xref: /dragonfly/sys/dev/netif/bge/if_bge.c (revision 3170ffd7)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include "opt_ifpoll.h"
74 
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89 
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92 
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108 
109 #include <bus/pci/pcidevs.h>
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112 
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115 
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118 
119 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
120 
121 static const struct bge_type {
122 	uint16_t		bge_vid;
123 	uint16_t		bge_did;
124 	char			*bge_name;
125 } bge_devs[] = {
126 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
127 		"3COM 3C996 Gigabit Ethernet" },
128 
129 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
130 		"Alteon BCM5700 Gigabit Ethernet" },
131 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
132 		"Alteon BCM5701 Gigabit Ethernet" },
133 
134 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
135 		"Altima AC1000 Gigabit Ethernet" },
136 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
137 		"Altima AC1002 Gigabit Ethernet" },
138 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
139 		"Altima AC9100 Gigabit Ethernet" },
140 
141 	{ PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
142 		"Apple BCM5701 Gigabit Ethernet" },
143 
144 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
145 		"Broadcom BCM5700 Gigabit Ethernet" },
146 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
147 		"Broadcom BCM5701 Gigabit Ethernet" },
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
149 		"Broadcom BCM5702 Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
151 		"Broadcom BCM5702X Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
153 		"Broadcom BCM5702 Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
155 		"Broadcom BCM5703 Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
157 		"Broadcom BCM5703X Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
159 		"Broadcom BCM5703 Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
161 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
163 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
165 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
167 		"Broadcom BCM5705 Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
169 		"Broadcom BCM5705F Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
171 		"Broadcom BCM5705K Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
173 		"Broadcom BCM5705M Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
175 		"Broadcom BCM5705M Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
177 		"Broadcom BCM5714C Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
179 		"Broadcom BCM5714S Gigabit Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
181 		"Broadcom BCM5715 Gigabit Ethernet" },
182 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
183 		"Broadcom BCM5715S Gigabit Ethernet" },
184 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
185 		"Broadcom BCM5720 Gigabit Ethernet" },
186 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
187 		"Broadcom BCM5721 Gigabit Ethernet" },
188 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
189 		"Broadcom BCM5722 Gigabit Ethernet" },
190 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
191 		"Broadcom BCM5723 Gigabit Ethernet" },
192 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
193 		"Broadcom BCM5750 Gigabit Ethernet" },
194 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
195 		"Broadcom BCM5750M Gigabit Ethernet" },
196 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
197 		"Broadcom BCM5751 Gigabit Ethernet" },
198 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
199 		"Broadcom BCM5751F Gigabit Ethernet" },
200 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
201 		"Broadcom BCM5751M Gigabit Ethernet" },
202 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
203 		"Broadcom BCM5752 Gigabit Ethernet" },
204 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
205 		"Broadcom BCM5752M Gigabit Ethernet" },
206 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
207 		"Broadcom BCM5753 Gigabit Ethernet" },
208 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
209 		"Broadcom BCM5753F Gigabit Ethernet" },
210 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
211 		"Broadcom BCM5753M Gigabit Ethernet" },
212 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
213 		"Broadcom BCM5754 Gigabit Ethernet" },
214 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
215 		"Broadcom BCM5754M Gigabit Ethernet" },
216 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
217 		"Broadcom BCM5755 Gigabit Ethernet" },
218 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
219 		"Broadcom BCM5755M Gigabit Ethernet" },
220 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
221 		"Broadcom BCM5756 Gigabit Ethernet" },
222 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
223 		"Broadcom BCM5761 Gigabit Ethernet" },
224 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
225 		"Broadcom BCM5761E Gigabit Ethernet" },
226 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
227 		"Broadcom BCM5761S Gigabit Ethernet" },
228 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
229 		"Broadcom BCM5761SE Gigabit Ethernet" },
230 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
231 		"Broadcom BCM5764 Gigabit Ethernet" },
232 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
233 		"Broadcom BCM5780 Gigabit Ethernet" },
234 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
235 		"Broadcom BCM5780S Gigabit Ethernet" },
236 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
237 		"Broadcom BCM5781 Gigabit Ethernet" },
238 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
239 		"Broadcom BCM5782 Gigabit Ethernet" },
240 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
241 		"Broadcom BCM5784 Gigabit Ethernet" },
242 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
243 		"Broadcom BCM5785F Gigabit Ethernet" },
244 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
245 		"Broadcom BCM5785G Gigabit Ethernet" },
246 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
247 		"Broadcom BCM5786 Gigabit Ethernet" },
248 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
249 		"Broadcom BCM5787 Gigabit Ethernet" },
250 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
251 		"Broadcom BCM5787F Gigabit Ethernet" },
252 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
253 		"Broadcom BCM5787M Gigabit Ethernet" },
254 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
255 		"Broadcom BCM5788 Gigabit Ethernet" },
256 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
257 		"Broadcom BCM5789 Gigabit Ethernet" },
258 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
259 		"Broadcom BCM5901 Fast Ethernet" },
260 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
261 		"Broadcom BCM5901A2 Fast Ethernet" },
262 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
263 		"Broadcom BCM5903M Fast Ethernet" },
264 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
265 		"Broadcom BCM5906 Fast Ethernet"},
266 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
267 		"Broadcom BCM5906M Fast Ethernet"},
268 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
269 		"Broadcom BCM57760 Gigabit Ethernet"},
270 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
271 		"Broadcom BCM57780 Gigabit Ethernet"},
272 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
273 		"Broadcom BCM57788 Gigabit Ethernet"},
274 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
275 		"Broadcom BCM57790 Gigabit Ethernet"},
276 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
277 		"SysKonnect Gigabit Ethernet" },
278 
279 	{ 0, 0, NULL }
280 };
281 
282 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
283 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
284 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
285 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
286 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
287 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
288 #define BGE_IS_5788(sc)			((sc)->bge_flags & BGE_FLAG_5788)
289 
290 #define BGE_IS_CRIPPLED(sc)		\
291 	(BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
292 
293 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
294 
295 static int	bge_probe(device_t);
296 static int	bge_attach(device_t);
297 static int	bge_detach(device_t);
298 static void	bge_txeof(struct bge_softc *, uint16_t);
299 static void	bge_rxeof(struct bge_softc *, uint16_t, int);
300 
301 static void	bge_tick(void *);
302 static void	bge_stats_update(struct bge_softc *);
303 static void	bge_stats_update_regs(struct bge_softc *);
304 static struct mbuf *
305 		bge_defrag_shortdma(struct mbuf *);
306 static int	bge_encap(struct bge_softc *, struct mbuf **,
307 		    uint32_t *, int *);
308 static void	bge_xmit(struct bge_softc *, uint32_t);
309 static int	bge_setup_tso(struct bge_softc *, struct mbuf **,
310 		    uint16_t *, uint16_t *);
311 
312 #ifdef IFPOLL_ENABLE
313 static void	bge_npoll(struct ifnet *, struct ifpoll_info *);
314 static void	bge_npoll_compat(struct ifnet *, void *, int );
315 #endif
316 static void	bge_intr_crippled(void *);
317 static void	bge_intr_legacy(void *);
318 static void	bge_msi(void *);
319 static void	bge_msi_oneshot(void *);
320 static void	bge_intr(struct bge_softc *);
321 static void	bge_enable_intr(struct bge_softc *);
322 static void	bge_disable_intr(struct bge_softc *);
323 static void	bge_start(struct ifnet *, struct ifaltq_subque *);
324 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
325 static void	bge_init(void *);
326 static void	bge_stop(struct bge_softc *);
327 static void	bge_watchdog(struct ifnet *);
328 static void	bge_shutdown(device_t);
329 static int	bge_suspend(device_t);
330 static int	bge_resume(device_t);
331 static int	bge_ifmedia_upd(struct ifnet *);
332 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
333 
334 static uint8_t	bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
335 static int	bge_read_nvram(struct bge_softc *, caddr_t, int, int);
336 
337 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
338 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
339 
340 static void	bge_setmulti(struct bge_softc *);
341 static void	bge_setpromisc(struct bge_softc *);
342 static void	bge_enable_msi(struct bge_softc *sc);
343 
344 static int	bge_alloc_jumbo_mem(struct bge_softc *);
345 static void	bge_free_jumbo_mem(struct bge_softc *);
346 static struct bge_jslot
347 		*bge_jalloc(struct bge_softc *);
348 static void	bge_jfree(void *);
349 static void	bge_jref(void *);
350 static int	bge_newbuf_std(struct bge_softc *, int, int);
351 static int	bge_newbuf_jumbo(struct bge_softc *, int, int);
352 static void	bge_setup_rxdesc_std(struct bge_softc *, int);
353 static void	bge_setup_rxdesc_jumbo(struct bge_softc *, int);
354 static int	bge_init_rx_ring_std(struct bge_softc *);
355 static void	bge_free_rx_ring_std(struct bge_softc *);
356 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
357 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
358 static void	bge_free_tx_ring(struct bge_softc *);
359 static int	bge_init_tx_ring(struct bge_softc *);
360 
361 static int	bge_chipinit(struct bge_softc *);
362 static int	bge_blockinit(struct bge_softc *);
363 static void	bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
364 
365 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
366 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
367 #ifdef notdef
368 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
369 #endif
370 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
371 static void	bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
372 static void	bge_writembx(struct bge_softc *, int, int);
373 
374 static int	bge_miibus_readreg(device_t, int, int);
375 static int	bge_miibus_writereg(device_t, int, int, int);
376 static void	bge_miibus_statchg(device_t);
377 static void	bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
378 static void	bge_tbi_link_upd(struct bge_softc *, uint32_t);
379 static void	bge_copper_link_upd(struct bge_softc *, uint32_t);
380 static void	bge_autopoll_link_upd(struct bge_softc *, uint32_t);
381 static void	bge_link_poll(struct bge_softc *);
382 
383 static void	bge_reset(struct bge_softc *);
384 
385 static int	bge_dma_alloc(struct bge_softc *);
386 static void	bge_dma_free(struct bge_softc *);
387 static int	bge_dma_block_alloc(struct bge_softc *, bus_size_t,
388 				    bus_dma_tag_t *, bus_dmamap_t *,
389 				    void **, bus_addr_t *);
390 static void	bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
391 
392 static int	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
393 static int	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
394 static int	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
395 static int	bge_get_eaddr(struct bge_softc *, uint8_t[]);
396 
397 static void	bge_coal_change(struct bge_softc *);
398 static int	bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
399 static int	bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
400 static int	bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
401 static int	bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
402 static int	bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
403 static int	bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
404 static int	bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
405 static int	bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
406 static int	bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
407 		    int, int, uint32_t);
408 
409 /*
410  * Set following tunable to 1 for some IBM blade servers with the DNLK
411  * switch module. Auto negotiation is broken for those configurations.
412  */
413 static int	bge_fake_autoneg = 0;
414 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
415 
416 static int	bge_msi_enable = 1;
417 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
418 
419 #if !defined(KTR_IF_BGE)
420 #define KTR_IF_BGE	KTR_ALL
421 #endif
422 KTR_INFO_MASTER(if_bge);
423 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
424 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
425 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
426 #define logif(name)	KTR_LOG(if_bge_ ## name)
427 
428 static device_method_t bge_methods[] = {
429 	/* Device interface */
430 	DEVMETHOD(device_probe,		bge_probe),
431 	DEVMETHOD(device_attach,	bge_attach),
432 	DEVMETHOD(device_detach,	bge_detach),
433 	DEVMETHOD(device_shutdown,	bge_shutdown),
434 	DEVMETHOD(device_suspend,	bge_suspend),
435 	DEVMETHOD(device_resume,	bge_resume),
436 
437 	/* bus interface */
438 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
439 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
440 
441 	/* MII interface */
442 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
443 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
444 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
445 
446 	DEVMETHOD_END
447 };
448 
449 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
450 static devclass_t bge_devclass;
451 
452 DECLARE_DUMMY_MODULE(if_bge);
453 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
454 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
455 
456 static uint32_t
457 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
458 {
459 	device_t dev = sc->bge_dev;
460 	uint32_t val;
461 
462 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
463 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
464 		return 0;
465 
466 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
467 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
468 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
469 	return (val);
470 }
471 
472 static void
473 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
474 {
475 	device_t dev = sc->bge_dev;
476 
477 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
478 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
479 		return;
480 
481 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
482 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
483 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
484 }
485 
486 #ifdef notdef
487 static uint32_t
488 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
489 {
490 	device_t dev = sc->bge_dev;
491 
492 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
493 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
494 }
495 #endif
496 
497 static void
498 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
499 {
500 	device_t dev = sc->bge_dev;
501 
502 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
503 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
504 }
505 
506 static void
507 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
508 {
509 	CSR_WRITE_4(sc, off, val);
510 }
511 
512 static void
513 bge_writembx(struct bge_softc *sc, int off, int val)
514 {
515 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
516 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
517 
518 	CSR_WRITE_4(sc, off, val);
519 	if (sc->bge_mbox_reorder)
520 		CSR_READ_4(sc, off);
521 }
522 
523 static uint8_t
524 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
525 {
526 	uint32_t access, byte = 0;
527 	int i;
528 
529 	/* Lock. */
530 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
531 	for (i = 0; i < 8000; i++) {
532 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
533 			break;
534 		DELAY(20);
535 	}
536 	if (i == 8000)
537 		return (1);
538 
539 	/* Enable access. */
540 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
541 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
542 
543 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
544 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
545 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
546 		DELAY(10);
547 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
548 			DELAY(10);
549 			break;
550 		}
551 	}
552 
553 	if (i == BGE_TIMEOUT * 10) {
554 		if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
555 		return (1);
556 	}
557 
558 	/* Get result. */
559 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
560 
561 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
562 
563 	/* Disable access. */
564 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
565 
566 	/* Unlock. */
567 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
568 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
569 
570 	return (0);
571 }
572 
573 /*
574  * Read a sequence of bytes from NVRAM.
575  */
576 static int
577 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
578 {
579 	int err = 0, i;
580 	uint8_t byte = 0;
581 
582 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
583 		return (1);
584 
585 	for (i = 0; i < cnt; i++) {
586 		err = bge_nvram_getbyte(sc, off + i, &byte);
587 		if (err)
588 			break;
589 		*(dest + i) = byte;
590 	}
591 
592 	return (err ? 1 : 0);
593 }
594 
595 /*
596  * Read a byte of data stored in the EEPROM at address 'addr.' The
597  * BCM570x supports both the traditional bitbang interface and an
598  * auto access interface for reading the EEPROM. We use the auto
599  * access method.
600  */
601 static uint8_t
602 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
603 {
604 	int i;
605 	uint32_t byte = 0;
606 
607 	/*
608 	 * Enable use of auto EEPROM access so we can avoid
609 	 * having to use the bitbang method.
610 	 */
611 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
612 
613 	/* Reset the EEPROM, load the clock period. */
614 	CSR_WRITE_4(sc, BGE_EE_ADDR,
615 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
616 	DELAY(20);
617 
618 	/* Issue the read EEPROM command. */
619 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
620 
621 	/* Wait for completion */
622 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
623 		DELAY(10);
624 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
625 			break;
626 	}
627 
628 	if (i == BGE_TIMEOUT) {
629 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
630 		return(1);
631 	}
632 
633 	/* Get result. */
634 	byte = CSR_READ_4(sc, BGE_EE_DATA);
635 
636         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
637 
638 	return(0);
639 }
640 
641 /*
642  * Read a sequence of bytes from the EEPROM.
643  */
644 static int
645 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
646 {
647 	size_t i;
648 	int err;
649 	uint8_t byte;
650 
651 	for (byte = 0, err = 0, i = 0; i < len; i++) {
652 		err = bge_eeprom_getbyte(sc, off + i, &byte);
653 		if (err)
654 			break;
655 		*(dest + i) = byte;
656 	}
657 
658 	return(err ? 1 : 0);
659 }
660 
661 static int
662 bge_miibus_readreg(device_t dev, int phy, int reg)
663 {
664 	struct bge_softc *sc = device_get_softc(dev);
665 	uint32_t val;
666 	int i;
667 
668 	KASSERT(phy == sc->bge_phyno,
669 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
670 
671 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
672 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
673 		CSR_WRITE_4(sc, BGE_MI_MODE,
674 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
675 		DELAY(80);
676 	}
677 
678 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
679 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
680 
681 	/* Poll for the PHY register access to complete. */
682 	for (i = 0; i < BGE_TIMEOUT; i++) {
683 		DELAY(10);
684 		val = CSR_READ_4(sc, BGE_MI_COMM);
685 		if ((val & BGE_MICOMM_BUSY) == 0) {
686 			DELAY(5);
687 			val = CSR_READ_4(sc, BGE_MI_COMM);
688 			break;
689 		}
690 	}
691 	if (i == BGE_TIMEOUT) {
692 		if_printf(&sc->arpcom.ac_if, "PHY read timed out "
693 		    "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
694 		val = 0;
695 	}
696 
697 	/* Restore the autopoll bit if necessary. */
698 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
699 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
700 		DELAY(80);
701 	}
702 
703 	if (val & BGE_MICOMM_READFAIL)
704 		return 0;
705 
706 	return (val & 0xFFFF);
707 }
708 
709 static int
710 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
711 {
712 	struct bge_softc *sc = device_get_softc(dev);
713 	int i;
714 
715 	KASSERT(phy == sc->bge_phyno,
716 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
717 
718 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
719 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
720 	       return 0;
721 
722 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
723 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
724 		CSR_WRITE_4(sc, BGE_MI_MODE,
725 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
726 		DELAY(80);
727 	}
728 
729 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
730 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
731 
732 	for (i = 0; i < BGE_TIMEOUT; i++) {
733 		DELAY(10);
734 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
735 			DELAY(5);
736 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
737 			break;
738 		}
739 	}
740 	if (i == BGE_TIMEOUT) {
741 		if_printf(&sc->arpcom.ac_if, "PHY write timed out "
742 		    "(phy %d, reg %d, val %d)\n", phy, reg, val);
743 	}
744 
745 	/* Restore the autopoll bit if necessary. */
746 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
747 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
748 		DELAY(80);
749 	}
750 
751 	return 0;
752 }
753 
754 static void
755 bge_miibus_statchg(device_t dev)
756 {
757 	struct bge_softc *sc;
758 	struct mii_data *mii;
759 
760 	sc = device_get_softc(dev);
761 	mii = device_get_softc(sc->bge_miibus);
762 
763 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
764 	    (IFM_ACTIVE | IFM_AVALID)) {
765 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
766 		case IFM_10_T:
767 		case IFM_100_TX:
768 			sc->bge_link = 1;
769 			break;
770 		case IFM_1000_T:
771 		case IFM_1000_SX:
772 		case IFM_2500_SX:
773 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
774 				sc->bge_link = 1;
775 			else
776 				sc->bge_link = 0;
777 			break;
778 		default:
779 			sc->bge_link = 0;
780 			break;
781 		}
782 	} else {
783 		sc->bge_link = 0;
784 	}
785 	if (sc->bge_link == 0)
786 		return;
787 
788 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
789 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
790 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
791 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
792 	} else {
793 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
794 	}
795 
796 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
797 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
798 	} else {
799 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
800 	}
801 }
802 
803 /*
804  * Memory management for jumbo frames.
