xref: /dragonfly/sys/dev/netif/bge/if_bge.c (revision d600454b)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.52 2005/12/31 14:07:59 sephe Exp $
35  *
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44 
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  *
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74 
75 #include "opt_bge.h"
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/queue.h>
85 #include <sys/serialize.h>
86 #include <sys/thread2.h>
87 
88 #include <net/if.h>
89 #include <net/ifq_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 
95 #include <net/bpf.h>
96 
97 #include <net/if_types.h>
98 #include <net/vlan/if_vlan_var.h>
99 
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103 
104 #include <vm/vm.h>              /* for vtophys */
105 #include <vm/pmap.h>            /* for vtophys */
106 #include <machine/resource.h>
107 #include <sys/bus.h>
108 #include <sys/rman.h>
109 
110 #include <dev/netif/mii_layer/mii.h>
111 #include <dev/netif/mii_layer/miivar.h>
112 #include <dev/netif/mii_layer/miidevs.h>
113 #include <dev/netif/mii_layer/brgphyreg.h>
114 
115 #include <bus/pci/pcidevs.h>
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
118 
119 #include "if_bgereg.h"
120 
121 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
122 
123 /* "controller miibus0" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125 
126 /*
127  * Various supported device vendors/types and their names. Note: the
128  * spec seems to indicate that the hardware still has Alteon's vendor
129  * ID burned into it, though it will always be overriden by the vendor
130  * ID in the EEPROM. Just to be safe, we cover all possibilities.
131  */
132 #define BGE_DEVDESC_MAX		64	/* Maximum device description length */
133 
134 static struct bge_type bge_devs[] = {
135 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
136 		"Alteon BCM5700 Gigabit Ethernet" },
137 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
138 		"Alteon BCM5701 Gigabit Ethernet" },
139 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
140 		"Broadcom BCM5700 Gigabit Ethernet" },
141 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
142 		"Broadcom BCM5701 Gigabit Ethernet" },
143 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
144 		"Broadcom BCM5702X Gigabit Ethernet" },
145 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
146 		"Broadcom BCM5702 Gigabit Ethernet" },
147 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
148 		"Broadcom BCM5703X Gigabit Ethernet" },
149 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
150 		"Broadcom BCM5703 Gigabit Ethernet" },
151 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
152 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
153 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
154 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
155 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
156 		"Broadcom BCM5705 Gigabit Ethernet" },
157 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
158 		"Broadcom BCM5705K Gigabit Ethernet" },
159 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
160 		"Broadcom BCM5705M Gigabit Ethernet" },
161 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
162 		"Broadcom BCM5705M Gigabit Ethernet" },
163 	{ PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5714C,
164 		"Broadcom BCM5714C Gigabit Ethernet" },
165 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
166 		"Broadcom BCM5721 Gigabit Ethernet" },
167 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
168 		"Broadcom BCM5750 Gigabit Ethernet" },
169 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
170 		"Broadcom BCM5750M Gigabit Ethernet" },
171 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
172 		"Broadcom BCM5751 Gigabit Ethernet" },
173 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
174 		"Broadcom BCM5751M Gigabit Ethernet" },
175 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
176 		"Broadcom BCM5782 Gigabit Ethernet" },
177 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
178 		"Broadcom BCM5788 Gigabit Ethernet" },
179 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
180 		"Broadcom BCM5789 Gigabit Ethernet" },
181 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
182 		"Broadcom BCM5901 Fast Ethernet" },
183 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
184 		"Broadcom BCM5901A2 Fast Ethernet" },
185 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
186 		"SysKonnect Gigabit Ethernet" },
187 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
188 		"Altima AC1000 Gigabit Ethernet" },
189 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
190 		"Altima AC1002 Gigabit Ethernet" },
191 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
192 		"Altima AC9100 Gigabit Ethernet" },
193 	{ 0, 0, NULL }
194 };
195 
196 static int	bge_probe(device_t);
197 static int	bge_attach(device_t);
198 static int	bge_detach(device_t);
199 static void	bge_release_resources(struct bge_softc *);
200 static void	bge_txeof(struct bge_softc *);
201 static void	bge_rxeof(struct bge_softc *);
202 
203 static void	bge_tick(void *);
204 static void	bge_tick_serialized(void *);
205 static void	bge_stats_update(struct bge_softc *);
206 static void	bge_stats_update_regs(struct bge_softc *);
207 static int	bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
208 
209 static void	bge_intr(void *);
210 static void	bge_start(struct ifnet *);
211 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
212 static void	bge_init(void *);
213 static void	bge_stop(struct bge_softc *);
214 static void	bge_watchdog(struct ifnet *);
215 static void	bge_shutdown(device_t);
216 static int	bge_ifmedia_upd(struct ifnet *);
217 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
218 
219 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
220 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
221 
222 static void	bge_setmulti(struct bge_softc *);
223 
224 static void	bge_handle_events(struct bge_softc *);
225 static int	bge_alloc_jumbo_mem(struct bge_softc *);
226 static void	bge_free_jumbo_mem(struct bge_softc *);
227 static struct bge_jslot
228 		*bge_jalloc(struct bge_softc *);
229 static void	bge_jfree(void *);
230 static void	bge_jref(void *);
231 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
232 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int	bge_init_rx_ring_std(struct bge_softc *);
234 static void	bge_free_rx_ring_std(struct bge_softc *);
235 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void	bge_free_tx_ring(struct bge_softc *);
238 static int	bge_init_tx_ring(struct bge_softc *);
239 
240 static int	bge_chipinit(struct bge_softc *);
241 static int	bge_blockinit(struct bge_softc *);
242 
243 #ifdef notdef
244 static uint8_t	bge_vpd_readbyte(struct bge_softc *, uint32_t);
245 static void	bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
246 static void	bge_vpd_read(struct bge_softc *);
247 #endif
248 
249 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
250 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
251 #ifdef notdef
252 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
253 #endif
254 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
255 
256 static int	bge_miibus_readreg(device_t, int, int);
257 static int	bge_miibus_writereg(device_t, int, int, int);
258 static void	bge_miibus_statchg(device_t);
259 
260 static void	bge_reset(struct bge_softc *);
261 
262 static device_method_t bge_methods[] = {
263 	/* Device interface */
264 	DEVMETHOD(device_probe,		bge_probe),
265 	DEVMETHOD(device_attach,	bge_attach),
266 	DEVMETHOD(device_detach,	bge_detach),
267 	DEVMETHOD(device_shutdown,	bge_shutdown),
268 
269 	/* bus interface */
270 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
271 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
272 
273 	/* MII interface */
274 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
275 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
276 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
277 
278 	{ 0, 0 }
279 };
280 
281 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
282 static devclass_t bge_devclass;
283 
284 DECLARE_DUMMY_MODULE(if_bge);
285 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
286 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
287 
288 static uint32_t
289 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
290 {
291 	device_t dev = sc->bge_dev;
292 
293 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
294 	return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
295 }
296 
297 static void
298 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
299 {
300 	device_t dev = sc->bge_dev;
301 
302 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
303 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
304 }
305 
306 #ifdef notdef
307 static uint32_t
308 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
309 {
310 	device_t dev = sc->bge_dev;
311 
312 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
313 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
314 }
315 #endif
316 
317 static void
318 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
319 {
320 	device_t dev = sc->bge_dev;
321 
322 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
323 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
324 }
325 
326 #ifdef notdef
327 static uint8_t
328 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
329 {
330 	device_t dev = sc->bge_dev;
331 	uint32_t val;
332 	int i;
333 
334 	pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
335 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
336 		DELAY(10);
337 		if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
338 			break;
339 	}
340 
341 	if (i == BGE_TIMEOUT) {
342 		device_printf(sc->bge_dev, "VPD read timed out\n");
343 		return(0);
344 	}
345 
346 	val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
347 
348 	return((val >> ((addr % 4) * 8)) & 0xFF);
349 }
350 
351 static void
352 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
353 {
354 	size_t i;
355 	uint8_t *ptr;
356 
357 	ptr = (uint8_t *)res;
358 	for (i = 0; i < sizeof(struct vpd_res); i++)
359 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
360 
361 	return;
362 }
363 
364 static void
365 bge_vpd_read(struct bge_softc *sc)
366 {
367 	int pos = 0, i;
368 	struct vpd_res res;
369 
370 	if (sc->bge_vpd_prodname != NULL)
371 		free(sc->bge_vpd_prodname, M_DEVBUF);
372 	if (sc->bge_vpd_readonly != NULL)
373 		free(sc->bge_vpd_readonly, M_DEVBUF);
374 	sc->bge_vpd_prodname = NULL;
375 	sc->bge_vpd_readonly = NULL;
376 
377 	bge_vpd_read_res(sc, &res, pos);
378 
379 	if (res.vr_id != VPD_RES_ID) {
380 		device_printf(sc->bge_dev,
381 			      "bad VPD resource id: expected %x got %x\n",
382 			      VPD_RES_ID, res.vr_id);
383                 return;
384         }
385 
386 	pos += sizeof(res);
387 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
388 	for (i = 0; i < res.vr_len; i++)
389 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
390 	sc->bge_vpd_prodname[i] = '\0';
391 	pos += i;
392 
393 	bge_vpd_read_res(sc, &res, pos);
394 
395 	if (res.vr_id != VPD_RES_READ) {
396 		device_printf(sc->bge_dev,
397 			      "bad VPD resource id: expected %x got %x\n",
398 			      VPD_RES_READ, res.vr_id);
399 		return;
400 	}
401 
402 	pos += sizeof(res);
403 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
404 	for (i = 0; i < res.vr_len + 1; i++)
405 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
406 }
407 #endif
408 
409 /*
410  * Read a byte of data stored in the EEPROM at address 'addr.' The
411  * BCM570x supports both the traditional bitbang interface and an
412  * auto access interface for reading the EEPROM. We use the auto
413  * access method.
414  */
415 static uint8_t
416 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
417 {
418 	int i;
419 	uint32_t byte = 0;
420 
421 	/*
422 	 * Enable use of auto EEPROM access so we can avoid
423 	 * having to use the bitbang method.
