xref: /dragonfly/sys/dev/netif/bge/if_bge.c (revision cfd1aba3)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include "opt_ifpoll.h"
74 
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89 
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92 
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108 
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112 
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115 
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118 
119 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
120 
121 #define	BGE_RESET_SHUTDOWN	0
122 #define	BGE_RESET_START		1
123 #define	BGE_RESET_SUSPEND	2
124 
125 static const struct bge_type {
126 	uint16_t		bge_vid;
127 	uint16_t		bge_did;
128 	char			*bge_name;
129 } bge_devs[] = {
130 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131 		"3COM 3C996 Gigabit Ethernet" },
132 
133 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134 		"Alteon BCM5700 Gigabit Ethernet" },
135 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136 		"Alteon BCM5701 Gigabit Ethernet" },
137 
138 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139 		"Altima AC1000 Gigabit Ethernet" },
140 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141 		"Altima AC1002 Gigabit Ethernet" },
142 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143 		"Altima AC9100 Gigabit Ethernet" },
144 
145 	{ PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146 		"Apple BCM5701 Gigabit Ethernet" },
147 
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149 		"Broadcom BCM5700 Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151 		"Broadcom BCM5701 Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153 		"Broadcom BCM5702 Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155 		"Broadcom BCM5702X Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157 		"Broadcom BCM5702 Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159 		"Broadcom BCM5703 Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161 		"Broadcom BCM5703X Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163 		"Broadcom BCM5703 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171 		"Broadcom BCM5705 Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173 		"Broadcom BCM5705F Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175 		"Broadcom BCM5705K Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177 		"Broadcom BCM5705M Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179 		"Broadcom BCM5705M Gigabit Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181 		"Broadcom BCM5714C Gigabit Ethernet" },
182 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183 		"Broadcom BCM5714S Gigabit Ethernet" },
184 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185 		"Broadcom BCM5715 Gigabit Ethernet" },
186 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187 		"Broadcom BCM5715S Gigabit Ethernet" },
188 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189 		"Broadcom BCM5720 Gigabit Ethernet" },
190 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191 		"Broadcom BCM5721 Gigabit Ethernet" },
192 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193 		"Broadcom BCM5722 Gigabit Ethernet" },
194 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195 		"Broadcom BCM5723 Gigabit Ethernet" },
196 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197 		"Broadcom BCM5750 Gigabit Ethernet" },
198 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199 		"Broadcom BCM5750M Gigabit Ethernet" },
200 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201 		"Broadcom BCM5751 Gigabit Ethernet" },
202 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203 		"Broadcom BCM5751F Gigabit Ethernet" },
204 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205 		"Broadcom BCM5751M Gigabit Ethernet" },
206 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207 		"Broadcom BCM5752 Gigabit Ethernet" },
208 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209 		"Broadcom BCM5752M Gigabit Ethernet" },
210 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211 		"Broadcom BCM5753 Gigabit Ethernet" },
212 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213 		"Broadcom BCM5753F Gigabit Ethernet" },
214 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215 		"Broadcom BCM5753M Gigabit Ethernet" },
216 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217 		"Broadcom BCM5754 Gigabit Ethernet" },
218 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219 		"Broadcom BCM5754M Gigabit Ethernet" },
220 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221 		"Broadcom BCM5755 Gigabit Ethernet" },
222 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223 		"Broadcom BCM5755M Gigabit Ethernet" },
224 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225 		"Broadcom BCM5756 Gigabit Ethernet" },
226 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227 		"Broadcom BCM5761 Gigabit Ethernet" },
228 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229 		"Broadcom BCM5761E Gigabit Ethernet" },
230 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231 		"Broadcom BCM5761S Gigabit Ethernet" },
232 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233 		"Broadcom BCM5761SE Gigabit Ethernet" },
234 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235 		"Broadcom BCM5764 Gigabit Ethernet" },
236 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237 		"Broadcom BCM5780 Gigabit Ethernet" },
238 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239 		"Broadcom BCM5780S Gigabit Ethernet" },
240 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241 		"Broadcom BCM5781 Gigabit Ethernet" },
242 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243 		"Broadcom BCM5782 Gigabit Ethernet" },
244 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245 		"Broadcom BCM5784 Gigabit Ethernet" },
246 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247 		"Broadcom BCM5785F Gigabit Ethernet" },
248 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249 		"Broadcom BCM5785G Gigabit Ethernet" },
250 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251 		"Broadcom BCM5786 Gigabit Ethernet" },
252 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253 		"Broadcom BCM5787 Gigabit Ethernet" },
254 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255 		"Broadcom BCM5787F Gigabit Ethernet" },
256 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257 		"Broadcom BCM5787M Gigabit Ethernet" },
258 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259 		"Broadcom BCM5788 Gigabit Ethernet" },
260 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261 		"Broadcom BCM5789 Gigabit Ethernet" },
262 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263 		"Broadcom BCM5901 Fast Ethernet" },
264 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265 		"Broadcom BCM5901A2 Fast Ethernet" },
266 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267 		"Broadcom BCM5903M Fast Ethernet" },
268 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269 		"Broadcom BCM5906 Fast Ethernet"},
270 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271 		"Broadcom BCM5906M Fast Ethernet"},
272 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273 		"Broadcom BCM57760 Gigabit Ethernet"},
274 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275 		"Broadcom BCM57780 Gigabit Ethernet"},
276 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277 		"Broadcom BCM57788 Gigabit Ethernet"},
278 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279 		"Broadcom BCM57790 Gigabit Ethernet"},
280 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281 		"SysKonnect Gigabit Ethernet" },
282 
283 	{ 0, 0, NULL }
284 };
285 
286 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)			((sc)->bge_flags & BGE_FLAG_5788)
293 
294 #define BGE_IS_CRIPPLED(sc)		\
295 	(BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296 
297 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298 
299 static int	bge_probe(device_t);
300 static int	bge_attach(device_t);
301 static int	bge_detach(device_t);
302 static void	bge_txeof(struct bge_softc *, uint16_t);
303 static void	bge_rxeof(struct bge_softc *, uint16_t, int);
304 
305 static void	bge_tick(void *);
306 static void	bge_stats_update(struct bge_softc *);
307 static void	bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309 		bge_defrag_shortdma(struct mbuf *);
310 static int	bge_encap(struct bge_softc *, struct mbuf **,
311 		    uint32_t *, int *);
312 static void	bge_xmit(struct bge_softc *, uint32_t);
313 static int	bge_setup_tso(struct bge_softc *, struct mbuf **,
314 		    uint16_t *, uint16_t *);
315 
316 #ifdef IFPOLL_ENABLE
317 static void	bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void	bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void	bge_intr_crippled(void *);
321 static void	bge_intr_legacy(void *);
322 static void	bge_msi(void *);
323 static void	bge_msi_oneshot(void *);
324 static void	bge_intr(struct bge_softc *);
325 static void	bge_enable_intr(struct bge_softc *);
326 static void	bge_disable_intr(struct bge_softc *);
327 static void	bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void	bge_init(void *);
330 static void	bge_stop(struct bge_softc *);
331 static void	bge_watchdog(struct ifnet *);
332 static void	bge_shutdown(device_t);
333 static int	bge_suspend(device_t);
334 static int	bge_resume(device_t);
335 static int	bge_ifmedia_upd(struct ifnet *);
336 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337 
338 static uint8_t	bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int	bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340 
341 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343 
344 static void	bge_setmulti(struct bge_softc *);
345 static void	bge_setpromisc(struct bge_softc *);
346 static void	bge_enable_msi(struct bge_softc *sc);
347 
348 static int	bge_alloc_jumbo_mem(struct bge_softc *);
349 static void	bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351 		*bge_jalloc(struct bge_softc *);
352 static void	bge_jfree(void *);
353 static void	bge_jref(void *);
354 static int	bge_newbuf_std(struct bge_softc *, int, int);
355 static int	bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void	bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void	bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int	bge_init_rx_ring_std(struct bge_softc *);
359 static void	bge_free_rx_ring_std(struct bge_softc *);
360 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void	bge_free_tx_ring(struct bge_softc *);
363 static int	bge_init_tx_ring(struct bge_softc *);
364 
365 static int	bge_chipinit(struct bge_softc *);
366 static int	bge_blockinit(struct bge_softc *);
367 static void	bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368 
369 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void	bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void	bge_writembx(struct bge_softc *, int, int);
377 
378 static int	bge_miibus_readreg(device_t, int, int);
379 static int	bge_miibus_writereg(device_t, int, int, int);
380 static void	bge_miibus_statchg(device_t);
381 static void	bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void	bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void	bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void	bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void	bge_link_poll(struct bge_softc *);
386 
387 static void	bge_reset(struct bge_softc *);
388 
389 static int	bge_dma_alloc(struct bge_softc *);
390 static void	bge_dma_free(struct bge_softc *);
391 static int	bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392 				    bus_dma_tag_t *, bus_dmamap_t *,
393 				    void **, bus_addr_t *);
394 static void	bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395 
396 static int	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int	bge_get_eaddr(struct bge_softc *, uint8_t[]);
400 
401 static void	bge_coal_change(struct bge_softc *);
402 static int	bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int	bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int	bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int	bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int	bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int	bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int	bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int	bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int	bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411 		    int, int, uint32_t);
412 
413 static void	bge_sig_post_reset(struct bge_softc *, int);
414 static void	bge_sig_legacy(struct bge_softc *, int);
415 static void	bge_sig_pre_reset(struct bge_softc *, int);
416 static void	bge_stop_fw(struct bge_softc *);
417 static void	bge_asf_driver_up(struct bge_softc *);
418 
419 static void	bge_ape_lock_init(struct bge_softc *);
420 static void	bge_ape_read_fw_ver(struct bge_softc *);
421 static int	bge_ape_lock(struct bge_softc *, int);
422 static void	bge_ape_unlock(struct bge_softc *, int);
423 static void	bge_ape_send_event(struct bge_softc *, uint32_t);
424 static void	bge_ape_driver_state_change(struct bge_softc *, int);
425 
426 /*
427  * Set following tunable to 1 for some IBM blade servers with the DNLK
428  * switch module. Auto negotiation is broken for those configurations.
429  */
430 static int	bge_fake_autoneg = 0;
431 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
432 
433 static int	bge_msi_enable = 1;
434 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
435 
436 static int	bge_allow_asf = 1;
437 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
438 
439 #if !defined(KTR_IF_BGE)
440 #define KTR_IF_BGE	KTR_ALL
441 #endif
442 KTR_INFO_MASTER(if_bge);
443 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
444 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
445 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
446 #define logif(name)	KTR_LOG(if_bge_ ## name)
447 
448 static device_method_t bge_methods[] = {
449 	/* Device interface */
450 	DEVMETHOD(device_probe,		bge_probe),
451 	DEVMETHOD(device_attach,	bge_attach),
452 	DEVMETHOD(device_detach,	bge_detach),
453 	DEVMETHOD(device_shutdown,	bge_shutdown),
454 	DEVMETHOD(device_suspend,	bge_suspend),
455 	DEVMETHOD(device_resume,	bge_resume),
456 
457 	/* bus interface */
458 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
459 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
460 
461 	/* MII interface */
462 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
463 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
464 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
465 
466 	DEVMETHOD_END
467 };
468 
469 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
470 static devclass_t bge_devclass;
471 
472 DECLARE_DUMMY_MODULE(if_bge);
473 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
474 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
475 
476 static uint32_t
477 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
478 {
479 	device_t dev = sc->bge_dev;
480 	uint32_t val;
481 
482 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
483 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
484 		return 0;
485 
486 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
487 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
488 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
489 	return (val);
490 }
491 
492 static void
493 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
494 {
495 	device_t dev = sc->bge_dev;
496 
497 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
498 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
499 		return;
500 
501 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
502 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
503 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
504 }
505 
506 #ifdef notdef
507 static uint32_t
508 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
509 {
510 	device_t dev = sc->bge_dev;
511 
512 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
513 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
514 }
515 #endif
516 
517 static void
518 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
519 {
520 	device_t dev = sc->bge_dev;
521 
522 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
523 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
524 }
525 
526 static void
527 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
528 {
529 	CSR_WRITE_4(sc, off, val);
530 }
531 
532 static void
533 bge_writembx(struct bge_softc *sc, int off, int val)
534 {
535 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
536 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
537 
538 	CSR_WRITE_4(sc, off, val);
539 	if (sc->bge_mbox_reorder)
540 		CSR_READ_4(sc, off);
541 }
542 
543 static uint8_t
544 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
545 {
546 	uint32_t access, byte = 0;
547 	int i;
548 
549 	/* Lock. */
550 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
551 	for (i = 0; i < 8000; i++) {
552 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
553 			break;
554 		DELAY(20);
555 	}
556 	if (i == 8000)
557 		return (1);
558 
559 	/* Enable access. */
560 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
561 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
562 
563 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
564 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
565 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
566 		DELAY(10);
567 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
568 			DELAY(10);
569 			break;
570 		}
571 	}
572 
573 	if (i == BGE_TIMEOUT * 10) {
574 		if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
575 		return (1);
576 	}
577 
578 	/* Get result. */
579 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
580 
581 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
582 
583 	/* Disable access. */
584 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
585 
586 	/* Unlock. */
587 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
588 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
589 
590 	return (0);
591 }
592 
593 /*
594  * Read a sequence of bytes from NVRAM.
595  */
596 static int
597 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
598 {
599 	int err = 0, i;
600 	uint8_t byte = 0;
601 
602 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
603 		return (1);
604 
605 	for (i = 0; i < cnt; i++) {
606 		err = bge_nvram_getbyte(sc, off + i, &byte);
607 		if (err)
608 			break;
609 		*(dest + i) = byte;
610 	}
611 
612 	return (err ? 1 : 0);
613 }
614 
615 /*
616  * Read a byte of data stored in the EEPROM at address 'addr.' The
617  * BCM570x supports both the traditional bitbang interface and an
618  * auto access interface for reading the EEPROM. We use the auto
619  * access method.
620  */
621 static uint8_t
622 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
623 {
624 	int i;
625 	uint32_t byte = 0;
626 
627 	/*
628 	 * Enable use of auto EEPROM access so we can avoid
629 	 * having to use the bitbang method.
630 	 */
631 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
632 
633 	/* Reset the EEPROM, load the clock period. */
634 	CSR_WRITE_4(sc, BGE_EE_ADDR,
635 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
636 	DELAY(20);
637 
638 	/* Issue the read EEPROM command. */
639 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
640 
641 	/* Wait for completion */
642 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
643 		DELAY(10);
644 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
645 			break;
646 	}
647 
648 	if (i == BGE_TIMEOUT) {
649 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
650 		return(1);
651 	}
652 
653 	/* Get result. */
654 	byte = CSR_READ_4(sc, BGE_EE_DATA);
655 
656         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
657 
658 	return(0);
659 }
660 
661 /*
662  * Read a sequence of bytes from the EEPROM.
663  */
664 static int
665 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
666 {
667 	size_t i;
668 	int err;
669 	uint8_t byte;
670 
671 	for (byte = 0, err = 0, i = 0; i < len; i++) {
672 		err = bge_eeprom_getbyte(sc, off + i, &byte);
673 		if (err)
674 			break;
675 		*(dest + i) = byte;
676 	}
677 
678 	return(err ? 1 : 0);
679 }
680 
681 static int
682 bge_miibus_readreg(device_t dev, int phy, int reg)
683 {
684 	struct bge_softc *sc = device_get_softc(dev);
685 	uint32_t val;
686 	int i;
687 
688 	KASSERT(phy == sc->bge_phyno,
689 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
690 
691 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
692 		return 0;
693 
694 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
695 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
696 		CSR_WRITE_4(sc, BGE_MI_MODE,
697 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
698 		DELAY(80);
699 	}
700 
701 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
702 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
703 
704 	/* Poll for the PHY register access to complete. */
705 	for (i = 0; i < BGE_TIMEOUT; i++) {
706 		DELAY(10);
707 		val = CSR_READ_4(sc, BGE_MI_COMM);
708 		if ((val & BGE_MICOMM_BUSY) == 0) {
709 			DELAY(5);
710 			val = CSR_READ_4(sc, BGE_MI_COMM);
711 			break;
712 		}
713 	}
714 	if (i == BGE_TIMEOUT) {
715 		if_printf(&sc->arpcom.ac_if, "PHY read timed out "
716 		    "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
717 		val = 0;
718 	}
719 
720 	/* Restore the autopoll bit if necessary. */
721 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
722 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
723 		DELAY(80);
724 	}
725 
726 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
727 
728 	if (val & BGE_MICOMM_READFAIL)
729 		return 0;
730 
731 	return (val & 0xFFFF);
732 }
733 
734 static int
735 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
736 {
737 	struct bge_softc *sc = device_get_softc(dev);
738 	int i;
739 
740 	KASSERT(phy == sc->bge_phyno,
741 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
742 
743 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
744 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
745 	       return 0;
746 
747 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
748 		return 0;
749 
750 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
751 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
752 		CSR_WRITE_4(sc, BGE_MI_MODE,
753 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
754 		DELAY(80);
755 	}
756 
757 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
758 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
759 
760 	for (i = 0; i < BGE_TIMEOUT; i++) {
761 		DELAY(10);
762 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
763 			DELAY(5);
764 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
765 			break;
766 		}
767 	}
768 	if (i == BGE_TIMEOUT) {
769 		if_printf(&sc->arpcom.ac_if, "PHY write timed out "
770 		    "(phy %d, reg %d, val %d)\n", phy, reg, val);
771 	}
772 
773 	/* Restore the autopoll bit if necessary. */
774 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
775 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
776 		DELAY(80);
777 	}
778 
779 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
780 
781 	return 0;
782 }
783 
784 static void
785 bge_miibus_statchg(device_t dev)
786 {
787 	struct bge_softc *sc;
788 	struct mii_data *mii;
789 	uint32_t mac_mode;
790 
791 	sc = device_get_softc(dev);
792 	if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
793 		return;
794 
795 	mii = device_get_softc(sc->bge_miibus);
796 
797 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
798 	    (IFM_ACTIVE | IFM_AVALID)) {
799 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
800 		case IFM_10_T:
801 		case IFM_100_TX:
802 			sc->bge_link = 1;
803 			break;
804 		case IFM_1000_T:
805 		case IFM_1000_SX:
806 		case IFM_2500_SX:
807 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
808 				sc->bge_link = 1;
809 			else
810 				sc->bge_link = 0;
811 			break;
812 		default:
813 			sc->bge_link = 0;
814 			break;
815 		}
816 	} else {
817 		sc->bge_link = 0;
818 	}
819 	if (sc->bge_link == 0)
820 		return;
821 
822 	/*
823 	 * APE firmware touches these registers to keep the MAC
824 	 * connected to the outside world.  Try to keep the
825 	 * accesses atomic.
826 	 */
827 
828 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
829 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
830 
831 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
832 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
833 		mac_mode |= BGE_PORTMODE_GMII;
834 	else
835 		mac_mode |= BGE_PORTMODE_MII;
836 
837 	if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
838 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
839 
840 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
841 	DELAY(40);
842 }
843 
844 /*
845  * Memory management for jumbo frames.
846  */
847 static int
848 bge_alloc_jumbo_mem(struct bge_softc *sc)
849 {
850 	struct ifnet *ifp = &sc->arpcom.ac_if;
851 	struct bge_jslot *entry;
852 	uint8_t *ptr;
853 	bus_addr_t paddr;
854 	int i, error;
855 
856 	/*
857 	 * Create tag for jumbo mbufs.
858 	 * This is really a bit of a kludge. We allocate a special
859 	 * jumbo buffer pool which (thanks to the way our DMA
860 	 * memory allocation works) will consist of contiguous
861 	 * pages. This means that even though a jumbo buffer might
862 	 * be larger than a page size, we don't really need to
863 	 * map it into more than one DMA segment. However, the
864 	 * default mbuf tag will result in multi-segment mappings,
865 	 * so we have to create a special jumbo mbuf tag that
866 	 * lets us get away with mapping the jumbo buffers as
867 	 * a single segment. I think eventually the driver should
868 	 * be changed so that it uses ordinary mbufs and cluster
869 	 * buffers, i.e. jumbo frames can span multiple DMA
870 	 * descriptors. But that's a project for another day.