805  */
806 static int
807 bge_alloc_jumbo_mem(struct bge_softc *sc)
808 {
809 	struct ifnet *ifp = &sc->arpcom.ac_if;
810 	struct bge_jslot *entry;
811 	uint8_t *ptr;
812 	bus_addr_t paddr;
813 	int i, error;
814 
815 	/*
816 	 * Create tag for jumbo mbufs.
817 	 * This is really a bit of a kludge. We allocate a special
818 	 * jumbo buffer pool which (thanks to the way our DMA
819 	 * memory allocation works) will consist of contiguous
820 	 * pages. This means that even though a jumbo buffer might
821 	 * be larger than a page size, we don't really need to
822 	 * map it into more than one DMA segment. However, the
823 	 * default mbuf tag will result in multi-segment mappings,
824 	 * so we have to create a special jumbo mbuf tag that
825 	 * lets us get away with mapping the jumbo buffers as
826 	 * a single segment. I think eventually the driver should
827 	 * be changed so that it uses ordinary mbufs and cluster
828 	 * buffers, i.e. jumbo frames can span multiple DMA
829 	 * descriptors. But that's a project for another day.
830 	 */
831 
832 	/*
833 	 * Create DMA stuffs for jumbo RX ring.
834 	 */
835 	error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
836 				    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
837 				    &sc->bge_cdata.bge_rx_jumbo_ring_map,
838 				    (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
839 				    &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
840 	if (error) {
841 		if_printf(ifp, "could not create jumbo RX ring\n");
842 		return error;
843 	}
844 
845 	/*
846 	 * Create DMA stuffs for jumbo buffer block.
847 	 */
848 	error = bge_dma_block_alloc(sc, BGE_JMEM,
849 				    &sc->bge_cdata.bge_jumbo_tag,
850 				    &sc->bge_cdata.bge_jumbo_map,
851 				    (void **)&sc->bge_ldata.bge_jumbo_buf,
852 				    &paddr);
853 	if (error) {
854 		if_printf(ifp, "could not create jumbo buffer\n");
855 		return error;
856 	}
857 
858 	SLIST_INIT(&sc->bge_jfree_listhead);
859 
860 	/*
861 	 * Now divide it up into 9K pieces and save the addresses
862 	 * in an array. Note that we play an evil trick here by using
863 	 * the first few bytes in the buffer to hold the the address
864 	 * of the softc structure for this interface. This is because
865 	 * bge_jfree() needs it, but it is called by the mbuf management
866 	 * code which will not pass it to us explicitly.
867 	 */
868 	for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
869 		entry = &sc->bge_cdata.bge_jslots[i];
870 		entry->bge_sc = sc;
871 		entry->bge_buf = ptr;
872 		entry->bge_paddr = paddr;
873 		entry->bge_inuse = 0;
874 		entry->bge_slot = i;
875 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
876 
877 		ptr += BGE_JLEN;
878 		paddr += BGE_JLEN;
879 	}
880 	return 0;
881 }
882 
883 static void
884 bge_free_jumbo_mem(struct bge_softc *sc)
885 {
886 	/* Destroy jumbo RX ring. */
887 	bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
888 			   sc->bge_cdata.bge_rx_jumbo_ring_map,
889 			   sc->bge_ldata.bge_rx_jumbo_ring);
890 
891 	/* Destroy jumbo buffer block. */
892 	bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
893 			   sc->bge_cdata.bge_jumbo_map,
894 			   sc->bge_ldata.bge_jumbo_buf);
895 }
896 
897 /*
898  * Allocate a jumbo buffer.
899  */
900 static struct bge_jslot *
901 bge_jalloc(struct bge_softc *sc)
902 {
903 	struct bge_jslot *entry;
904 
905 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
906 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
907 	if (entry) {
908 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
909 		entry->bge_inuse = 1;
910 	} else {
911 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
912 	}
913 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
914 	return(entry);
915 }
916 
917 /*
918  * Adjust usage count on a jumbo buffer.
919  */
920 static void
921 bge_jref(void *arg)
922 {
923 	struct bge_jslot *entry = (struct bge_jslot *)arg;
924 	struct bge_softc *sc = entry->bge_sc;
925 
926 	if (sc == NULL)
927 		panic("bge_jref: can't find softc pointer!");
928 
929 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
930 		panic("bge_jref: asked to reference buffer "
931 		    "that we don't manage!");
932 	} else if (entry->bge_inuse == 0) {
933 		panic("bge_jref: buffer already free!");
934 	} else {
935 		atomic_add_int(&entry->bge_inuse, 1);
936 	}
937 }
938 
939 /*
940  * Release a jumbo buffer.
941  */
942 static void
943 bge_jfree(void *arg)
944 {
945 	struct bge_jslot *entry = (struct bge_jslot *)arg;
946 	struct bge_softc *sc = entry->bge_sc;
947 
948 	if (sc == NULL)
949 		panic("bge_jfree: can't find softc pointer!");
950 
951 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
952 		panic("bge_jfree: asked to free buffer that we don't manage!");
953 	} else if (entry->bge_inuse == 0) {
954 		panic("bge_jfree: buffer already free!");
955 	} else {
956 		/*
957 		 * Possible MP race to 0, use the serializer.  The atomic insn
958 		 * is still needed for races against bge_jref().
959 		 */
960 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
961 		atomic_subtract_int(&entry->bge_inuse, 1);
962 		if (entry->bge_inuse == 0) {
963 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
964 					  entry, jslot_link);
965 		}
966 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
967 	}
968 }
969 
970 
971 /*
972  * Intialize a standard receive ring descriptor.
973  */
974 static int
975 bge_newbuf_std(struct bge_softc *sc, int i, int init)
976 {
977 	struct mbuf *m_new = NULL;
978 	bus_dma_segment_t seg;
979 	bus_dmamap_t map;
980 	int error, nsegs;
981 
982 	m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
983 	if (m_new == NULL)
984 		return ENOBUFS;
985 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
986 
987 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
988 		m_adj(m_new, ETHER_ALIGN);
989 
990 	error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
991 			sc->bge_cdata.bge_rx_tmpmap, m_new,
992 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
993 	if (error) {
994 		m_freem(m_new);
995 		return error;
996 	}
997 
998 	if (!init) {
999 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1000 				sc->bge_cdata.bge_rx_std_dmamap[i],
1001 				BUS_DMASYNC_POSTREAD);
1002 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1003 			sc->bge_cdata.bge_rx_std_dmamap[i]);
1004 	}
1005 
1006 	map = sc->bge_cdata.bge_rx_tmpmap;
1007 	sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1008 	sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1009 
1010 	sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1011 	sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1012 
1013 	bge_setup_rxdesc_std(sc, i);
1014 	return 0;
1015 }
1016 
1017 static void
1018 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1019 {
1020 	struct bge_rxchain *rc;
1021 	struct bge_rx_bd *r;
1022 
1023 	rc = &sc->bge_cdata.bge_rx_std_chain[i];
1024 	r = &sc->bge_ldata.bge_rx_std_ring[i];
1025 
1026 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1027 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1028 	r->bge_len = rc->bge_mbuf->m_len;
1029 	r->bge_idx = i;
1030 	r->bge_flags = BGE_RXBDFLAG_END;
1031 }
1032 
1033 /*
1034  * Initialize a jumbo receive ring descriptor. This allocates
1035  * a jumbo buffer from the pool managed internally by the driver.
1036  */
1037 static int
1038 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1039 {
1040 	struct mbuf *m_new = NULL;
1041 	struct bge_jslot *buf;
1042 	bus_addr_t paddr;
1043 
1044 	/* Allocate the mbuf. */
1045 	MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1046 	if (m_new == NULL)
1047 		return ENOBUFS;
1048 
1049 	/* Allocate the jumbo buffer */
1050 	buf = bge_jalloc(sc);
1051 	if (buf == NULL) {
1052 		m_freem(m_new);
1053 		return ENOBUFS;
1054 	}
1055 
1056 	/* Attach the buffer to the mbuf. */
1057 	m_new->m_ext.ext_arg = buf;
1058 	m_new->m_ext.ext_buf = buf->bge_buf;
1059 	m_new->m_ext.ext_free = bge_jfree;
1060 	m_new->m_ext.ext_ref = bge_jref;
1061 	m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1062 
1063 	m_new->m_flags |= M_EXT;
1064 
1065 	m_new->m_data = m_new->m_ext.ext_buf;
1066 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1067 
1068 	paddr = buf->bge_paddr;
1069 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1070 		m_adj(m_new, ETHER_ALIGN);
1071 		paddr += ETHER_ALIGN;
1072 	}
1073 
1074 	/* Save necessary information */
1075 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1076 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1077 
1078 	/* Set up the descriptor. */
1079 	bge_setup_rxdesc_jumbo(sc, i);
1080 	return 0;
1081 }
1082 
1083 static void
1084 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1085 {
1086 	struct bge_rx_bd *r;
1087 	struct bge_rxchain *rc;
1088 
1089 	r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1090 	rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1091 
1092 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1093 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1094 	r->bge_len = rc->bge_mbuf->m_len;
1095 	r->bge_idx = i;
1096 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1097 }
1098 
1099 static int
1100 bge_init_rx_ring_std(struct bge_softc *sc)
1101 {
1102 	int i, error;
1103 
1104 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1105 		error = bge_newbuf_std(sc, i, 1);
1106 		if (error)
1107 			return error;
1108 	}
1109 
1110 	sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1111 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1112 
1113 	return(0);
1114 }
1115 
1116 static void
1117 bge_free_rx_ring_std(struct bge_softc *sc)
1118 {
1119 	int i;
1120 
1121 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1122 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1123 
1124 		if (rc->bge_mbuf != NULL) {
1125 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1126 					  sc->bge_cdata.bge_rx_std_dmamap[i]);
1127 			m_freem(rc->bge_mbuf);
1128 			rc->bge_mbuf = NULL;
1129 		}
1130 		bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1131 		    sizeof(struct bge_rx_bd));
1132 	}
1133 }
1134 
1135 static int
1136 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1137 {
1138 	struct bge_rcb *rcb;
1139 	int i, error;
1140 
1141 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1142 		error = bge_newbuf_jumbo(sc, i, 1);
1143 		if (error)
1144 			return error;
1145 	}
1146 
1147 	sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1148 
1149 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1150 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1151 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1152 
1153 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1154 
1155 	return(0);
1156 }
1157 
1158 static void
1159 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1160 {
1161 	int i;
1162 
1163 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1164 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1165 
1166 		if (rc->bge_mbuf != NULL) {
1167 			m_freem(rc->bge_mbuf);
1168 			rc->bge_mbuf = NULL;
1169 		}
1170 		bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1171 		    sizeof(struct bge_rx_bd));
1172 	}
1173 }
1174 
1175 static void
1176 bge_free_tx_ring(struct bge_softc *sc)
1177 {
1178 	int i;
1179 
1180 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1181 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1182 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1183 					  sc->bge_cdata.bge_tx_dmamap[i]);
1184 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1185 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1186 		}
1187 		bzero(&sc->bge_ldata.bge_tx_ring[i],
1188 		    sizeof(struct bge_tx_bd));
1189 	}
1190 }
1191 
1192 static int
1193 bge_init_tx_ring(struct bge_softc *sc)
1194 {
1195 	sc->bge_txcnt = 0;
1196 	sc->bge_tx_saved_considx = 0;
1197 	sc->bge_tx_prodidx = 0;
1198 
1199 	/* Initialize transmit producer index for host-memory send ring. */
1200 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1201 
1202 	/* 5700 b2 errata */
1203 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1204 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1205 
1206 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1207 	/* 5700 b2 errata */
1208 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1209 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1210 
1211 	return(0);
1212 }
1213 
1214 static void
1215 bge_setmulti(struct bge_softc *sc)
1216 {
1217 	struct ifnet *ifp;
1218 	struct ifmultiaddr *ifma;
1219 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1220 	int h, i;
1221 
1222 	ifp = &sc->arpcom.ac_if;
1223 
1224 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1225 		for (i = 0; i < 4; i++)
1226 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1227 		return;
1228 	}
1229 
1230 	/* First, zot all the existing filters. */
1231 	for (i = 0; i < 4; i++)
1232 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1233 
1234 	/* Now program new ones. */
1235 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1236 		if (ifma->ifma_addr->sa_family != AF_LINK)
1237 			continue;
1238 		h = ether_crc32_le(
1239 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1240 		    ETHER_ADDR_LEN) & 0x7f;
1241 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1242 	}
1243 
1244 	for (i = 0; i < 4; i++)
1245 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1246 }
1247 
1248 /*
1249  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1250  * self-test results.
1251  */
1252 static int
1253 bge_chipinit(struct bge_softc *sc)
1254 {
1255 	int i;
1256 	uint32_t dma_rw_ctl;
1257 	uint16_t val;
1258 
1259 	/* Set endian type before we access any non-PCI registers. */
1260 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1261 	    BGE_INIT | sc->bge_pci_miscctl, 4);
1262 
1263 	/* Clear the MAC control register */
1264 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1265 
1266 	/*
1267 	 * Clear the MAC statistics block in the NIC's
1268 	 * internal memory.
1269 	 */
1270 	for (i = BGE_STATS_BLOCK;
1271 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1272 		BGE_MEMWIN_WRITE(sc, i, 0);
1273 
1274 	for (i = BGE_STATUS_BLOCK;
1275 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1276 		BGE_MEMWIN_WRITE(sc, i, 0);
1277 
1278 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1279 		/*
1280 		 * Fix data corruption caused by non-qword write with WB.
1281 		 * Fix master abort in PCI mode.
1282 		 * Fix PCI latency timer.
1283 		 */
1284 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1285 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1286 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1287 	}
1288 
1289 	/* Set up the PCI DMA control register. */
1290 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1291 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1292 		/* PCI-E bus */
1293 		/* DMA read watermark not used on PCI-E */
1294 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1295 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1296 		/* PCI-X bus */
1297 		if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1298 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1299 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1300 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1301 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1302 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1303 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1304 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1305 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1306 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1307 			uint32_t rd_wat = 0x7;
1308 			uint32_t clkctl;
1309 
1310 			clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1311 			if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1312 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1313 				dma_rw_ctl |=
1314 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1315 			} else if (clkctl == 0x6 || clkctl == 0x7) {
1316 				dma_rw_ctl |=
1317 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1318 			}
1319 			if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1320 				rd_wat = 0x4;
1321 
1322 			dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1323 			    (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1324 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1325 		} else {
1326 			dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1327 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1328 			dma_rw_ctl |= 0xf;
1329 		}
1330 	} else {
1331 		/* Conventional PCI bus */
1332 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1333 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1334 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1335 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1336 			dma_rw_ctl |= 0xf;
1337 	}
1338 
1339 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1340 	    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1341 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1342 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1343 	    sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1344 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1345 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1346 	}
1347 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1348 
1349 	/*
1350 	 * Set up general mode register.
1351 	 */
1352 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1353 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1354 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1355 
1356 	/*
1357 	 * BCM5701 B5 have a bug causing data corruption when using
1358 	 * 64-bit DMA reads, which can be terminated early and then
1359 	 * completed later as 32-bit accesses, in combination with
1360 	 * certain bridges.
1361 	 */
1362 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1363 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1364 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1365 
1366 	/*
1367 	 * Disable memory write invalidate.  Apparently it is not supported
1368 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1369 	 * as these chips need it even when using MSI.
1370 	 */
1371 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1372 	    (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1373 
1374 	/* Set the timer prescaler (always 66Mhz) */
1375 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1376 
1377 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1378 		DELAY(40);	/* XXX */
1379 
1380 		/* Put PHY into ready state */
1381 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1382 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1383 		DELAY(40);
1384 	}
1385 
1386 	return(0);
1387 }
1388 
1389 static int
1390 bge_blockinit(struct bge_softc *sc)
1391 {
1392 	struct bge_rcb *rcb;
1393 	bus_size_t vrcb;
1394 	bge_hostaddr taddr;
1395 	uint32_t val;
1396 	int i, limit;
1397 
1398 	/*
1399 	 * Initialize the memory window pointer register so that
1400 	 * we can access the first 32K of internal NIC RAM. This will
1401 	 * allow us to set up the TX send ring RCBs and the RX return
1402 	 * ring RCBs, plus other things which live in NIC memory.
