xref: /dragonfly/sys/dev/netif/bge/if_bge.c (revision 23265324)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.59 2006/12/20 18:14:39 dillon Exp $
35  *
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44 
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  *
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83 #include <sys/serialize.h>
84 #include <sys/thread2.h>
85 
86 #include <net/if.h>
87 #include <net/ifq_var.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92 
93 #include <net/bpf.h>
94 
95 #include <net/if_types.h>
96 #include <net/vlan/if_vlan_var.h>
97 
98 #include <netinet/in_systm.h>
99 #include <netinet/in.h>
100 #include <netinet/ip.h>
101 
102 #include <vm/vm.h>              /* for vtophys */
103 #include <vm/pmap.h>            /* for vtophys */
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 
107 #include <dev/netif/mii_layer/mii.h>
108 #include <dev/netif/mii_layer/miivar.h>
109 #include <dev/netif/mii_layer/miidevs.h>
110 #include <dev/netif/mii_layer/brgphyreg.h>
111 
112 #include <bus/pci/pcidevs.h>
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115 
116 #include "if_bgereg.h"
117 
118 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
119 
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122 
123 /*
124  * Various supported device vendors/types and their names. Note: the
125  * spec seems to indicate that the hardware still has Alteon's vendor
126  * ID burned into it, though it will always be overriden by the vendor
127  * ID in the EEPROM. Just to be safe, we cover all possibilities.
128  */
129 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
130 
131 static struct bge_type bge_devs[] = {
132 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
133 		"Alteon BCM5700 Gigabit Ethernet" },
134 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
135 		"Alteon BCM5701 Gigabit Ethernet" },
136 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
137 		"Broadcom BCM5700 Gigabit Ethernet" },
138 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
139 		"Broadcom BCM5701 Gigabit Ethernet" },
140 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
141 		"Broadcom BCM5702X Gigabit Ethernet" },
142 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
143 		"Broadcom BCM5702 Gigabit Ethernet" },
144 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
145 		"Broadcom BCM5703X Gigabit Ethernet" },
146 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
147 		"Broadcom BCM5703 Gigabit Ethernet" },
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
149 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
151 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
153 		"Broadcom BCM5705 Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
155 		"Broadcom BCM5705K Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
157 		"Broadcom BCM5705M Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
159 		"Broadcom BCM5705M Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
161 		"Broadcom BCM5714C Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
163 		"Broadcom BCM5721 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
165 		"Broadcom BCM5750 Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
167 		"Broadcom BCM5750M Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
169 		"Broadcom BCM5751 Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
171 		"Broadcom BCM5751M Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
173 		"Broadcom BCM5782 Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
175 		"Broadcom BCM5788 Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
177 		"Broadcom BCM5789 Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
179 		"Broadcom BCM5901 Fast Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
181 		"Broadcom BCM5901A2 Fast Ethernet" },
182 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
183 		"SysKonnect Gigabit Ethernet" },
184 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
185 		"Altima AC1000 Gigabit Ethernet" },
186 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
187 		"Altima AC1002 Gigabit Ethernet" },
188 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
189 		"Altima AC9100 Gigabit Ethernet" },
190 	{ 0, 0, NULL }
191 };
192 
193 static int	bge_probe(device_t);
194 static int	bge_attach(device_t);
195 static int	bge_detach(device_t);
196 static void	bge_release_resources(struct bge_softc *);
197 static void	bge_txeof(struct bge_softc *);
198 static void	bge_rxeof(struct bge_softc *);
199 
200 static void	bge_tick(void *);
201 static void	bge_tick_serialized(void *);
202 static void	bge_stats_update(struct bge_softc *);
203 static void	bge_stats_update_regs(struct bge_softc *);
204 static int	bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205 
206 static void	bge_intr(void *);
207 static void	bge_start(struct ifnet *);
208 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
209 static void	bge_init(void *);
210 static void	bge_stop(struct bge_softc *);
211 static void	bge_watchdog(struct ifnet *);
212 static void	bge_shutdown(device_t);
213 static int	bge_ifmedia_upd(struct ifnet *);
214 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215 
216 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
217 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
218 
219 static void	bge_setmulti(struct bge_softc *);
220 
221 static void	bge_handle_events(struct bge_softc *);
222 static int	bge_alloc_jumbo_mem(struct bge_softc *);
223 static void	bge_free_jumbo_mem(struct bge_softc *);
224 static struct bge_jslot
225 		*bge_jalloc(struct bge_softc *);
226 static void	bge_jfree(void *);
227 static void	bge_jref(void *);
228 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
229 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
230 static int	bge_init_rx_ring_std(struct bge_softc *);
231 static void	bge_free_rx_ring_std(struct bge_softc *);
232 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
233 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
234 static void	bge_free_tx_ring(struct bge_softc *);
235 static int	bge_init_tx_ring(struct bge_softc *);
236 
237 static int	bge_chipinit(struct bge_softc *);
238 static int	bge_blockinit(struct bge_softc *);
239 
240 #ifdef notdef
241 static uint8_t	bge_vpd_readbyte(struct bge_softc *, uint32_t);
242 static void	bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
243 static void	bge_vpd_read(struct bge_softc *);
244 #endif
245 
246 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
247 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
248 #ifdef notdef
249 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
250 #endif
251 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
252 
253 static int	bge_miibus_readreg(device_t, int, int);
254 static int	bge_miibus_writereg(device_t, int, int, int);
255 static void	bge_miibus_statchg(device_t);
256 
257 static void	bge_reset(struct bge_softc *);
258 
259 /*
260  * Set following tunable to 1 for some IBM blade servers with the DNLK
261  * switch module. Auto negotiation is broken for those configurations.
262  */
263 static int	bge_fake_autoneg = 0;
264 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
265 
266 static device_method_t bge_methods[] = {
267 	/* Device interface */
268 	DEVMETHOD(device_probe,		bge_probe),
269 	DEVMETHOD(device_attach,	bge_attach),
270 	DEVMETHOD(device_detach,	bge_detach),
271 	DEVMETHOD(device_shutdown,	bge_shutdown),
272 
273 	/* bus interface */
274 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
275 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
276 
277 	/* MII interface */
278 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
279 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
280 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
281 
282 	{ 0, 0 }
283 };
284 
285 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
286 static devclass_t bge_devclass;
287 
288 DECLARE_DUMMY_MODULE(if_bge);
289 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
290 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
291 
292 static uint32_t
293 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
294 {
295 	device_t dev = sc->bge_dev;
296 
297 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
298 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
299 }
300 
301 static void
302 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
303 {
304 	device_t dev = sc->bge_dev;
305 
306 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
307 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
308 }
309 
310 #ifdef notdef
311 static uint32_t
312 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
313 {
314 	device_t dev = sc->bge_dev;
315 
316 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
317 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
318 }
319 #endif
320 
321 static void
322 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
323 {
324 	device_t dev = sc->bge_dev;
325 
326 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
327 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
328 }
329 
330 #ifdef notdef
331 static uint8_t
332 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
333 {
334 	device_t dev = sc->bge_dev;
335 	uint32_t val;
336 	int i;
337 
338 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
339 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
340 		DELAY(10);
341 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
342 			break;
343 	}
344 
345 	if (i == BGE_TIMEOUT) {
346 		device_printf(sc->bge_dev, "VPD read timed out\n");
347 		return(0);
348 	}
349 
350 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
351 
352 	return((val >> ((addr % 4) * 8)) & 0xFF);
353 }
354 
355 static void
356 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
357 {
358 	size_t i;
359 	uint8_t *ptr;
360 
361 	ptr = (uint8_t *)res;
362 	for (i = 0; i < sizeof(struct vpd_res); i++)
363 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
364 
365 	return;
366 }
367 
368 static void
369 bge_vpd_read(struct bge_softc *sc)
370 {
371 	int pos = 0, i;
372 	struct vpd_res res;
373 
374 	if (sc->bge_vpd_prodname != NULL)
375 		kfree(sc->bge_vpd_prodname, M_DEVBUF);
376 	if (sc->bge_vpd_readonly != NULL)
377 		kfree(sc->bge_vpd_readonly, M_DEVBUF);
378 	sc->bge_vpd_prodname = NULL;
379 	sc->bge_vpd_readonly = NULL;
380 
381 	bge_vpd_read_res(sc, &res, pos);
382 
383 	if (res.vr_id != VPD_RES_ID) {
384 		device_printf(sc->bge_dev,
385 			      "bad VPD resource id: expected %x got %x\n",
386 			      VPD_RES_ID, res.vr_id);
387                 return;
388         }
389 
390 	pos += sizeof(res);
391 	sc->bge_vpd_prodname = kmalloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
392 	for (i = 0; i < res.vr_len; i++)
393 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
394 	sc->bge_vpd_prodname[i] = '\0';
395 	pos += i;
396 
397 	bge_vpd_read_res(sc, &res, pos);
398 
399 	if (res.vr_id != VPD_RES_READ) {
400 		device_printf(sc->bge_dev,
401 			      "bad VPD resource id: expected %x got %x\n",
402 			      VPD_RES_READ, res.vr_id);
403 		return;
404 	}
405 
406 	pos += sizeof(res);
407 	sc->bge_vpd_readonly = kmalloc(res.vr_len, M_DEVBUF, M_INTWAIT);
408 	for (i = 0; i < res.vr_len + 1; i++)
409 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
410 }
411 #endif
412 
413 /*
414  * Read a byte of data stored in the EEPROM at address 'addr.' The
415  * BCM570x supports both the traditional bitbang interface and an
416  * auto access interface for reading the EEPROM. We use the auto
417  * access method.
418  */
419 static uint8_t
420 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
421 {
422 	int i;
423 	uint32_t byte = 0;
424 
425 	/*
426 	 * Enable use of auto EEPROM access so we can avoid
427 	 * having to use the bitbang method.
