xref: /dragonfly/sys/dev/netif/bge/if_bge.c (revision e97a1dae)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include "opt_ifpoll.h"
74 
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89 
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92 
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108 
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112 
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115 
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118 
119 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
120 
121 #define	BGE_RESET_SHUTDOWN	0
122 #define	BGE_RESET_START		1
123 #define	BGE_RESET_SUSPEND	2
124 
125 static const struct bge_type {
126 	uint16_t		bge_vid;
127 	uint16_t		bge_did;
128 	char			*bge_name;
129 } bge_devs[] = {
130 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131 		"3COM 3C996 Gigabit Ethernet" },
132 
133 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134 		"Alteon BCM5700 Gigabit Ethernet" },
135 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136 		"Alteon BCM5701 Gigabit Ethernet" },
137 
138 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139 		"Altima AC1000 Gigabit Ethernet" },
140 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141 		"Altima AC1002 Gigabit Ethernet" },
142 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143 		"Altima AC9100 Gigabit Ethernet" },
144 
145 	{ PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146 		"Apple BCM5701 Gigabit Ethernet" },
147 
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149 		"Broadcom BCM5700 Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151 		"Broadcom BCM5701 Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153 		"Broadcom BCM5702 Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155 		"Broadcom BCM5702X Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157 		"Broadcom BCM5702 Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159 		"Broadcom BCM5703 Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161 		"Broadcom BCM5703X Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163 		"Broadcom BCM5703 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171 		"Broadcom BCM5705 Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173 		"Broadcom BCM5705F Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175 		"Broadcom BCM5705K Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177 		"Broadcom BCM5705M Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179 		"Broadcom BCM5705M Gigabit Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181 		"Broadcom BCM5714C Gigabit Ethernet" },
182 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183 		"Broadcom BCM5714S Gigabit Ethernet" },
184 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185 		"Broadcom BCM5715 Gigabit Ethernet" },
186 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187 		"Broadcom BCM5715S Gigabit Ethernet" },
188 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189 		"Broadcom BCM5720 Gigabit Ethernet" },
190 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191 		"Broadcom BCM5721 Gigabit Ethernet" },
192 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193 		"Broadcom BCM5722 Gigabit Ethernet" },
194 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195 		"Broadcom BCM5723 Gigabit Ethernet" },
196 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197 		"Broadcom BCM5750 Gigabit Ethernet" },
198 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199 		"Broadcom BCM5750M Gigabit Ethernet" },
200 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201 		"Broadcom BCM5751 Gigabit Ethernet" },
202 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203 		"Broadcom BCM5751F Gigabit Ethernet" },
204 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205 		"Broadcom BCM5751M Gigabit Ethernet" },
206 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207 		"Broadcom BCM5752 Gigabit Ethernet" },
208 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209 		"Broadcom BCM5752M Gigabit Ethernet" },
210 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211 		"Broadcom BCM5753 Gigabit Ethernet" },
212 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213 		"Broadcom BCM5753F Gigabit Ethernet" },
214 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215 		"Broadcom BCM5753M Gigabit Ethernet" },
216 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217 		"Broadcom BCM5754 Gigabit Ethernet" },
218 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219 		"Broadcom BCM5754M Gigabit Ethernet" },
220 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221 		"Broadcom BCM5755 Gigabit Ethernet" },
222 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223 		"Broadcom BCM5755M Gigabit Ethernet" },
224 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225 		"Broadcom BCM5756 Gigabit Ethernet" },
226 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227 		"Broadcom BCM5761 Gigabit Ethernet" },
228 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229 		"Broadcom BCM5761E Gigabit Ethernet" },
230 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231 		"Broadcom BCM5761S Gigabit Ethernet" },
232 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233 		"Broadcom BCM5761SE Gigabit Ethernet" },
234 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235 		"Broadcom BCM5764 Gigabit Ethernet" },
236 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237 		"Broadcom BCM5780 Gigabit Ethernet" },
238 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239 		"Broadcom BCM5780S Gigabit Ethernet" },
240 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241 		"Broadcom BCM5781 Gigabit Ethernet" },
242 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243 		"Broadcom BCM5782 Gigabit Ethernet" },
244 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245 		"Broadcom BCM5784 Gigabit Ethernet" },
246 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247 		"Broadcom BCM5785F Gigabit Ethernet" },
248 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249 		"Broadcom BCM5785G Gigabit Ethernet" },
250 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251 		"Broadcom BCM5786 Gigabit Ethernet" },
252 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253 		"Broadcom BCM5787 Gigabit Ethernet" },
254 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255 		"Broadcom BCM5787F Gigabit Ethernet" },
256 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257 		"Broadcom BCM5787M Gigabit Ethernet" },
258 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259 		"Broadcom BCM5788 Gigabit Ethernet" },
260 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261 		"Broadcom BCM5789 Gigabit Ethernet" },
262 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263 		"Broadcom BCM5901 Fast Ethernet" },
264 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265 		"Broadcom BCM5901A2 Fast Ethernet" },
266 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267 		"Broadcom BCM5903M Fast Ethernet" },
268 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269 		"Broadcom BCM5906 Fast Ethernet"},
270 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271 		"Broadcom BCM5906M Fast Ethernet"},
272 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273 		"Broadcom BCM57760 Gigabit Ethernet"},
274 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275 		"Broadcom BCM57780 Gigabit Ethernet"},
276 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277 		"Broadcom BCM57788 Gigabit Ethernet"},
278 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279 		"Broadcom BCM57790 Gigabit Ethernet"},
280 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281 		"SysKonnect Gigabit Ethernet" },
282 
283 	{ 0, 0, NULL }
284 };
285 
286 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)			((sc)->bge_flags & BGE_FLAG_5788)
293 
294 #define BGE_IS_CRIPPLED(sc)		\
295 	(BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296 
297 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298 
299 static int	bge_probe(device_t);
300 static int	bge_attach(device_t);
301 static int	bge_detach(device_t);
302 static void	bge_txeof(struct bge_softc *, uint16_t);
303 static void	bge_rxeof(struct bge_softc *, uint16_t, int);
304 
305 static void	bge_tick(void *);
306 static void	bge_stats_update(struct bge_softc *);
307 static void	bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309 		bge_defrag_shortdma(struct mbuf *);
310 static int	bge_encap(struct bge_softc *, struct mbuf **,
311 		    uint32_t *, int *);
312 static void	bge_xmit(struct bge_softc *, uint32_t);
313 static int	bge_setup_tso(struct bge_softc *, struct mbuf **,
314 		    uint16_t *, uint16_t *);
315 
316 #ifdef IFPOLL_ENABLE
317 static void	bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void	bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void	bge_intr_crippled(void *);
321 static void	bge_intr_legacy(void *);
322 static void	bge_msi(void *);
323 static void	bge_msi_oneshot(void *);
324 static void	bge_intr(struct bge_softc *);
325 static void	bge_enable_intr(struct bge_softc *);
326 static void	bge_disable_intr(struct bge_softc *);
327 static void	bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void	bge_init(void *);
330 static void	bge_stop(struct bge_softc *);
331 static void	bge_watchdog(struct ifnet *);
332 static void	bge_shutdown(device_t);
333 static int	bge_suspend(device_t);
334 static int	bge_resume(device_t);
335 static int	bge_ifmedia_upd(struct ifnet *);
336 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337 
338 static uint8_t	bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int	bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340 
341 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343 
344 static void	bge_setmulti(struct bge_softc *);
345 static void	bge_setpromisc(struct bge_softc *);
346 static void	bge_enable_msi(struct bge_softc *sc);
347 
348 static int	bge_alloc_jumbo_mem(struct bge_softc *);
349 static void	bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351 		*bge_jalloc(struct bge_softc *);
352 static void	bge_jfree(void *);
353 static void	bge_jref(void *);
354 static int	bge_newbuf_std(struct bge_softc *, int, int);
355 static int	bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void	bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void	bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int	bge_init_rx_ring_std(struct bge_softc *);
359 static void	bge_free_rx_ring_std(struct bge_softc *);
360 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void	bge_free_tx_ring(struct bge_softc *);
363 static int	bge_init_tx_ring(struct bge_softc *);
364 
365 static int	bge_chipinit(struct bge_softc *);
366 static int	bge_blockinit(struct bge_softc *);
367 static void	bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368 
369 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void	bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void	bge_writembx(struct bge_softc *, int, int);
377 
378 static int	bge_miibus_readreg(device_t, int, int);
379 static int	bge_miibus_writereg(device_t, int, int, int);
380 static void	bge_miibus_statchg(device_t);
381 static void	bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void	bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void	bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void	bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void	bge_link_poll(struct bge_softc *);
386 
387 static void	bge_reset(struct bge_softc *);
388 
389 static int	bge_dma_alloc(struct bge_softc *);
390 static void	bge_dma_free(struct bge_softc *);
391 static int	bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392 				    bus_dma_tag_t *, bus_dmamap_t *,
393 				    void **, bus_addr_t *);
394 static void	bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395 
396 static int	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int	bge_get_eaddr(struct bge_softc *, uint8_t[]);
400 
401 static void	bge_coal_change(struct bge_softc *);
402 static int	bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int	bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int	bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int	bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int	bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int	bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int	bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int	bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int	bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411 		    int, int, uint32_t);
412 
413 static void	bge_sig_post_reset(struct bge_softc *, int);
414 static void	bge_sig_legacy(struct bge_softc *, int);
415 static void	bge_sig_pre_reset(struct bge_softc *, int);
416 static void	bge_stop_fw(struct bge_softc *);
417 static void	bge_asf_driver_up(struct bge_softc *);
418 
419 static void	bge_ape_lock_init(struct bge_softc *);
420 static void	bge_ape_read_fw_ver(struct bge_softc *);
421 static int	bge_ape_lock(struct bge_softc *, int);
422 static void	bge_ape_unlock(struct bge_softc *, int);
423 static void	bge_ape_send_event(struct bge_softc *, uint32_t);
424 static void	bge_ape_driver_state_change(struct bge_softc *, int);
425 
426 /*
427  * Set following tunable to 1 for some IBM blade servers with the DNLK
428  * switch module. Auto negotiation is broken for those configurations.
429  */
430 static int	bge_fake_autoneg = 0;
431 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
432 
433 static int	bge_msi_enable = 1;
434 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
435 
436 static int	bge_allow_asf = 1;
437 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
438 
439 #if !defined(KTR_IF_BGE)
440 #define KTR_IF_BGE	KTR_ALL
441 #endif
442 KTR_INFO_MASTER(if_bge);
443 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
444 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
445 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
446 #define logif(name)	KTR_LOG(if_bge_ ## name)
447 
448 static device_method_t bge_methods[] = {
449 	/* Device interface */
450 	DEVMETHOD(device_probe,		bge_probe),
451 	DEVMETHOD(device_attach,	bge_attach),
452 	DEVMETHOD(device_detach,	bge_detach),
453 	DEVMETHOD(device_shutdown,	bge_shutdown),
454 	DEVMETHOD(device_suspend,	bge_suspend),
455 	DEVMETHOD(device_resume,	bge_resume),
456 
457 	/* bus interface */
458 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
459 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
460 
461 	/* MII interface */
462 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
463 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
464 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
465 
466 	DEVMETHOD_END
467 };
468 
469 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
470 static devclass_t bge_devclass;
471 
472 DECLARE_DUMMY_MODULE(if_bge);
473 MODULE_DEPEND(if_bge, miibus, 1, 1, 1);
474 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
475 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
476 
477 static uint32_t
478 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
479 {
480 	device_t dev = sc->bge_dev;
481 	uint32_t val;
482 
483 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
484 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
485 		return 0;
486 
487 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
488 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
489 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
490 	return (val);
491 }
492 
493 static void
494 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
495 {
496 	device_t dev = sc->bge_dev;
497 
498 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
499 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
500 		return;
501 
502 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
503 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
504 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
505 }
506 
507 #ifdef notdef
508 static uint32_t
509 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
510 {
511 	device_t dev = sc->bge_dev;
512 
513 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
514 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
515 }
516 #endif
517 
518 static void
519 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
520 {
521 	device_t dev = sc->bge_dev;
522 
523 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
524 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
525 }
526 
527 static void
528 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
529 {
530 	CSR_WRITE_4(sc, off, val);
531 }
532 
533 static void
534 bge_writembx(struct bge_softc *sc, int off, int val)
535 {
536 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
537 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
538 
539 	CSR_WRITE_4(sc, off, val);
540 	if (sc->bge_mbox_reorder)
541 		CSR_READ_4(sc, off);
542 }
543 
544 static uint8_t
545 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
546 {
547 	uint32_t access, byte = 0;
548 	int i;
549 
550 	/* Lock. */
551 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
552 	for (i = 0; i < 8000; i++) {
553 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
554 			break;
555 		DELAY(20);
556 	}
557 	if (i == 8000)
558 		return (1);
559 
560 	/* Enable access. */
561 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
562 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
563 
564 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
565 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
566 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
567 		DELAY(10);
568 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
569 			DELAY(10);
570 			break;
571 		}
572 	}
573 
574 	if (i == BGE_TIMEOUT * 10) {
575 		if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
576 		return (1);
577 	}
578 
579 	/* Get result. */
580 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
581 
582 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
583 
584 	/* Disable access. */
585 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
586 
587 	/* Unlock. */
588 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
589 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
590 
591 	return (0);
592 }
593 
594 /*
595  * Read a sequence of bytes from NVRAM.
596  */
597 static int
598 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
599 {
600 	int err = 0, i;
601 	uint8_t byte = 0;
602 
603 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
604 		return (1);
605 
606 	for (i = 0; i < cnt; i++) {
607 		err = bge_nvram_getbyte(sc, off + i, &byte);
608 		if (err)
609 			break;
610 		*(dest + i) = byte;
611 	}
612 
613 	return (err ? 1 : 0);
614 }
615 
616 /*
617  * Read a byte of data stored in the EEPROM at address 'addr.' The
618  * BCM570x supports both the traditional bitbang interface and an
619  * auto access interface for reading the EEPROM. We use the auto
620  * access method.
