246 	if (ifp->if_flags & IFF_UP) {
3247 		bge_init(sc);
3248 
3249 		if (!ifq_is_empty(&ifp->if_snd))
3250 			ifp->if_start(ifp);
3251 	}
3252 
3253 	lwkt_serialize_exit(ifp->if_serializer);
3254 
3255 	return 0;
3256 }
3257 
3258 static void
3259 bge_setpromisc(struct bge_softc *sc)
3260 {
3261 	struct ifnet *ifp = &sc->arpcom.ac_if;
3262 
3263 	if (ifp->if_flags & IFF_PROMISC)
3264 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3265 	else
3266 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3267 }
3268 
3269 static void
3270 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3271 {
3272 	struct bge_dmamap_arg *ctx = arg;
3273 
3274 	if (error)
3275 		return;
3276 
3277 	KASSERT(nsegs == 1 && ctx->bge_maxsegs == 1,
3278 		("only one segment is allowed\n"));
3279 
3280 	ctx->bge_segs[0] = *segs;
3281 }
3282 
3283 static void
3284 bge_dma_map_mbuf(void *arg, bus_dma_segment_t *segs, int nsegs,
3285 		 bus_size_t mapsz __unused, int error)
3286 {
3287 	struct bge_dmamap_arg *ctx = arg;
3288 	int i;
3289 
3290 	if (error)
3291 		return;
3292 
3293 	if (nsegs > ctx->bge_maxsegs) {
3294 		ctx->bge_maxsegs = 0;
3295 		return;
3296 	}
3297 
3298 	ctx->bge_maxsegs = nsegs;
3299 	for (i = 0; i < nsegs; ++i)
3300 		ctx->bge_segs[i] = segs[i];
3301 }
3302 
3303 static void
3304 bge_dma_free(struct bge_softc *sc)
3305 {
3306 	int i;
3307 
3308 	/* Destroy RX/TX mbuf DMA stuffs. */
3309 	if (sc->bge_cdata.bge_mtag != NULL) {
3310 		for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3311 			if (sc->bge_cdata.bge_rx_std_dmamap[i]) {
3312 				bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3313 				    sc->bge_cdata.bge_rx_std_dmamap[i]);
3314 			}
3315 		}
3316 
3317 		for (i = 0; i < BGE_TX_RING_CNT; i++) {
3318 			if (sc->bge_cdata.bge_tx_dmamap[i]) {
3319 				bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3320 				    sc->bge_cdata.bge_tx_dmamap[i]);
3321 			}
3322 		}
3323 		bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3324 	}
3325 
3326 	/* Destroy standard RX ring */
3327 	bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3328 			   sc->bge_cdata.bge_rx_std_ring_map,
3329 			   sc->bge_ldata.bge_rx_std_ring);
3330 
3331 	if (BGE_IS_JUMBO_CAPABLE(sc))
3332 		bge_free_jumbo_mem(sc);
3333 
3334 	/* Destroy RX return ring */
3335 	bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3336 			   sc->bge_cdata.bge_rx_return_ring_map,
3337 			   sc->bge_ldata.bge_rx_return_ring);
3338 
3339 	/* Destroy TX ring */
3340 	bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3341 			   sc->bge_cdata.bge_tx_ring_map,
3342 			   sc->bge_ldata.bge_tx_ring);
3343 
3344 	/* Destroy status block */
3345 	bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3346 			   sc->bge_cdata.bge_status_map,
3347 			   sc->bge_ldata.bge_status_block);
3348 
3349 	/* Destroy statistics block */
3350 	bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3351 			   sc->bge_cdata.bge_stats_map,
3352 			   sc->bge_ldata.bge_stats);
3353 
3354 	/* Destroy the parent tag */
3355 	if (sc->bge_cdata.bge_parent_tag != NULL)
3356 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3357 }
3358 
3359 static int
3360 bge_dma_alloc(struct bge_softc *sc)
3361 {
3362 	struct ifnet *ifp = &sc->arpcom.ac_if;
3363 	int nseg, i, error;
3364 
3365 	/*
3366 	 * Allocate the parent bus DMA tag appropriate for PCI.
