xref: /dragonfly/sys/dev/netif/bge/if_bge.c (revision b1e9d17a)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.46 2005/08/22 18:29:52 joerg Exp $
35  *
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44 
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  *
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74 
75 #include "opt_bge.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/queue.h>
85 #include <sys/thread2.h>
86 
87 #include <net/if.h>
88 #include <net/ifq_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93 
94 #include <net/bpf.h>
95 
96 #include <net/if_types.h>
97 #include <net/vlan/if_vlan_var.h>
98 
99 #include <netinet/in_systm.h>
100 #include <netinet/in.h>
101 #include <netinet/ip.h>
102 
103 #include <vm/vm.h>              /* for vtophys */
104 #include <vm/pmap.h>            /* for vtophys */
105 #include <machine/resource.h>
106 #include <sys/bus.h>
107 #include <sys/rman.h>
108 
109 #include <dev/netif/mii_layer/mii.h>
110 #include <dev/netif/mii_layer/miivar.h>
111 #include <dev/netif/mii_layer/miidevs.h>
112 #include <dev/netif/mii_layer/brgphyreg.h>
113 
114 #include <bus/pci/pcidevs.h>
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117 
118 #include "if_bgereg.h"
119 
120 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
121 
122 /* "controller miibus0" required.  See GENERIC if you get errors here. */
123 #include "miibus_if.h"
124 
125 /*
126  * Various supported device vendors/types and their names. Note: the
127  * spec seems to indicate that the hardware still has Alteon's vendor
128  * ID burned into it, though it will always be overriden by the vendor
129  * ID in the EEPROM. Just to be safe, we cover all possibilities.
130  */
131 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
132 
133 static struct bge_type bge_devs[] = {
134 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
135 		"Alteon BCM5700 Gigabit Ethernet" },
136 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
137 		"Alteon BCM5701 Gigabit Ethernet" },
138 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
139 		"Broadcom BCM5700 Gigabit Ethernet" },
140 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
141 		"Broadcom BCM5701 Gigabit Ethernet" },
142 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
143 		"Broadcom BCM5702X Gigabit Ethernet" },
144 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
145 		"Broadcom BCM5702 Gigabit Ethernet" },
146 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
147 		"Broadcom BCM5703X Gigabit Ethernet" },
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
149 		"Broadcom BCM5703 Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
151 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
153 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
155 		"Broadcom BCM5705 Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
157 		"Broadcom BCM5705K Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
159 		"Broadcom BCM5705M Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
161 		"Broadcom BCM5705M Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5714C,
163 		"Broadcom BCM5714C Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
165 		"Broadcom BCM5721 Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
167 		"Broadcom BCM5750 Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
169 		"Broadcom BCM5750M Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
171 		"Broadcom BCM5751 Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
173 		"Broadcom BCM5751M Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
175 		"Broadcom BCM5782 Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
177 		"Broadcom BCM5788 Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
179 		"Broadcom BCM5789 Gigabit Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
181 		"Broadcom BCM5901 Fast Ethernet" },
182 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
183 		"Broadcom BCM5901A2 Fast Ethernet" },
184 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
185 		"SysKonnect Gigabit Ethernet" },
186 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
187 		"Altima AC1000 Gigabit Ethernet" },
188 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
189 		"Altima AC1002 Gigabit Ethernet" },
190 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
191 		"Altima AC9100 Gigabit Ethernet" },
192 	{ 0, 0, NULL }
193 };
194 
195 static int	bge_probe(device_t);
196 static int	bge_attach(device_t);
197 static int	bge_detach(device_t);
198 static void	bge_release_resources(struct bge_softc *);
199 static void	bge_txeof(struct bge_softc *);
200 static void	bge_rxeof(struct bge_softc *);
201 
202 static void	bge_tick(void *);
203 static void	bge_stats_update(struct bge_softc *);
204 static void	bge_stats_update_regs(struct bge_softc *);
205 static int	bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206 
207 static void	bge_intr(void *);
208 static void	bge_start(struct ifnet *);
209 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
210 static void	bge_init(void *);
211 static void	bge_stop(struct bge_softc *);
212 static void	bge_watchdog(struct ifnet *);
213 static void	bge_shutdown(device_t);
214 static int	bge_ifmedia_upd(struct ifnet *);
215 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216 
217 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
218 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
219 
220 static void	bge_setmulti(struct bge_softc *);
221 
222 static void	bge_handle_events(struct bge_softc *);
223 static int	bge_alloc_jumbo_mem(struct bge_softc *);
224 static void	bge_free_jumbo_mem(struct bge_softc *);
225 static struct bge_jslot
226 		*bge_jalloc(struct bge_softc *);
227 static void	bge_jfree(void *);
228 static void	bge_jref(void *);
229 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
230 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
231 static int	bge_init_rx_ring_std(struct bge_softc *);
232 static void	bge_free_rx_ring_std(struct bge_softc *);
233 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
234 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
235 static void	bge_free_tx_ring(struct bge_softc *);
236 static int	bge_init_tx_ring(struct bge_softc *);
237 
238 static int	bge_chipinit(struct bge_softc *);
239 static int	bge_blockinit(struct bge_softc *);
240 
241 #ifdef notdef
242 static uint8_t	bge_vpd_readbyte(struct bge_softc *, uint32_t);
243 static void	bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
244 static void	bge_vpd_read(struct bge_softc *);
245 #endif
246 
247 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
248 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
249 #ifdef notdef
250 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
251 #endif
252 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
253 
254 static int	bge_miibus_readreg(device_t, int, int);
255 static int	bge_miibus_writereg(device_t, int, int, int);
256 static void	bge_miibus_statchg(device_t);
257 
258 static void	bge_reset(struct bge_softc *);
259 
260 static device_method_t bge_methods[] = {
261 	/* Device interface */
262 	DEVMETHOD(device_probe,		bge_probe),
263 	DEVMETHOD(device_attach,	bge_attach),
264 	DEVMETHOD(device_detach,	bge_detach),
265 	DEVMETHOD(device_shutdown,	bge_shutdown),
266 
267 	/* bus interface */
268 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
269 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
270 
271 	/* MII interface */
272 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
273 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
274 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
275 
276 	{ 0, 0 }
277 };
278 
279 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
280 static devclass_t bge_devclass;
281 
282 DECLARE_DUMMY_MODULE(if_bge);
283 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
284 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
285 
286 static uint32_t
287 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
288 {
289 	device_t dev = sc->bge_dev;
290 
291 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
292 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
293 }
294 
295 static void
296 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
297 {
298 	device_t dev = sc->bge_dev;
299 
300 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
301 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
302 }
303 
304 #ifdef notdef
305 static uint32_t
306 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
307 {
308 	device_t dev = sc->bge_dev;
309 
310 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
311 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
312 }
313 #endif
314 
315 static void
316 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
317 {
318 	device_t dev = sc->bge_dev;
319 
320 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
321 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
322 }
323 
324 #ifdef notdef
325 static uint8_t
326 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
327 {
328 	device_t dev = sc->bge_dev;
329 	uint32_t val;
330 	int i;
331 
332 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
333 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
334 		DELAY(10);
335 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
336 			break;
337 	}
338 
339 	if (i == BGE_TIMEOUT) {
340 		device_printf(sc->bge_dev, "VPD read timed out\n");
341 		return(0);
342 	}
343 
344 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
345 
346 	return((val >> ((addr % 4) * 8)) & 0xFF);
347 }
348 
349 static void
350 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
351 {
352 	size_t i;
353 	uint8_t *ptr;
354 
355 	ptr = (uint8_t *)res;
356 	for (i = 0; i < sizeof(struct vpd_res); i++)
357 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
358 
359 	return;
360 }
361 
362 static void
363 bge_vpd_read(struct bge_softc *sc)
364 {
365 	int pos = 0, i;
366 	struct vpd_res res;
367 
368 	if (sc->bge_vpd_prodname != NULL)
369 		free(sc->bge_vpd_prodname, M_DEVBUF);
370 	if (sc->bge_vpd_readonly != NULL)
371 		free(sc->bge_vpd_readonly, M_DEVBUF);
372 	sc->bge_vpd_prodname = NULL;
373 	sc->bge_vpd_readonly = NULL;
374 
375 	bge_vpd_read_res(sc, &res, pos);
376 
377 	if (res.vr_id != VPD_RES_ID) {
378 		device_printf(sc->bge_dev,
379 			      "bad VPD resource id: expected %x got %x\n",
380 			      VPD_RES_ID, res.vr_id);
381                 return;
382         }
383 
384 	pos += sizeof(res);
385 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
386 	for (i = 0; i < res.vr_len; i++)
387 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
388 	sc->bge_vpd_prodname[i] = '\0';
389 	pos += i;
390 
391 	bge_vpd_read_res(sc, &res, pos);
392 
393 	if (res.vr_id != VPD_RES_READ) {
394 		device_printf(sc->bge_dev,
395 			      "bad VPD resource id: expected %x got %x\n",
396 			      VPD_RES_READ, res.vr_id);
397 		return;
398 	}
399 
400 	pos += sizeof(res);
401 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
402 	for (i = 0; i < res.vr_len + 1; i++)
403 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
404 }
405 #endif
406 
407 /*
408  * Read a byte of data stored in the EEPROM at address 'addr.' The
409  * BCM570x supports both the traditional bitbang interface and an
410  * auto access interface for reading the EEPROM. We use the auto
411  * access method.
412  */
413 static uint8_t
414 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
415 {
416 	int i;
417 	uint32_t byte = 0;
418 
419 	/*
420 	 * Enable use of auto EEPROM access so we can avoid
421 	 * having to use the bitbang method.