424 	 */
425 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
426 
427 	/* Reset the EEPROM, load the clock period. */
428 	CSR_WRITE_4(sc, BGE_EE_ADDR,
429 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
430 	DELAY(20);
431 
432 	/* Issue the read EEPROM command. */
433 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
434 
435 	/* Wait for completion */
436 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
437 		DELAY(10);
438 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
439 			break;
440 	}
441 
442 	if (i == BGE_TIMEOUT) {
443 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
444 		return(0);
445 	}
446 
447 	/* Get result. */
448 	byte = CSR_READ_4(sc, BGE_EE_DATA);
449 
450         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
451 
452 	return(0);
453 }
454 
455 /*
456  * Read a sequence of bytes from the EEPROM.
457  */
458 static int
459 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
460 {
461 	size_t i;
462 	int err;
463 	uint8_t byte;
464 
465 	for (byte = 0, err = 0, i = 0; i < len; i++) {
466 		err = bge_eeprom_getbyte(sc, off + i, &byte);
467 		if (err)
468 			break;
469 		*(dest + i) = byte;
470 	}
471 
472 	return(err ? 1 : 0);
473 }
474 
475 static int
476 bge_miibus_readreg(device_t dev, int phy, int reg)
477 {
478 	struct bge_softc *sc;
479 	struct ifnet *ifp;
480 	uint32_t val, autopoll;
481 	int i;
482 
483 	sc = device_get_softc(dev);
484 	ifp = &sc->arpcom.ac_if;
485 
486 	/*
487 	 * Broadcom's own driver always assumes the internal
488 	 * PHY is at GMII address 1. On some chips, the PHY responds
489 	 * to accesses at all addresses, which could cause us to
490 	 * bogusly attach the PHY 32 times at probe type. Always
491 	 * restricting the lookup to address 1 is simpler than
492 	 * trying to figure out which chips revisions should be
493 	 * special-cased.
494 	 */
495 	if (phy != 1)
496 		return(0);
497 
498 	/* Reading with autopolling on may trigger PCI errors */
499 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
500 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
501 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
502 		DELAY(40);
503 	}
504 
505 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
506 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
507 
508 	for (i = 0; i < BGE_TIMEOUT; i++) {
509 		val = CSR_READ_4(sc, BGE_MI_COMM);
510 		if (!(val & BGE_MICOMM_BUSY))
511 			break;
512 	}
513 
514 	if (i == BGE_TIMEOUT) {
515 		if_printf(ifp, "PHY read timed out\n");
516 		val = 0;
517 		goto done;
518 	}
519 
520 	val = CSR_READ_4(sc, BGE_MI_COMM);
521 
522 done:
523 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
524 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
525 		DELAY(40);
526 	}
527 
528 	if (val & BGE_MICOMM_READFAIL)
529 		return(0);
530 
531 	return(val & 0xFFFF);
532 }
533 
534 static int
535 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
536 {
537 	struct bge_softc *sc;
538 	uint32_t autopoll;
539 	int i;
540 
541 	sc = device_get_softc(dev);
542 
543 	/* Reading with autopolling on may trigger PCI errors */
544 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
545 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
546 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
547 		DELAY(40);
548 	}
549 
550 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
551 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
552 
553 	for (i = 0; i < BGE_TIMEOUT; i++) {
554 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
555 			break;
556 	}
557 
558 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
559 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
560 		DELAY(40);
561 	}
562 
563 	if (i == BGE_TIMEOUT) {
564 		if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
565 		return(0);
566 	}
567 
568 	return(0);
569 }
570 
571 static void
572 bge_miibus_statchg(device_t dev)
573 {
574 	struct bge_softc *sc;
575 	struct mii_data *mii;
576 
577 	sc = device_get_softc(dev);
578 	mii = device_get_softc(sc->bge_miibus);
579 
580 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
581 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
582 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
583 	} else {
584 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
585 	}
586 
587 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
588 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
589 	} else {
590 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
591 	}
592 }
593 
594 /*
595  * Handle events that have triggered interrupts.
596  */
597 static void
598 bge_handle_events(struct bge_softc *sc)
599 {
600 }
601 
602 /*
603  * Memory management for jumbo frames.
604  */
605 static int
606 bge_alloc_jumbo_mem(struct bge_softc *sc)
607 {
608 	struct bge_jslot *entry;
609 	caddr_t ptr;
610 	int i;
611 
612 	/* Grab a big chunk o' storage. */
613 	sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
614 		M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
615 
616 	if (sc->bge_cdata.bge_jumbo_buf == NULL) {
617 		if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
618 		return(ENOBUFS);
619 	}
620 
621 	SLIST_INIT(&sc->bge_jfree_listhead);
622 
623 	/*
624 	 * Now divide it up into 9K pieces and save the addresses
625 	 * in an array. Note that we play an evil trick here by using
626 	 * the first few bytes in the buffer to hold the the address
627 	 * of the softc structure for this interface. This is because
628 	 * bge_jfree() needs it, but it is called by the mbuf management
629 	 * code which will not pass it to us explicitly.
630 	 */
631 	ptr = sc->bge_cdata.bge_jumbo_buf;
632 	for (i = 0; i < BGE_JSLOTS; i++) {
633 		entry = &sc->bge_cdata.bge_jslots[i];
634 		entry->bge_sc = sc;
635 		entry->bge_buf = ptr;
636 		entry->bge_inuse = 0;
637 		entry->bge_slot = i;
638 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
639 		ptr += BGE_JLEN;
640 	}
641 
642 	return(0);
643 }
644 
645 static void
646 bge_free_jumbo_mem(struct bge_softc *sc)
647 {
648 	if (sc->bge_cdata.bge_jumbo_buf)
649 		contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
650 }
651 
652 /*
653  * Allocate a jumbo buffer.
654  */
655 static struct bge_jslot *
656 bge_jalloc(struct bge_softc *sc)
657 {
658 	struct bge_jslot *entry;
659 
660 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
661 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
662 	if (entry) {
663 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
664 		entry->bge_inuse = 1;
665 	} else {
666 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
667 	}
668 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
669 	return(entry);
670 }
671 
672 /*
673  * Adjust usage count on a jumbo buffer.
674  */
675 static void
676 bge_jref(void *arg)
677 {
678 	struct bge_jslot *entry = (struct bge_jslot *)arg;
679 	struct bge_softc *sc = entry->bge_sc;
680 
681 	if (sc == NULL)
682 		panic("bge_jref: can't find softc pointer!");
683 
684 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
685 		panic("bge_jref: asked to reference buffer "
686 		    "that we don't manage!");
687 	} else if (entry->bge_inuse == 0) {
688 		panic("bge_jref: buffer already free!");
689 	} else {
690 		atomic_add_int(&entry->bge_inuse, 1);
691 	}
692 }
693 
694 /*
695  * Release a jumbo buffer.
696  */
697 static void
698 bge_jfree(void *arg)
699 {
700 	struct bge_jslot *entry = (struct bge_jslot *)arg;
701 	struct bge_softc *sc = entry->bge_sc;
702 
703 	if (sc == NULL)
704 		panic("bge_jfree: can't find softc pointer!");
705 
706 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
707 		panic("bge_jfree: asked to free buffer that we don't manage!");
708 	} else if (entry->bge_inuse == 0) {
709 		panic("bge_jfree: buffer already free!");
710 	} else {
711 		/*
712 		 * Possible MP race to 0, use the serializer.  The atomic insn
713 		 * is still needed for races against bge_jref().
714 		 */
715 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
716 		atomic_subtract_int(&entry->bge_inuse, 1);
717 		if (entry->bge_inuse == 0) {
718 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
719 					  entry, jslot_link);
720 		}
721 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
722 	}
723 }
724 
725 
726 /*
727  * Intialize a standard receive ring descriptor.
728  */
729 static int
730 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
731 {
732 	struct mbuf *m_new = NULL;
733 	struct bge_rx_bd *r;
734 
735 	if (m == NULL) {
736 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
737 		if (m_new == NULL)
738 			return (ENOBUFS);
739 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
740 	} else {
741 		m_new = m;
742 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
743 		m_new->m_data = m_new->m_ext.ext_buf;
744 	}
745 
746 	if (!sc->bge_rx_alignment_bug)
747 		m_adj(m_new, ETHER_ALIGN);
748 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
749 	r = &sc->bge_rdata->bge_rx_std_ring[i];
750 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
751 	r->bge_flags = BGE_RXBDFLAG_END;
752 	r->bge_len = m_new->m_len;
753 	r->bge_idx = i;
754 
755 	return(0);
756 }
757 
758 /*
759  * Initialize a jumbo receive ring descriptor. This allocates
760  * a jumbo buffer from the pool managed internally by the driver.
761  */
762 static int
763 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
764 {
765 	struct mbuf *m_new = NULL;
766 	struct bge_rx_bd *r;
767 
768 	if (m == NULL) {
769 		struct bge_jslot *buf;
770 
771 		/* Allocate the mbuf. */
772 		MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
773 		if (m_new == NULL)
774 			return(ENOBUFS);
775 
776 		/* Allocate the jumbo buffer */
777 		buf = bge_jalloc(sc);
778 		if (buf == NULL) {
779 			m_freem(m_new);
780 			if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
781 			    "-- packet dropped!\n");
782 			return(ENOBUFS);
783 		}
784 
785 		/* Attach the buffer to the mbuf. */
786 		m_new->m_ext.ext_arg = buf;
787 		m_new->m_ext.ext_buf = buf->bge_buf;
788 		m_new->m_ext.ext_free = bge_jfree;
789 		m_new->m_ext.ext_ref = bge_jref;
790 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
791 
792 		m_new->m_data = m_new->m_ext.ext_buf;
793 		m_new->m_flags |= M_EXT;
794 		m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
795 	} else {
796 		m_new = m;
797 		m_new->m_data = m_new->m_ext.ext_buf;
798 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
799 	}
800 
801 	if (!sc->bge_rx_alignment_bug)
802 		m_adj(m_new, ETHER_ALIGN);
803 	/* Set up the descriptor. */
804 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
805 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
806 	BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
807 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
808 	r->bge_len = m_new->m_len;
809 	r->bge_idx = i;
810 
811 	return(0);
812 }
813 
814 /*
815  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
816  * that's 1MB or memory, which is a lot. For now, we fill only the first
817  * 256 ring entries and hope that our CPU is fast enough to keep up with
818  * the NIC.