3367 	 */
3368 	error = bus_dma_tag_create(NULL, 1, 0,
3369 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3370 				   NULL, NULL,
3371 				   MAXBSIZE, BGE_NSEG_NEW,
3372 				   BUS_SPACE_MAXSIZE_32BIT,
3373 				   0, &sc->bge_cdata.bge_parent_tag);
3374 	if (error) {
3375 		if_printf(ifp, "could not allocate parent dma tag\n");
3376 		return error;
3377 	}
3378 
3379 	/*
3380 	 * Create DMA tag for mbufs.
3381 	 */
3382 	nseg = BGE_NSEG_NEW;
3383 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3384 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3385 				   NULL, NULL,
3386 				   MCLBYTES * nseg, nseg, MCLBYTES,
3387 				   BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_mtag);
3388 	if (error) {
3389 		if_printf(ifp, "could not allocate mbuf dma tag\n");
3390 		return error;
3391 	}
3392 
3393 	/*
3394 	 * Create DMA maps for TX/RX mbufs.
3395 	 */
3396 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3397 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3398 					  &sc->bge_cdata.bge_rx_std_dmamap[i]);
3399 		if (error) {
3400 			int j;
3401 
3402 			for (j = 0; j < i; ++j) {
3403 				bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3404 					sc->bge_cdata.bge_rx_std_dmamap[j]);
3405 			}
3406 			bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3407 			sc->bge_cdata.bge_mtag = NULL;
3408 
3409 			if_printf(ifp, "could not create DMA map for RX\n");
3410 			return error;
3411 		}
3412 	}
3413 
3414 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
3415 		error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
3416 					  &sc->bge_cdata.bge_tx_dmamap[i]);
3417 		if (error) {
3418 			int j;
3419 
3420 			for (j = 0; j < BGE_STD_RX_RING_CNT; ++j) {
3421 				bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3422 					sc->bge_cdata.bge_rx_std_dmamap[j]);
3423 			}
3424 			for (j = 0; j < i; ++j) {
3425 				bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
3426 					sc->bge_cdata.bge_tx_dmamap[j]);
3427 			}
3428 			bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
3429 			sc->bge_cdata.bge_mtag = NULL;
3430 
3431 			if_printf(ifp, "could not create DMA map for TX\n");
3432 			return error;
3433 		}
3434 	}
3435 
3436 	/*
3437 	 * Create DMA stuffs for standard RX ring.
3438 	 */
3439 	error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3440 				    &sc->bge_cdata.bge_rx_std_ring_tag,
3441 				    &sc->bge_cdata.bge_rx_std_ring_map,
3442 				    (void **)&sc->bge_ldata.bge_rx_std_ring,
3443 				    &sc->bge_ldata.bge_rx_std_ring_paddr);
3444 	if (error) {
3445 		if_printf(ifp, "could not create std RX ring\n");
3446 		return error;
3447 	}
3448 
3449 	/*
3450 	 * Create jumbo buffer pool.
3451 	 */
3452 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3453 		error = bge_alloc_jumbo_mem(sc);
3454 		if (error) {
3455 			if_printf(ifp, "could not create jumbo buffer pool\n");
3456 			return error;
3457 		}
3458 	}
3459 
3460 	/*
3461 	 * Create DMA stuffs for RX return ring.
3462 	 */
3463 	error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3464 				    &sc->bge_cdata.bge_rx_return_ring_tag,
3465 				    &sc->bge_cdata.bge_rx_return_ring_map,
3466 				    (void **)&sc->bge_ldata.bge_rx_return_ring,
3467 				    &sc->bge_ldata.bge_rx_return_ring_paddr);
3468 	if (error) {
3469 		if_printf(ifp, "could not create RX ret ring\n");
3470 		return error;
3471 	}
3472 
3473 	/*
3474 	 * Create DMA stuffs for TX ring.