428 	 */
429 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
430 
431 	/* Reset the EEPROM, load the clock period. */
432 	CSR_WRITE_4(sc, BGE_EE_ADDR,
433 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
434 	DELAY(20);
435 
436 	/* Issue the read EEPROM command. */
437 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
438 
439 	/* Wait for completion */
440 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
441 		DELAY(10);
442 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
443 			break;
444 	}
445 
446 	if (i == BGE_TIMEOUT) {
447 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
448 		return(0);
449 	}
450 
451 	/* Get result. */
452 	byte = CSR_READ_4(sc, BGE_EE_DATA);
453 
454         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
455 
456 	return(0);
457 }
458 
459 /*
460  * Read a sequence of bytes from the EEPROM.
461  */
462 static int
463 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
464 {
465 	size_t i;
466 	int err;
467 	uint8_t byte;
468 
469 	for (byte = 0, err = 0, i = 0; i < len; i++) {
470 		err = bge_eeprom_getbyte(sc, off + i, &byte);
471 		if (err)
472 			break;
473 		*(dest + i) = byte;
474 	}
475 
476 	return(err ? 1 : 0);
477 }
478 
479 static int
480 bge_miibus_readreg(device_t dev, int phy, int reg)
481 {
482 	struct bge_softc *sc;
483 	struct ifnet *ifp;
484 	uint32_t val, autopoll;
485 	int i;
486 
487 	sc = device_get_softc(dev);
488 	ifp = &sc->arpcom.ac_if;
489 
490 	/*
491 	 * Broadcom's own driver always assumes the internal
492 	 * PHY is at GMII address 1. On some chips, the PHY responds
493 	 * to accesses at all addresses, which could cause us to
494 	 * bogusly attach the PHY 32 times at probe type. Always
495 	 * restricting the lookup to address 1 is simpler than
496 	 * trying to figure out which chips revisions should be
497 	 * special-cased.
498 	 */
499 	if (phy != 1)
500 		return(0);
501 
502 	/* Reading with autopolling on may trigger PCI errors */
503 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
504 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
505 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
506 		DELAY(40);
507 	}
508 
509 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
510 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
511 
512 	for (i = 0; i < BGE_TIMEOUT; i++) {
513 		val = CSR_READ_4(sc, BGE_MI_COMM);
514 		if (!(val & BGE_MICOMM_BUSY))
515 			break;
516 	}
517 
518 	if (i == BGE_TIMEOUT) {
519 		if_printf(ifp, "PHY read timed out\n");
520 		val = 0;
521 		goto done;
522 	}
523 
524 	val = CSR_READ_4(sc, BGE_MI_COMM);
525 
526 done:
527 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
528 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
529 		DELAY(40);
530 	}
531 
532 	if (val & BGE_MICOMM_READFAIL)
533 		return(0);
534 
535 	return(val & 0xFFFF);
536 }
537 
538 static int
539 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
540 {
541 	struct bge_softc *sc;
542 	uint32_t autopoll;
543 	int i;
544 
545 	sc = device_get_softc(dev);
546 
547 	/* Reading with autopolling on may trigger PCI errors */
548 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
549 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
550 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
551 		DELAY(40);
552 	}
553 
554 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
555 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
556 
557 	for (i = 0; i < BGE_TIMEOUT; i++) {
558 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
559 			break;
560 	}
561 
562 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
563 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
564 		DELAY(40);
565 	}
566 
567 	if (i == BGE_TIMEOUT) {
568 		if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
569 		return(0);
570 	}
571 
572 	return(0);
573 }
574 
575 static void
576 bge_miibus_statchg(device_t dev)
577 {
578 	struct bge_softc *sc;
579 	struct mii_data *mii;
580 
581 	sc = device_get_softc(dev);
582 	mii = device_get_softc(sc->bge_miibus);
583 
584 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
585 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
586 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
587 	} else {
588 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
589 	}
590 
591 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
592 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
593 	} else {
594 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
595 	}
596 }
597 
598 /*
599  * Handle events that have triggered interrupts.
600  */
601 static void
602 bge_handle_events(struct bge_softc *sc)
603 {
604 }
605 
606 /*
607  * Memory management for jumbo frames.
608  */
609 static int
610 bge_alloc_jumbo_mem(struct bge_softc *sc)
611 {
612 	struct bge_jslot *entry;
613 	caddr_t ptr;
614 	int i;
615 
616 	/* Grab a big chunk o' storage. */
617 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
618 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
619 
620 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
621 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
622 		return(ENOBUFS);
623 	}
624 
625 	SLIST_INIT(&sc->bge_jfree_listhead);
626 
627 	/*
628 	 * Now divide it up into 9K pieces and save the addresses
629 	 * in an array. Note that we play an evil trick here by using
630 	 * the first few bytes in the buffer to hold the the address
631 	 * of the softc structure for this interface. This is because
632 	 * bge_jfree() needs it, but it is called by the mbuf management
633 	 * code which will not pass it to us explicitly.
634 	 */
635 	ptr = sc->bge_cdata.bge_jumbo_buf;
636 	for (i = 0; i < BGE_JSLOTS; i++) {
637 		entry = &sc->bge_cdata.bge_jslots[i];
638 		entry->bge_sc = sc;
639 		entry->bge_buf = ptr;
640 		entry->bge_inuse = 0;
641 		entry->bge_slot = i;
642 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
643 		ptr += BGE_JLEN;
644 	}
645 
646 	return(0);
647 }
648 
649 static void
650 bge_free_jumbo_mem(struct bge_softc *sc)
651 {
652 	if (sc->bge_cdata.bge_jumbo_buf)
653 		contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
654 }
655 
656 /*
657  * Allocate a jumbo buffer.
658  */
659 static struct bge_jslot *
660 bge_jalloc(struct bge_softc *sc)
661 {
662 	struct bge_jslot *entry;
663 
664 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
665 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
666 	if (entry) {
667 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
668 		entry->bge_inuse = 1;
669 	} else {
670 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
671 	}
672 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
673 	return(entry);
674 }
675 
676 /*
677  * Adjust usage count on a jumbo buffer.
678  */
679 static void
680 bge_jref(void *arg)
681 {
682 	struct bge_jslot *entry = (struct bge_jslot *)arg;
683 	struct bge_softc *sc = entry->bge_sc;
684 
685 	if (sc == NULL)
686 		panic("bge_jref: can't find softc pointer!");
687 
688 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
689 		panic("bge_jref: asked to reference buffer "
690 		    "that we don't manage!");
691 	} else if (entry->bge_inuse == 0) {
692 		panic("bge_jref: buffer already free!");
693 	} else {
694 		atomic_add_int(&entry->bge_inuse, 1);
695 	}
696 }
697 
698 /*
699  * Release a jumbo buffer.
700  */
701 static void
702 bge_jfree(void *arg)
703 {
704 	struct bge_jslot *entry = (struct bge_jslot *)arg;
705 	struct bge_softc *sc = entry->bge_sc;
706 
707 	if (sc == NULL)
708 		panic("bge_jfree: can't find softc pointer!");
709 
710 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
711 		panic("bge_jfree: asked to free buffer that we don't manage!");
712 	} else if (entry->bge_inuse == 0) {
713 		panic("bge_jfree: buffer already free!");
714 	} else {
715 		/*
716 		 * Possible MP race to 0, use the serializer.  The atomic insn
717 		 * is still needed for races against bge_jref().
718 		 */
719 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
720 		atomic_subtract_int(&entry->bge_inuse, 1);
721 		if (entry->bge_inuse == 0) {
722 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
723 					  entry, jslot_link);
724 		}
725 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
726 	}
727 }
728 
729 
730 /*
731  * Intialize a standard receive ring descriptor.
732  */
733 static int
734 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
735 {
736 	struct mbuf *m_new = NULL;
737 	struct bge_rx_bd *r;
738 
739 	if (m == NULL) {
740 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
741 		if (m_new == NULL)
742 			return (ENOBUFS);
743 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
744 	} else {
745 		m_new = m;
746 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
747 		m_new->m_data = m_new->m_ext.ext_buf;
748 	}
749 
750 	if (!sc->bge_rx_alignment_bug)
751 		m_adj(m_new, ETHER_ALIGN);
752 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
753 	r = &sc->bge_rdata->bge_rx_std_ring[i];
754 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
755 	r->bge_flags = BGE_RXBDFLAG_END;
756 	r->bge_len = m_new->m_len;
757 	r->bge_idx = i;
758 
759 	return(0);
760 }
761 
762 /*
763  * Initialize a jumbo receive ring descriptor. This allocates
764  * a jumbo buffer from the pool managed internally by the driver.
765  */
766 static int
767 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
768 {
769 	struct mbuf *m_new = NULL;
770 	struct bge_rx_bd *r;
771 
772 	if (m == NULL) {
773 		struct bge_jslot *buf;
774 
775 		/* Allocate the mbuf. */
776 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
777 		if (m_new == NULL)
778 			return(ENOBUFS);
779 
780 		/* Allocate the jumbo buffer */
781 		buf = bge_jalloc(sc);
782 		if (buf == NULL) {
783 			m_freem(m_new);
784 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
785 			    "-- packet dropped!\n");
786 			return(ENOBUFS);
787 		}
788 
789 		/* Attach the buffer to the mbuf. */
790 		m_new->m_ext.ext_arg = buf;
791 		m_new->m_ext.ext_buf = buf->bge_buf;
792 		m_new->m_ext.ext_free = bge_jfree;
793 		m_new->m_ext.ext_ref = bge_jref;
794 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
795 
796 		m_new->m_data = m_new->m_ext.ext_buf;
797 		m_new->m_flags |= M_EXT;
798 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
799 	} else {
800 		m_new = m;
801 		m_new->m_data = m_new->m_ext.ext_buf;
802 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
803 	}
804 
805 	if (!sc->bge_rx_alignment_bug)
806 		m_adj(m_new, ETHER_ALIGN);
807 	/* Set up the descriptor. */
808 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
809 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
810 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
811 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
812 	r->bge_len = m_new->m_len;
813 	r->bge_idx = i;
814 
815 	return(0);
816 }
817 
818 /*
819  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
820  * that's 1MB or memory, which is a lot. For now, we fill only the first
821  * 256 ring entries and hope that our CPU is fast enough to keep up with
822  * the NIC.