819  */
820 static int
821 bge_init_rx_ring_std(struct bge_softc *sc)
822 {
823 	int i;
824 
825 	for (i = 0; i < BGE_SSLOTS; i++) {
826 		if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
827 			return(ENOBUFS);
828 	};
829 
830 	sc->bge_std = i - 1;
831 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
832 
833 	return(0);
834 }
835 
836 static void
837 bge_free_rx_ring_std(struct bge_softc *sc)
838 {
839 	int i;
840 
841 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
842 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
843 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
844 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
845 		}
846 		bzero(&sc->bge_rdata->bge_rx_std_ring[i],
847 		    sizeof(struct bge_rx_bd));
848 	}
849 }
850 
851 static int
852 bge_init_rx_ring_jumbo(struct bge_softc *sc)
853 {
854 	int i;
855 	struct bge_rcb *rcb;
856 
857 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
858 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
859 			return(ENOBUFS);
860 	};
861 
862 	sc->bge_jumbo = i - 1;
863 
864 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
865 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
866 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
867 
868 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
869 
870 	return(0);
871 }
872 
873 static void
874 bge_free_rx_ring_jumbo(struct bge_softc *sc)
875 {
876 	int i;
877 
878 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
879 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
880 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
881 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
882 		}
883 		bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
884 		    sizeof(struct bge_rx_bd));
885 	}
886 }
887 
888 static void
889 bge_free_tx_ring(struct bge_softc *sc)
890 {
891 	int i;
892 
893 	if (sc->bge_rdata->bge_tx_ring == NULL)
894 		return;
895 
896 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
897 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
898 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
899 			sc->bge_cdata.bge_tx_chain[i] = NULL;
900 		}
901 		bzero(&sc->bge_rdata->bge_tx_ring[i],
902 		    sizeof(struct bge_tx_bd));
903 	}
904 }
905 
906 static int
907 bge_init_tx_ring(struct bge_softc *sc)
908 {
909 	sc->bge_txcnt = 0;
910 	sc->bge_tx_saved_considx = 0;
911 
912 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
913 	/* 5700 b2 errata */
914 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
915 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
916 
917 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
918 	/* 5700 b2 errata */
919 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
920 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
921 
922 	return(0);
923 }
924 
925 static void
926 bge_setmulti(struct bge_softc *sc)
927 {
928 	struct ifnet *ifp;
929 	struct ifmultiaddr *ifma;
930 	uint32_t hashes[4] = { 0, 0, 0, 0 };
931 	int h, i;
932 
933 	ifp = &sc->arpcom.ac_if;
934 
935 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
936 		for (i = 0; i < 4; i++)
937 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
938 		return;
939 	}
940 
941 	/* First, zot all the existing filters. */
942 	for (i = 0; i < 4; i++)
943 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
944 
945 	/* Now program new ones. */
946 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
947 		if (ifma->ifma_addr->sa_family != AF_LINK)
948 			continue;
949 		h = ether_crc32_le(
950 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
951 		    ETHER_ADDR_LEN) & 0x7f;
952 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
953 	}
954 
955 	for (i = 0; i < 4; i++)
956 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
957 }
958 
959 /*
960  * Do endian, PCI and DMA initialization. Also check the on-board ROM
961  * self-test results.
962  */
963 static int
964 bge_chipinit(struct bge_softc *sc)
965 {
966 	int i;
967 	uint32_t dma_rw_ctl;
968 
969 	/* Set endianness before we access any non-PCI registers. */
970 #if BYTE_ORDER == BIG_ENDIAN
971 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
972 	    BGE_BIGENDIAN_INIT, 4);
973 #else
974 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
975 	    BGE_LITTLEENDIAN_INIT, 4);
976 #endif
977 
978 	/*
979 	 * Check the 'ROM failed' bit on the RX CPU to see if
980 	 * self-tests passed.
981 	 */
982 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
983 		if_printf(&sc->arpcom.ac_if,
984 			  "RX CPU self-diagnostics failed!\n");
985 		return(ENODEV);
986 	}
987 
988 	/* Clear the MAC control register */
989 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
990 
991 	/*
992 	 * Clear the MAC statistics block in the NIC's
993 	 * internal memory.
994 	 */
995 	for (i = BGE_STATS_BLOCK;
996 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
997 		BGE_MEMWIN_WRITE(sc, i, 0);
998 
999 	for (i = BGE_STATUS_BLOCK;
1000 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1001 		BGE_MEMWIN_WRITE(sc, i, 0);
1002 
1003 	/* Set up the PCI DMA control register. */
1004 	if (sc->bge_pcie) {
1005 		/* PCI Express */
1006 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1007 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1008 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1009 	} else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1010 		   BGE_PCISTATE_PCI_BUSMODE) {
1011 		/* Conventional PCI bus */
1012 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1013 		    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1014 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1015 		    (0x0F);
1016 	} else {
1017 		/* PCI-X bus */
1018 		/*
1019 		 * The 5704 uses a different encoding of read/write
1020 		 * watermarks.
1021 		 */
1022 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1023 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1024 			    (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1025 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1026 		else
1027 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1028 			    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1029 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1030 			    (0x0F);
1031 
1032 		/*
1033 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1034 		 * for hardware bugs.
1035 		 */
1036 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1037 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1038 			uint32_t tmp;
1039 
1040 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1041 			if (tmp == 0x6 || tmp == 0x7)
1042 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1043 		}
1044 	}
1045 
1046 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1047 	    sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1048 	    sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1049 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1050 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1051 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1052 
1053 	/*
1054 	 * Set up general mode register.
1055 	 */
1056 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1057 	    BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1058 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1059 	    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1060 
1061 	/*
1062 	 * Disable memory write invalidate.  Apparently it is not supported
1063 	 * properly by these devices.
1064 	 */
1065 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1066 
1067 	/* Set the timer prescaler (always 66Mhz) */
1068 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1069 
1070 	return(0);
1071 }
1072 
1073 static int
1074 bge_blockinit(struct bge_softc *sc)
1075 {
1076 	struct bge_rcb *rcb;
1077 	volatile struct bge_rcb *vrcb;
1078 	int i;
1079 
1080 	/*
1081 	 * Initialize the memory window pointer register so that
1082 	 * we can access the first 32K of internal NIC RAM. This will
1083 	 * allow us to set up the TX send ring RCBs and the RX return
1084 	 * ring RCBs, plus other things which live in NIC memory.
1085 	 */
1086 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1087 
1088 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1089 
1090 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1091 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1092 		/* Configure mbuf memory pool */
1093 		if (sc->bge_extram) {
1094 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1095 			    BGE_EXT_SSRAM);
1096 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1097 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1098 			else
1099 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1100 		} else {
1101 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1102 			    BGE_BUFFPOOL_1);
1103 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1104 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1105 			else
1106 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1107 		}
1108 
1109 		/* Configure DMA resource pool */
1110 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1111 		    BGE_DMA_DESCRIPTORS);
1112 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1113 	}
1114 
1115 	/* Configure mbuf pool watermarks */
1116 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1117 	    sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1118 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1119 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1120 	} else {
1121 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1122 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1123 	}
1124 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1125 
1126 	/* Configure DMA resource watermarks */
1127 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1128 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1129 
1130 	/* Enable buffer manager */
1131 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1132 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1133 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1134 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1135 
1136 		/* Poll for buffer manager start indication */
1137 		for (i = 0; i < BGE_TIMEOUT; i++) {
1138 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1139 				break;
1140 			DELAY(10);
1141 		}
1142 
1143 		if (i == BGE_TIMEOUT) {
1144 			if_printf(&sc->arpcom.ac_if,
1145 				  "buffer manager failed to start\n");
1146 			return(ENXIO);
1147 		}
1148 	}
1149 
1150 	/* Enable flow-through queues */
1151 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1152 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1153 
1154 	/* Wait until queue initialization is complete */
1155 	for (i = 0; i < BGE_TIMEOUT; i++) {
1156 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1157 			break;
1158 		DELAY(10);
1159 	}
1160 
1161 	if (i == BGE_TIMEOUT) {
1162 		if_printf(&sc->arpcom.ac_if,
1163 			  "flow-through queue init failed\n");
1164 		return(ENXIO);
1165 	}
1166 
1167 	/* Initialize the standard RX ring control block */
1168 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1169 	BGE_HOSTADDR(rcb->bge_hostaddr,
1170 	    vtophys(&sc->bge_rdata->bge_rx_std_ring));
1171 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1172 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1173 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1174 	else
1175 		rcb->bge_maxlen_flags =
1176 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1177 	if (sc->bge_extram)
1178 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1179 	else
1180 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1181 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1182 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1183 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1184 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1185 
1186 	/*
1187 	 * Initialize the jumbo RX ring control block
1188 	 * We set the 'ring disabled' bit in the flags
1189 	 * field until we're actually ready to start
1190 	 * using this ring (i.e. once we set the MTU
1191 	 * high enough to require it).
1192 	 */
1193 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1194 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1195 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1196 		BGE_HOSTADDR(rcb->bge_hostaddr,
1197 		    vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1198 		rcb->bge_maxlen_flags =
1199 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1200 		    BGE_RCB_FLAG_RING_DISABLED);
1201 		if (sc->bge_extram)
1202 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1203 		else
1204 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1205 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1206 		    rcb->bge_hostaddr.bge_addr_hi);
1207 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1208 		    rcb->bge_hostaddr.bge_addr_lo);
1209 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1210 		    rcb->bge_maxlen_flags);
1211 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1212 
1213 		/* Set up dummy disabled mini ring RCB */
1214 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1215 		rcb->bge_maxlen_flags =
1216 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1217 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1218 		    rcb->bge_maxlen_flags);
1219 	}
1220 
1221 	/*
1222 	 * Set the BD ring replentish thresholds. The recommended
1223 	 * values are 1/8th the number of descriptors allocated to
1224 	 * each ring.