871 	 */
872 
873 	/*
874 	 * Create DMA stuffs for jumbo RX ring.
875 	 */
876 	error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
877 				    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
878 				    &sc->bge_cdata.bge_rx_jumbo_ring_map,
879 				    (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
880 				    &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
881 	if (error) {
882 		if_printf(ifp, "could not create jumbo RX ring\n");
883 		return error;
884 	}
885 
886 	/*
887 	 * Create DMA stuffs for jumbo buffer block.
888 	 */
889 	error = bge_dma_block_alloc(sc, BGE_JMEM,
890 				    &sc->bge_cdata.bge_jumbo_tag,
891 				    &sc->bge_cdata.bge_jumbo_map,
892 				    (void **)&sc->bge_ldata.bge_jumbo_buf,
893 				    &paddr);
894 	if (error) {
895 		if_printf(ifp, "could not create jumbo buffer\n");
896 		return error;
897 	}
898 
899 	SLIST_INIT(&sc->bge_jfree_listhead);
900 
901 	/*
902 	 * Now divide it up into 9K pieces and save the addresses
903 	 * in an array. Note that we play an evil trick here by using
904 	 * the first few bytes in the buffer to hold the the address
905 	 * of the softc structure for this interface. This is because
906 	 * bge_jfree() needs it, but it is called by the mbuf management
907 	 * code which will not pass it to us explicitly.
908 	 */
909 	for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
910 		entry = &sc->bge_cdata.bge_jslots[i];
911 		entry->bge_sc = sc;
912 		entry->bge_buf = ptr;
913 		entry->bge_paddr = paddr;
914 		entry->bge_inuse = 0;
915 		entry->bge_slot = i;
916 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
917 
918 		ptr += BGE_JLEN;
919 		paddr += BGE_JLEN;
920 	}
921 	return 0;
922 }
923 
924 static void
925 bge_free_jumbo_mem(struct bge_softc *sc)
926 {
927 	/* Destroy jumbo RX ring. */
928 	bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
929 			   sc->bge_cdata.bge_rx_jumbo_ring_map,
930 			   sc->bge_ldata.bge_rx_jumbo_ring);
931 
932 	/* Destroy jumbo buffer block. */
933 	bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
934 			   sc->bge_cdata.bge_jumbo_map,
935 			   sc->bge_ldata.bge_jumbo_buf);
936 }
937 
938 /*
939  * Allocate a jumbo buffer.
940  */
941 static struct bge_jslot *
942 bge_jalloc(struct bge_softc *sc)
943 {
944 	struct bge_jslot *entry;
945 
946 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
947 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
948 	if (entry) {
949 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
950 		entry->bge_inuse = 1;
951 	} else {
952 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
953 	}
954 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
955 	return(entry);
956 }
957 
958 /*
959  * Adjust usage count on a jumbo buffer.
960  */
961 static void
962 bge_jref(void *arg)
963 {
964 	struct bge_jslot *entry = (struct bge_jslot *)arg;
965 	struct bge_softc *sc = entry->bge_sc;
966 
967 	if (sc == NULL)
968 		panic("bge_jref: can't find softc pointer!");
969 
970 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
971 		panic("bge_jref: asked to reference buffer "
972 		    "that we don't manage!");
973 	} else if (entry->bge_inuse == 0) {
974 		panic("bge_jref: buffer already free!");
975 	} else {
976 		atomic_add_int(&entry->bge_inuse, 1);
977 	}
978 }
979 
980 /*
981  * Release a jumbo buffer.
982  */
983 static void
984 bge_jfree(void *arg)
985 {
986 	struct bge_jslot *entry = (struct bge_jslot *)arg;
987 	struct bge_softc *sc = entry->bge_sc;
988 
989 	if (sc == NULL)
990 		panic("bge_jfree: can't find softc pointer!");
991 
992 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
993 		panic("bge_jfree: asked to free buffer that we don't manage!");
994 	} else if (entry->bge_inuse == 0) {
995 		panic("bge_jfree: buffer already free!");
996 	} else {
997 		/*
998 		 * Possible MP race to 0, use the serializer.  The atomic insn
999 		 * is still needed for races against bge_jref().
1000 		 */
1001 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
1002 		atomic_subtract_int(&entry->bge_inuse, 1);
1003 		if (entry->bge_inuse == 0) {
1004 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1005 					  entry, jslot_link);
1006 		}
1007 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
1008 	}
1009 }
1010 
1011 
1012 /*
1013  * Intialize a standard receive ring descriptor.
1014  */
1015 static int
1016 bge_newbuf_std(struct bge_softc *sc, int i, int init)
1017 {
1018 	struct mbuf *m_new = NULL;
1019 	bus_dma_segment_t seg;
1020 	bus_dmamap_t map;
1021 	int error, nsegs;
1022 
1023 	m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1024 	if (m_new == NULL)
1025 		return ENOBUFS;
1026 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1027 
1028 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1029 		m_adj(m_new, ETHER_ALIGN);
1030 
1031 	error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1032 			sc->bge_cdata.bge_rx_tmpmap, m_new,
1033 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1034 	if (error) {
1035 		m_freem(m_new);
1036 		return error;
1037 	}
1038 
1039 	if (!init) {
1040 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1041 				sc->bge_cdata.bge_rx_std_dmamap[i],
1042 				BUS_DMASYNC_POSTREAD);
1043 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1044 			sc->bge_cdata.bge_rx_std_dmamap[i]);
1045 	}
1046 
1047 	map = sc->bge_cdata.bge_rx_tmpmap;
1048 	sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1049 	sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1050 
1051 	sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1052 	sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1053 
1054 	bge_setup_rxdesc_std(sc, i);
1055 	return 0;
1056 }
1057 
1058 static void
1059 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1060 {
1061 	struct bge_rxchain *rc;
1062 	struct bge_rx_bd *r;
1063 
1064 	rc = &sc->bge_cdata.bge_rx_std_chain[i];
1065 	r = &sc->bge_ldata.bge_rx_std_ring[i];
1066 
1067 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1068 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1069 	r->bge_len = rc->bge_mbuf->m_len;
1070 	r->bge_idx = i;
1071 	r->bge_flags = BGE_RXBDFLAG_END;
1072 }
1073 
1074 /*
1075  * Initialize a jumbo receive ring descriptor. This allocates
1076  * a jumbo buffer from the pool managed internally by the driver.
1077  */
1078 static int
1079 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1080 {
1081 	struct mbuf *m_new = NULL;
1082 	struct bge_jslot *buf;
1083 	bus_addr_t paddr;
1084 
1085 	/* Allocate the mbuf. */
1086 	MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1087 	if (m_new == NULL)
1088 		return ENOBUFS;
1089 
1090 	/* Allocate the jumbo buffer */
1091 	buf = bge_jalloc(sc);
1092 	if (buf == NULL) {
1093 		m_freem(m_new);
1094 		return ENOBUFS;
1095 	}
1096 
1097 	/* Attach the buffer to the mbuf. */
1098 	m_new->m_ext.ext_arg = buf;
1099 	m_new->m_ext.ext_buf = buf->bge_buf;
1100 	m_new->m_ext.ext_free = bge_jfree;
1101 	m_new->m_ext.ext_ref = bge_jref;
1102 	m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1103 
1104 	m_new->m_flags |= M_EXT;
1105 
1106 	m_new->m_data = m_new->m_ext.ext_buf;
1107 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1108 
1109 	paddr = buf->bge_paddr;
1110 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1111 		m_adj(m_new, ETHER_ALIGN);
1112 		paddr += ETHER_ALIGN;
1113 	}
1114 
1115 	/* Save necessary information */
1116 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1117 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1118 
1119 	/* Set up the descriptor. */
1120 	bge_setup_rxdesc_jumbo(sc, i);
1121 	return 0;
1122 }
1123 
1124 static void
1125 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1126 {
1127 	struct bge_rx_bd *r;
1128 	struct bge_rxchain *rc;
1129 
1130 	r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1131 	rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1132 
1133 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1134 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1135 	r->bge_len = rc->bge_mbuf->m_len;
1136 	r->bge_idx = i;
1137 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1138 }
1139 
1140 static int
1141 bge_init_rx_ring_std(struct bge_softc *sc)
1142 {
1143 	int i, error;
1144 
1145 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1146 		error = bge_newbuf_std(sc, i, 1);
1147 		if (error)
1148 			return error;
1149 	}
1150 
1151 	sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1152 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1153 
1154 	return(0);
1155 }
1156 
1157 static void
1158 bge_free_rx_ring_std(struct bge_softc *sc)
1159 {
1160 	int i;
1161 
1162 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1163 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1164 
1165 		if (rc->bge_mbuf != NULL) {
1166 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1167 					  sc->bge_cdata.bge_rx_std_dmamap[i]);
1168 			m_freem(rc->bge_mbuf);
1169 			rc->bge_mbuf = NULL;
1170 		}
1171 		bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1172 		    sizeof(struct bge_rx_bd));
1173 	}
1174 }
1175 
1176 static int
1177 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1178 {
1179 	struct bge_rcb *rcb;
1180 	int i, error;
1181 
1182 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1183 		error = bge_newbuf_jumbo(sc, i, 1);
1184 		if (error)
1185 			return error;
1186 	}
1187 
1188 	sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1189 
1190 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1191 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1192 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1193 
1194 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1195 
1196 	return(0);
1197 }
1198 
1199 static void
1200 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1201 {
1202 	int i;
1203 
1204 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1205 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1206 
1207 		if (rc->bge_mbuf != NULL) {
1208 			m_freem(rc->bge_mbuf);
1209 			rc->bge_mbuf = NULL;
1210 		}
1211 		bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1212 		    sizeof(struct bge_rx_bd));
1213 	}
1214 }
1215 
1216 static void
1217 bge_free_tx_ring(struct bge_softc *sc)
1218 {
1219 	int i;
1220 
1221 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1222 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1223 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1224 					  sc->bge_cdata.bge_tx_dmamap[i]);
1225 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1226 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1227 		}
1228 		bzero(&sc->bge_ldata.bge_tx_ring[i],
1229 		    sizeof(struct bge_tx_bd));
1230 	}
1231 }
1232 
1233 static int
1234 bge_init_tx_ring(struct bge_softc *sc)
1235 {
1236 	sc->bge_txcnt = 0;
1237 	sc->bge_tx_saved_considx = 0;
1238 	sc->bge_tx_prodidx = 0;
1239 
1240 	/* Initialize transmit producer index for host-memory send ring. */
1241 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1242 
1243 	/* 5700 b2 errata */
1244 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1245 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1246 
1247 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1248 	/* 5700 b2 errata */
1249 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1250 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1251 
1252 	return(0);
1253 }
1254 
1255 static void
1256 bge_setmulti(struct bge_softc *sc)
1257 {
1258 	struct ifnet *ifp;
1259 	struct ifmultiaddr *ifma;
1260 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1261 	int h, i;
1262 
1263 	ifp = &sc->arpcom.ac_if;
1264 
1265 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1266 		for (i = 0; i < 4; i++)
1267 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1268 		return;
1269 	}
1270 
1271 	/* First, zot all the existing filters. */
1272 	for (i = 0; i < 4; i++)
1273 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1274 
1275 	/* Now program new ones. */
1276 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1277 		if (ifma->ifma_addr->sa_family != AF_LINK)
1278 			continue;
1279 		h = ether_crc32_le(
1280 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1281 		    ETHER_ADDR_LEN) & 0x7f;
1282 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1283 	}
1284 
1285 	for (i = 0; i < 4; i++)
1286 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1287 }
1288 
1289 /*
1290  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1291  * self-test results.
1292  */
1293 static int
1294 bge_chipinit(struct bge_softc *sc)
1295 {
1296 	int i;
1297 	uint32_t dma_rw_ctl, mode_ctl;
1298 	uint16_t val;
1299 
1300 	/* Set endian type before we access any non-PCI registers. */
1301 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1302 	    BGE_INIT | sc->bge_pci_miscctl, 4);
1303 
1304 	/*
1305 	 * Clear the MAC statistics block in the NIC's
1306 	 * internal memory.
1307 	 */
1308 	for (i = BGE_STATS_BLOCK;
1309 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1310 		BGE_MEMWIN_WRITE(sc, i, 0);
1311 
1312 	for (i = BGE_STATUS_BLOCK;
1313 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1314 		BGE_MEMWIN_WRITE(sc, i, 0);
1315 
1316 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1317 		/*
1318 		 * Fix data corruption caused by non-qword write with WB.
1319 		 * Fix master abort in PCI mode.
1320 		 * Fix PCI latency timer.
1321 		 */
1322 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1323 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1324 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1325 	}
1326 
1327 	/* Set up the PCI DMA control register. */
1328 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1329 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1330 		/* PCI-E bus */
1331 		/* DMA read watermark not used on PCI-E */
1332 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1333 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1334 		/* PCI-X bus */
1335 		if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1336 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1337 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1338 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1339 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1340 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1341 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1342 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1343 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1344 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1345 			uint32_t rd_wat = 0x7;
1346 			uint32_t clkctl;
1347 
1348 			clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1349 			if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1350 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1351 				dma_rw_ctl |=
1352 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1353 			} else if (clkctl == 0x6 || clkctl == 0x7) {
1354 				dma_rw_ctl |=
1355 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1356 			}
1357 			if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1358 				rd_wat = 0x4;
1359 
1360 			dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1361 			    (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1362 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1363 		} else {
1364 			dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1365 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1366 			dma_rw_ctl |= 0xf;
1367 		}
1368 	} else {
1369 		/* Conventional PCI bus */
1370 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1371 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1372 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1373 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1374 			dma_rw_ctl |= 0xf;
1375 	}
1376 
1377 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1378 	    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1379 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1380 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1381 	    sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1382 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1383 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1384 	}
1385 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1386 
1387 	/*
1388 	 * Set up general mode register.
1389 	 */
1390 	mode_ctl = BGE_DMA_SWAP_OPTIONS|
1391 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1392 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1393 
1394 	/*
1395 	 * BCM5701 B5 have a bug causing data corruption when using
1396 	 * 64-bit DMA reads, which can be terminated early and then
1397 	 * completed later as 32-bit accesses, in combination with
1398 	 * certain bridges.
1399 	 */
1400 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1401 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1402 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1403 
1404 	/*
1405 	 * Tell the firmware the driver is running
1406 	 */
1407 	if (sc->bge_asf_mode & ASF_STACKUP)
1408 		mode_ctl |= BGE_MODECTL_STACKUP;
1409 
1410 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1411 
1412 	/*
1413 	 * Disable memory write invalidate.  Apparently it is not supported
1414 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1415 	 * as these chips need it even when using MSI.
1416 	 */
1417 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1418 	    (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1419 
1420 	/* Set the timer prescaler (always 66Mhz) */
1421 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1422 
1423 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1424 		DELAY(40);	/* XXX */
1425 
1426 		/* Put PHY into ready state */
1427 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1428 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1429 		DELAY(40);
1430 	}
1431 
1432 	return(0);
1433 }
1434 
1435 static int
1436 bge_blockinit(struct bge_softc *sc)
1437 {
1438 	struct bge_rcb *rcb;
1439 	bus_size_t vrcb;
1440 	bge_hostaddr taddr;
1441 	uint32_t val;
1442 	int i, limit;
1443 
1444 	/*
1445 	 * Initialize the memory window pointer register so that
1446 	 * we can access the first 32K of internal NIC RAM. This will
1447 	 * allow us to set up the TX send ring RCBs and the RX return
1448 	 * ring RCBs, plus other things which live in NIC memory.
1449 	 */
1450 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1451 
1452 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1453 
1454 	if (!BGE_IS_5705_PLUS(sc)) {
1455 		/* Configure mbuf memory pool */
1456 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1457 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1458 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1459 		else
1460 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1461 
1462 		/* Configure DMA resource pool */
1463 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1464 		    BGE_DMA_DESCRIPTORS);
1465 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1466 	}
1467 
1468 	/* Configure mbuf pool watermarks */
1469 	if (!BGE_IS_5705_PLUS(sc)) {
1470 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1471 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1472 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1473 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1474 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1475 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1476 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1477 	} else {
1478 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1479 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1480 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1481 	}
1482 
1483 	/* Configure DMA resource watermarks */
1484 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1485 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1486 
1487 	/* Enable buffer manager */
1488 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1489 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1490 
1491 	/* Poll for buffer manager start indication */
1492 	for (i = 0; i < BGE_TIMEOUT; i++) {
1493 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1494 			break;
1495 		DELAY(10);
1496 	}
1497 
1498 	if (i == BGE_TIMEOUT) {
1499 		if_printf(&sc->arpcom.ac_if,
1500 			  "buffer manager failed to start\n");
1501 		return(ENXIO);
1502 	}
1503 
1504 	/* Enable flow-through queues */
1505 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1506 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1507 
1508 	/* Wait until queue initialization is complete */
1509 	for (i = 0; i < BGE_TIMEOUT; i++) {
1510 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1511 			break;
1512 		DELAY(10);
1513 	}
1514 
1515 	if (i == BGE_TIMEOUT) {
1516 		if_printf(&sc->arpcom.ac_if,
1517 			  "flow-through queue init failed\n");
1518 		return(ENXIO);
1519 	}
1520 
1521 	/*
1522 	 * Summary of rings supported by the controller:
1523 	 *
1524 	 * Standard Receive Producer Ring
1525 	 * - This ring is used to feed receive buffers for "standard"
1526 	 *   sized frames (typically 1536 bytes) to the controller.
1527 	 *
1528 	 * Jumbo Receive Producer Ring
1529 	 * - This ring is used to feed receive buffers for jumbo sized
1530 	 *   frames (i.e. anything bigger than the "standard" frames)
1531 	 *   to the controller.
1532 	 *
1533 	 * Mini Receive Producer Ring
1534 	 * - This ring is used to feed receive buffers for "mini"
1535 	 *   sized frames to the controller.
1536 	 * - This feature required external memory for the controller
1537 	 *   but was never used in a production system.  Should always
1538 	 *   be disabled.
1539 	 *
1540 	 * Receive Return Ring
1541 	 * - After the controller has placed an incoming frame into a
1542 	 *   receive buffer that buffer is moved into a receive return
1543 	 *   ring.  The driver is then responsible to passing the
1544 	 *   buffer up to the stack.  Many versions of the controller
1545 	 *   support multiple RR rings.
1546 	 *
1547 	 * Send Ring
1548 	 * - This ring is used for outgoing frames.  Many versions of
1549 	 *   the controller support multiple send rings.
1550 	 */
1551 
1552 	/* Initialize the standard receive producer ring control block. */
1553 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1554 	rcb->bge_hostaddr.bge_addr_lo =
1555 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1556 	rcb->bge_hostaddr.bge_addr_hi =
1557 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1558 	if (BGE_IS_5705_PLUS(sc)) {
1559 		/*
1560 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1561 		 * Bits 15-2 : Reserved (should be 0)
1562 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1563 		 * Bit 0     : Reserved
1564 		 */
1565 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1566 	} else {
1567 		/*
1568 		 * Ring size is always XXX entries
1569 		 * Bits 31-16: Maximum RX frame size
1570 		 * Bits 15-2 : Reserved (should be 0)
1571 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1572 		 * Bit 0     : Reserved
1573 		 */
1574 		rcb->bge_maxlen_flags =
1575 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1576 	}
1577 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1578 	/* Write the standard receive producer ring control block. */
1579 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1580 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1581 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1582 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1583 	/* Reset the standard receive producer ring producer index. */
1584 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1585 
1586 	/*
1587 	 * Initialize the jumbo RX producer ring control
1588 	 * block.  We set the 'ring disabled' bit in the
1589 	 * flags field until we're actually ready to start
1590 	 * using this ring (i.e. once we set the MTU
1591 	 * high enough to require it).