621  */
622 static uint8_t
623 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
624 {
625 	int i;
626 	uint32_t byte = 0;
627 
628 	/*
629 	 * Enable use of auto EEPROM access so we can avoid
630 	 * having to use the bitbang method.
631 	 */
632 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
633 
634 	/* Reset the EEPROM, load the clock period. */
635 	CSR_WRITE_4(sc, BGE_EE_ADDR,
636 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
637 	DELAY(20);
638 
639 	/* Issue the read EEPROM command. */
640 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
641 
642 	/* Wait for completion */
643 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
644 		DELAY(10);
645 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
646 			break;
647 	}
648 
649 	if (i == BGE_TIMEOUT) {
650 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
651 		return(1);
652 	}
653 
654 	/* Get result. */
655 	byte = CSR_READ_4(sc, BGE_EE_DATA);
656 
657         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
658 
659 	return(0);
660 }
661 
662 /*
663  * Read a sequence of bytes from the EEPROM.
664  */
665 static int
666 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
667 {
668 	size_t i;
669 	int err;
670 	uint8_t byte;
671 
672 	for (byte = 0, err = 0, i = 0; i < len; i++) {
673 		err = bge_eeprom_getbyte(sc, off + i, &byte);
674 		if (err)
675 			break;
676 		*(dest + i) = byte;
677 	}
678 
679 	return(err ? 1 : 0);
680 }
681 
682 static int
683 bge_miibus_readreg(device_t dev, int phy, int reg)
684 {
685 	struct bge_softc *sc = device_get_softc(dev);
686 	uint32_t val;
687 	int i;
688 
689 	KASSERT(phy == sc->bge_phyno,
690 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
691 
692 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
693 		return 0;
694 
695 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
696 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
697 		CSR_WRITE_4(sc, BGE_MI_MODE,
698 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
699 		DELAY(80);
700 	}
701 
702 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
703 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
704 
705 	/* Poll for the PHY register access to complete. */
706 	for (i = 0; i < BGE_TIMEOUT; i++) {
707 		DELAY(10);
708 		val = CSR_READ_4(sc, BGE_MI_COMM);
709 		if ((val & BGE_MICOMM_BUSY) == 0) {
710 			DELAY(5);
711 			val = CSR_READ_4(sc, BGE_MI_COMM);
712 			break;
713 		}
714 	}
715 	if (i == BGE_TIMEOUT) {
716 		if_printf(&sc->arpcom.ac_if, "PHY read timed out "
717 		    "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
718 		val = 0;
719 	}
720 
721 	/* Restore the autopoll bit if necessary. */
722 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
723 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
724 		DELAY(80);
725 	}
726 
727 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
728 
729 	if (val & BGE_MICOMM_READFAIL)
730 		return 0;
731 
732 	return (val & 0xFFFF);
733 }
734 
735 static int
736 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
737 {
738 	struct bge_softc *sc = device_get_softc(dev);
739 	int i;
740 
741 	KASSERT(phy == sc->bge_phyno,
742 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
743 
744 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
745 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
746 	       return 0;
747 
748 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
749 		return 0;
750 
751 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
752 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
753 		CSR_WRITE_4(sc, BGE_MI_MODE,
754 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
755 		DELAY(80);
756 	}
757 
758 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
759 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
760 
761 	for (i = 0; i < BGE_TIMEOUT; i++) {
762 		DELAY(10);
763 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
764 			DELAY(5);
765 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
766 			break;
767 		}
768 	}
769 	if (i == BGE_TIMEOUT) {
770 		if_printf(&sc->arpcom.ac_if, "PHY write timed out "
771 		    "(phy %d, reg %d, val %d)\n", phy, reg, val);
772 	}
773 
774 	/* Restore the autopoll bit if necessary. */
775 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
776 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
777 		DELAY(80);
778 	}
779 
780 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
781 
782 	return 0;
783 }
784 
785 static void
786 bge_miibus_statchg(device_t dev)
787 {
788 	struct bge_softc *sc;
789 	struct mii_data *mii;
790 	uint32_t mac_mode;
791 
792 	sc = device_get_softc(dev);
793 	if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
794 		return;
795 
796 	mii = device_get_softc(sc->bge_miibus);
797 
798 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
799 	    (IFM_ACTIVE | IFM_AVALID)) {
800 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
801 		case IFM_10_T:
802 		case IFM_100_TX:
803 			sc->bge_link = 1;
804 			break;
805 		case IFM_1000_T:
806 		case IFM_1000_SX:
807 		case IFM_2500_SX:
808 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
809 				sc->bge_link = 1;
810 			else
811 				sc->bge_link = 0;
812 			break;
813 		default:
814 			sc->bge_link = 0;
815 			break;
816 		}
817 	} else {
818 		sc->bge_link = 0;
819 	}
820 	if (sc->bge_link == 0)
821 		return;
822 
823 	/*
824 	 * APE firmware touches these registers to keep the MAC
825 	 * connected to the outside world.  Try to keep the
826 	 * accesses atomic.
827 	 */
828 
829 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
830 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
831 
832 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
833 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
834 		mac_mode |= BGE_PORTMODE_GMII;
835 	else
836 		mac_mode |= BGE_PORTMODE_MII;
837 
838 	if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
839 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
840 
841 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
842 	DELAY(40);
843 }
844 
845 /*
846  * Memory management for jumbo frames.
847  */
848 static int
849 bge_alloc_jumbo_mem(struct bge_softc *sc)
850 {
851 	struct ifnet *ifp = &sc->arpcom.ac_if;
852 	struct bge_jslot *entry;
853 	uint8_t *ptr;
854 	bus_addr_t paddr;
855 	int i, error;
856 
857 	/*
858 	 * Create tag for jumbo mbufs.
859 	 * This is really a bit of a kludge. We allocate a special
860 	 * jumbo buffer pool which (thanks to the way our DMA
861 	 * memory allocation works) will consist of contiguous
862 	 * pages. This means that even though a jumbo buffer might
863 	 * be larger than a page size, we don't really need to
864 	 * map it into more than one DMA segment. However, the
865 	 * default mbuf tag will result in multi-segment mappings,
866 	 * so we have to create a special jumbo mbuf tag that
867 	 * lets us get away with mapping the jumbo buffers as
868 	 * a single segment. I think eventually the driver should
869 	 * be changed so that it uses ordinary mbufs and cluster
870 	 * buffers, i.e. jumbo frames can span multiple DMA
871 	 * descriptors. But that's a project for another day.
872 	 */
873 
874 	/*
875 	 * Create DMA stuffs for jumbo RX ring.
876 	 */
877 	error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
878 				    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
879 				    &sc->bge_cdata.bge_rx_jumbo_ring_map,
880 				    (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
881 				    &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
882 	if (error) {
883 		if_printf(ifp, "could not create jumbo RX ring\n");
884 		return error;
885 	}
886 
887 	/*
888 	 * Create DMA stuffs for jumbo buffer block.
889 	 */
890 	error = bge_dma_block_alloc(sc, BGE_JMEM,
891 				    &sc->bge_cdata.bge_jumbo_tag,
892 				    &sc->bge_cdata.bge_jumbo_map,
893 				    (void **)&sc->bge_ldata.bge_jumbo_buf,
894 				    &paddr);
895 	if (error) {
896 		if_printf(ifp, "could not create jumbo buffer\n");
897 		return error;
898 	}
899 
900 	SLIST_INIT(&sc->bge_jfree_listhead);
901 
902 	/*
903 	 * Now divide it up into 9K pieces and save the addresses
904 	 * in an array. Note that we play an evil trick here by using
905 	 * the first few bytes in the buffer to hold the the address
906 	 * of the softc structure for this interface. This is because
907 	 * bge_jfree() needs it, but it is called by the mbuf management
908 	 * code which will not pass it to us explicitly.
909 	 */
910 	for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
911 		entry = &sc->bge_cdata.bge_jslots[i];
912 		entry->bge_sc = sc;
913 		entry->bge_buf = ptr;
914 		entry->bge_paddr = paddr;
915 		entry->bge_inuse = 0;
916 		entry->bge_slot = i;
917 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
918 
919 		ptr += BGE_JLEN;
920 		paddr += BGE_JLEN;
921 	}
922 	return 0;
923 }
924 
925 static void
926 bge_free_jumbo_mem(struct bge_softc *sc)
927 {
928 	/* Destroy jumbo RX ring. */
929 	bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
930 			   sc->bge_cdata.bge_rx_jumbo_ring_map,
931 			   sc->bge_ldata.bge_rx_jumbo_ring);
932 
933 	/* Destroy jumbo buffer block. */
934 	bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
935 			   sc->bge_cdata.bge_jumbo_map,
936 			   sc->bge_ldata.bge_jumbo_buf);
937 }
938 
939 /*
940  * Allocate a jumbo buffer.
941  */
942 static struct bge_jslot *
943 bge_jalloc(struct bge_softc *sc)
944 {
945 	struct bge_jslot *entry;
946 
947 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
948 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
949 	if (entry) {
950 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
951 		entry->bge_inuse = 1;
952 	} else {
953 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
954 	}
955 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
956 	return(entry);
957 }
958 
959 /*
960  * Adjust usage count on a jumbo buffer.
961  */
962 static void
963 bge_jref(void *arg)
964 {
965 	struct bge_jslot *entry = (struct bge_jslot *)arg;
966 	struct bge_softc *sc = entry->bge_sc;
967 
968 	if (sc == NULL)
969 		panic("bge_jref: can't find softc pointer!");
970 
971 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
972 		panic("bge_jref: asked to reference buffer "
973 		    "that we don't manage!");
974 	} else if (entry->bge_inuse == 0) {
975 		panic("bge_jref: buffer already free!");
976 	} else {
977 		atomic_add_int(&entry->bge_inuse, 1);
978 	}
979 }
980 
981 /*
982  * Release a jumbo buffer.
983  */
984 static void
985 bge_jfree(void *arg)
986 {
987 	struct bge_jslot *entry = (struct bge_jslot *)arg;
988 	struct bge_softc *sc = entry->bge_sc;
989 
990 	if (sc == NULL)
991 		panic("bge_jfree: can't find softc pointer!");
992 
993 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
994 		panic("bge_jfree: asked to free buffer that we don't manage!");
995 	} else if (entry->bge_inuse == 0) {
996 		panic("bge_jfree: buffer already free!");
997 	} else {
998 		/*
999 		 * Possible MP race to 0, use the serializer.  The atomic insn
1000 		 * is still needed for races against bge_jref().
1001 		 */
1002 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
1003 		atomic_subtract_int(&entry->bge_inuse, 1);
1004 		if (entry->bge_inuse == 0) {
1005 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1006 					  entry, jslot_link);
1007 		}
1008 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
1009 	}
1010 }
1011 
1012 
1013 /*
1014  * Intialize a standard receive ring descriptor.
1015  */
1016 static int
1017 bge_newbuf_std(struct bge_softc *sc, int i, int init)
1018 {
1019 	struct mbuf *m_new = NULL;
1020 	bus_dma_segment_t seg;
1021 	bus_dmamap_t map;
1022 	int error, nsegs;
1023 
1024 	m_new = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
1025 	if (m_new == NULL)
1026 		return ENOBUFS;
1027 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1028 
1029 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1030 		m_adj(m_new, ETHER_ALIGN);
1031 
1032 	error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1033 			sc->bge_cdata.bge_rx_tmpmap, m_new,
1034 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1035 	if (error) {
1036 		m_freem(m_new);
1037 		return error;
1038 	}
1039 
1040 	if (!init) {
1041 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1042 				sc->bge_cdata.bge_rx_std_dmamap[i],
1043 				BUS_DMASYNC_POSTREAD);
1044 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1045 			sc->bge_cdata.bge_rx_std_dmamap[i]);
1046 	}
1047 
1048 	map = sc->bge_cdata.bge_rx_tmpmap;
1049 	sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1050 	sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1051 
1052 	sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1053 	sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1054 
1055 	bge_setup_rxdesc_std(sc, i);
1056 	return 0;
1057 }
1058 
1059 static void
1060 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1061 {
1062 	struct bge_rxchain *rc;
1063 	struct bge_rx_bd *r;
1064 
1065 	rc = &sc->bge_cdata.bge_rx_std_chain[i];
1066 	r = &sc->bge_ldata.bge_rx_std_ring[i];
1067 
1068 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1069 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1070 	r->bge_len = rc->bge_mbuf->m_len;
1071 	r->bge_idx = i;
1072 	r->bge_flags = BGE_RXBDFLAG_END;
1073 }
1074 
1075 /*
1076  * Initialize a jumbo receive ring descriptor. This allocates
1077  * a jumbo buffer from the pool managed internally by the driver.