823  */
824 static int
825 bge_init_rx_ring_std(struct bge_softc *sc)
826 {
827 	int i;
828 
829 	for (i = 0; i < BGE_SSLOTS; i++) {
830 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
831 			return(ENOBUFS);
832 	};
833 
834 	sc->bge_std = i - 1;
835 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
836 
837 	return(0);
838 }
839 
840 static void
841 bge_free_rx_ring_std(struct bge_softc *sc)
842 {
843 	int i;
844 
845 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
846 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
847 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
848 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
849 		}
850 		bzero(&sc->bge_rdata->bge_rx_std_ring[i],
851 		    sizeof(struct bge_rx_bd));
852 	}
853 }
854 
855 static int
856 bge_init_rx_ring_jumbo(struct bge_softc *sc)
857 {
858 	int i;
859 	struct bge_rcb *rcb;
860 
861 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
862 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
863 			return(ENOBUFS);
864 	};
865 
866 	sc->bge_jumbo = i - 1;
867 
868 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
869 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
870 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
871 
872 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
873 
874 	return(0);
875 }
876 
877 static void
878 bge_free_rx_ring_jumbo(struct bge_softc *sc)
879 {
880 	int i;
881 
882 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
883 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
884 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
885 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
886 		}
887 		bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
888 		    sizeof(struct bge_rx_bd));
889 	}
890 }
891 
892 static void
893 bge_free_tx_ring(struct bge_softc *sc)
894 {
895 	int i;
896 
897 	if (sc->bge_rdata->bge_tx_ring == NULL)
898 		return;
899 
900 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
901 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
902 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
903 			sc->bge_cdata.bge_tx_chain[i] = NULL;
904 		}
905 		bzero(&sc->bge_rdata->bge_tx_ring[i],
906 		    sizeof(struct bge_tx_bd));
907 	}
908 }
909 
910 static int
911 bge_init_tx_ring(struct bge_softc *sc)
912 {
913 	sc->bge_txcnt = 0;
914 	sc->bge_tx_saved_considx = 0;
915 
916 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
917 	/* 5700 b2 errata */
918 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
919 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
920 
921 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
922 	/* 5700 b2 errata */
923 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
924 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
925 
926 	return(0);
927 }
928 
929 static void
930 bge_setmulti(struct bge_softc *sc)
931 {
932 	struct ifnet *ifp;
933 	struct ifmultiaddr *ifma;
934 	uint32_t hashes[4] = { 0, 0, 0, 0 };
935 	int h, i;
936 
937 	ifp = &sc->arpcom.ac_if;
938 
939 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
940 		for (i = 0; i < 4; i++)
941 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
942 		return;
943 	}
944 
945 	/* First, zot all the existing filters. */
946 	for (i = 0; i < 4; i++)
947 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
948 
949 	/* Now program new ones. */
950 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
951 		if (ifma->ifma_addr->sa_family != AF_LINK)
952 			continue;
953 		h = ether_crc32_le(
954 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
955 		    ETHER_ADDR_LEN) & 0x7f;
956 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
957 	}
958 
959 	for (i = 0; i < 4; i++)
960 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
961 }
962 
963 /*
964  * Do endian, PCI and DMA initialization. Also check the on-board ROM
965  * self-test results.
966  */
967 static int
968 bge_chipinit(struct bge_softc *sc)
969 {
970 	int i;
971 	uint32_t dma_rw_ctl;
972 
973 	/* Set endianness before we access any non-PCI registers. */
974 #if BYTE_ORDER == BIG_ENDIAN
975 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
976 	    BGE_BIGENDIAN_INIT, 4);
977 #else
978 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
979 	    BGE_LITTLEENDIAN_INIT, 4);
980 #endif
981 
982 	/*
983 	 * Check the 'ROM failed' bit on the RX CPU to see if
984 	 * self-tests passed.
985 	 */
986 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
987 		if_printf(&sc->arpcom.ac_if,
988 			  "RX CPU self-diagnostics failed!\n");
989 		return(ENODEV);
990 	}
991 
992 	/* Clear the MAC control register */
993 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
994 
995 	/*
996 	 * Clear the MAC statistics block in the NIC's
997 	 * internal memory.
998 	 */
999 	for (i = BGE_STATS_BLOCK;
1000 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1001 		BGE_MEMWIN_WRITE(sc, i, 0);
1002 
1003 	for (i = BGE_STATUS_BLOCK;
1004 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1005 		BGE_MEMWIN_WRITE(sc, i, 0);
1006 
1007 	/* Set up the PCI DMA control register. */
1008 	if (sc->bge_pcie) {
1009 		/* PCI Express */
1010 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1011 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1012 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1013 	} else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1014 		   BGE_PCISTATE_PCI_BUSMODE) {
1015 		/* Conventional PCI bus */
1016 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1017 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1018 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1019 		    (0x0F);
1020 	} else {
1021 		/* PCI-X bus */
1022 		/*
1023 		 * The 5704 uses a different encoding of read/write
1024 		 * watermarks.
1025 		 */
1026 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1027 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1028 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1029 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1030 		else
1031 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1032 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1033 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1034 			    (0x0F);
1035 
1036 		/*
1037 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1038 		 * for hardware bugs.
1039 		 */
1040 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1041 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1042 			uint32_t tmp;
1043 
1044 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1045 			if (tmp == 0x6 || tmp == 0x7)
1046 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1047 		}
1048 	}
1049 
1050 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1051 	    sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1052 	    sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1053 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1054 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1055 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1056 
1057 	/*
1058 	 * Set up general mode register.
1059 	 */
1060 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1061 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1062 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1063 	    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1064 
1065 	/*
1066 	 * Disable memory write invalidate.  Apparently it is not supported
1067 	 * properly by these devices.
1068 	 */
1069 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1070 
1071 	/* Set the timer prescaler (always 66Mhz) */
1072 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1073 
1074 	return(0);
1075 }
1076 
1077 static int
1078 bge_blockinit(struct bge_softc *sc)
1079 {
1080 	struct bge_rcb *rcb;
1081 	volatile struct bge_rcb *vrcb;
1082 	int i;
1083 
1084 	/*
1085 	 * Initialize the memory window pointer register so that
1086 	 * we can access the first 32K of internal NIC RAM. This will
1087 	 * allow us to set up the TX send ring RCBs and the RX return
1088 	 * ring RCBs, plus other things which live in NIC memory.
1089 	 */
1090 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1091 
1092 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1093 
1094 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1095 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1096 		/* Configure mbuf memory pool */
1097 		if (sc->bge_extram) {
1098 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1099 			    BGE_EXT_SSRAM);
1100 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1101 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1102 			else
1103 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1104 		} else {
1105 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1106 			    BGE_BUFFPOOL_1);
1107 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1108 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1109 			else
1110 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1111 		}
1112 
1113 		/* Configure DMA resource pool */
1114 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1115 		    BGE_DMA_DESCRIPTORS);
1116 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1117 	}
1118 
1119 	/* Configure mbuf pool watermarks */
1120 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1121 	    sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1122 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1123 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1124 	} else {
1125 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1126 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1127 	}
1128 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1129 
1130 	/* Configure DMA resource watermarks */
1131 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1132 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1133 
1134 	/* Enable buffer manager */
1135 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1136 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1137 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1138 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1139 
1140 		/* Poll for buffer manager start indication */
1141 		for (i = 0; i < BGE_TIMEOUT; i++) {
1142 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1143 				break;
1144 			DELAY(10);
1145 		}
1146 
1147 		if (i == BGE_TIMEOUT) {
1148 			if_printf(&sc->arpcom.ac_if,
1149 				  "buffer manager failed to start\n");
1150 			return(ENXIO);
1151 		}
1152 	}
1153 
1154 	/* Enable flow-through queues */
1155 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1156 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1157 
1158 	/* Wait until queue initialization is complete */
1159 	for (i = 0; i < BGE_TIMEOUT; i++) {
1160 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1161 			break;
1162 		DELAY(10);
1163 	}
1164 
1165 	if (i == BGE_TIMEOUT) {
1166 		if_printf(&sc->arpcom.ac_if,
1167 			  "flow-through queue init failed\n");
1168 		return(ENXIO);
1169 	}
1170 
1171 	/* Initialize the standard RX ring control block */
1172 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1173 	BGE_HOSTADDR(rcb->bge_hostaddr,
1174 	    vtophys(&sc->bge_rdata->bge_rx_std_ring));
1175 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1176 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1177 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1178 	else
1179 		rcb->bge_maxlen_flags =
1180 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1181 	if (sc->bge_extram)
1182 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1183 	else
1184 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1185 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1186 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1187 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1188 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1189 
1190 	/*
1191 	 * Initialize the jumbo RX ring control block
1192 	 * We set the 'ring disabled' bit in the flags
1193 	 * field until we're actually ready to start
1194 	 * using this ring (i.e. once we set the MTU
1195 	 * high enough to require it).