1592 	 */
1593 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1594 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1595 		/* Get the jumbo receive producer ring RCB parameters. */
1596 		rcb->bge_hostaddr.bge_addr_lo =
1597 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1598 		rcb->bge_hostaddr.bge_addr_hi =
1599 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1600 		rcb->bge_maxlen_flags =
1601 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1602 		    BGE_RCB_FLAG_RING_DISABLED);
1603 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1604 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1605 		    rcb->bge_hostaddr.bge_addr_hi);
1606 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1607 		    rcb->bge_hostaddr.bge_addr_lo);
1608 		/* Program the jumbo receive producer ring RCB parameters. */
1609 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1610 		    rcb->bge_maxlen_flags);
1611 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1612 		/* Reset the jumbo receive producer ring producer index. */
1613 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1614 	}
1615 
1616 	/* Disable the mini receive producer ring RCB. */
1617 	if (BGE_IS_5700_FAMILY(sc)) {
1618 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1619 		rcb->bge_maxlen_flags =
1620 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1621 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1622 		    rcb->bge_maxlen_flags);
1623 		/* Reset the mini receive producer ring producer index. */
1624 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1625 	}
1626 
1627 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1628 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1629 	    (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1630 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1631 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1632 		CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1633 		    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1634 	}
1635 
1636 	/*
1637 	 * The BD ring replenish thresholds control how often the
1638 	 * hardware fetches new BD's from the producer rings in host
1639 	 * memory.  Setting the value too low on a busy system can
1640 	 * starve the hardware and recue the throughpout.
1641 	 *
1642 	 * Set the BD ring replentish thresholds. The recommended
1643 	 * values are 1/8th the number of descriptors allocated to
1644 	 * each ring.
1645 	 */
1646 	if (BGE_IS_5705_PLUS(sc))
1647 		val = 8;
1648 	else
1649 		val = BGE_STD_RX_RING_CNT / 8;
1650 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1651 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1652 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1653 		    BGE_JUMBO_RX_RING_CNT/8);
1654 	}
1655 
1656 	/*
1657 	 * Disable all send rings by setting the 'ring disabled' bit
1658 	 * in the flags field of all the TX send ring control blocks,
1659 	 * located in NIC memory.
1660 	 */
1661 	if (!BGE_IS_5705_PLUS(sc)) {
1662 		/* 5700 to 5704 had 16 send rings. */
1663 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1664 	} else {
1665 		limit = 1;
1666 	}
1667 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1668 	for (i = 0; i < limit; i++) {
1669 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1670 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1671 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1672 		vrcb += sizeof(struct bge_rcb);
1673 	}
1674 
1675 	/* Configure send ring RCB 0 (we use only the first ring) */
1676 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1677 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1678 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1679 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1680 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1681 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1682 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1683 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1684 
1685 	/*
1686 	 * Disable all receive return rings by setting the
1687 	 * 'ring diabled' bit in the flags field of all the receive
1688 	 * return ring control blocks, located in NIC memory.
1689 	 */
1690 	if (!BGE_IS_5705_PLUS(sc))
1691 		limit = BGE_RX_RINGS_MAX;
1692 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1693 		limit = 4;
1694 	else
1695 		limit = 1;
1696 	/* Disable all receive return rings. */
1697 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1698 	for (i = 0; i < limit; i++) {
1699 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1700 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1701 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1702 		    BGE_RCB_FLAG_RING_DISABLED);
1703 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1704 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1705 		    (i * (sizeof(uint64_t))), 0);
1706 		vrcb += sizeof(struct bge_rcb);
1707 	}
1708 
1709 	/*
1710 	 * Set up receive return ring 0.  Note that the NIC address
1711 	 * for RX return rings is 0x0.  The return rings live entirely
1712 	 * within the host, so the nicaddr field in the RCB isn't used.
1713 	 */
1714 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1715 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1716 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1717 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1718 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1719 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1720 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1721 
1722 	/* Set random backoff seed for TX */
1723 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1724 	    (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1725 	     sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1726 	     sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &
1727 	    BGE_TX_BACKOFF_SEED_MASK);
1728 
1729 	/* Set inter-packet gap */
1730 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1731 
1732 	/*
1733 	 * Specify which ring to use for packets that don't match
1734 	 * any RX rules.
1735 	 */
1736 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1737 
1738 	/*
1739 	 * Configure number of RX lists. One interrupt distribution
1740 	 * list, sixteen active lists, one bad frames class.
1741 	 */
1742 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1743 
1744 	/* Inialize RX list placement stats mask. */
1745 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1746 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1747 
1748 	/* Disable host coalescing until we get it set up */
1749 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1750 
1751 	/* Poll to make sure it's shut down. */
1752 	for (i = 0; i < BGE_TIMEOUT; i++) {
1753 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1754 			break;
1755 		DELAY(10);
1756 	}
1757 
1758 	if (i == BGE_TIMEOUT) {
1759 		if_printf(&sc->arpcom.ac_if,
1760 			  "host coalescing engine failed to idle\n");
1761 		return(ENXIO);
1762 	}
1763 
1764 	/* Set up host coalescing defaults */
1765 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1766 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1767 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1768 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1769 	if (!BGE_IS_5705_PLUS(sc)) {
1770 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1771 		    sc->bge_rx_coal_ticks_int);
1772 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1773 		    sc->bge_tx_coal_ticks_int);
1774 	}
1775 	/*
1776 	 * NOTE:
1777 	 * The datasheet (57XX-PG105-R) says BCM5705+ do not
1778 	 * have following two registers; obviously it is wrong.
1779 	 */
1780 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1781 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1782 
1783 	/* Set up address of statistics block */
1784 	if (!BGE_IS_5705_PLUS(sc)) {
1785 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1786 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1787 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1788 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1789 
1790 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1791 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1792 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1793 	}
1794 
1795 	/* Set up address of status block */
1796 	bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1797 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1798 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1799 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1800 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1801 
1802 	/*
1803 	 * Set up status block partail update size.
1804 	 *
1805 	 * Because only single TX ring, RX produce ring and Rx return ring
1806 	 * are used, ask device to update only minimum part of status block
1807 	 * except for BCM5700 AX/BX, whose status block partial update size
1808 	 * can't be configured.
1809 	 */
1810 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1811 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1812 		/* XXX Actually reserved on BCM5700 AX/BX */
1813 		val = BGE_STATBLKSZ_FULL;
1814 	} else {
1815 		val = BGE_STATBLKSZ_32BYTE;
1816 	}
1817 #if 0
1818 	/*
1819 	 * Does not seem to have visible effect in both
1820 	 * bulk data (1472B UDP datagram) and tiny data
1821 	 * (18B UDP datagram) TX tests.
1822 	 */
1823 	if (!BGE_IS_CRIPPLED(sc))
1824 		val |= BGE_HCCMODE_CLRTICK_TX;
1825 #endif
1826 
1827 	/* Turn on host coalescing state machine */
1828 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1829 
1830 	/* Turn on RX BD completion state machine and enable attentions */
1831 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1832 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1833 
1834 	/* Turn on RX list placement state machine */
1835 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1836 
1837 	/* Turn on RX list selector state machine. */
1838 	if (!BGE_IS_5705_PLUS(sc))
1839 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1840 
1841 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1842 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1843 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1844 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1845 
1846 	if (sc->bge_flags & BGE_FLAG_TBI)
1847 		val |= BGE_PORTMODE_TBI;
1848 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1849 		val |= BGE_PORTMODE_GMII;
1850 	else
1851 		val |= BGE_PORTMODE_MII;
1852 
1853 	/* Allow APE to send/receive frames. */
1854 	if (sc->bge_mfw_flags & BGE_MFW_ON_APE)
1855 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
1856 
1857 	/* Turn on DMA, clear stats */
1858 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1859 	DELAY(40);
1860 
1861 	/* Set misc. local control, enable interrupts on attentions */
1862 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1863 
1864 #ifdef notdef
1865 	/* Assert GPIO pins for PHY reset */
1866 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1867 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1868 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1869 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1870 #endif
1871 
1872 	/* Turn on DMA completion state machine */
1873 	if (!BGE_IS_5705_PLUS(sc))
1874 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1875 
1876 	/* Turn on write DMA state machine */
1877 	val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1878 	if (BGE_IS_5755_PLUS(sc)) {
1879 		/* Enable host coalescing bug fix. */
1880 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1881 	}
1882 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1883 		/* Request larger DMA burst size to get better performance. */
1884 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1885 	}
1886 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1887 	DELAY(40);
1888 
1889 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1890 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1891 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1892 	    sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1893 		/*
1894 		 * Enable fix for read DMA FIFO overruns.
1895 		 * The fix is to limit the number of RX BDs
1896 		 * the hardware would fetch at a fime.
1897 		 */
1898 		val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1899 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1900 		    val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1901 	}
1902 
1903 	/* Turn on read DMA state machine */
1904 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1905         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1906             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1907             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1908 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1909                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1910                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1911 	if (sc->bge_flags & BGE_FLAG_PCIE)
1912 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1913 	if (sc->bge_flags & BGE_FLAG_TSO)
1914 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1915 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1916 	DELAY(40);
1917 
1918 	/* Turn on RX data completion state machine */
1919 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1920 
1921 	/* Turn on RX BD initiator state machine */
1922 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1923 
1924 	/* Turn on RX data and RX BD initiator state machine */
1925 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1926 
1927 	/* Turn on Mbuf cluster free state machine */
1928 	if (!BGE_IS_5705_PLUS(sc))
1929 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1930 
1931 	/* Turn on send BD completion state machine */
1932 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1933 
1934 	/* Turn on send data completion state machine */
1935 	val = BGE_SDCMODE_ENABLE;
1936 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1937 		val |= BGE_SDCMODE_CDELAY;
1938 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1939 
1940 	/* Turn on send data initiator state machine */
1941 	if (sc->bge_flags & BGE_FLAG_TSO)
1942 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1943 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
1944 	else
1945 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1946 
1947 	/* Turn on send BD initiator state machine */
1948 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1949 
1950 	/* Turn on send BD selector state machine */
1951 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1952 
1953 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1954 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1955 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1956 
1957 	/* ack/clear link change events */
1958 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1959 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1960 	    BGE_MACSTAT_LINK_CHANGED);
1961 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1962 
1963 	/*
1964 	 * Enable attention when the link has changed state for
1965 	 * devices that use auto polling.
1966 	 */
1967 	if (sc->bge_flags & BGE_FLAG_TBI) {
1968 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1969  	} else {
1970 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1971 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1972 			DELAY(80);
1973 		}
1974 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1975 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1976 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1977 			    BGE_EVTENB_MI_INTERRUPT);
1978 		}
1979 	}
1980 
1981 	/*
1982 	 * Clear any pending link state attention.
1983 	 * Otherwise some link state change events may be lost until attention
1984 	 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1985 	 * It's not necessary on newer BCM chips - perhaps enabling link
1986 	 * state change attentions implies clearing pending attention.
1987 	 */
1988 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1989 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1990 	    BGE_MACSTAT_LINK_CHANGED);
1991 
1992 	/* Enable link state change attentions. */
1993 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1994 
1995 	return(0);
1996 }
1997 
1998 /*
1999  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2000  * against our list and return its name if we find a match. Note
2001  * that since the Broadcom controller contains VPD support, we
2002  * can get the device name string from the controller itself instead
2003  * of the compiled-in string. This is a little slow, but it guarantees
2004  * we'll always announce the right product name.
2005  */
2006 static int
2007 bge_probe(device_t dev)
2008 {
2009 	const struct bge_type *t;
2010 	uint16_t product, vendor;
2011 
2012 	product = pci_get_device(dev);
2013 	vendor = pci_get_vendor(dev);
2014 
2015 	for (t = bge_devs; t->bge_name != NULL; t++) {
2016 		if (vendor == t->bge_vid && product == t->bge_did)
2017 			break;
2018 	}
2019 	if (t->bge_name == NULL)
2020 		return(ENXIO);
2021 
2022 	device_set_desc(dev, t->bge_name);
2023 	return(0);
2024 }
2025 
2026 static int
2027 bge_attach(device_t dev)
2028 {
2029 	struct ifnet *ifp;
2030 	struct bge_softc *sc;
2031 	uint32_t hwcfg = 0, misccfg;
2032 	int error = 0, rid, capmask;
2033 	uint8_t ether_addr[ETHER_ADDR_LEN];
2034 	uint16_t product, vendor;
2035 	driver_intr_t *intr_func;
2036 	uintptr_t mii_priv = 0;
2037 	u_int intr_flags;
2038 	int msi_enable;
2039 
2040 	sc = device_get_softc(dev);
2041 	sc->bge_dev = dev;
2042 	callout_init_mp(&sc->bge_stat_timer);
2043 	lwkt_serialize_init(&sc->bge_jslot_serializer);
2044 
2045 	sc->bge_func_addr = pci_get_function(dev);
2046 	product = pci_get_device(dev);
2047 	vendor = pci_get_vendor(dev);
2048 
2049 #ifndef BURN_BRIDGES
2050 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2051 		uint32_t irq, mem;
2052 
2053 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
2054 		mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2055 
2056 		device_printf(dev, "chip is in D%d power mode "
2057 		    "-- setting to D0\n", pci_get_powerstate(dev));
2058 
2059 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2060 
2061 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
2062 		pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2063 	}
2064 #endif	/* !BURN_BRIDGE */
2065 
2066 	/*
2067 	 * Map control/status registers.
2068 	 */
2069 	pci_enable_busmaster(dev);
2070 
2071 	rid = BGE_PCI_BAR0;
2072 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2073 	    RF_ACTIVE);
2074 
2075 	if (sc->bge_res == NULL) {
2076 		device_printf(dev, "couldn't map memory\n");
2077 		return ENXIO;
2078 	}
2079 
2080 	sc->bge_btag = rman_get_bustag(sc->bge_res);
2081 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2082 
2083 	/* Save various chip information */
2084 	sc->bge_chipid =
2085 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2086 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2087 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2088 		/* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2089 		sc->bge_flags |= BGE_FLAG_CPMU;
2090 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2091 	}
2092 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2093 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2094 
2095 	/* Save chipset family. */
2096 	switch (sc->bge_asicrev) {
2097 	case BGE_ASICREV_BCM5755:
2098 	case BGE_ASICREV_BCM5761:
2099 	case BGE_ASICREV_BCM5784:
2100 	case BGE_ASICREV_BCM5785:
2101 	case BGE_ASICREV_BCM5787:
2102 	case BGE_ASICREV_BCM57780:
2103 	    sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2104 		BGE_FLAG_5705_PLUS;
2105 	    break;
2106 
2107 	case BGE_ASICREV_BCM5700:
2108 	case BGE_ASICREV_BCM5701:
2109 	case BGE_ASICREV_BCM5703:
2110 	case BGE_ASICREV_BCM5704:
2111 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2112 		break;
2113 
2114 	case BGE_ASICREV_BCM5714_A0:
2115 	case BGE_ASICREV_BCM5780:
2116 	case BGE_ASICREV_BCM5714:
2117 		sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2118 		/* Fall through */
2119 
2120 	case BGE_ASICREV_BCM5750:
2121 	case BGE_ASICREV_BCM5752:
2122 	case BGE_ASICREV_BCM5906:
2123 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2124 		/* Fall through */
2125 
2126 	case BGE_ASICREV_BCM5705:
2127 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2128 		break;
2129 	}
2130 
2131 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2132 		sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2133 
2134 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2135 		sc->bge_flags |= BGE_FLAG_APE;
2136 
2137 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2138 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2139 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2140 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2141 		sc->bge_flags |= BGE_FLAG_5788;
2142 
2143 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
2144 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2145 		sc->bge_flags |= BGE_FLAG_SHORTDMA;
2146 
2147 	/*
2148 	 * Increase STD RX ring prod index by at most 8 for BCM5750,
2149 	 * BCM5752 and BCM5755 to workaround hardware errata.
2150 	 */
2151 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2152 	    sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2153 	    sc->bge_asicrev == BGE_ASICREV_BCM5755)
2154 		sc->bge_rx_wreg = 8;
2155 
2156   	/*
2157 	 * Check if this is a PCI-X or PCI Express device.
2158   	 */
2159 	if (BGE_IS_5705_PLUS(sc)) {
2160 		if (pci_is_pcie(dev)) {
2161 			sc->bge_flags |= BGE_FLAG_PCIE;
2162 			sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2163 			pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2164 		}
2165 	} else {
2166 		/*
2167 		 * Check if the device is in PCI-X Mode.
2168 		 * (This bit is not valid on PCI Express controllers.)
2169 		 */
2170 		if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2171 		    BGE_PCISTATE_PCI_BUSMODE) == 0) {
2172 			sc->bge_flags |= BGE_FLAG_PCIX;
2173 			sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2174 			sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2175 			    "mbox_reorder", 0);
2176 		}
2177  	}
2178 	device_printf(dev, "CHIP ID 0x%08x; "
2179 		      "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2180 		      sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2181 		      (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2182 		      : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2183 			"PCI-E" : "PCI"));
2184 
2185 	/*
2186 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2187 	 * not actually a MAC controller bug but an issue with the embedded
2188 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2189 	 */
2190 	if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2191 	    (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2192 		sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2193 
2194 	/*
2195 	 * When using the BCM5701 in PCI-X mode, data corruption has
2196 	 * been observed in the first few bytes of some received packets.
2197 	 * Aligning the packet buffer in memory eliminates the corruption.
2198 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2199 	 * which do not support unaligned accesses, we will realign the
2200 	 * payloads by copying the received packets.
2201 	 */
2202 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2203 	    (sc->bge_flags & BGE_FLAG_PCIX))
2204 		sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2205 
2206 	if (!BGE_IS_CRIPPLED(sc)) {
2207 		if (device_getenv_int(dev, "status_tag", 1)) {
2208 			sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2209 			sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2210 			if (bootverbose)
2211 				device_printf(dev, "enable status tag\n");
2212 		}
2213 	}
2214 
2215 	if (BGE_IS_5755_PLUS(sc)) {
2216 		/*
2217 		 * BCM5754 and BCM5787 shares the same ASIC id so
2218 		 * explicit device id check is required.
2219 		 * Due to unknown reason TSO does not work on BCM5755M.
2220 		 */
2221 		if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2222 		    product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2223 		    product != PCI_PRODUCT_BROADCOM_BCM5755M)
2224 			sc->bge_flags |= BGE_FLAG_TSO;
2225 	}
2226 
2227 	/*
2228 	 * Set various PHY quirk flags.
2229 	 */
2230 
2231 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2232 	     sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2233 	    pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2234 		mii_priv |= BRGPHY_FLAG_NO_3LED;
2235 
2236 	capmask = MII_CAPMASK_DEFAULT;
2237 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2238 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2239 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2240 	     vendor == PCI_VENDOR_BROADCOM &&
2241 	     (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2242 	      product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2243 	      product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2244 	    (vendor == PCI_VENDOR_BROADCOM &&
2245 	     (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2246 	      product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2247 	      product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2248 	    product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2249 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2250 		/* 10/100 only */
2251 		capmask &= ~BMSR_EXTSTAT;
2252 	}
2253 
2254 	mii_priv |= BRGPHY_FLAG_WIRESPEED;
2255 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2256 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2257 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2258 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2259 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2260 		mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2261 
2262 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2263 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2264 		mii_priv |= BRGPHY_FLAG_CRC_BUG;
2265 
2266 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2267 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2268 		mii_priv |= BRGPHY_FLAG_ADC_BUG;
2269 
2270 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2271 		mii_priv |= BRGPHY_FLAG_5704_A0;
2272 
2273 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2274 		mii_priv |= BRGPHY_FLAG_5906;
2275 
2276 	if (BGE_IS_5705_PLUS(sc) &&
2277 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2278 	    /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2279 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2280 	    /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2281 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2282 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2283 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2284 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2285 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2286 			if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2287 			    product != PCI_PRODUCT_BROADCOM_BCM5756)
2288 				mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2289 			if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2290 				mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2291 		} else {
2292 			mii_priv |= BRGPHY_FLAG_BER_BUG;
2293 		}
2294 	}
2295 
2296 	/*
2297 	 * Chips with APE need BAR2 access for APE registers/memory.