1078  */
1079 static int
1080 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1081 {
1082 	struct mbuf *m_new = NULL;
1083 	struct bge_jslot *buf;
1084 	bus_addr_t paddr;
1085 
1086 	/* Allocate the mbuf. */
1087 	MGETHDR(m_new, init ? M_WAITOK : M_NOWAIT, MT_DATA);
1088 	if (m_new == NULL)
1089 		return ENOBUFS;
1090 
1091 	/* Allocate the jumbo buffer */
1092 	buf = bge_jalloc(sc);
1093 	if (buf == NULL) {
1094 		m_freem(m_new);
1095 		return ENOBUFS;
1096 	}
1097 
1098 	/* Attach the buffer to the mbuf. */
1099 	m_new->m_ext.ext_arg = buf;
1100 	m_new->m_ext.ext_buf = buf->bge_buf;
1101 	m_new->m_ext.ext_free = bge_jfree;
1102 	m_new->m_ext.ext_ref = bge_jref;
1103 	m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1104 
1105 	m_new->m_flags |= M_EXT;
1106 
1107 	m_new->m_data = m_new->m_ext.ext_buf;
1108 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1109 
1110 	paddr = buf->bge_paddr;
1111 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1112 		m_adj(m_new, ETHER_ALIGN);
1113 		paddr += ETHER_ALIGN;
1114 	}
1115 
1116 	/* Save necessary information */
1117 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1118 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1119 
1120 	/* Set up the descriptor. */
1121 	bge_setup_rxdesc_jumbo(sc, i);
1122 	return 0;
1123 }
1124 
1125 static void
1126 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1127 {
1128 	struct bge_rx_bd *r;
1129 	struct bge_rxchain *rc;
1130 
1131 	r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1132 	rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1133 
1134 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1135 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1136 	r->bge_len = rc->bge_mbuf->m_len;
1137 	r->bge_idx = i;
1138 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1139 }
1140 
1141 static int
1142 bge_init_rx_ring_std(struct bge_softc *sc)
1143 {
1144 	int i, error;
1145 
1146 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1147 		error = bge_newbuf_std(sc, i, 1);
1148 		if (error)
1149 			return error;
1150 	}
1151 
1152 	sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1153 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1154 
1155 	return(0);
1156 }
1157 
1158 static void
1159 bge_free_rx_ring_std(struct bge_softc *sc)
1160 {
1161 	int i;
1162 
1163 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1164 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1165 
1166 		if (rc->bge_mbuf != NULL) {
1167 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1168 					  sc->bge_cdata.bge_rx_std_dmamap[i]);
1169 			m_freem(rc->bge_mbuf);
1170 			rc->bge_mbuf = NULL;
1171 		}
1172 		bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1173 		    sizeof(struct bge_rx_bd));
1174 	}
1175 }
1176 
1177 static int
1178 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1179 {
1180 	struct bge_rcb *rcb;
1181 	int i, error;
1182 
1183 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1184 		error = bge_newbuf_jumbo(sc, i, 1);
1185 		if (error)
1186 			return error;
1187 	}
1188 
1189 	sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1190 
1191 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1192 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1193 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1194 
1195 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1196 
1197 	return(0);
1198 }
1199 
1200 static void
1201 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1202 {
1203 	int i;
1204 
1205 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1206 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1207 
1208 		if (rc->bge_mbuf != NULL) {
1209 			m_freem(rc->bge_mbuf);
1210 			rc->bge_mbuf = NULL;
1211 		}
1212 		bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1213 		    sizeof(struct bge_rx_bd));
1214 	}
1215 }
1216 
1217 static void
1218 bge_free_tx_ring(struct bge_softc *sc)
1219 {
1220 	int i;
1221 
1222 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1223 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1224 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1225 					  sc->bge_cdata.bge_tx_dmamap[i]);
1226 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1227 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1228 		}
1229 		bzero(&sc->bge_ldata.bge_tx_ring[i],
1230 		    sizeof(struct bge_tx_bd));
1231 	}
1232 }
1233 
1234 static int
1235 bge_init_tx_ring(struct bge_softc *sc)
1236 {
1237 	sc->bge_txcnt = 0;
1238 	sc->bge_tx_saved_considx = 0;
1239 	sc->bge_tx_prodidx = 0;
1240 
1241 	/* Initialize transmit producer index for host-memory send ring. */
1242 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1243 
1244 	/* 5700 b2 errata */
1245 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1246 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1247 
1248 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1249 	/* 5700 b2 errata */
1250 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1251 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1252 
1253 	return(0);
1254 }
1255 
1256 static void
1257 bge_setmulti(struct bge_softc *sc)
1258 {
1259 	struct ifnet *ifp;
1260 	struct ifmultiaddr *ifma;
1261 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1262 	int h, i;
1263 
1264 	ifp = &sc->arpcom.ac_if;
1265 
1266 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1267 		for (i = 0; i < 4; i++)
1268 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1269 		return;
1270 	}
1271 
1272 	/* First, zot all the existing filters. */
1273 	for (i = 0; i < 4; i++)
1274 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1275 
1276 	/* Now program new ones. */
1277 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1278 		if (ifma->ifma_addr->sa_family != AF_LINK)
1279 			continue;
1280 		h = ether_crc32_le(
1281 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1282 		    ETHER_ADDR_LEN) & 0x7f;
1283 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1284 	}
1285 
1286 	for (i = 0; i < 4; i++)
1287 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1288 }
1289 
1290 /*
1291  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1292  * self-test results.
1293  */
1294 static int
1295 bge_chipinit(struct bge_softc *sc)
1296 {
1297 	int i;
1298 	uint32_t dma_rw_ctl, mode_ctl;
1299 	uint16_t val;
1300 
1301 	/* Set endian type before we access any non-PCI registers. */
1302 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1303 	    BGE_INIT | sc->bge_pci_miscctl, 4);
1304 
1305 	/*
1306 	 * Clear the MAC statistics block in the NIC's
1307 	 * internal memory.
1308 	 */
1309 	for (i = BGE_STATS_BLOCK;
1310 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1311 		BGE_MEMWIN_WRITE(sc, i, 0);
1312 
1313 	for (i = BGE_STATUS_BLOCK;
1314 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1315 		BGE_MEMWIN_WRITE(sc, i, 0);
1316 
1317 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1318 		/*
1319 		 * Fix data corruption caused by non-qword write with WB.
1320 		 * Fix master abort in PCI mode.
1321 		 * Fix PCI latency timer.
1322 		 */
1323 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1324 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1325 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1326 	}
1327 
1328 	/* Set up the PCI DMA control register. */
1329 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1330 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1331 		/* PCI-E bus */
1332 		/* DMA read watermark not used on PCI-E */
1333 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1334 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1335 		/* PCI-X bus */
1336 		if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1337 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1338 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1339 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1340 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1341 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1342 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1343 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1344 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1345 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1346 			uint32_t rd_wat = 0x7;
1347 			uint32_t clkctl;
1348 
1349 			clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1350 			if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1351 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1352 				dma_rw_ctl |=
1353 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1354 			} else if (clkctl == 0x6 || clkctl == 0x7) {
1355 				dma_rw_ctl |=
1356 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1357 			}
1358 			if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1359 				rd_wat = 0x4;
1360 
1361 			dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1362 			    (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1363 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1364 		} else {
1365 			dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1366 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1367 			dma_rw_ctl |= 0xf;
1368 		}
1369 	} else {
1370 		/* Conventional PCI bus */
1371 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1372 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1373 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1374 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1375 			dma_rw_ctl |= 0xf;
1376 	}
1377 
1378 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1379 	    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1380 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1381 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1382 	    sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1383 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1384 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1385 	}
1386 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1387 
1388 	/*
1389 	 * Set up general mode register.
1390 	 */
1391 	mode_ctl = BGE_DMA_SWAP_OPTIONS|
1392 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1393 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1394 
1395 	/*
1396 	 * BCM5701 B5 have a bug causing data corruption when using
1397 	 * 64-bit DMA reads, which can be terminated early and then
1398 	 * completed later as 32-bit accesses, in combination with
1399 	 * certain bridges.
1400 	 */
1401 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1402 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1403 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1404 
1405 	/*
1406 	 * Tell the firmware the driver is running
1407 	 */
1408 	if (sc->bge_asf_mode & ASF_STACKUP)
1409 		mode_ctl |= BGE_MODECTL_STACKUP;
1410 
1411 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1412 
1413 	/*
1414 	 * Disable memory write invalidate.  Apparently it is not supported
1415 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1416 	 * as these chips need it even when using MSI.
1417 	 */
1418 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1419 	    (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1420 
1421 	/* Set the timer prescaler (always 66Mhz) */
1422 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1423 
1424 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1425 		DELAY(40);	/* XXX */
1426 
1427 		/* Put PHY into ready state */
1428 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1429 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1430 		DELAY(40);
1431 	}
1432 
1433 	return(0);
1434 }
1435 
1436 static int
1437 bge_blockinit(struct bge_softc *sc)
1438 {
1439 	struct bge_rcb *rcb;
1440 	bus_size_t vrcb;
1441 	bge_hostaddr taddr;
1442 	uint32_t val;
1443 	int i, limit;
1444 
1445 	/*
1446 	 * Initialize the memory window pointer register so that
1447 	 * we can access the first 32K of internal NIC RAM. This will
1448 	 * allow us to set up the TX send ring RCBs and the RX return
1449 	 * ring RCBs, plus other things which live in NIC memory.
1450 	 */
1451 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1452 
1453 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1454 
1455 	if (!BGE_IS_5705_PLUS(sc)) {
1456 		/* Configure mbuf memory pool */
1457 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1458 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1459 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1460 		else
1461 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1462 
1463 		/* Configure DMA resource pool */
1464 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1465 		    BGE_DMA_DESCRIPTORS);
1466 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1467 	}
1468 
1469 	/* Configure mbuf pool watermarks */
1470 	if (!BGE_IS_5705_PLUS(sc)) {
1471 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1472 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1473 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1474 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1475 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1476 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1477 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1478 	} else {
1479 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1480 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1481 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1482 	}
1483 
1484 	/* Configure DMA resource watermarks */
1485 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1486 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1487 
1488 	/* Enable buffer manager */
1489 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1490 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1491 
1492 	/* Poll for buffer manager start indication */
1493 	for (i = 0; i < BGE_TIMEOUT; i++) {
1494 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1495 			break;
1496 		DELAY(10);
1497 	}
1498 
1499 	if (i == BGE_TIMEOUT) {
1500 		if_printf(&sc->arpcom.ac_if,
1501 			  "buffer manager failed to start\n");
1502 		return(ENXIO);
1503 	}
1504 
1505 	/* Enable flow-through queues */
1506 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1507 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1508 
1509 	/* Wait until queue initialization is complete */
1510 	for (i = 0; i < BGE_TIMEOUT; i++) {
1511 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1512 			break;
1513 		DELAY(10);
1514 	}
1515 
1516 	if (i == BGE_TIMEOUT) {
1517 		if_printf(&sc->arpcom.ac_if,
1518 			  "flow-through queue init failed\n");
1519 		return(ENXIO);
1520 	}
1521 
1522 	/*
1523 	 * Summary of rings supported by the controller:
1524 	 *
1525 	 * Standard Receive Producer Ring
1526 	 * - This ring is used to feed receive buffers for "standard"
1527 	 *   sized frames (typically 1536 bytes) to the controller.
1528 	 *
1529 	 * Jumbo Receive Producer Ring
1530 	 * - This ring is used to feed receive buffers for jumbo sized
1531 	 *   frames (i.e. anything bigger than the "standard" frames)
1532 	 *   to the controller.
1533 	 *
1534 	 * Mini Receive Producer Ring
1535 	 * - This ring is used to feed receive buffers for "mini"
1536 	 *   sized frames to the controller.
1537 	 * - This feature required external memory for the controller
1538 	 *   but was never used in a production system.  Should always
1539 	 *   be disabled.
1540 	 *
1541 	 * Receive Return Ring
1542 	 * - After the controller has placed an incoming frame into a
1543 	 *   receive buffer that buffer is moved into a receive return
1544 	 *   ring.  The driver is then responsible to passing the
1545 	 *   buffer up to the stack.  Many versions of the controller
1546 	 *   support multiple RR rings.
1547 	 *
1548 	 * Send Ring
1549 	 * - This ring is used for outgoing frames.  Many versions of
1550 	 *   the controller support multiple send rings.
1551 	 */
1552 
1553 	/* Initialize the standard receive producer ring control block. */
1554 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1555 	rcb->bge_hostaddr.bge_addr_lo =
1556 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1557 	rcb->bge_hostaddr.bge_addr_hi =
1558 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1559 	if (BGE_IS_5705_PLUS(sc)) {
1560 		/*
1561 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1562 		 * Bits 15-2 : Reserved (should be 0)
1563 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1564 		 * Bit 0     : Reserved
1565 		 */
1566 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1567 	} else {
1568 		/*
1569 		 * Ring size is always XXX entries
1570 		 * Bits 31-16: Maximum RX frame size
1571 		 * Bits 15-2 : Reserved (should be 0)
1572 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1573 		 * Bit 0     : Reserved
1574 		 */
1575 		rcb->bge_maxlen_flags =
1576 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1577 	}
1578 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1579 	/* Write the standard receive producer ring control block. */
1580 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1581 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1582 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1583 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1584 	/* Reset the standard receive producer ring producer index. */
1585 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1586 
1587 	/*
1588 	 * Initialize the jumbo RX producer ring control
1589 	 * block.  We set the 'ring disabled' bit in the
1590 	 * flags field until we're actually ready to start
1591 	 * using this ring (i.e. once we set the MTU
1592 	 * high enough to require it).
1593 	 */
1594 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1595 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1596 		/* Get the jumbo receive producer ring RCB parameters. */
1597 		rcb->bge_hostaddr.bge_addr_lo =
1598 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1599 		rcb->bge_hostaddr.bge_addr_hi =
1600 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1601 		rcb->bge_maxlen_flags =
1602 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1603 		    BGE_RCB_FLAG_RING_DISABLED);
1604 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1605 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1606 		    rcb->bge_hostaddr.bge_addr_hi);
1607 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1608 		    rcb->bge_hostaddr.bge_addr_lo);
1609 		/* Program the jumbo receive producer ring RCB parameters. */
1610 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1611 		    rcb->bge_maxlen_flags);
1612 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1613 		/* Reset the jumbo receive producer ring producer index. */
1614 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1615 	}
1616 
1617 	/* Disable the mini receive producer ring RCB. */
1618 	if (BGE_IS_5700_FAMILY(sc)) {
1619 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1620 		rcb->bge_maxlen_flags =
1621 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1622 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1623 		    rcb->bge_maxlen_flags);
1624 		/* Reset the mini receive producer ring producer index. */
1625 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1626 	}
1627 
1628 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1629 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1630 	    (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1631 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1632 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1633 		CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1634 		    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1635 	}
1636 
1637 	/*
1638 	 * The BD ring replenish thresholds control how often the
1639 	 * hardware fetches new BD's from the producer rings in host
1640 	 * memory.  Setting the value too low on a busy system can
1641 	 * starve the hardware and recue the throughpout.
1642 	 *
1643 	 * Set the BD ring replentish thresholds. The recommended
1644 	 * values are 1/8th the number of descriptors allocated to
1645 	 * each ring.
1646 	 */
1647 	if (BGE_IS_5705_PLUS(sc))
1648 		val = 8;
1649 	else
1650 		val = BGE_STD_RX_RING_CNT / 8;
1651 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1652 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1653 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1654 		    BGE_JUMBO_RX_RING_CNT/8);
1655 	}
1656 
1657 	/*
1658 	 * Disable all send rings by setting the 'ring disabled' bit
1659 	 * in the flags field of all the TX send ring control blocks,
1660 	 * located in NIC memory.