422 	 */
423 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
424 
425 	/* Reset the EEPROM, load the clock period. */
426 	CSR_WRITE_4(sc, BGE_EE_ADDR,
427 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
428 	DELAY(20);
429 
430 	/* Issue the read EEPROM command. */
431 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
432 
433 	/* Wait for completion */
434 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
435 		DELAY(10);
436 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
437 			break;
438 	}
439 
440 	if (i == BGE_TIMEOUT) {
441 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
442 		return(0);
443 	}
444 
445 	/* Get result. */
446 	byte = CSR_READ_4(sc, BGE_EE_DATA);
447 
448         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
449 
450 	return(0);
451 }
452 
453 /*
454  * Read a sequence of bytes from the EEPROM.
455  */
456 static int
457 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
458 {
459 	size_t i;
460 	int err;
461 	uint8_t byte;
462 
463 	for (byte = 0, err = 0, i = 0; i < len; i++) {
464 		err = bge_eeprom_getbyte(sc, off + i, &byte);
465 		if (err)
466 			break;
467 		*(dest + i) = byte;
468 	}
469 
470 	return(err ? 1 : 0);
471 }
472 
473 static int
474 bge_miibus_readreg(device_t dev, int phy, int reg)
475 {
476 	struct bge_softc *sc;
477 	struct ifnet *ifp;
478 	uint32_t val, autopoll;
479 	int i;
480 
481 	sc = device_get_softc(dev);
482 	ifp = &sc->arpcom.ac_if;
483 
484 	/*
485 	 * Broadcom's own driver always assumes the internal
486 	 * PHY is at GMII address 1. On some chips, the PHY responds
487 	 * to accesses at all addresses, which could cause us to
488 	 * bogusly attach the PHY 32 times at probe type. Always
489 	 * restricting the lookup to address 1 is simpler than
490 	 * trying to figure out which chips revisions should be
491 	 * special-cased.
492 	 */
493 	if (phy != 1)
494 		return(0);
495 
496 	/* Reading with autopolling on may trigger PCI errors */
497 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
498 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
499 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
500 		DELAY(40);
501 	}
502 
503 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
504 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
505 
506 	for (i = 0; i < BGE_TIMEOUT; i++) {
507 		val = CSR_READ_4(sc, BGE_MI_COMM);
508 		if (!(val & BGE_MICOMM_BUSY))
509 			break;
510 	}
511 
512 	if (i == BGE_TIMEOUT) {
513 		if_printf(ifp, "PHY read timed out\n");
514 		val = 0;
515 		goto done;
516 	}
517 
518 	val = CSR_READ_4(sc, BGE_MI_COMM);
519 
520 done:
521 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
522 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
523 		DELAY(40);
524 	}
525 
526 	if (val & BGE_MICOMM_READFAIL)
527 		return(0);
528 
529 	return(val & 0xFFFF);
530 }
531 
532 static int
533 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
534 {
535 	struct bge_softc *sc;
536 	uint32_t autopoll;
537 	int i;
538 
539 	sc = device_get_softc(dev);
540 
541 	/* Reading with autopolling on may trigger PCI errors */
542 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
543 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
544 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
545 		DELAY(40);
546 	}
547 
548 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
549 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
550 
551 	for (i = 0; i < BGE_TIMEOUT; i++) {
552 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
553 			break;
554 	}
555 
556 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
557 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
558 		DELAY(40);
559 	}
560 
561 	if (i == BGE_TIMEOUT) {
562 		if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
563 		return(0);
564 	}
565 
566 	return(0);
567 }
568 
569 static void
570 bge_miibus_statchg(device_t dev)
571 {
572 	struct bge_softc *sc;
573 	struct mii_data *mii;
574 
575 	sc = device_get_softc(dev);
576 	mii = device_get_softc(sc->bge_miibus);
577 
578 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
579 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
580 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
581 	} else {
582 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
583 	}
584 
585 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
586 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
587 	} else {
588 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
589 	}
590 }
591 
592 /*
593  * Handle events that have triggered interrupts.
594  */
595 static void
596 bge_handle_events(struct bge_softc *sc)
597 {
598 }
599 
600 /*
601  * Memory management for jumbo frames.
602  */
603 static int
604 bge_alloc_jumbo_mem(struct bge_softc *sc)
605 {
606 	struct bge_jslot *entry;
607 	caddr_t ptr;
608 	int i;
609 
610 	/* Grab a big chunk o' storage. */
611 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
612 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
613 
614 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
615 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
616 		return(ENOBUFS);
617 	}
618 
619 	SLIST_INIT(&sc->bge_jfree_listhead);
620 
621 	/*
622 	 * Now divide it up into 9K pieces and save the addresses
623 	 * in an array. Note that we play an evil trick here by using
624 	 * the first few bytes in the buffer to hold the the address
625 	 * of the softc structure for this interface. This is because
626 	 * bge_jfree() needs it, but it is called by the mbuf management
627 	 * code which will not pass it to us explicitly.
628 	 */
629 	ptr = sc->bge_cdata.bge_jumbo_buf;
630 	for (i = 0; i < BGE_JSLOTS; i++) {
631 		entry = &sc->bge_cdata.bge_jslots[i];
632 		entry->bge_sc = sc;
633 		entry->bge_buf = ptr;
634 		entry->bge_inuse = 0;
635 		entry->bge_slot = i;
636 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
637 		ptr += BGE_JLEN;
638 	}
639 
640 	return(0);
641 }
642 
643 static void
644 bge_free_jumbo_mem(struct bge_softc *sc)
645 {
646 	if (sc->bge_cdata.bge_jumbo_buf)
647 		contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
648 }
649 
650 /*
651  * Allocate a jumbo buffer.
652  */
653 static struct bge_jslot *
654 bge_jalloc(struct bge_softc *sc)
655 {
656 	struct bge_jslot *entry;
657 
658 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
659 
660 	if (entry == NULL) {
661 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
662 		return(NULL);
663 	}
664 
665 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
666 	entry->bge_inuse = 1;
667 	return(entry);
668 }
669 
670 /*
671  * Adjust usage count on a jumbo buffer.
672  */
673 static void
674 bge_jref(void *arg)
675 {
676 	struct bge_jslot *entry = (struct bge_jslot *)arg;
677 	struct bge_softc *sc = entry->bge_sc;
678 
679 	if (sc == NULL)
680 		panic("bge_jref: can't find softc pointer!");
681 
682 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
683 		panic("bge_jref: asked to reference buffer "
684 		    "that we don't manage!");
685 	else if (entry->bge_inuse == 0)
686 		panic("bge_jref: buffer already free!");
687 	else
688 		entry->bge_inuse++;
689 }
690 
691 /*
692  * Release a jumbo buffer.
693  */
694 static void
695 bge_jfree(void *arg)
696 {
697 	struct bge_jslot *entry = (struct bge_jslot *)arg;
698 	struct bge_softc *sc = entry->bge_sc;
699 
700 	if (sc == NULL)
701 		panic("bge_jfree: can't find softc pointer!");
702 
703 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
704 		panic("bge_jfree: asked to free buffer that we don't manage!");
705 	else if (entry->bge_inuse == 0)
706 		panic("bge_jfree: buffer already free!");
707 	else if (--entry->bge_inuse == 0)
708 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
709 }
710 
711 
712 /*
713  * Intialize a standard receive ring descriptor.
714  */
715 static int
716 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
717 {
718 	struct mbuf *m_new = NULL;
719 	struct bge_rx_bd *r;
720 
721 	if (m == NULL) {
722 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
723 		if (m_new == NULL)
724 			return (ENOBUFS);
725 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
726 	} else {
727 		m_new = m;
728 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
729 		m_new->m_data = m_new->m_ext.ext_buf;
730 	}
731 
732 	if (!sc->bge_rx_alignment_bug)
733 		m_adj(m_new, ETHER_ALIGN);
734 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
735 	r = &sc->bge_rdata->bge_rx_std_ring[i];
736 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
737 	r->bge_flags = BGE_RXBDFLAG_END;
738 	r->bge_len = m_new->m_len;
739 	r->bge_idx = i;
740 
741 	return(0);
742 }
743 
744 /*
745  * Initialize a jumbo receive ring descriptor. This allocates
746  * a jumbo buffer from the pool managed internally by the driver.
747  */
748 static int
749 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
750 {
751 	struct mbuf *m_new = NULL;
752 	struct bge_rx_bd *r;
753 
754 	if (m == NULL) {
755 		struct bge_jslot *buf;
756 
757 		/* Allocate the mbuf. */
758 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
759 		if (m_new == NULL)
760 			return(ENOBUFS);
761 
762 		/* Allocate the jumbo buffer */
763 		buf = bge_jalloc(sc);
764 		if (buf == NULL) {
765 			m_freem(m_new);
766 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
767 			    "-- packet dropped!\n");
768 			return(ENOBUFS);
769 		}
770 
771 		/* Attach the buffer to the mbuf. */
772 		m_new->m_ext.ext_arg = buf;
773 		m_new->m_ext.ext_buf = buf->bge_buf;
774 		m_new->m_ext.ext_free = bge_jfree;
775 		m_new->m_ext.ext_ref = bge_jref;
776 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
777 
778 		m_new->m_data = m_new->m_ext.ext_buf;
779 		m_new->m_flags |= M_EXT;
780 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
781 	} else {
782 		m_new = m;
783 		m_new->m_data = m_new->m_ext.ext_buf;
784 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
785 	}
786 
787 	if (!sc->bge_rx_alignment_bug)
788 		m_adj(m_new, ETHER_ALIGN);
789 	/* Set up the descriptor. */
790 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
791 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
792 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
793 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
794 	r->bge_len = m_new->m_len;
795 	r->bge_idx = i;
796 
797 	return(0);
798 }
799 
800 /*
801  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
802  * that's 1MB or memory, which is a lot. For now, we fill only the first
803  * 256 ring entries and hope that our CPU is fast enough to keep up with
804  * the NIC.