2298 	 */
2299 	if (sc->bge_flags & BGE_FLAG_APE) {
2300 		uint32_t pcistate;
2301 
2302 		rid = PCIR_BAR(2);
2303 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2304 		    RF_ACTIVE);
2305 		if (sc->bge_res2 == NULL) {
2306 			device_printf(dev, "couldn't map BAR2 memory\n");
2307 			error = ENXIO;
2308 			goto fail;
2309 		}
2310 
2311 		/* Enable APE register/memory access by host driver. */
2312 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2313 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2314 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2315 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2316 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
2317 
2318 		bge_ape_lock_init(sc);
2319 		bge_ape_read_fw_ver(sc);
2320 	}
2321 
2322 	/*
2323 	 * Allocate interrupt
2324 	 */
2325 	msi_enable = bge_msi_enable;
2326 	if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2327 		/* If "tagged status" is disabled, don't enable MSI */
2328 		msi_enable = 0;
2329 	} else if (msi_enable) {
2330 		msi_enable = 0; /* Disable by default */
2331 		if (BGE_IS_575X_PLUS(sc)) {
2332 			msi_enable = 1;
2333 			/* XXX we filter all 5714 chips */
2334 			if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2335 			    (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2336 			     (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2337 			      sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2338 				msi_enable = 0;
2339 			else if (BGE_IS_5755_PLUS(sc) ||
2340 			    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2341 				sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2342 		}
2343 	}
2344 	if (msi_enable) {
2345 		if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2346 			device_printf(dev, "no MSI capability\n");
2347 			msi_enable = 0;
2348 		}
2349 	}
2350 
2351 	sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2352 	    &intr_flags);
2353 
2354 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2355 	    intr_flags);
2356 	if (sc->bge_irq == NULL) {
2357 		device_printf(dev, "couldn't map interrupt\n");
2358 		error = ENXIO;
2359 		goto fail;
2360 	}
2361 
2362 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2363 		bge_enable_msi(sc);
2364 	else
2365 		sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2366 
2367 	/* Initialize if_name earlier, so if_printf could be used */
2368 	ifp = &sc->arpcom.ac_if;
2369 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2370 
2371 	sc->bge_asf_mode = 0;
2372 	/* No ASF if APE present. */
2373 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2374 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2375 		    BGE_SRAM_DATA_SIG_MAGIC)) {
2376 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2377 			    BGE_HWCFG_ASF) {
2378 				sc->bge_asf_mode |= ASF_ENABLE;
2379 				sc->bge_asf_mode |= ASF_STACKUP;
2380 				if (BGE_IS_575X_PLUS(sc))
2381 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2382 			}
2383 		}
2384 	}
2385 
2386 	/*
2387 	 * Try to reset the chip.
2388 	 */
2389 	bge_stop_fw(sc);
2390 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2391 	bge_reset(sc);
2392 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2393 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2394 
2395 	if (bge_chipinit(sc)) {
2396 		device_printf(dev, "chip initialization failed\n");
2397 		error = ENXIO;
2398 		goto fail;
2399 	}
2400 
2401 	/*
2402 	 * Get station address
2403 	 */
2404 	error = bge_get_eaddr(sc, ether_addr);
2405 	if (error) {
2406 		device_printf(dev, "failed to read station address\n");
2407 		goto fail;
2408 	}
2409 
2410 	/* 5705/5750 limits RX return ring to 512 entries. */
2411 	if (BGE_IS_5705_PLUS(sc))
2412 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2413 	else
2414 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2415 
2416 	error = bge_dma_alloc(sc);
2417 	if (error)
2418 		goto fail;
2419 
2420 	/* Set default tuneable values. */
2421 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2422 	sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2423 	sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2424 	sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2425 	sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2426 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2427 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2428 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2429 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2430 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2431 	} else {
2432 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2433 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2434 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2435 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2436 	}
2437 	sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2438 
2439 	/* Set up TX spare and reserved descriptor count */
2440 	if (sc->bge_flags & BGE_FLAG_TSO) {
2441 		sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2442 		sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2443 	} else {
2444 		sc->bge_txspare = BGE_NSEG_SPARE;
2445 		sc->bge_txrsvd = BGE_NSEG_RSVD;
2446 	}
2447 
2448 	/* Set up ifnet structure */
2449 	ifp->if_softc = sc;
2450 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2451 	ifp->if_ioctl = bge_ioctl;
2452 	ifp->if_start = bge_start;
2453 #ifdef IFPOLL_ENABLE
2454 	ifp->if_npoll = bge_npoll;
2455 #endif
2456 	ifp->if_watchdog = bge_watchdog;
2457 	ifp->if_init = bge_init;
2458 	ifp->if_mtu = ETHERMTU;
2459 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2460 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2461 	ifq_set_ready(&ifp->if_snd);
2462 
2463 	/*
2464 	 * 5700 B0 chips do not support checksumming correctly due
2465 	 * to hardware bugs.
2466 	 */
2467 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2468 		ifp->if_capabilities |= IFCAP_HWCSUM;
2469 		ifp->if_hwassist |= BGE_CSUM_FEATURES;
2470 	}
2471 	if (sc->bge_flags & BGE_FLAG_TSO) {
2472 		ifp->if_capabilities |= IFCAP_TSO;
2473 		ifp->if_hwassist |= CSUM_TSO;
2474 	}
2475 	ifp->if_capenable = ifp->if_capabilities;
2476 
2477 	/*
2478 	 * Figure out what sort of media we have by checking the
2479 	 * hardware config word in the first 32k of NIC internal memory,
2480 	 * or fall back to examining the EEPROM if necessary.
2481 	 * Note: on some BCM5700 cards, this value appears to be unset.
2482 	 * If that's the case, we have to rely on identifying the NIC
2483 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2484 	 * SK-9D41.
2485 	 */
2486 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2487 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2488 	} else {
2489 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2490 				    sizeof(hwcfg))) {
2491 			device_printf(dev, "failed to read EEPROM\n");
2492 			error = ENXIO;
2493 			goto fail;
2494 		}
2495 		hwcfg = ntohl(hwcfg);
2496 	}
2497 
2498 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2499 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2500 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2501 		if (BGE_IS_5714_FAMILY(sc))
2502 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2503 		else
2504 			sc->bge_flags |= BGE_FLAG_TBI;
2505 	}
2506 
2507 	/* Setup MI MODE */
2508 	if (sc->bge_flags & BGE_FLAG_CPMU)
2509 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2510 	else
2511 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2512 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2513 		/* Enable auto polling for BCM570[0-5]. */
2514 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2515 	}
2516 
2517 	/* Setup link status update stuffs */
2518 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2519 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2520 		sc->bge_link_upd = bge_bcm5700_link_upd;
2521 		sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2522 	} else if (sc->bge_flags & BGE_FLAG_TBI) {
2523 		sc->bge_link_upd = bge_tbi_link_upd;
2524 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2525 	} else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2526 		sc->bge_link_upd = bge_autopoll_link_upd;
2527 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2528 	} else {
2529 		sc->bge_link_upd = bge_copper_link_upd;
2530 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2531 	}
2532 
2533 	/*
2534 	 * Broadcom's own driver always assumes the internal
2535 	 * PHY is at GMII address 1.  On some chips, the PHY responds
2536 	 * to accesses at all addresses, which could cause us to
2537 	 * bogusly attach the PHY 32 times at probe type.  Always
2538 	 * restricting the lookup to address 1 is simpler than
2539 	 * trying to figure out which chips revisions should be
2540 	 * special-cased.
2541 	 */
2542 	sc->bge_phyno = 1;
2543 
2544 	if (sc->bge_flags & BGE_FLAG_TBI) {
2545 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2546 		    bge_ifmedia_upd, bge_ifmedia_sts);
2547 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2548 		ifmedia_add(&sc->bge_ifmedia,
2549 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2550 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2551 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2552 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2553 	} else {
2554 		struct mii_probe_args mii_args;
2555 		int tries;
2556 
2557 		/*
2558 		 * Do transceiver setup and tell the firmware the
2559 		 * driver is down so we can try to get access the
2560 		 * probe if ASF is running.  Retry a couple of times
2561 		 * if we get a conflict with the ASF firmware accessing
2562 		 * the PHY.
2563 		 */
2564 		tries = 0;
2565 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2566 again:
2567 		bge_asf_driver_up(sc);
2568 
2569 		mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2570 		mii_args.mii_probemask = 1 << sc->bge_phyno;
2571 		mii_args.mii_capmask = capmask;
2572 		mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2573 		mii_args.mii_priv = mii_priv;
2574 
2575 		error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2576 		if (error) {
2577 			if (tries++ < 4) {
2578 				device_printf(sc->bge_dev, "Probe MII again\n");
2579 				bge_miibus_writereg(sc->bge_dev,
2580 				    sc->bge_phyno, MII_BMCR, BMCR_RESET);
2581 				goto again;
2582 			}
2583 			device_printf(dev, "MII without any PHY!\n");
2584 			goto fail;
2585 		}
2586 
2587 		/*
2588 		 * Now tell the firmware we are going up after probing the PHY
2589 		 */
2590 		if (sc->bge_asf_mode & ASF_STACKUP)
2591 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2592 	}
2593 
2594 	/*
2595 	 * Create sysctl nodes.
2596 	 */
2597 	sysctl_ctx_init(&sc->bge_sysctl_ctx);
2598 	sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2599 					      SYSCTL_STATIC_CHILDREN(_hw),
2600 					      OID_AUTO,
2601 					      device_get_nameunit(dev),
2602 					      CTLFLAG_RD, 0, "");
2603 	if (sc->bge_sysctl_tree == NULL) {
2604 		device_printf(dev, "can't add sysctl node\n");
2605 		error = ENXIO;
2606 		goto fail;
2607 	}
2608 
2609 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2610 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2611 			OID_AUTO, "rx_coal_ticks",
2612 			CTLTYPE_INT | CTLFLAG_RW,
2613 			sc, 0, bge_sysctl_rx_coal_ticks, "I",
2614 			"Receive coalescing ticks (usec).");
2615 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2616 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2617 			OID_AUTO, "tx_coal_ticks",
2618 			CTLTYPE_INT | CTLFLAG_RW,
2619 			sc, 0, bge_sysctl_tx_coal_ticks, "I",
2620 			"Transmit coalescing ticks (usec).");
2621 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2622 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2623 			OID_AUTO, "rx_coal_bds",
2624 			CTLTYPE_INT | CTLFLAG_RW,
2625 			sc, 0, bge_sysctl_rx_coal_bds, "I",
2626 			"Receive max coalesced BD count.");
2627 	SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2628 			SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2629 			OID_AUTO, "tx_coal_bds",
2630 			CTLTYPE_INT | CTLFLAG_RW,
2631 			sc, 0, bge_sysctl_tx_coal_bds, "I",
2632 			"Transmit max coalesced BD count.");
2633 
2634 	SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2635 		       SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2636 		       OID_AUTO, "tx_wreg", CTLFLAG_RW,
2637 		       &sc->bge_tx_wreg, 0,
2638 		       "# of segments before writing to hardware register");
2639 
2640 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2641 		/*
2642 		 * A common design characteristic for many Broadcom
2643 		 * client controllers is that they only support a
2644 		 * single outstanding DMA read operation on the PCIe
2645 		 * bus. This means that it will take twice as long to
2646 		 * fetch a TX frame that is split into header and
2647 		 * payload buffers as it does to fetch a single,
2648 		 * contiguous TX frame (2 reads vs. 1 read). For these
2649 		 * controllers, coalescing buffers to reduce the number
2650 		 * of memory reads is effective way to get maximum
2651 		 * performance(about 940Mbps).  Without collapsing TX
2652 		 * buffers the maximum TCP bulk transfer performance
2653 		 * is about 850Mbps. However forcing coalescing mbufs
2654 		 * consumes a lot of CPU cycles, so leave it off by
2655 		 * default.
2656 		 */
2657 		SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2658 			       SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2659 			       OID_AUTO, "force_defrag", CTLFLAG_RW,
2660 			       &sc->bge_force_defrag, 0,
2661 			       "Force defragment on TX path");
2662 	}
2663 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2664 		if (!BGE_IS_5705_PLUS(sc)) {
2665 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2666 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2667 			    "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2668 			    sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2669 			    "Receive coalescing ticks "
2670 			    "during interrupt (usec).");
2671 			SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2672 			    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2673 			    "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2674 			    sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2675 			    "Transmit coalescing ticks "
2676 			    "during interrupt (usec).");
2677 		}
2678 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2679 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2680 		    "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2681 		    sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2682 		    "Receive max coalesced BD count during interrupt.");
2683 		SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2684 		    SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2685 		    "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2686 		    sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2687 		    "Transmit max coalesced BD count during interrupt.");
2688 	}
2689 
2690 	/*
2691 	 * Call MI attach routine.
2692 	 */
2693 	ether_ifattach(ifp, ether_addr, NULL);
2694 
2695 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2696 
2697 #ifdef IFPOLL_ENABLE
2698 	/* Polling setup */
2699 	ifpoll_compat_setup(&sc->bge_npoll,
2700 	    &sc->bge_sysctl_ctx, sc->bge_sysctl_tree, device_get_unit(dev),
2701 	    ifp->if_serializer);
2702 #endif
2703 
2704 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2705 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2706 			intr_func = bge_msi_oneshot;
2707 			if (bootverbose)
2708 				device_printf(dev, "oneshot MSI\n");
2709 		} else {
2710 			intr_func = bge_msi;
2711 		}
2712 	} else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2713 		intr_func = bge_intr_legacy;
2714 	} else {
2715 		intr_func = bge_intr_crippled;
2716 	}
2717 	error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2718 	    &sc->bge_intrhand, ifp->if_serializer);
2719 	if (error) {
2720 		ether_ifdetach(ifp);
2721 		device_printf(dev, "couldn't set up irq\n");
2722 		goto fail;
2723 	}
2724 
2725 	return(0);
2726 fail:
2727 	bge_detach(dev);
2728 	return(error);
2729 }
2730 
2731 static int
2732 bge_detach(device_t dev)
2733 {
2734 	struct bge_softc *sc = device_get_softc(dev);
2735 
2736 	if (device_is_attached(dev)) {
2737 		struct ifnet *ifp = &sc->arpcom.ac_if;
2738 
2739 		lwkt_serialize_enter(ifp->if_serializer);
2740 		bge_stop(sc);
2741 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2742 		lwkt_serialize_exit(ifp->if_serializer);
2743 
2744 		ether_ifdetach(ifp);
2745 	}
2746 
2747 	if (sc->bge_flags & BGE_FLAG_TBI)
2748 		ifmedia_removeall(&sc->bge_ifmedia);
2749 	if (sc->bge_miibus)
2750 		device_delete_child(dev, sc->bge_miibus);
2751 	bus_generic_detach(dev);
2752 
2753 	if (sc->bge_irq != NULL) {
2754 		bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2755 		    sc->bge_irq);
2756 	}
2757 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2758 		pci_release_msi(dev);
2759 
2760 	if (sc->bge_res != NULL) {
2761 		bus_release_resource(dev, SYS_RES_MEMORY,
2762 		    BGE_PCI_BAR0, sc->bge_res);
2763 	}
2764 	if (sc->bge_res2 != NULL) {
2765 		bus_release_resource(dev, SYS_RES_MEMORY,
2766 		    PCIR_BAR(2), sc->bge_res2);
2767 	}
2768 
2769 	if (sc->bge_sysctl_tree != NULL)
2770 		sysctl_ctx_free(&sc->bge_sysctl_ctx);
2771 
2772 	bge_dma_free(sc);
2773 
2774 	return 0;
2775 }
2776 
2777 static void
2778 bge_reset(struct bge_softc *sc)
2779 {
2780 	device_t dev = sc->bge_dev;
2781 	uint32_t cachesize, command, reset, mac_mode, mac_mode_mask;
2782 	void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2783 	int i, val = 0;
2784 
2785 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
2786 	if (sc->bge_mfw_flags & BGE_MFW_ON_APE)
2787 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2788 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
2789 
2790 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2791 	    sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2792 		if (sc->bge_flags & BGE_FLAG_PCIE)
2793 			write_op = bge_writemem_direct;
2794 		else
2795 			write_op = bge_writemem_ind;
2796 	} else {
2797 		write_op = bge_writereg_ind;
2798 	}
2799 
2800 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2801 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
2802 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
2803 		for (i = 0; i < 8000; i++) {
2804 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
2805 			    BGE_NVRAMSWARB_GNT1)
2806 				break;
2807 			DELAY(20);
2808 		}
2809 		if (i == 8000) {
2810 			if (bootverbose) {
2811 				if_printf(&sc->arpcom.ac_if,
2812 				    "NVRAM lock timedout!\n");
2813 			}
2814 		}
2815 	}
2816 	/* Take APE lock when performing reset. */
2817 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
2818 
2819 	/* Save some important PCI state. */
2820 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2821 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2822 
2823 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2824 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2825 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2826 	    sc->bge_pci_miscctl, 4);
2827 
2828 	/* Disable fastboot on controllers that support it. */
2829 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2830 	    BGE_IS_5755_PLUS(sc)) {
2831 		if (bootverbose)
2832 			if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2833 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2834 	}
2835 
2836 	/*
2837 	 * Write the magic number to SRAM at offset 0xB50.
2838 	 * When firmware finishes its initialization it will
2839 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2840 	 */
2841 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2842 
2843 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2844 
2845 	/* XXX: Broadcom Linux driver. */
2846 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2847 		/* Force PCI-E 1.0a mode */
2848 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2849 		    CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2850 		    (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2851 		     BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2852 			CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2853 			    BGE_PCIE_PHY_TSTCTL_PSCRAM);
2854 		}
2855 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2856 			/* Prevent PCIE link training during global reset */
2857 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2858 			reset |= (1<<29);
2859 		}
2860 	}
2861 
2862 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2863 		uint32_t status, ctrl;
2864 
2865 		status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2866 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2867 		    status | BGE_VCPU_STATUS_DRV_RESET);
2868 		ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2869 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2870 		    ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2871 	}
2872 
2873 	/*
2874 	 * Set GPHY Power Down Override to leave GPHY
2875 	 * powered up in D0 uninitialized.
2876 	 */
2877 	if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2878 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2879 
2880 	/* Issue global reset */
2881 	write_op(sc, BGE_MISC_CFG, reset);
2882 
2883 	if (sc->bge_flags & BGE_FLAG_PCIE)
2884 		DELAY(100 * 1000);
2885 	else
2886 		DELAY(1000);
2887 
2888 	/* XXX: Broadcom Linux driver. */
2889 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2890 		uint16_t devctl;
2891 
2892 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2893 			uint32_t v;
2894 
2895 			DELAY(500000); /* wait for link training to complete */
2896 			v = pci_read_config(dev, 0xc4, 4);
2897 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
2898 		}
2899 
2900 		devctl = pci_read_config(dev,
2901 		    sc->bge_pciecap + PCIER_DEVCTRL, 2);
2902 
2903 		/* Disable no snoop and disable relaxed ordering. */
2904 		devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2905 
2906 		/* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2907 		if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2908 			devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2909 			devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2910 		}
2911 
2912 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2913 		    devctl, 2);
2914 
2915 		/* Clear error status. */
2916 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2917 		    PCIEM_DEVSTS_CORR_ERR |
2918 		    PCIEM_DEVSTS_NFATAL_ERR |
2919 		    PCIEM_DEVSTS_FATAL_ERR |
2920 		    PCIEM_DEVSTS_UNSUPP_REQ, 2);
2921 	}
2922 
2923 	/* Reset some of the PCI state that got zapped by reset */
2924 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2925 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2926 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2927 	    sc->bge_pci_miscctl, 4);
2928 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
2929 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
2930 	    (sc->bge_flags & BGE_FLAG_PCIX))
2931 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
2932 	if (sc->bge_mfw_flags & BGE_MFW_ON_APE) {
2933 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2934 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2935 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2936 	}
2937 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
2938 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2939 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2940 
2941 	/*
2942 	 * Disable PCI-X relaxed ordering to ensure status block update
2943 	 * comes first then packet buffer DMA. Otherwise driver may
2944 	 * read stale status block.