1225 	 */
1226 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1227 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1228 
1229 	/*
1230 	 * Disable all unused send rings by setting the 'ring disabled'
1231 	 * bit in the flags field of all the TX send ring control blocks.
1232 	 * These are located in NIC memory.
1233 	 */
1234 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1235 	    BGE_SEND_RING_RCB);
1236 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1237 		vrcb->bge_maxlen_flags =
1238 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1239 		vrcb->bge_nicaddr = 0;
1240 		vrcb++;
1241 	}
1242 
1243 	/* Configure TX RCB 0 (we use only the first ring) */
1244 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1245 	    BGE_SEND_RING_RCB);
1246 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1247 	BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1248 	vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1249 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1250 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1251 		vrcb->bge_maxlen_flags =
1252 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1253 
1254 	/* Disable all unused RX return rings */
1255 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1256 	    BGE_RX_RETURN_RING_RCB);
1257 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1258 		vrcb->bge_hostaddr.bge_addr_hi = 0;
1259 		vrcb->bge_hostaddr.bge_addr_lo = 0;
1260 		vrcb->bge_maxlen_flags =
1261 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1262 		    BGE_RCB_FLAG_RING_DISABLED);
1263 		vrcb->bge_nicaddr = 0;
1264 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1265 		    (i * (sizeof(uint64_t))), 0);
1266 		vrcb++;
1267 	}
1268 
1269 	/* Initialize RX ring indexes */
1270 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1271 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1272 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1273 
1274 	/*
1275 	 * Set up RX return ring 0
1276 	 * Note that the NIC address for RX return rings is 0x00000000.
1277 	 * The return rings live entirely within the host, so the
1278 	 * nicaddr field in the RCB isn't used.
1279 	 */
1280 	vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1281 	    BGE_RX_RETURN_RING_RCB);
1282 	vrcb->bge_hostaddr.bge_addr_hi = 0;
1283 	BGE_HOSTADDR(vrcb->bge_hostaddr,
1284 	    vtophys(&sc->bge_rdata->bge_rx_return_ring));
1285 	vrcb->bge_nicaddr = 0x00000000;
1286 	vrcb->bge_maxlen_flags =
1287 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1288 
1289 	/* Set random backoff seed for TX */
1290 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1291 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1292 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1293 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1294 	    BGE_TX_BACKOFF_SEED_MASK);
1295 
1296 	/* Set inter-packet gap */
1297 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1298 
1299 	/*
1300 	 * Specify which ring to use for packets that don't match
1301 	 * any RX rules.
1302 	 */
1303 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1304 
1305 	/*
1306 	 * Configure number of RX lists. One interrupt distribution
1307 	 * list, sixteen active lists, one bad frames class.
1308 	 */
1309 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1310 
1311 	/* Inialize RX list placement stats mask. */
1312 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1313 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1314 
1315 	/* Disable host coalescing until we get it set up */
1316 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1317 
1318 	/* Poll to make sure it's shut down. */
1319 	for (i = 0; i < BGE_TIMEOUT; i++) {
1320 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1321 			break;
1322 		DELAY(10);
1323 	}
1324 
1325 	if (i == BGE_TIMEOUT) {
1326 		if_printf(&sc->arpcom.ac_if,
1327 			  "host coalescing engine failed to idle\n");
1328 		return(ENXIO);
1329 	}
1330 
1331 	/* Set up host coalescing defaults */
1332 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1333 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1334 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1335 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1336 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1337 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1338 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1339 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1340 	}
1341 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1342 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1343 
1344 	/* Set up address of statistics block */
1345 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1346 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1347 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1348 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1349 		    vtophys(&sc->bge_rdata->bge_info.bge_stats));
1350 
1351 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1352 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1353 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1354 	}
1355 
1356 	/* Set up address of status block */
1357 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1358 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1359 	    vtophys(&sc->bge_rdata->bge_status_block));
1360 
1361 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1362 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1363 
1364 	/* Turn on host coalescing state machine */
1365 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1366 
1367 	/* Turn on RX BD completion state machine and enable attentions */
1368 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1369 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1370 
1371 	/* Turn on RX list placement state machine */
1372 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1373 
1374 	/* Turn on RX list selector state machine. */
1375 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1376 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1377 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1378 
1379 	/* Turn on DMA, clear stats */
1380 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1381 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1382 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1383 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1384 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1385 
1386 	/* Set misc. local control, enable interrupts on attentions */
1387 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1388 
1389 #ifdef notdef
1390 	/* Assert GPIO pins for PHY reset */
1391 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1392 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1393 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1394 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1395 #endif
1396 
1397 	/* Turn on DMA completion state machine */
1398 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1399 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1400 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1401 
1402 	/* Turn on write DMA state machine */
1403 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1404 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1405 
1406 	/* Turn on read DMA state machine */
1407 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1408 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1409 
1410 	/* Turn on RX data completion state machine */
1411 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1412 
1413 	/* Turn on RX BD initiator state machine */
1414 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1415 
1416 	/* Turn on RX data and RX BD initiator state machine */
1417 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1418 
1419 	/* Turn on Mbuf cluster free state machine */
1420 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1421 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1422 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1423 
1424 	/* Turn on send BD completion state machine */
1425 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1426 
1427 	/* Turn on send data completion state machine */
1428 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1429 
1430 	/* Turn on send data initiator state machine */
1431 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1432 
1433 	/* Turn on send BD initiator state machine */
1434 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1435 
1436 	/* Turn on send BD selector state machine */
1437 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1438 
1439 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1440 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1441 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1442 
1443 	/* ack/clear link change events */
1444 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1445 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1446 	    BGE_MACSTAT_LINK_CHANGED);
1447 
1448 	/* Enable PHY auto polling (for MII/GMII only) */
1449 	if (sc->bge_tbi) {
1450 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1451  	} else {
1452 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1453 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1454 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1455 			    BGE_EVTENB_MI_INTERRUPT);
1456 	}
1457 
1458 	/* Enable link state change attentions. */
1459 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1460 
1461 	return(0);
1462 }
1463 
1464 /*
1465  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1466  * against our list and return its name if we find a match. Note
1467  * that since the Broadcom controller contains VPD support, we
1468  * can get the device name string from the controller itself instead
1469  * of the compiled-in string. This is a little slow, but it guarantees
1470  * we'll always announce the right product name.
1471  */
1472 static int
1473 bge_probe(device_t dev)
1474 {
1475 	struct bge_softc *sc;
1476 	struct bge_type *t;
1477 	char *descbuf;
1478 	uint16_t product, vendor;
1479 
1480 	product = pci_get_device(dev);
1481 	vendor = pci_get_vendor(dev);
1482 
1483 	for (t = bge_devs; t->bge_name != NULL; t++) {
1484 		if (vendor == t->bge_vid && product == t->bge_did)
1485 			break;
1486 	}
1487 
1488 	if (t->bge_name == NULL)
1489 		return(ENXIO);
1490 
1491 	sc = device_get_softc(dev);
1492 #ifdef notdef
1493 	sc->bge_dev = dev;
1494 
1495 	bge_vpd_read(sc);
1496 	device_set_desc(dev, sc->bge_vpd_prodname);
1497 #endif
1498 	descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1499 	snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1500 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1501 	device_set_desc_copy(dev, descbuf);
1502 	if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1503 		sc->bge_no_3_led = 1;
1504 	free(descbuf, M_TEMP);
1505 	return(0);
1506 }
1507 
1508 static int
1509 bge_attach(device_t dev)
1510 {
1511 	struct ifnet *ifp;
1512 	struct bge_softc *sc;
1513 	uint32_t hwcfg = 0;
1514 	uint32_t mac_addr = 0;
1515 	int error = 0, rid;
1516 	uint8_t ether_addr[ETHER_ADDR_LEN];
1517 
1518 	sc = device_get_softc(dev);
1519 	sc->bge_dev = dev;
1520 	callout_init(&sc->bge_stat_timer);
1521 	lwkt_serialize_init(&sc->bge_jslot_serializer);
1522 
1523 	/*
1524 	 * Map control/status registers.
1525 	 */
1526 	pci_enable_busmaster(dev);
1527 
1528 	rid = BGE_PCI_BAR0;
1529 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1530 	    RF_ACTIVE);
1531 
1532 	if (sc->bge_res == NULL) {
1533 		device_printf(dev, "couldn't map memory\n");
1534 		error = ENXIO;
1535 		return(error);
1536 	}
1537 
1538 	sc->bge_btag = rman_get_bustag(sc->bge_res);
1539 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1540 	sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1541 
1542 	/* Allocate interrupt */
1543 	rid = 0;
1544 
1545 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1546 	    RF_SHAREABLE | RF_ACTIVE);
1547 
1548 	if (sc->bge_irq == NULL) {
1549 		device_printf(dev, "couldn't map interrupt\n");
1550 		error = ENXIO;
1551 		goto fail;
1552 	}
1553 
1554 	/* Save ASIC rev. */
1555 	sc->bge_chipid =
1556 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1557 	    BGE_PCIMISCCTL_ASICREV;
1558 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1559 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1560 
1561 	/*
1562 	 * Treat the 5714 like the 5750 until we have more info
1563 	 * on this chip.
1564 	 */
1565 	if (sc->bge_asicrev == BGE_ASICREV_BCM5714)
1566 		sc->bge_asicrev = BGE_ASICREV_BCM5750;
1567 
1568 	/*
1569 	 * XXX: Broadcom Linux driver.  Not in specs or eratta.
1570 	 * PCI-Express?