1403 	 */
1404 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1405 
1406 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1407 
1408 	if (!BGE_IS_5705_PLUS(sc)) {
1409 		/* Configure mbuf memory pool */
1410 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1411 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1412 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1413 		else
1414 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1415 
1416 		/* Configure DMA resource pool */
1417 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1418 		    BGE_DMA_DESCRIPTORS);
1419 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1420 	}
1421 
1422 	/* Configure mbuf pool watermarks */
1423 	if (!BGE_IS_5705_PLUS(sc)) {
1424 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1425 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1426 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1427 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1428 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1429 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1430 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1431 	} else {
1432 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1433 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1434 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1435 	}
1436 
1437 	/* Configure DMA resource watermarks */
1438 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1439 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1440 
1441 	/* Enable buffer manager */
1442 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1443 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1444 
1445 	/* Poll for buffer manager start indication */
1446 	for (i = 0; i < BGE_TIMEOUT; i++) {
1447 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1448 			break;
1449 		DELAY(10);
1450 	}
1451 
1452 	if (i == BGE_TIMEOUT) {
1453 		if_printf(&sc->arpcom.ac_if,
1454 			  "buffer manager failed to start\n");
1455 		return(ENXIO);
1456 	}
1457 
1458 	/* Enable flow-through queues */
1459 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1460 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1461 
1462 	/* Wait until queue initialization is complete */
1463 	for (i = 0; i < BGE_TIMEOUT; i++) {
1464 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1465 			break;
1466 		DELAY(10);
1467 	}
1468 
1469 	if (i == BGE_TIMEOUT) {
1470 		if_printf(&sc->arpcom.ac_if,
1471 			  "flow-through queue init failed\n");
1472 		return(ENXIO);
1473 	}
1474 
1475 	/*
1476 	 * Summary of rings supported by the controller:
1477 	 *
1478 	 * Standard Receive Producer Ring
1479 	 * - This ring is used to feed receive buffers for "standard"
1480 	 *   sized frames (typically 1536 bytes) to the controller.
1481 	 *
1482 	 * Jumbo Receive Producer Ring
1483 	 * - This ring is used to feed receive buffers for jumbo sized
1484 	 *   frames (i.e. anything bigger than the "standard" frames)
1485 	 *   to the controller.
1486 	 *
1487 	 * Mini Receive Producer Ring
1488 	 * - This ring is used to feed receive buffers for "mini"
1489 	 *   sized frames to the controller.
1490 	 * - This feature required external memory for the controller
1491 	 *   but was never used in a production system.  Should always
1492 	 *   be disabled.
1493 	 *
1494 	 * Receive Return Ring
1495 	 * - After the controller has placed an incoming frame into a
1496 	 *   receive buffer that buffer is moved into a receive return
1497 	 *   ring.  The driver is then responsible to passing the
1498 	 *   buffer up to the stack.  Many versions of the controller
1499 	 *   support multiple RR rings.
1500 	 *
1501 	 * Send Ring
1502 	 * - This ring is used for outgoing frames.  Many versions of
1503 	 *   the controller support multiple send rings.
1504 	 */
1505 
1506 	/* Initialize the standard receive producer ring control block. */
1507 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1508 	rcb->bge_hostaddr.bge_addr_lo =
1509 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1510 	rcb->bge_hostaddr.bge_addr_hi =
1511 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1512 	if (BGE_IS_5705_PLUS(sc)) {
1513 		/*
1514 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1515 		 * Bits 15-2 : Reserved (should be 0)
1516 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1517 		 * Bit 0     : Reserved
1518 		 */
1519 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1520 	} else {
1521 		/*
1522 		 * Ring size is always XXX entries
1523 		 * Bits 31-16: Maximum RX frame size
1524 		 * Bits 15-2 : Reserved (should be 0)
1525 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1526 		 * Bit 0     : Reserved
1527 		 */
1528 		rcb->bge_maxlen_flags =
1529 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1530 	}
1531 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1532 	/* Write the standard receive producer ring control block. */
1533 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1534 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1535 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1536 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1537 	/* Reset the standard receive producer ring producer index. */
1538 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1539 
1540 	/*
1541 	 * Initialize the jumbo RX producer ring control
1542 	 * block.  We set the 'ring disabled' bit in the
1543 	 * flags field until we're actually ready to start
1544 	 * using this ring (i.e. once we set the MTU
1545 	 * high enough to require it).
1546 	 */
1547 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1548 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1549 		/* Get the jumbo receive producer ring RCB parameters. */
1550 		rcb->bge_hostaddr.bge_addr_lo =
1551 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1552 		rcb->bge_hostaddr.bge_addr_hi =
1553 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1554 		rcb->bge_maxlen_flags =
1555 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1556 		    BGE_RCB_FLAG_RING_DISABLED);
1557 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1558 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1559 		    rcb->bge_hostaddr.bge_addr_hi);
1560 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1561 		    rcb->bge_hostaddr.bge_addr_lo);
1562 		/* Program the jumbo receive producer ring RCB parameters. */
1563 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1564 		    rcb->bge_maxlen_flags);
1565 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1566 		/* Reset the jumbo receive producer ring producer index. */
1567 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1568 	}
1569 
1570 	/* Disable the mini receive producer ring RCB. */
1571 	if (BGE_IS_5700_FAMILY(sc)) {
1572 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1573 		rcb->bge_maxlen_flags =
1574 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1575 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1576 		    rcb->bge_maxlen_flags);
1577 		/* Reset the mini receive producer ring producer index. */
1578 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1579 	}
1580 
1581 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1582 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1583 	    (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1584 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1585 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1586 		CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1587 		    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1588 	}
1589 
1590 	/*
1591 	 * The BD ring replenish thresholds control how often the
1592 	 * hardware fetches new BD's from the producer rings in host
1593 	 * memory.  Setting the value too low on a busy system can
1594 	 * starve the hardware and recue the throughpout.
1595 	 *
1596 	 * Set the BD ring replentish thresholds. The recommended
1597 	 * values are 1/8th the number of descriptors allocated to
1598 	 * each ring.
1599 	 */
1600 	if (BGE_IS_5705_PLUS(sc))
1601 		val = 8;
1602 	else
1603 		val = BGE_STD_RX_RING_CNT / 8;
1604 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1605 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1606 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1607 		    BGE_JUMBO_RX_RING_CNT/8);
1608 	}
1609 
1610 	/*
1611 	 * Disable all send rings by setting the 'ring disabled' bit
1612 	 * in the flags field of all the TX send ring control blocks,
1613 	 * located in NIC memory.
1614 	 */
1615 	if (!BGE_IS_5705_PLUS(sc)) {
1616 		/* 5700 to 5704 had 16 send rings. */
1617 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1618 	} else {
1619 		limit = 1;
1620 	}
1621 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1622 	for (i = 0; i < limit; i++) {
1623 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1624 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1625 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1626 		vrcb += sizeof(struct bge_rcb);
1627 	}
1628 
1629 	/* Configure send ring RCB 0 (we use only the first ring) */
1630 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1631 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1632 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1633 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1634 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1635 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1636 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1637 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1638 
1639 	/*
1640 	 * Disable all receive return rings by setting the
1641 	 * 'ring diabled' bit in the flags field of all the receive
1642 	 * return ring control blocks, located in NIC memory.
1643 	 */
1644 	if (!BGE_IS_5705_PLUS(sc))
1645 		limit = BGE_RX_RINGS_MAX;
1646 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1647 		limit = 4;
1648 	else
1649 		limit = 1;
1650 	/* Disable all receive return rings. */
1651 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1652 	for (i = 0; i < limit; i++) {
1653 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1654 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1655 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1656 		    BGE_RCB_FLAG_RING_DISABLED);
1657 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1658 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1659 		    (i * (sizeof(uint64_t))), 0);
1660 		vrcb += sizeof(struct bge_rcb);
1661 	}
1662 
1663 	/*
1664 	 * Set up receive return ring 0.  Note that the NIC address
1665 	 * for RX return rings is 0x0.  The return rings live entirely
1666 	 * within the host, so the nicaddr field in the RCB isn't used.
1667 	 */
1668 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1669 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1670 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1671 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1672 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1673 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1674 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1675 
1676 	/* Set random backoff seed for TX */
1677 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1678 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1679 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1680 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1681 	    BGE_TX_BACKOFF_SEED_MASK);
1682 
1683 	/* Set inter-packet gap */
1684 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1685 
1686 	/*
1687 	 * Specify which ring to use for packets that don't match
1688 	 * any RX rules.
1689 	 */
1690 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1691 
1692 	/*
1693 	 * Configure number of RX lists. One interrupt distribution
1694 	 * list, sixteen active lists, one bad frames class.
1695 	 */
1696 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1697 
1698 	/* Inialize RX list placement stats mask. */
1699 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1700 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1701 
1702 	/* Disable host coalescing until we get it set up */
1703 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1704 
1705 	/* Poll to make sure it's shut down. */
1706 	for (i = 0; i < BGE_TIMEOUT; i++) {
1707 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1708 			break;
1709 		DELAY(10);
1710 	}
1711 
1712 	if (i == BGE_TIMEOUT) {
1713 		if_printf(&sc->arpcom.ac_if,
1714 			  "host coalescing engine failed to idle\n");
1715 		return(ENXIO);
1716 	}
1717 
1718 	/* Set up host coalescing defaults */
1719 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1720 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1721 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1722 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1723 	if (!BGE_IS_5705_PLUS(sc)) {
1724 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1725 		    sc->bge_rx_coal_ticks_int);
1726 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1727 		    sc->bge_tx_coal_ticks_int);
1728 	}
1729 	/*
1730 	 * NOTE:
1731 	 * The datasheet (57XX-PG105-R) says BCM5705+ do not
1732 	 * have following two registers; obviously it is wrong.
1733 	 */
1734 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1735 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1736 
1737 	/* Set up address of statistics block */
1738 	if (!BGE_IS_5705_PLUS(sc)) {
1739 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1740 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1741 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1742 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1743 
1744 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1745 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1746 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1747 	}
1748 
1749 	/* Set up address of status block */
1750 	bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1751 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1752 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1753 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1754 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1755 
1756 	/*
1757 	 * Set up status block partail update size.
1758 	 *
1759 	 * Because only single TX ring, RX produce ring and Rx return ring
1760 	 * are used, ask device to update only minimum part of status block
1761 	 * except for BCM5700 AX/BX, whose status block partial update size
1762 	 * can't be configured.
1763 	 */
1764 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1765 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1766 		/* XXX Actually reserved on BCM5700 AX/BX */
1767 		val = BGE_STATBLKSZ_FULL;
1768 	} else {
1769 		val = BGE_STATBLKSZ_32BYTE;
1770 	}
1771 #if 0
1772 	/*
1773 	 * Does not seem to have visible effect in both
1774 	 * bulk data (1472B UDP datagram) and tiny data
1775 	 * (18B UDP datagram) TX tests.
1776 	 */
1777 	if (!BGE_IS_CRIPPLED(sc))
1778 		val |= BGE_HCCMODE_CLRTICK_TX;
1779 #endif
1780 
1781 	/* Turn on host coalescing state machine */
1782 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1783 
1784 	/* Turn on RX BD completion state machine and enable attentions */
1785 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1786 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1787 
1788 	/* Turn on RX list placement state machine */
1789 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1790 
1791 	/* Turn on RX list selector state machine. */
1792 	if (!BGE_IS_5705_PLUS(sc))
1793 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1794 
1795 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1796 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1797 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1798 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1799 
1800 	if (sc->bge_flags & BGE_FLAG_TBI)
1801 		val |= BGE_PORTMODE_TBI;
1802 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1803 		val |= BGE_PORTMODE_GMII;
1804 	else
1805 		val |= BGE_PORTMODE_MII;
1806 
1807 	/* Turn on DMA, clear stats */
1808 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1809 
1810 	/* Set misc. local control, enable interrupts on attentions */
1811 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1812 
1813 #ifdef notdef
1814 	/* Assert GPIO pins for PHY reset */
1815 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1816 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1817 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1818 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1819 #endif
1820 
1821 	/* Turn on DMA completion state machine */
1822 	if (!BGE_IS_5705_PLUS(sc))
1823 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1824 
1825 	/* Turn on write DMA state machine */
1826 	val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1827 	if (BGE_IS_5755_PLUS(sc)) {
1828 		/* Enable host coalescing bug fix. */
1829 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1830 	}
1831 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1832 		/* Request larger DMA burst size to get better performance. */
1833 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1834 	}
1835 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1836 	DELAY(40);
1837 
1838 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1839 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1840 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1841 	    sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1842 		/*
1843 		 * Enable fix for read DMA FIFO overruns.
1844 		 * The fix is to limit the number of RX BDs
1845 		 * the hardware would fetch at a fime.
1846 		 */
1847 		val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1848 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1849 		    val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1850 	}
1851 
1852 	/* Turn on read DMA state machine */
1853 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1854         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1855             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1856             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1857 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1858                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1859                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1860 	if (sc->bge_flags & BGE_FLAG_PCIE)
1861 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1862 	if (sc->bge_flags & BGE_FLAG_TSO)
1863 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1864 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1865 	DELAY(40);
1866 
1867 	/* Turn on RX data completion state machine */
1868 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1869 
1870 	/* Turn on RX BD initiator state machine */
1871 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1872 
1873 	/* Turn on RX data and RX BD initiator state machine */
1874 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1875 
1876 	/* Turn on Mbuf cluster free state machine */
1877 	if (!BGE_IS_5705_PLUS(sc))
1878 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1879 
1880 	/* Turn on send BD completion state machine */
1881 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1882 
1883 	/* Turn on send data completion state machine */
1884 	val = BGE_SDCMODE_ENABLE;
1885 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1886 		val |= BGE_SDCMODE_CDELAY;
1887 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1888 
1889 	/* Turn on send data initiator state machine */
1890 	if (sc->bge_flags & BGE_FLAG_TSO)
1891 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1892 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
1893 	else
1894 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1895 
1896 	/* Turn on send BD initiator state machine */
1897 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1898 
1899 	/* Turn on send BD selector state machine */
1900 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1901 
1902 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1903 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1904 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1905 
1906 	/* ack/clear link change events */
1907 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1908 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1909 	    BGE_MACSTAT_LINK_CHANGED);
1910 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1911 
1912 	/*
1913 	 * Enable attention when the link has changed state for
1914 	 * devices that use auto polling.
1915 	 */
1916 	if (sc->bge_flags & BGE_FLAG_TBI) {
1917 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1918  	} else {
1919 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1920 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1921 			DELAY(80);
1922 		}
1923 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1924 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1925 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1926 			    BGE_EVTENB_MI_INTERRUPT);
1927 		}
1928 	}
1929 
1930 	/*
1931 	 * Clear any pending link state attention.
1932 	 * Otherwise some link state change events may be lost until attention
1933 	 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1934 	 * It's not necessary on newer BCM chips - perhaps enabling link
1935 	 * state change attentions implies clearing pending attention.
1936 	 */
1937 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1938 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1939 	    BGE_MACSTAT_LINK_CHANGED);
1940 
1941 	/* Enable link state change attentions. */
1942 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1943 
1944 	return(0);
1945 }
1946 
1947 /*
1948  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1949  * against our list and return its name if we find a match. Note
1950  * that since the Broadcom controller contains VPD support, we
1951  * can get the device name string from the controller itself instead
1952  * of the compiled-in string. This is a little slow, but it guarantees
1953  * we'll always announce the right product name.
1954  */
1955 static int
1956 bge_probe(device_t dev)
1957 {
1958 	const struct bge_type *t;
1959 	uint16_t product, vendor;
1960 
1961 	product = pci_get_device(dev);
1962 	vendor = pci_get_vendor(dev);
1963 
1964 	for (t = bge_devs; t->bge_name != NULL; t++) {
1965 		if (vendor == t->bge_vid && product == t->bge_did)
1966 			break;
1967 	}
1968 	if (t->bge_name == NULL)
1969 		return(ENXIO);
1970 
1971 	device_set_desc(dev, t->bge_name);
1972 	return(0);
1973 }
1974 
1975 static int
1976 bge_attach(device_t dev)
1977 {
1978 	struct ifnet *ifp;
1979 	struct bge_softc *sc;
1980 	uint32_t hwcfg = 0, misccfg;
1981 	int error = 0, rid, capmask;
1982 	uint8_t ether_addr[ETHER_ADDR_LEN];
1983 	uint16_t product, vendor;
1984 	driver_intr_t *intr_func;
1985 	uintptr_t mii_priv = 0;
1986 	u_int intr_flags;
1987 	int msi_enable;
1988 
1989 	sc = device_get_softc(dev);
1990 	sc->bge_dev = dev;
1991 	callout_init_mp(&sc->bge_stat_timer);
1992 	lwkt_serialize_init(&sc->bge_jslot_serializer);
1993 
1994 	product = pci_get_device(dev);
1995 	vendor = pci_get_vendor(dev);
1996 
1997 #ifndef BURN_BRIDGES
1998 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1999 		uint32_t irq, mem;
2000 
2001 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
2002 		mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2003 
2004 		device_printf(dev, "chip is in D%d power mode "
2005 		    "-- setting to D0\n", pci_get_powerstate(dev));
2006 
2007 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2008 
2009 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
2010 		pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2011 	}
2012 #endif	/* !BURN_BRIDGE */
2013 
2014 	/*
2015 	 * Map control/status registers.