2945 	 */
2946 	if (sc->bge_flags & BGE_FLAG_PCIX) {
2947 		uint16_t devctl;
2948 
2949 		devctl = pci_read_config(dev,
2950 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
2951 		devctl &= ~PCIXM_COMMAND_ERO;
2952 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2953 			devctl &= ~PCIXM_COMMAND_MAX_READ;
2954 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2955 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2956 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2957 			    PCIXM_COMMAND_MAX_READ);
2958 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2959 		}
2960 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2961 		    devctl, 2);
2962 	}
2963 
2964 	/*
2965 	 * Enable memory arbiter and re-enable MSI if necessary.
2966 	 */
2967 	if (BGE_IS_5714_FAMILY(sc)) {
2968 		uint32_t val;
2969 
2970 		if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2971 			/*
2972 			 * Resetting BCM5714 family will clear MSI
2973 			 * enable bit; restore it after resetting.
2974 			 */
2975 			PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2976 			    PCIM_MSICTRL_MSI_ENABLE, 2);
2977 			BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2978 		}
2979 		val = CSR_READ_4(sc, BGE_MARB_MODE);
2980 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2981 	} else {
2982 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2983 	}
2984 
2985 	/* Fix up byte swapping. */
2986 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2987 	    BGE_MODECTL_BYTESWAP_DATA);
2988 
2989 	val = CSR_READ_4(sc, BGE_MAC_MODE);
2990 	val = (val & ~mac_mode_mask) | mac_mode;
2991 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2992 	DELAY(40);
2993 
2994 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
2995 
2996 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2997 		for (i = 0; i < BGE_TIMEOUT; i++) {
2998 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2999 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3000 				break;
3001 			DELAY(100);
3002 		}
3003 		if (i == BGE_TIMEOUT) {
3004 			if_printf(&sc->arpcom.ac_if, "reset timed out\n");
3005 			return;
3006 		}
3007 	} else {
3008 		int delay_us = 10;
3009 
3010 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
3011 			delay_us = 100;
3012 
3013 		/*
3014 		 * Poll until we see the 1's complement of the magic number.
3015 		 * This indicates that the firmware initialization
3016 		 * is complete.
3017 		 */
3018 		for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
3019 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
3020 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
3021 				break;
3022 			DELAY(delay_us);
3023 		}
3024 		if (i == BGE_FIRMWARE_TIMEOUT) {
3025 			if_printf(&sc->arpcom.ac_if, "firmware handshake "
3026 				  "timed out, found 0x%08x\n", val);
3027 		}
3028 	}
3029 
3030 	/*
3031 	 * The 5704 in TBI mode apparently needs some special
3032 	 * adjustment to insure the SERDES drive level is set
3033 	 * to 1.2V.
3034 	 */
3035 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3036 	    (sc->bge_flags & BGE_FLAG_TBI)) {
3037 		uint32_t serdescfg;
3038 
3039 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3040 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
3041 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3042 	}
3043 
3044 	/* XXX: Broadcom Linux driver. */
3045 	if ((sc->bge_flags & BGE_FLAG_PCIE) &&
3046 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3047 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3048 		uint32_t v;
3049 
3050 		/* Enable Data FIFO protection. */
3051 		v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
3052 		CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
3053 	}
3054 
3055 	DELAY(10000);
3056 }
3057 
3058 /*
3059  * Frame reception handling. This is called if there's a frame
3060  * on the receive return list.
3061  *
3062  * Note: we have to be able to handle two possibilities here:
3063  * 1) the frame is from the jumbo recieve ring
3064  * 2) the frame is from the standard receive ring
3065  */
3066 
3067 static void
3068 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
3069 {
3070 	struct ifnet *ifp;
3071 	int stdcnt = 0, jumbocnt = 0;
3072 
3073 	ifp = &sc->arpcom.ac_if;
3074 
3075 	while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
3076 		struct bge_rx_bd	*cur_rx;
3077 		uint32_t		rxidx;
3078 		struct mbuf		*m = NULL;
3079 		uint16_t		vlan_tag = 0;
3080 		int			have_tag = 0;
3081 
3082 		--count;
3083 
3084 		cur_rx =
3085 	    &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3086 
3087 		rxidx = cur_rx->bge_idx;
3088 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3089 		logif(rx_pkt);
3090 
3091 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3092 			have_tag = 1;
3093 			vlan_tag = cur_rx->bge_vlan_tag;
3094 		}
3095 
3096 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3097 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3098 			jumbocnt++;
3099 
3100 			if (rxidx != sc->bge_jumbo) {
3101 				IFNET_STAT_INC(ifp, ierrors, 1);
3102 				if_printf(ifp, "sw jumbo index(%d) "
3103 				    "and hw jumbo index(%d) mismatch, drop!\n",
3104 				    sc->bge_jumbo, rxidx);
3105 				bge_setup_rxdesc_jumbo(sc, rxidx);
3106 				continue;
3107 			}
3108 
3109 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3110 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3111 				IFNET_STAT_INC(ifp, ierrors, 1);
3112 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3113 				continue;
3114 			}
3115 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3116 				IFNET_STAT_INC(ifp, ierrors, 1);
3117 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3118 				continue;
3119 			}
3120 		} else {
3121 			int discard = 0;
3122 
3123 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3124 			stdcnt++;
3125 
3126 			if (rxidx != sc->bge_std) {
3127 				IFNET_STAT_INC(ifp, ierrors, 1);
3128 				if_printf(ifp, "sw std index(%d) "
3129 				    "and hw std index(%d) mismatch, drop!\n",
3130 				    sc->bge_std, rxidx);
3131 				bge_setup_rxdesc_std(sc, rxidx);
3132 				discard = 1;
3133 				goto refresh_rx;
3134 			}
3135 
3136 			m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3137 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3138 				IFNET_STAT_INC(ifp, ierrors, 1);
3139 				bge_setup_rxdesc_std(sc, sc->bge_std);
3140 				discard = 1;
3141 				goto refresh_rx;
3142 			}
3143 			if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3144 				IFNET_STAT_INC(ifp, ierrors, 1);
3145 				bge_setup_rxdesc_std(sc, sc->bge_std);
3146 				discard = 1;
3147 			}
3148 refresh_rx:
3149 			if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3150 				bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3151 				    sc->bge_std);
3152 				stdcnt = 0;
3153 			}
3154 			if (discard)
3155 				continue;
3156 		}
3157 
3158 		IFNET_STAT_INC(ifp, ipackets, 1);
3159 #if !defined(__i386__) && !defined(__x86_64__)
3160 		/*
3161 		 * The x86 allows unaligned accesses, but for other
3162 		 * platforms we must make sure the payload is aligned.
3163 		 */
3164 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3165 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3166 			    cur_rx->bge_len);
3167 			m->m_data += ETHER_ALIGN;
3168 		}
3169 #endif
3170 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3171 		m->m_pkthdr.rcvif = ifp;
3172 
3173 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3174 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3175 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3176 				if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3177 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3178 			}
3179 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3180 			    m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3181 				m->m_pkthdr.csum_data =
3182 					cur_rx->bge_tcp_udp_csum;
3183 				m->m_pkthdr.csum_flags |=
3184 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3185 			}
3186 		}
3187 
3188 		/*
3189 		 * If we received a packet with a vlan tag, pass it
3190 		 * to vlan_input() instead of ether_input().
3191 		 */
3192 		if (have_tag) {
3193 			m->m_flags |= M_VLANTAG;
3194 			m->m_pkthdr.ether_vlantag = vlan_tag;
3195 		}
3196 		ifp->if_input(ifp, m);
3197 	}
3198 
3199 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3200 	if (stdcnt)
3201 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3202 	if (jumbocnt)
3203 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3204 }
3205 
3206 static void
3207 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3208 {
3209 	struct ifnet *ifp;
3210 
3211 	ifp = &sc->arpcom.ac_if;
3212 
3213 	/*
3214 	 * Go through our tx ring and free mbufs for those
3215 	 * frames that have been sent.
3216 	 */
3217 	while (sc->bge_tx_saved_considx != tx_cons) {
3218 		uint32_t idx = 0;
3219 
3220 		idx = sc->bge_tx_saved_considx;
3221 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3222 			IFNET_STAT_INC(ifp, opackets, 1);
3223 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3224 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3225 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3226 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3227 		}
3228 		sc->bge_txcnt--;
3229 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3230 		logif(tx_pkt);
3231 	}
3232 
3233 	if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3234 	    (sc->bge_txrsvd + sc->bge_txspare))
3235 		ifq_clr_oactive(&ifp->if_snd);
3236 
3237 	if (sc->bge_txcnt == 0)
3238 		ifp->if_timer = 0;
3239 
3240 	if (!ifq_is_empty(&ifp->if_snd))
3241 		if_devstart(ifp);
3242 }
3243 
3244 #ifdef IFPOLL_ENABLE
3245 
3246 static void
3247 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3248 {
3249 	struct bge_softc *sc = ifp->if_softc;
3250 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3251 	uint16_t rx_prod, tx_cons;
3252 
3253 	ASSERT_SERIALIZED(ifp->if_serializer);
3254 
3255 	if (sc->bge_npoll.ifpc_stcount-- == 0) {
3256 		sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3257 		/*
3258 		 * Process link state changes.
3259 		 */
3260 		bge_link_poll(sc);
3261 	}
3262 
3263 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3264 		sc->bge_status_tag = sblk->bge_status_tag;
3265 		/*
3266 		 * Use a load fence to ensure that status_tag
3267 		 * is saved  before rx_prod and tx_cons.
3268 		 */
3269 		cpu_lfence();
3270 	}
3271 
3272 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3273 	if (sc->bge_rx_saved_considx != rx_prod)
3274 		bge_rxeof(sc, rx_prod, cycles);
3275 
3276 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3277 	if (sc->bge_tx_saved_considx != tx_cons)
3278 		bge_txeof(sc, tx_cons);
3279 
3280 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3281 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3282 
3283 	if (sc->bge_coal_chg)
3284 		bge_coal_change(sc);
3285 }
3286 
3287 static void
3288 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3289 {
3290 	struct bge_softc *sc = ifp->if_softc;
3291 
3292 	ASSERT_SERIALIZED(ifp->if_serializer);
3293 
3294 	if (info != NULL) {
3295 		int cpuid = sc->bge_npoll.ifpc_cpuid;
3296 
3297 		info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3298 		info->ifpi_rx[cpuid].arg = NULL;
3299 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3300 
3301 		if (ifp->if_flags & IFF_RUNNING)
3302 			bge_disable_intr(sc);
3303 		ifq_set_cpuid(&ifp->if_snd, cpuid);
3304 	} else {
3305 		if (ifp->if_flags & IFF_RUNNING)
3306 			bge_enable_intr(sc);
3307 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3308 	}
3309 }
3310 
3311 #endif	/* IFPOLL_ENABLE */
3312 
3313 static void
3314 bge_intr_crippled(void *xsc)
3315 {
3316 	struct bge_softc *sc = xsc;
3317 	struct ifnet *ifp = &sc->arpcom.ac_if;
3318 
3319 	logif(intr);
3320 
3321  	/*
3322 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3323 	 * disable interrupts by writing nonzero like we used to, since with
3324 	 * our current organization this just gives complications and
3325 	 * pessimizations for re-enabling interrupts.  We used to have races
3326 	 * instead of the necessary complications.  Disabling interrupts
3327 	 * would just reduce the chance of a status update while we are
3328 	 * running (by switching to the interrupt-mode coalescence
3329 	 * parameters), but this chance is already very low so it is more
3330 	 * efficient to get another interrupt than prevent it.
3331 	 *
3332 	 * We do the ack first to ensure another interrupt if there is a
3333 	 * status update after the ack.  We don't check for the status
3334 	 * changing later because it is more efficient to get another
3335 	 * interrupt than prevent it, not quite as above (not checking is
3336 	 * a smaller optimization than not toggling the interrupt enable,
3337 	 * since checking doesn't involve PCI accesses and toggling require
3338 	 * the status check).  So toggling would probably be a pessimization
3339 	 * even with MSI.  It would only be needed for using a task queue.
3340 	 */
3341 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3342 
3343 	/*
3344 	 * Process link state changes.
3345 	 */
3346 	bge_link_poll(sc);
3347 
3348 	if (ifp->if_flags & IFF_RUNNING) {
3349 		struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3350 		uint16_t rx_prod, tx_cons;
3351 
3352 		rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3353 		if (sc->bge_rx_saved_considx != rx_prod)
3354 			bge_rxeof(sc, rx_prod, -1);
3355 
3356 		tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3357 		if (sc->bge_tx_saved_considx != tx_cons)
3358 			bge_txeof(sc, tx_cons);
3359 	}
3360 
3361 	if (sc->bge_coal_chg)
3362 		bge_coal_change(sc);
3363 }
3364 
3365 static void
3366 bge_intr_legacy(void *xsc)
3367 {
3368 	struct bge_softc *sc = xsc;
3369 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3370 
3371 	if (sc->bge_status_tag == sblk->bge_status_tag) {
3372 		uint32_t val;
3373 
3374 		val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3375 		if (val & BGE_PCISTAT_INTR_NOTACT)
3376 			return;
3377 	}
3378 
3379 	/*
3380 	 * NOTE:
3381 	 * Interrupt will have to be disabled if tagged status
3382 	 * is used, else interrupt will always be asserted on
3383 	 * certain chips (at least on BCM5750 AX/BX).
3384 	 */
3385 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3386 
3387 	bge_intr(sc);
3388 }
3389 
3390 static void
3391 bge_msi(void *xsc)
3392 {
3393 	struct bge_softc *sc = xsc;
3394 
3395 	/* Disable interrupt first */
3396 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3397 	bge_intr(sc);
3398 }
3399 
3400 static void
3401 bge_msi_oneshot(void *xsc)
3402 {
3403 	bge_intr(xsc);
3404 }
3405 
3406 static void
3407 bge_intr(struct bge_softc *sc)
3408 {
3409 	struct ifnet *ifp = &sc->arpcom.ac_if;
3410 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3411 	uint16_t rx_prod, tx_cons;
3412 	uint32_t status;
3413 
3414 	sc->bge_status_tag = sblk->bge_status_tag;
3415 	/*
3416 	 * Use a load fence to ensure that status_tag is saved
3417 	 * before rx_prod, tx_cons and status.
3418 	 */
3419 	cpu_lfence();
3420 
3421 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3422 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3423 	status = sblk->bge_status;
3424 
3425 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3426 		bge_link_poll(sc);
3427 
3428 	if (ifp->if_flags & IFF_RUNNING) {
3429 		if (sc->bge_rx_saved_considx != rx_prod)
3430 			bge_rxeof(sc, rx_prod, -1);
3431 
3432 		if (sc->bge_tx_saved_considx != tx_cons)
3433 			bge_txeof(sc, tx_cons);
3434 	}
3435 
3436 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3437 
3438 	if (sc->bge_coal_chg)
3439 		bge_coal_change(sc);
3440 }
3441 
3442 static void
3443 bge_tick(void *xsc)
3444 {
3445 	struct bge_softc *sc = xsc;
3446 	struct ifnet *ifp = &sc->arpcom.ac_if;
3447 
3448 	lwkt_serialize_enter(ifp->if_serializer);
3449 
3450 	if (BGE_IS_5705_PLUS(sc))
3451 		bge_stats_update_regs(sc);
3452 	else
3453 		bge_stats_update(sc);
3454 
3455 	if (sc->bge_flags & BGE_FLAG_TBI) {
3456 		/*
3457 		 * Since in TBI mode auto-polling can't be used we should poll
3458 		 * link status manually. Here we register pending link event
3459 		 * and trigger interrupt.
3460 		 */
3461 		sc->bge_link_evt++;
3462 		if (BGE_IS_CRIPPLED(sc))
3463 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3464 		else
3465 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3466 	} else if (!sc->bge_link) {
3467 		mii_tick(device_get_softc(sc->bge_miibus));
3468 	}
3469 
3470 	bge_asf_driver_up(sc);
3471 
3472 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3473 
3474 	lwkt_serialize_exit(ifp->if_serializer);
3475 }
3476 
3477 static void
3478 bge_stats_update_regs(struct bge_softc *sc)
3479 {
3480 	struct ifnet *ifp = &sc->arpcom.ac_if;
3481 	struct bge_mac_stats_regs stats;
3482 	uint32_t *s;
3483 	int i;
3484 
3485 	s = (uint32_t *)&stats;
3486 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3487 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
3488 		s++;
3489 	}
3490 
3491 	IFNET_STAT_SET(ifp, collisions,
3492 	   (stats.dot3StatsSingleCollisionFrames +
3493 	   stats.dot3StatsMultipleCollisionFrames +
3494 	   stats.dot3StatsExcessiveCollisions +
3495 	   stats.dot3StatsLateCollisions));
3496 }
3497 
3498 static void
3499 bge_stats_update(struct bge_softc *sc)
3500 {
3501 	struct ifnet *ifp = &sc->arpcom.ac_if;
3502 	bus_size_t stats;
3503 
3504 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3505 
3506 #define READ_STAT(sc, stats, stat)	\
3507 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3508 
3509 	IFNET_STAT_SET(ifp, collisions,
3510 	   (READ_STAT(sc, stats,
3511 		txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3512 	    READ_STAT(sc, stats,
3513 		txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3514 	    READ_STAT(sc, stats,
3515 		txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3516 	    READ_STAT(sc, stats,
3517 		txstats.dot3StatsLateCollisions.bge_addr_lo)));
3518 
3519 #undef READ_STAT
3520 
3521 #ifdef notdef
3522 	IFNET_STAT_SET(ifp, collisions,
3523 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3524 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3525 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3526 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3527 #endif
3528 }
3529 
3530 /*
3531  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3532  * pointers to descriptors.
3533  */
3534 static int
3535 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3536     int *segs_used)
3537 {
3538 	struct bge_tx_bd *d = NULL, *last_d;
3539 	uint16_t csum_flags = 0, mss = 0;
3540 	bus_dma_segment_t segs[BGE_NSEG_NEW];
3541 	bus_dmamap_t map;
3542 	int error, maxsegs, nsegs, idx, i;
3543 	struct mbuf *m_head = *m_head0, *m_new;
3544 
3545 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3546 		error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3547 		if (error)
3548 			return ENOBUFS;
3549 		m_head = *m_head0;
3550 	} else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3551 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3552 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3553 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3554 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3555 		if (m_head->m_flags & M_LASTFRAG)
3556 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3557 		else if (m_head->m_flags & M_FRAG)
3558 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3559 	}
3560 
3561 	idx = *txidx;
3562 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3563 
3564 	maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3565 	KASSERT(maxsegs >= sc->bge_txspare,
3566 		("not enough segments %d", maxsegs));
3567 
3568 	if (maxsegs > BGE_NSEG_NEW)
3569 		maxsegs = BGE_NSEG_NEW;
3570 
3571 	/*
3572 	 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3573 	 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3574 	 * but when such padded frames employ the bge IP/TCP checksum
3575 	 * offload, the hardware checksum assist gives incorrect results
3576 	 * (possibly from incorporating its own padding into the UDP/TCP
3577 	 * checksum; who knows).  If we pad such runts with zeros, the
3578 	 * onboard checksum comes out correct.