805  */
806 static int
807 bge_init_rx_ring_std(struct bge_softc *sc)
808 {
809 	int i;
810 
811 	for (i = 0; i < BGE_SSLOTS; i++) {
812 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
813 			return(ENOBUFS);
814 	};
815 
816 	sc->bge_std = i - 1;
817 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
818 
819 	return(0);
820 }
821 
822 static void
823 bge_free_rx_ring_std(struct bge_softc *sc)
824 {
825 	int i;
826 
827 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
828 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
829 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
830 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
831 		}
832 		bzero(&sc->bge_rdata->bge_rx_std_ring[i],
833 		    sizeof(struct bge_rx_bd));
834 	}
835 }
836 
837 static int
838 bge_init_rx_ring_jumbo(struct bge_softc *sc)
839 {
840 	int i;
841 	struct bge_rcb *rcb;
842 
843 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
844 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
845 			return(ENOBUFS);
846 	};
847 
848 	sc->bge_jumbo = i - 1;
849 
850 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
851 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
852 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
853 
854 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
855 
856 	return(0);
857 }
858 
859 static void
860 bge_free_rx_ring_jumbo(struct bge_softc *sc)
861 {
862 	int i;
863 
864 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
865 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
866 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
867 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
868 		}
869 		bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
870 		    sizeof(struct bge_rx_bd));
871 	}
872 }
873 
874 static void
875 bge_free_tx_ring(struct bge_softc *sc)
876 {
877 	int i;
878 
879 	if (sc->bge_rdata->bge_tx_ring == NULL)
880 		return;
881 
882 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
883 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
884 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
885 			sc->bge_cdata.bge_tx_chain[i] = NULL;
886 		}
887 		bzero(&sc->bge_rdata->bge_tx_ring[i],
888 		    sizeof(struct bge_tx_bd));
889 	}
890 }
891 
892 static int
893 bge_init_tx_ring(struct bge_softc *sc)
894 {
895 	sc->bge_txcnt = 0;
896 	sc->bge_tx_saved_considx = 0;
897 
898 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
899 	/* 5700 b2 errata */
900 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
901 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
902 
903 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
904 	/* 5700 b2 errata */
905 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
906 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
907 
908 	return(0);
909 }
910 
911 static void
912 bge_setmulti(struct bge_softc *sc)
913 {
914 	struct ifnet *ifp;
915 	struct ifmultiaddr *ifma;
916 	uint32_t hashes[4] = { 0, 0, 0, 0 };
917 	int h, i;
918 
919 	ifp = &sc->arpcom.ac_if;
920 
921 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
922 		for (i = 0; i < 4; i++)
923 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
924 		return;
925 	}
926 
927 	/* First, zot all the existing filters. */
928 	for (i = 0; i < 4; i++)
929 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
930 
931 	/* Now program new ones. */
932 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
933 		if (ifma->ifma_addr->sa_family != AF_LINK)
934 			continue;
935 		h = ether_crc32_le(
936 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
937 		    ETHER_ADDR_LEN) & 0x7f;
938 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
939 	}
940 
941 	for (i = 0; i < 4; i++)
942 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
943 }
944 
945 /*
946  * Do endian, PCI and DMA initialization. Also check the on-board ROM
947  * self-test results.
948  */
949 static int
950 bge_chipinit(struct bge_softc *sc)
951 {
952 	int i;
953 	uint32_t dma_rw_ctl;
954 
955 	/* Set endianness before we access any non-PCI registers. */
956 #if BYTE_ORDER == BIG_ENDIAN
957 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
958 	    BGE_BIGENDIAN_INIT, 4);
959 #else
960 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
961 	    BGE_LITTLEENDIAN_INIT, 4);
962 #endif
963 
964 	/*
965 	 * Check the 'ROM failed' bit on the RX CPU to see if
966 	 * self-tests passed.
967 	 */
968 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
969 		if_printf(&sc->arpcom.ac_if,
970 			  "RX CPU self-diagnostics failed!\n");
971 		return(ENODEV);
972 	}
973 
974 	/* Clear the MAC control register */
975 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
976 
977 	/*
978 	 * Clear the MAC statistics block in the NIC's
979 	 * internal memory.
980 	 */
981 	for (i = BGE_STATS_BLOCK;
982 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
983 		BGE_MEMWIN_WRITE(sc, i, 0);
984 
985 	for (i = BGE_STATUS_BLOCK;
986 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
987 		BGE_MEMWIN_WRITE(sc, i, 0);
988 
989 	/* Set up the PCI DMA control register. */
990 	if (sc->bge_pcie) {
991 		/* PCI Express */
992 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
993 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
994 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
995 	} else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
996 		   BGE_PCISTATE_PCI_BUSMODE) {
997 		/* Conventional PCI bus */
998 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
999 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1000 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1001 		    (0x0F);
1002 	} else {
1003 		/* PCI-X bus */
1004 		/*
1005 		 * The 5704 uses a different encoding of read/write
1006 		 * watermarks.
1007 		 */
1008 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1009 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1010 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1011 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1012 		else
1013 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1014 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1015 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1016 			    (0x0F);
1017 
1018 		/*
1019 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1020 		 * for hardware bugs.
1021 		 */
1022 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1023 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1024 			uint32_t tmp;
1025 
1026 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1027 			if (tmp == 0x6 || tmp == 0x7)
1028 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1029 		}
1030 	}
1031 
1032 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1033 	    sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1034 	    sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1035 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1036 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1037 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1038 
1039 	/*
1040 	 * Set up general mode register.
1041 	 */
1042 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1043 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1044 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1045 	    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1046 
1047 	/*
1048 	 * Disable memory write invalidate.  Apparently it is not supported
1049 	 * properly by these devices.
1050 	 */
1051 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1052 
1053 	/* Set the timer prescaler (always 66Mhz) */
1054 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1055 
1056 	return(0);
1057 }
1058 
1059 static int
1060 bge_blockinit(struct bge_softc *sc)
1061 {
1062 	struct bge_rcb *rcb;
1063 	volatile struct bge_rcb *vrcb;
1064 	int i;
1065 
1066 	/*
1067 	 * Initialize the memory window pointer register so that
1068 	 * we can access the first 32K of internal NIC RAM. This will
1069 	 * allow us to set up the TX send ring RCBs and the RX return
1070 	 * ring RCBs, plus other things which live in NIC memory.
1071 	 */
1072 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1073 
1074 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1075 
1076 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1077 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1078 		/* Configure mbuf memory pool */
1079 		if (sc->bge_extram) {
1080 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1081 			    BGE_EXT_SSRAM);
1082 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1083 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1084 			else
1085 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1086 		} else {
1087 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1088 			    BGE_BUFFPOOL_1);
1089 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1090 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1091 			else
1092 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1093 		}
1094 
1095 		/* Configure DMA resource pool */
1096 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1097 		    BGE_DMA_DESCRIPTORS);
1098 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1099 	}
1100 
1101 	/* Configure mbuf pool watermarks */
1102 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1103 	    sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1104 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1105 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1106 	} else {
1107 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1108 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1109 	}
1110 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1111 
1112 	/* Configure DMA resource watermarks */
1113 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1114 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1115 
1116 	/* Enable buffer manager */
1117 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1118 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1119 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1120 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1121 
1122 		/* Poll for buffer manager start indication */
1123 		for (i = 0; i < BGE_TIMEOUT; i++) {
1124 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1125 				break;
1126 			DELAY(10);
1127 		}
1128 
1129 		if (i == BGE_TIMEOUT) {
1130 			if_printf(&sc->arpcom.ac_if,
1131 				  "buffer manager failed to start\n");
1132 			return(ENXIO);
1133 		}
1134 	}
1135 
1136 	/* Enable flow-through queues */
1137 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1138 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1139 
1140 	/* Wait until queue initialization is complete */
1141 	for (i = 0; i < BGE_TIMEOUT; i++) {
1142 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1143 			break;
1144 		DELAY(10);
1145 	}
1146 
1147 	if (i == BGE_TIMEOUT) {
1148 		if_printf(&sc->arpcom.ac_if,
1149 			  "flow-through queue init failed\n");
1150 		return(ENXIO);
1151 	}
1152 
1153 	/* Initialize the standard RX ring control block */
1154 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1155 	BGE_HOSTADDR(rcb->bge_hostaddr,
1156 	    vtophys(&sc->bge_rdata->bge_rx_std_ring));
1157 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1158 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1159 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1160 	else
1161 		rcb->bge_maxlen_flags =
1162 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1163 	if (sc->bge_extram)
1164 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1165 	else
1166 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1167 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1168 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1169 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1170 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1171 
1172 	/*
1173 	 * Initialize the jumbo RX ring control block
1174 	 * We set the 'ring disabled' bit in the flags
1175 	 * field until we're actually ready to start
1176 	 * using this ring (i.e. once we set the MTU
1177 	 * high enough to require it).
1178 	 */
1179 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1180 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1181 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1182 		BGE_HOSTADDR(rcb->bge_hostaddr,
1183 		    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1184 		rcb->bge_maxlen_flags =
1185 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1186 		    BGE_RCB_FLAG_RING_DISABLED);
1187 		if (sc->bge_extram)
1188 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1189 		else
1190 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1191 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1192 		    rcb->bge_hostaddr.bge_addr_hi);
1193 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1194 		    rcb->bge_hostaddr.bge_addr_lo);
1195 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1196 		    rcb->bge_maxlen_flags);
1197 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1198 
1199 		/* Set up dummy disabled mini ring RCB */
1200 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1201 		rcb->bge_maxlen_flags =
1202 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1203 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1204 		    rcb->bge_maxlen_flags);
1205 	}
1206 
1207 	/*
1208 	 * Set the BD ring replentish thresholds. The recommended
1209 	 * values are 1/8th the number of descriptors allocated to
1210 	 * each ring.