2016 	 */
2017 	pci_enable_busmaster(dev);
2018 
2019 	rid = BGE_PCI_BAR0;
2020 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2021 	    RF_ACTIVE);
2022 
2023 	if (sc->bge_res == NULL) {
2024 		device_printf(dev, "couldn't map memory\n");
2025 		return ENXIO;
2026 	}
2027 
2028 	sc->bge_btag = rman_get_bustag(sc->bge_res);
2029 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2030 
2031 	/* Save various chip information */
2032 	sc->bge_chipid =
2033 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2034 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2035 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2036 		/* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2037 		sc->bge_flags |= BGE_FLAG_CPMU;
2038 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2039 	}
2040 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2041 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2042 
2043 	/* Save chipset family. */
2044 	switch (sc->bge_asicrev) {
2045 	case BGE_ASICREV_BCM5755:
2046 	case BGE_ASICREV_BCM5761:
2047 	case BGE_ASICREV_BCM5784:
2048 	case BGE_ASICREV_BCM5785:
2049 	case BGE_ASICREV_BCM5787:
2050 	case BGE_ASICREV_BCM57780:
2051 	    sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2052 		BGE_FLAG_5705_PLUS;
2053 	    break;
2054 
2055 	case BGE_ASICREV_BCM5700:
2056 	case BGE_ASICREV_BCM5701:
2057 	case BGE_ASICREV_BCM5703:
2058 	case BGE_ASICREV_BCM5704:
2059 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2060 		break;
2061 
2062 	case BGE_ASICREV_BCM5714_A0:
2063 	case BGE_ASICREV_BCM5780:
2064 	case BGE_ASICREV_BCM5714:
2065 		sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2066 		/* Fall through */
2067 
2068 	case BGE_ASICREV_BCM5750:
2069 	case BGE_ASICREV_BCM5752:
2070 	case BGE_ASICREV_BCM5906:
2071 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2072 		/* Fall through */
2073 
2074 	case BGE_ASICREV_BCM5705:
2075 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2076 		break;
2077 	}
2078 
2079 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2080 		sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2081 
2082 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2083 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2084 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2085 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2086 		sc->bge_flags |= BGE_FLAG_5788;
2087 
2088 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
2089 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2090 		sc->bge_flags |= BGE_FLAG_SHORTDMA;
2091 
2092 	/*
2093 	 * Increase STD RX ring prod index by at most 8 for BCM5750,
2094 	 * BCM5752 and BCM5755 to workaround hardware errata.
2095 	 */
2096 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2097 	    sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2098 	    sc->bge_asicrev == BGE_ASICREV_BCM5755)
2099 		sc->bge_rx_wreg = 8;
2100 
2101   	/*
2102 	 * Check if this is a PCI-X or PCI Express device.
2103   	 */
2104 	if (BGE_IS_5705_PLUS(sc)) {
2105 		if (pci_is_pcie(dev)) {
2106 			sc->bge_flags |= BGE_FLAG_PCIE;
2107 			sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2108 			pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2109 		}
2110 	} else {
2111 		/*
2112 		 * Check if the device is in PCI-X Mode.
2113 		 * (This bit is not valid on PCI Express controllers.)
2114 		 */
2115 		if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2116 		    BGE_PCISTATE_PCI_BUSMODE) == 0) {
2117 			sc->bge_flags |= BGE_FLAG_PCIX;
2118 			sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2119 			sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2120 			    "mbox_reorder", 0);
2121 		}
2122  	}
2123 	device_printf(dev, "CHIP ID 0x%08x; "
2124 		      "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2125 		      sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2126 		      (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2127 		      : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2128 			"PCI-E" : "PCI"));
2129 
2130 	/*
2131 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2132 	 * not actually a MAC controller bug but an issue with the embedded
2133 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2134 	 */
2135 	if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2136 	    (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2137 		sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2138 
2139 	/*
2140 	 * When using the BCM5701 in PCI-X mode, data corruption has
2141 	 * been observed in the first few bytes of some received packets.
2142 	 * Aligning the packet buffer in memory eliminates the corruption.
2143 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2144 	 * which do not support unaligned accesses, we will realign the
2145 	 * payloads by copying the received packets.
2146 	 */
2147 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2148 	    (sc->bge_flags & BGE_FLAG_PCIX))
2149 		sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2150 
2151 	if (!BGE_IS_CRIPPLED(sc)) {
2152 		if (device_getenv_int(dev, "status_tag", 1)) {
2153 			sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2154 			sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2155 			if (bootverbose)
2156 				device_printf(dev, "enable status tag\n");
2157 		}
2158 	}
2159 
2160 	if (BGE_IS_5755_PLUS(sc)) {
2161 		/*
2162 		 * BCM5754 and BCM5787 shares the same ASIC id so
2163 		 * explicit device id check is required.
2164 		 * Due to unknown reason TSO does not work on BCM5755M.
2165 		 */
2166 		if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2167 		    product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2168 		    product != PCI_PRODUCT_BROADCOM_BCM5755M)
2169 			sc->bge_flags |= BGE_FLAG_TSO;
2170 	}
2171 
2172 	/*
2173 	 * Set various PHY quirk flags.
2174 	 */
2175 
2176 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2177 	     sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2178 	    pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2179 		mii_priv |= BRGPHY_FLAG_NO_3LED;
2180 
2181 	capmask = MII_CAPMASK_DEFAULT;
2182 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2183 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2184 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2185 	     vendor == PCI_VENDOR_BROADCOM &&
2186 	     (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2187 	      product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2188 	      product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2189 	    (vendor == PCI_VENDOR_BROADCOM &&
2190 	     (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2191 	      product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2192 	      product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2193 	    product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2194 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2195 		/* 10/100 only */
2196 		capmask &= ~BMSR_EXTSTAT;
2197 	}
2198 
2199 	mii_priv |= BRGPHY_FLAG_WIRESPEED;
2200 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2201 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2202 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2203 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2204 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2205 		mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2206 
2207 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2208 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2209 		mii_priv |= BRGPHY_FLAG_CRC_BUG;
2210 
2211 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2212 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2213 		mii_priv |= BRGPHY_FLAG_ADC_BUG;
2214 
2215 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2216 		mii_priv |= BRGPHY_FLAG_5704_A0;
2217 
2218 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2219 		mii_priv |= BRGPHY_FLAG_5906;
2220 
2221 	if (BGE_IS_5705_PLUS(sc) &&
2222 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2223 	    /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2224 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2225 	    /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2226 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2227 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2228 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2229 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2230 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2231 			if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2232 			    product != PCI_PRODUCT_BROADCOM_BCM5756)
2233 				mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2234 			if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2235 				mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2236 		} else {
2237 			mii_priv |= BRGPHY_FLAG_BER_BUG;
2238 		}
2239 	}
2240 
2241 	/*
2242 	 * Allocate interrupt
2243 	 */
2244 	msi_enable = bge_msi_enable;
2245 	if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2246 		/* If "tagged status" is disabled, don't enable MSI */
2247 		msi_enable = 0;
2248 	} else if (msi_enable) {
2249 		msi_enable = 0; /* Disable by default */
2250 		if (BGE_IS_575X_PLUS(sc)) {
2251 			msi_enable = 1;
2252 			/* XXX we filter all 5714 chips */
2253 			if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2254 			    (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2255 			     (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2256 			      sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2257 				msi_enable = 0;
2258 			else if (BGE_IS_5755_PLUS(sc) ||
2259 			    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2260 				sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2261 		}
2262 	}
2263 	if (msi_enable) {
2264 		if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2265 			device_printf(dev, "no MSI capability\n");
2266 			msi_enable = 0;
2267 		}
2268 	}
2269 
2270 	sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2271 	    &intr_flags);
2272 
2273 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2274 	    intr_flags);
2275 	if (sc->bge_irq == NULL) {
2276 		device_printf(dev, "couldn't map interrupt\n");
2277 		error = ENXIO;
2278 		goto fail;
2279 	}
2280 
2281 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2282 		bge_enable_msi(sc);
2283 	else
2284 		sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2285 
2286 	/* Initialize if_name earlier, so if_printf could be used */
2287 	ifp = &sc->arpcom.ac_if;
2288 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2289 
2290 	/* Try to reset the chip. */
2291 	bge_reset(sc);
2292 
2293 	if (bge_chipinit(sc)) {
2294 		device_printf(dev, "chip initialization failed\n");
2295 		error = ENXIO;
2296 		goto fail;
2297 	}
2298 
2299 	/*
2300 	 * Get station address
2301 	 */
2302 	error = bge_get_eaddr(sc, ether_addr);
2303 	if (error) {
2304 		device_printf(dev, "failed to read station address\n");
2305 		goto fail;
2306 	}
2307 
2308 	/* 5705/5750 limits RX return ring to 512 entries. */
2309 	if (BGE_IS_5705_PLUS(sc))
2310 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2311 	else
2312 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2313 
2314 	error = bge_dma_alloc(sc);
2315 	if (error)
2316 		goto fail;
2317 
2318 	/* Set default tuneable values. */
2319 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2320 	sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2321 	sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2322 	sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2323 	sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2324 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2325 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2326 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2327 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2328 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2329 	} else {
2330 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2331 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2332 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2333 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2334 	}
2335 	sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2336 
2337 	/* Set up TX spare and reserved descriptor count */
2338 	if (sc->bge_flags & BGE_FLAG_TSO) {
2339 		sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2340 		sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2341 	} else {
2342 		sc->bge_txspare = BGE_NSEG_SPARE;
2343 		sc->bge_txrsvd = BGE_NSEG_RSVD;
2344 	}
2345 
2346 	/* Set up ifnet structure */
2347 	ifp->if_softc = sc;
2348 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2349 	ifp->if_ioctl = bge_ioctl;
2350 	ifp->if_start = bge_start;
2351 #ifdef IFPOLL_ENABLE
2352 	ifp->if_npoll = bge_npoll;
2353 #endif
2354 	ifp->if_watchdog = bge_watchdog;
2355 	ifp->if_init = bge_init;
2356 	ifp->if_mtu = ETHERMTU;
2357 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2358 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2359 	ifq_set_ready(&ifp->if_snd);
2360 
2361 	/*
2362 	 * 5700 B0 chips do not support checksumming correctly due
2363 	 * to hardware bugs.
2364 	 */
2365 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2366 		ifp->if_capabilities |= IFCAP_HWCSUM;
2367 		ifp->if_hwassist |= BGE_CSUM_FEATURES;
2368 	}
2369 	if (sc->bge_flags & BGE_FLAG_TSO) {
2370 		ifp->if_capabilities |= IFCAP_TSO;
2371 		ifp->if_hwassist |= CSUM_TSO;
2372 	}
2373 	ifp->if_capenable = ifp->if_capabilities;
2374 
2375 	/*
2376 	 * Figure out what sort of media we have by checking the
2377 	 * hardware config word in the first 32k of NIC internal memory,
2378 	 * or fall back to examining the EEPROM if necessary.
2379 	 * Note: on some BCM5700 cards, this value appears to be unset.
2380 	 * If that's the case, we have to rely on identifying the NIC
2381 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2382 	 * SK-9D41.
2383 	 */
2384 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2385 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2386 	} else {
2387 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2388 				    sizeof(hwcfg))) {
2389 			device_printf(dev, "failed to read EEPROM\n");
2390 			error = ENXIO;
2391 			goto fail;
2392 		}
2393 		hwcfg = ntohl(hwcfg);
2394 	}
2395 
2396 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2397 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2398 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2399 		if (BGE_IS_5714_FAMILY(sc))
2400 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2401 		else
2402 			sc->bge_flags |= BGE_FLAG_TBI;
2403 	}
2404 
2405 	/* Setup MI MODE */
2406 	if (sc->bge_flags & BGE_FLAG_CPMU)
2407 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2408 	else
2409 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2410 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2411 		/* Enable auto polling for BCM570[0-5]. */
2412 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2413 	}
2414 
2415 	/* Setup link status update stuffs */
2416 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2417 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2418 		sc->bge_link_upd = bge_bcm5700_link_upd;
2419 		sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2420 	} else if (sc->bge_flags & BGE_FLAG_TBI) {
2421 		sc->bge_link_upd = bge_tbi_link_upd;
2422 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2423 	} else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2424 		sc->bge_link_upd = bge_autopoll_link_upd;
2425 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2426 	} else {
2427 		sc->bge_link_upd = bge_copper_link_upd;
2428 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2429 	}
2430 
2431 	/*
2432 	 * Broadcom's own driver always assumes the internal
2433 	 * PHY is at GMII address 1.  On some chips, the PHY responds
2434 	 * to accesses at all addresses, which could cause us to
2435 	 * bogusly attach the PHY 32 times at probe type.  Always
2436 	 * restricting the lookup to address 1 is simpler than
2437 	 * trying to figure out which chips revisions should be
2438 	 * special-cased.
2439 	 */
2440 	sc->bge_phyno = 1;
2441 
2442 	if (sc->bge_flags & BGE_FLAG_TBI) {
2443 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2444 		    bge_ifmedia_upd, bge_ifmedia_sts);
2445 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2446 		ifmedia_add(&sc->bge_ifmedia,
2447 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2448 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2449 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2450 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2451 	} else {
2452 		struct mii_probe_args mii_args;
2453 
2454 		mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2455 		mii_args.mii_probemask = 1 << sc->bge_phyno;
2456 		mii_args.mii_capmask = capmask;
2457 		mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2458 		mii_args.mii_priv = mii_priv;
2459 
2460 		error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2461 		if (error) {
2462 			device_printf(dev, "MII without any PHY!\n");
2463 			goto fail;
2464 		}
2465 	}
2466 
2467 	/*
2468 	 * Create sysctl nodes.
2469 	 */
2470 	sysctl_ctx_init(&sc->bge_sysctl_ctx);
2471 	sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2472 					      SYSCTL_STATIC_CHILDREN(_hw),
2473 					      OID_AUTO,
2474 					      device_get_nameunit(dev),
2475 					      CTLFLAG_RD, 0, "");
2476 	if (sc->bge_sysctl_tree == NULL) {
2477 		device_printf(dev, "can't add sysctl node\n");
2478 		error = ENXIO;
2479 		goto fail;
2480 	}
2481 
2482 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2483 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2484 			OID_AUTO, "rx_coal_ticks",
2485 			CTLTYPE_INT | CTLFLAG_RW,
2486 			sc, 0, bge_sysctl_rx_coal_ticks, "I",
2487 			"Receive coalescing ticks (usec).");
2488 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2489 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2490 			OID_AUTO, "tx_coal_ticks",
2491 			CTLTYPE_INT | CTLFLAG_RW,
2492 			sc, 0, bge_sysctl_tx_coal_ticks, "I",
2493 			"Transmit coalescing ticks (usec).");
2494 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2495 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2496 			OID_AUTO, "rx_coal_bds",
2497 			CTLTYPE_INT | CTLFLAG_RW,
2498 			sc, 0, bge_sysctl_rx_coal_bds, "I",
2499 			"Receive max coalesced BD count.");
2500 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2501 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2502 			OID_AUTO, "tx_coal_bds",
2503 			CTLTYPE_INT | CTLFLAG_RW,
2504 			sc, 0, bge_sysctl_tx_coal_bds, "I",
2505 			"Transmit max coalesced BD count.");
2506 
2507 	SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2508 		       SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2509 		       OID_AUTO, "tx_wreg", CTLFLAG_RW,
2510 		       &sc->bge_tx_wreg, 0,
2511 		       "# of segments before writing to hardware register");
2512 
2513 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2514 		/*
2515 		 * A common design characteristic for many Broadcom
2516 		 * client controllers is that they only support a
2517 		 * single outstanding DMA read operation on the PCIe
2518 		 * bus. This means that it will take twice as long to
2519 		 * fetch a TX frame that is split into header and
2520 		 * payload buffers as it does to fetch a single,
2521 		 * contiguous TX frame (2 reads vs. 1 read). For these
2522 		 * controllers, coalescing buffers to reduce the number
2523 		 * of memory reads is effective way to get maximum
2524 		 * performance(about 940Mbps).  Without collapsing TX
2525 		 * buffers the maximum TCP bulk transfer performance
2526 		 * is about 850Mbps. However forcing coalescing mbufs
2527 		 * consumes a lot of CPU cycles, so leave it off by
2528 		 * default.
2529 		 */
2530 		SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2531 			       SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2532 			       OID_AUTO, "force_defrag", CTLFLAG_RW,
2533 			       &sc->bge_force_defrag, 0,
2534 			       "Force defragment on TX path");
2535 	}
2536 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2537 		if (!BGE_IS_5705_PLUS(sc)) {
2538 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2539 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2540 			    "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2541 			    sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2542 			    "Receive coalescing ticks "
2543 			    "during interrupt (usec).");
2544 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2545 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2546 			    "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2547 			    sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2548 			    "Transmit coalescing ticks "
2549 			    "during interrupt (usec).");
2550 		}
2551 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2552 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2553 		    "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2554 		    sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2555 		    "Receive max coalesced BD count during interrupt.");
2556 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2557 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2558 		    "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2559 		    sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2560 		    "Transmit max coalesced BD count during interrupt.");
2561 	}
2562 
2563 	/*
2564 	 * Call MI attach routine.