1661 	 */
1662 	if (!BGE_IS_5705_PLUS(sc)) {
1663 		/* 5700 to 5704 had 16 send rings. */
1664 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1665 	} else {
1666 		limit = 1;
1667 	}
1668 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1669 	for (i = 0; i < limit; i++) {
1670 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1671 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1672 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1673 		vrcb += sizeof(struct bge_rcb);
1674 	}
1675 
1676 	/* Configure send ring RCB 0 (we use only the first ring) */
1677 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1678 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1679 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1680 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1681 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1682 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1683 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1684 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1685 
1686 	/*
1687 	 * Disable all receive return rings by setting the
1688 	 * 'ring diabled' bit in the flags field of all the receive
1689 	 * return ring control blocks, located in NIC memory.
1690 	 */
1691 	if (!BGE_IS_5705_PLUS(sc))
1692 		limit = BGE_RX_RINGS_MAX;
1693 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1694 		limit = 4;
1695 	else
1696 		limit = 1;
1697 	/* Disable all receive return rings. */
1698 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1699 	for (i = 0; i < limit; i++) {
1700 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1701 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1702 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1703 		    BGE_RCB_FLAG_RING_DISABLED);
1704 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1705 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1706 		    (i * (sizeof(uint64_t))), 0);
1707 		vrcb += sizeof(struct bge_rcb);
1708 	}
1709 
1710 	/*
1711 	 * Set up receive return ring 0.  Note that the NIC address
1712 	 * for RX return rings is 0x0.  The return rings live entirely
1713 	 * within the host, so the nicaddr field in the RCB isn't used.
1714 	 */
1715 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1716 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1717 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1718 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1719 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1720 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1721 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1722 
1723 	/* Set random backoff seed for TX */
1724 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1725 	    (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1726 	     sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1727 	     sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &
1728 	    BGE_TX_BACKOFF_SEED_MASK);
1729 
1730 	/* Set inter-packet gap */
1731 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1732 
1733 	/*
1734 	 * Specify which ring to use for packets that don't match
1735 	 * any RX rules.
1736 	 */
1737 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1738 
1739 	/*
1740 	 * Configure number of RX lists. One interrupt distribution
1741 	 * list, sixteen active lists, one bad frames class.
1742 	 */
1743 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1744 
1745 	/* Inialize RX list placement stats mask. */
1746 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1747 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1748 
1749 	/* Disable host coalescing until we get it set up */
1750 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1751 
1752 	/* Poll to make sure it's shut down. */
1753 	for (i = 0; i < BGE_TIMEOUT; i++) {
1754 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1755 			break;
1756 		DELAY(10);
1757 	}
1758 
1759 	if (i == BGE_TIMEOUT) {
1760 		if_printf(&sc->arpcom.ac_if,
1761 			  "host coalescing engine failed to idle\n");
1762 		return(ENXIO);
1763 	}
1764 
1765 	/* Set up host coalescing defaults */
1766 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1767 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1768 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1769 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1770 	if (!BGE_IS_5705_PLUS(sc)) {
1771 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1772 		    sc->bge_rx_coal_ticks_int);
1773 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1774 		    sc->bge_tx_coal_ticks_int);
1775 	}
1776 	/*
1777 	 * NOTE:
1778 	 * The datasheet (57XX-PG105-R) says BCM5705+ do not
1779 	 * have following two registers; obviously it is wrong.
1780 	 */
1781 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1782 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1783 
1784 	/* Set up address of statistics block */
1785 	if (!BGE_IS_5705_PLUS(sc)) {
1786 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1787 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1788 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1789 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1790 
1791 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1792 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1793 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1794 	}
1795 
1796 	/* Set up address of status block */
1797 	bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1798 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1799 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1800 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1801 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1802 
1803 	/*
1804 	 * Set up status block partail update size.
1805 	 *
1806 	 * Because only single TX ring, RX produce ring and Rx return ring
1807 	 * are used, ask device to update only minimum part of status block
1808 	 * except for BCM5700 AX/BX, whose status block partial update size
1809 	 * can't be configured.
1810 	 */
1811 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1812 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1813 		/* XXX Actually reserved on BCM5700 AX/BX */
1814 		val = BGE_STATBLKSZ_FULL;
1815 	} else {
1816 		val = BGE_STATBLKSZ_32BYTE;
1817 	}
1818 #if 0
1819 	/*
1820 	 * Does not seem to have visible effect in both
1821 	 * bulk data (1472B UDP datagram) and tiny data
1822 	 * (18B UDP datagram) TX tests.
1823 	 */
1824 	if (!BGE_IS_CRIPPLED(sc))
1825 		val |= BGE_HCCMODE_CLRTICK_TX;
1826 #endif
1827 
1828 	/* Turn on host coalescing state machine */
1829 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1830 
1831 	/* Turn on RX BD completion state machine and enable attentions */
1832 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1833 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1834 
1835 	/* Turn on RX list placement state machine */
1836 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1837 
1838 	/* Turn on RX list selector state machine. */
1839 	if (!BGE_IS_5705_PLUS(sc))
1840 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1841 
1842 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1843 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1844 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1845 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1846 
1847 	if (sc->bge_flags & BGE_FLAG_TBI)
1848 		val |= BGE_PORTMODE_TBI;
1849 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1850 		val |= BGE_PORTMODE_GMII;
1851 	else
1852 		val |= BGE_PORTMODE_MII;
1853 
1854 	/* Allow APE to send/receive frames. */
1855 	if (sc->bge_mfw_flags & BGE_MFW_ON_APE)
1856 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
1857 
1858 	/* Turn on DMA, clear stats */
1859 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1860 	DELAY(40);
1861 
1862 	/* Set misc. local control, enable interrupts on attentions */
1863 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1864 
1865 #ifdef notdef
1866 	/* Assert GPIO pins for PHY reset */
1867 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1868 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1869 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1870 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1871 #endif
1872 
1873 	/* Turn on DMA completion state machine */
1874 	if (!BGE_IS_5705_PLUS(sc))
1875 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1876 
1877 	/* Turn on write DMA state machine */
1878 	val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1879 	if (BGE_IS_5755_PLUS(sc)) {
1880 		/* Enable host coalescing bug fix. */
1881 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1882 	}
1883 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1884 		/* Request larger DMA burst size to get better performance. */
1885 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1886 	}
1887 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1888 	DELAY(40);
1889 
1890 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1891 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1892 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1893 	    sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1894 		/*
1895 		 * Enable fix for read DMA FIFO overruns.
1896 		 * The fix is to limit the number of RX BDs
1897 		 * the hardware would fetch at a fime.
1898 		 */
1899 		val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1900 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1901 		    val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1902 	}
1903 
1904 	/* Turn on read DMA state machine */
1905 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1906         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1907             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1908             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1909 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1910                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1911                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1912 	if (sc->bge_flags & BGE_FLAG_PCIE)
1913 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1914 	if (sc->bge_flags & BGE_FLAG_TSO)
1915 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1916 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1917 	DELAY(40);
1918 
1919 	/* Turn on RX data completion state machine */
1920 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1921 
1922 	/* Turn on RX BD initiator state machine */
1923 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1924 
1925 	/* Turn on RX data and RX BD initiator state machine */
1926 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1927 
1928 	/* Turn on Mbuf cluster free state machine */
1929 	if (!BGE_IS_5705_PLUS(sc))
1930 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1931 
1932 	/* Turn on send BD completion state machine */
1933 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1934 
1935 	/* Turn on send data completion state machine */
1936 	val = BGE_SDCMODE_ENABLE;
1937 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1938 		val |= BGE_SDCMODE_CDELAY;
1939 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1940 
1941 	/* Turn on send data initiator state machine */
1942 	if (sc->bge_flags & BGE_FLAG_TSO)
1943 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1944 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
1945 	else
1946 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1947 
1948 	/* Turn on send BD initiator state machine */
1949 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1950 
1951 	/* Turn on send BD selector state machine */
1952 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1953 
1954 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1955 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1956 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1957 
1958 	/* ack/clear link change events */
1959 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1960 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1961 	    BGE_MACSTAT_LINK_CHANGED);
1962 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1963 
1964 	/*
1965 	 * Enable attention when the link has changed state for
1966 	 * devices that use auto polling.
1967 	 */
1968 	if (sc->bge_flags & BGE_FLAG_TBI) {
1969 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1970  	} else {
1971 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1972 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1973 			DELAY(80);
1974 		}
1975 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1976 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1977 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1978 			    BGE_EVTENB_MI_INTERRUPT);
1979 		}
1980 	}
1981 
1982 	/*
1983 	 * Clear any pending link state attention.
1984 	 * Otherwise some link state change events may be lost until attention
1985 	 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1986 	 * It's not necessary on newer BCM chips - perhaps enabling link
1987 	 * state change attentions implies clearing pending attention.
1988 	 */
1989 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1990 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1991 	    BGE_MACSTAT_LINK_CHANGED);
1992 
1993 	/* Enable link state change attentions. */
1994 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1995 
1996 	return(0);
1997 }
1998 
1999 /*
2000  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2001  * against our list and return its name if we find a match. Note
2002  * that since the Broadcom controller contains VPD support, we
2003  * can get the device name string from the controller itself instead
2004  * of the compiled-in string. This is a little slow, but it guarantees
2005  * we'll always announce the right product name.
2006  */
2007 static int
2008 bge_probe(device_t dev)
2009 {
2010 	const struct bge_type *t;
2011 	uint16_t product, vendor;
2012 
2013 	product = pci_get_device(dev);
2014 	vendor = pci_get_vendor(dev);
2015 
2016 	for (t = bge_devs; t->bge_name != NULL; t++) {
2017 		if (vendor == t->bge_vid && product == t->bge_did)
2018 			break;
2019 	}
2020 	if (t->bge_name == NULL)
2021 		return(ENXIO);
2022 
2023 	device_set_desc(dev, t->bge_name);
2024 	return(0);
2025 }
2026 
2027 static int
2028 bge_attach(device_t dev)
2029 {
2030 	struct ifnet *ifp;
2031 	struct bge_softc *sc;
2032 	struct sysctl_ctx_list *ctx;
2033 	struct sysctl_oid *tree;
2034 	uint32_t hwcfg = 0, misccfg;
2035 	int error = 0, rid, capmask;
2036 	uint8_t ether_addr[ETHER_ADDR_LEN];
2037 	uint16_t product, vendor;
2038 	driver_intr_t *intr_func;
2039 	uintptr_t mii_priv = 0;
2040 	u_int intr_flags;
2041 	int msi_enable;
2042 
2043 	sc = device_get_softc(dev);
2044 	sc->bge_dev = dev;
2045 	callout_init_mp(&sc->bge_stat_timer);
2046 	lwkt_serialize_init(&sc->bge_jslot_serializer);
2047 
2048 	sc->bge_func_addr = pci_get_function(dev);
2049 	product = pci_get_device(dev);
2050 	vendor = pci_get_vendor(dev);
2051 
2052 #ifndef BURN_BRIDGES
2053 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2054 		uint32_t irq, mem;
2055 
2056 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
2057 		mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2058 
2059 		device_printf(dev, "chip is in D%d power mode "
2060 		    "-- setting to D0\n", pci_get_powerstate(dev));
2061 
2062 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2063 
2064 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
2065 		pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2066 	}
2067 #endif	/* !BURN_BRIDGE */
2068 
2069 	/*
2070 	 * Map control/status registers.
2071 	 */
2072 	pci_enable_busmaster(dev);
2073 
2074 	rid = BGE_PCI_BAR0;
2075 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2076 	    RF_ACTIVE);
2077 
2078 	if (sc->bge_res == NULL) {
2079 		device_printf(dev, "couldn't map memory\n");
2080 		return ENXIO;
2081 	}
2082 
2083 	sc->bge_btag = rman_get_bustag(sc->bge_res);
2084 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2085 
2086 	/* Save various chip information */
2087 	sc->bge_chipid =
2088 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2089 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2090 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2091 		/* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2092 		sc->bge_flags |= BGE_FLAG_CPMU;
2093 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2094 	}
2095 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2096 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2097 
2098 	/* Save chipset family. */
2099 	switch (sc->bge_asicrev) {
2100 	case BGE_ASICREV_BCM5755:
2101 	case BGE_ASICREV_BCM5761:
2102 	case BGE_ASICREV_BCM5784:
2103 	case BGE_ASICREV_BCM5785:
2104 	case BGE_ASICREV_BCM5787:
2105 	case BGE_ASICREV_BCM57780:
2106 	    sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2107 		BGE_FLAG_5705_PLUS;
2108 	    break;
2109 
2110 	case BGE_ASICREV_BCM5700:
2111 	case BGE_ASICREV_BCM5701:
2112 	case BGE_ASICREV_BCM5703:
2113 	case BGE_ASICREV_BCM5704:
2114 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2115 		break;
2116 
2117 	case BGE_ASICREV_BCM5714_A0:
2118 	case BGE_ASICREV_BCM5780:
2119 	case BGE_ASICREV_BCM5714:
2120 		sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2121 		/* Fall through */
2122 
2123 	case BGE_ASICREV_BCM5750:
2124 	case BGE_ASICREV_BCM5752:
2125 	case BGE_ASICREV_BCM5906:
2126 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2127 		/* Fall through */
2128 
2129 	case BGE_ASICREV_BCM5705:
2130 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2131 		break;
2132 	}
2133 
2134 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2135 		sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2136 
2137 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2138 		sc->bge_flags |= BGE_FLAG_APE;
2139 
2140 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2141 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2142 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2143 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2144 		sc->bge_flags |= BGE_FLAG_5788;
2145 
2146 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
2147 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2148 		sc->bge_flags |= BGE_FLAG_SHORTDMA;
2149 
2150 	/*
2151 	 * Increase STD RX ring prod index by at most 8 for BCM5750,
2152 	 * BCM5752 and BCM5755 to workaround hardware errata.