1211 	 */
1212 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1213 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1214 
1215 	/*
1216 	 * Disable all unused send rings by setting the 'ring disabled'
1217 	 * bit in the flags field of all the TX send ring control blocks.
1218 	 * These are located in NIC memory.
1219 	 */
1220 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1221 	    BGE_SEND_RING_RCB);
1222 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1223 		vrcb->bge_maxlen_flags =
1224 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1225 		vrcb->bge_nicaddr = 0;
1226 		vrcb++;
1227 	}
1228 
1229 	/* Configure TX RCB 0 (we use only the first ring) */
1230 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1231 	    BGE_SEND_RING_RCB);
1232 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1233 	BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1234 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1235 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1236 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1237 		vrcb->bge_maxlen_flags =
1238 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1239 
1240 	/* Disable all unused RX return rings */
1241 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1242 	    BGE_RX_RETURN_RING_RCB);
1243 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1244 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1245 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1246 		vrcb->bge_maxlen_flags =
1247 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1248 		    BGE_RCB_FLAG_RING_DISABLED);
1249 		vrcb->bge_nicaddr = 0;
1250 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1251 		    (i * (sizeof(uint64_t))), 0);
1252 		vrcb++;
1253 	}
1254 
1255 	/* Initialize RX ring indexes */
1256 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1257 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1258 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1259 
1260 	/*
1261 	 * Set up RX return ring 0
1262 	 * Note that the NIC address for RX return rings is 0x00000000.
1263 	 * The return rings live entirely within the host, so the
1264 	 * nicaddr field in the RCB isn't used.
1265 	 */
1266 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1267 	    BGE_RX_RETURN_RING_RCB);
1268 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1269 	BGE_HOSTADDR(vrcb->bge_hostaddr,
1270 	    vtophys(&sc->bge_rdata->bge_rx_return_ring));
1271 	vrcb->bge_nicaddr = 0x00000000;
1272 	vrcb->bge_maxlen_flags =
1273 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1274 
1275 	/* Set random backoff seed for TX */
1276 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1277 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1278 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1279 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1280 	    BGE_TX_BACKOFF_SEED_MASK);
1281 
1282 	/* Set inter-packet gap */
1283 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1284 
1285 	/*
1286 	 * Specify which ring to use for packets that don't match
1287 	 * any RX rules.
1288 	 */
1289 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1290 
1291 	/*
1292 	 * Configure number of RX lists. One interrupt distribution
1293 	 * list, sixteen active lists, one bad frames class.
1294 	 */
1295 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1296 
1297 	/* Inialize RX list placement stats mask. */
1298 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1299 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1300 
1301 	/* Disable host coalescing until we get it set up */
1302 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1303 
1304 	/* Poll to make sure it's shut down. */
1305 	for (i = 0; i < BGE_TIMEOUT; i++) {
1306 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1307 			break;
1308 		DELAY(10);
1309 	}
1310 
1311 	if (i == BGE_TIMEOUT) {
1312 		if_printf(&sc->arpcom.ac_if,
1313 			  "host coalescing engine failed to idle\n");
1314 		return(ENXIO);
1315 	}
1316 
1317 	/* Set up host coalescing defaults */
1318 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1319 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1320 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1321 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1322 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1323 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1324 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1325 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1326 	}
1327 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1328 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1329 
1330 	/* Set up address of statistics block */
1331 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1332 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1333 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1334 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1335 		    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1336 
1337 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1338 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1339 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1340 	}
1341 
1342 	/* Set up address of status block */
1343 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1344 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1345 	    vtophys(&sc->bge_rdata->bge_status_block));
1346 
1347 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1348 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1349 
1350 	/* Turn on host coalescing state machine */
1351 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1352 
1353 	/* Turn on RX BD completion state machine and enable attentions */
1354 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1355 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1356 
1357 	/* Turn on RX list placement state machine */
1358 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1359 
1360 	/* Turn on RX list selector state machine. */
1361 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1362 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1363 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1364 
1365 	/* Turn on DMA, clear stats */
1366 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1367 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1368 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1369 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1370 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1371 
1372 	/* Set misc. local control, enable interrupts on attentions */
1373 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1374 
1375 #ifdef notdef
1376 	/* Assert GPIO pins for PHY reset */
1377 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1378 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1379 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1380 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1381 #endif
1382 
1383 	/* Turn on DMA completion state machine */
1384 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1385 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1386 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1387 
1388 	/* Turn on write DMA state machine */
1389 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1390 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1391 
1392 	/* Turn on read DMA state machine */
1393 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1394 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1395 
1396 	/* Turn on RX data completion state machine */
1397 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1398 
1399 	/* Turn on RX BD initiator state machine */
1400 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1401 
1402 	/* Turn on RX data and RX BD initiator state machine */
1403 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1404 
1405 	/* Turn on Mbuf cluster free state machine */
1406 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1407 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1408 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1409 
1410 	/* Turn on send BD completion state machine */
1411 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1412 
1413 	/* Turn on send data completion state machine */
1414 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1415 
1416 	/* Turn on send data initiator state machine */
1417 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1418 
1419 	/* Turn on send BD initiator state machine */
1420 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1421 
1422 	/* Turn on send BD selector state machine */
1423 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1424 
1425 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1426 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1427 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1428 
1429 	/* ack/clear link change events */
1430 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1431 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1432 	    BGE_MACSTAT_LINK_CHANGED);
1433 
1434 	/* Enable PHY auto polling (for MII/GMII only) */
1435 	if (sc->bge_tbi) {
1436 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1437  	} else {
1438 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1439 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1440 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1441 			    BGE_EVTENB_MI_INTERRUPT);
1442 	}
1443 
1444 	/* Enable link state change attentions. */
1445 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1446 
1447 	return(0);
1448 }
1449 
1450 /*
1451  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1452  * against our list and return its name if we find a match. Note
1453  * that since the Broadcom controller contains VPD support, we
1454  * can get the device name string from the controller itself instead
1455  * of the compiled-in string. This is a little slow, but it guarantees
1456  * we'll always announce the right product name.
1457  */
1458 static int
1459 bge_probe(device_t dev)
1460 {
1461 	struct bge_softc *sc;
1462 	struct bge_type *t;
1463 	char *descbuf;
1464 	uint16_t product, vendor;
1465 
1466 	product = pci_get_device(dev);
1467 	vendor = pci_get_vendor(dev);
1468 
1469 	for (t = bge_devs; t->bge_name != NULL; t++) {
1470 		if (vendor == t->bge_vid && product == t->bge_did)
1471 			break;
1472 	}
1473 
1474 	if (t->bge_name == NULL)
1475 		return(ENXIO);
1476 
1477 	sc = device_get_softc(dev);
1478 #ifdef notdef
1479 	sc->bge_dev = dev;
1480 
1481 	bge_vpd_read(sc);
1482 	device_set_desc(dev, sc->bge_vpd_prodname);
1483 #endif
1484 	descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1485 	snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1486 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1487 	device_set_desc_copy(dev, descbuf);
1488 	if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1489 		sc->bge_no_3_led = 1;
1490 	free(descbuf, M_TEMP);
1491 	return(0);
1492 }
1493 
1494 static int
1495 bge_attach(device_t dev)
1496 {
1497 	struct ifnet *ifp;
1498 	struct bge_softc *sc;
1499 	uint32_t hwcfg = 0;
1500 	uint32_t mac_addr = 0;
1501 	int error = 0, rid;
1502 	uint8_t ether_addr[ETHER_ADDR_LEN];
1503 
1504 	sc = device_get_softc(dev);
1505 	sc->bge_dev = dev;
1506 	callout_init(&sc->bge_stat_timer);
1507 
1508 	/*
1509 	 * Map control/status registers.
1510 	 */
1511 	pci_enable_busmaster(dev);
1512 
1513 	rid = BGE_PCI_BAR0;
1514 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1515 	    RF_ACTIVE);
1516 
1517 	if (sc->bge_res == NULL) {
1518 		device_printf(dev, "couldn't map memory\n");
1519 		error = ENXIO;
1520 		return(error);
1521 	}
1522 
1523 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1524 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1525 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1526 
1527 	/* Allocate interrupt */
1528 	rid = 0;
1529 
1530 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1531 	    RF_SHAREABLE | RF_ACTIVE);
1532 
1533 	if (sc->bge_irq == NULL) {
1534 		device_printf(dev, "couldn't map interrupt\n");
1535 		error = ENXIO;
1536 		goto fail;
1537 	}
1538 
1539 	/* Save ASIC rev. */
1540 	sc->bge_chipid =
1541 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1542 	    BGE_PCIMISCCTL_ASICREV;
1543 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1544 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1545 
1546 	/*
1547 	 * Treat the 5714 like the 5750 until we have more info
1548 	 * on this chip.
1549 	 */
1550 	if (sc->bge_asicrev == BGE_ASICREV_BCM5714)
1551 		sc->bge_asicrev = BGE_ASICREV_BCM5750;
1552 
1553 	/*
1554 	 * XXX: Broadcom Linux driver.  Not in specs or eratta.
1555 	 * PCI-Express?