2565 	 */
2566 	ether_ifattach(ifp, ether_addr, NULL);
2567 
2568 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2569 
2570 #ifdef IFPOLL_ENABLE
2571 	/* Polling setup */
2572 	ifpoll_compat_setup(&sc->bge_npoll,
2573 	    &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2574 	    ifp->if_serializer);
2575 #endif
2576 
2577 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2578 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2579 			intr_func = bge_msi_oneshot;
2580 			if (bootverbose)
2581 				device_printf(dev, "oneshot MSI\n");
2582 		} else {
2583 			intr_func = bge_msi;
2584 		}
2585 	} else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2586 		intr_func = bge_intr_legacy;
2587 	} else {
2588 		intr_func = bge_intr_crippled;
2589 	}
2590 	error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2591 	    &sc->bge_intrhand, ifp->if_serializer);
2592 	if (error) {
2593 		ether_ifdetach(ifp);
2594 		device_printf(dev, "couldn't set up irq\n");
2595 		goto fail;
2596 	}
2597 
2598 	return(0);
2599 fail:
2600 	bge_detach(dev);
2601 	return(error);
2602 }
2603 
2604 static int
2605 bge_detach(device_t dev)
2606 {
2607 	struct bge_softc *sc = device_get_softc(dev);
2608 
2609 	if (device_is_attached(dev)) {
2610 		struct ifnet *ifp = &sc->arpcom.ac_if;
2611 
2612 		lwkt_serialize_enter(ifp->if_serializer);
2613 		bge_stop(sc);
2614 		bge_reset(sc);
2615 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2616 		lwkt_serialize_exit(ifp->if_serializer);
2617 
2618 		ether_ifdetach(ifp);
2619 	}
2620 
2621 	if (sc->bge_flags & BGE_FLAG_TBI)
2622 		ifmedia_removeall(&sc->bge_ifmedia);
2623 	if (sc->bge_miibus)
2624 		device_delete_child(dev, sc->bge_miibus);
2625 	bus_generic_detach(dev);
2626 
2627 	if (sc->bge_irq != NULL) {
2628 		bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2629 		    sc->bge_irq);
2630 	}
2631 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2632 		pci_release_msi(dev);
2633 
2634 	if (sc->bge_res != NULL) {
2635 		bus_release_resource(dev, SYS_RES_MEMORY,
2636 		    BGE_PCI_BAR0, sc->bge_res);
2637 	}
2638 
2639 	if (sc->bge_sysctl_tree != NULL)
2640 		sysctl_ctx_free(&sc->bge_sysctl_ctx);
2641 
2642 	bge_dma_free(sc);
2643 
2644 	return 0;
2645 }
2646 
2647 static void
2648 bge_reset(struct bge_softc *sc)
2649 {
2650 	device_t dev;
2651 	uint32_t cachesize, command, pcistate, reset;
2652 	void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2653 	int i, val = 0;
2654 
2655 	dev = sc->bge_dev;
2656 
2657 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2658 	    sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2659 		if (sc->bge_flags & BGE_FLAG_PCIE)
2660 			write_op = bge_writemem_direct;
2661 		else
2662 			write_op = bge_writemem_ind;
2663 	} else {
2664 		write_op = bge_writereg_ind;
2665 	}
2666 
2667 	/* Save some important PCI state. */
2668 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2669 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2670 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2671 
2672 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2673 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2674 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2675 	    sc->bge_pci_miscctl, 4);
2676 
2677 	/* Disable fastboot on controllers that support it. */
2678 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2679 	    BGE_IS_5755_PLUS(sc)) {
2680 		if (bootverbose)
2681 			if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2682 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2683 	}
2684 
2685 	/*
2686 	 * Write the magic number to SRAM at offset 0xB50.
2687 	 * When firmware finishes its initialization it will
2688 	 * write ~BGE_MAGIC_NUMBER to the same location.
2689 	 */
2690 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2691 
2692 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2693 
2694 	/* XXX: Broadcom Linux driver. */
2695 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2696 		/* Force PCI-E 1.0a mode */
2697 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2698 		    CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2699 		    (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2700 		     BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2701 			CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2702 			    BGE_PCIE_PHY_TSTCTL_PSCRAM);
2703 		}
2704 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2705 			/* Prevent PCIE link training during global reset */
2706 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2707 			reset |= (1<<29);
2708 		}
2709 	}
2710 
2711 	/*
2712 	 * Set GPHY Power Down Override to leave GPHY
2713 	 * powered up in D0 uninitialized.
2714 	 */
2715 	if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2716 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2717 
2718 	/* Issue global reset */
2719 	write_op(sc, BGE_MISC_CFG, reset);
2720 
2721 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2722 		uint32_t status, ctrl;
2723 
2724 		status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2725 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2726 		    status | BGE_VCPU_STATUS_DRV_RESET);
2727 		ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2728 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2729 		    ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2730 	}
2731 
2732 	DELAY(1000);
2733 
2734 	/* XXX: Broadcom Linux driver. */
2735 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2736 		uint16_t devctl;
2737 
2738 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2739 			uint32_t v;
2740 
2741 			DELAY(500000); /* wait for link training to complete */
2742 			v = pci_read_config(dev, 0xc4, 4);
2743 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
2744 		}
2745 
2746 		devctl = pci_read_config(dev,
2747 		    sc->bge_pciecap + PCIER_DEVCTRL, 2);
2748 
2749 		/* Disable no snoop and disable relaxed ordering. */
2750 		devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2751 
2752 		/* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2753 		if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2754 			devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2755 			devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2756 		}
2757 
2758 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2759 		    devctl, 2);
2760 
2761 		/* Clear error status. */
2762 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2763 		    PCIEM_DEVSTS_CORR_ERR |
2764 		    PCIEM_DEVSTS_NFATAL_ERR |
2765 		    PCIEM_DEVSTS_FATAL_ERR |
2766 		    PCIEM_DEVSTS_UNSUPP_REQ, 2);
2767 	}
2768 
2769 	/* Reset some of the PCI state that got zapped by reset */
2770 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2771 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2772 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2773 	    sc->bge_pci_miscctl, 4);
2774 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2775 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2776 	write_op(sc, BGE_MISC_CFG, (65 << 1));
2777 
2778 	/*
2779 	 * Disable PCI-X relaxed ordering to ensure status block update
2780 	 * comes first then packet buffer DMA. Otherwise driver may
2781 	 * read stale status block.
2782 	 */
2783 	if (sc->bge_flags & BGE_FLAG_PCIX) {
2784 		uint16_t devctl;
2785 
2786 		devctl = pci_read_config(dev,
2787 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
2788 		devctl &= ~PCIXM_COMMAND_ERO;
2789 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2790 			devctl &= ~PCIXM_COMMAND_MAX_READ;
2791 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2792 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2793 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2794 			    PCIXM_COMMAND_MAX_READ);
2795 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2796 		}
2797 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2798 		    devctl, 2);
2799 	}
2800 
2801 	/*
2802 	 * Enable memory arbiter and re-enable MSI if necessary.
2803 	 */
2804 	if (BGE_IS_5714_FAMILY(sc)) {
2805 		uint32_t val;
2806 
2807 		if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2808 			/*
2809 			 * Resetting BCM5714 family will clear MSI
2810 			 * enable bit; restore it after resetting.
2811 			 */
2812 			PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2813 			    PCIM_MSICTRL_MSI_ENABLE, 2);
2814 			BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2815 		}
2816 		val = CSR_READ_4(sc, BGE_MARB_MODE);
2817 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2818 	} else {
2819 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2820 	}
2821 
2822 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2823 		for (i = 0; i < BGE_TIMEOUT; i++) {
2824 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2825 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2826 				break;
2827 			DELAY(100);
2828 		}
2829 		if (i == BGE_TIMEOUT) {
2830 			if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2831 			return;
2832 		}
2833 	} else {
2834 		/*
2835 		 * Poll until we see the 1's complement of the magic number.
2836 		 * This indicates that the firmware initialization
2837 		 * is complete.
2838 		 */
2839 		for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2840 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2841 			if (val == ~BGE_MAGIC_NUMBER)
2842 				break;
2843 			DELAY(10);
2844 		}
2845 		if (i == BGE_FIRMWARE_TIMEOUT) {
2846 			if_printf(&sc->arpcom.ac_if, "firmware handshake "
2847 				  "timed out, found 0x%08x\n", val);
2848 		}
2849 	}
2850 
2851 	/*
2852 	 * XXX Wait for the value of the PCISTATE register to
2853 	 * return to its original pre-reset state. This is a
2854 	 * fairly good indicator of reset completion. If we don't
2855 	 * wait for the reset to fully complete, trying to read
2856 	 * from the device's non-PCI registers may yield garbage
2857 	 * results.
2858 	 */
2859 	for (i = 0; i < BGE_TIMEOUT; i++) {
2860 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2861 			break;
2862 		DELAY(10);
2863 	}
2864 
2865 	/* Fix up byte swapping */
2866 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2867 	    BGE_MODECTL_BYTESWAP_DATA);
2868 
2869 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2870 
2871 	/*
2872 	 * The 5704 in TBI mode apparently needs some special
2873 	 * adjustment to insure the SERDES drive level is set
2874 	 * to 1.2V.
2875 	 */
2876 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2877 	    (sc->bge_flags & BGE_FLAG_TBI)) {
2878 		uint32_t serdescfg;
2879 
2880 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2881 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
2882 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2883 	}
2884 
2885 	/* XXX: Broadcom Linux driver. */
2886 	if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2887 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2888 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2889 		uint32_t v;
2890 
2891 		/* Enable Data FIFO protection. */
2892 		v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2893 		CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2894 	}
2895 
2896 	DELAY(10000);
2897 }
2898 
2899 /*
2900  * Frame reception handling. This is called if there's a frame
2901  * on the receive return list.
2902  *
2903  * Note: we have to be able to handle two possibilities here:
2904  * 1) the frame is from the jumbo recieve ring
2905  * 2) the frame is from the standard receive ring
2906  */
2907 
2908 static void
2909 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
2910 {
2911 	struct ifnet *ifp;
2912 	int stdcnt = 0, jumbocnt = 0;
2913 
2914 	ifp = &sc->arpcom.ac_if;
2915 
2916 	while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
2917 		struct bge_rx_bd	*cur_rx;
2918 		uint32_t		rxidx;
2919 		struct mbuf		*m = NULL;
2920 		uint16_t		vlan_tag = 0;
2921 		int			have_tag = 0;
2922 
2923 		--count;
2924 
2925 		cur_rx =
2926 	    &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2927 
2928 		rxidx = cur_rx->bge_idx;
2929 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2930 		logif(rx_pkt);
2931 
2932 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2933 			have_tag = 1;
2934 			vlan_tag = cur_rx->bge_vlan_tag;
2935 		}
2936 
2937 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2938 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2939 			jumbocnt++;
2940 
2941 			if (rxidx != sc->bge_jumbo) {
2942 				IFNET_STAT_INC(ifp, ierrors, 1);
2943 				if_printf(ifp, "sw jumbo index(%d) "
2944 				    "and hw jumbo index(%d) mismatch, drop!\n",
2945 				    sc->bge_jumbo, rxidx);
2946 				bge_setup_rxdesc_jumbo(sc, rxidx);
2947 				continue;
2948 			}
2949 
2950 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2951 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2952 				IFNET_STAT_INC(ifp, ierrors, 1);
2953 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2954 				continue;
2955 			}
2956 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2957 				IFNET_STAT_INC(ifp, ierrors, 1);
2958 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2959 				continue;
2960 			}
2961 		} else {
2962 			int discard = 0;
2963 
2964 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2965 			stdcnt++;
2966 
2967 			if (rxidx != sc->bge_std) {
2968 				IFNET_STAT_INC(ifp, ierrors, 1);
2969 				if_printf(ifp, "sw std index(%d) "
2970 				    "and hw std index(%d) mismatch, drop!\n",
2971 				    sc->bge_std, rxidx);
2972 				bge_setup_rxdesc_std(sc, rxidx);
2973 				discard = 1;
2974 				goto refresh_rx;
2975 			}
2976 
2977 			m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2978 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2979 				IFNET_STAT_INC(ifp, ierrors, 1);
2980 				bge_setup_rxdesc_std(sc, sc->bge_std);
2981 				discard = 1;
2982 				goto refresh_rx;
2983 			}
2984 			if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2985 				IFNET_STAT_INC(ifp, ierrors, 1);
2986 				bge_setup_rxdesc_std(sc, sc->bge_std);
2987 				discard = 1;
2988 			}
2989 refresh_rx:
2990 			if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
2991 				bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
2992 				    sc->bge_std);
2993 				stdcnt = 0;
2994 			}
2995 			if (discard)
2996 				continue;
2997 		}
2998 
2999 		IFNET_STAT_INC(ifp, ipackets, 1);
3000 #if !defined(__i386__) && !defined(__x86_64__)
3001 		/*
3002 		 * The x86 allows unaligned accesses, but for other
3003 		 * platforms we must make sure the payload is aligned.
3004 		 */
3005 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3006 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3007 			    cur_rx->bge_len);
3008 			m->m_data += ETHER_ALIGN;
3009 		}
3010 #endif
3011 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3012 		m->m_pkthdr.rcvif = ifp;
3013 
3014 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3015 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3016 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3017 				if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3018 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3019 			}
3020 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3021 			    m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3022 				m->m_pkthdr.csum_data =
3023 					cur_rx->bge_tcp_udp_csum;
3024 				m->m_pkthdr.csum_flags |=
3025 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3026 			}
3027 		}
3028 
3029 		/*
3030 		 * If we received a packet with a vlan tag, pass it
3031 		 * to vlan_input() instead of ether_input().
3032 		 */
3033 		if (have_tag) {
3034 			m->m_flags |= M_VLANTAG;
3035 			m->m_pkthdr.ether_vlantag = vlan_tag;
3036 		}
3037 		ifp->if_input(ifp, m);
3038 	}
3039 
3040 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3041 	if (stdcnt)
3042 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3043 	if (jumbocnt)
3044 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3045 }
3046 
3047 static void
3048 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3049 {
3050 	struct ifnet *ifp;
3051 
3052 	ifp = &sc->arpcom.ac_if;
3053 
3054 	/*
3055 	 * Go through our tx ring and free mbufs for those
3056 	 * frames that have been sent.
3057 	 */
3058 	while (sc->bge_tx_saved_considx != tx_cons) {
3059 		uint32_t idx = 0;
3060 
3061 		idx = sc->bge_tx_saved_considx;
3062 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3063 			IFNET_STAT_INC(ifp, opackets, 1);
3064 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3065 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3066 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3067 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3068 		}
3069 		sc->bge_txcnt--;
3070 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3071 		logif(tx_pkt);
3072 	}
3073 
3074 	if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3075 	    (sc->bge_txrsvd + sc->bge_txspare))
3076 		ifq_clr_oactive(&ifp->if_snd);
3077 
3078 	if (sc->bge_txcnt == 0)
3079 		ifp->if_timer = 0;
3080 
3081 	if (!ifq_is_empty(&ifp->if_snd))
3082 		if_devstart(ifp);
3083 }
3084 
3085 #ifdef IFPOLL_ENABLE
3086 
3087 static void
3088 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3089 {
3090 	struct bge_softc *sc = ifp->if_softc;
3091 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3092 	uint16_t rx_prod, tx_cons;
3093 
3094 	ASSERT_SERIALIZED(ifp->if_serializer);
3095 
3096 	if (sc->bge_npoll.ifpc_stcount-- == 0) {
3097 		sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3098 		/*
3099 		 * Process link state changes.
3100 		 */
3101 		bge_link_poll(sc);
3102 	}
3103 
3104 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3105 		sc->bge_status_tag = sblk->bge_status_tag;
3106 		/*
3107 		 * Use a load fence to ensure that status_tag
3108 		 * is saved  before rx_prod and tx_cons.
3109 		 */
3110 		cpu_lfence();
3111 	}
3112 
3113 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3114 	if (sc->bge_rx_saved_considx != rx_prod)
3115 		bge_rxeof(sc, rx_prod, cycles);
3116 
3117 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3118 	if (sc->bge_tx_saved_considx != tx_cons)
3119 		bge_txeof(sc, tx_cons);
3120 
3121 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3122 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3123 
3124 	if (sc->bge_coal_chg)
3125 		bge_coal_change(sc);
3126 }
3127 
3128 static void
3129 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3130 {
3131 	struct bge_softc *sc = ifp->if_softc;
3132 
3133 	ASSERT_SERIALIZED(ifp->if_serializer);
3134 
3135 	if (info != NULL) {
3136 		int cpuid = sc->bge_npoll.ifpc_cpuid;
3137 
3138 		info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3139 		info->ifpi_rx[cpuid].arg = NULL;
3140 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3141 
3142 		if (ifp->if_flags & IFF_RUNNING)
3143 			bge_disable_intr(sc);
3144 		ifq_set_cpuid(&ifp->if_snd, cpuid);
3145 	} else {
3146 		if (ifp->if_flags & IFF_RUNNING)
3147 			bge_enable_intr(sc);
3148 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3149 	}
3150 }
3151 
3152 #endif	/* IFPOLL_ENABLE */
3153 
3154 static void
3155 bge_intr_crippled(void *xsc)
3156 {
3157 	struct bge_softc *sc = xsc;
3158 	struct ifnet *ifp = &sc->arpcom.ac_if;
3159 
3160 	logif(intr);
3161 
3162  	/*
3163 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3164 	 * disable interrupts by writing nonzero like we used to, since with
3165 	 * our current organization this just gives complications and
3166 	 * pessimizations for re-enabling interrupts.  We used to have races
3167 	 * instead of the necessary complications.  Disabling interrupts
3168 	 * would just reduce the chance of a status update while we are
3169 	 * running (by switching to the interrupt-mode coalescence
3170 	 * parameters), but this chance is already very low so it is more
3171 	 * efficient to get another interrupt than prevent it.
3172 	 *
3173 	 * We do the ack first to ensure another interrupt if there is a
3174 	 * status update after the ack.  We don't check for the status
3175 	 * changing later because it is more efficient to get another
3176 	 * interrupt than prevent it, not quite as above (not checking is
3177 	 * a smaller optimization than not toggling the interrupt enable,
3178 	 * since checking doesn't involve PCI accesses and toggling require
3179 	 * the status check).  So toggling would probably be a pessimization
3180 	 * even with MSI.  It would only be needed for using a task queue.
3181 	 */
3182 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3183 
3184 	/*
3185 	 * Process link state changes.