3579 	 */
3580 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3581 	    m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3582 		error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3583 		if (error)
3584 			goto back;
3585 	}
3586 
3587 	if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3588 		m_new = bge_defrag_shortdma(m_head);
3589 		if (m_new == NULL) {
3590 			error = ENOBUFS;
3591 			goto back;
3592 		}
3593 		*m_head0 = m_head = m_new;
3594 	}
3595 	if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3596 	    sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3597 	    m_head->m_next != NULL) {
3598 		/*
3599 		 * Forcefully defragment mbuf chain to overcome hardware
3600 		 * limitation which only support a single outstanding
3601 		 * DMA read operation.  If it fails, keep moving on using
3602 		 * the original mbuf chain.
3603 		 */
3604 		m_new = m_defrag(m_head, MB_DONTWAIT);
3605 		if (m_new != NULL)
3606 			*m_head0 = m_head = m_new;
3607 	}
3608 
3609 	error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3610 			m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3611 	if (error)
3612 		goto back;
3613 	*segs_used += nsegs;
3614 
3615 	m_head = *m_head0;
3616 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3617 
3618 	for (i = 0; ; i++) {
3619 		d = &sc->bge_ldata.bge_tx_ring[idx];
3620 
3621 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3622 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3623 		d->bge_len = segs[i].ds_len;
3624 		d->bge_flags = csum_flags;
3625 		d->bge_mss = mss;
3626 
3627 		if (i == nsegs - 1)
3628 			break;
3629 		BGE_INC(idx, BGE_TX_RING_CNT);
3630 	}
3631 	last_d = d;
3632 
3633 	/* Set vlan tag to the first segment of the packet. */
3634 	d = &sc->bge_ldata.bge_tx_ring[*txidx];
3635 	if (m_head->m_flags & M_VLANTAG) {
3636 		d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3637 		d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3638 	} else {
3639 		d->bge_vlan_tag = 0;
3640 	}
3641 
3642 	/* Mark the last segment as end of packet... */
3643 	last_d->bge_flags |= BGE_TXBDFLAG_END;
3644 
3645 	/*
3646 	 * Insure that the map for this transmission is placed at
3647 	 * the array index of the last descriptor in this chain.
3648 	 */
3649 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3650 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3651 	sc->bge_cdata.bge_tx_chain[idx] = m_head;
3652 	sc->bge_txcnt += nsegs;
3653 
3654 	BGE_INC(idx, BGE_TX_RING_CNT);
3655 	*txidx = idx;
3656 back:
3657 	if (error) {
3658 		m_freem(*m_head0);
3659 		*m_head0 = NULL;
3660 	}
3661 	return error;
3662 }
3663 
3664 static void
3665 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3666 {
3667 	/* Transmit */
3668 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3669 	/* 5700 b2 errata */
3670 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3671 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3672 }
3673 
3674 /*
3675  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3676  * to the mbuf data regions directly in the transmit descriptors.
3677  */
3678 static void
3679 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3680 {
3681 	struct bge_softc *sc = ifp->if_softc;
3682 	struct mbuf *m_head = NULL;
3683 	uint32_t prodidx;
3684 	int nsegs = 0;
3685 
3686 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3687 
3688 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3689 		return;
3690 
3691 	prodidx = sc->bge_tx_prodidx;
3692 
3693 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3694 		m_head = ifq_dequeue(&ifp->if_snd);
3695 		if (m_head == NULL)
3696 			break;
3697 
3698 		/*
3699 		 * XXX
3700 		 * The code inside the if() block is never reached since we
3701 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3702 		 * requests to checksum TCP/UDP in a fragmented packet.
3703 		 *
3704 		 * XXX
3705 		 * safety overkill.  If this is a fragmented packet chain
3706 		 * with delayed TCP/UDP checksums, then only encapsulate
3707 		 * it if we have enough descriptors to handle the entire
3708 		 * chain at once.
3709 		 * (paranoia -- may not actually be needed)
3710 		 */
3711 		if ((m_head->m_flags & M_FIRSTFRAG) &&
3712 		    (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3713 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3714 			    m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3715 				ifq_set_oactive(&ifp->if_snd);
3716 				ifq_prepend(&ifp->if_snd, m_head);
3717 				break;
3718 			}
3719 		}
3720 
3721 		/*
3722 		 * Sanity check: avoid coming within bge_txrsvd
3723 		 * descriptors of the end of the ring.  Also make
3724 		 * sure there are bge_txspare descriptors for
3725 		 * jumbo buffers' defragmentation.
3726 		 */
3727 		if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3728 		    (sc->bge_txrsvd + sc->bge_txspare)) {
3729 			ifq_set_oactive(&ifp->if_snd);
3730 			ifq_prepend(&ifp->if_snd, m_head);
3731 			break;
3732 		}
3733 
3734 		/*
3735 		 * Pack the data into the transmit ring. If we
3736 		 * don't have room, set the OACTIVE flag and wait
3737 		 * for the NIC to drain the ring.
3738 		 */
3739 		if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3740 			ifq_set_oactive(&ifp->if_snd);
3741 			IFNET_STAT_INC(ifp, oerrors, 1);
3742 			break;
3743 		}
3744 
3745 		if (nsegs >= sc->bge_tx_wreg) {
3746 			bge_xmit(sc, prodidx);
3747 			nsegs = 0;
3748 		}
3749 
3750 		ETHER_BPF_MTAP(ifp, m_head);
3751 
3752 		/*
3753 		 * Set a timeout in case the chip goes out to lunch.
3754 		 */
3755 		ifp->if_timer = 5;
3756 	}
3757 
3758 	if (nsegs > 0)
3759 		bge_xmit(sc, prodidx);
3760 	sc->bge_tx_prodidx = prodidx;
3761 }
3762 
3763 static void
3764 bge_init(void *xsc)
3765 {
3766 	struct bge_softc *sc = xsc;
3767 	struct ifnet *ifp = &sc->arpcom.ac_if;
3768 	uint16_t *m;
3769 	uint32_t mode;
3770 
3771 	ASSERT_SERIALIZED(ifp->if_serializer);
3772 
3773 	/* Cancel pending I/O and flush buffers. */
3774 	bge_stop(sc);
3775 
3776 	bge_stop_fw(sc);
3777 	bge_sig_pre_reset(sc, BGE_RESET_START);
3778 	bge_reset(sc);
3779 	bge_sig_legacy(sc, BGE_RESET_START);
3780 	bge_sig_post_reset(sc, BGE_RESET_START);
3781 
3782 	bge_chipinit(sc);
3783 
3784 	/*
3785 	 * Init the various state machines, ring
3786 	 * control blocks and firmware.
3787 	 */
3788 	if (bge_blockinit(sc)) {
3789 		if_printf(ifp, "initialization failure\n");
3790 		bge_stop(sc);
3791 		return;
3792 	}
3793 
3794 	/* Specify MTU. */
3795 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3796 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3797 
3798 	/* Load our MAC address. */
3799 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3800 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3801 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3802 
3803 	/* Enable or disable promiscuous mode as needed. */
3804 	bge_setpromisc(sc);
3805 
3806 	/* Program multicast filter. */
3807 	bge_setmulti(sc);
3808 
3809 	/* Init RX ring. */
3810 	if (bge_init_rx_ring_std(sc)) {
3811 		if_printf(ifp, "RX ring initialization failed\n");
3812 		bge_stop(sc);
3813 		return;
3814 	}
3815 
3816 	/*
3817 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3818 	 * memory to insure that the chip has in fact read the first
3819 	 * entry of the ring.
3820 	 */
3821 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3822 		uint32_t		v, i;
3823 		for (i = 0; i < 10; i++) {
3824 			DELAY(20);
3825 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3826 			if (v == (MCLBYTES - ETHER_ALIGN))
3827 				break;
3828 		}
3829 		if (i == 10)
3830 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3831 	}
3832 
3833 	/* Init jumbo RX ring. */
3834 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3835 		if (bge_init_rx_ring_jumbo(sc)) {
3836 			if_printf(ifp, "Jumbo RX ring initialization failed\n");
3837 			bge_stop(sc);
3838 			return;
3839 		}
3840 	}
3841 
3842 	/* Init our RX return ring index */
3843 	sc->bge_rx_saved_considx = 0;
3844 
3845 	/* Init TX ring. */
3846 	bge_init_tx_ring(sc);
3847 
3848 	/* Enable TX MAC state machine lockup fix. */
3849 	mode = CSR_READ_4(sc, BGE_TX_MODE);
3850 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3851 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3852 	/* Turn on transmitter */
3853 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3854 	DELAY(100);
3855 
3856 	/* Turn on receiver */
3857 	mode = CSR_READ_4(sc, BGE_RX_MODE);
3858 	if (BGE_IS_5755_PLUS(sc))
3859 		mode |= BGE_RXMODE_IPV6_ENABLE;
3860 	CSR_WRITE_4(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
3861 	DELAY(10);
3862 
3863 	/*
3864 	 * Set the number of good frames to receive after RX MBUF
3865 	 * Low Watermark has been reached.  After the RX MAC receives
3866 	 * this number of frames, it will drop subsequent incoming
3867 	 * frames until the MBUF High Watermark is reached.
3868 	 */
3869 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3870 
3871 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3872 		if (bootverbose) {
3873 			if_printf(ifp, "MSI_MODE: %#x\n",
3874 			    CSR_READ_4(sc, BGE_MSI_MODE));
3875 		}
3876 
3877 		/*
3878 		 * XXX
3879 		 * Linux driver turns it on for all chips supporting MSI?!
3880 		 */
3881 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3882 			/*
3883 			 * XXX
3884 			 * According to 5722-PG101-R,
3885 			 * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3886 			 * BCM5906.
3887 			 */
3888 			BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3889 			    BGE_PCIE_TRANSACT_ONESHOT_MSI);
3890 		}
3891 	}
3892 
3893 	/* Tell firmware we're alive. */
3894 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3895 
3896 	/* Enable host interrupts if polling(4) is not enabled. */
3897 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3898 #ifdef IFPOLL_ENABLE
3899 	if (ifp->if_flags & IFF_NPOLLING)
3900 		bge_disable_intr(sc);
3901 	else
3902 #endif
3903 	bge_enable_intr(sc);
3904 
3905 	ifp->if_flags |= IFF_RUNNING;
3906 	ifq_clr_oactive(&ifp->if_snd);
3907 
3908 	bge_ifmedia_upd(ifp);
3909 
3910 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3911 }
3912 
3913 /*
3914  * Set media options.
3915  */
3916 static int
3917 bge_ifmedia_upd(struct ifnet *ifp)
3918 {
3919 	struct bge_softc *sc = ifp->if_softc;
3920 
3921 	/* If this is a 1000baseX NIC, enable the TBI port. */
3922 	if (sc->bge_flags & BGE_FLAG_TBI) {
3923 		struct ifmedia *ifm = &sc->bge_ifmedia;
3924 
3925 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3926 			return(EINVAL);
3927 
3928 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3929 		case IFM_AUTO:
3930 			/*
3931 			 * The BCM5704 ASIC appears to have a special
3932 			 * mechanism for programming the autoneg
3933 			 * advertisement registers in TBI mode.
3934 			 */
3935 			if (!bge_fake_autoneg &&
3936 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3937 				uint32_t sgdig;
3938 
3939 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3940 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3941 				sgdig |= BGE_SGDIGCFG_AUTO |
3942 					 BGE_SGDIGCFG_PAUSE_CAP |
3943 					 BGE_SGDIGCFG_ASYM_PAUSE;
3944 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3945 					    sgdig | BGE_SGDIGCFG_SEND);
3946 				DELAY(5);
3947 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3948 			}
3949 			break;
3950 		case IFM_1000_SX:
3951 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3952 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3953 				    BGE_MACMODE_HALF_DUPLEX);
3954 			} else {
3955 				BGE_SETBIT(sc, BGE_MAC_MODE,
3956 				    BGE_MACMODE_HALF_DUPLEX);
3957 			}
3958 			DELAY(40);
3959 			break;
3960 		default:
3961 			return(EINVAL);
3962 		}
3963 	} else {
3964 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3965 
3966 		sc->bge_link_evt++;
3967 		sc->bge_link = 0;
3968 		if (mii->mii_instance) {
3969 			struct mii_softc *miisc;
3970 
3971 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3972 				mii_phy_reset(miisc);
3973 		}
3974 		mii_mediachg(mii);
3975 
3976 		/*
3977 		 * Force an interrupt so that we will call bge_link_upd
3978 		 * if needed and clear any pending link state attention.
3979 		 * Without this we are not getting any further interrupts
3980 		 * for link state changes and thus will not UP the link and
3981 		 * not be able to send in bge_start.  The only way to get
3982 		 * things working was to receive a packet and get an RX
3983 		 * intr.
3984 		 *
3985 		 * bge_tick should help for fiber cards and we might not
3986 		 * need to do this here if BGE_FLAG_TBI is set but as
3987 		 * we poll for fiber anyway it should not harm.
3988 		 */
3989 		if (BGE_IS_CRIPPLED(sc))
3990 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3991 		else
3992 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3993 	}
3994 	return(0);
3995 }
3996 
3997 /*
3998  * Report current media status.
3999  */
4000 static void
4001 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4002 {
4003 	struct bge_softc *sc = ifp->if_softc;
4004 
4005 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4006 		return;
4007 
4008 	if (sc->bge_flags & BGE_FLAG_TBI) {
4009 		ifmr->ifm_status = IFM_AVALID;
4010 		ifmr->ifm_active = IFM_ETHER;
4011 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4012 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
4013 			ifmr->ifm_status |= IFM_ACTIVE;
4014 		} else {
4015 			ifmr->ifm_active |= IFM_NONE;
4016 			return;
4017 		}
4018 
4019 		ifmr->ifm_active |= IFM_1000_SX;
4020 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4021 			ifmr->ifm_active |= IFM_HDX;
4022 		else
4023 			ifmr->ifm_active |= IFM_FDX;
4024 	} else {
4025 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
4026 
4027 		mii_pollstat(mii);
4028 		ifmr->ifm_active = mii->mii_media_active;
4029 		ifmr->ifm_status = mii->mii_media_status;
4030 	}
4031 }
4032 
4033 static int
4034 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
4035 {
4036 	struct bge_softc *sc = ifp->if_softc;
4037 	struct ifreq *ifr = (struct ifreq *)data;
4038 	int mask, error = 0;
4039 
4040 	ASSERT_SERIALIZED(ifp->if_serializer);
4041 
4042 	switch (command) {
4043 	case SIOCSIFMTU:
4044 		if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
4045 		    (BGE_IS_JUMBO_CAPABLE(sc) &&
4046 		     ifr->ifr_mtu > BGE_JUMBO_MTU)) {
4047 			error = EINVAL;
4048 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
4049 			ifp->if_mtu = ifr->ifr_mtu;
4050 			if (ifp->if_flags & IFF_RUNNING)
4051 				bge_init(sc);
4052 		}
4053 		break;
4054 	case SIOCSIFFLAGS:
4055 		if (ifp->if_flags & IFF_UP) {
4056 			if (ifp->if_flags & IFF_RUNNING) {
4057 				mask = ifp->if_flags ^ sc->bge_if_flags;
4058 
4059 				/*
4060 				 * If only the state of the PROMISC flag
4061 				 * changed, then just use the 'set promisc
4062 				 * mode' command instead of reinitializing
4063 				 * the entire NIC. Doing a full re-init
4064 				 * means reloading the firmware and waiting
4065 				 * for it to start up, which may take a
4066 				 * second or two.  Similarly for ALLMULTI.
4067 				 */
4068 				if (mask & IFF_PROMISC)
4069 					bge_setpromisc(sc);
4070 				if (mask & IFF_ALLMULTI)
4071 					bge_setmulti(sc);
4072 			} else {
4073 				bge_init(sc);
4074 			}
4075 		} else if (ifp->if_flags & IFF_RUNNING) {
4076 			bge_stop(sc);
4077 		}
4078 		sc->bge_if_flags = ifp->if_flags;
4079 		break;
4080 	case SIOCADDMULTI:
4081 	case SIOCDELMULTI:
4082 		if (ifp->if_flags & IFF_RUNNING)
4083 			bge_setmulti(sc);
4084 		break;
4085 	case SIOCSIFMEDIA:
4086 	case SIOCGIFMEDIA:
4087 		if (sc->bge_flags & BGE_FLAG_TBI) {
4088 			error = ifmedia_ioctl(ifp, ifr,
4089 			    &sc->bge_ifmedia, command);
4090 		} else {
4091 			struct mii_data *mii;
4092 
4093 			mii = device_get_softc(sc->bge_miibus);
4094 			error = ifmedia_ioctl(ifp, ifr,
4095 					      &mii->mii_media, command);
4096 		}
4097 		break;
4098         case SIOCSIFCAP:
4099 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4100 		if (mask & IFCAP_HWCSUM) {
4101 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4102 			if (ifp->if_capenable & IFCAP_TXCSUM)
4103 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4104 			else
4105 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4106 		}
4107 		if (mask & IFCAP_TSO) {
4108 			ifp->if_capenable ^= IFCAP_TSO;
4109 			if (ifp->if_capenable & IFCAP_TSO)
4110 				ifp->if_hwassist |= CSUM_TSO;
4111 			else
4112 				ifp->if_hwassist &= ~CSUM_TSO;
4113 		}
4114 		break;
4115 	default:
4116 		error = ether_ioctl(ifp, command, data);
4117 		break;
4118 	}
4119 	return error;
4120 }
4121 
4122 static void
4123 bge_watchdog(struct ifnet *ifp)
4124 {
4125 	struct bge_softc *sc = ifp->if_softc;
4126 
4127 	if_printf(ifp, "watchdog timeout -- resetting\n");
4128 
4129 	bge_init(sc);
4130 
4131 	IFNET_STAT_INC(ifp, oerrors, 1);
4132 
4133 	if (!ifq_is_empty(&ifp->if_snd))
4134 		if_devstart(ifp);
4135 }
4136 
4137 /*
4138  * Stop the adapter and free any mbufs allocated to the
4139  * RX and TX lists.
4140  */
4141 static void
4142 bge_stop(struct bge_softc *sc)
4143 {
4144 	struct ifnet *ifp = &sc->arpcom.ac_if;
4145 
4146 	ASSERT_SERIALIZED(ifp->if_serializer);
4147 
4148 	callout_stop(&sc->bge_stat_timer);
4149 
4150 	/* Disable host interrupts. */
4151 	bge_disable_intr(sc);
4152 
4153 	/*
4154 	 * Tell firmware we're shutting down.
4155 	 */
4156 	bge_stop_fw(sc);
4157 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4158 
4159 	/*
4160 	 * Disable all of the receiver blocks
4161 	 */
4162 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4163 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4164 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4165 	if (BGE_IS_5700_FAMILY(sc))
4166 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4167 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4168 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4169 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4170 
4171 	/*
4172 	 * Disable all of the transmit blocks
4173 	 */
4174 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4175 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4176 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4177 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4178 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4179 	if (BGE_IS_5700_FAMILY(sc))
4180 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4181 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4182 
4183 	/*
4184 	 * Shut down all of the memory managers and related
4185 	 * state machines.
4186 	 */
4187 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4188 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4189 	if (BGE_IS_5700_FAMILY(sc))
4190 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4191 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4192 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4193 	if (!BGE_IS_5705_PLUS(sc)) {
4194 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4195 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4196 	}
4197 
4198 	bge_reset(sc);
4199 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4200 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4201 
4202 	/*
4203 	 * Keep the ASF firmware running if up.