1571 	 */
1572 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1573 		uint32_t v;
1574 
1575 		v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1576 		if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1577 			v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1578 			if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1579 				sc->bge_pcie = 1;
1580 		}
1581 	}
1582 
1583 	ifp = &sc->arpcom.ac_if;
1584 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1585 
1586 	/* Try to reset the chip. */
1587 	bge_reset(sc);
1588 
1589 	if (bge_chipinit(sc)) {
1590 		device_printf(dev, "chip initialization failed\n");
1591 		error = ENXIO;
1592 		goto fail;
1593 	}
1594 
1595 	/*
1596 	 * Get station address from the EEPROM.
1597 	 */
1598 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1599 	if ((mac_addr >> 16) == 0x484b) {
1600 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
1601 		ether_addr[1] = (uint8_t)mac_addr;
1602 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1603 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
1604 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
1605 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
1606 		ether_addr[5] = (uint8_t)mac_addr;
1607 	} else if (bge_read_eeprom(sc, ether_addr,
1608 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1609 		device_printf(dev, "failed to read station address\n");
1610 		error = ENXIO;
1611 		goto fail;
1612 	}
1613 
1614 	/* Allocate the general information block and ring buffers. */
1615 	sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1616 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1617 
1618 	if (sc->bge_rdata == NULL) {
1619 		error = ENXIO;
1620 		device_printf(dev, "no memory for list buffers!\n");
1621 		goto fail;
1622 	}
1623 
1624 	bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1625 
1626 	/*
1627 	 * Try to allocate memory for jumbo buffers.
1628 	 * The 5705/5750 does not appear to support jumbo frames.
1629 	 */
1630 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1631 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1632 		if (bge_alloc_jumbo_mem(sc)) {
1633 			device_printf(dev, "jumbo buffer allocation failed\n");
1634 			error = ENXIO;
1635 			goto fail;
1636 		}
1637 	}
1638 
1639 	/* Set default tuneable values. */
1640 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1641 	sc->bge_rx_coal_ticks = 150;
1642 	sc->bge_tx_coal_ticks = 150;
1643 	sc->bge_rx_max_coal_bds = 64;
1644 	sc->bge_tx_max_coal_bds = 128;
1645 
1646 	/* 5705/5750 limits RX return ring to 512 entries. */
1647 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1648 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
1649 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1650 	else
1651 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1652 
1653 	/* Set up ifnet structure */
1654 	ifp->if_softc = sc;
1655 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1656 	ifp->if_ioctl = bge_ioctl;
1657 	ifp->if_start = bge_start;
1658 	ifp->if_watchdog = bge_watchdog;
1659 	ifp->if_init = bge_init;
1660 	ifp->if_mtu = ETHERMTU;
1661 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1662 	ifq_set_ready(&ifp->if_snd);
1663 	ifp->if_hwassist = BGE_CSUM_FEATURES;
1664 	ifp->if_capabilities = IFCAP_HWCSUM;
1665 	ifp->if_capenable = ifp->if_capabilities;
1666 
1667 	/*
1668 	 * Figure out what sort of media we have by checking the
1669 	 * hardware config word in the first 32k of NIC internal memory,
1670 	 * or fall back to examining the EEPROM if necessary.
1671 	 * Note: on some BCM5700 cards, this value appears to be unset.
1672 	 * If that's the case, we have to rely on identifying the NIC
1673 	 * by its PCI subsystem ID, as we do below for the SysKonnect
1674 	 * SK-9D41.
1675 	 */
1676 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1677 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1678 	else {
1679 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
1680 				BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1681 		hwcfg = ntohl(hwcfg);
1682 	}
1683 
1684 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1685 		sc->bge_tbi = 1;
1686 
1687 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
1688 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1689 		sc->bge_tbi = 1;
1690 
1691 	if (sc->bge_tbi) {
1692 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1693 		    bge_ifmedia_upd, bge_ifmedia_sts);
1694 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1695 		ifmedia_add(&sc->bge_ifmedia,
1696 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1697 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1698 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1699 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1700 	} else {
1701 		/*
1702 		 * Do transceiver setup.
1703 		 */
1704 		if (mii_phy_probe(dev, &sc->bge_miibus,
1705 		    bge_ifmedia_upd, bge_ifmedia_sts)) {
1706 			device_printf(dev, "MII without any PHY!\n");
1707 			error = ENXIO;
1708 			goto fail;
1709 		}
1710 	}
1711 
1712 	/*
1713 	 * When using the BCM5701 in PCI-X mode, data corruption has
1714 	 * been observed in the first few bytes of some received packets.
1715 	 * Aligning the packet buffer in memory eliminates the corruption.
1716 	 * Unfortunately, this misaligns the packet payloads.  On platforms
1717 	 * which do not support unaligned accesses, we will realign the
1718 	 * payloads by copying the received packets.
1719 	 */
1720 	switch (sc->bge_chipid) {
1721 	case BGE_CHIPID_BCM5701_A0:
1722 	case BGE_CHIPID_BCM5701_B0:
1723 	case BGE_CHIPID_BCM5701_B2:
1724 	case BGE_CHIPID_BCM5701_B5:
1725 		/* If in PCI-X mode, work around the alignment bug. */
1726 		if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1727 		    (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1728 		    BGE_PCISTATE_PCI_BUSSPEED)
1729 			sc->bge_rx_alignment_bug = 1;
1730 		break;
1731 	}
1732 
1733 	/*
1734 	 * Call MI attach routine.
1735 	 */
1736 	ether_ifattach(ifp, ether_addr, NULL);
1737 
1738 	error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1739 			       bge_intr, sc, &sc->bge_intrhand,
1740 			       ifp->if_serializer);
1741 	if (error) {
1742 		ether_ifdetach(ifp);
1743 		device_printf(dev, "couldn't set up irq\n");
1744 		goto fail;
1745 	}
1746 
1747 	return(0);
1748 
1749 fail:
1750 	bge_detach(dev);
1751 
1752 	return(error);
1753 }
1754 
1755 static int
1756 bge_detach(device_t dev)
1757 {
1758 	struct bge_softc *sc = device_get_softc(dev);
1759 	struct ifnet *ifp = &sc->arpcom.ac_if;
1760 
1761 	if (device_is_attached(dev)) {
1762 		lwkt_serialize_enter(ifp->if_serializer);
1763 		bge_stop(sc);
1764 		bge_reset(sc);
1765 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1766 		lwkt_serialize_exit(ifp->if_serializer);
1767 
1768 		ether_ifdetach(ifp);
1769 	}
1770 	if (sc->bge_tbi)
1771 		ifmedia_removeall(&sc->bge_ifmedia);
1772 	if (sc->bge_miibus);
1773 		device_delete_child(dev, sc->bge_miibus);
1774 	bus_generic_detach(dev);
1775 
1776 	bge_release_resources(sc);
1777 
1778 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1779 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1780 		bge_free_jumbo_mem(sc);
1781 
1782 	return(0);
1783 }
1784 
1785 static void
1786 bge_release_resources(struct bge_softc *sc)
1787 {
1788         device_t dev;
1789 
1790         dev = sc->bge_dev;
1791 
1792 	if (sc->bge_vpd_prodname != NULL)
1793 		free(sc->bge_vpd_prodname, M_DEVBUF);
1794 
1795 	if (sc->bge_vpd_readonly != NULL)
1796 		free(sc->bge_vpd_readonly, M_DEVBUF);
1797 
1798         if (sc->bge_irq != NULL)
1799 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1800 
1801         if (sc->bge_res != NULL)
1802 		bus_release_resource(dev, SYS_RES_MEMORY,
1803 		    BGE_PCI_BAR0, sc->bge_res);
1804 
1805         if (sc->bge_rdata != NULL)
1806 		contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1807 			   M_DEVBUF);
1808 
1809         return;
1810 }
1811 
1812 static void
1813 bge_reset(struct bge_softc *sc)
1814 {
1815 	device_t dev;
1816 	uint32_t cachesize, command, pcistate, reset;
1817 	int i, val = 0;
1818 
1819 	dev = sc->bge_dev;
1820 
1821 	/* Save some important PCI state. */
1822 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1823 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
1824 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1825 
1826 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1827 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1828 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1829 
1830 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1831 
1832 	/* XXX: Broadcom Linux driver. */
1833 	if (sc->bge_pcie) {
1834 		if (CSR_READ_4(sc, 0x7e2c) == 0x60)	/* PCIE 1.0 */
1835 			CSR_WRITE_4(sc, 0x7e2c, 0x20);
1836 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1837 			/* Prevent PCIE link training during global reset */
1838 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1839 			reset |= (1<<29);
1840 		}
1841 	}
1842 
1843 	/* Issue global reset */
1844 	bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1845 
1846 	DELAY(1000);
1847 
1848 	/* XXX: Broadcom Linux driver. */
1849 	if (sc->bge_pcie) {
1850 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1851 			uint32_t v;
1852 
1853 			DELAY(500000); /* wait for link training to complete */
1854 			v = pci_read_config(dev, 0xc4, 4);
1855 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
1856 		}
1857 		/* Set PCIE max payload size and clear error status. */
1858 		pci_write_config(dev, 0xd8, 0xf5000, 4);
1859 	}
1860 
1861 	/* Reset some of the PCI state that got zapped by reset */
1862 	pci_write_config(dev, BGE_PCI_MISC_CTL,
1863 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1864 	    BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1865 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1866 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
1867 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1868 
1869 	/* Enable memory arbiter. */
1870 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1871 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1872 
1873 	/*
1874 	 * Prevent PXE restart: write a magic number to the
1875 	 * general communications memory at 0xB50.
1876 	 */
1877 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1878 	/*
1879 	 * Poll the value location we just wrote until
1880 	 * we see the 1's complement of the magic number.
1881 	 * This indicates that the firmware initialization
1882 	 * is complete.
1883 	 */
1884 	for (i = 0; i < BGE_TIMEOUT; i++) {
1885 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1886 		if (val == ~BGE_MAGIC_NUMBER)
1887 			break;
1888 		DELAY(10);
1889 	}
1890 
1891 	if (i == BGE_TIMEOUT) {
1892 		if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1893 		return;
1894 	}
1895 
1896 	/*
1897 	 * XXX Wait for the value of the PCISTATE register to
1898 	 * return to its original pre-reset state. This is a
1899 	 * fairly good indicator of reset completion. If we don't
1900 	 * wait for the reset to fully complete, trying to read
1901 	 * from the device's non-PCI registers may yield garbage
1902 	 * results.