3475 	 */
3476 	error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3477 				    &sc->bge_cdata.bge_tx_ring_tag,
3478 				    &sc->bge_cdata.bge_tx_ring_map,
3479 				    (void **)&sc->bge_ldata.bge_tx_ring,
3480 				    &sc->bge_ldata.bge_tx_ring_paddr);
3481 	if (error) {
3482 		if_printf(ifp, "could not create TX ring\n");
3483 		return error;
3484 	}
3485 
3486 	/*
3487 	 * Create DMA stuffs for status block.
3488 	 */
3489 	error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3490 				    &sc->bge_cdata.bge_status_tag,
3491 				    &sc->bge_cdata.bge_status_map,
3492 				    (void **)&sc->bge_ldata.bge_status_block,
3493 				    &sc->bge_ldata.bge_status_block_paddr);
3494 	if (error) {
3495 		if_printf(ifp, "could not create status block\n");
3496 		return error;
3497 	}
3498 
3499 	/*
3500 	 * Create DMA stuffs for statistics block.
3501 	 */
3502 	error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3503 				    &sc->bge_cdata.bge_stats_tag,
3504 				    &sc->bge_cdata.bge_stats_map,
3505 				    (void **)&sc->bge_ldata.bge_stats,
3506 				    &sc->bge_ldata.bge_stats_paddr);
3507 	if (error) {
3508 		if_printf(ifp, "could not create stats block\n");
3509 		return error;
3510 	}
3511 	return 0;
3512 }
3513 
3514 static int
3515 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3516 		    bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3517 {
3518 	struct ifnet *ifp = &sc->arpcom.ac_if;
3519 	struct bge_dmamap_arg ctx;
3520 	bus_dma_segment_t seg;
3521 	int error;
3522 
3523 	/*
3524 	 * Create DMA tag
3525 	 */
3526 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3527 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3528 				   NULL, NULL, size, 1, size, 0, tag);
3529 	if (error) {
3530 		if_printf(ifp, "could not allocate dma tag\n");
3531 		return error;
3532 	}
3533 
3534 	/*
3535 	 * Allocate DMA'able memory
3536 	 */
3537 	error = bus_dmamem_alloc(*tag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3538 				 map);
3539         if (error) {
3540 		if_printf(ifp, "could not allocate dma memory\n");
3541 		bus_dma_tag_destroy(*tag);
3542 		*tag = NULL;
3543                 return error;
3544 	}
3545 
3546 	/*
3547 	 * Load the DMA'able memory
3548 	 */
3549 	ctx.bge_maxsegs = 1;
3550 	ctx.bge_segs = &seg;
3551 	error = bus_dmamap_load(*tag, *map, *addr, size, bge_dma_map_addr, &ctx,
3552 				BUS_DMA_WAITOK);
3553 	if (error) {
3554 		if_printf(ifp, "could not load dma memory\n");
3555 		bus_dmamem_free(*tag, *addr, *map);
3556 		bus_dma_tag_destroy(*tag);
3557 		*tag = NULL;
3558 		return error;
3559 	}
3560 	*paddr = ctx.bge_segs[0].ds_addr;
3561 
3562 	return 0;
3563 }
3564 
3565 static void
3566 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3567 {
3568 	if (tag != NULL) {
3569 		bus_dmamap_unload(tag, map);
3570 		bus_dmamem_free(tag, addr, map);
3571 		bus_dma_tag_destroy(tag);
3572 	}
3573 }
3574 
3575 /*
3576  * Grrr. The link status word in the status block does
3577  * not work correctly on the BCM5700 rev AX and BX chips,
3578  * according to all available information. Hence, we have
3579  * to enable MII interrupts in order to properly obtain
3580  * async link changes. Unfortunately, this also means that
3581  * we have to read the MAC status register to detect link
3582  * changes, thereby adding an additional register access to
3583  * the interrupt handler.