3186 	 */
3187 	bge_link_poll(sc);
3188 
3189 	if (ifp->if_flags & IFF_RUNNING) {
3190 		struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3191 		uint16_t rx_prod, tx_cons;
3192 
3193 		rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3194 		if (sc->bge_rx_saved_considx != rx_prod)
3195 			bge_rxeof(sc, rx_prod, -1);
3196 
3197 		tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3198 		if (sc->bge_tx_saved_considx != tx_cons)
3199 			bge_txeof(sc, tx_cons);
3200 	}
3201 
3202 	if (sc->bge_coal_chg)
3203 		bge_coal_change(sc);
3204 }
3205 
3206 static void
3207 bge_intr_legacy(void *xsc)
3208 {
3209 	struct bge_softc *sc = xsc;
3210 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3211 
3212 	if (sc->bge_status_tag == sblk->bge_status_tag) {
3213 		uint32_t val;
3214 
3215 		val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3216 		if (val & BGE_PCISTAT_INTR_NOTACT)
3217 			return;
3218 	}
3219 
3220 	/*
3221 	 * NOTE:
3222 	 * Interrupt will have to be disabled if tagged status
3223 	 * is used, else interrupt will always be asserted on
3224 	 * certain chips (at least on BCM5750 AX/BX).
3225 	 */
3226 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3227 
3228 	bge_intr(sc);
3229 }
3230 
3231 static void
3232 bge_msi(void *xsc)
3233 {
3234 	struct bge_softc *sc = xsc;
3235 
3236 	/* Disable interrupt first */
3237 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3238 	bge_intr(sc);
3239 }
3240 
3241 static void
3242 bge_msi_oneshot(void *xsc)
3243 {
3244 	bge_intr(xsc);
3245 }
3246 
3247 static void
3248 bge_intr(struct bge_softc *sc)
3249 {
3250 	struct ifnet *ifp = &sc->arpcom.ac_if;
3251 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3252 	uint16_t rx_prod, tx_cons;
3253 	uint32_t status;
3254 
3255 	sc->bge_status_tag = sblk->bge_status_tag;
3256 	/*
3257 	 * Use a load fence to ensure that status_tag is saved
3258 	 * before rx_prod, tx_cons and status.
3259 	 */
3260 	cpu_lfence();
3261 
3262 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3263 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3264 	status = sblk->bge_status;
3265 
3266 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3267 		bge_link_poll(sc);
3268 
3269 	if (ifp->if_flags & IFF_RUNNING) {
3270 		if (sc->bge_rx_saved_considx != rx_prod)
3271 			bge_rxeof(sc, rx_prod, -1);
3272 
3273 		if (sc->bge_tx_saved_considx != tx_cons)
3274 			bge_txeof(sc, tx_cons);
3275 	}
3276 
3277 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3278 
3279 	if (sc->bge_coal_chg)
3280 		bge_coal_change(sc);
3281 }
3282 
3283 static void
3284 bge_tick(void *xsc)
3285 {
3286 	struct bge_softc *sc = xsc;
3287 	struct ifnet *ifp = &sc->arpcom.ac_if;
3288 
3289 	lwkt_serialize_enter(ifp->if_serializer);
3290 
3291 	if (BGE_IS_5705_PLUS(sc))
3292 		bge_stats_update_regs(sc);
3293 	else
3294 		bge_stats_update(sc);
3295 
3296 	if (sc->bge_flags & BGE_FLAG_TBI) {
3297 		/*
3298 		 * Since in TBI mode auto-polling can't be used we should poll
3299 		 * link status manually. Here we register pending link event
3300 		 * and trigger interrupt.
3301 		 */
3302 		sc->bge_link_evt++;
3303 		if (BGE_IS_CRIPPLED(sc))
3304 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3305 		else
3306 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3307 	} else if (!sc->bge_link) {
3308 		mii_tick(device_get_softc(sc->bge_miibus));
3309 	}
3310 
3311 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3312 
3313 	lwkt_serialize_exit(ifp->if_serializer);
3314 }
3315 
3316 static void
3317 bge_stats_update_regs(struct bge_softc *sc)
3318 {
3319 	struct ifnet *ifp = &sc->arpcom.ac_if;
3320 	struct bge_mac_stats_regs stats;
3321 	uint32_t *s;
3322 	int i;
3323 
3324 	s = (uint32_t *)&stats;
3325 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3326 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
3327 		s++;
3328 	}
3329 
3330 	IFNET_STAT_SET(ifp, collisions,
3331 	   (stats.dot3StatsSingleCollisionFrames +
3332 	   stats.dot3StatsMultipleCollisionFrames +
3333 	   stats.dot3StatsExcessiveCollisions +
3334 	   stats.dot3StatsLateCollisions));
3335 }
3336 
3337 static void
3338 bge_stats_update(struct bge_softc *sc)
3339 {
3340 	struct ifnet *ifp = &sc->arpcom.ac_if;
3341 	bus_size_t stats;
3342 
3343 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3344 
3345 #define READ_STAT(sc, stats, stat)	\
3346 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3347 
3348 	IFNET_STAT_SET(ifp, collisions,
3349 	   (READ_STAT(sc, stats,
3350 		txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3351 	    READ_STAT(sc, stats,
3352 		txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3353 	    READ_STAT(sc, stats,
3354 		txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3355 	    READ_STAT(sc, stats,
3356 		txstats.dot3StatsLateCollisions.bge_addr_lo)));
3357 
3358 #undef READ_STAT
3359 
3360 #ifdef notdef
3361 	IFNET_STAT_SET(ifp, collisions,
3362 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3363 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3364 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3365 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3366 #endif
3367 }
3368 
3369 /*
3370  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3371  * pointers to descriptors.
3372  */
3373 static int
3374 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3375     int *segs_used)
3376 {
3377 	struct bge_tx_bd *d = NULL, *last_d;
3378 	uint16_t csum_flags = 0, mss = 0;
3379 	bus_dma_segment_t segs[BGE_NSEG_NEW];
3380 	bus_dmamap_t map;
3381 	int error, maxsegs, nsegs, idx, i;
3382 	struct mbuf *m_head = *m_head0, *m_new;
3383 
3384 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3385 		error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3386 		if (error)
3387 			return ENOBUFS;
3388 		m_head = *m_head0;
3389 	} else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3390 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3391 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3392 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3393 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3394 		if (m_head->m_flags & M_LASTFRAG)
3395 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3396 		else if (m_head->m_flags & M_FRAG)
3397 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3398 	}
3399 
3400 	idx = *txidx;
3401 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3402 
3403 	maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3404 	KASSERT(maxsegs >= sc->bge_txspare,
3405 		("not enough segments %d", maxsegs));
3406 
3407 	if (maxsegs > BGE_NSEG_NEW)
3408 		maxsegs = BGE_NSEG_NEW;
3409 
3410 	/*
3411 	 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3412 	 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3413 	 * but when such padded frames employ the bge IP/TCP checksum
3414 	 * offload, the hardware checksum assist gives incorrect results
3415 	 * (possibly from incorporating its own padding into the UDP/TCP
3416 	 * checksum; who knows).  If we pad such runts with zeros, the
3417 	 * onboard checksum comes out correct.
3418 	 */
3419 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3420 	    m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3421 		error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3422 		if (error)
3423 			goto back;
3424 	}
3425 
3426 	if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3427 		m_new = bge_defrag_shortdma(m_head);
3428 		if (m_new == NULL) {
3429 			error = ENOBUFS;
3430 			goto back;
3431 		}
3432 		*m_head0 = m_head = m_new;
3433 	}
3434 	if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3435 	    sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3436 	    m_head->m_next != NULL) {
3437 		/*
3438 		 * Forcefully defragment mbuf chain to overcome hardware
3439 		 * limitation which only support a single outstanding
3440 		 * DMA read operation.  If it fails, keep moving on using
3441 		 * the original mbuf chain.
3442 		 */
3443 		m_new = m_defrag(m_head, MB_DONTWAIT);
3444 		if (m_new != NULL)
3445 			*m_head0 = m_head = m_new;
3446 	}
3447 
3448 	error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3449 			m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3450 	if (error)
3451 		goto back;
3452 	*segs_used += nsegs;
3453 
3454 	m_head = *m_head0;
3455 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3456 
3457 	for (i = 0; ; i++) {
3458 		d = &sc->bge_ldata.bge_tx_ring[idx];
3459 
3460 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3461 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3462 		d->bge_len = segs[i].ds_len;
3463 		d->bge_flags = csum_flags;
3464 		d->bge_mss = mss;
3465 
3466 		if (i == nsegs - 1)
3467 			break;
3468 		BGE_INC(idx, BGE_TX_RING_CNT);
3469 	}
3470 	last_d = d;
3471 
3472 	/* Set vlan tag to the first segment of the packet. */
3473 	d = &sc->bge_ldata.bge_tx_ring[*txidx];
3474 	if (m_head->m_flags & M_VLANTAG) {
3475 		d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3476 		d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3477 	} else {
3478 		d->bge_vlan_tag = 0;
3479 	}
3480 
3481 	/* Mark the last segment as end of packet... */
3482 	last_d->bge_flags |= BGE_TXBDFLAG_END;
3483 
3484 	/*
3485 	 * Insure that the map for this transmission is placed at
3486 	 * the array index of the last descriptor in this chain.
3487 	 */
3488 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3489 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3490 	sc->bge_cdata.bge_tx_chain[idx] = m_head;
3491 	sc->bge_txcnt += nsegs;
3492 
3493 	BGE_INC(idx, BGE_TX_RING_CNT);
3494 	*txidx = idx;
3495 back:
3496 	if (error) {
3497 		m_freem(*m_head0);
3498 		*m_head0 = NULL;
3499 	}
3500 	return error;
3501 }
3502 
3503 static void
3504 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3505 {
3506 	/* Transmit */
3507 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3508 	/* 5700 b2 errata */
3509 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3510 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3511 }
3512 
3513 /*
3514  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3515  * to the mbuf data regions directly in the transmit descriptors.
3516  */
3517 static void
3518 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3519 {
3520 	struct bge_softc *sc = ifp->if_softc;
3521 	struct mbuf *m_head = NULL;
3522 	uint32_t prodidx;
3523 	int nsegs = 0;
3524 
3525 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3526 
3527 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3528 		return;
3529 
3530 	prodidx = sc->bge_tx_prodidx;
3531 
3532 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3533 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
3534 		if (m_head == NULL)
3535 			break;
3536 
3537 		/*
3538 		 * XXX
3539 		 * The code inside the if() block is never reached since we
3540 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3541 		 * requests to checksum TCP/UDP in a fragmented packet.
3542 		 *
3543 		 * XXX
3544 		 * safety overkill.  If this is a fragmented packet chain
3545 		 * with delayed TCP/UDP checksums, then only encapsulate
3546 		 * it if we have enough descriptors to handle the entire
3547 		 * chain at once.
3548 		 * (paranoia -- may not actually be needed)
3549 		 */
3550 		if ((m_head->m_flags & M_FIRSTFRAG) &&
3551 		    (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3552 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3553 			    m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3554 				ifq_set_oactive(&ifp->if_snd);
3555 				ifq_prepend(&ifp->if_snd, m_head);
3556 				break;
3557 			}
3558 		}
3559 
3560 		/*
3561 		 * Sanity check: avoid coming within bge_txrsvd
3562 		 * descriptors of the end of the ring.  Also make
3563 		 * sure there are bge_txspare descriptors for
3564 		 * jumbo buffers' defragmentation.
3565 		 */
3566 		if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3567 		    (sc->bge_txrsvd + sc->bge_txspare)) {
3568 			ifq_set_oactive(&ifp->if_snd);
3569 			ifq_prepend(&ifp->if_snd, m_head);
3570 			break;
3571 		}
3572 
3573 		/*
3574 		 * Pack the data into the transmit ring. If we
3575 		 * don't have room, set the OACTIVE flag and wait
3576 		 * for the NIC to drain the ring.
3577 		 */
3578 		if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3579 			ifq_set_oactive(&ifp->if_snd);
3580 			IFNET_STAT_INC(ifp, oerrors, 1);
3581 			break;
3582 		}
3583 
3584 		if (nsegs >= sc->bge_tx_wreg) {
3585 			bge_xmit(sc, prodidx);
3586 			nsegs = 0;
3587 		}
3588 
3589 		ETHER_BPF_MTAP(ifp, m_head);
3590 
3591 		/*
3592 		 * Set a timeout in case the chip goes out to lunch.
3593 		 */
3594 		ifp->if_timer = 5;
3595 	}
3596 
3597 	if (nsegs > 0)
3598 		bge_xmit(sc, prodidx);
3599 	sc->bge_tx_prodidx = prodidx;
3600 }
3601 
3602 static void
3603 bge_init(void *xsc)
3604 {
3605 	struct bge_softc *sc = xsc;
3606 	struct ifnet *ifp = &sc->arpcom.ac_if;
3607 	uint16_t *m;
3608 	uint32_t mode;
3609 
3610 	ASSERT_SERIALIZED(ifp->if_serializer);
3611 
3612 	/* Cancel pending I/O and flush buffers. */
3613 	bge_stop(sc);
3614 	bge_reset(sc);
3615 	bge_chipinit(sc);
3616 
3617 	/*
3618 	 * Init the various state machines, ring
3619 	 * control blocks and firmware.
3620 	 */
3621 	if (bge_blockinit(sc)) {
3622 		if_printf(ifp, "initialization failure\n");
3623 		bge_stop(sc);
3624 		return;
3625 	}
3626 
3627 	/* Specify MTU. */
3628 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3629 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3630 
3631 	/* Load our MAC address. */
3632 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3633 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3634 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3635 
3636 	/* Enable or disable promiscuous mode as needed. */
3637 	bge_setpromisc(sc);
3638 
3639 	/* Program multicast filter. */
3640 	bge_setmulti(sc);
3641 
3642 	/* Init RX ring. */
3643 	if (bge_init_rx_ring_std(sc)) {
3644 		if_printf(ifp, "RX ring initialization failed\n");
3645 		bge_stop(sc);
3646 		return;
3647 	}
3648 
3649 	/*
3650 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3651 	 * memory to insure that the chip has in fact read the first
3652 	 * entry of the ring.
3653 	 */
3654 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3655 		uint32_t		v, i;
3656 		for (i = 0; i < 10; i++) {
3657 			DELAY(20);
3658 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3659 			if (v == (MCLBYTES - ETHER_ALIGN))
3660 				break;
3661 		}
3662 		if (i == 10)
3663 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3664 	}
3665 
3666 	/* Init jumbo RX ring. */
3667 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3668 		if (bge_init_rx_ring_jumbo(sc)) {
3669 			if_printf(ifp, "Jumbo RX ring initialization failed\n");
3670 			bge_stop(sc);
3671 			return;
3672 		}
3673 	}
3674 
3675 	/* Init our RX return ring index */
3676 	sc->bge_rx_saved_considx = 0;
3677 
3678 	/* Init TX ring. */
3679 	bge_init_tx_ring(sc);
3680 
3681 	/* Enable TX MAC state machine lockup fix. */
3682 	mode = CSR_READ_4(sc, BGE_TX_MODE);
3683 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3684 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3685 	/* Turn on transmitter */
3686 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3687 
3688 	/* Turn on receiver */
3689 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3690 
3691 	/*
3692 	 * Set the number of good frames to receive after RX MBUF
3693 	 * Low Watermark has been reached.  After the RX MAC receives
3694 	 * this number of frames, it will drop subsequent incoming
3695 	 * frames until the MBUF High Watermark is reached.
3696 	 */
3697 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3698 
3699 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3700 		if (bootverbose) {
3701 			if_printf(ifp, "MSI_MODE: %#x\n",
3702 			    CSR_READ_4(sc, BGE_MSI_MODE));
3703 		}
3704 
3705 		/*
3706 		 * XXX
3707 		 * Linux driver turns it on for all chips supporting MSI?!
3708 		 */
3709 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3710 			/*
3711 			 * XXX
3712 			 * According to 5722-PG101-R,
3713 			 * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3714 			 * BCM5906.
3715 			 */
3716 			BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3717 			    BGE_PCIE_TRANSACT_ONESHOT_MSI);
3718 		}
3719 	}
3720 
3721 	/* Tell firmware we're alive. */
3722 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3723 
3724 	/* Enable host interrupts if polling(4) is not enabled. */
3725 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3726 #ifdef IFPOLL_ENABLE
3727 	if (ifp->if_flags & IFF_NPOLLING)
3728 		bge_disable_intr(sc);
3729 	else
3730 #endif
3731 	bge_enable_intr(sc);
3732 
3733 	bge_ifmedia_upd(ifp);
3734 
3735 	ifp->if_flags |= IFF_RUNNING;
3736 	ifq_clr_oactive(&ifp->if_snd);
3737 
3738 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3739 }
3740 
3741 /*
3742  * Set media options.
3743  */
3744 static int
3745 bge_ifmedia_upd(struct ifnet *ifp)
3746 {
3747 	struct bge_softc *sc = ifp->if_softc;
3748 
3749 	/* If this is a 1000baseX NIC, enable the TBI port. */
3750 	if (sc->bge_flags & BGE_FLAG_TBI) {
3751 		struct ifmedia *ifm = &sc->bge_ifmedia;
3752 
3753 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3754 			return(EINVAL);
3755 
3756 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3757 		case IFM_AUTO:
3758 			/*
3759 			 * The BCM5704 ASIC appears to have a special
3760 			 * mechanism for programming the autoneg
3761 			 * advertisement registers in TBI mode.
3762 			 */
3763 			if (!bge_fake_autoneg &&
3764 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3765 				uint32_t sgdig;
3766 
3767 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3768 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3769 				sgdig |= BGE_SGDIGCFG_AUTO |
3770 					 BGE_SGDIGCFG_PAUSE_CAP |
3771 					 BGE_SGDIGCFG_ASYM_PAUSE;
3772 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3773 					    sgdig | BGE_SGDIGCFG_SEND);
3774 				DELAY(5);
3775 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3776 			}
3777 			break;
3778 		case IFM_1000_SX:
3779 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3780 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3781 				    BGE_MACMODE_HALF_DUPLEX);
3782 			} else {
3783 				BGE_SETBIT(sc, BGE_MAC_MODE,
3784 				    BGE_MACMODE_HALF_DUPLEX);
3785 			}
3786 			break;
3787 		default:
3788 			return(EINVAL);
3789 		}
3790 	} else {
3791 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3792 
3793 		sc->bge_link_evt++;
3794 		sc->bge_link = 0;
3795 		if (mii->mii_instance) {
3796 			struct mii_softc *miisc;
3797 
3798 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3799 				mii_phy_reset(miisc);
3800 		}
3801 		mii_mediachg(mii);
3802 
3803 		/*
3804 		 * Force an interrupt so that we will call bge_link_upd
3805 		 * if needed and clear any pending link state attention.