1196 	 */
1197 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1198 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1199 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1200 		BGE_HOSTADDR(rcb->bge_hostaddr,
1201 		    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1202 		rcb->bge_maxlen_flags =
1203 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1204 		    BGE_RCB_FLAG_RING_DISABLED);
1205 		if (sc->bge_extram)
1206 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1207 		else
1208 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1209 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1210 		    rcb->bge_hostaddr.bge_addr_hi);
1211 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1212 		    rcb->bge_hostaddr.bge_addr_lo);
1213 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1214 		    rcb->bge_maxlen_flags);
1215 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1216 
1217 		/* Set up dummy disabled mini ring RCB */
1218 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1219 		rcb->bge_maxlen_flags =
1220 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1221 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1222 		    rcb->bge_maxlen_flags);
1223 	}
1224 
1225 	/*
1226 	 * Set the BD ring replentish thresholds. The recommended
1227 	 * values are 1/8th the number of descriptors allocated to
1228 	 * each ring.
1229 	 */
1230 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1231 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1232 
1233 	/*
1234 	 * Disable all unused send rings by setting the 'ring disabled'
1235 	 * bit in the flags field of all the TX send ring control blocks.
1236 	 * These are located in NIC memory.
1237 	 */
1238 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1239 	    BGE_SEND_RING_RCB);
1240 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1241 		vrcb->bge_maxlen_flags =
1242 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1243 		vrcb->bge_nicaddr = 0;
1244 		vrcb++;
1245 	}
1246 
1247 	/* Configure TX RCB 0 (we use only the first ring) */
1248 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1249 	    BGE_SEND_RING_RCB);
1250 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1251 	BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1252 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1253 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1254 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1255 		vrcb->bge_maxlen_flags =
1256 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1257 
1258 	/* Disable all unused RX return rings */
1259 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1260 	    BGE_RX_RETURN_RING_RCB);
1261 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1262 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1263 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1264 		vrcb->bge_maxlen_flags =
1265 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1266 		    BGE_RCB_FLAG_RING_DISABLED);
1267 		vrcb->bge_nicaddr = 0;
1268 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1269 		    (i * (sizeof(uint64_t))), 0);
1270 		vrcb++;
1271 	}
1272 
1273 	/* Initialize RX ring indexes */
1274 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1275 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1276 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1277 
1278 	/*
1279 	 * Set up RX return ring 0
1280 	 * Note that the NIC address for RX return rings is 0x00000000.
1281 	 * The return rings live entirely within the host, so the
1282 	 * nicaddr field in the RCB isn't used.
1283 	 */
1284 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1285 	    BGE_RX_RETURN_RING_RCB);
1286 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1287 	BGE_HOSTADDR(vrcb->bge_hostaddr,
1288 	    vtophys(&sc->bge_rdata->bge_rx_return_ring));
1289 	vrcb->bge_nicaddr = 0x00000000;
1290 	vrcb->bge_maxlen_flags =
1291 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1292 
1293 	/* Set random backoff seed for TX */
1294 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1295 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1296 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1297 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1298 	    BGE_TX_BACKOFF_SEED_MASK);
1299 
1300 	/* Set inter-packet gap */
1301 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1302 
1303 	/*
1304 	 * Specify which ring to use for packets that don't match
1305 	 * any RX rules.
1306 	 */
1307 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1308 
1309 	/*
1310 	 * Configure number of RX lists. One interrupt distribution
1311 	 * list, sixteen active lists, one bad frames class.
1312 	 */
1313 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1314 
1315 	/* Inialize RX list placement stats mask. */
1316 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1317 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1318 
1319 	/* Disable host coalescing until we get it set up */
1320 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1321 
1322 	/* Poll to make sure it's shut down. */
1323 	for (i = 0; i < BGE_TIMEOUT; i++) {
1324 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1325 			break;
1326 		DELAY(10);
1327 	}
1328 
1329 	if (i == BGE_TIMEOUT) {
1330 		if_printf(&sc->arpcom.ac_if,
1331 			  "host coalescing engine failed to idle\n");
1332 		return(ENXIO);
1333 	}
1334 
1335 	/* Set up host coalescing defaults */
1336 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1337 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1338 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1339 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1340 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1341 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1342 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1343 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1344 	}
1345 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1346 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1347 
1348 	/* Set up address of statistics block */
1349 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1350 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1351 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1352 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1353 		    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1354 
1355 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1356 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1357 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1358 	}
1359 
1360 	/* Set up address of status block */
1361 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1362 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1363 	    vtophys(&sc->bge_rdata->bge_status_block));
1364 
1365 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1366 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1367 
1368 	/* Turn on host coalescing state machine */
1369 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1370 
1371 	/* Turn on RX BD completion state machine and enable attentions */
1372 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1373 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1374 
1375 	/* Turn on RX list placement state machine */
1376 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1377 
1378 	/* Turn on RX list selector state machine. */
1379 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1380 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1381 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1382 
1383 	/* Turn on DMA, clear stats */
1384 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1385 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1386 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1387 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1388 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1389 
1390 	/* Set misc. local control, enable interrupts on attentions */
1391 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1392 
1393 #ifdef notdef
1394 	/* Assert GPIO pins for PHY reset */
1395 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1396 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1397 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1398 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1399 #endif
1400 
1401 	/* Turn on DMA completion state machine */
1402 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1403 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1404 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1405 
1406 	/* Turn on write DMA state machine */
1407 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1408 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1409 
1410 	/* Turn on read DMA state machine */
1411 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1412 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1413 
1414 	/* Turn on RX data completion state machine */
1415 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1416 
1417 	/* Turn on RX BD initiator state machine */
1418 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1419 
1420 	/* Turn on RX data and RX BD initiator state machine */
1421 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1422 
1423 	/* Turn on Mbuf cluster free state machine */
1424 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1425 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1426 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1427 
1428 	/* Turn on send BD completion state machine */
1429 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1430 
1431 	/* Turn on send data completion state machine */
1432 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1433 
1434 	/* Turn on send data initiator state machine */
1435 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1436 
1437 	/* Turn on send BD initiator state machine */
1438 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1439 
1440 	/* Turn on send BD selector state machine */
1441 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1442 
1443 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1444 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1445 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1446 
1447 	/* ack/clear link change events */
1448 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1449 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1450 	    BGE_MACSTAT_LINK_CHANGED);
1451 
1452 	/* Enable PHY auto polling (for MII/GMII only) */
1453 	if (sc->bge_tbi) {
1454 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1455  	} else {
1456 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1457 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1458 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1459 			    BGE_EVTENB_MI_INTERRUPT);
1460 	}
1461 
1462 	/* Enable link state change attentions. */
1463 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1464 
1465 	return(0);
1466 }
1467 
1468 /*
1469  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1470  * against our list and return its name if we find a match. Note
1471  * that since the Broadcom controller contains VPD support, we
1472  * can get the device name string from the controller itself instead
1473  * of the compiled-in string. This is a little slow, but it guarantees
1474  * we'll always announce the right product name.
1475  */
1476 static int
1477 bge_probe(device_t dev)
1478 {
1479 	struct bge_softc *sc;
1480 	struct bge_type *t;
1481 	char *descbuf;
1482 	uint16_t product, vendor;
1483 
1484 	product = pci_get_device(dev);
1485 	vendor = pci_get_vendor(dev);
1486 
1487 	for (t = bge_devs; t->bge_name != NULL; t++) {
1488 		if (vendor == t->bge_vid && product == t->bge_did)
1489 			break;
1490 	}
1491 
1492 	if (t->bge_name == NULL)
1493 		return(ENXIO);
1494 
1495 	sc = device_get_softc(dev);
1496 #ifdef notdef
1497 	sc->bge_dev = dev;
1498 
1499 	bge_vpd_read(sc);
1500 	device_set_desc(dev, sc->bge_vpd_prodname);
1501 #endif
1502 	descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1503 	ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1504 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1505 	device_set_desc_copy(dev, descbuf);
1506 	if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1507 		sc->bge_no_3_led = 1;
1508 	kfree(descbuf, M_TEMP);
1509 	return(0);
1510 }
1511 
1512 static int
1513 bge_attach(device_t dev)
1514 {
1515 	struct ifnet *ifp;
1516 	struct bge_softc *sc;
1517 	uint32_t hwcfg = 0;
1518 	uint32_t mac_addr = 0;
1519 	int error = 0, rid;
1520 	uint8_t ether_addr[ETHER_ADDR_LEN];
1521 
1522 	sc = device_get_softc(dev);
1523 	sc->bge_dev = dev;
1524 	callout_init(&sc->bge_stat_timer);
1525 	lwkt_serialize_init(&sc->bge_jslot_serializer);
1526 
1527 	/*
1528 	 * Map control/status registers.
1529 	 */
1530 	pci_enable_busmaster(dev);
1531 
1532 	rid = BGE_PCI_BAR0;
1533 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1534 	    RF_ACTIVE);
1535 
1536 	if (sc->bge_res == NULL) {
1537 		device_printf(dev, "couldn't map memory\n");
1538 		error = ENXIO;
1539 		return(error);
1540 	}
1541 
1542 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1543 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1544 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1545 
1546 	/* Allocate interrupt */
1547 	rid = 0;
1548 
1549 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1550 	    RF_SHAREABLE | RF_ACTIVE);
1551 
1552 	if (sc->bge_irq == NULL) {
1553 		device_printf(dev, "couldn't map interrupt\n");
1554 		error = ENXIO;
1555 		goto fail;
1556 	}
1557 
1558 	/* Save ASIC rev. */
1559 	sc->bge_chipid =
1560 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1561 	    BGE_PCIMISCCTL_ASICREV;
1562 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1563 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1564 
1565 	/*
1566 	 * Treat the 5714 like the 5750 until we have more info
1567 	 * on this chip.
1568 	 */
1569 	if (sc->bge_asicrev == BGE_ASICREV_BCM5714)
1570 		sc->bge_asicrev = BGE_ASICREV_BCM5750;
1571 
1572 	/*
1573 	 * XXX: Broadcom Linux driver.  Not in specs or eratta.
1574 	 * PCI-Express?