3584  *
3585  * XXX: perhaps link state detection procedure used for
3586  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3587  */
3588 static void
3589 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3590 {
3591 	struct ifnet *ifp = &sc->arpcom.ac_if;
3592 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
3593 
3594 	mii_pollstat(mii);
3595 
3596 	if (!sc->bge_link &&
3597 	    (mii->mii_media_status & IFM_ACTIVE) &&
3598 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3599 		sc->bge_link++;
3600 		if (bootverbose)
3601 			if_printf(ifp, "link UP\n");
3602 	} else if (sc->bge_link &&
3603 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
3604 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3605 		sc->bge_link = 0;
3606 		if (bootverbose)
3607 			if_printf(ifp, "link DOWN\n");
3608 	}
3609 
3610 	/* Clear the interrupt. */
3611 	CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3612 	bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3613 	bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3614 }
3615 
3616 static void
3617 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3618 {
3619 	struct ifnet *ifp = &sc->arpcom.ac_if;
3620 
3621 #define PCS_ENCODE_ERR	(BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3622 
3623 	/*
3624 	 * Sometimes PCS encoding errors are detected in
3625 	 * TBI mode (on fiber NICs), and for some reason
3626 	 * the chip will signal them as link changes.
3627 	 * If we get a link change event, but the 'PCS
3628 	 * encoding error' bit in the MAC status register
3629 	 * is set, don't bother doing a link check.
3630 	 * This avoids spurious "gigabit link up" messages
3631 	 * that sometimes appear on fiber NICs during
3632 	 * periods of heavy traffic.
3633 	 */
3634 	if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3635 		if (!sc->bge_link) {
3636 			sc->bge_link++;
3637 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3638 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3639 				    BGE_MACMODE_TBI_SEND_CFGS);
3640 			}
3641 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3642 
3643 			if (bootverbose)
3644 				if_printf(ifp, "link UP\n");
3645 
3646 			ifp->if_link_state = LINK_STATE_UP;
3647 			if_link_state_change(ifp);
3648 		}
3649 	} else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3650 		if (sc->bge_link) {
3651 			sc->bge_link = 0;
3652 
3653 			if (bootverbose)
3654 				if_printf(ifp, "link DOWN\n");
3655 
3656 			ifp->if_link_state = LINK_STATE_DOWN;
3657 			if_link_state_change(ifp);
3658 		}
3659 	}
3660 
3661 #undef PCS_ENCODE_ERR
3662 
3663 	/* Clear the attention. */
3664 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3665 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3666 	    BGE_MACSTAT_LINK_CHANGED);
3667 }
3668 
3669 static void
3670 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3671 {
3672 	/*
3673 	 * Check that the AUTOPOLL bit is set before
3674 	 * processing the event as a real link change.
3675 	 * Turning AUTOPOLL on and off in the MII read/write
3676 	 * functions will often trigger a link status
3677 	 * interrupt for no reason.
3678 	 */
3679 	if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3680 		struct ifnet *ifp = &sc->arpcom.ac_if;
3681 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3682 
3683 		mii_pollstat(mii);
3684 
3685 		if (!sc->bge_link &&
3686 		    (mii->mii_media_status & IFM_ACTIVE) &&
3687 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3688 			sc->bge_link++;
3689 			if (bootverbose)
3690 				if_printf(ifp, "link UP\n");
3691 		} else if (sc->bge_link &&
3692 		    (!(mii->mii_media_status & IFM_ACTIVE) ||
3693 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3694 			sc->bge_link = 0;
3695 			if (bootverbose)
3696 				if_printf(ifp, "link DOWN\n");
3697 		}
3698 	}
3699 
3700 	/* Clear the attention. */
3701 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3702 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3703 	    BGE_MACSTAT_LINK_CHANGED);
3704 }
3705 
3706 static int
3707 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3708 {
3709 	struct bge_softc *sc = arg1;
3710 
3711 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3712 				   &sc->bge_rx_coal_ticks,
3713 				   BGE_RX_COAL_TICKS_CHG);