3806 		 * Without this we are not getting any further interrupts
3807 		 * for link state changes and thus will not UP the link and
3808 		 * not be able to send in bge_start.  The only way to get
3809 		 * things working was to receive a packet and get an RX
3810 		 * intr.
3811 		 *
3812 		 * bge_tick should help for fiber cards and we might not
3813 		 * need to do this here if BGE_FLAG_TBI is set but as
3814 		 * we poll for fiber anyway it should not harm.
3815 		 */
3816 		if (BGE_IS_CRIPPLED(sc))
3817 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3818 		else
3819 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3820 	}
3821 	return(0);
3822 }
3823 
3824 /*
3825  * Report current media status.
3826  */
3827 static void
3828 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3829 {
3830 	struct bge_softc *sc = ifp->if_softc;
3831 
3832 	if (sc->bge_flags & BGE_FLAG_TBI) {
3833 		ifmr->ifm_status = IFM_AVALID;
3834 		ifmr->ifm_active = IFM_ETHER;
3835 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3836 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3837 			ifmr->ifm_status |= IFM_ACTIVE;
3838 		} else {
3839 			ifmr->ifm_active |= IFM_NONE;
3840 			return;
3841 		}
3842 
3843 		ifmr->ifm_active |= IFM_1000_SX;
3844 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3845 			ifmr->ifm_active |= IFM_HDX;
3846 		else
3847 			ifmr->ifm_active |= IFM_FDX;
3848 	} else {
3849 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3850 
3851 		mii_pollstat(mii);
3852 		ifmr->ifm_active = mii->mii_media_active;
3853 		ifmr->ifm_status = mii->mii_media_status;
3854 	}
3855 }
3856 
3857 static int
3858 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3859 {
3860 	struct bge_softc *sc = ifp->if_softc;
3861 	struct ifreq *ifr = (struct ifreq *)data;
3862 	int mask, error = 0;
3863 
3864 	ASSERT_SERIALIZED(ifp->if_serializer);
3865 
3866 	switch (command) {
3867 	case SIOCSIFMTU:
3868 		if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3869 		    (BGE_IS_JUMBO_CAPABLE(sc) &&
3870 		     ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3871 			error = EINVAL;
3872 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
3873 			ifp->if_mtu = ifr->ifr_mtu;
3874 			if (ifp->if_flags & IFF_RUNNING)
3875 				bge_init(sc);
3876 		}
3877 		break;
3878 	case SIOCSIFFLAGS:
3879 		if (ifp->if_flags & IFF_UP) {
3880 			if (ifp->if_flags & IFF_RUNNING) {
3881 				mask = ifp->if_flags ^ sc->bge_if_flags;
3882 
3883 				/*
3884 				 * If only the state of the PROMISC flag
3885 				 * changed, then just use the 'set promisc
3886 				 * mode' command instead of reinitializing
3887 				 * the entire NIC. Doing a full re-init
3888 				 * means reloading the firmware and waiting
3889 				 * for it to start up, which may take a
3890 				 * second or two.  Similarly for ALLMULTI.
3891 				 */
3892 				if (mask & IFF_PROMISC)
3893 					bge_setpromisc(sc);
3894 				if (mask & IFF_ALLMULTI)
3895 					bge_setmulti(sc);
3896 			} else {
3897 				bge_init(sc);
3898 			}
3899 		} else if (ifp->if_flags & IFF_RUNNING) {
3900 			bge_stop(sc);
3901 		}
3902 		sc->bge_if_flags = ifp->if_flags;
3903 		break;
3904 	case SIOCADDMULTI:
3905 	case SIOCDELMULTI:
3906 		if (ifp->if_flags & IFF_RUNNING)
3907 			bge_setmulti(sc);
3908 		break;
3909 	case SIOCSIFMEDIA:
3910 	case SIOCGIFMEDIA:
3911 		if (sc->bge_flags & BGE_FLAG_TBI) {
3912 			error = ifmedia_ioctl(ifp, ifr,
3913 			    &sc->bge_ifmedia, command);
3914 		} else {
3915 			struct mii_data *mii;
3916 
3917 			mii = device_get_softc(sc->bge_miibus);
3918 			error = ifmedia_ioctl(ifp, ifr,
3919 					      &mii->mii_media, command);
3920 		}
3921 		break;
3922         case SIOCSIFCAP:
3923 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3924 		if (mask & IFCAP_HWCSUM) {
3925 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3926 			if (ifp->if_capenable & IFCAP_TXCSUM)
3927 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
3928 			else
3929 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
3930 		}
3931 		if (mask & IFCAP_TSO) {
3932 			ifp->if_capenable ^= IFCAP_TSO;
3933 			if (ifp->if_capenable & IFCAP_TSO)
3934 				ifp->if_hwassist |= CSUM_TSO;
3935 			else
3936 				ifp->if_hwassist &= ~CSUM_TSO;
3937 		}
3938 		break;
3939 	default:
3940 		error = ether_ioctl(ifp, command, data);
3941 		break;
3942 	}
3943 	return error;
3944 }
3945 
3946 static void
3947 bge_watchdog(struct ifnet *ifp)
3948 {
3949 	struct bge_softc *sc = ifp->if_softc;
3950 
3951 	if_printf(ifp, "watchdog timeout -- resetting\n");
3952 
3953 	bge_init(sc);
3954 
3955 	IFNET_STAT_INC(ifp, oerrors, 1);
3956 
3957 	if (!ifq_is_empty(&ifp->if_snd))
3958 		if_devstart(ifp);
3959 }
3960 
3961 /*
3962  * Stop the adapter and free any mbufs allocated to the
3963  * RX and TX lists.
3964  */
3965 static void
3966 bge_stop(struct bge_softc *sc)
3967 {
3968 	struct ifnet *ifp = &sc->arpcom.ac_if;
3969 
3970 	ASSERT_SERIALIZED(ifp->if_serializer);
3971 
3972 	callout_stop(&sc->bge_stat_timer);
3973 
3974 	/*
3975 	 * Disable all of the receiver blocks
3976 	 */
3977 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3978 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3979 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3980 	if (BGE_IS_5700_FAMILY(sc))
3981 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3982 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3983 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3984 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3985 
3986 	/*
3987 	 * Disable all of the transmit blocks
3988 	 */
3989 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3990 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3991 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3992 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3993 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3994 	if (BGE_IS_5700_FAMILY(sc))
3995 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3996 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3997 
3998 	/*
3999 	 * Shut down all of the memory managers and related
4000 	 * state machines.
4001 	 */
4002 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4003 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4004 	if (BGE_IS_5700_FAMILY(sc))
4005 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4006 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4007 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4008 	if (!BGE_IS_5705_PLUS(sc)) {
4009 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4010 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4011 	}
4012 
4013 	/* Disable host interrupts. */
4014 	bge_disable_intr(sc);
4015 
4016 	/*
4017 	 * Tell firmware we're shutting down.
4018 	 */
4019 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4020 
4021 	/* Free the RX lists. */
4022 	bge_free_rx_ring_std(sc);
4023 
4024 	/* Free jumbo RX list. */
4025 	if (BGE_IS_JUMBO_CAPABLE(sc))
4026 		bge_free_rx_ring_jumbo(sc);
4027 
4028 	/* Free TX buffers. */
4029 	bge_free_tx_ring(sc);
4030 
4031 	sc->bge_status_tag = 0;
4032 	sc->bge_link = 0;
4033 	sc->bge_coal_chg = 0;
4034 
4035 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4036 
4037 	ifp->if_flags &= ~IFF_RUNNING;
4038 	ifq_clr_oactive(&ifp->if_snd);
4039 	ifp->if_timer = 0;
4040 }
4041 
4042 /*
4043  * Stop all chip I/O so that the kernel's probe routines don't
4044  * get confused by errant DMAs when rebooting.
4045  */
4046 static void
4047 bge_shutdown(device_t dev)
4048 {
4049 	struct bge_softc *sc = device_get_softc(dev);
4050 	struct ifnet *ifp = &sc->arpcom.ac_if;
4051 
4052 	lwkt_serialize_enter(ifp->if_serializer);
4053 	bge_stop(sc);
4054 	bge_reset(sc);
4055 	lwkt_serialize_exit(ifp->if_serializer);
4056 }
4057 
4058 static int
4059 bge_suspend(device_t dev)
4060 {
4061 	struct bge_softc *sc = device_get_softc(dev);
4062 	struct ifnet *ifp = &sc->arpcom.ac_if;
4063 
4064 	lwkt_serialize_enter(ifp->if_serializer);
4065 	bge_stop(sc);
4066 	lwkt_serialize_exit(ifp->if_serializer);
4067 
4068 	return 0;
4069 }
4070 
4071 static int
4072 bge_resume(device_t dev)
4073 {
4074 	struct bge_softc *sc = device_get_softc(dev);
4075 	struct ifnet *ifp = &sc->arpcom.ac_if;
4076 
4077 	lwkt_serialize_enter(ifp->if_serializer);
4078 
4079 	if (ifp->if_flags & IFF_UP) {
4080 		bge_init(sc);
4081 
4082 		if (!ifq_is_empty(&ifp->if_snd))
4083 			if_devstart(ifp);
4084 	}
4085 
4086 	lwkt_serialize_exit(ifp->if_serializer);
4087 
4088 	return 0;
4089 }
4090 
4091 static void
4092 bge_setpromisc(struct bge_softc *sc)
4093 {
4094 	struct ifnet *ifp = &sc->arpcom.ac_if;
4095 
4096 	if (ifp->if_flags & IFF_PROMISC)
4097 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4098 	else
4099 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4100 }
4101 
4102 static void
4103 bge_dma_free(struct bge_softc *sc)
4104 {
4105 	int i;
4106 
4107 	/* Destroy RX mbuf DMA stuffs. */
4108 	if (sc->bge_cdata.bge_rx_mtag != NULL) {
4109 		for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4110 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4111 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
4112 		}
4113 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4114 				   sc->bge_cdata.bge_rx_tmpmap);
4115 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4116 	}
4117 
4118 	/* Destroy TX mbuf DMA stuffs. */
4119 	if (sc->bge_cdata.bge_tx_mtag != NULL) {
4120 		for (i = 0; i < BGE_TX_RING_CNT; i++) {
4121 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4122 			    sc->bge_cdata.bge_tx_dmamap[i]);
4123 		}
4124 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4125 	}
4126 
4127 	/* Destroy standard RX ring */
4128 	bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4129 			   sc->bge_cdata.bge_rx_std_ring_map,
4130 			   sc->bge_ldata.bge_rx_std_ring);
4131 
4132 	if (BGE_IS_JUMBO_CAPABLE(sc))
4133 		bge_free_jumbo_mem(sc);
4134 
4135 	/* Destroy RX return ring */
4136 	bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4137 			   sc->bge_cdata.bge_rx_return_ring_map,
4138 			   sc->bge_ldata.bge_rx_return_ring);
4139 
4140 	/* Destroy TX ring */
4141 	bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4142 			   sc->bge_cdata.bge_tx_ring_map,
4143 			   sc->bge_ldata.bge_tx_ring);
4144 
4145 	/* Destroy status block */
4146 	bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4147 			   sc->bge_cdata.bge_status_map,
4148 			   sc->bge_ldata.bge_status_block);
4149 
4150 	/* Destroy statistics block */
4151 	bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4152 			   sc->bge_cdata.bge_stats_map,
4153 			   sc->bge_ldata.bge_stats);
4154 
4155 	/* Destroy the parent tag */
4156 	if (sc->bge_cdata.bge_parent_tag != NULL)
4157 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4158 }
4159 
4160 static int
4161 bge_dma_alloc(struct bge_softc *sc)
4162 {
4163 	struct ifnet *ifp = &sc->arpcom.ac_if;
4164 	int i, error;
4165 	bus_addr_t lowaddr;
4166 	bus_size_t txmaxsz;
4167 
4168 	lowaddr = BUS_SPACE_MAXADDR;
4169 	if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4170 		lowaddr = BGE_DMA_MAXADDR_40BIT;
4171 
4172 	/*
4173 	 * Allocate the parent bus DMA tag appropriate for PCI.
4174 	 *
4175 	 * All of the NetExtreme/NetLink controllers have 4GB boundary
4176 	 * DMA bug.
4177 	 * Whenever an address crosses a multiple of the 4GB boundary
4178 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4179 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4180 	 * state machine will lockup and cause the device to hang.
4181 	 */
4182 	error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4183 				   lowaddr, BUS_SPACE_MAXADDR,
4184 				   NULL, NULL,
4185 				   BUS_SPACE_MAXSIZE_32BIT, 0,
4186 				   BUS_SPACE_MAXSIZE_32BIT,
4187 				   0, &sc->bge_cdata.bge_parent_tag);
4188 	if (error) {
4189 		if_printf(ifp, "could not allocate parent dma tag\n");
4190 		return error;
4191 	}
4192 
4193 	/*
4194 	 * Create DMA tag and maps for RX mbufs.
4195 	 */
4196 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4197 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4198 				   NULL, NULL, MCLBYTES, 1, MCLBYTES,
4199 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4200 				   &sc->bge_cdata.bge_rx_mtag);
4201 	if (error) {
4202 		if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4203 		return error;
4204 	}
4205 
4206 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4207 				  BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4208 	if (error) {
4209 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4210 		sc->bge_cdata.bge_rx_mtag = NULL;
4211 		return error;
4212 	}
4213 
4214 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4215 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4216 					  BUS_DMA_WAITOK,
4217 					  &sc->bge_cdata.bge_rx_std_dmamap[i]);
4218 		if (error) {
4219 			int j;
4220 
4221 			for (j = 0; j < i; ++j) {
4222 				bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4223 					sc->bge_cdata.bge_rx_std_dmamap[j]);
4224 			}
4225 			bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4226 			sc->bge_cdata.bge_rx_mtag = NULL;
4227 
4228 			if_printf(ifp, "could not create DMA map for RX\n");
4229 			return error;
4230 		}
4231 	}
4232 
4233 	/*
4234 	 * Create DMA tag and maps for TX mbufs.
4235 	 */
4236 	if (sc->bge_flags & BGE_FLAG_TSO)
4237 		txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4238 	else
4239 		txmaxsz = BGE_JUMBO_FRAMELEN;
4240 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4241 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4242 				   NULL, NULL,
4243 				   txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4244 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4245 				   BUS_DMA_ONEBPAGE,
4246 				   &sc->bge_cdata.bge_tx_mtag);
4247 	if (error) {
4248 		if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4249 		return error;
4250 	}
4251 
4252 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
4253 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4254 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4255 					  &sc->bge_cdata.bge_tx_dmamap[i]);
4256 		if (error) {
4257 			int j;
4258 
4259 			for (j = 0; j < i; ++j) {
4260 				bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4261 					sc->bge_cdata.bge_tx_dmamap[j]);
4262 			}
4263 			bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4264 			sc->bge_cdata.bge_tx_mtag = NULL;
4265 
4266 			if_printf(ifp, "could not create DMA map for TX\n");
4267 			return error;
4268 		}
4269 	}
4270 
4271 	/*
4272 	 * Create DMA stuffs for standard RX ring.
4273 	 */
4274 	error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4275 				    &sc->bge_cdata.bge_rx_std_ring_tag,
4276 				    &sc->bge_cdata.bge_rx_std_ring_map,
4277 				    (void *)&sc->bge_ldata.bge_rx_std_ring,
4278 				    &sc->bge_ldata.bge_rx_std_ring_paddr);
4279 	if (error) {
4280 		if_printf(ifp, "could not create std RX ring\n");
4281 		return error;
4282 	}
4283 
4284 	/*
4285 	 * Create jumbo buffer pool.
4286 	 */
4287 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
4288 		error = bge_alloc_jumbo_mem(sc);
4289 		if (error) {
4290 			if_printf(ifp, "could not create jumbo buffer pool\n");
4291 			return error;
4292 		}
4293 	}
4294 
4295 	/*
4296 	 * Create DMA stuffs for RX return ring.
4297 	 */
4298 	error = bge_dma_block_alloc(sc,
4299 	    BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4300 	    &sc->bge_cdata.bge_rx_return_ring_tag,
4301 	    &sc->bge_cdata.bge_rx_return_ring_map,
4302 	    (void *)&sc->bge_ldata.bge_rx_return_ring,
4303 	    &sc->bge_ldata.bge_rx_return_ring_paddr);
4304 	if (error) {
4305 		if_printf(ifp, "could not create RX ret ring\n");
4306 		return error;
4307 	}
4308 
4309 	/*
4310 	 * Create DMA stuffs for TX ring.
4311 	 */
4312 	error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4313 				    &sc->bge_cdata.bge_tx_ring_tag,
4314 				    &sc->bge_cdata.bge_tx_ring_map,
4315 				    (void *)&sc->bge_ldata.bge_tx_ring,
4316 				    &sc->bge_ldata.bge_tx_ring_paddr);
4317 	if (error) {
4318 		if_printf(ifp, "could not create TX ring\n");
4319 		return error;
4320 	}
4321 
4322 	/*
4323 	 * Create DMA stuffs for status block.
4324 	 */
4325 	error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4326 				    &sc->bge_cdata.bge_status_tag,
4327 				    &sc->bge_cdata.bge_status_map,
4328 				    (void *)&sc->bge_ldata.bge_status_block,
4329 				    &sc->bge_ldata.bge_status_block_paddr);
4330 	if (error) {
4331 		if_printf(ifp, "could not create status block\n");
4332 		return error;
4333 	}
4334 
4335 	/*
4336 	 * Create DMA stuffs for statistics block.