1575 	 */
1576 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1577 		uint32_t v;
1578 
1579 		v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1580 		if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1581 			v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1582 			if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1583 				sc->bge_pcie = 1;
1584 		}
1585 	}
1586 
1587 	ifp = &sc->arpcom.ac_if;
1588 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1589 
1590 	/* Try to reset the chip. */
1591 	bge_reset(sc);
1592 
1593 	if (bge_chipinit(sc)) {
1594 		device_printf(dev, "chip initialization failed\n");
1595 		error = ENXIO;
1596 		goto fail;
1597 	}
1598 
1599 	/*
1600 	 * Get station address from the EEPROM.
1601 	 */
1602 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1603 	if ((mac_addr >> 16) == 0x484b) {
1604 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
1605 		ether_addr[1] = (uint8_t)mac_addr;
1606 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1607 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
1608 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
1609 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
1610 		ether_addr[5] = (uint8_t)mac_addr;
1611 	} else if (bge_read_eeprom(sc, ether_addr,
1612 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1613 		device_printf(dev, "failed to read station address\n");
1614 		error = ENXIO;
1615 		goto fail;
1616 	}
1617 
1618 	/* Allocate the general information block and ring buffers. */
1619 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1620 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1621 
1622 	if (sc->bge_rdata == NULL) {
1623 		error = ENXIO;
1624 		device_printf(dev, "no memory for list buffers!\n");
1625 		goto fail;
1626 	}
1627 
1628 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1629 
1630 	/*
1631 	 * Try to allocate memory for jumbo buffers.
1632 	 * The 5705/5750 does not appear to support jumbo frames.
1633 	 */
1634 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1635 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1636 		if (bge_alloc_jumbo_mem(sc)) {
1637 			device_printf(dev, "jumbo buffer allocation failed\n");
1638 			error = ENXIO;
1639 			goto fail;
1640 		}
1641 	}
1642 
1643 	/* Set default tuneable values. */
1644 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1645 	sc->bge_rx_coal_ticks = 150;
1646 	sc->bge_tx_coal_ticks = 150;
1647 	sc->bge_rx_max_coal_bds = 64;
1648 	sc->bge_tx_max_coal_bds = 128;
1649 
1650 	/* 5705/5750 limits RX return ring to 512 entries. */
1651 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1652 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1653 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1654 	else
1655 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1656 
1657 	/* Set up ifnet structure */
1658 	ifp->if_softc = sc;
1659 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1660 	ifp->if_ioctl = bge_ioctl;
1661 	ifp->if_start = bge_start;
1662 	ifp->if_watchdog = bge_watchdog;
1663 	ifp->if_init = bge_init;
1664 	ifp->if_mtu = ETHERMTU;
1665 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1666 	ifq_set_ready(&ifp->if_snd);
1667 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1668 	ifp->if_capabilities = IFCAP_HWCSUM;
1669 	ifp->if_capenable = ifp->if_capabilities;
1670 
1671 	/*
1672 	 * Figure out what sort of media we have by checking the
1673 	 * hardware config word in the first 32k of NIC internal memory,
1674 	 * or fall back to examining the EEPROM if necessary.
1675 	 * Note: on some BCM5700 cards, this value appears to be unset.
1676 	 * If that's the case, we have to rely on identifying the NIC
1677 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1678 	 * SK-9D41.
1679 	 */
1680 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1681 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1682 	else {
1683 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
1684 				BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1685 		hwcfg = ntohl(hwcfg);
1686 	}
1687 
1688 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1689 		sc->bge_tbi = 1;
1690 
1691 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1692 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1693 		sc->bge_tbi = 1;
1694 
1695 	if (sc->bge_tbi) {
1696 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1697 		    bge_ifmedia_upd, bge_ifmedia_sts);
1698 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1699 		ifmedia_add(&sc->bge_ifmedia,
1700 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1701 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1702 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1703 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1704 	} else {
1705 		/*
1706 		 * Do transceiver setup.
1707 		 */
1708 		if (mii_phy_probe(dev, &sc->bge_miibus,
1709 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1710 			device_printf(dev, "MII without any PHY!\n");
1711 			error = ENXIO;
1712 			goto fail;
1713 		}
1714 	}
1715 
1716 	/*
1717 	 * When using the BCM5701 in PCI-X mode, data corruption has
1718 	 * been observed in the first few bytes of some received packets.
1719 	 * Aligning the packet buffer in memory eliminates the corruption.
1720 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1721 	 * which do not support unaligned accesses, we will realign the
1722 	 * payloads by copying the received packets.
1723 	 */
1724 	switch (sc->bge_chipid) {
1725 	case BGE_CHIPID_BCM5701_A0:
1726 	case BGE_CHIPID_BCM5701_B0:
1727 	case BGE_CHIPID_BCM5701_B2:
1728 	case BGE_CHIPID_BCM5701_B5:
1729 		/* If in PCI-X mode, work around the alignment bug. */
1730 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1731 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1732 		    BGE_PCISTATE_PCI_BUSSPEED)
1733 			sc->bge_rx_alignment_bug = 1;
1734 		break;
1735 	}
1736 
1737 	/*
1738 	 * Call MI attach routine.
1739 	 */
1740 	ether_ifattach(ifp, ether_addr, NULL);
1741 
1742 	error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1743 			       bge_intr, sc, &sc->bge_intrhand,
1744 			       ifp->if_serializer);
1745 	if (error) {
1746 		ether_ifdetach(ifp);
1747 		device_printf(dev, "couldn't set up irq\n");
1748 		goto fail;
1749 	}
1750 
1751 	return(0);
1752 
1753 fail:
1754 	bge_detach(dev);
1755 
1756 	return(error);
1757 }
1758 
1759 static int
1760 bge_detach(device_t dev)
1761 {
1762 	struct bge_softc *sc = device_get_softc(dev);
1763 	struct ifnet *ifp = &sc->arpcom.ac_if;
1764 
1765 	if (device_is_attached(dev)) {
1766 		lwkt_serialize_enter(ifp->if_serializer);
1767 		bge_stop(sc);
1768 		bge_reset(sc);
1769 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1770 		lwkt_serialize_exit(ifp->if_serializer);
1771 
1772 		ether_ifdetach(ifp);
1773 	}
1774 	if (sc->bge_tbi)
1775 		ifmedia_removeall(&sc->bge_ifmedia);
1776 	if (sc->bge_miibus)
1777 		device_delete_child(dev, sc->bge_miibus);
1778 	bus_generic_detach(dev);
1779 
1780 	bge_release_resources(sc);
1781 
1782 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1783 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1784 		bge_free_jumbo_mem(sc);
1785 
1786 	return(0);
1787 }
1788 
1789 static void
1790 bge_release_resources(struct bge_softc *sc)
1791 {
1792         device_t dev;
1793 
1794         dev = sc->bge_dev;
1795 
1796 	if (sc->bge_vpd_prodname != NULL)
1797 		kfree(sc->bge_vpd_prodname, M_DEVBUF);
1798 
1799 	if (sc->bge_vpd_readonly != NULL)
1800 		kfree(sc->bge_vpd_readonly, M_DEVBUF);
1801 
1802         if (sc->bge_irq != NULL)
1803 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1804 
1805         if (sc->bge_res != NULL)
1806 		bus_release_resource(dev, SYS_RES_MEMORY,
1807 		    BGE_PCI_BAR0, sc->bge_res);
1808 
1809         if (sc->bge_rdata != NULL)
1810 		contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1811 			   M_DEVBUF);
1812 
1813         return;
1814 }
1815 
1816 static void
1817 bge_reset(struct bge_softc *sc)
1818 {
1819 	device_t dev;
1820 	uint32_t cachesize, command, pcistate, reset;
1821 	int i, val = 0;
1822 
1823 	dev = sc->bge_dev;
1824 
1825 	/* Save some important PCI state. */
1826 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1827 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1828 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1829 
1830 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1831 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1832 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1833 
1834 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1835 
1836 	/* XXX: Broadcom Linux driver. */
1837 	if (sc->bge_pcie) {
1838 		if (CSR_READ_4(sc, 0x7e2c) == 0x60)	/* PCIE 1.0 */
1839 			CSR_WRITE_4(sc, 0x7e2c, 0x20);
1840 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1841 			/* Prevent PCIE link training during global reset */
1842 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1843 			reset |= (1<<29);
1844 		}
1845 	}
1846 
1847 	/* Issue global reset */
1848 	bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1849 
1850 	DELAY(1000);
1851 
1852 	/* XXX: Broadcom Linux driver. */
1853 	if (sc->bge_pcie) {
1854 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1855 			uint32_t v;
1856 
1857 			DELAY(500000); /* wait for link training to complete */
1858 			v = pci_read_config(dev, 0xc4, 4);
1859 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
1860 		}
1861 		/* Set PCIE max payload size and clear error status. */
1862 		pci_write_config(dev, 0xd8, 0xf5000, 4);
1863 	}
1864 
1865 	/* Reset some of the PCI state that got zapped by reset */
1866 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1867 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1868 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1869 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1870 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1871 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1872 
1873 	/* Enable memory arbiter. */
1874 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1875 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1876 
1877 	/*
1878 	 * Prevent PXE restart: write a magic number to the
1879 	 * general communications memory at 0xB50.
1880 	 */
1881 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1882 	/*
1883 	 * Poll the value location we just wrote until
1884 	 * we see the 1's complement of the magic number.
1885 	 * This indicates that the firmware initialization
1886 	 * is complete.
1887 	 */
1888 	for (i = 0; i < BGE_TIMEOUT; i++) {
1889 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1890 		if (val == ~BGE_MAGIC_NUMBER)
1891 			break;
1892 		DELAY(10);
1893 	}
1894 
1895 	if (i == BGE_TIMEOUT) {
1896 		if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1897 		return;
1898 	}
1899 
1900 	/*
1901 	 * XXX Wait for the value of the PCISTATE register to
1902 	 * return to its original pre-reset state. This is a
1903 	 * fairly good indicator of reset completion. If we don't
1904 	 * wait for the reset to fully complete, trying to read
1905 	 * from the device's non-PCI registers may yield garbage
1906 	 * results.