3714 }
3715 
3716 static int
3717 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3718 {
3719 	struct bge_softc *sc = arg1;
3720 
3721 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3722 				   &sc->bge_tx_coal_ticks,
3723 				   BGE_TX_COAL_TICKS_CHG);
3724 }
3725 
3726 static int
3727 bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3728 {
3729 	struct bge_softc *sc = arg1;
3730 
3731 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3732 				   &sc->bge_rx_max_coal_bds,
3733 				   BGE_RX_MAX_COAL_BDS_CHG);
3734 }
3735 
3736 static int
3737 bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3738 {
3739 	struct bge_softc *sc = arg1;
3740 
3741 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3742 				   &sc->bge_tx_max_coal_bds,
3743 				   BGE_TX_MAX_COAL_BDS_CHG);
3744 }
3745 
3746 static int
3747 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3748 		    uint32_t coal_chg_mask)
3749 {
3750 	struct bge_softc *sc = arg1;
3751 	struct ifnet *ifp = &sc->arpcom.ac_if;
3752 	int error = 0, v;
3753 
3754 	lwkt_serialize_enter(ifp->if_serializer);
3755 
3756 	v = *coal;
3757 	error = sysctl_handle_int(oidp, &v, 0, req);
3758 	if (!error && req->newptr != NULL) {
3759 		if (v < 0) {
3760 			error = EINVAL;
3761 		} else {
3762 			*coal = v;
3763 			sc->bge_coal_chg |= coal_chg_mask;
3764 		}
3765 	}
3766 
3767 	lwkt_serialize_exit(ifp->if_serializer);
3768 	return error;
3769 }
3770 
3771 static void
3772 bge_coal_change(struct bge_softc *sc)
3773 {
3774 	struct ifnet *ifp = &sc->arpcom.ac_if;
3775 	uint32_t val;
3776 
3777 	ASSERT_SERIALIZED(ifp->if_serializer);
3778 
3779 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3780 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3781 			    sc->bge_rx_coal_ticks);
3782 		DELAY(10);
3783 		val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3784 
3785 		if (bootverbose) {
3786 			if_printf(ifp, "rx_coal_ticks -> %u\n",
3787 				  sc->bge_rx_coal_ticks);
3788 		}
3789 	}
3790 
3791 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3792 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3793 			    sc->bge_tx_coal_ticks);
3794 		DELAY(10);
3795 		val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3796 
3797 		if (bootverbose) {
3798 			if_printf(ifp, "tx_coal_ticks -> %u\n",
3799 				  sc->bge_tx_coal_ticks);
3800 		}
3801 	}
3802 
3803 	if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3804 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3805 			    sc->bge_rx_max_coal_bds);
3806 		DELAY(10);
3807 		val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3808 
3809 		if (bootverbose) {
3810 			if_printf(ifp, "rx_max_coal_bds -> %u\n",
3811 				  sc->bge_rx_max_coal_bds);
3812 		}
3813 	}
3814 
3815 	if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3816 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3817 			    sc->bge_tx_max_coal_bds);
3818 		DELAY(10);
3819 		val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3820 
3821 		if (bootverbose) {
3822 			if_printf(ifp, "tx_max_coal_bds -> %u\n",
3823 				  sc->bge_tx_max_coal_bds);
3824 		}
3825 	}
3826 
3827 	sc->bge_coal_chg = 0;
3828 }
3829 
3830 static void
3831 bge_enable_intr(struct bge_softc *sc)
3832 {
3833 	struct ifnet *ifp = &sc->arpcom.ac_if;
3834 
3835 	lwkt_serialize_handler_enable(ifp->if_serializer);
3836 
3837 	/*
3838 	 * Enable interrupt.
3839 	 */
3840 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3841 
3842 	/*
3843 	 * Unmask the interrupt when we stop polling.
3844 	 */
3845 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3846 
3847 	/*
3848 	 * Trigger another interrupt, since above writing
3849 	 * to interrupt mailbox0 may acknowledge pending
3850 	 * interrupt.
3851 	 */
3852 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3853 }
3854 
3855 static void
3856 bge_disable_intr(struct bge_softc *sc)
3857 {
3858 	struct ifnet *ifp = &sc->arpcom.ac_if;
3859 
3860 	/*
3861 	 * Mask the interrupt when we start polling.
3862 	 */
3863 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3864 
3865 	/*
3866 	 * Acknowledge possible asserted interrupt.
3867 	 */
3868 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3869 
3870 	lwkt_serialize_handler_disable(ifp->if_serializer);
3871 }
3872