1556 	 */
1557 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1558 		uint32_t v;
1559 
1560 		v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1561 		if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1562 			v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1563 			if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1564 				sc->bge_pcie = 1;
1565 		}
1566 	}
1567 
1568 	ifp = &sc->arpcom.ac_if;
1569 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1570 
1571 	/* Try to reset the chip. */
1572 	bge_reset(sc);
1573 
1574 	if (bge_chipinit(sc)) {
1575 		device_printf(dev, "chip initialization failed\n");
1576 		error = ENXIO;
1577 		goto fail;
1578 	}
1579 
1580 	/*
1581 	 * Get station address from the EEPROM.
1582 	 */
1583 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1584 	if ((mac_addr >> 16) == 0x484b) {
1585 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
1586 		ether_addr[1] = (uint8_t)mac_addr;
1587 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1588 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
1589 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
1590 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
1591 		ether_addr[5] = (uint8_t)mac_addr;
1592 	} else if (bge_read_eeprom(sc, ether_addr,
1593 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1594 		device_printf(dev, "failed to read station address\n");
1595 		error = ENXIO;
1596 		goto fail;
1597 	}
1598 
1599 	/* Allocate the general information block and ring buffers. */
1600 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1601 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1602 
1603 	if (sc->bge_rdata == NULL) {
1604 		error = ENXIO;
1605 		device_printf(dev, "no memory for list buffers!\n");
1606 		goto fail;
1607 	}
1608 
1609 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1610 
1611 	/*
1612 	 * Try to allocate memory for jumbo buffers.
1613 	 * The 5705/5750 does not appear to support jumbo frames.
1614 	 */
1615 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1616 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1617 		if (bge_alloc_jumbo_mem(sc)) {
1618 			device_printf(dev, "jumbo buffer allocation failed\n");
1619 			error = ENXIO;
1620 			goto fail;
1621 		}
1622 	}
1623 
1624 	/* Set default tuneable values. */
1625 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1626 	sc->bge_rx_coal_ticks = 150;
1627 	sc->bge_tx_coal_ticks = 150;
1628 	sc->bge_rx_max_coal_bds = 64;
1629 	sc->bge_tx_max_coal_bds = 128;
1630 
1631 	/* 5705/5750 limits RX return ring to 512 entries. */
1632 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1633 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1634 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1635 	else
1636 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1637 
1638 	/* Set up ifnet structure */
1639 	ifp->if_softc = sc;
1640 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1641 	ifp->if_ioctl = bge_ioctl;
1642 	ifp->if_start = bge_start;
1643 	ifp->if_watchdog = bge_watchdog;
1644 	ifp->if_init = bge_init;
1645 	ifp->if_mtu = ETHERMTU;
1646 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1647 	ifq_set_ready(&ifp->if_snd);
1648 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1649 	ifp->if_capabilities = IFCAP_HWCSUM;
1650 	ifp->if_capenable = ifp->if_capabilities;
1651 
1652 	/*
1653 	 * Figure out what sort of media we have by checking the
1654 	 * hardware config word in the first 32k of NIC internal memory,
1655 	 * or fall back to examining the EEPROM if necessary.
1656 	 * Note: on some BCM5700 cards, this value appears to be unset.
1657 	 * If that's the case, we have to rely on identifying the NIC
1658 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1659 	 * SK-9D41.
1660 	 */
1661 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1662 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1663 	else {
1664 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
1665 				BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1666 		hwcfg = ntohl(hwcfg);
1667 	}
1668 
1669 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1670 		sc->bge_tbi = 1;
1671 
1672 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1673 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1674 		sc->bge_tbi = 1;
1675 
1676 	if (sc->bge_tbi) {
1677 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1678 		    bge_ifmedia_upd, bge_ifmedia_sts);
1679 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1680 		ifmedia_add(&sc->bge_ifmedia,
1681 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1682 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1683 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1684 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1685 	} else {
1686 		/*
1687 		 * Do transceiver setup.
1688 		 */
1689 		if (mii_phy_probe(dev, &sc->bge_miibus,
1690 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1691 			device_printf(dev, "MII without any PHY!\n");
1692 			error = ENXIO;
1693 			goto fail;
1694 		}
1695 	}
1696 
1697 	/*
1698 	 * When using the BCM5701 in PCI-X mode, data corruption has
1699 	 * been observed in the first few bytes of some received packets.
1700 	 * Aligning the packet buffer in memory eliminates the corruption.
1701 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1702 	 * which do not support unaligned accesses, we will realign the
1703 	 * payloads by copying the received packets.
1704 	 */
1705 	switch (sc->bge_chipid) {
1706 	case BGE_CHIPID_BCM5701_A0:
1707 	case BGE_CHIPID_BCM5701_B0:
1708 	case BGE_CHIPID_BCM5701_B2:
1709 	case BGE_CHIPID_BCM5701_B5:
1710 		/* If in PCI-X mode, work around the alignment bug. */
1711 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1712 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1713 		    BGE_PCISTATE_PCI_BUSSPEED)
1714 			sc->bge_rx_alignment_bug = 1;
1715 		break;
1716 	}
1717 
1718 	/*
1719 	 * Call MI attach routine.
1720 	 */
1721 	ether_ifattach(ifp, ether_addr);
1722 
1723 	error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1724 			       bge_intr, sc, &sc->bge_intrhand, NULL);
1725 	if (error) {
1726 		ether_ifdetach(ifp);
1727 		device_printf(dev, "couldn't set up irq\n");
1728 		goto fail;
1729 	}
1730 
1731 	return(0);
1732 
1733 fail:
1734 	bge_detach(dev);
1735 
1736 	return(error);
1737 }
1738 
1739 static int
1740 bge_detach(device_t dev)
1741 {
1742 	struct bge_softc *sc = device_get_softc(dev);
1743 	struct ifnet *ifp = &sc->arpcom.ac_if;
1744 
1745 	crit_enter();
1746 
1747 	if (device_is_attached(dev)) {
1748 		ether_ifdetach(ifp);
1749 		bge_stop(sc);
1750 		bge_reset(sc);
1751 	}
1752 
1753 	if (sc->bge_tbi)
1754 		ifmedia_removeall(&sc->bge_ifmedia);
1755 	if (sc->bge_miibus);
1756 		device_delete_child(dev, sc->bge_miibus);
1757 	bus_generic_detach(dev);
1758 
1759 	bge_release_resources(sc);
1760 
1761 	crit_exit();
1762 
1763 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1764 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1765 		bge_free_jumbo_mem(sc);
1766 
1767 	return(0);
1768 }
1769 
1770 static void
1771 bge_release_resources(struct bge_softc *sc)
1772 {
1773         device_t dev;
1774 
1775         dev = sc->bge_dev;
1776 
1777 	if (sc->bge_vpd_prodname != NULL)
1778 		free(sc->bge_vpd_prodname, M_DEVBUF);
1779 
1780 	if (sc->bge_vpd_readonly != NULL)
1781 		free(sc->bge_vpd_readonly, M_DEVBUF);
1782 
1783         if (sc->bge_intrhand != NULL)
1784                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1785 
1786         if (sc->bge_irq != NULL)
1787 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1788 
1789         if (sc->bge_res != NULL)
1790 		bus_release_resource(dev, SYS_RES_MEMORY,
1791 		    BGE_PCI_BAR0, sc->bge_res);
1792 
1793         if (sc->bge_rdata != NULL)
1794 		contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1795 			   M_DEVBUF);
1796 
1797         return;
1798 }
1799 
1800 static void
1801 bge_reset(struct bge_softc *sc)
1802 {
1803 	device_t dev;
1804 	uint32_t cachesize, command, pcistate, reset;
1805 	int i, val = 0;
1806 
1807 	dev = sc->bge_dev;
1808 
1809 	/* Save some important PCI state. */
1810 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1811 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1812 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1813 
1814 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1815 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1816 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1817 
1818 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1819 
1820 	/* XXX: Broadcom Linux driver. */
1821 	if (sc->bge_pcie) {
1822 		if (CSR_READ_4(sc, 0x7e2c) == 0x60)	/* PCIE 1.0 */
1823 			CSR_WRITE_4(sc, 0x7e2c, 0x20);
1824 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1825 			/* Prevent PCIE link training during global reset */
1826 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1827 			reset |= (1<<29);
1828 		}
1829 	}
1830 
1831 	/* Issue global reset */
1832 	bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1833 
1834 	DELAY(1000);
1835 
1836 	/* XXX: Broadcom Linux driver. */
1837 	if (sc->bge_pcie) {
1838 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1839 			uint32_t v;
1840 
1841 			DELAY(500000); /* wait for link training to complete */
1842 			v = pci_read_config(dev, 0xc4, 4);
1843 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
1844 		}
1845 		/* Set PCIE max payload size and clear error status. */
1846 		pci_write_config(dev, 0xd8, 0xf5000, 4);
1847 	}
1848 
1849 	/* Reset some of the PCI state that got zapped by reset */
1850 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1851 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1852 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1853 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1854 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1855 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1856 
1857 	/* Enable memory arbiter. */
1858 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1859 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1860 
1861 	/*
1862 	 * Prevent PXE restart: write a magic number to the
1863 	 * general communications memory at 0xB50.
1864 	 */
1865 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1866 	/*
1867 	 * Poll the value location we just wrote until
1868 	 * we see the 1's complement of the magic number.
1869 	 * This indicates that the firmware initialization
1870 	 * is complete.
1871 	 */
1872 	for (i = 0; i < BGE_TIMEOUT; i++) {
1873 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1874 		if (val == ~BGE_MAGIC_NUMBER)
1875 			break;
1876 		DELAY(10);
1877 	}
1878 
1879 	if (i == BGE_TIMEOUT) {
1880 		if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1881 		return;
1882 	}
1883 
1884 	/*
1885 	 * XXX Wait for the value of the PCISTATE register to
1886 	 * return to its original pre-reset state. This is a
1887 	 * fairly good indicator of reset completion. If we don't
1888 	 * wait for the reset to fully complete, trying to read
1889 	 * from the device's non-PCI registers may yield garbage
1890 	 * results.