1907 	 */
1908 	for (i = 0; i < BGE_TIMEOUT; i++) {
1909 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1910 			break;
1911 		DELAY(10);
1912 	}
1913 
1914 	/* Fix up byte swapping */
1915 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1916 	    BGE_MODECTL_BYTESWAP_DATA);
1917 
1918 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1919 
1920 	/*
1921 	 * The 5704 in TBI mode apparently needs some special
1922 	 * adjustment to insure the SERDES drive level is set
1923 	 * to 1.2V.
1924 	 */
1925 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
1926 		uint32_t serdescfg;
1927 
1928 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
1929 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
1930 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
1931 	}
1932 
1933 	/* XXX: Broadcom Linux driver. */
1934 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1935 		uint32_t v;
1936 
1937 		v = CSR_READ_4(sc, 0x7c00);
1938 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1939 	}
1940 
1941 	DELAY(10000);
1942 }
1943 
1944 /*
1945  * Frame reception handling. This is called if there's a frame
1946  * on the receive return list.
1947  *
1948  * Note: we have to be able to handle two possibilities here:
1949  * 1) the frame is from the jumbo recieve ring
1950  * 2) the frame is from the standard receive ring
1951  */
1952 
1953 static void
1954 bge_rxeof(struct bge_softc *sc)
1955 {
1956 	struct ifnet *ifp;
1957 	int stdcnt = 0, jumbocnt = 0;
1958 
1959 	ifp = &sc->arpcom.ac_if;
1960 
1961 	while(sc->bge_rx_saved_considx !=
1962 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1963 		struct bge_rx_bd	*cur_rx;
1964 		uint32_t		rxidx;
1965 		struct mbuf		*m = NULL;
1966 		uint16_t		vlan_tag = 0;
1967 		int			have_tag = 0;
1968 
1969 		cur_rx =
1970 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1971 
1972 		rxidx = cur_rx->bge_idx;
1973 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1974 
1975 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1976 			have_tag = 1;
1977 			vlan_tag = cur_rx->bge_vlan_tag;
1978 		}
1979 
1980 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1981 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1982 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1983 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1984 			jumbocnt++;
1985 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1986 				ifp->if_ierrors++;
1987 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1988 				continue;
1989 			}
1990 			if (bge_newbuf_jumbo(sc,
1991 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1992 				ifp->if_ierrors++;
1993 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1994 				continue;
1995 			}
1996 		} else {
1997 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1998 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1999 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2000 			stdcnt++;
2001 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2002 				ifp->if_ierrors++;
2003 				bge_newbuf_std(sc, sc->bge_std, m);
2004 				continue;
2005 			}
2006 			if (bge_newbuf_std(sc, sc->bge_std,
2007 			    NULL) == ENOBUFS) {
2008 				ifp->if_ierrors++;
2009 				bge_newbuf_std(sc, sc->bge_std, m);
2010 				continue;
2011 			}
2012 		}
2013 
2014 		ifp->if_ipackets++;
2015 #ifndef __i386__
2016 		/*
2017 		 * The i386 allows unaligned accesses, but for other
2018 		 * platforms we must make sure the payload is aligned.
2019 		 */
2020 		if (sc->bge_rx_alignment_bug) {
2021 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2022 			    cur_rx->bge_len);
2023 			m->m_data += ETHER_ALIGN;
2024 		}
2025 #endif
2026 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2027 		m->m_pkthdr.rcvif = ifp;
2028 
2029 #if 0 /* currently broken for some packets, possibly related to TCP options */
2030 		if (ifp->if_hwassist) {
2031 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2032 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2033 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2034 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2035 				m->m_pkthdr.csum_data =
2036 				    cur_rx->bge_tcp_udp_csum;
2037 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2038 			}
2039 		}
2040 #endif
2041 
2042 		/*
2043 		 * If we received a packet with a vlan tag, pass it
2044 		 * to vlan_input() instead of ether_input().
2045 		 */
2046 		if (have_tag) {
2047 			VLAN_INPUT_TAG(m, vlan_tag);
2048 			have_tag = vlan_tag = 0;
2049 		} else {
2050 			ifp->if_input(ifp, m);
2051 		}
2052 	}
2053 
2054 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2055 	if (stdcnt)
2056 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2057 	if (jumbocnt)
2058 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2059 }
2060 
2061 static void
2062 bge_txeof(struct bge_softc *sc)
2063 {
2064 	struct bge_tx_bd *cur_tx = NULL;
2065 	struct ifnet *ifp;
2066 
2067 	ifp = &sc->arpcom.ac_if;
2068 
2069 	/*
2070 	 * Go through our tx ring and free mbufs for those
2071 	 * frames that have been sent.
2072 	 */
2073 	while (sc->bge_tx_saved_considx !=
2074 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2075 		uint32_t		idx = 0;
2076 
2077 		idx = sc->bge_tx_saved_considx;
2078 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2079 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2080 			ifp->if_opackets++;
2081 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2082 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2083 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2084 		}
2085 		sc->bge_txcnt--;
2086 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2087 		ifp->if_timer = 0;
2088 	}
2089 
2090 	if (cur_tx != NULL)
2091 		ifp->if_flags &= ~IFF_OACTIVE;
2092 }
2093 
2094 static void
2095 bge_intr(void *xsc)
2096 {
2097 	struct bge_softc *sc = xsc;
2098 	struct ifnet *ifp = &sc->arpcom.ac_if;
2099  	uint32_t status, statusword, mimode;
2100 
2101 	/* XXX */
2102 	statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2103 
2104 #ifdef notdef
2105 	/* Avoid this for now -- checking this register is expensive. */
2106 	/* Make sure this is really our interrupt. */
2107 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2108 		return;
2109 #endif
2110 	/* Ack interrupt and stop others from occuring. */
2111 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2112 
2113 	/*
2114 	 * Process link state changes.
2115 	 * Grrr. The link status word in the status block does
2116 	 * not work correctly on the BCM5700 rev AX and BX chips,
2117 	 * according to all available information. Hence, we have
2118 	 * to enable MII interrupts in order to properly obtain
2119 	 * async link changes. Unfortunately, this also means that
2120 	 * we have to read the MAC status register to detect link
2121 	 * changes, thereby adding an additional register access to
2122 	 * the interrupt handler.
2123 	 */
2124 
2125 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2126 		status = CSR_READ_4(sc, BGE_MAC_STS);
2127 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2128 			sc->bge_link = 0;
2129 			callout_stop(&sc->bge_stat_timer);
2130 			bge_tick_serialized(sc);
2131 			/* Clear the interrupt */
2132 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2133 			    BGE_EVTENB_MI_INTERRUPT);
2134 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2135 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2136 			    BRGPHY_INTRS);
2137 		}
2138 	} else {
2139 		if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2140 			/*
2141 			 * Sometimes PCS encoding errors are detected in
2142 			 * TBI mode (on fiber NICs), and for some reason
2143 			 * the chip will signal them as link changes.
2144 			 * If we get a link change event, but the 'PCS
2145 			 * encoding error' bit in the MAC status register
2146 			 * is set, don't bother doing a link check.
2147 			 * This avoids spurious "gigabit link up" messages
2148 			 * that sometimes appear on fiber NICs during
2149 			 * periods of heavy traffic. (There should be no
2150 			 * effect on copper NICs.)
2151 			 *
2152 			 * If we do have a copper NIC (bge_tbi == 0) then
2153 			 * check that the AUTOPOLL bit is set before
2154 			 * processing the event as a real link change.
2155 			 * Turning AUTOPOLL on and off in the MII read/write
2156 			 * functions will often trigger a link status
2157 			 * interrupt for no reason.