4204 	 */
4205 	if (sc->bge_asf_mode & ASF_STACKUP)
4206 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4207 	else
4208 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4209 
4210 	/* Free the RX lists. */
4211 	bge_free_rx_ring_std(sc);
4212 
4213 	/* Free jumbo RX list. */
4214 	if (BGE_IS_JUMBO_CAPABLE(sc))
4215 		bge_free_rx_ring_jumbo(sc);
4216 
4217 	/* Free TX buffers. */
4218 	bge_free_tx_ring(sc);
4219 
4220 	sc->bge_status_tag = 0;
4221 	sc->bge_link = 0;
4222 	sc->bge_coal_chg = 0;
4223 
4224 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4225 
4226 	ifp->if_flags &= ~IFF_RUNNING;
4227 	ifq_clr_oactive(&ifp->if_snd);
4228 	ifp->if_timer = 0;
4229 }
4230 
4231 /*
4232  * Stop all chip I/O so that the kernel's probe routines don't
4233  * get confused by errant DMAs when rebooting.
4234  */
4235 static void
4236 bge_shutdown(device_t dev)
4237 {
4238 	struct bge_softc *sc = device_get_softc(dev);
4239 	struct ifnet *ifp = &sc->arpcom.ac_if;
4240 
4241 	lwkt_serialize_enter(ifp->if_serializer);
4242 	bge_stop(sc);
4243 	lwkt_serialize_exit(ifp->if_serializer);
4244 }
4245 
4246 static int
4247 bge_suspend(device_t dev)
4248 {
4249 	struct bge_softc *sc = device_get_softc(dev);
4250 	struct ifnet *ifp = &sc->arpcom.ac_if;
4251 
4252 	lwkt_serialize_enter(ifp->if_serializer);
4253 	bge_stop(sc);
4254 	lwkt_serialize_exit(ifp->if_serializer);
4255 
4256 	return 0;
4257 }
4258 
4259 static int
4260 bge_resume(device_t dev)
4261 {
4262 	struct bge_softc *sc = device_get_softc(dev);
4263 	struct ifnet *ifp = &sc->arpcom.ac_if;
4264 
4265 	lwkt_serialize_enter(ifp->if_serializer);
4266 
4267 	if (ifp->if_flags & IFF_UP) {
4268 		bge_init(sc);
4269 
4270 		if (!ifq_is_empty(&ifp->if_snd))
4271 			if_devstart(ifp);
4272 	}
4273 
4274 	lwkt_serialize_exit(ifp->if_serializer);
4275 
4276 	return 0;
4277 }
4278 
4279 static void
4280 bge_setpromisc(struct bge_softc *sc)
4281 {
4282 	struct ifnet *ifp = &sc->arpcom.ac_if;
4283 
4284 	if (ifp->if_flags & IFF_PROMISC)
4285 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4286 	else
4287 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4288 }
4289 
4290 static void
4291 bge_dma_free(struct bge_softc *sc)
4292 {
4293 	int i;
4294 
4295 	/* Destroy RX mbuf DMA stuffs. */
4296 	if (sc->bge_cdata.bge_rx_mtag != NULL) {
4297 		for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4298 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4299 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
4300 		}
4301 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4302 				   sc->bge_cdata.bge_rx_tmpmap);
4303 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4304 	}
4305 
4306 	/* Destroy TX mbuf DMA stuffs. */
4307 	if (sc->bge_cdata.bge_tx_mtag != NULL) {
4308 		for (i = 0; i < BGE_TX_RING_CNT; i++) {
4309 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4310 			    sc->bge_cdata.bge_tx_dmamap[i]);
4311 		}
4312 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4313 	}
4314 
4315 	/* Destroy standard RX ring */
4316 	bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4317 			   sc->bge_cdata.bge_rx_std_ring_map,
4318 			   sc->bge_ldata.bge_rx_std_ring);
4319 
4320 	if (BGE_IS_JUMBO_CAPABLE(sc))
4321 		bge_free_jumbo_mem(sc);
4322 
4323 	/* Destroy RX return ring */
4324 	bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4325 			   sc->bge_cdata.bge_rx_return_ring_map,
4326 			   sc->bge_ldata.bge_rx_return_ring);
4327 
4328 	/* Destroy TX ring */
4329 	bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4330 			   sc->bge_cdata.bge_tx_ring_map,
4331 			   sc->bge_ldata.bge_tx_ring);
4332 
4333 	/* Destroy status block */
4334 	bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4335 			   sc->bge_cdata.bge_status_map,
4336 			   sc->bge_ldata.bge_status_block);
4337 
4338 	/* Destroy statistics block */
4339 	bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4340 			   sc->bge_cdata.bge_stats_map,
4341 			   sc->bge_ldata.bge_stats);
4342 
4343 	/* Destroy the parent tag */
4344 	if (sc->bge_cdata.bge_parent_tag != NULL)
4345 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4346 }
4347 
4348 static int
4349 bge_dma_alloc(struct bge_softc *sc)
4350 {
4351 	struct ifnet *ifp = &sc->arpcom.ac_if;
4352 	int i, error;
4353 	bus_addr_t lowaddr;
4354 	bus_size_t txmaxsz;
4355 
4356 	lowaddr = BUS_SPACE_MAXADDR;
4357 	if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4358 		lowaddr = BGE_DMA_MAXADDR_40BIT;
4359 
4360 	/*
4361 	 * Allocate the parent bus DMA tag appropriate for PCI.
4362 	 *
4363 	 * All of the NetExtreme/NetLink controllers have 4GB boundary
4364 	 * DMA bug.
4365 	 * Whenever an address crosses a multiple of the 4GB boundary
4366 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4367 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4368 	 * state machine will lockup and cause the device to hang.
4369 	 */
4370 	error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4371 				   lowaddr, BUS_SPACE_MAXADDR,
4372 				   NULL, NULL,
4373 				   BUS_SPACE_MAXSIZE_32BIT, 0,
4374 				   BUS_SPACE_MAXSIZE_32BIT,
4375 				   0, &sc->bge_cdata.bge_parent_tag);
4376 	if (error) {
4377 		if_printf(ifp, "could not allocate parent dma tag\n");
4378 		return error;
4379 	}
4380 
4381 	/*
4382 	 * Create DMA tag and maps for RX mbufs.
4383 	 */
4384 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4385 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4386 				   NULL, NULL, MCLBYTES, 1, MCLBYTES,
4387 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4388 				   &sc->bge_cdata.bge_rx_mtag);
4389 	if (error) {
4390 		if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4391 		return error;
4392 	}
4393 
4394 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4395 				  BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4396 	if (error) {
4397 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4398 		sc->bge_cdata.bge_rx_mtag = NULL;
4399 		return error;
4400 	}
4401 
4402 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4403 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4404 					  BUS_DMA_WAITOK,
4405 					  &sc->bge_cdata.bge_rx_std_dmamap[i]);
4406 		if (error) {
4407 			int j;
4408 
4409 			for (j = 0; j < i; ++j) {
4410 				bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4411 					sc->bge_cdata.bge_rx_std_dmamap[j]);
4412 			}
4413 			bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4414 			sc->bge_cdata.bge_rx_mtag = NULL;
4415 
4416 			if_printf(ifp, "could not create DMA map for RX\n");
4417 			return error;
4418 		}
4419 	}
4420 
4421 	/*
4422 	 * Create DMA tag and maps for TX mbufs.
4423 	 */
4424 	if (sc->bge_flags & BGE_FLAG_TSO)
4425 		txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4426 	else
4427 		txmaxsz = BGE_JUMBO_FRAMELEN;
4428 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4429 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4430 				   NULL, NULL,
4431 				   txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4432 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4433 				   BUS_DMA_ONEBPAGE,
4434 				   &sc->bge_cdata.bge_tx_mtag);
4435 	if (error) {
4436 		if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4437 		return error;
4438 	}
4439 
4440 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
4441 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4442 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4443 					  &sc->bge_cdata.bge_tx_dmamap[i]);
4444 		if (error) {
4445 			int j;
4446 
4447 			for (j = 0; j < i; ++j) {
4448 				bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4449 					sc->bge_cdata.bge_tx_dmamap[j]);
4450 			}
4451 			bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4452 			sc->bge_cdata.bge_tx_mtag = NULL;
4453 
4454 			if_printf(ifp, "could not create DMA map for TX\n");
4455 			return error;
4456 		}
4457 	}
4458 
4459 	/*
4460 	 * Create DMA stuffs for standard RX ring.
4461 	 */
4462 	error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4463 				    &sc->bge_cdata.bge_rx_std_ring_tag,
4464 				    &sc->bge_cdata.bge_rx_std_ring_map,
4465 				    (void *)&sc->bge_ldata.bge_rx_std_ring,
4466 				    &sc->bge_ldata.bge_rx_std_ring_paddr);
4467 	if (error) {
4468 		if_printf(ifp, "could not create std RX ring\n");
4469 		return error;
4470 	}
4471 
4472 	/*
4473 	 * Create jumbo buffer pool.
4474 	 */
4475 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
4476 		error = bge_alloc_jumbo_mem(sc);
4477 		if (error) {
4478 			if_printf(ifp, "could not create jumbo buffer pool\n");
4479 			return error;
4480 		}
4481 	}
4482 
4483 	/*
4484 	 * Create DMA stuffs for RX return ring.
4485 	 */
4486 	error = bge_dma_block_alloc(sc,
4487 	    BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4488 	    &sc->bge_cdata.bge_rx_return_ring_tag,
4489 	    &sc->bge_cdata.bge_rx_return_ring_map,
4490 	    (void *)&sc->bge_ldata.bge_rx_return_ring,
4491 	    &sc->bge_ldata.bge_rx_return_ring_paddr);
4492 	if (error) {
4493 		if_printf(ifp, "could not create RX ret ring\n");
4494 		return error;
4495 	}
4496 
4497 	/*
4498 	 * Create DMA stuffs for TX ring.
4499 	 */
4500 	error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4501 				    &sc->bge_cdata.bge_tx_ring_tag,
4502 				    &sc->bge_cdata.bge_tx_ring_map,
4503 				    (void *)&sc->bge_ldata.bge_tx_ring,
4504 				    &sc->bge_ldata.bge_tx_ring_paddr);
4505 	if (error) {
4506 		if_printf(ifp, "could not create TX ring\n");
4507 		return error;
4508 	}
4509 
4510 	/*
4511 	 * Create DMA stuffs for status block.
4512 	 */
4513 	error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4514 				    &sc->bge_cdata.bge_status_tag,
4515 				    &sc->bge_cdata.bge_status_map,
4516 				    (void *)&sc->bge_ldata.bge_status_block,
4517 				    &sc->bge_ldata.bge_status_block_paddr);
4518 	if (error) {
4519 		if_printf(ifp, "could not create status block\n");
4520 		return error;
4521 	}
4522 
4523 	/*
4524 	 * Create DMA stuffs for statistics block.
4525 	 */
4526 	error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4527 				    &sc->bge_cdata.bge_stats_tag,
4528 				    &sc->bge_cdata.bge_stats_map,
4529 				    (void *)&sc->bge_ldata.bge_stats,
4530 				    &sc->bge_ldata.bge_stats_paddr);
4531 	if (error) {
4532 		if_printf(ifp, "could not create stats block\n");
4533 		return error;
4534 	}
4535 	return 0;
4536 }
4537 
4538 static int
4539 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4540 		    bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4541 {
4542 	bus_dmamem_t dmem;
4543 	int error;
4544 
4545 	error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4546 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4547 				    size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4548 	if (error)
4549 		return error;
4550 
4551 	*tag = dmem.dmem_tag;
4552 	*map = dmem.dmem_map;
4553 	*addr = dmem.dmem_addr;
4554 	*paddr = dmem.dmem_busaddr;
4555 
4556 	return 0;
4557 }
4558 
4559 static void
4560 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4561 {
4562 	if (tag != NULL) {
4563 		bus_dmamap_unload(tag, map);
4564 		bus_dmamem_free(tag, addr, map);
4565 		bus_dma_tag_destroy(tag);
4566 	}
4567 }
4568 
4569 /*
4570  * Grrr. The link status word in the status block does
4571  * not work correctly on the BCM5700 rev AX and BX chips,
4572  * according to all available information. Hence, we have
4573  * to enable MII interrupts in order to properly obtain
4574  * async link changes. Unfortunately, this also means that
4575  * we have to read the MAC status register to detect link
4576  * changes, thereby adding an additional register access to
4577  * the interrupt handler.
4578  *
4579  * XXX: perhaps link state detection procedure used for
4580  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4581  */
4582 static void
4583 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4584 {
4585 	struct ifnet *ifp = &sc->arpcom.ac_if;
4586 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4587 
4588 	mii_pollstat(mii);
4589 
4590 	if (!sc->bge_link &&
4591 	    (mii->mii_media_status & IFM_ACTIVE) &&
4592 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4593 		sc->bge_link++;
4594 		if (bootverbose)
4595 			if_printf(ifp, "link UP\n");
4596 	} else if (sc->bge_link &&
4597 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4598 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4599 		sc->bge_link = 0;
4600 		if (bootverbose)
4601 			if_printf(ifp, "link DOWN\n");
4602 	}
4603 
4604 	/* Clear the interrupt. */
4605 	CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4606 	bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4607 	bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4608 }
4609 
4610 static void
4611 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4612 {
4613 	struct ifnet *ifp = &sc->arpcom.ac_if;
4614 
4615 #define PCS_ENCODE_ERR	(BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4616 
4617 	/*
4618 	 * Sometimes PCS encoding errors are detected in
4619 	 * TBI mode (on fiber NICs), and for some reason
4620 	 * the chip will signal them as link changes.
4621 	 * If we get a link change event, but the 'PCS
4622 	 * encoding error' bit in the MAC status register
4623 	 * is set, don't bother doing a link check.
4624 	 * This avoids spurious "gigabit link up" messages
4625 	 * that sometimes appear on fiber NICs during
4626 	 * periods of heavy traffic.
4627 	 */
4628 	if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4629 		if (!sc->bge_link) {
4630 			sc->bge_link++;
4631 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4632 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4633 				    BGE_MACMODE_TBI_SEND_CFGS);
4634 				DELAY(40);
4635 			}
4636 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4637 
4638 			if (bootverbose)
4639 				if_printf(ifp, "link UP\n");
4640 
4641 			ifp->if_link_state = LINK_STATE_UP;
4642 			if_link_state_change(ifp);
4643 		}
4644 	} else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4645 		if (sc->bge_link) {
4646 			sc->bge_link = 0;
4647 
4648 			if (bootverbose)
4649 				if_printf(ifp, "link DOWN\n");
4650 
4651 			ifp->if_link_state = LINK_STATE_DOWN;
4652 			if_link_state_change(ifp);
4653 		}
4654 	}
4655 
4656 #undef PCS_ENCODE_ERR
4657 
4658 	/* Clear the attention. */
4659 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4660 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4661 	    BGE_MACSTAT_LINK_CHANGED);
4662 }
4663 
4664 static void
4665 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4666 {
4667 	struct ifnet *ifp = &sc->arpcom.ac_if;
4668 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4669 
4670 	mii_pollstat(mii);
4671 	bge_miibus_statchg(sc->bge_dev);
4672 
4673 	if (bootverbose) {
4674 		if (sc->bge_link)
4675 			if_printf(ifp, "link UP\n");
4676 		else
4677 			if_printf(ifp, "link DOWN\n");
4678 	}
4679 
4680 	/* Clear the attention. */
4681 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4682 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4683 	    BGE_MACSTAT_LINK_CHANGED);
4684 }
4685 
4686 static void
4687 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4688 {
4689 	struct ifnet *ifp = &sc->arpcom.ac_if;
4690 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4691 
4692 	mii_pollstat(mii);
4693 
4694 	if (!sc->bge_link &&
4695 	    (mii->mii_media_status & IFM_ACTIVE) &&
4696 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4697 		sc->bge_link++;
4698 		if (bootverbose)
4699 			if_printf(ifp, "link UP\n");
4700 	} else if (sc->bge_link &&
4701 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4702 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4703 		sc->bge_link = 0;
4704 		if (bootverbose)
4705 			if_printf(ifp, "link DOWN\n");
4706 	}
4707 
4708 	/* Clear the attention. */
4709 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4710 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4711 	    BGE_MACSTAT_LINK_CHANGED);
4712 }
4713 
4714 static int
4715 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4716 {
4717 	struct bge_softc *sc = arg1;
4718 
4719 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4720 	    &sc->bge_rx_coal_ticks,
4721 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4722 	    BGE_RX_COAL_TICKS_CHG);
4723 }
4724 
4725 static int
4726 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4727 {
4728 	struct bge_softc *sc = arg1;
4729 
4730 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4731 	    &sc->bge_tx_coal_ticks,
4732 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4733 	    BGE_TX_COAL_TICKS_CHG);
4734 }
4735 
4736 static int
4737 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4738 {
4739 	struct bge_softc *sc = arg1;
4740 
4741 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4742 	    &sc->bge_rx_coal_bds,
4743 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4744 	    BGE_RX_COAL_BDS_CHG);
4745 }
4746 
4747 static int
4748 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4749 {
4750 	struct bge_softc *sc = arg1;
4751 
4752 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4753 	    &sc->bge_tx_coal_bds,
4754 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4755 	    BGE_TX_COAL_BDS_CHG);
4756 }
4757 
4758 static int
4759 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4760 {
4761 	struct bge_softc *sc = arg1;
4762 
4763 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4764 	    &sc->bge_rx_coal_ticks_int,
4765 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4766 	    BGE_RX_COAL_TICKS_INT_CHG);
4767 }
4768 
4769 static int
4770 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4771 {
4772 	struct bge_softc *sc = arg1;
4773 
4774 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4775 	    &sc->bge_tx_coal_ticks_int,
4776 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4777 	    BGE_TX_COAL_TICKS_INT_CHG);
4778 }
4779 
4780 static int
4781 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4782 {
4783 	struct bge_softc *sc = arg1;
4784 
4785 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4786 	    &sc->bge_rx_coal_bds_int,
4787 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4788 	    BGE_RX_COAL_BDS_INT_CHG);
4789 }
4790 
4791 static int
4792 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4793 {
4794 	struct bge_softc *sc = arg1;
4795 
4796 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4797 	    &sc->bge_tx_coal_bds_int,
4798 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4799 	    BGE_TX_COAL_BDS_INT_CHG);
4800 }
4801 
4802 static int
4803 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4804     int coal_min, int coal_max, uint32_t coal_chg_mask)
4805 {
4806 	struct bge_softc *sc = arg1;
4807 	struct ifnet *ifp = &sc->arpcom.ac_if;
4808 	int error = 0, v;
4809 
4810 	lwkt_serialize_enter(ifp->if_serializer);
4811 
4812 	v = *coal;
4813 	error = sysctl_handle_int(oidp, &v, 0, req);
4814 	if (!error && req->newptr != NULL) {
4815 		if (v < coal_min || v > coal_max) {
4816 			error = EINVAL;
4817 		} else {
4818 			*coal = v;
4819 			sc->bge_coal_chg |= coal_chg_mask;
4820 		}
4821 	}
4822 
4823 	lwkt_serialize_exit(ifp->if_serializer);
4824 	return error;
4825 }
4826 
4827 static void
4828 bge_coal_change(struct bge_softc *sc)
4829 {
4830 	struct ifnet *ifp = &sc->arpcom.ac_if;
4831 
4832 	ASSERT_SERIALIZED(ifp->if_serializer);
4833 
4834 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4835 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4836 			    sc->bge_rx_coal_ticks);
4837 		DELAY(10);
4838 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4839 
4840 		if (bootverbose) {
4841 			if_printf(ifp, "rx_coal_ticks -> %u\n",
4842 				  sc->bge_rx_coal_ticks);
4843 		}
4844 	}
4845 
4846 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4847 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4848 			    sc->bge_tx_coal_ticks);
4849 		DELAY(10);
4850 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4851 
4852 		if (bootverbose) {
4853 			if_printf(ifp, "tx_coal_ticks -> %u\n",
4854 				  sc->bge_tx_coal_ticks);
4855 		}
4856 	}
4857 
4858 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4859 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4860 			    sc->bge_rx_coal_bds);
4861 		DELAY(10);
4862 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4863 
4864 		if (bootverbose) {
4865 			if_printf(ifp, "rx_coal_bds -> %u\n",
4866 				  sc->bge_rx_coal_bds);
4867 		}
4868 	}
4869 
4870 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4871 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4872 			    sc->bge_tx_coal_bds);
4873 		DELAY(10);
4874 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4875 
4876 		if (bootverbose) {
4877 			if_printf(ifp, "tx_max_coal_bds -> %u\n",
4878 				  sc->bge_tx_coal_bds);
4879 		}
4880 	}
4881 
4882 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4883 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4884 		    sc->bge_rx_coal_ticks_int);
4885 		DELAY(10);
4886 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4887 
4888 		if (bootverbose) {
4889 			if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4890 			    sc->bge_rx_coal_ticks_int);
4891 		}
4892 	}
4893 
4894 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4895 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4896 		    sc->bge_tx_coal_ticks_int);
4897 		DELAY(10);
4898 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4899 
4900 		if (bootverbose) {
4901 			if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4902 			    sc->bge_tx_coal_ticks_int);
4903 		}
4904 	}
4905 
4906 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4907 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4908 		    sc->bge_rx_coal_bds_int);
4909 		DELAY(10);
4910 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4911 
4912 		if (bootverbose) {
4913 			if_printf(ifp, "rx_coal_bds_int -> %u\n",
4914 			    sc->bge_rx_coal_bds_int);
4915 		}
4916 	}
4917 
4918 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4919 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4920 		    sc->bge_tx_coal_bds_int);
4921 		DELAY(10);
4922 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4923 
4924 		if (bootverbose) {
4925 			if_printf(ifp, "tx_coal_bds_int -> %u\n",
4926 			    sc->bge_tx_coal_bds_int);
4927 		}
4928 	}
4929 
4930 	sc->bge_coal_chg = 0;
4931 }
4932 
4933 static void
4934 bge_enable_intr(struct bge_softc *sc)
4935 {
4936 	struct ifnet *ifp = &sc->arpcom.ac_if;
4937 
4938 	lwkt_serialize_handler_enable(ifp->if_serializer);
4939 
4940 	/*
4941 	 * Enable interrupt.