2153 	 */
2154 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2155 	    sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2156 	    sc->bge_asicrev == BGE_ASICREV_BCM5755)
2157 		sc->bge_rx_wreg = 8;
2158 
2159   	/*
2160 	 * Check if this is a PCI-X or PCI Express device.
2161   	 */
2162 	if (BGE_IS_5705_PLUS(sc)) {
2163 		if (pci_is_pcie(dev)) {
2164 			sc->bge_flags |= BGE_FLAG_PCIE;
2165 			sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2166 			pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2167 		}
2168 	} else {
2169 		/*
2170 		 * Check if the device is in PCI-X Mode.
2171 		 * (This bit is not valid on PCI Express controllers.)
2172 		 */
2173 		if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2174 		    BGE_PCISTATE_PCI_BUSMODE) == 0) {
2175 			sc->bge_flags |= BGE_FLAG_PCIX;
2176 			sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2177 			sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2178 			    "mbox_reorder", 0);
2179 		}
2180  	}
2181 	device_printf(dev, "CHIP ID 0x%08x; "
2182 		      "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2183 		      sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2184 		      (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2185 		      : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2186 			"PCI-E" : "PCI"));
2187 
2188 	/*
2189 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2190 	 * not actually a MAC controller bug but an issue with the embedded
2191 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2192 	 */
2193 	if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2194 	    (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2195 		sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2196 
2197 	/*
2198 	 * When using the BCM5701 in PCI-X mode, data corruption has
2199 	 * been observed in the first few bytes of some received packets.
2200 	 * Aligning the packet buffer in memory eliminates the corruption.
2201 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2202 	 * which do not support unaligned accesses, we will realign the
2203 	 * payloads by copying the received packets.
2204 	 */
2205 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2206 	    (sc->bge_flags & BGE_FLAG_PCIX))
2207 		sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2208 
2209 	if (!BGE_IS_CRIPPLED(sc)) {
2210 		if (device_getenv_int(dev, "status_tag", 1)) {
2211 			sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2212 			sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2213 			if (bootverbose)
2214 				device_printf(dev, "enable status tag\n");
2215 		}
2216 	}
2217 
2218 	if (BGE_IS_5755_PLUS(sc)) {
2219 		/*
2220 		 * BCM5754 and BCM5787 shares the same ASIC id so
2221 		 * explicit device id check is required.
2222 		 * Due to unknown reason TSO does not work on BCM5755M.
2223 		 */
2224 		if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2225 		    product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2226 		    product != PCI_PRODUCT_BROADCOM_BCM5755M)
2227 			sc->bge_flags |= BGE_FLAG_TSO;
2228 	}
2229 
2230 	/*
2231 	 * Set various PHY quirk flags.
2232 	 */
2233 
2234 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2235 	     sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2236 	    pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2237 		mii_priv |= BRGPHY_FLAG_NO_3LED;
2238 
2239 	capmask = MII_CAPMASK_DEFAULT;
2240 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2241 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2242 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2243 	     vendor == PCI_VENDOR_BROADCOM &&
2244 	     (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2245 	      product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2246 	      product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2247 	    (vendor == PCI_VENDOR_BROADCOM &&
2248 	     (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2249 	      product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2250 	      product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2251 	    product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2252 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2253 		/* 10/100 only */
2254 		capmask &= ~BMSR_EXTSTAT;
2255 	}
2256 
2257 	mii_priv |= BRGPHY_FLAG_WIRESPEED;
2258 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2259 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2260 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2261 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2262 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2263 		mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2264 
2265 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2266 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2267 		mii_priv |= BRGPHY_FLAG_CRC_BUG;
2268 
2269 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2270 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2271 		mii_priv |= BRGPHY_FLAG_ADC_BUG;
2272 
2273 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2274 		mii_priv |= BRGPHY_FLAG_5704_A0;
2275 
2276 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2277 		mii_priv |= BRGPHY_FLAG_5906;
2278 
2279 	if (BGE_IS_5705_PLUS(sc) &&
2280 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2281 	    /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2282 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2283 	    /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2284 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2285 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2286 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2287 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2288 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2289 			if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2290 			    product != PCI_PRODUCT_BROADCOM_BCM5756)
2291 				mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2292 			if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2293 				mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2294 		} else {
2295 			mii_priv |= BRGPHY_FLAG_BER_BUG;
2296 		}
2297 	}
2298 
2299 	/*
2300 	 * Chips with APE need BAR2 access for APE registers/memory.
2301 	 */
2302 	if (sc->bge_flags & BGE_FLAG_APE) {
2303 		uint32_t pcistate;
2304 
2305 		rid = PCIR_BAR(2);
2306 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2307 		    RF_ACTIVE);
2308 		if (sc->bge_res2 == NULL) {
2309 			device_printf(dev, "couldn't map BAR2 memory\n");
2310 			error = ENXIO;
2311 			goto fail;
2312 		}
2313 
2314 		/* Enable APE register/memory access by host driver. */
2315 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2316 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2317 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2318 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2319 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
2320 
2321 		bge_ape_lock_init(sc);
2322 		bge_ape_read_fw_ver(sc);
2323 	}
2324 
2325 	/*
2326 	 * Allocate interrupt
2327 	 */
2328 	msi_enable = bge_msi_enable;
2329 	if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2330 		/* If "tagged status" is disabled, don't enable MSI */
2331 		msi_enable = 0;
2332 	} else if (msi_enable) {
2333 		msi_enable = 0; /* Disable by default */
2334 		if (BGE_IS_575X_PLUS(sc)) {
2335 			msi_enable = 1;
2336 			/* XXX we filter all 5714 chips */
2337 			if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2338 			    (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2339 			     (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2340 			      sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2341 				msi_enable = 0;
2342 			else if (BGE_IS_5755_PLUS(sc) ||
2343 			    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2344 				sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2345 		}
2346 	}
2347 	if (msi_enable) {
2348 		if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2349 			device_printf(dev, "no MSI capability\n");
2350 			msi_enable = 0;
2351 		}
2352 	}
2353 
2354 	sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2355 	    &intr_flags);
2356 
2357 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2358 	    intr_flags);
2359 	if (sc->bge_irq == NULL) {
2360 		device_printf(dev, "couldn't map interrupt\n");
2361 		error = ENXIO;
2362 		goto fail;
2363 	}
2364 
2365 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2366 		bge_enable_msi(sc);
2367 	else
2368 		sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2369 
2370 	/* Initialize if_name earlier, so if_printf could be used */
2371 	ifp = &sc->arpcom.ac_if;
2372 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2373 
2374 	sc->bge_asf_mode = 0;
2375 	/* No ASF if APE present. */
2376 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2377 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2378 		    BGE_SRAM_DATA_SIG_MAGIC)) {
2379 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2380 			    BGE_HWCFG_ASF) {
2381 				sc->bge_asf_mode |= ASF_ENABLE;
2382 				sc->bge_asf_mode |= ASF_STACKUP;
2383 				if (BGE_IS_575X_PLUS(sc))
2384 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2385 			}
2386 		}
2387 	}
2388 
2389 	/*
2390 	 * Try to reset the chip.
2391 	 */
2392 	bge_stop_fw(sc);
2393 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2394 	bge_reset(sc);
2395 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2396 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2397 
2398 	if (bge_chipinit(sc)) {
2399 		device_printf(dev, "chip initialization failed\n");
2400 		error = ENXIO;
2401 		goto fail;
2402 	}
2403 
2404 	/*
2405 	 * Get station address
2406 	 */
2407 	error = bge_get_eaddr(sc, ether_addr);
2408 	if (error) {
2409 		device_printf(dev, "failed to read station address\n");
2410 		goto fail;
2411 	}
2412 
2413 	/* 5705/5750 limits RX return ring to 512 entries. */
2414 	if (BGE_IS_5705_PLUS(sc))
2415 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2416 	else
2417 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2418 
2419 	error = bge_dma_alloc(sc);
2420 	if (error)
2421 		goto fail;
2422 
2423 	/* Set default tuneable values. */
2424 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2425 	sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2426 	sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2427 	sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2428 	sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2429 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2430 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2431 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2432 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2433 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2434 	} else {
2435 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2436 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2437 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2438 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2439 	}
2440 	sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2441 
2442 	/* Set up TX spare and reserved descriptor count */
2443 	if (sc->bge_flags & BGE_FLAG_TSO) {
2444 		sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2445 		sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2446 	} else {
2447 		sc->bge_txspare = BGE_NSEG_SPARE;
2448 		sc->bge_txrsvd = BGE_NSEG_RSVD;
2449 	}
2450 
2451 	/* Set up ifnet structure */
2452 	ifp->if_softc = sc;
2453 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2454 	ifp->if_ioctl = bge_ioctl;
2455 	ifp->if_start = bge_start;
2456 #ifdef IFPOLL_ENABLE
2457 	ifp->if_npoll = bge_npoll;
2458 #endif
2459 	ifp->if_watchdog = bge_watchdog;
2460 	ifp->if_init = bge_init;
2461 	ifp->if_mtu = ETHERMTU;
2462 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2463 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2464 	ifq_set_ready(&ifp->if_snd);
2465 
2466 	/*
2467 	 * 5700 B0 chips do not support checksumming correctly due
2468 	 * to hardware bugs.
2469 	 */
2470 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2471 		ifp->if_capabilities |= IFCAP_HWCSUM;
2472 		ifp->if_hwassist |= BGE_CSUM_FEATURES;
2473 	}
2474 	if (sc->bge_flags & BGE_FLAG_TSO) {
2475 		ifp->if_capabilities |= IFCAP_TSO;
2476 		ifp->if_hwassist |= CSUM_TSO;
2477 	}
2478 	ifp->if_capenable = ifp->if_capabilities;
2479 
2480 	/*
2481 	 * Figure out what sort of media we have by checking the
2482 	 * hardware config word in the first 32k of NIC internal memory,
2483 	 * or fall back to examining the EEPROM if necessary.
2484 	 * Note: on some BCM5700 cards, this value appears to be unset.
2485 	 * If that's the case, we have to rely on identifying the NIC
2486 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2487 	 * SK-9D41.
2488 	 */
2489 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2490 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2491 	} else {
2492 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2493 				    sizeof(hwcfg))) {
2494 			device_printf(dev, "failed to read EEPROM\n");
2495 			error = ENXIO;
2496 			goto fail;
2497 		}
2498 		hwcfg = ntohl(hwcfg);
2499 	}
2500 
2501 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2502 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2503 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2504 		if (BGE_IS_5714_FAMILY(sc))
2505 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2506 		else
2507 			sc->bge_flags |= BGE_FLAG_TBI;
2508 	}
2509 
2510 	/* Setup MI MODE */
2511 	if (sc->bge_flags & BGE_FLAG_CPMU)
2512 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2513 	else
2514 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2515 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2516 		/* Enable auto polling for BCM570[0-5]. */
2517 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2518 	}
2519 
2520 	/* Setup link status update stuffs */
2521 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2522 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2523 		sc->bge_link_upd = bge_bcm5700_link_upd;
2524 		sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2525 	} else if (sc->bge_flags & BGE_FLAG_TBI) {
2526 		sc->bge_link_upd = bge_tbi_link_upd;
2527 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2528 	} else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2529 		sc->bge_link_upd = bge_autopoll_link_upd;
2530 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2531 	} else {
2532 		sc->bge_link_upd = bge_copper_link_upd;
2533 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2534 	}
2535 
2536 	/*
2537 	 * Broadcom's own driver always assumes the internal
2538 	 * PHY is at GMII address 1.  On some chips, the PHY responds
2539 	 * to accesses at all addresses, which could cause us to
2540 	 * bogusly attach the PHY 32 times at probe type.  Always
2541 	 * restricting the lookup to address 1 is simpler than
2542 	 * trying to figure out which chips revisions should be
2543 	 * special-cased.
2544 	 */
2545 	sc->bge_phyno = 1;
2546 
2547 	if (sc->bge_flags & BGE_FLAG_TBI) {
2548 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2549 		    bge_ifmedia_upd, bge_ifmedia_sts);
2550 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2551 		ifmedia_add(&sc->bge_ifmedia,
2552 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2553 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2554 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2555 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2556 	} else {
2557 		struct mii_probe_args mii_args;
2558 		int tries;
2559 
2560 		/*
2561 		 * Do transceiver setup and tell the firmware the
2562 		 * driver is down so we can try to get access the
2563 		 * probe if ASF is running.  Retry a couple of times
2564 		 * if we get a conflict with the ASF firmware accessing
2565 		 * the PHY.
2566 		 */
2567 		tries = 0;
2568 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2569 again:
2570 		bge_asf_driver_up(sc);
2571 
2572 		mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2573 		mii_args.mii_probemask = 1 << sc->bge_phyno;
2574 		mii_args.mii_capmask = capmask;
2575 		mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2576 		mii_args.mii_priv = mii_priv;
2577 
2578 		error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2579 		if (error) {
2580 			if (tries++ < 4) {
2581 				device_printf(sc->bge_dev, "Probe MII again\n");
2582 				bge_miibus_writereg(sc->bge_dev,
2583 				    sc->bge_phyno, MII_BMCR, BMCR_RESET);
2584 				goto again;
2585 			}
2586 			device_printf(dev, "MII without any PHY!\n");
2587 			goto fail;
2588 		}
2589 
2590 		/*
2591 		 * Now tell the firmware we are going up after probing the PHY
2592 		 */
2593 		if (sc->bge_asf_mode & ASF_STACKUP)
2594 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2595 	}
2596 
2597 	ctx = device_get_sysctl_ctx(sc->bge_dev);
2598 	tree = device_get_sysctl_tree(sc->bge_dev);
2599 
2600 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rx_coal_ticks",
2601 			CTLTYPE_INT | CTLFLAG_RW,
2602 			sc, 0, bge_sysctl_rx_coal_ticks, "I",
2603 			"Receive coalescing ticks (usec).");
2604 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_coal_ticks",
2605 			CTLTYPE_INT | CTLFLAG_RW,
2606 			sc, 0, bge_sysctl_tx_coal_ticks, "I",
2607 			"Transmit coalescing ticks (usec).");
2608 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rx_coal_bds",
2609 			CTLTYPE_INT | CTLFLAG_RW,
2610 			sc, 0, bge_sysctl_rx_coal_bds, "I",
2611 			"Receive max coalesced BD count.");
2612 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_coal_bds",
2613 			CTLTYPE_INT | CTLFLAG_RW,
2614 			sc, 0, bge_sysctl_tx_coal_bds, "I",
2615 			"Transmit max coalesced BD count.");
2616 
2617 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_wreg", CTLFLAG_RW,
2618 		       &sc->bge_tx_wreg, 0,
2619 		       "# of segments before writing to hardware register");
2620 
2621 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2622 		/*
2623 		 * A common design characteristic for many Broadcom
2624 		 * client controllers is that they only support a
2625 		 * single outstanding DMA read operation on the PCIe
2626 		 * bus. This means that it will take twice as long to
2627 		 * fetch a TX frame that is split into header and
2628 		 * payload buffers as it does to fetch a single,
2629 		 * contiguous TX frame (2 reads vs. 1 read). For these
2630 		 * controllers, coalescing buffers to reduce the number
2631 		 * of memory reads is effective way to get maximum
2632 		 * performance(about 940Mbps).  Without collapsing TX
2633 		 * buffers the maximum TCP bulk transfer performance
2634 		 * is about 850Mbps. However forcing coalescing mbufs
2635 		 * consumes a lot of CPU cycles, so leave it off by
2636 		 * default.