2158 			 */
2159 			status = CSR_READ_4(sc, BGE_MAC_STS);
2160 			mimode = CSR_READ_4(sc, BGE_MI_MODE);
2161 			if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR |
2162 					BGE_MACSTAT_MI_COMPLETE)) &&
2163 			    (!sc->bge_tbi && (mimode & BGE_MIMODE_AUTOPOLL))) {
2164 				sc->bge_link = 0;
2165 				callout_stop(&sc->bge_stat_timer);
2166 				bge_tick_serialized(sc);
2167 			}
2168 			sc->bge_link = 0;
2169 			callout_stop(&sc->bge_stat_timer);
2170 			bge_tick_serialized(sc);
2171 			/* Clear the interrupt */
2172 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2173 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2174 			    BGE_MACSTAT_LINK_CHANGED);
2175 
2176 			/* Force flush the status block cached by PCI bridge */
2177 			CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2178 		}
2179 	}
2180 
2181 	if (ifp->if_flags & IFF_RUNNING) {
2182 		/* Check RX return ring producer/consumer */
2183 		bge_rxeof(sc);
2184 
2185 		/* Check TX ring producer/consumer */
2186 		bge_txeof(sc);
2187 	}
2188 
2189 	bge_handle_events(sc);
2190 
2191 	/* Re-enable interrupts. */
2192 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2193 
2194 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2195 		(*ifp->if_start)(ifp);
2196 }
2197 
2198 static void
2199 bge_tick(void *xsc)
2200 {
2201 	struct bge_softc *sc = xsc;
2202 	struct ifnet *ifp = &sc->arpcom.ac_if;
2203 
2204 	lwkt_serialize_enter(ifp->if_serializer);
2205 	bge_tick_serialized(xsc);
2206 	lwkt_serialize_exit(ifp->if_serializer);
2207 }
2208 
2209 static void
2210 bge_tick_serialized(void *xsc)
2211 {
2212 	struct bge_softc *sc = xsc;
2213 	struct ifnet *ifp = &sc->arpcom.ac_if;
2214 	struct mii_data *mii = NULL;
2215 	struct ifmedia *ifm = NULL;
2216 
2217 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2218 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
2219 		bge_stats_update_regs(sc);
2220 	else
2221 		bge_stats_update(sc);
2222 
2223 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2224 
2225 	if (sc->bge_link) {
2226 		return;
2227 	}
2228 
2229 	if (sc->bge_tbi) {
2230 		ifm = &sc->bge_ifmedia;
2231 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2232 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2233 			sc->bge_link++;
2234 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2235 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2236 					   BGE_MACMODE_TBI_SEND_CFGS);
2237 			}
2238 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2239 			if_printf(ifp, "gigabit link up\n");
2240 			if (!ifq_is_empty(&ifp->if_snd))
2241 				(*ifp->if_start)(ifp);
2242 		}
2243 		return;
2244 	}
2245 
2246 	mii = device_get_softc(sc->bge_miibus);
2247 	mii_tick(mii);
2248 
2249 	if (!sc->bge_link) {
2250 		mii_pollstat(mii);
2251 		if (mii->mii_media_status & IFM_ACTIVE &&
2252 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2253 			sc->bge_link++;
2254 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2255 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2256 				if_printf(ifp, "gigabit link up\n");
2257 			if (!ifq_is_empty(&ifp->if_snd))
2258 				(*ifp->if_start)(ifp);
2259 		}
2260 	}
2261 }
2262 
2263 static void
2264 bge_stats_update_regs(struct bge_softc *sc)
2265 {
2266 	struct ifnet *ifp = &sc->arpcom.ac_if;
2267 	struct bge_mac_stats_regs stats;
2268 	uint32_t *s;
2269 	int i;
2270 
2271 	s = (uint32_t *)&stats;
2272 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2273 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
2274 		s++;
2275 	}
2276 
2277 	ifp->if_collisions +=
2278 	   (stats.dot3StatsSingleCollisionFrames +
2279 	   stats.dot3StatsMultipleCollisionFrames +
2280 	   stats.dot3StatsExcessiveCollisions +
2281 	   stats.dot3StatsLateCollisions) -
2282 	   ifp->if_collisions;
2283 }
2284 
2285 static void
2286 bge_stats_update(struct bge_softc *sc)
2287 {
2288 	struct ifnet *ifp = &sc->arpcom.ac_if;
2289 	struct bge_stats *stats;
2290 
2291 	stats = (struct bge_stats *)(sc->bge_vhandle +
2292 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2293 
2294 	ifp->if_collisions +=
2295 	   (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2296 	   stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2297 	   stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2298 	   stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2299 	   ifp->if_collisions;
2300 
2301 #ifdef notdef
2302 	ifp->if_collisions +=
2303 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2304 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2305 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2306 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2307 	   ifp->if_collisions;
2308 #endif
2309 }
2310 
2311 /*
2312  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2313  * pointers to descriptors.
2314  */
2315 static int
2316 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2317 {
2318 	struct bge_tx_bd *f = NULL;
2319 	struct mbuf *m;
2320 	uint32_t frag, cur, cnt = 0;
2321 	uint16_t csum_flags = 0;
2322 	struct ifvlan *ifv = NULL;
2323 
2324 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2325 	    m_head->m_pkthdr.rcvif != NULL &&
2326 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2327 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2328 
2329 	m = m_head;
2330 	cur = frag = *txidx;
2331 
2332 	if (m_head->m_pkthdr.csum_flags) {
2333 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2334 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2335 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2336 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2337 		if (m_head->m_flags & M_LASTFRAG)
2338 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2339 		else if (m_head->m_flags & M_FRAG)
2340 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2341 	}
2342 	/*
2343  	 * Start packing the mbufs in this chain into
2344 	 * the fragment pointers. Stop when we run out
2345  	 * of fragments or hit the end of the mbuf chain.
2346 	 */
2347 	for (m = m_head; m != NULL; m = m->m_next) {
2348 		if (m->m_len != 0) {
2349 			f = &sc->bge_rdata->bge_tx_ring[frag];
2350 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2351 				break;
2352 			BGE_HOSTADDR(f->bge_addr,
2353 			    vtophys(mtod(m, vm_offset_t)));
2354 			f->bge_len = m->m_len;
2355 			f->bge_flags = csum_flags;
2356 			if (ifv != NULL) {
2357 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2358 				f->bge_vlan_tag = ifv->ifv_tag;
2359 			} else {
2360 				f->bge_vlan_tag = 0;
2361 			}
2362 			/*
2363 			 * Sanity check: avoid coming within 16 descriptors
2364 			 * of the end of the ring.
2365 			 */
2366 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2367 				return(ENOBUFS);
2368 			cur = frag;
2369 			BGE_INC(frag, BGE_TX_RING_CNT);
2370 			cnt++;
2371 		}
2372 	}
2373 
2374 	if (m != NULL)
2375 		return(ENOBUFS);
2376 
2377 	if (frag == sc->bge_tx_saved_considx)
2378 		return(ENOBUFS);
2379 
2380 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2381 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2382 	sc->bge_txcnt += cnt;
2383 
2384 	*txidx = frag;
2385 
2386 	return(0);
2387 }
2388 
2389 /*
2390  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2391  * to the mbuf data regions directly in the transmit descriptors.
2392  */
2393 static void
2394 bge_start(struct ifnet *ifp)
2395 {
2396 	struct bge_softc *sc;
2397 	struct mbuf *m_head = NULL;
2398 	uint32_t prodidx = 0;
2399 	int need_trans;
2400 
2401 	sc = ifp->if_softc;
2402 
2403 	if (!sc->bge_link)
2404 		return;
2405 
2406 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2407 
2408 	need_trans = 0;
2409 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2410 		m_head = ifq_poll(&ifp->if_snd);
2411 		if (m_head == NULL)
2412 			break;
2413 
2414 		/*
2415 		 * XXX
2416 		 * safety overkill.  If this is a fragmented packet chain
2417 		 * with delayed TCP/UDP checksums, then only encapsulate
2418 		 * it if we have enough descriptors to handle the entire
2419 		 * chain at once.
2420 		 * (paranoia -- may not actually be needed)
2421 		 */
2422 		if (m_head->m_flags & M_FIRSTFRAG &&
2423 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2424 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2425 			    m_head->m_pkthdr.csum_data + 16) {
2426 				ifp->if_flags |= IFF_OACTIVE;
2427 				break;
2428 			}
2429 		}
2430 
2431 		/*
2432 		 * Pack the data into the transmit ring. If we
2433 		 * don't have room, set the OACTIVE flag and wait
2434 		 * for the NIC to drain the ring.
2435 		 */
2436 		if (bge_encap(sc, m_head, &prodidx)) {
2437 			ifp->if_flags |= IFF_OACTIVE;
2438 			break;
2439 		}
2440 		ifq_dequeue(&ifp->if_snd, m_head);
2441 		need_trans = 1;
2442 
2443 		BPF_MTAP(ifp, m_head);
2444 	}
2445 
2446 	if (!need_trans)
2447 		return;
2448 
2449 	/* Transmit */
2450 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2451 	/* 5700 b2 errata */
2452 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2453 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2454 
2455 	/*
2456 	 * Set a timeout in case the chip goes out to lunch.
2457 	 */
2458 	ifp->if_timer = 5;
2459 }
2460 
2461 static void
2462 bge_init(void *xsc)
2463 {
2464 	struct bge_softc *sc = xsc;
2465 	struct ifnet *ifp = &sc->arpcom.ac_if;
2466 	uint16_t *m;
2467 
2468 	if (ifp->if_flags & IFF_RUNNING) {
2469 		return;
2470 	}
2471 
2472 	/* Cancel pending I/O and flush buffers. */
2473 	bge_stop(sc);
2474 	bge_reset(sc);
2475 	bge_chipinit(sc);
2476 
2477 	/*
2478 	 * Init the various state machines, ring
2479 	 * control blocks and firmware.
2480 	 */
2481 	if (bge_blockinit(sc)) {
2482 		if_printf(ifp, "initialization failure\n");
2483 		return;
2484 	}
2485 
2486 	/* Specify MTU. */
2487 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2488 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2489 
2490 	/* Load our MAC address. */
2491 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2492 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2493 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2494 
2495 	/* Enable or disable promiscuous mode as needed. */
2496 	if (ifp->if_flags & IFF_PROMISC) {
2497 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2498 	} else {
2499 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2500 	}
2501 
2502 	/* Program multicast filter. */
2503 	bge_setmulti(sc);
2504 
2505 	/* Init RX ring. */
2506 	bge_init_rx_ring_std(sc);
2507 
2508 	/*
2509 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2510 	 * memory to insure that the chip has in fact read the first
2511 	 * entry of the ring.
2512 	 */
2513 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2514 		uint32_t		v, i;
2515 		for (i = 0; i < 10; i++) {
2516 			DELAY(20);
2517 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2518 			if (v == (MCLBYTES - ETHER_ALIGN))
2519 				break;
2520 		}
2521 		if (i == 10)
2522 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2523 	}
2524 
2525 	/* Init jumbo RX ring. */
2526 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2527 		bge_init_rx_ring_jumbo(sc);
2528 
2529 	/* Init our RX return ring index */
2530 	sc->bge_rx_saved_considx = 0;
2531 
2532 	/* Init TX ring. */
2533 	bge_init_tx_ring(sc);
2534 
2535 	/* Turn on transmitter */
2536 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2537 
2538 	/* Turn on receiver */
2539 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2540 
2541 	/* Tell firmware we're alive. */
2542 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2543 
2544 	/* Enable host interrupts. */
2545 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2546 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2547 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2548 
2549 	bge_ifmedia_upd(ifp);
2550 
2551 	ifp->if_flags |= IFF_RUNNING;
2552 	ifp->if_flags &= ~IFF_OACTIVE;
2553 
2554 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2555 }
2556 
2557 /*
2558  * Set media options.