1891 	 */
1892 	for (i = 0; i < BGE_TIMEOUT; i++) {
1893 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1894 			break;
1895 		DELAY(10);
1896 	}
1897 
1898 	/* Fix up byte swapping */
1899 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1900 	    BGE_MODECTL_BYTESWAP_DATA);
1901 
1902 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1903 
1904 	/*
1905 	 * The 5704 in TBI mode apparently needs some special
1906 	 * adjustment to insure the SERDES drive level is set
1907 	 * to 1.2V.
1908 	 */
1909 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
1910 		uint32_t serdescfg;
1911 
1912 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
1913 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
1914 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
1915 	}
1916 
1917 	/* XXX: Broadcom Linux driver. */
1918 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1919 		uint32_t v;
1920 
1921 		v = CSR_READ_4(sc, 0x7c00);
1922 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1923 	}
1924 
1925 	DELAY(10000);
1926 }
1927 
1928 /*
1929  * Frame reception handling. This is called if there's a frame
1930  * on the receive return list.
1931  *
1932  * Note: we have to be able to handle two possibilities here:
1933  * 1) the frame is from the jumbo recieve ring
1934  * 2) the frame is from the standard receive ring
1935  */
1936 
1937 static void
1938 bge_rxeof(struct bge_softc *sc)
1939 {
1940 	struct ifnet *ifp;
1941 	int stdcnt = 0, jumbocnt = 0;
1942 
1943 	ifp = &sc->arpcom.ac_if;
1944 
1945 	while(sc->bge_rx_saved_considx !=
1946 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1947 		struct bge_rx_bd	*cur_rx;
1948 		uint32_t		rxidx;
1949 		struct mbuf		*m = NULL;
1950 		uint16_t		vlan_tag = 0;
1951 		int			have_tag = 0;
1952 
1953 		cur_rx =
1954 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1955 
1956 		rxidx = cur_rx->bge_idx;
1957 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1958 
1959 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1960 			have_tag = 1;
1961 			vlan_tag = cur_rx->bge_vlan_tag;
1962 		}
1963 
1964 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1965 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1966 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1967 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1968 			jumbocnt++;
1969 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1970 				ifp->if_ierrors++;
1971 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1972 				continue;
1973 			}
1974 			if (bge_newbuf_jumbo(sc,
1975 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1976 				ifp->if_ierrors++;
1977 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1978 				continue;
1979 			}
1980 		} else {
1981 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1982 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1983 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1984 			stdcnt++;
1985 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1986 				ifp->if_ierrors++;
1987 				bge_newbuf_std(sc, sc->bge_std, m);
1988 				continue;
1989 			}
1990 			if (bge_newbuf_std(sc, sc->bge_std,
1991 			    NULL) == ENOBUFS) {
1992 				ifp->if_ierrors++;
1993 				bge_newbuf_std(sc, sc->bge_std, m);
1994 				continue;
1995 			}
1996 		}
1997 
1998 		ifp->if_ipackets++;
1999 #ifndef __i386__
2000 		/*
2001 		 * The i386 allows unaligned accesses, but for other
2002 		 * platforms we must make sure the payload is aligned.
2003 		 */
2004 		if (sc->bge_rx_alignment_bug) {
2005 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2006 			    cur_rx->bge_len);
2007 			m->m_data += ETHER_ALIGN;
2008 		}
2009 #endif
2010 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2011 		m->m_pkthdr.rcvif = ifp;
2012 
2013 #if 0 /* currently broken for some packets, possibly related to TCP options */
2014 		if (ifp->if_hwassist) {
2015 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2016 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2017 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2018 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2019 				m->m_pkthdr.csum_data =
2020 				    cur_rx->bge_tcp_udp_csum;
2021 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2022 			}
2023 		}
2024 #endif
2025 
2026 		/*
2027 		 * If we received a packet with a vlan tag, pass it
2028 		 * to vlan_input() instead of ether_input().
2029 		 */
2030 		if (have_tag) {
2031 			VLAN_INPUT_TAG(m, vlan_tag);
2032 			have_tag = vlan_tag = 0;
2033 			continue;
2034 		}
2035 
2036 		(*ifp->if_input)(ifp, m);
2037 	}
2038 
2039 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2040 	if (stdcnt)
2041 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2042 	if (jumbocnt)
2043 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2044 }
2045 
2046 static void
2047 bge_txeof(struct bge_softc *sc)
2048 {
2049 	struct bge_tx_bd *cur_tx = NULL;
2050 	struct ifnet *ifp;
2051 
2052 	ifp = &sc->arpcom.ac_if;
2053 
2054 	/*
2055 	 * Go through our tx ring and free mbufs for those
2056 	 * frames that have been sent.
2057 	 */
2058 	while (sc->bge_tx_saved_considx !=
2059 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2060 		uint32_t		idx = 0;
2061 
2062 		idx = sc->bge_tx_saved_considx;
2063 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2064 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2065 			ifp->if_opackets++;
2066 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2067 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2068 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2069 		}
2070 		sc->bge_txcnt--;
2071 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2072 		ifp->if_timer = 0;
2073 	}
2074 
2075 	if (cur_tx != NULL)
2076 		ifp->if_flags &= ~IFF_OACTIVE;
2077 }
2078 
2079 static void
2080 bge_intr(void *xsc)
2081 {
2082 	struct bge_softc *sc = xsc;
2083 	struct ifnet *ifp = &sc->arpcom.ac_if;
2084  	uint32_t status, statusword, mimode;
2085 
2086 	/* XXX */
2087 	statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2088 
2089 #ifdef notdef
2090 	/* Avoid this for now -- checking this register is expensive. */
2091 	/* Make sure this is really our interrupt. */
2092 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2093 		return;
2094 #endif
2095 	/* Ack interrupt and stop others from occuring. */
2096 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2097 
2098 	/*
2099 	 * Process link state changes.
2100 	 * Grrr. The link status word in the status block does
2101 	 * not work correctly on the BCM5700 rev AX and BX chips,
2102 	 * according to all available information. Hence, we have
2103 	 * to enable MII interrupts in order to properly obtain
2104 	 * async link changes. Unfortunately, this also means that
2105 	 * we have to read the MAC status register to detect link
2106 	 * changes, thereby adding an additional register access to
2107 	 * the interrupt handler.
2108 	 */
2109 
2110 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2111 		status = CSR_READ_4(sc, BGE_MAC_STS);
2112 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2113 			sc->bge_link = 0;
2114 			callout_stop(&sc->bge_stat_timer);
2115 			bge_tick(sc);
2116 			/* Clear the interrupt */
2117 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2118 			    BGE_EVTENB_MI_INTERRUPT);
2119 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2120 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2121 			    BRGPHY_INTRS);
2122 		}
2123 	} else {
2124 		if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2125 			/*
2126 			 * Sometimes PCS encoding errors are detected in
2127 			 * TBI mode (on fiber NICs), and for some reason
2128 			 * the chip will signal them as link changes.
2129 			 * If we get a link change event, but the 'PCS
2130 			 * encoding error' bit in the MAC status register
2131 			 * is set, don't bother doing a link check.
2132 			 * This avoids spurious "gigabit link up" messages
2133 			 * that sometimes appear on fiber NICs during
2134 			 * periods of heavy traffic. (There should be no
2135 			 * effect on copper NICs.)
2136 			 *
2137 			 * If we do have a copper NIC (bge_tbi == 0) then
2138 			 * check that the AUTOPOLL bit is set before
2139 			 * processing the event as a real link change.
2140 			 * Turning AUTOPOLL on and off in the MII read/write
2141 			 * functions will often trigger a link status
2142 			 * interrupt for no reason.