2637 		 */
2638 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2639 			       "force_defrag", CTLFLAG_RW,
2640 			       &sc->bge_force_defrag, 0,
2641 			       "Force defragment on TX path");
2642 	}
2643 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2644 		if (!BGE_IS_5705_PLUS(sc)) {
2645 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2646 			    "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2647 			    sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2648 			    "Receive coalescing ticks "
2649 			    "during interrupt (usec).");
2650 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2651 			    "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2652 			    sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2653 			    "Transmit coalescing ticks "
2654 			    "during interrupt (usec).");
2655 		}
2656 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2657 		    "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2658 		    sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2659 		    "Receive max coalesced BD count during interrupt.");
2660 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2661 		    "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2662 		    sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2663 		    "Transmit max coalesced BD count during interrupt.");
2664 	}
2665 
2666 	/*
2667 	 * Call MI attach routine.
2668 	 */
2669 	ether_ifattach(ifp, ether_addr, NULL);
2670 
2671 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2672 
2673 #ifdef IFPOLL_ENABLE
2674 	/* Polling setup */
2675 	ifpoll_compat_setup(&sc->bge_npoll, ctx, tree,
2676 	    device_get_unit(dev), ifp->if_serializer);
2677 #endif
2678 
2679 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2680 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2681 			intr_func = bge_msi_oneshot;
2682 			if (bootverbose)
2683 				device_printf(dev, "oneshot MSI\n");
2684 		} else {
2685 			intr_func = bge_msi;
2686 		}
2687 	} else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2688 		intr_func = bge_intr_legacy;
2689 	} else {
2690 		intr_func = bge_intr_crippled;
2691 	}
2692 	error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2693 	    &sc->bge_intrhand, ifp->if_serializer);
2694 	if (error) {
2695 		ether_ifdetach(ifp);
2696 		device_printf(dev, "couldn't set up irq\n");
2697 		goto fail;
2698 	}
2699 
2700 	return(0);
2701 fail:
2702 	bge_detach(dev);
2703 	return(error);
2704 }
2705 
2706 static int
2707 bge_detach(device_t dev)
2708 {
2709 	struct bge_softc *sc = device_get_softc(dev);
2710 
2711 	if (device_is_attached(dev)) {
2712 		struct ifnet *ifp = &sc->arpcom.ac_if;
2713 
2714 		lwkt_serialize_enter(ifp->if_serializer);
2715 		bge_stop(sc);
2716 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2717 		lwkt_serialize_exit(ifp->if_serializer);
2718 
2719 		ether_ifdetach(ifp);
2720 	}
2721 
2722 	if (sc->bge_flags & BGE_FLAG_TBI)
2723 		ifmedia_removeall(&sc->bge_ifmedia);
2724 	if (sc->bge_miibus)
2725 		device_delete_child(dev, sc->bge_miibus);
2726 	bus_generic_detach(dev);
2727 
2728 	if (sc->bge_irq != NULL) {
2729 		bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2730 		    sc->bge_irq);
2731 	}
2732 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2733 		pci_release_msi(dev);
2734 
2735 	if (sc->bge_res != NULL) {
2736 		bus_release_resource(dev, SYS_RES_MEMORY,
2737 		    BGE_PCI_BAR0, sc->bge_res);
2738 	}
2739 	if (sc->bge_res2 != NULL) {
2740 		bus_release_resource(dev, SYS_RES_MEMORY,
2741 		    PCIR_BAR(2), sc->bge_res2);
2742 	}
2743 
2744 	bge_dma_free(sc);
2745 
2746 	return 0;
2747 }
2748 
2749 static void
2750 bge_reset(struct bge_softc *sc)
2751 {
2752 	device_t dev = sc->bge_dev;
2753 	uint32_t cachesize, command, reset, mac_mode, mac_mode_mask;
2754 	void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2755 	int i, val = 0;
2756 
2757 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
2758 	if (sc->bge_mfw_flags & BGE_MFW_ON_APE)
2759 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2760 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
2761 
2762 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2763 	    sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2764 		if (sc->bge_flags & BGE_FLAG_PCIE)
2765 			write_op = bge_writemem_direct;
2766 		else
2767 			write_op = bge_writemem_ind;
2768 	} else {
2769 		write_op = bge_writereg_ind;
2770 	}
2771 
2772 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2773 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
2774 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
2775 		for (i = 0; i < 8000; i++) {
2776 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
2777 			    BGE_NVRAMSWARB_GNT1)
2778 				break;
2779 			DELAY(20);
2780 		}
2781 		if (i == 8000) {
2782 			if (bootverbose) {
2783 				if_printf(&sc->arpcom.ac_if,
2784 				    "NVRAM lock timedout!\n");
2785 			}
2786 		}
2787 	}
2788 	/* Take APE lock when performing reset. */
2789 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
2790 
2791 	/* Save some important PCI state. */
2792 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2793 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2794 
2795 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2796 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2797 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2798 	    sc->bge_pci_miscctl, 4);
2799 
2800 	/* Disable fastboot on controllers that support it. */
2801 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2802 	    BGE_IS_5755_PLUS(sc)) {
2803 		if (bootverbose)
2804 			if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2805 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2806 	}
2807 
2808 	/*
2809 	 * Write the magic number to SRAM at offset 0xB50.
2810 	 * When firmware finishes its initialization it will
2811 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2812 	 */
2813 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2814 
2815 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2816 
2817 	/* XXX: Broadcom Linux driver. */
2818 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2819 		/* Force PCI-E 1.0a mode */
2820 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2821 		    CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2822 		    (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2823 		     BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2824 			CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2825 			    BGE_PCIE_PHY_TSTCTL_PSCRAM);
2826 		}
2827 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2828 			/* Prevent PCIE link training during global reset */
2829 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2830 			reset |= (1<<29);
2831 		}
2832 	}
2833 
2834 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2835 		uint32_t status, ctrl;
2836 
2837 		status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2838 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2839 		    status | BGE_VCPU_STATUS_DRV_RESET);
2840 		ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2841 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2842 		    ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2843 	}
2844 
2845 	/*
2846 	 * Set GPHY Power Down Override to leave GPHY
2847 	 * powered up in D0 uninitialized.
2848 	 */
2849 	if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2850 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2851 
2852 	/* Issue global reset */
2853 	write_op(sc, BGE_MISC_CFG, reset);
2854 
2855 	if (sc->bge_flags & BGE_FLAG_PCIE)
2856 		DELAY(100 * 1000);
2857 	else
2858 		DELAY(1000);
2859 
2860 	/* XXX: Broadcom Linux driver. */
2861 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2862 		uint16_t devctl;
2863 
2864 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2865 			uint32_t v;
2866 
2867 			DELAY(500000); /* wait for link training to complete */
2868 			v = pci_read_config(dev, 0xc4, 4);
2869 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
2870 		}
2871 
2872 		devctl = pci_read_config(dev,
2873 		    sc->bge_pciecap + PCIER_DEVCTRL, 2);
2874 
2875 		/* Disable no snoop and disable relaxed ordering. */
2876 		devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2877 
2878 		/* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2879 		if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2880 			devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2881 			devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2882 		}
2883 
2884 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2885 		    devctl, 2);
2886 
2887 		/* Clear error status. */
2888 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2889 		    PCIEM_DEVSTS_CORR_ERR |
2890 		    PCIEM_DEVSTS_NFATAL_ERR |
2891 		    PCIEM_DEVSTS_FATAL_ERR |
2892 		    PCIEM_DEVSTS_UNSUPP_REQ, 2);
2893 	}
2894 
2895 	/* Reset some of the PCI state that got zapped by reset */
2896 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2897 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2898 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2899 	    sc->bge_pci_miscctl, 4);
2900 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
2901 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
2902 	    (sc->bge_flags & BGE_FLAG_PCIX))
2903 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
2904 	if (sc->bge_mfw_flags & BGE_MFW_ON_APE) {
2905 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2906 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2907 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2908 	}
2909 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
2910 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2911 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2912 
2913 	/*
2914 	 * Disable PCI-X relaxed ordering to ensure status block update
2915 	 * comes first then packet buffer DMA. Otherwise driver may
2916 	 * read stale status block.
2917 	 */
2918 	if (sc->bge_flags & BGE_FLAG_PCIX) {
2919 		uint16_t devctl;
2920 
2921 		devctl = pci_read_config(dev,
2922 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
2923 		devctl &= ~PCIXM_COMMAND_ERO;
2924 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2925 			devctl &= ~PCIXM_COMMAND_MAX_READ;
2926 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2927 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2928 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2929 			    PCIXM_COMMAND_MAX_READ);
2930 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2931 		}
2932 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2933 		    devctl, 2);
2934 	}
2935 
2936 	/*
2937 	 * Enable memory arbiter and re-enable MSI if necessary.
2938 	 */
2939 	if (BGE_IS_5714_FAMILY(sc)) {
2940 		uint32_t val;
2941 
2942 		if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2943 			/*
2944 			 * Resetting BCM5714 family will clear MSI
2945 			 * enable bit; restore it after resetting.
2946 			 */
2947 			PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2948 			    PCIM_MSICTRL_MSI_ENABLE, 2);
2949 			BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2950 		}
2951 		val = CSR_READ_4(sc, BGE_MARB_MODE);
2952 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2953 	} else {
2954 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2955 	}
2956 
2957 	/* Fix up byte swapping. */
2958 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2959 	    BGE_MODECTL_BYTESWAP_DATA);
2960 
2961 	val = CSR_READ_4(sc, BGE_MAC_MODE);
2962 	val = (val & ~mac_mode_mask) | mac_mode;
2963 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2964 	DELAY(40);
2965 
2966 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
2967 
2968 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2969 		for (i = 0; i < BGE_TIMEOUT; i++) {
2970 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2971 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2972 				break;
2973 			DELAY(100);
2974 		}
2975 		if (i == BGE_TIMEOUT) {
2976 			if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2977 			return;
2978 		}
2979 	} else {
2980 		int delay_us = 10;
2981 
2982 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2983 			delay_us = 100;
2984 
2985 		/*
2986 		 * Poll until we see the 1's complement of the magic number.
2987 		 * This indicates that the firmware initialization
2988 		 * is complete.
2989 		 */
2990 		for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2991 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2992 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2993 				break;
2994 			DELAY(delay_us);
2995 		}
2996 		if (i == BGE_FIRMWARE_TIMEOUT) {
2997 			if_printf(&sc->arpcom.ac_if, "firmware handshake "
2998 				  "timed out, found 0x%08x\n", val);
2999 		}
3000 	}
3001 
3002 	/*
3003 	 * The 5704 in TBI mode apparently needs some special
3004 	 * adjustment to insure the SERDES drive level is set
3005 	 * to 1.2V.
3006 	 */
3007 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3008 	    (sc->bge_flags & BGE_FLAG_TBI)) {
3009 		uint32_t serdescfg;
3010 
3011 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3012 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
3013 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3014 	}
3015 
3016 	/* XXX: Broadcom Linux driver. */
3017 	if ((sc->bge_flags & BGE_FLAG_PCIE) &&
3018 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3019 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3020 		uint32_t v;
3021 
3022 		/* Enable Data FIFO protection. */
3023 		v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
3024 		CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
3025 	}
3026 
3027 	DELAY(10000);
3028 }
3029 
3030 /*
3031  * Frame reception handling. This is called if there's a frame
3032  * on the receive return list.