1903 	 */
1904 	for (i = 0; i < BGE_TIMEOUT; i++) {
1905 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1906 			break;
1907 		DELAY(10);
1908 	}
1909 
1910 	/* Fix up byte swapping */
1911 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1912 	    BGE_MODECTL_BYTESWAP_DATA);
1913 
1914 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1915 
1916 	/*
1917 	 * The 5704 in TBI mode apparently needs some special
1918 	 * adjustment to insure the SERDES drive level is set
1919 	 * to 1.2V.
1920 	 */
1921 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
1922 		uint32_t serdescfg;
1923 
1924 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
1925 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
1926 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
1927 	}
1928 
1929 	/* XXX: Broadcom Linux driver. */
1930 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1931 		uint32_t v;
1932 
1933 		v = CSR_READ_4(sc, 0x7c00);
1934 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1935 	}
1936 
1937 	DELAY(10000);
1938 }
1939 
1940 /*
1941  * Frame reception handling. This is called if there's a frame
1942  * on the receive return list.
1943  *
1944  * Note: we have to be able to handle two possibilities here:
1945  * 1) the frame is from the jumbo recieve ring
1946  * 2) the frame is from the standard receive ring
1947  */
1948 
1949 static void
1950 bge_rxeof(struct bge_softc *sc)
1951 {
1952 	struct ifnet *ifp;
1953 	int stdcnt = 0, jumbocnt = 0;
1954 
1955 	ifp = &sc->arpcom.ac_if;
1956 
1957 	while(sc->bge_rx_saved_considx !=
1958 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1959 		struct bge_rx_bd	*cur_rx;
1960 		uint32_t		rxidx;
1961 		struct mbuf		*m = NULL;
1962 		uint16_t		vlan_tag = 0;
1963 		int			have_tag = 0;
1964 
1965 		cur_rx =
1966 	    &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1967 
1968 		rxidx = cur_rx->bge_idx;
1969 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1970 
1971 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1972 			have_tag = 1;
1973 			vlan_tag = cur_rx->bge_vlan_tag;
1974 		}
1975 
1976 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1977 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1978 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1979 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1980 			jumbocnt++;
1981 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1982 				ifp->if_ierrors++;
1983 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1984 				continue;
1985 			}
1986 			if (bge_newbuf_jumbo(sc,
1987 			    sc->bge_jumbo, NULL) == ENOBUFS) {
1988 				ifp->if_ierrors++;
1989 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1990 				continue;
1991 			}
1992 		} else {
1993 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1994 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1995 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1996 			stdcnt++;
1997 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1998 				ifp->if_ierrors++;
1999 				bge_newbuf_std(sc, sc->bge_std, m);
2000 				continue;
2001 			}
2002 			if (bge_newbuf_std(sc, sc->bge_std,
2003 			    NULL) == ENOBUFS) {
2004 				ifp->if_ierrors++;
2005 				bge_newbuf_std(sc, sc->bge_std, m);
2006 				continue;
2007 			}
2008 		}
2009 
2010 		ifp->if_ipackets++;
2011 #ifndef __i386__
2012 		/*
2013 		 * The i386 allows unaligned accesses, but for other
2014 		 * platforms we must make sure the payload is aligned.
2015 		 */
2016 		if (sc->bge_rx_alignment_bug) {
2017 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2018 			    cur_rx->bge_len);
2019 			m->m_data += ETHER_ALIGN;
2020 		}
2021 #endif
2022 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2023 		m->m_pkthdr.rcvif = ifp;
2024 
2025 #if 0 /* currently broken for some packets, possibly related to TCP options */
2026 		if (ifp->if_hwassist) {
2027 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2028 			if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2029 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2030 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2031 				m->m_pkthdr.csum_data =
2032 				    cur_rx->bge_tcp_udp_csum;
2033 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2034 			}
2035 		}
2036 #endif
2037 
2038 		/*
2039 		 * If we received a packet with a vlan tag, pass it
2040 		 * to vlan_input() instead of ether_input().
2041 		 */
2042 		if (have_tag) {
2043 			VLAN_INPUT_TAG(m, vlan_tag);
2044 			have_tag = vlan_tag = 0;
2045 		} else {
2046 			ifp->if_input(ifp, m);
2047 		}
2048 	}
2049 
2050 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2051 	if (stdcnt)
2052 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2053 	if (jumbocnt)
2054 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2055 }
2056 
2057 static void
2058 bge_txeof(struct bge_softc *sc)
2059 {
2060 	struct bge_tx_bd *cur_tx = NULL;
2061 	struct ifnet *ifp;
2062 
2063 	ifp = &sc->arpcom.ac_if;
2064 
2065 	/*
2066 	 * Go through our tx ring and free mbufs for those
2067 	 * frames that have been sent.
2068 	 */
2069 	while (sc->bge_tx_saved_considx !=
2070 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2071 		uint32_t		idx = 0;
2072 
2073 		idx = sc->bge_tx_saved_considx;
2074 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2075 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2076 			ifp->if_opackets++;
2077 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2078 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2079 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2080 		}
2081 		sc->bge_txcnt--;
2082 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2083 		ifp->if_timer = 0;
2084 	}
2085 
2086 	if (cur_tx != NULL)
2087 		ifp->if_flags &= ~IFF_OACTIVE;
2088 }
2089 
2090 static void
2091 bge_intr(void *xsc)
2092 {
2093 	struct bge_softc *sc = xsc;
2094 	struct ifnet *ifp = &sc->arpcom.ac_if;
2095  	uint32_t status, statusword, mimode;
2096 
2097 	/* XXX */
2098 	statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2099 
2100 #ifdef notdef
2101 	/* Avoid this for now -- checking this register is expensive. */
2102 	/* Make sure this is really our interrupt. */
2103 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2104 		return;
2105 #endif
2106 	/* Ack interrupt and stop others from occuring. */
2107 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2108 
2109 	/*
2110 	 * Process link state changes.
2111 	 * Grrr. The link status word in the status block does
2112 	 * not work correctly on the BCM5700 rev AX and BX chips,
2113 	 * according to all available information. Hence, we have
2114 	 * to enable MII interrupts in order to properly obtain
2115 	 * async link changes. Unfortunately, this also means that
2116 	 * we have to read the MAC status register to detect link
2117 	 * changes, thereby adding an additional register access to
2118 	 * the interrupt handler.
2119 	 */
2120 
2121 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2122 		status = CSR_READ_4(sc, BGE_MAC_STS);
2123 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2124 			sc->bge_link = 0;
2125 			callout_stop(&sc->bge_stat_timer);
2126 			bge_tick_serialized(sc);
2127 			/* Clear the interrupt */
2128 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2129 			    BGE_EVTENB_MI_INTERRUPT);
2130 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2131 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2132 			    BRGPHY_INTRS);
2133 		}
2134 	} else {
2135 		if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2136 			/*
2137 			 * Sometimes PCS encoding errors are detected in
2138 			 * TBI mode (on fiber NICs), and for some reason
2139 			 * the chip will signal them as link changes.
2140 			 * If we get a link change event, but the 'PCS
2141 			 * encoding error' bit in the MAC status register
2142 			 * is set, don't bother doing a link check.
2143 			 * This avoids spurious "gigabit link up" messages
2144 			 * that sometimes appear on fiber NICs during
2145 			 * periods of heavy traffic. (There should be no
2146 			 * effect on copper NICs.)
2147 			 *
2148 			 * If we do have a copper NIC (bge_tbi == 0) then
2149 			 * check that the AUTOPOLL bit is set before
2150 			 * processing the event as a real link change.
2151 			 * Turning AUTOPOLL on and off in the MII read/write
2152 			 * functions will often trigger a link status
2153 			 * interrupt for no reason.