4337 	 */
4338 	error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4339 				    &sc->bge_cdata.bge_stats_tag,
4340 				    &sc->bge_cdata.bge_stats_map,
4341 				    (void *)&sc->bge_ldata.bge_stats,
4342 				    &sc->bge_ldata.bge_stats_paddr);
4343 	if (error) {
4344 		if_printf(ifp, "could not create stats block\n");
4345 		return error;
4346 	}
4347 	return 0;
4348 }
4349 
4350 static int
4351 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4352 		    bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4353 {
4354 	bus_dmamem_t dmem;
4355 	int error;
4356 
4357 	error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4358 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4359 				    size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4360 	if (error)
4361 		return error;
4362 
4363 	*tag = dmem.dmem_tag;
4364 	*map = dmem.dmem_map;
4365 	*addr = dmem.dmem_addr;
4366 	*paddr = dmem.dmem_busaddr;
4367 
4368 	return 0;
4369 }
4370 
4371 static void
4372 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4373 {
4374 	if (tag != NULL) {
4375 		bus_dmamap_unload(tag, map);
4376 		bus_dmamem_free(tag, addr, map);
4377 		bus_dma_tag_destroy(tag);
4378 	}
4379 }
4380 
4381 /*
4382  * Grrr. The link status word in the status block does
4383  * not work correctly on the BCM5700 rev AX and BX chips,
4384  * according to all available information. Hence, we have
4385  * to enable MII interrupts in order to properly obtain
4386  * async link changes. Unfortunately, this also means that
4387  * we have to read the MAC status register to detect link
4388  * changes, thereby adding an additional register access to
4389  * the interrupt handler.
4390  *
4391  * XXX: perhaps link state detection procedure used for
4392  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4393  */
4394 static void
4395 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4396 {
4397 	struct ifnet *ifp = &sc->arpcom.ac_if;
4398 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4399 
4400 	mii_pollstat(mii);
4401 
4402 	if (!sc->bge_link &&
4403 	    (mii->mii_media_status & IFM_ACTIVE) &&
4404 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4405 		sc->bge_link++;
4406 		if (bootverbose)
4407 			if_printf(ifp, "link UP\n");
4408 	} else if (sc->bge_link &&
4409 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4410 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4411 		sc->bge_link = 0;
4412 		if (bootverbose)
4413 			if_printf(ifp, "link DOWN\n");
4414 	}
4415 
4416 	/* Clear the interrupt. */
4417 	CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4418 	bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4419 	bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4420 }
4421 
4422 static void
4423 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4424 {
4425 	struct ifnet *ifp = &sc->arpcom.ac_if;
4426 
4427 #define PCS_ENCODE_ERR	(BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4428 
4429 	/*
4430 	 * Sometimes PCS encoding errors are detected in
4431 	 * TBI mode (on fiber NICs), and for some reason
4432 	 * the chip will signal them as link changes.
4433 	 * If we get a link change event, but the 'PCS
4434 	 * encoding error' bit in the MAC status register
4435 	 * is set, don't bother doing a link check.
4436 	 * This avoids spurious "gigabit link up" messages
4437 	 * that sometimes appear on fiber NICs during
4438 	 * periods of heavy traffic.
4439 	 */
4440 	if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4441 		if (!sc->bge_link) {
4442 			sc->bge_link++;
4443 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4444 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4445 				    BGE_MACMODE_TBI_SEND_CFGS);
4446 			}
4447 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4448 
4449 			if (bootverbose)
4450 				if_printf(ifp, "link UP\n");
4451 
4452 			ifp->if_link_state = LINK_STATE_UP;
4453 			if_link_state_change(ifp);
4454 		}
4455 	} else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4456 		if (sc->bge_link) {
4457 			sc->bge_link = 0;
4458 
4459 			if (bootverbose)
4460 				if_printf(ifp, "link DOWN\n");
4461 
4462 			ifp->if_link_state = LINK_STATE_DOWN;
4463 			if_link_state_change(ifp);
4464 		}
4465 	}
4466 
4467 #undef PCS_ENCODE_ERR
4468 
4469 	/* Clear the attention. */
4470 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4471 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4472 	    BGE_MACSTAT_LINK_CHANGED);
4473 }
4474 
4475 static void
4476 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4477 {
4478 	struct ifnet *ifp = &sc->arpcom.ac_if;
4479 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4480 
4481 	mii_pollstat(mii);
4482 	bge_miibus_statchg(sc->bge_dev);
4483 
4484 	if (bootverbose) {
4485 		if (sc->bge_link)
4486 			if_printf(ifp, "link UP\n");
4487 		else
4488 			if_printf(ifp, "link DOWN\n");
4489 	}
4490 
4491 	/* Clear the attention. */
4492 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4493 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4494 	    BGE_MACSTAT_LINK_CHANGED);
4495 }
4496 
4497 static void
4498 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4499 {
4500 	struct ifnet *ifp = &sc->arpcom.ac_if;
4501 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4502 
4503 	mii_pollstat(mii);
4504 
4505 	if (!sc->bge_link &&
4506 	    (mii->mii_media_status & IFM_ACTIVE) &&
4507 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4508 		sc->bge_link++;
4509 		if (bootverbose)
4510 			if_printf(ifp, "link UP\n");
4511 	} else if (sc->bge_link &&
4512 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4513 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4514 		sc->bge_link = 0;
4515 		if (bootverbose)
4516 			if_printf(ifp, "link DOWN\n");
4517 	}
4518 
4519 	/* Clear the attention. */
4520 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4521 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4522 	    BGE_MACSTAT_LINK_CHANGED);
4523 }
4524 
4525 static int
4526 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4527 {
4528 	struct bge_softc *sc = arg1;
4529 
4530 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4531 	    &sc->bge_rx_coal_ticks,
4532 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4533 	    BGE_RX_COAL_TICKS_CHG);
4534 }
4535 
4536 static int
4537 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4538 {
4539 	struct bge_softc *sc = arg1;
4540 
4541 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4542 	    &sc->bge_tx_coal_ticks,
4543 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4544 	    BGE_TX_COAL_TICKS_CHG);
4545 }
4546 
4547 static int
4548 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4549 {
4550 	struct bge_softc *sc = arg1;
4551 
4552 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4553 	    &sc->bge_rx_coal_bds,
4554 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4555 	    BGE_RX_COAL_BDS_CHG);
4556 }
4557 
4558 static int
4559 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4560 {
4561 	struct bge_softc *sc = arg1;
4562 
4563 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4564 	    &sc->bge_tx_coal_bds,
4565 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4566 	    BGE_TX_COAL_BDS_CHG);
4567 }
4568 
4569 static int
4570 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4571 {
4572 	struct bge_softc *sc = arg1;
4573 
4574 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4575 	    &sc->bge_rx_coal_ticks_int,
4576 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4577 	    BGE_RX_COAL_TICKS_INT_CHG);
4578 }
4579 
4580 static int
4581 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4582 {
4583 	struct bge_softc *sc = arg1;
4584 
4585 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4586 	    &sc->bge_tx_coal_ticks_int,
4587 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4588 	    BGE_TX_COAL_TICKS_INT_CHG);
4589 }
4590 
4591 static int
4592 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4593 {
4594 	struct bge_softc *sc = arg1;
4595 
4596 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4597 	    &sc->bge_rx_coal_bds_int,
4598 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4599 	    BGE_RX_COAL_BDS_INT_CHG);
4600 }
4601 
4602 static int
4603 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4604 {
4605 	struct bge_softc *sc = arg1;
4606 
4607 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4608 	    &sc->bge_tx_coal_bds_int,
4609 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4610 	    BGE_TX_COAL_BDS_INT_CHG);
4611 }
4612 
4613 static int
4614 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4615     int coal_min, int coal_max, uint32_t coal_chg_mask)
4616 {
4617 	struct bge_softc *sc = arg1;
4618 	struct ifnet *ifp = &sc->arpcom.ac_if;
4619 	int error = 0, v;
4620 
4621 	lwkt_serialize_enter(ifp->if_serializer);
4622 
4623 	v = *coal;
4624 	error = sysctl_handle_int(oidp, &v, 0, req);
4625 	if (!error && req->newptr != NULL) {
4626 		if (v < coal_min || v > coal_max) {
4627 			error = EINVAL;
4628 		} else {
4629 			*coal = v;
4630 			sc->bge_coal_chg |= coal_chg_mask;
4631 		}
4632 	}
4633 
4634 	lwkt_serialize_exit(ifp->if_serializer);
4635 	return error;
4636 }
4637 
4638 static void
4639 bge_coal_change(struct bge_softc *sc)
4640 {
4641 	struct ifnet *ifp = &sc->arpcom.ac_if;
4642 
4643 	ASSERT_SERIALIZED(ifp->if_serializer);
4644 
4645 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4646 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4647 			    sc->bge_rx_coal_ticks);
4648 		DELAY(10);
4649 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4650 
4651 		if (bootverbose) {
4652 			if_printf(ifp, "rx_coal_ticks -> %u\n",
4653 				  sc->bge_rx_coal_ticks);
4654 		}
4655 	}
4656 
4657 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4658 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4659 			    sc->bge_tx_coal_ticks);
4660 		DELAY(10);
4661 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4662 
4663 		if (bootverbose) {
4664 			if_printf(ifp, "tx_coal_ticks -> %u\n",
4665 				  sc->bge_tx_coal_ticks);
4666 		}
4667 	}
4668 
4669 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4670 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4671 			    sc->bge_rx_coal_bds);
4672 		DELAY(10);
4673 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4674 
4675 		if (bootverbose) {
4676 			if_printf(ifp, "rx_coal_bds -> %u\n",
4677 				  sc->bge_rx_coal_bds);
4678 		}
4679 	}
4680 
4681 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4682 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4683 			    sc->bge_tx_coal_bds);
4684 		DELAY(10);
4685 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4686 
4687 		if (bootverbose) {
4688 			if_printf(ifp, "tx_max_coal_bds -> %u\n",
4689 				  sc->bge_tx_coal_bds);
4690 		}
4691 	}
4692 
4693 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4694 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4695 		    sc->bge_rx_coal_ticks_int);
4696 		DELAY(10);
4697 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4698 
4699 		if (bootverbose) {
4700 			if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4701 			    sc->bge_rx_coal_ticks_int);
4702 		}
4703 	}
4704 
4705 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4706 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4707 		    sc->bge_tx_coal_ticks_int);
4708 		DELAY(10);
4709 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4710 
4711 		if (bootverbose) {
4712 			if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4713 			    sc->bge_tx_coal_ticks_int);
4714 		}
4715 	}
4716 
4717 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4718 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4719 		    sc->bge_rx_coal_bds_int);
4720 		DELAY(10);
4721 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4722 
4723 		if (bootverbose) {
4724 			if_printf(ifp, "rx_coal_bds_int -> %u\n",
4725 			    sc->bge_rx_coal_bds_int);
4726 		}
4727 	}
4728 
4729 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4730 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4731 		    sc->bge_tx_coal_bds_int);
4732 		DELAY(10);
4733 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4734 
4735 		if (bootverbose) {
4736 			if_printf(ifp, "tx_coal_bds_int -> %u\n",
4737 			    sc->bge_tx_coal_bds_int);
4738 		}
4739 	}
4740 
4741 	sc->bge_coal_chg = 0;
4742 }
4743 
4744 static void
4745 bge_enable_intr(struct bge_softc *sc)
4746 {
4747 	struct ifnet *ifp = &sc->arpcom.ac_if;
4748 
4749 	lwkt_serialize_handler_enable(ifp->if_serializer);
4750 
4751 	/*
4752 	 * Enable interrupt.
4753 	 */
4754 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4755 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4756 		/* XXX Linux driver */
4757 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4758 	}
4759 
4760 	/*
4761 	 * Unmask the interrupt when we stop polling.
4762 	 */
4763 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4764 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4765 
4766 	/*
4767 	 * Trigger another interrupt, since above writing
4768 	 * to interrupt mailbox0 may acknowledge pending
4769 	 * interrupt.
4770 	 */
4771 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4772 }
4773 
4774 static void
4775 bge_disable_intr(struct bge_softc *sc)
4776 {
4777 	struct ifnet *ifp = &sc->arpcom.ac_if;
4778 
4779 	/*
4780 	 * Mask the interrupt when we start polling.
4781 	 */
4782 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4783 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4784 
4785 	/*
4786 	 * Acknowledge possible asserted interrupt.
4787 	 */
4788 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4789 
4790 	sc->bge_npoll.ifpc_stcount = 0;
4791 
4792 	lwkt_serialize_handler_disable(ifp->if_serializer);
4793 }
4794 
4795 static int
4796 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4797 {
4798 	uint32_t mac_addr;
4799 	int ret = 1;
4800 
4801 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4802 	if ((mac_addr >> 16) == 0x484b) {
4803 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4804 		ether_addr[1] = (uint8_t)mac_addr;
4805 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4806 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4807 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4808 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4809 		ether_addr[5] = (uint8_t)mac_addr;
4810 		ret = 0;
4811 	}
4812 	return ret;
4813 }
4814 
4815 static int
4816 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4817 {
4818 	int mac_offset = BGE_EE_MAC_OFFSET;
4819 
4820 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4821 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4822 
4823 	return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4824 }
4825 
4826 static int
4827 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4828 {
4829 	if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4830 		return 1;
4831 
4832 	return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4833 			       ETHER_ADDR_LEN);
4834 }
4835 
4836 static int
4837 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4838 {
4839 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4840 		/* NOTE: Order is critical */
4841 		bge_get_eaddr_mem,
4842 		bge_get_eaddr_nvram,
4843 		bge_get_eaddr_eeprom,
4844 		NULL
4845 	};
4846 	const bge_eaddr_fcn_t *func;
4847 
4848 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4849 		if ((*func)(sc, eaddr) == 0)
4850 			break;
4851 	}
4852 	return (*func == NULL ? ENXIO : 0);
4853 }
4854 
4855 /*
4856  * NOTE: 'm' is not freed upon failure
4857  */
4858 struct mbuf *
4859 bge_defrag_shortdma(struct mbuf *m)
4860 {
4861 	struct mbuf *n;
4862 	int found;
4863 
4864 	/*
4865 	 * If device receive two back-to-back send BDs with less than
4866 	 * or equal to 8 total bytes then the device may hang.  The two
4867 	 * back-to-back send BDs must in the same frame for this failure
4868 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4869 	 * send BDs are there.  If this is the case, allocate new mbuf
4870 	 * and copy the frame to workaround the silicon bug.
4871 	 */
4872 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4873 		if (n->m_len < 8) {
4874 			found++;
4875 			if (found > 1)
4876 				break;
4877 			continue;
4878 		}
4879 		found = 0;
4880 	}
4881 
4882 	if (found > 1)
4883 		n = m_defrag(m, MB_DONTWAIT);
4884 	else
4885 		n = m;
4886 	return n;
4887 }
4888 
4889 static void
4890 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4891 {
4892 	int i;
4893 
4894 	BGE_CLRBIT(sc, reg, bit);
4895 	for (i = 0; i < BGE_TIMEOUT; i++) {
4896 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4897 			return;
4898 		DELAY(100);
4899 	}
4900 }
4901 
4902 static void
4903 bge_link_poll(struct bge_softc *sc)
4904 {
4905 	uint32_t status;
4906 
4907 	status = CSR_READ_4(sc, BGE_MAC_STS);
4908 	if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
4909 		sc->bge_link_evt = 0;
4910 		sc->bge_link_upd(sc, status);
4911 	}
4912 }
4913 
4914 static void
4915 bge_enable_msi(struct bge_softc *sc)
4916 {
4917 	uint32_t msi_mode;
4918 
4919 	msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
4920 	msi_mode |= BGE_MSIMODE_ENABLE;
4921 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4922 		/*
4923 		 * According to all of the datasheets that are publicly
4924 		 * available, bit 5 of the MSI_MODE is defined to be
4925 		 * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
4926 		 * which "oneshot MSI" is enabled.  However, it is always
4927 		 * safe to clear it here.
4928 		 */
4929 		msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
4930 	}
4931 	CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
4932 }
4933 
4934 static int
4935 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
4936     uint16_t *mss0, uint16_t *flags0)
4937 {
4938 	struct mbuf *m;
4939 	struct ip *ip;
4940 	struct tcphdr *th;
4941 	int thoff, iphlen, hoff, hlen;
4942 	uint16_t flags, mss;
4943 
4944 	m = *mp;
4945 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4946 
4947 	hoff = m->m_pkthdr.csum_lhlen;
4948 	iphlen = m->m_pkthdr.csum_iphlen;
4949 	thoff = m->m_pkthdr.csum_thlen;
4950 
4951 	KASSERT(hoff > 0, ("invalid ether header len"));
4952 	KASSERT(iphlen > 0, ("invalid ip header len"));
4953 	KASSERT(thoff > 0, ("invalid tcp header len"));
4954 
4955 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4956 		m = m_pullup(m, hoff + iphlen + thoff);
4957 		if (m == NULL) {
4958 			*mp = NULL;
4959 			return ENOBUFS;
4960 		}
4961 		*mp = m;
4962 	}
4963 	ip = mtodoff(m, struct ip *, hoff);
4964 	th = mtodoff(m, struct tcphdr *, hoff + iphlen);
4965 
4966 	mss = m->m_pkthdr.tso_segsz;
4967 	flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
4968 
4969 	ip->ip_len = htons(mss + iphlen + thoff);
4970 	th->th_sum = 0;
4971 
4972 	hlen = (iphlen + thoff) >> 2;
4973 	mss |= (hlen << 11);
4974 
4975 	*mss0 = mss;
4976 	*flags0 = flags;
4977 
4978 	return 0;
4979 }
4980