2559  */
2560 static int
2561 bge_ifmedia_upd(struct ifnet *ifp)
2562 {
2563 	struct bge_softc *sc = ifp->if_softc;
2564 	struct ifmedia *ifm = &sc->bge_ifmedia;
2565 	struct mii_data *mii;
2566 
2567 	/* If this is a 1000baseX NIC, enable the TBI port. */
2568 	if (sc->bge_tbi) {
2569 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2570 			return(EINVAL);
2571 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2572 		case IFM_AUTO:
2573 			/*
2574 			 * The BCM5704 ASIC appears to have a special
2575 			 * mechanism for programming the autoneg
2576 			 * advertisement registers in TBI mode.
2577 			 */
2578 			if (!bge_fake_autoneg &&
2579 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2580 				uint32_t sgdig;
2581 
2582 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2583 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2584 				sgdig |= BGE_SGDIGCFG_AUTO |
2585 					 BGE_SGDIGCFG_PAUSE_CAP |
2586 					 BGE_SGDIGCFG_ASYM_PAUSE;
2587 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2588 					    sgdig | BGE_SGDIGCFG_SEND);
2589 				DELAY(5);
2590 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2591 			}
2592 			break;
2593 		case IFM_1000_SX:
2594 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2595 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2596 				    BGE_MACMODE_HALF_DUPLEX);
2597 			} else {
2598 				BGE_SETBIT(sc, BGE_MAC_MODE,
2599 				    BGE_MACMODE_HALF_DUPLEX);
2600 			}
2601 			break;
2602 		default:
2603 			return(EINVAL);
2604 		}
2605 		return(0);
2606 	}
2607 
2608 	mii = device_get_softc(sc->bge_miibus);
2609 	sc->bge_link = 0;
2610 	if (mii->mii_instance) {
2611 		struct mii_softc *miisc;
2612 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2613 			mii_phy_reset(miisc);
2614 	}
2615 	mii_mediachg(mii);
2616 
2617 	return(0);
2618 }
2619 
2620 /*
2621  * Report current media status.
2622  */
2623 static void
2624 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2625 {
2626 	struct bge_softc *sc = ifp->if_softc;
2627 	struct mii_data *mii;
2628 
2629 	if (sc->bge_tbi) {
2630 		ifmr->ifm_status = IFM_AVALID;
2631 		ifmr->ifm_active = IFM_ETHER;
2632 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2633 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2634 			ifmr->ifm_status |= IFM_ACTIVE;
2635 		ifmr->ifm_active |= IFM_1000_SX;
2636 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2637 			ifmr->ifm_active |= IFM_HDX;
2638 		else
2639 			ifmr->ifm_active |= IFM_FDX;
2640 		return;
2641 	}
2642 
2643 	mii = device_get_softc(sc->bge_miibus);
2644 	mii_pollstat(mii);
2645 	ifmr->ifm_active = mii->mii_media_active;
2646 	ifmr->ifm_status = mii->mii_media_status;
2647 }
2648 
2649 static int
2650 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2651 {
2652 	struct bge_softc *sc = ifp->if_softc;
2653 	struct ifreq *ifr = (struct ifreq *) data;
2654 	int mask, error = 0;
2655 	struct mii_data *mii;
2656 
2657 	switch(command) {
2658 	case SIOCSIFMTU:
2659 		/* Disallow jumbo frames on 5705/5750. */
2660 		if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2661 		      sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2662 		     ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2663 			error = EINVAL;
2664 		else {
2665 			ifp->if_mtu = ifr->ifr_mtu;
2666 			ifp->if_flags &= ~IFF_RUNNING;
2667 			bge_init(sc);
2668 		}
2669 		break;
2670 	case SIOCSIFFLAGS:
2671 		if (ifp->if_flags & IFF_UP) {
2672 			/*
2673 			 * If only the state of the PROMISC flag changed,
2674 			 * then just use the 'set promisc mode' command
2675 			 * instead of reinitializing the entire NIC. Doing
2676 			 * a full re-init means reloading the firmware and
2677 			 * waiting for it to start up, which may take a
2678 			 * second or two.
2679 			 */
2680 			if (ifp->if_flags & IFF_RUNNING &&
2681 			    ifp->if_flags & IFF_PROMISC &&
2682 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2683 				BGE_SETBIT(sc, BGE_RX_MODE,
2684 				    BGE_RXMODE_RX_PROMISC);
2685 			} else if (ifp->if_flags & IFF_RUNNING &&
2686 			    !(ifp->if_flags & IFF_PROMISC) &&
2687 			    sc->bge_if_flags & IFF_PROMISC) {
2688 				BGE_CLRBIT(sc, BGE_RX_MODE,
2689 				    BGE_RXMODE_RX_PROMISC);
2690 			} else
2691 				bge_init(sc);
2692 		} else {
2693 			if (ifp->if_flags & IFF_RUNNING) {
2694 				bge_stop(sc);
2695 			}
2696 		}
2697 		sc->bge_if_flags = ifp->if_flags;
2698 		error = 0;
2699 		break;
2700 	case SIOCADDMULTI:
2701 	case SIOCDELMULTI:
2702 		if (ifp->if_flags & IFF_RUNNING) {
2703 			bge_setmulti(sc);
2704 			error = 0;
2705 		}
2706 		break;
2707 	case SIOCSIFMEDIA:
2708 	case SIOCGIFMEDIA:
2709 		if (sc->bge_tbi) {
2710 			error = ifmedia_ioctl(ifp, ifr,
2711 			    &sc->bge_ifmedia, command);
2712 		} else {
2713 			mii = device_get_softc(sc->bge_miibus);
2714 			error = ifmedia_ioctl(ifp, ifr,
2715 			    &mii->mii_media, command);
2716 		}
2717 		break;
2718         case SIOCSIFCAP:
2719 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2720 		if (mask & IFCAP_HWCSUM) {
2721 			if (IFCAP_HWCSUM & ifp->if_capenable)
2722 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2723 			else
2724 				ifp->if_capenable |= IFCAP_HWCSUM;
2725 		}
2726 		error = 0;
2727 		break;
2728 	default:
2729 		error = ether_ioctl(ifp, command, data);
2730 		break;
2731 	}
2732 	return(error);
2733 }
2734 
2735 static void
2736 bge_watchdog(struct ifnet *ifp)
2737 {
2738 	struct bge_softc *sc = ifp->if_softc;
2739 
2740 	if_printf(ifp, "watchdog timeout -- resetting\n");
2741 
2742 	ifp->if_flags &= ~IFF_RUNNING;
2743 	bge_init(sc);
2744 
2745 	ifp->if_oerrors++;
2746 
2747 	if (!ifq_is_empty(&ifp->if_snd))
2748 		ifp->if_start(ifp);
2749 }
2750 
2751 /*
2752  * Stop the adapter and free any mbufs allocated to the
2753  * RX and TX lists.
2754  */
2755 static void
2756 bge_stop(struct bge_softc *sc)
2757 {
2758 	struct ifnet *ifp = &sc->arpcom.ac_if;
2759 	struct ifmedia_entry *ifm;
2760 	struct mii_data *mii = NULL;
2761 	int mtmp, itmp;
2762 
2763 	if (!sc->bge_tbi)
2764 		mii = device_get_softc(sc->bge_miibus);
2765 
2766 	callout_stop(&sc->bge_stat_timer);
2767 
2768 	/*
2769 	 * Disable all of the receiver blocks
2770 	 */
2771 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2772 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2773 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2774 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2775 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2776 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2777 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2778 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2779 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2780 
2781 	/*
2782 	 * Disable all of the transmit blocks
2783 	 */
2784 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2785 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2786 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2787 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2788 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2789 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2790 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2791 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2792 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2793 
2794 	/*
2795 	 * Shut down all of the memory managers and related
2796 	 * state machines.
2797 	 */
2798 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2799 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2800 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2801 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2802 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2803 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2804 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2805 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2806 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2807 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2808 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2809 	}
2810 
2811 	/* Disable host interrupts. */
2812 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2813 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2814 
2815 	/*
2816 	 * Tell firmware we're shutting down.
2817 	 */
2818 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2819 
2820 	/* Free the RX lists. */
2821 	bge_free_rx_ring_std(sc);
2822 
2823 	/* Free jumbo RX list. */
2824 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2825 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2826 		bge_free_rx_ring_jumbo(sc);
2827 
2828 	/* Free TX buffers. */
2829 	bge_free_tx_ring(sc);
2830 
2831 	/*
2832 	 * Isolate/power down the PHY, but leave the media selection
2833 	 * unchanged so that things will be put back to normal when
2834 	 * we bring the interface back up.
2835 	 */
2836 	if (!sc->bge_tbi) {
2837 		itmp = ifp->if_flags;
2838 		ifp->if_flags |= IFF_UP;
2839 		ifm = mii->mii_media.ifm_cur;
2840 		mtmp = ifm->ifm_media;
2841 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2842 		mii_mediachg(mii);
2843 		ifm->ifm_media = mtmp;
2844 		ifp->if_flags = itmp;
2845 	}
2846 
2847 	sc->bge_link = 0;
2848 
2849 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2850 
2851 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2852 }
2853 
2854 /*
2855  * Stop all chip I/O so that the kernel's probe routines don't
2856  * get confused by errant DMAs when rebooting.
2857  */
2858 static void
2859 bge_shutdown(device_t dev)
2860 {
2861 	struct bge_softc *sc = device_get_softc(dev);
2862 
2863 	bge_stop(sc);
2864 	bge_reset(sc);
2865 }
2866