2154 			 */
2155 			status = CSR_READ_4(sc, BGE_MAC_STS);
2156 			mimode = CSR_READ_4(sc, BGE_MI_MODE);
2157 			if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR |
2158 					BGE_MACSTAT_MI_COMPLETE)) &&
2159 			    (!sc->bge_tbi && (mimode & BGE_MIMODE_AUTOPOLL))) {
2160 				sc->bge_link = 0;
2161 				callout_stop(&sc->bge_stat_timer);
2162 				bge_tick_serialized(sc);
2163 			}
2164 			sc->bge_link = 0;
2165 			callout_stop(&sc->bge_stat_timer);
2166 			bge_tick_serialized(sc);
2167 			/* Clear the interrupt */
2168 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2169 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2170 			    BGE_MACSTAT_LINK_CHANGED);
2171 
2172 			/* Force flush the status block cached by PCI bridge */
2173 			CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2174 		}
2175 	}
2176 
2177 	if (ifp->if_flags & IFF_RUNNING) {
2178 		/* Check RX return ring producer/consumer */
2179 		bge_rxeof(sc);
2180 
2181 		/* Check TX ring producer/consumer */
2182 		bge_txeof(sc);
2183 	}
2184 
2185 	bge_handle_events(sc);
2186 
2187 	/* Re-enable interrupts. */
2188 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2189 
2190 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2191 		(*ifp->if_start)(ifp);
2192 }
2193 
2194 static void
2195 bge_tick(void *xsc)
2196 {
2197 	struct bge_softc *sc = xsc;
2198 	struct ifnet *ifp = &sc->arpcom.ac_if;
2199 
2200 	lwkt_serialize_enter(ifp->if_serializer);
2201 	bge_tick_serialized(xsc);
2202 	lwkt_serialize_exit(ifp->if_serializer);
2203 }
2204 
2205 static void
2206 bge_tick_serialized(void *xsc)
2207 {
2208 	struct bge_softc *sc = xsc;
2209 	struct ifnet *ifp = &sc->arpcom.ac_if;
2210 	struct mii_data *mii = NULL;
2211 	struct ifmedia *ifm = NULL;
2212 
2213 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2214 	    sc->bge_asicrev == BGE_ASICREV_BCM5750)
2215 		bge_stats_update_regs(sc);
2216 	else
2217 		bge_stats_update(sc);
2218 
2219 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2220 
2221 	if (sc->bge_link) {
2222 		return;
2223 	}
2224 
2225 	if (sc->bge_tbi) {
2226 		ifm = &sc->bge_ifmedia;
2227 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2228 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2229 			sc->bge_link++;
2230 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2231 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2232 					   BGE_MACMODE_TBI_SEND_CFGS);
2233 			}
2234 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2235 			if_printf(ifp, "gigabit link up\n");
2236 			if (!ifq_is_empty(&ifp->if_snd))
2237 				(*ifp->if_start)(ifp);
2238 		}
2239 		return;
2240 	}
2241 
2242 	mii = device_get_softc(sc->bge_miibus);
2243 	mii_tick(mii);
2244 
2245 	if (!sc->bge_link) {
2246 		mii_pollstat(mii);
2247 		if (mii->mii_media_status & IFM_ACTIVE &&
2248 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2249 			sc->bge_link++;
2250 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2251 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2252 				if_printf(ifp, "gigabit link up\n");
2253 			if (!ifq_is_empty(&ifp->if_snd))
2254 				(*ifp->if_start)(ifp);
2255 		}
2256 	}
2257 }
2258 
2259 static void
2260 bge_stats_update_regs(struct bge_softc *sc)
2261 {
2262 	struct ifnet *ifp = &sc->arpcom.ac_if;
2263 	struct bge_mac_stats_regs stats;
2264 	uint32_t *s;
2265 	int i;
2266 
2267 	s = (uint32_t *)&stats;
2268 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2269 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
2270 		s++;
2271 	}
2272 
2273 	ifp->if_collisions +=
2274 	   (stats.dot3StatsSingleCollisionFrames +
2275 	   stats.dot3StatsMultipleCollisionFrames +
2276 	   stats.dot3StatsExcessiveCollisions +
2277 	   stats.dot3StatsLateCollisions) -
2278 	   ifp->if_collisions;
2279 }
2280 
2281 static void
2282 bge_stats_update(struct bge_softc *sc)
2283 {
2284 	struct ifnet *ifp = &sc->arpcom.ac_if;
2285 	struct bge_stats *stats;
2286 
2287 	stats = (struct bge_stats *)(sc->bge_vhandle +
2288 	    BGE_MEMWIN_START + BGE_STATS_BLOCK);
2289 
2290 	ifp->if_collisions +=
2291 	   (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2292 	   stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2293 	   stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2294 	   stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2295 	   ifp->if_collisions;
2296 
2297 #ifdef notdef
2298 	ifp->if_collisions +=
2299 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2300 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2301 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2302 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2303 	   ifp->if_collisions;
2304 #endif
2305 }
2306 
2307 /*
2308  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2309  * pointers to descriptors.
2310  */
2311 static int
2312 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2313 {
2314 	struct bge_tx_bd *f = NULL;
2315 	struct mbuf *m;
2316 	uint32_t frag, cur, cnt = 0;
2317 	uint16_t csum_flags = 0;
2318 	struct ifvlan *ifv = NULL;
2319 
2320 	if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2321 	    m_head->m_pkthdr.rcvif != NULL &&
2322 	    m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2323 		ifv = m_head->m_pkthdr.rcvif->if_softc;
2324 
2325 	m = m_head;
2326 	cur = frag = *txidx;
2327 
2328 	if (m_head->m_pkthdr.csum_flags) {
2329 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2330 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2331 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2332 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2333 		if (m_head->m_flags & M_LASTFRAG)
2334 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2335 		else if (m_head->m_flags & M_FRAG)
2336 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2337 	}
2338 	/*
2339  	 * Start packing the mbufs in this chain into
2340 	 * the fragment pointers. Stop when we run out
2341  	 * of fragments or hit the end of the mbuf chain.
2342 	 */
2343 	for (m = m_head; m != NULL; m = m->m_next) {
2344 		if (m->m_len != 0) {
2345 			f = &sc->bge_rdata->bge_tx_ring[frag];
2346 			if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2347 				break;
2348 			BGE_HOSTADDR(f->bge_addr,
2349 			    vtophys(mtod(m, vm_offset_t)));
2350 			f->bge_len = m->m_len;
2351 			f->bge_flags = csum_flags;
2352 			if (ifv != NULL) {
2353 				f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2354 				f->bge_vlan_tag = ifv->ifv_tag;
2355 			} else {
2356 				f->bge_vlan_tag = 0;
2357 			}
2358 			/*
2359 			 * Sanity check: avoid coming within 16 descriptors
2360 			 * of the end of the ring.
2361 			 */
2362 			if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2363 				return(ENOBUFS);
2364 			cur = frag;
2365 			BGE_INC(frag, BGE_TX_RING_CNT);
2366 			cnt++;
2367 		}
2368 	}
2369 
2370 	if (m != NULL)
2371 		return(ENOBUFS);
2372 
2373 	if (frag == sc->bge_tx_saved_considx)
2374 		return(ENOBUFS);
2375 
2376 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2377 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2378 	sc->bge_txcnt += cnt;
2379 
2380 	*txidx = frag;
2381 
2382 	return(0);
2383 }
2384 
2385 /*
2386  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2387  * to the mbuf data regions directly in the transmit descriptors.
2388  */
2389 static void
2390 bge_start(struct ifnet *ifp)
2391 {
2392 	struct bge_softc *sc;
2393 	struct mbuf *m_head = NULL;
2394 	uint32_t prodidx = 0;
2395 	int need_trans;
2396 
2397 	sc = ifp->if_softc;
2398 
2399 	if (!sc->bge_link)
2400 		return;
2401 
2402 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2403 
2404 	need_trans = 0;
2405 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2406 		m_head = ifq_poll(&ifp->if_snd);
2407 		if (m_head == NULL)
2408 			break;
2409 
2410 		/*
2411 		 * XXX
2412 		 * safety overkill.  If this is a fragmented packet chain
2413 		 * with delayed TCP/UDP checksums, then only encapsulate
2414 		 * it if we have enough descriptors to handle the entire
2415 		 * chain at once.
2416 		 * (paranoia -- may not actually be needed)
2417 		 */
2418 		if (m_head->m_flags & M_FIRSTFRAG &&
2419 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2420 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2421 			    m_head->m_pkthdr.csum_data + 16) {
2422 				ifp->if_flags |= IFF_OACTIVE;
2423 				break;
2424 			}
2425 		}
2426 
2427 		/*
2428 		 * Pack the data into the transmit ring. If we
2429 		 * don't have room, set the OACTIVE flag and wait
2430 		 * for the NIC to drain the ring.
2431 		 */
2432 		if (bge_encap(sc, m_head, &prodidx)) {
2433 			ifp->if_flags |= IFF_OACTIVE;
2434 			break;
2435 		}
2436 		ifq_dequeue(&ifp->if_snd, m_head);
2437 		need_trans = 1;
2438 
2439 		BPF_MTAP(ifp, m_head);
2440 	}
2441 
2442 	if (!need_trans)
2443 		return;
2444 
2445 	/* Transmit */
2446 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2447 	/* 5700 b2 errata */
2448 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2449 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2450 
2451 	/*
2452 	 * Set a timeout in case the chip goes out to lunch.
2453 	 */
2454 	ifp->if_timer = 5;
2455 }
2456 
2457 static void
2458 bge_init(void *xsc)
2459 {
2460 	struct bge_softc *sc = xsc;
2461 	struct ifnet *ifp = &sc->arpcom.ac_if;
2462 	uint16_t *m;
2463 
2464 	if (ifp->if_flags & IFF_RUNNING) {
2465 		return;
2466 	}
2467 
2468 	/* Cancel pending I/O and flush buffers. */
2469 	bge_stop(sc);
2470 	bge_reset(sc);
2471 	bge_chipinit(sc);
2472 
2473 	/*
2474 	 * Init the various state machines, ring
2475 	 * control blocks and firmware.
2476 	 */
2477 	if (bge_blockinit(sc)) {
2478 		if_printf(ifp, "initialization failure\n");
2479 		return;
2480 	}
2481 
2482 	/* Specify MTU. */
2483 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2484 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2485 
2486 	/* Load our MAC address. */
2487 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2488 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2489 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2490 
2491 	/* Enable or disable promiscuous mode as needed. */
2492 	if (ifp->if_flags & IFF_PROMISC) {
2493 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2494 	} else {
2495 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2496 	}
2497 
2498 	/* Program multicast filter. */
2499 	bge_setmulti(sc);
2500 
2501 	/* Init RX ring. */
2502 	bge_init_rx_ring_std(sc);
2503 
2504 	/*
2505 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2506 	 * memory to insure that the chip has in fact read the first
2507 	 * entry of the ring.
2508 	 */
2509 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2510 		uint32_t		v, i;
2511 		for (i = 0; i < 10; i++) {
2512 			DELAY(20);
2513 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2514 			if (v == (MCLBYTES - ETHER_ALIGN))
2515 				break;
2516 		}
2517 		if (i == 10)
2518 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2519 	}
2520 
2521 	/* Init jumbo RX ring. */
2522 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2523 		bge_init_rx_ring_jumbo(sc);
2524 
2525 	/* Init our RX return ring index */
2526 	sc->bge_rx_saved_considx = 0;
2527 
2528 	/* Init TX ring. */
2529 	bge_init_tx_ring(sc);
2530 
2531 	/* Turn on transmitter */
2532 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2533 
2534 	/* Turn on receiver */
2535 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2536 
2537 	/* Tell firmware we're alive. */
2538 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2539 
2540 	/* Enable host interrupts. */
2541 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2542 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2543 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2544 
2545 	bge_ifmedia_upd(ifp);
2546 
2547 	ifp->if_flags |= IFF_RUNNING;
2548 	ifp->if_flags &= ~IFF_OACTIVE;
2549 
2550 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2551 }
2552 
2553 /*
2554  * Set media options.