3033  *
3034  * Note: we have to be able to handle two possibilities here:
3035  * 1) the frame is from the jumbo recieve ring
3036  * 2) the frame is from the standard receive ring
3037  */
3038 
3039 static void
3040 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
3041 {
3042 	struct ifnet *ifp;
3043 	int stdcnt = 0, jumbocnt = 0;
3044 
3045 	ifp = &sc->arpcom.ac_if;
3046 
3047 	while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
3048 		struct bge_rx_bd	*cur_rx;
3049 		uint32_t		rxidx;
3050 		struct mbuf		*m = NULL;
3051 		uint16_t		vlan_tag = 0;
3052 		int			have_tag = 0;
3053 
3054 		--count;
3055 
3056 		cur_rx =
3057 	    &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3058 
3059 		rxidx = cur_rx->bge_idx;
3060 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3061 		logif(rx_pkt);
3062 
3063 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3064 			have_tag = 1;
3065 			vlan_tag = cur_rx->bge_vlan_tag;
3066 		}
3067 
3068 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3069 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3070 			jumbocnt++;
3071 
3072 			if (rxidx != sc->bge_jumbo) {
3073 				IFNET_STAT_INC(ifp, ierrors, 1);
3074 				if_printf(ifp, "sw jumbo index(%d) "
3075 				    "and hw jumbo index(%d) mismatch, drop!\n",
3076 				    sc->bge_jumbo, rxidx);
3077 				bge_setup_rxdesc_jumbo(sc, rxidx);
3078 				continue;
3079 			}
3080 
3081 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3082 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3083 				IFNET_STAT_INC(ifp, ierrors, 1);
3084 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3085 				continue;
3086 			}
3087 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3088 				IFNET_STAT_INC(ifp, ierrors, 1);
3089 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3090 				continue;
3091 			}
3092 		} else {
3093 			int discard = 0;
3094 
3095 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3096 			stdcnt++;
3097 
3098 			if (rxidx != sc->bge_std) {
3099 				IFNET_STAT_INC(ifp, ierrors, 1);
3100 				if_printf(ifp, "sw std index(%d) "
3101 				    "and hw std index(%d) mismatch, drop!\n",
3102 				    sc->bge_std, rxidx);
3103 				bge_setup_rxdesc_std(sc, rxidx);
3104 				discard = 1;
3105 				goto refresh_rx;
3106 			}
3107 
3108 			m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3109 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3110 				IFNET_STAT_INC(ifp, ierrors, 1);
3111 				bge_setup_rxdesc_std(sc, sc->bge_std);
3112 				discard = 1;
3113 				goto refresh_rx;
3114 			}
3115 			if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3116 				IFNET_STAT_INC(ifp, ierrors, 1);
3117 				bge_setup_rxdesc_std(sc, sc->bge_std);
3118 				discard = 1;
3119 			}
3120 refresh_rx:
3121 			if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3122 				bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3123 				    sc->bge_std);
3124 				stdcnt = 0;
3125 			}
3126 			if (discard)
3127 				continue;
3128 		}
3129 
3130 		IFNET_STAT_INC(ifp, ipackets, 1);
3131 #if !defined(__i386__) && !defined(__x86_64__)
3132 		/*
3133 		 * The x86 allows unaligned accesses, but for other
3134 		 * platforms we must make sure the payload is aligned.
3135 		 */
3136 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3137 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3138 			    cur_rx->bge_len);
3139 			m->m_data += ETHER_ALIGN;
3140 		}
3141 #endif
3142 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3143 		m->m_pkthdr.rcvif = ifp;
3144 
3145 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3146 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3147 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3148 				if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3149 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3150 			}
3151 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3152 			    m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3153 				m->m_pkthdr.csum_data =
3154 					cur_rx->bge_tcp_udp_csum;
3155 				m->m_pkthdr.csum_flags |=
3156 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3157 			}
3158 		}
3159 
3160 		/*
3161 		 * If we received a packet with a vlan tag, pass it
3162 		 * to vlan_input() instead of ether_input().
3163 		 */
3164 		if (have_tag) {
3165 			m->m_flags |= M_VLANTAG;
3166 			m->m_pkthdr.ether_vlantag = vlan_tag;
3167 		}
3168 		ifp->if_input(ifp, m, NULL, -1);
3169 	}
3170 
3171 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3172 	if (stdcnt)
3173 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3174 	if (jumbocnt)
3175 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3176 }
3177 
3178 static void
3179 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3180 {
3181 	struct ifnet *ifp;
3182 
3183 	ifp = &sc->arpcom.ac_if;
3184 
3185 	/*
3186 	 * Go through our tx ring and free mbufs for those
3187 	 * frames that have been sent.
3188 	 */
3189 	while (sc->bge_tx_saved_considx != tx_cons) {
3190 		uint32_t idx = 0;
3191 
3192 		idx = sc->bge_tx_saved_considx;
3193 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3194 			IFNET_STAT_INC(ifp, opackets, 1);
3195 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3196 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3197 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3198 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3199 		}
3200 		sc->bge_txcnt--;
3201 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3202 		logif(tx_pkt);
3203 	}
3204 
3205 	if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3206 	    (sc->bge_txrsvd + sc->bge_txspare))
3207 		ifq_clr_oactive(&ifp->if_snd);
3208 
3209 	if (sc->bge_txcnt == 0)
3210 		ifp->if_timer = 0;
3211 
3212 	if (!ifq_is_empty(&ifp->if_snd))
3213 		if_devstart(ifp);
3214 }
3215 
3216 #ifdef IFPOLL_ENABLE
3217 
3218 static void
3219 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3220 {
3221 	struct bge_softc *sc = ifp->if_softc;
3222 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3223 	uint16_t rx_prod, tx_cons;
3224 
3225 	ASSERT_SERIALIZED(ifp->if_serializer);
3226 
3227 	if (sc->bge_npoll.ifpc_stcount-- == 0) {
3228 		sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3229 		/*
3230 		 * Process link state changes.
3231 		 */
3232 		bge_link_poll(sc);
3233 	}
3234 
3235 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3236 		sc->bge_status_tag = sblk->bge_status_tag;
3237 		/*
3238 		 * Use a load fence to ensure that status_tag
3239 		 * is saved  before rx_prod and tx_cons.
3240 		 */
3241 		cpu_lfence();
3242 	}
3243 
3244 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3245 	if (sc->bge_rx_saved_considx != rx_prod)
3246 		bge_rxeof(sc, rx_prod, cycles);
3247 
3248 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3249 	if (sc->bge_tx_saved_considx != tx_cons)
3250 		bge_txeof(sc, tx_cons);
3251 
3252 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3253 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3254 
3255 	if (sc->bge_coal_chg)
3256 		bge_coal_change(sc);
3257 }
3258 
3259 static void
3260 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3261 {
3262 	struct bge_softc *sc = ifp->if_softc;
3263 
3264 	ASSERT_SERIALIZED(ifp->if_serializer);
3265 
3266 	if (info != NULL) {
3267 		int cpuid = sc->bge_npoll.ifpc_cpuid;
3268 
3269 		info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3270 		info->ifpi_rx[cpuid].arg = NULL;
3271 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3272 
3273 		if (ifp->if_flags & IFF_RUNNING)
3274 			bge_disable_intr(sc);
3275 		ifq_set_cpuid(&ifp->if_snd, cpuid);
3276 	} else {
3277 		if (ifp->if_flags & IFF_RUNNING)
3278 			bge_enable_intr(sc);
3279 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3280 	}
3281 }
3282 
3283 #endif	/* IFPOLL_ENABLE */
3284 
3285 static void
3286 bge_intr_crippled(void *xsc)
3287 {
3288 	struct bge_softc *sc = xsc;
3289 	struct ifnet *ifp = &sc->arpcom.ac_if;
3290 
3291 	logif(intr);
3292 
3293  	/*
3294 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3295 	 * disable interrupts by writing nonzero like we used to, since with
3296 	 * our current organization this just gives complications and
3297 	 * pessimizations for re-enabling interrupts.  We used to have races
3298 	 * instead of the necessary complications.  Disabling interrupts
3299 	 * would just reduce the chance of a status update while we are
3300 	 * running (by switching to the interrupt-mode coalescence
3301 	 * parameters), but this chance is already very low so it is more
3302 	 * efficient to get another interrupt than prevent it.
3303 	 *
3304 	 * We do the ack first to ensure another interrupt if there is a
3305 	 * status update after the ack.  We don't check for the status
3306 	 * changing later because it is more efficient to get another
3307 	 * interrupt than prevent it, not quite as above (not checking is
3308 	 * a smaller optimization than not toggling the interrupt enable,
3309 	 * since checking doesn't involve PCI accesses and toggling require
3310 	 * the status check).  So toggling would probably be a pessimization
3311 	 * even with MSI.  It would only be needed for using a task queue.
3312 	 */
3313 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3314 
3315 	/*
3316 	 * Process link state changes.
3317 	 */
3318 	bge_link_poll(sc);
3319 
3320 	if (ifp->if_flags & IFF_RUNNING) {
3321 		struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3322 		uint16_t rx_prod, tx_cons;
3323 
3324 		rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3325 		if (sc->bge_rx_saved_considx != rx_prod)
3326 			bge_rxeof(sc, rx_prod, -1);
3327 
3328 		tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3329 		if (sc->bge_tx_saved_considx != tx_cons)
3330 			bge_txeof(sc, tx_cons);
3331 	}
3332 
3333 	if (sc->bge_coal_chg)
3334 		bge_coal_change(sc);
3335 }
3336 
3337 static void
3338 bge_intr_legacy(void *xsc)
3339 {
3340 	struct bge_softc *sc = xsc;
3341 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3342 
3343 	if (sc->bge_status_tag == sblk->bge_status_tag) {
3344 		uint32_t val;
3345 
3346 		val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3347 		if (val & BGE_PCISTAT_INTR_NOTACT)
3348 			return;
3349 	}
3350 
3351 	/*
3352 	 * NOTE:
3353 	 * Interrupt will have to be disabled if tagged status
3354 	 * is used, else interrupt will always be asserted on
3355 	 * certain chips (at least on BCM5750 AX/BX).
3356 	 */
3357 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3358 
3359 	bge_intr(sc);
3360 }
3361 
3362 static void
3363 bge_msi(void *xsc)
3364 {
3365 	struct bge_softc *sc = xsc;
3366 
3367 	/* Disable interrupt first */
3368 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3369 	bge_intr(sc);
3370 }
3371 
3372 static void
3373 bge_msi_oneshot(void *xsc)
3374 {
3375 	bge_intr(xsc);
3376 }
3377 
3378 static void
3379 bge_intr(struct bge_softc *sc)
3380 {
3381 	struct ifnet *ifp = &sc->arpcom.ac_if;
3382 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3383 	uint16_t rx_prod, tx_cons;
3384 	uint32_t status;
3385 
3386 	sc->bge_status_tag = sblk->bge_status_tag;
3387 	/*
3388 	 * Use a load fence to ensure that status_tag is saved
3389 	 * before rx_prod, tx_cons and status.
3390 	 */
3391 	cpu_lfence();
3392 
3393 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3394 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3395 	status = sblk->bge_status;
3396 
3397 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3398 		bge_link_poll(sc);
3399 
3400 	if (ifp->if_flags & IFF_RUNNING) {
3401 		if (sc->bge_rx_saved_considx != rx_prod)
3402 			bge_rxeof(sc, rx_prod, -1);
3403 
3404 		if (sc->bge_tx_saved_considx != tx_cons)
3405 			bge_txeof(sc, tx_cons);
3406 	}
3407 
3408 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3409 
3410 	if (sc->bge_coal_chg)
3411 		bge_coal_change(sc);
3412 }
3413 
3414 static void
3415 bge_tick(void *xsc)
3416 {
3417 	struct bge_softc *sc = xsc;
3418 	struct ifnet *ifp = &sc->arpcom.ac_if;
3419 
3420 	lwkt_serialize_enter(ifp->if_serializer);
3421 
3422 	if (BGE_IS_5705_PLUS(sc))
3423 		bge_stats_update_regs(sc);
3424 	else
3425 		bge_stats_update(sc);
3426 
3427 	if (sc->bge_flags & BGE_FLAG_TBI) {
3428 		/*
3429 		 * Since in TBI mode auto-polling can't be used we should poll
3430 		 * link status manually. Here we register pending link event
3431 		 * and trigger interrupt.
3432 		 */
3433 		sc->bge_link_evt++;
3434 		if (BGE_IS_CRIPPLED(sc))
3435 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3436 		else
3437 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3438 	} else if (!sc->bge_link) {
3439 		mii_tick(device_get_softc(sc->bge_miibus));
3440 	}
3441 
3442 	bge_asf_driver_up(sc);
3443 
3444 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3445 
3446 	lwkt_serialize_exit(ifp->if_serializer);
3447 }
3448 
3449 static void
3450 bge_stats_update_regs(struct bge_softc *sc)
3451 {
3452 	struct ifnet *ifp = &sc->arpcom.ac_if;
3453 	struct bge_mac_stats_regs stats;
3454 	uint32_t *s;
3455 	int i;
3456 
3457 	s = (uint32_t *)&stats;
3458 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3459 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
3460 		s++;
3461 	}
3462 
3463 	IFNET_STAT_SET(ifp, collisions,
3464 	   (stats.dot3StatsSingleCollisionFrames +
3465 	   stats.dot3StatsMultipleCollisionFrames +
3466 	   stats.dot3StatsExcessiveCollisions +
3467 	   stats.dot3StatsLateCollisions));
3468 }
3469 
3470 static void
3471 bge_stats_update(struct bge_softc *sc)
3472 {
3473 	struct ifnet *ifp = &sc->arpcom.ac_if;
3474 	bus_size_t stats;
3475 
3476 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3477 
3478 #define READ_STAT(sc, stats, stat)	\
3479 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3480 
3481 	IFNET_STAT_SET(ifp, collisions,
3482 	   (READ_STAT(sc, stats,
3483 		txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3484 	    READ_STAT(sc, stats,
3485 		txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3486 	    READ_STAT(sc, stats,
3487 		txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3488 	    READ_STAT(sc, stats,
3489 		txstats.dot3StatsLateCollisions.bge_addr_lo)));
3490 
3491 #undef READ_STAT
3492 
3493 #ifdef notdef
3494 	IFNET_STAT_SET(ifp, collisions,
3495 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3496 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3497 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3498 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3499 #endif
3500 }
3501 
3502 /*
3503  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3504  * pointers to descriptors.
3505  */
3506 static int
3507 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3508     int *segs_used)
3509 {
3510 	struct bge_tx_bd *d = NULL, *last_d;
3511 	uint16_t csum_flags = 0, mss = 0;
3512 	bus_dma_segment_t segs[BGE_NSEG_NEW];
3513 	bus_dmamap_t map;
3514 	int error, maxsegs, nsegs, idx, i;
3515 	struct mbuf *m_head = *m_head0, *m_new;
3516 
3517 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3518 		error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3519 		if (error)
3520 			return ENOBUFS;
3521 		m_head = *m_head0;
3522 	} else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3523 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3524 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3525 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3526 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3527 		if (m_head->m_flags & M_LASTFRAG)
3528 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3529 		else if (m_head->m_flags & M_FRAG)
3530 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3531 	}
3532 
3533 	idx = *txidx;
3534 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3535 
3536 	maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3537 	KASSERT(maxsegs >= sc->bge_txspare,
3538 		("not enough segments %d", maxsegs));
3539 
3540 	if (maxsegs > BGE_NSEG_NEW)
3541 		maxsegs = BGE_NSEG_NEW;
3542 
3543 	/*
3544 	 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3545 	 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3546 	 * but when such padded frames employ the bge IP/TCP checksum
3547 	 * offload, the hardware checksum assist gives incorrect results
3548 	 * (possibly from incorporating its own padding into the UDP/TCP
3549 	 * checksum; who knows).  If we pad such runts with zeros, the
3550 	 * onboard checksum comes out correct.