2143 			 */
2144 			status = CSR_READ_4(sc, BGE_MAC_STS);
2145 			mimode = CSR_READ_4(sc, BGE_MI_MODE);
2146 			if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR |
2147 					BGE_MACSTAT_MI_COMPLETE)) &&
2148 			    (!sc->bge_tbi && (mimode & BGE_MIMODE_AUTOPOLL))) {
2149 				sc->bge_link = 0;
2150 				callout_stop(&sc->bge_stat_timer);
2151 				bge_tick(sc);
2152 			}
2153 			sc->bge_link = 0;
2154 			callout_stop(&sc->bge_stat_timer);
2155 			bge_tick(sc);
2156 			/* Clear the interrupt */
2157 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2158 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2159 			    BGE_MACSTAT_LINK_CHANGED);
2160 
2161 			/* Force flush the status block cached by PCI bridge */
2162 			CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2163 		}
2164 	}
2165 
2166 	if (ifp->if_flags & IFF_RUNNING) {
2167 		/* Check RX return ring producer/consumer */
2168 		bge_rxeof(sc);
2169 
2170 		/* Check TX ring producer/consumer */
2171 		bge_txeof(sc);
2172 	}
2173 
2174 	bge_handle_events(sc);
2175 
2176 	/* Re-enable interrupts. */
2177 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2178 
2179 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2180 		(*ifp->if_start)(ifp);
2181 }
2182 
2183 static void
2184 bge_tick(void *xsc)
2185 {
2186 	struct bge_softc *sc = xsc;
2187 	struct ifnet *ifp = &sc->arpcom.ac_if;
2188 	struct mii_data *mii = NULL;
2189 	struct ifmedia *ifm = NULL;
2190 
2191 	crit_enter();
2192 
2193 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2194 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
2195 		bge_stats_update_regs(sc);
2196 	else
2197 		bge_stats_update(sc);
2198 
2199 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2200 
2201 	if (sc->bge_link) {
2202 		crit_exit();
2203 		return;
2204 	}
2205 
2206 	if (sc->bge_tbi) {
2207 		ifm = &sc->bge_ifmedia;
2208 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2209 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2210 			sc->bge_link++;
2211 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2212 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2213 					   BGE_MACMODE_TBI_SEND_CFGS);
2214 			}
2215 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2216 			if_printf(ifp, "gigabit link up\n");
2217 			if (!ifq_is_empty(&ifp->if_snd))
2218 				(*ifp->if_start)(ifp);
2219 		}
2220 		crit_exit();
2221 		return;
2222 	}
2223 
2224 	mii = device_get_softc(sc->bge_miibus);
2225 	mii_tick(mii);
2226 
2227 	if (!sc->bge_link) {
2228 		mii_pollstat(mii);
2229 		if (mii->mii_media_status & IFM_ACTIVE &&
2230 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2231 			sc->bge_link++;
2232 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2233 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2234 				if_printf(ifp, "gigabit link up\n");
2235 			if (!ifq_is_empty(&ifp->if_snd))
2236 				(*ifp->if_start)(ifp);
2237 		}
2238 	}
2239 
2240 	crit_exit();
2241 }
2242 
2243 static void
2244 bge_stats_update_regs(struct bge_softc *sc)
2245 {
2246 	struct ifnet *ifp = &sc->arpcom.ac_if;
2247 	struct bge_mac_stats_regs stats;
2248 	uint32_t *s;
2249 	int i;
2250 
2251 	s = (uint32_t *)&stats;
2252 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2253 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
2254 		s++;
2255 	}
2256 
2257 	ifp->if_collisions +=
2258 	   (stats.dot3StatsSingleCollisionFrames +
2259 	   stats.dot3StatsMultipleCollisionFrames +
2260 	   stats.dot3StatsExcessiveCollisions +
2261 	   stats.dot3StatsLateCollisions) -
2262 	   ifp->if_collisions;
2263 }
2264 
2265 static void
2266 bge_stats_update(struct bge_softc *sc)
2267 {
2268 	struct ifnet *ifp = &sc->arpcom.ac_if;
2269 	struct bge_stats *stats;
2270 
2271 	stats = (struct bge_stats *)(sc->bge_vhandle +
2272 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2273 
2274 	ifp->if_collisions +=
2275 	   (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2276 	   stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2277 	   stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2278 	   stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2279 	   ifp->if_collisions;
2280 
2281 #ifdef notdef
2282 	ifp->if_collisions +=
2283 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2284 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2285 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2286 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2287 	   ifp->if_collisions;
2288 #endif
2289 }
2290 
2291 /*
2292  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2293  * pointers to descriptors.
2294  */
2295 static int
2296 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2297 {
2298 	struct bge_tx_bd *f = NULL;
2299 	struct mbuf *m;
2300 	uint32_t frag, cur, cnt = 0;
2301 	uint16_t csum_flags = 0;
2302 	struct ifvlan *ifv = NULL;
2303 
2304 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2305 	    m_head->m_pkthdr.rcvif != NULL &&
2306 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2307 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2308 
2309 	m = m_head;
2310 	cur = frag = *txidx;
2311 
2312 	if (m_head->m_pkthdr.csum_flags) {
2313 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2314 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2315 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2316 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2317 		if (m_head->m_flags & M_LASTFRAG)
2318 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2319 		else if (m_head->m_flags & M_FRAG)
2320 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2321 	}
2322 	/*
2323  	 * Start packing the mbufs in this chain into
2324 	 * the fragment pointers. Stop when we run out
2325  	 * of fragments or hit the end of the mbuf chain.
2326 	 */
2327 	for (m = m_head; m != NULL; m = m->m_next) {
2328 		if (m->m_len != 0) {
2329 			f = &sc->bge_rdata->bge_tx_ring[frag];
2330 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2331 				break;
2332 			BGE_HOSTADDR(f->bge_addr,
2333 			    vtophys(mtod(m, vm_offset_t)));
2334 			f->bge_len = m->m_len;
2335 			f->bge_flags = csum_flags;
2336 			if (ifv != NULL) {
2337 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2338 				f->bge_vlan_tag = ifv->ifv_tag;
2339 			} else {
2340 				f->bge_vlan_tag = 0;
2341 			}
2342 			/*
2343 			 * Sanity check: avoid coming within 16 descriptors
2344 			 * of the end of the ring.
2345 			 */
2346 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2347 				return(ENOBUFS);
2348 			cur = frag;
2349 			BGE_INC(frag, BGE_TX_RING_CNT);
2350 			cnt++;
2351 		}
2352 	}
2353 
2354 	if (m != NULL)
2355 		return(ENOBUFS);
2356 
2357 	if (frag == sc->bge_tx_saved_considx)
2358 		return(ENOBUFS);
2359 
2360 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2361 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2362 	sc->bge_txcnt += cnt;
2363 
2364 	*txidx = frag;
2365 
2366 	return(0);
2367 }
2368 
2369 /*
2370  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2371  * to the mbuf data regions directly in the transmit descriptors.
2372  */
2373 static void
2374 bge_start(struct ifnet *ifp)
2375 {
2376 	struct bge_softc *sc;
2377 	struct mbuf *m_head = NULL;
2378 	uint32_t prodidx = 0;
2379 
2380 	sc = ifp->if_softc;
2381 
2382 	if (!sc->bge_link)
2383 		return;
2384 
2385 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2386 
2387 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2388 		m_head = ifq_poll(&ifp->if_snd);
2389 		if (m_head == NULL)
2390 			break;
2391 
2392 		/*
2393 		 * XXX
2394 		 * safety overkill.  If this is a fragmented packet chain
2395 		 * with delayed TCP/UDP checksums, then only encapsulate
2396 		 * it if we have enough descriptors to handle the entire
2397 		 * chain at once.
2398 		 * (paranoia -- may not actually be needed)
2399 		 */
2400 		if (m_head->m_flags & M_FIRSTFRAG &&
2401 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2402 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2403 			    m_head->m_pkthdr.csum_data + 16) {
2404 				ifp->if_flags |= IFF_OACTIVE;
2405 				break;
2406 			}
2407 		}
2408 
2409 		/*
2410 		 * Pack the data into the transmit ring. If we
2411 		 * don't have room, set the OACTIVE flag and wait
2412 		 * for the NIC to drain the ring.
2413 		 */
2414 		if (bge_encap(sc, m_head, &prodidx)) {
2415 			ifp->if_flags |= IFF_OACTIVE;
2416 			break;
2417 		}
2418 		m_head = ifq_dequeue(&ifp->if_snd);
2419 
2420 		BPF_MTAP(ifp, m_head);
2421 	}
2422 
2423 	/* Transmit */
2424 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2425 	/* 5700 b2 errata */
2426 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2427 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2428 
2429 	/*
2430 	 * Set a timeout in case the chip goes out to lunch.
2431 	 */
2432 	ifp->if_timer = 5;
2433 }
2434 
2435 static void
2436 bge_init(void *xsc)
2437 {
2438 	struct bge_softc *sc = xsc;
2439 	struct ifnet *ifp = &sc->arpcom.ac_if;
2440 	uint16_t *m;
2441 
2442 	crit_enter();
2443 
2444 	if (ifp->if_flags & IFF_RUNNING) {
2445 		crit_exit();
2446 		return;
2447 	}
2448 
2449 	/* Cancel pending I/O and flush buffers. */
2450 	bge_stop(sc);
2451 	bge_reset(sc);
2452 	bge_chipinit(sc);
2453 
2454 	/*
2455 	 * Init the various state machines, ring
2456 	 * control blocks and firmware.
2457 	 */
2458 	if (bge_blockinit(sc)) {
2459 		if_printf(ifp, "initialization failure\n");
2460 		crit_exit();
2461 		return;
2462 	}
2463 
2464 	/* Specify MTU. */
2465 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2466 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2467 
2468 	/* Load our MAC address. */
2469 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2470 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2471 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2472 
2473 	/* Enable or disable promiscuous mode as needed. */
2474 	if (ifp->if_flags & IFF_PROMISC) {
2475 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2476 	} else {
2477 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2478 	}
2479 
2480 	/* Program multicast filter. */
2481 	bge_setmulti(sc);
2482 
2483 	/* Init RX ring. */
2484 	bge_init_rx_ring_std(sc);
2485 
2486 	/*
2487 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2488 	 * memory to insure that the chip has in fact read the first
2489 	 * entry of the ring.
2490 	 */
2491 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2492 		uint32_t		v, i;
2493 		for (i = 0; i < 10; i++) {
2494 			DELAY(20);
2495 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2496 			if (v == (MCLBYTES - ETHER_ALIGN))
2497 				break;
2498 		}
2499 		if (i == 10)
2500 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2501 	}
2502 
2503 	/* Init jumbo RX ring. */
2504 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2505 		bge_init_rx_ring_jumbo(sc);
2506 
2507 	/* Init our RX return ring index */
2508 	sc->bge_rx_saved_considx = 0;
2509 
2510 	/* Init TX ring. */
2511 	bge_init_tx_ring(sc);
2512 
2513 	/* Turn on transmitter */
2514 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2515 
2516 	/* Turn on receiver */
2517 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2518 
2519 	/* Tell firmware we're alive. */
2520 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2521 
2522 	/* Enable host interrupts. */
2523 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2524 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2525 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2526 
2527 	bge_ifmedia_upd(ifp);
2528 
2529 	ifp->if_flags |= IFF_RUNNING;
2530 	ifp->if_flags &= ~IFF_OACTIVE;
2531 
2532 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2533 
2534 	crit_exit();
2535 }
2536 
2537 /*
2538  * Set media options.