2555  */
2556 static int
2557 bge_ifmedia_upd(struct ifnet *ifp)
2558 {
2559 	struct bge_softc *sc = ifp->if_softc;
2560 	struct ifmedia *ifm = &sc->bge_ifmedia;
2561 	struct mii_data *mii;
2562 
2563 	/* If this is a 1000baseX NIC, enable the TBI port. */
2564 	if (sc->bge_tbi) {
2565 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2566 			return(EINVAL);
2567 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2568 		case IFM_AUTO:
2569 #ifndef BGE_FAKE_AUTONEG
2570 			/*
2571 			 * The BCM5704 ASIC appears to have a special
2572 			 * mechanism for programming the autoneg
2573 			 * advertisement registers in TBI mode.
2574 			 */
2575 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2576 				uint32_t sgdig;
2577 
2578 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2579 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2580 				sgdig |= BGE_SGDIGCFG_AUTO |
2581 					 BGE_SGDIGCFG_PAUSE_CAP |
2582 					 BGE_SGDIGCFG_ASYM_PAUSE;
2583 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2584 					    sgdig | BGE_SGDIGCFG_SEND);
2585 				DELAY(5);
2586 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2587 			}
2588 #endif	/* !BEG_FAKE_AUTONEG */
2589 			break;
2590 		case IFM_1000_SX:
2591 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2592 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2593 				    BGE_MACMODE_HALF_DUPLEX);
2594 			} else {
2595 				BGE_SETBIT(sc, BGE_MAC_MODE,
2596 				    BGE_MACMODE_HALF_DUPLEX);
2597 			}
2598 			break;
2599 		default:
2600 			return(EINVAL);
2601 		}
2602 		return(0);
2603 	}
2604 
2605 	mii = device_get_softc(sc->bge_miibus);
2606 	sc->bge_link = 0;
2607 	if (mii->mii_instance) {
2608 		struct mii_softc *miisc;
2609 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2610 		    miisc = LIST_NEXT(miisc, mii_list))
2611 			mii_phy_reset(miisc);
2612 	}
2613 	mii_mediachg(mii);
2614 
2615 	return(0);
2616 }
2617 
2618 /*
2619  * Report current media status.
2620  */
2621 static void
2622 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2623 {
2624 	struct bge_softc *sc = ifp->if_softc;
2625 	struct mii_data *mii;
2626 
2627 	if (sc->bge_tbi) {
2628 		ifmr->ifm_status = IFM_AVALID;
2629 		ifmr->ifm_active = IFM_ETHER;
2630 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2631 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
2632 			ifmr->ifm_status |= IFM_ACTIVE;
2633 		ifmr->ifm_active |= IFM_1000_SX;
2634 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2635 			ifmr->ifm_active |= IFM_HDX;
2636 		else
2637 			ifmr->ifm_active |= IFM_FDX;
2638 		return;
2639 	}
2640 
2641 	mii = device_get_softc(sc->bge_miibus);
2642 	mii_pollstat(mii);
2643 	ifmr->ifm_active = mii->mii_media_active;
2644 	ifmr->ifm_status = mii->mii_media_status;
2645 }
2646 
2647 static int
2648 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2649 {
2650 	struct bge_softc *sc = ifp->if_softc;
2651 	struct ifreq *ifr = (struct ifreq *) data;
2652 	int mask, error = 0;
2653 	struct mii_data *mii;
2654 
2655 	switch(command) {
2656 	case SIOCSIFMTU:
2657 		/* Disallow jumbo frames on 5705/5750. */
2658 		if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2659 		      sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2660 		     ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2661 			error = EINVAL;
2662 		else {
2663 			ifp->if_mtu = ifr->ifr_mtu;
2664 			ifp->if_flags &= ~IFF_RUNNING;
2665 			bge_init(sc);
2666 		}
2667 		break;
2668 	case SIOCSIFFLAGS:
2669 		if (ifp->if_flags & IFF_UP) {
2670 			/*
2671 			 * If only the state of the PROMISC flag changed,
2672 			 * then just use the 'set promisc mode' command
2673 			 * instead of reinitializing the entire NIC. Doing
2674 			 * a full re-init means reloading the firmware and
2675 			 * waiting for it to start up, which may take a
2676 			 * second or two.
2677 			 */
2678 			if (ifp->if_flags & IFF_RUNNING &&
2679 			    ifp->if_flags & IFF_PROMISC &&
2680 			    !(sc->bge_if_flags & IFF_PROMISC)) {
2681 				BGE_SETBIT(sc, BGE_RX_MODE,
2682 				    BGE_RXMODE_RX_PROMISC);
2683 			} else if (ifp->if_flags & IFF_RUNNING &&
2684 			    !(ifp->if_flags & IFF_PROMISC) &&
2685 			    sc->bge_if_flags & IFF_PROMISC) {
2686 				BGE_CLRBIT(sc, BGE_RX_MODE,
2687 				    BGE_RXMODE_RX_PROMISC);
2688 			} else
2689 				bge_init(sc);
2690 		} else {
2691 			if (ifp->if_flags & IFF_RUNNING) {
2692 				bge_stop(sc);
2693 			}
2694 		}
2695 		sc->bge_if_flags = ifp->if_flags;
2696 		error = 0;
2697 		break;
2698 	case SIOCADDMULTI:
2699 	case SIOCDELMULTI:
2700 		if (ifp->if_flags & IFF_RUNNING) {
2701 			bge_setmulti(sc);
2702 			error = 0;
2703 		}
2704 		break;
2705 	case SIOCSIFMEDIA:
2706 	case SIOCGIFMEDIA:
2707 		if (sc->bge_tbi) {
2708 			error = ifmedia_ioctl(ifp, ifr,
2709 			    &sc->bge_ifmedia, command);
2710 		} else {
2711 			mii = device_get_softc(sc->bge_miibus);
2712 			error = ifmedia_ioctl(ifp, ifr,
2713 			    &mii->mii_media, command);
2714 		}
2715 		break;
2716         case SIOCSIFCAP:
2717 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2718 		if (mask & IFCAP_HWCSUM) {
2719 			if (IFCAP_HWCSUM & ifp->if_capenable)
2720 				ifp->if_capenable &= ~IFCAP_HWCSUM;
2721 			else
2722 				ifp->if_capenable |= IFCAP_HWCSUM;
2723 		}
2724 		error = 0;
2725 		break;
2726 	default:
2727 		error = ether_ioctl(ifp, command, data);
2728 		break;
2729 	}
2730 	return(error);
2731 }
2732 
2733 static void
2734 bge_watchdog(struct ifnet *ifp)
2735 {
2736 	struct bge_softc *sc = ifp->if_softc;
2737 
2738 	if_printf(ifp, "watchdog timeout -- resetting\n");
2739 
2740 	ifp->if_flags &= ~IFF_RUNNING;
2741 	bge_init(sc);
2742 
2743 	ifp->if_oerrors++;
2744 
2745 	if (!ifq_is_empty(&ifp->if_snd))
2746 		ifp->if_start(ifp);
2747 }
2748 
2749 /*
2750  * Stop the adapter and free any mbufs allocated to the
2751  * RX and TX lists.
2752  */
2753 static void
2754 bge_stop(struct bge_softc *sc)
2755 {
2756 	struct ifnet *ifp = &sc->arpcom.ac_if;
2757 	struct ifmedia_entry *ifm;
2758 	struct mii_data *mii = NULL;
2759 	int mtmp, itmp;
2760 
2761 	if (!sc->bge_tbi)
2762 		mii = device_get_softc(sc->bge_miibus);
2763 
2764 	callout_stop(&sc->bge_stat_timer);
2765 
2766 	/*
2767 	 * Disable all of the receiver blocks
2768 	 */
2769 	BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2770 	BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2771 	BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2772 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2773 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2774 		BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2775 	BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2776 	BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2777 	BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2778 
2779 	/*
2780 	 * Disable all of the transmit blocks
2781 	 */
2782 	BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2783 	BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2784 	BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2785 	BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2786 	BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2787 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2788 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2789 		BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2790 	BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2791 
2792 	/*
2793 	 * Shut down all of the memory managers and related
2794 	 * state machines.
2795 	 */
2796 	BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2797 	BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2798 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2799 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2800 		BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2801 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2802 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2803 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2804 	    sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2805 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2806 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2807 	}
2808 
2809 	/* Disable host interrupts. */
2810 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2811 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2812 
2813 	/*
2814 	 * Tell firmware we're shutting down.
2815 	 */
2816 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2817 
2818 	/* Free the RX lists. */
2819 	bge_free_rx_ring_std(sc);
2820 
2821 	/* Free jumbo RX list. */
2822 	if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2823 	    sc->bge_asicrev != BGE_ASICREV_BCM5750)
2824 		bge_free_rx_ring_jumbo(sc);
2825 
2826 	/* Free TX buffers. */
2827 	bge_free_tx_ring(sc);
2828 
2829 	/*
2830 	 * Isolate/power down the PHY, but leave the media selection
2831 	 * unchanged so that things will be put back to normal when
2832 	 * we bring the interface back up.
2833 	 */
2834 	if (!sc->bge_tbi) {
2835 		itmp = ifp->if_flags;
2836 		ifp->if_flags |= IFF_UP;
2837 		ifm = mii->mii_media.ifm_cur;
2838 		mtmp = ifm->ifm_media;
2839 		ifm->ifm_media = IFM_ETHER|IFM_NONE;
2840 		mii_mediachg(mii);
2841 		ifm->ifm_media = mtmp;
2842 		ifp->if_flags = itmp;
2843 	}
2844 
2845 	sc->bge_link = 0;
2846 
2847 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2848 
2849 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2850 }
2851 
2852 /*
2853  * Stop all chip I/O so that the kernel's probe routines don't
2854  * get confused by errant DMAs when rebooting.
2855  */
2856 static void
2857 bge_shutdown(device_t dev)
2858 {
2859 	struct bge_softc *sc = device_get_softc(dev);
2860 
2861 	bge_stop(sc);
2862 	bge_reset(sc);
2863 }
2864