4942 	 */
4943 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4944 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4945 		/* XXX Linux driver */
4946 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4947 	}
4948 
4949 	/*
4950 	 * Unmask the interrupt when we stop polling.
4951 	 */
4952 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4953 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4954 
4955 	/*
4956 	 * Trigger another interrupt, since above writing
4957 	 * to interrupt mailbox0 may acknowledge pending
4958 	 * interrupt.
4959 	 */
4960 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4961 }
4962 
4963 static void
4964 bge_disable_intr(struct bge_softc *sc)
4965 {
4966 	struct ifnet *ifp = &sc->arpcom.ac_if;
4967 
4968 	/*
4969 	 * Mask the interrupt when we start polling.
4970 	 */
4971 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4972 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4973 
4974 	/*
4975 	 * Acknowledge possible asserted interrupt.
4976 	 */
4977 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4978 
4979 	sc->bge_npoll.ifpc_stcount = 0;
4980 
4981 	lwkt_serialize_handler_disable(ifp->if_serializer);
4982 }
4983 
4984 static int
4985 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4986 {
4987 	uint32_t mac_addr;
4988 	int ret = 1;
4989 
4990 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4991 	if ((mac_addr >> 16) == 0x484b) {
4992 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4993 		ether_addr[1] = (uint8_t)mac_addr;
4994 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4995 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4996 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4997 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4998 		ether_addr[5] = (uint8_t)mac_addr;
4999 		ret = 0;
5000 	}
5001 	return ret;
5002 }
5003 
5004 static int
5005 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5006 {
5007 	int mac_offset = BGE_EE_MAC_OFFSET;
5008 
5009 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
5010 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5011 
5012 	return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
5013 }
5014 
5015 static int
5016 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5017 {
5018 	if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
5019 		return 1;
5020 
5021 	return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5022 			       ETHER_ADDR_LEN);
5023 }
5024 
5025 static int
5026 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5027 {
5028 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5029 		/* NOTE: Order is critical */
5030 		bge_get_eaddr_mem,
5031 		bge_get_eaddr_nvram,
5032 		bge_get_eaddr_eeprom,
5033 		NULL
5034 	};
5035 	const bge_eaddr_fcn_t *func;
5036 
5037 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5038 		if ((*func)(sc, eaddr) == 0)
5039 			break;
5040 	}
5041 	return (*func == NULL ? ENXIO : 0);
5042 }
5043 
5044 /*
5045  * NOTE: 'm' is not freed upon failure
5046  */
5047 struct mbuf *
5048 bge_defrag_shortdma(struct mbuf *m)
5049 {
5050 	struct mbuf *n;
5051 	int found;
5052 
5053 	/*
5054 	 * If device receive two back-to-back send BDs with less than
5055 	 * or equal to 8 total bytes then the device may hang.  The two
5056 	 * back-to-back send BDs must in the same frame for this failure
5057 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5058 	 * send BDs are there.  If this is the case, allocate new mbuf
5059 	 * and copy the frame to workaround the silicon bug.
5060 	 */
5061 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5062 		if (n->m_len < 8) {
5063 			found++;
5064 			if (found > 1)
5065 				break;
5066 			continue;
5067 		}
5068 		found = 0;
5069 	}
5070 
5071 	if (found > 1)
5072 		n = m_defrag(m, MB_DONTWAIT);
5073 	else
5074 		n = m;
5075 	return n;
5076 }
5077 
5078 static void
5079 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5080 {
5081 	int i;
5082 
5083 	BGE_CLRBIT(sc, reg, bit);
5084 	for (i = 0; i < BGE_TIMEOUT; i++) {
5085 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5086 			return;
5087 		DELAY(100);
5088 	}
5089 }
5090 
5091 static void
5092 bge_link_poll(struct bge_softc *sc)
5093 {
5094 	uint32_t status;
5095 
5096 	status = CSR_READ_4(sc, BGE_MAC_STS);
5097 	if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5098 		sc->bge_link_evt = 0;
5099 		sc->bge_link_upd(sc, status);
5100 	}
5101 }
5102 
5103 static void
5104 bge_enable_msi(struct bge_softc *sc)
5105 {
5106 	uint32_t msi_mode;
5107 
5108 	msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5109 	msi_mode |= BGE_MSIMODE_ENABLE;
5110 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5111 		/*
5112 		 * According to all of the datasheets that are publicly
5113 		 * available, bit 5 of the MSI_MODE is defined to be
5114 		 * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5115 		 * which "oneshot MSI" is enabled.  However, it is always
5116 		 * safe to clear it here.
5117 		 */
5118 		msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5119 	}
5120 	CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5121 }
5122 
5123 static int
5124 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5125     uint16_t *mss0, uint16_t *flags0)
5126 {
5127 	struct mbuf *m;
5128 	struct ip *ip;
5129 	struct tcphdr *th;
5130 	int thoff, iphlen, hoff, hlen;
5131 	uint16_t flags, mss;
5132 
5133 	m = *mp;
5134 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5135 
5136 	hoff = m->m_pkthdr.csum_lhlen;
5137 	iphlen = m->m_pkthdr.csum_iphlen;
5138 	thoff = m->m_pkthdr.csum_thlen;
5139 
5140 	KASSERT(hoff > 0, ("invalid ether header len"));
5141 	KASSERT(iphlen > 0, ("invalid ip header len"));
5142 	KASSERT(thoff > 0, ("invalid tcp header len"));
5143 
5144 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5145 		m = m_pullup(m, hoff + iphlen + thoff);
5146 		if (m == NULL) {
5147 			*mp = NULL;
5148 			return ENOBUFS;
5149 		}
5150 		*mp = m;
5151 	}
5152 	ip = mtodoff(m, struct ip *, hoff);
5153 	th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5154 
5155 	mss = m->m_pkthdr.tso_segsz;
5156 	flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5157 
5158 	ip->ip_len = htons(mss + iphlen + thoff);
5159 	th->th_sum = 0;
5160 
5161 	hlen = (iphlen + thoff) >> 2;
5162 	mss |= (hlen << 11);
5163 
5164 	*mss0 = mss;
5165 	*flags0 = flags;
5166 
5167 	return 0;
5168 }
5169 
5170 static void
5171 bge_stop_fw(struct bge_softc *sc)
5172 {
5173 	int i;
5174 
5175 	if (sc->bge_asf_mode) {
5176 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5177 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5178 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5179 
5180 		for (i = 0; i < 100; i++ ) {
5181 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5182 			    BGE_RX_CPU_DRV_EVENT))
5183 				break;
5184 			DELAY(10);
5185 		}
5186 	}
5187 }
5188 
5189 static void
5190 bge_sig_pre_reset(struct bge_softc *sc, int type)
5191 {
5192 	/*
5193 	 * Some chips don't like this so only do this if ASF is enabled
5194 	 */
5195 	if (sc->bge_asf_mode)
5196 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5197 
5198 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5199 		switch (type) {
5200 		case BGE_RESET_START:
5201 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5202 			    BGE_FW_DRV_STATE_START);
5203 			break;
5204 		case BGE_RESET_SHUTDOWN:
5205 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5206 			    BGE_FW_DRV_STATE_UNLOAD);
5207 			break;
5208 		case BGE_RESET_SUSPEND:
5209 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5210 			    BGE_FW_DRV_STATE_SUSPEND);
5211 			break;
5212 		}
5213 	}
5214 
5215 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5216 		bge_ape_driver_state_change(sc, type);
5217 }
5218 
5219 static void
5220 bge_sig_legacy(struct bge_softc *sc, int type)
5221 {
5222 	if (sc->bge_asf_mode) {
5223 		switch (type) {
5224 		case BGE_RESET_START:
5225 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5226 			    BGE_FW_DRV_STATE_START);
5227 			break;
5228 		case BGE_RESET_SHUTDOWN:
5229 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5230 			    BGE_FW_DRV_STATE_UNLOAD);
5231 			break;
5232 		}
5233 	}
5234 }
5235 
5236 static void
5237 bge_sig_post_reset(struct bge_softc *sc, int type)
5238 {
5239 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5240 		switch (type) {
5241 		case BGE_RESET_START:
5242 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5243 			    BGE_FW_DRV_STATE_START_DONE);
5244 			/* START DONE */
5245 			break;
5246 		case BGE_RESET_SHUTDOWN:
5247 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5248 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
5249 			break;
5250 		}
5251 	}
5252 	if (type == BGE_RESET_SHUTDOWN)
5253 		bge_ape_driver_state_change(sc, type);
5254 }
5255 
5256 static void
5257 bge_asf_driver_up(struct bge_softc *sc)
5258 {
5259 	if (sc->bge_asf_mode & ASF_STACKUP) {
5260 		/* Send ASF heartbeat aprox. every 2s */
5261 		if (sc->bge_asf_count)
5262 			sc->bge_asf_count --;
5263 		else {
5264 			sc->bge_asf_count = 2;
5265 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5266 			    BGE_FW_CMD_DRV_ALIVE);
5267 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5268 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5269 			    BGE_FW_HB_TIMEOUT_SEC);
5270 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5271 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5272 			    BGE_RX_CPU_DRV_EVENT);
5273 		}
5274 	}
5275 }
5276 
5277 /*
5278  * Clear all stale locks and select the lock for this driver instance.
5279  */
5280 static void
5281 bge_ape_lock_init(struct bge_softc *sc)
5282 {
5283 	uint32_t bit, regbase;
5284 	int i;
5285 
5286 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5287 		regbase = BGE_APE_LOCK_GRANT;
5288 	else
5289 		regbase = BGE_APE_PER_LOCK_GRANT;
5290 
5291 	/* Clear any stale locks. */
5292 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
5293 		switch (i) {
5294 		case BGE_APE_LOCK_PHY0:
5295 		case BGE_APE_LOCK_PHY1:
5296 		case BGE_APE_LOCK_PHY2:
5297 		case BGE_APE_LOCK_PHY3:
5298 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5299 			break;
5300 		default:
5301 			if (sc->bge_func_addr == 0)
5302 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
5303 			else
5304 				bit = (1 << sc->bge_func_addr);
5305 		}
5306 		APE_WRITE_4(sc, regbase + 4 * i, bit);
5307 	}
5308 
5309 	/* Select the PHY lock based on the device's function number. */
5310 	switch (sc->bge_func_addr) {
5311 	case 0:
5312 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
5313 		break;
5314 	case 1:
5315 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
5316 		break;
5317 	case 2:
5318 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
5319 		break;
5320 	case 3:
5321 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
5322 		break;
5323 	default:
5324 		device_printf(sc->bge_dev,
5325 		    "PHY lock not supported on this function\n");
5326 	}
5327 }
5328 
5329 /*
5330  * Check for APE firmware, set flags, and print version info.
5331  */
5332 static void
5333 bge_ape_read_fw_ver(struct bge_softc *sc)
5334 {
5335 	const char *fwtype;
5336 	uint32_t apedata, features;
5337 
5338 	/* Check for a valid APE signature in shared memory. */
5339 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
5340 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
5341 		device_printf(sc->bge_dev, "no APE signature\n");
5342 		sc->bge_mfw_flags &= ~BGE_MFW_ON_APE;
5343 		return;
5344 	}
5345 
5346 	/* Check if APE firmware is running. */
5347 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
5348 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
5349 		device_printf(sc->bge_dev, "APE signature found "
5350 		    "but FW status not ready! 0x%08x\n", apedata);
5351 		return;
5352 	}
5353 
5354 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
5355 
5356 	/* Fetch the APE firwmare type and version. */
5357 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
5358 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
5359 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
5360 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
5361 		fwtype = "NCSI";
5362 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
5363 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
5364 		fwtype = "DASH";
5365 	} else
5366 		fwtype = "UNKN";
5367 
5368 	/* Print the APE firmware version. */
5369 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
5370 	    fwtype,
5371 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
5372 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
5373 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
5374 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
5375 }
5376 
5377 static int
5378 bge_ape_lock(struct bge_softc *sc, int locknum)
5379 {
5380 	uint32_t bit, gnt, req, status;
5381 	int i, off;
5382 
5383 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5384 		return (0);
5385 
5386 	/* Lock request/grant registers have different bases. */
5387 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
5388 		req = BGE_APE_LOCK_REQ;
5389 		gnt = BGE_APE_LOCK_GRANT;
5390 	} else {
5391 		req = BGE_APE_PER_LOCK_REQ;
5392 		gnt = BGE_APE_PER_LOCK_GRANT;
5393 	}
5394 
5395 	off = 4 * locknum;
5396 
5397 	switch (locknum) {
5398 	case BGE_APE_LOCK_GPIO:
5399 		/* Lock required when using GPIO. */
5400 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5401 			return (0);
5402 		if (sc->bge_func_addr == 0)
5403 			bit = BGE_APE_LOCK_REQ_DRIVER0;
5404 		else
5405 			bit = (1 << sc->bge_func_addr);
5406 		break;
5407 	case BGE_APE_LOCK_GRC:
5408 		/* Lock required to reset the device. */
5409 		if (sc->bge_func_addr == 0)
5410 			bit = BGE_APE_LOCK_REQ_DRIVER0;
5411 		else
5412 			bit = (1 << sc->bge_func_addr);
5413 		break;
5414 	case BGE_APE_LOCK_MEM:
5415 		/* Lock required when accessing certain APE memory. */
5416 		if (sc->bge_func_addr == 0)
5417 			bit = BGE_APE_LOCK_REQ_DRIVER0;
5418 		else
5419 			bit = (1 << sc->bge_func_addr);
5420 		break;
5421 	case BGE_APE_LOCK_PHY0:
5422 	case BGE_APE_LOCK_PHY1:
5423 	case BGE_APE_LOCK_PHY2:
5424 	case BGE_APE_LOCK_PHY3:
5425 		/* Lock required when accessing PHYs. */
5426 		bit = BGE_APE_LOCK_REQ_DRIVER0;
5427 		break;
5428 	default:
5429 		return (EINVAL);
5430 	}
5431 
5432 	/* Request a lock. */
5433 	APE_WRITE_4(sc, req + off, bit);
5434 
5435 	/* Wait up to 1 second to acquire lock. */
5436 	for (i = 0; i < 20000; i++) {
5437 		status = APE_READ_4(sc, gnt + off);
5438 		if (status == bit)
5439 			break;
5440 		DELAY(50);
5441 	}
5442 
5443 	/* Handle any errors. */
5444 	if (status != bit) {
5445 		device_printf(sc->bge_dev, "APE lock %d request failed! "
5446 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
5447 		    locknum, req + off, bit & 0xFFFF, gnt + off,
5448 		    status & 0xFFFF);
5449 		/* Revoke the lock request. */
5450 		APE_WRITE_4(sc, gnt + off, bit);
5451 		return (EBUSY);
5452 	}
5453 
5454 	return (0);
5455 }
5456 
5457 static void
5458 bge_ape_unlock(struct bge_softc *sc, int locknum)
5459 {
5460 	uint32_t bit, gnt;
5461 	int off;
5462 
5463 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5464 		return;
5465 
5466 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5467 		gnt = BGE_APE_LOCK_GRANT;
5468 	else
5469 		gnt = BGE_APE_PER_LOCK_GRANT;
5470 
5471 	off = 4 * locknum;
5472 
5473 	switch (locknum) {
5474 	case BGE_APE_LOCK_GPIO:
5475 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5476 			return;
5477 		if (sc->bge_func_addr == 0)
5478 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5479 		else
5480 			bit = (1 << sc->bge_func_addr);
5481 		break;
5482 	case BGE_APE_LOCK_GRC:
5483 		if (sc->bge_func_addr == 0)
5484 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5485 		else
5486 			bit = (1 << sc->bge_func_addr);
5487 		break;
5488 	case BGE_APE_LOCK_MEM:
5489 		if (sc->bge_func_addr == 0)
5490 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5491 		else
5492 			bit = (1 << sc->bge_func_addr);
5493 		break;
5494 	case BGE_APE_LOCK_PHY0:
5495 	case BGE_APE_LOCK_PHY1:
5496 	case BGE_APE_LOCK_PHY2:
5497 	case BGE_APE_LOCK_PHY3:
5498 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
5499 		break;
5500 	default:
5501 		return;
5502 	}
5503 
5504 	APE_WRITE_4(sc, gnt + off, bit);
5505 }
5506 
5507 /*
5508  * Send an event to the APE firmware.
5509  */
5510 static void
5511 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
5512 {
5513 	uint32_t apedata;
5514 	int i;
5515 
5516 	/* NCSI does not support APE events. */
5517 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5518 		return;
5519 
5520 	/* Wait up to 1ms for APE to service previous event. */
5521 	for (i = 10; i > 0; i--) {
5522 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
5523 			break;
5524 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
5525 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
5526 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
5527 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
5528 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
5529 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
5530 			break;
5531 		}
5532 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
5533 		DELAY(100);
5534 	}
5535 	if (i == 0)
5536 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
5537 		    event);
5538 }
5539 
5540 static void
5541 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
5542 {
5543 	uint32_t apedata, event;
5544 
5545 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5546 		return;
5547 
5548 	switch (kind) {
5549 	case BGE_RESET_START:
5550 		/* If this is the first load, clear the load counter. */
5551 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
5552 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
5553 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
5554 		else {
5555 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
5556 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
5557 		}
5558 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
5559 		    BGE_APE_HOST_SEG_SIG_MAGIC);
5560 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
5561 		    BGE_APE_HOST_SEG_LEN_MAGIC);
5562 
5563 		/* Add some version info if bge(4) supports it. */
5564 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
5565 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
5566 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
5567 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
5568 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
5569 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
5570 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
5571 		    BGE_APE_HOST_DRVR_STATE_START);
5572 		event = BGE_APE_EVENT_STATUS_STATE_START;
5573 		break;
5574 	case BGE_RESET_SHUTDOWN:
5575 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
5576 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
5577 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
5578 		break;
5579 	case BGE_RESET_SUSPEND:
5580 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
5581 		break;
5582 	default:
5583 		return;
5584 	}
5585 
5586 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
5587 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
5588 }
5589