2539  */
2540 static int
2541 bge_ifmedia_upd(struct ifnet *ifp)
2542 {
2543 	struct bge_softc *sc = ifp->if_softc;
2544 	struct ifmedia *ifm = &sc->bge_ifmedia;
2545 	struct mii_data *mii;
2546 
2547 	/* If this is a 1000baseX NIC, enable the TBI port. */
2548 	if (sc->bge_tbi) {
2549 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2550 			return(EINVAL);
2551 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2552 		case IFM_AUTO:
2553 #ifndef BGE_FAKE_AUTONEG
2554 			/*
2555 			 * The BCM5704 ASIC appears to have a special
2556 			 * mechanism for programming the autoneg
2557 			 * advertisement registers in TBI mode.
2558 			 */
2559 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2560 				uint32_t sgdig;
2561 
2562 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2563 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2564 				sgdig |= BGE_SGDIGCFG_AUTO |
2565 					 BGE_SGDIGCFG_PAUSE_CAP |
2566 					 BGE_SGDIGCFG_ASYM_PAUSE;
2567 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2568 					    sgdig | BGE_SGDIGCFG_SEND);
2569 				DELAY(5);
2570 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2571 			}
2572 #endif	/* !BEG_FAKE_AUTONEG */
2573 			break;
2574 		case IFM_1000_SX:
2575 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2576 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2577 				    BGE_MACMODE_HALF_DUPLEX);
2578 			} else {
2579 				BGE_SETBIT(sc, BGE_MAC_MODE,
2580 				    BGE_MACMODE_HALF_DUPLEX);
2581 			}
2582 			break;
2583 		default:
2584 			return(EINVAL);
2585 		}
2586 		return(0);
2587 	}
2588 
2589 	mii = device_get_softc(sc->bge_miibus);
2590 	sc->bge_link = 0;
2591 	if (mii->mii_instance) {
2592 		struct mii_softc *miisc;
2593 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2594 		    miisc = LIST_NEXT(miisc, mii_list))
2595 			mii_phy_reset(miisc);
2596 	}
2597 	mii_mediachg(mii);
2598 
2599 	return(0);
2600 }
2601 
2602 /*
2603  * Report current media status.
2604  */
2605 static void
2606 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2607 {
2608 	struct bge_softc *sc = ifp->if_softc;
2609 	struct mii_data *mii;
2610 
2611 	if (sc->bge_tbi) {
2612 		ifmr->ifm_status = IFM_AVALID;
2613 		ifmr->ifm_active = IFM_ETHER;
2614 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2615 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2616 			ifmr->ifm_status |= IFM_ACTIVE;
2617 		ifmr->ifm_active |= IFM_1000_SX;
2618 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2619 			ifmr->ifm_active |= IFM_HDX;
2620 		else
2621 			ifmr->ifm_active |= IFM_FDX;
2622 		return;
2623 	}
2624 
2625 	mii = device_get_softc(sc->bge_miibus);
2626 	mii_pollstat(mii);
2627 	ifmr->ifm_active = mii->mii_media_active;
2628 	ifmr->ifm_status = mii->mii_media_status;
2629 }
2630 
2631 static int
2632 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2633 {
2634 	struct bge_softc *sc = ifp->if_softc;
2635 	struct ifreq *ifr = (struct ifreq *) data;
2636 	int mask, error = 0;
2637 	struct mii_data *mii;
2638 
2639 	crit_enter();
2640 
2641 	switch(command) {
2642 	case SIOCSIFMTU:
2643 		/* Disallow jumbo frames on 5705/5750. */
2644 		if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2645 		      sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2646 		     ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2647 			error = EINVAL;
2648 		else {
2649 			ifp->if_mtu = ifr->ifr_mtu;
2650 			ifp->if_flags &= ~IFF_RUNNING;
2651 			bge_init(sc);
2652 		}
2653 		break;
2654 	case SIOCSIFFLAGS:
2655 		if (ifp->if_flags & IFF_UP) {
2656 			/*
2657 			 * If only the state of the PROMISC flag changed,
2658 			 * then just use the 'set promisc mode' command
2659 			 * instead of reinitializing the entire NIC. Doing
2660 			 * a full re-init means reloading the firmware and
2661 			 * waiting for it to start up, which may take a
2662 			 * second or two.
2663 			 */
2664 			if (ifp->if_flags & IFF_RUNNING &&
2665 			    ifp->if_flags & IFF_PROMISC &&
2666 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2667 				BGE_SETBIT(sc, BGE_RX_MODE,
2668 				    BGE_RXMODE_RX_PROMISC);
2669 			} else if (ifp->if_flags & IFF_RUNNING &&
2670 			    !(ifp->if_flags & IFF_PROMISC) &&
2671 			    sc->bge_if_flags & IFF_PROMISC) {
2672 				BGE_CLRBIT(sc, BGE_RX_MODE,
2673 				    BGE_RXMODE_RX_PROMISC);
2674 			} else
2675 				bge_init(sc);
2676 		} else {
2677 			if (ifp->if_flags & IFF_RUNNING) {
2678 				bge_stop(sc);
2679 			}
2680 		}
2681 		sc->bge_if_flags = ifp->if_flags;
2682 		error = 0;
2683 		break;
2684 	case SIOCADDMULTI:
2685 	case SIOCDELMULTI:
2686 		if (ifp->if_flags & IFF_RUNNING) {
2687 			bge_setmulti(sc);
2688 			error = 0;
2689 		}
2690 		break;
2691 	case SIOCSIFMEDIA:
2692 	case SIOCGIFMEDIA:
2693 		if (sc->bge_tbi) {
2694 			error = ifmedia_ioctl(ifp, ifr,
2695 			    &sc->bge_ifmedia, command);
2696 		} else {
2697 			mii = device_get_softc(sc->bge_miibus);
2698 			error = ifmedia_ioctl(ifp, ifr,
2699 			    &mii->mii_media, command);
2700 		}
2701 		break;
2702         case SIOCSIFCAP:
2703 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2704 		if (mask & IFCAP_HWCSUM) {
2705 			if (IFCAP_HWCSUM & ifp->if_capenable)
2706 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2707 			else
2708 				ifp->if_capenable |= IFCAP_HWCSUM;
2709 		}
2710 		error = 0;
2711 		break;
2712 	default:
2713 		error = ether_ioctl(ifp, command, data);
2714 		break;
2715 	}
2716 
2717 	crit_exit();
2718 
2719 	return(error);
2720 }
2721 
2722 static void
2723 bge_watchdog(struct ifnet *ifp)
2724 {
2725 	struct bge_softc *sc = ifp->if_softc;
2726 
2727 	if_printf(ifp, "watchdog timeout -- resetting\n");
2728 
2729 	ifp->if_flags &= ~IFF_RUNNING;
2730 	bge_init(sc);
2731 
2732 	ifp->if_oerrors++;
2733 }
2734 
2735 /*
2736  * Stop the adapter and free any mbufs allocated to the
2737  * RX and TX lists.
2738  */
2739 static void
2740 bge_stop(struct bge_softc *sc)
2741 {
2742 	struct ifnet *ifp = &sc->arpcom.ac_if;
2743 	struct ifmedia_entry *ifm;
2744 	struct mii_data *mii = NULL;
2745 	int mtmp, itmp;
2746 
2747 	if (!sc->bge_tbi)
2748 		mii = device_get_softc(sc->bge_miibus);
2749 
2750 	callout_stop(&sc->bge_stat_timer);
2751 
2752 	/*
2753 	 * Disable all of the receiver blocks
2754 	 */
2755 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2756 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2757 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2758 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2759 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2760 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2761 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2762 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2763 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2764 
2765 	/*
2766 	 * Disable all of the transmit blocks
2767 	 */
2768 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2769 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2770 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2771 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2772 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2773 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2774 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2775 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2776 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2777 
2778 	/*
2779 	 * Shut down all of the memory managers and related
2780 	 * state machines.
2781 	 */
2782 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2783 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2784 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2785 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2786 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2787 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2788 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2789 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2790 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2791 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2792 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2793 	}
2794 
2795 	/* Disable host interrupts. */
2796 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2797 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2798 
2799 	/*
2800 	 * Tell firmware we're shutting down.
2801 	 */
2802 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2803 
2804 	/* Free the RX lists. */
2805 	bge_free_rx_ring_std(sc);
2806 
2807 	/* Free jumbo RX list. */
2808 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2809 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2810 		bge_free_rx_ring_jumbo(sc);
2811 
2812 	/* Free TX buffers. */
2813 	bge_free_tx_ring(sc);
2814 
2815 	/*
2816 	 * Isolate/power down the PHY, but leave the media selection
2817 	 * unchanged so that things will be put back to normal when
2818 	 * we bring the interface back up.
2819 	 */
2820 	if (!sc->bge_tbi) {
2821 		itmp = ifp->if_flags;
2822 		ifp->if_flags |= IFF_UP;
2823 		ifm = mii->mii_media.ifm_cur;
2824 		mtmp = ifm->ifm_media;
2825 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2826 		mii_mediachg(mii);
2827 		ifm->ifm_media = mtmp;
2828 		ifp->if_flags = itmp;
2829 	}
2830 
2831 	sc->bge_link = 0;
2832 
2833 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2834 
2835 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2836 }
2837 
2838 /*
2839  * Stop all chip I/O so that the kernel's probe routines don't
2840  * get confused by errant DMAs when rebooting.
2841  */
2842 static void
2843 bge_shutdown(device_t dev)
2844 {
2845 	struct bge_softc *sc = device_get_softc(dev);
2846 
2847 	bge_stop(sc);
2848 	bge_reset(sc);
2849 }
2850