3551 	 */
3552 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3553 	    m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3554 		error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3555 		if (error)
3556 			goto back;
3557 	}
3558 
3559 	if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3560 		m_new = bge_defrag_shortdma(m_head);
3561 		if (m_new == NULL) {
3562 			error = ENOBUFS;
3563 			goto back;
3564 		}
3565 		*m_head0 = m_head = m_new;
3566 	}
3567 	if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3568 	    sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3569 	    m_head->m_next != NULL) {
3570 		/*
3571 		 * Forcefully defragment mbuf chain to overcome hardware
3572 		 * limitation which only support a single outstanding
3573 		 * DMA read operation.  If it fails, keep moving on using
3574 		 * the original mbuf chain.
3575 		 */
3576 		m_new = m_defrag(m_head, M_NOWAIT);
3577 		if (m_new != NULL)
3578 			*m_head0 = m_head = m_new;
3579 	}
3580 
3581 	error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3582 			m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3583 	if (error)
3584 		goto back;
3585 	*segs_used += nsegs;
3586 
3587 	m_head = *m_head0;
3588 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3589 
3590 	for (i = 0; ; i++) {
3591 		d = &sc->bge_ldata.bge_tx_ring[idx];
3592 
3593 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3594 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3595 		d->bge_len = segs[i].ds_len;
3596 		d->bge_flags = csum_flags;
3597 		d->bge_mss = mss;
3598 
3599 		if (i == nsegs - 1)
3600 			break;
3601 		BGE_INC(idx, BGE_TX_RING_CNT);
3602 	}
3603 	last_d = d;
3604 
3605 	/* Set vlan tag to the first segment of the packet. */
3606 	d = &sc->bge_ldata.bge_tx_ring[*txidx];
3607 	if (m_head->m_flags & M_VLANTAG) {
3608 		d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3609 		d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3610 	} else {
3611 		d->bge_vlan_tag = 0;
3612 	}
3613 
3614 	/* Mark the last segment as end of packet... */
3615 	last_d->bge_flags |= BGE_TXBDFLAG_END;
3616 
3617 	/*
3618 	 * Insure that the map for this transmission is placed at
3619 	 * the array index of the last descriptor in this chain.
3620 	 */
3621 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3622 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3623 	sc->bge_cdata.bge_tx_chain[idx] = m_head;
3624 	sc->bge_txcnt += nsegs;
3625 
3626 	BGE_INC(idx, BGE_TX_RING_CNT);
3627 	*txidx = idx;
3628 back:
3629 	if (error) {
3630 		m_freem(*m_head0);
3631 		*m_head0 = NULL;
3632 	}
3633 	return error;
3634 }
3635 
3636 static void
3637 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3638 {
3639 	/* Transmit */
3640 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3641 	/* 5700 b2 errata */
3642 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3643 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3644 }
3645 
3646 /*
3647  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3648  * to the mbuf data regions directly in the transmit descriptors.
3649  */
3650 static void
3651 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3652 {
3653 	struct bge_softc *sc = ifp->if_softc;
3654 	struct mbuf *m_head = NULL;
3655 	uint32_t prodidx;
3656 	int nsegs = 0;
3657 
3658 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3659 
3660 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3661 		return;
3662 
3663 	prodidx = sc->bge_tx_prodidx;
3664 
3665 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3666 		m_head = ifq_dequeue(&ifp->if_snd);
3667 		if (m_head == NULL)
3668 			break;
3669 
3670 		/*
3671 		 * XXX
3672 		 * The code inside the if() block is never reached since we
3673 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3674 		 * requests to checksum TCP/UDP in a fragmented packet.
3675 		 *
3676 		 * XXX
3677 		 * safety overkill.  If this is a fragmented packet chain
3678 		 * with delayed TCP/UDP checksums, then only encapsulate
3679 		 * it if we have enough descriptors to handle the entire
3680 		 * chain at once.
3681 		 * (paranoia -- may not actually be needed)
3682 		 */
3683 		if ((m_head->m_flags & M_FIRSTFRAG) &&
3684 		    (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3685 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3686 			    m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3687 				ifq_set_oactive(&ifp->if_snd);
3688 				ifq_prepend(&ifp->if_snd, m_head);
3689 				break;
3690 			}
3691 		}
3692 
3693 		/*
3694 		 * Sanity check: avoid coming within bge_txrsvd
3695 		 * descriptors of the end of the ring.  Also make
3696 		 * sure there are bge_txspare descriptors for
3697 		 * jumbo buffers' defragmentation.
3698 		 */
3699 		if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3700 		    (sc->bge_txrsvd + sc->bge_txspare)) {
3701 			ifq_set_oactive(&ifp->if_snd);
3702 			ifq_prepend(&ifp->if_snd, m_head);
3703 			break;
3704 		}
3705 
3706 		/*
3707 		 * Pack the data into the transmit ring. If we
3708 		 * don't have room, set the OACTIVE flag and wait
3709 		 * for the NIC to drain the ring.
3710 		 */
3711 		if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3712 			ifq_set_oactive(&ifp->if_snd);
3713 			IFNET_STAT_INC(ifp, oerrors, 1);
3714 			break;
3715 		}
3716 
3717 		if (nsegs >= sc->bge_tx_wreg) {
3718 			bge_xmit(sc, prodidx);
3719 			nsegs = 0;
3720 		}
3721 
3722 		ETHER_BPF_MTAP(ifp, m_head);
3723 
3724 		/*
3725 		 * Set a timeout in case the chip goes out to lunch.
3726 		 */
3727 		ifp->if_timer = 5;
3728 	}
3729 
3730 	if (nsegs > 0)
3731 		bge_xmit(sc, prodidx);
3732 	sc->bge_tx_prodidx = prodidx;
3733 }
3734 
3735 static void
3736 bge_init(void *xsc)
3737 {
3738 	struct bge_softc *sc = xsc;
3739 	struct ifnet *ifp = &sc->arpcom.ac_if;
3740 	uint16_t *m;
3741 	uint32_t mode;
3742 
3743 	ASSERT_SERIALIZED(ifp->if_serializer);
3744 
3745 	/* Cancel pending I/O and flush buffers. */
3746 	bge_stop(sc);
3747 
3748 	bge_stop_fw(sc);
3749 	bge_sig_pre_reset(sc, BGE_RESET_START);
3750 	bge_reset(sc);
3751 	bge_sig_legacy(sc, BGE_RESET_START);
3752 	bge_sig_post_reset(sc, BGE_RESET_START);
3753 
3754 	bge_chipinit(sc);
3755 
3756 	/*
3757 	 * Init the various state machines, ring
3758 	 * control blocks and firmware.
3759 	 */
3760 	if (bge_blockinit(sc)) {
3761 		if_printf(ifp, "initialization failure\n");
3762 		bge_stop(sc);
3763 		return;
3764 	}
3765 
3766 	/* Specify MTU. */
3767 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3768 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3769 
3770 	/* Load our MAC address. */
3771 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3772 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3773 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3774 
3775 	/* Enable or disable promiscuous mode as needed. */
3776 	bge_setpromisc(sc);
3777 
3778 	/* Program multicast filter. */
3779 	bge_setmulti(sc);
3780 
3781 	/* Init RX ring. */
3782 	if (bge_init_rx_ring_std(sc)) {
3783 		if_printf(ifp, "RX ring initialization failed\n");
3784 		bge_stop(sc);
3785 		return;
3786 	}
3787 
3788 	/*
3789 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3790 	 * memory to insure that the chip has in fact read the first
3791 	 * entry of the ring.
3792 	 */
3793 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3794 		uint32_t		v, i;
3795 		for (i = 0; i < 10; i++) {
3796 			DELAY(20);
3797 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3798 			if (v == (MCLBYTES - ETHER_ALIGN))
3799 				break;
3800 		}
3801 		if (i == 10)
3802 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3803 	}
3804 
3805 	/* Init jumbo RX ring. */
3806 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3807 		if (bge_init_rx_ring_jumbo(sc)) {
3808 			if_printf(ifp, "Jumbo RX ring initialization failed\n");
3809 			bge_stop(sc);
3810 			return;
3811 		}
3812 	}
3813 
3814 	/* Init our RX return ring index */
3815 	sc->bge_rx_saved_considx = 0;
3816 
3817 	/* Init TX ring. */
3818 	bge_init_tx_ring(sc);
3819 
3820 	/* Enable TX MAC state machine lockup fix. */
3821 	mode = CSR_READ_4(sc, BGE_TX_MODE);
3822 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3823 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3824 	/* Turn on transmitter */
3825 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3826 	DELAY(100);
3827 
3828 	/* Turn on receiver */
3829 	mode = CSR_READ_4(sc, BGE_RX_MODE);
3830 	if (BGE_IS_5755_PLUS(sc))
3831 		mode |= BGE_RXMODE_IPV6_ENABLE;
3832 	CSR_WRITE_4(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
3833 	DELAY(10);
3834 
3835 	/*
3836 	 * Set the number of good frames to receive after RX MBUF
3837 	 * Low Watermark has been reached.  After the RX MAC receives
3838 	 * this number of frames, it will drop subsequent incoming
3839 	 * frames until the MBUF High Watermark is reached.
3840 	 */
3841 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3842 
3843 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3844 		if (bootverbose) {
3845 			if_printf(ifp, "MSI_MODE: %#x\n",
3846 			    CSR_READ_4(sc, BGE_MSI_MODE));
3847 		}
3848 
3849 		/*
3850 		 * XXX
3851 		 * Linux driver turns it on for all chips supporting MSI?!
3852 		 */
3853 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3854 			/*
3855 			 * XXX
3856 			 * According to 5722-PG101-R,
3857 			 * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3858 			 * BCM5906.
3859 			 */
3860 			BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3861 			    BGE_PCIE_TRANSACT_ONESHOT_MSI);
3862 		}
3863 	}
3864 
3865 	/* Tell firmware we're alive. */
3866 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3867 
3868 	/* Enable host interrupts if polling(4) is not enabled. */
3869 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3870 #ifdef IFPOLL_ENABLE
3871 	if (ifp->if_flags & IFF_NPOLLING)
3872 		bge_disable_intr(sc);
3873 	else
3874 #endif
3875 	bge_enable_intr(sc);
3876 
3877 	ifp->if_flags |= IFF_RUNNING;
3878 	ifq_clr_oactive(&ifp->if_snd);
3879 
3880 	bge_ifmedia_upd(ifp);
3881 
3882 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3883 }
3884 
3885 /*
3886  * Set media options.
3887  */
3888 static int
3889 bge_ifmedia_upd(struct ifnet *ifp)
3890 {
3891 	struct bge_softc *sc = ifp->if_softc;
3892 
3893 	/* If this is a 1000baseX NIC, enable the TBI port. */
3894 	if (sc->bge_flags & BGE_FLAG_TBI) {
3895 		struct ifmedia *ifm = &sc->bge_ifmedia;
3896 
3897 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3898 			return(EINVAL);
3899 
3900 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3901 		case IFM_AUTO:
3902 			/*
3903 			 * The BCM5704 ASIC appears to have a special
3904 			 * mechanism for programming the autoneg
3905 			 * advertisement registers in TBI mode.
3906 			 */
3907 			if (!bge_fake_autoneg &&
3908 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3909 				uint32_t sgdig;
3910 
3911 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3912 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3913 				sgdig |= BGE_SGDIGCFG_AUTO |
3914 					 BGE_SGDIGCFG_PAUSE_CAP |
3915 					 BGE_SGDIGCFG_ASYM_PAUSE;
3916 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3917 					    sgdig | BGE_SGDIGCFG_SEND);
3918 				DELAY(5);
3919 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3920 			}
3921 			break;
3922 		case IFM_1000_SX:
3923 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3924 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3925 				    BGE_MACMODE_HALF_DUPLEX);
3926 			} else {
3927 				BGE_SETBIT(sc, BGE_MAC_MODE,
3928 				    BGE_MACMODE_HALF_DUPLEX);
3929 			}
3930 			DELAY(40);
3931 			break;
3932 		default:
3933 			return(EINVAL);
3934 		}
3935 	} else {
3936 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3937 
3938 		sc->bge_link_evt++;
3939 		sc->bge_link = 0;
3940 		if (mii->mii_instance) {
3941 			struct mii_softc *miisc;
3942 
3943 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3944 				mii_phy_reset(miisc);
3945 		}
3946 		mii_mediachg(mii);
3947 
3948 		/*
3949 		 * Force an interrupt so that we will call bge_link_upd
3950 		 * if needed and clear any pending link state attention.
3951 		 * Without this we are not getting any further interrupts
3952 		 * for link state changes and thus will not UP the link and
3953 		 * not be able to send in bge_start.  The only way to get
3954 		 * things working was to receive a packet and get an RX
3955 		 * intr.
3956 		 *
3957 		 * bge_tick should help for fiber cards and we might not
3958 		 * need to do this here if BGE_FLAG_TBI is set but as
3959 		 * we poll for fiber anyway it should not harm.
3960 		 */
3961 		if (BGE_IS_CRIPPLED(sc))
3962 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3963 		else
3964 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3965 	}
3966 	return(0);
3967 }
3968 
3969 /*
3970  * Report current media status.
3971  */
3972 static void
3973 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3974 {
3975 	struct bge_softc *sc = ifp->if_softc;
3976 
3977 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3978 		return;
3979 
3980 	if (sc->bge_flags & BGE_FLAG_TBI) {
3981 		ifmr->ifm_status = IFM_AVALID;
3982 		ifmr->ifm_active = IFM_ETHER;
3983 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3984 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3985 			ifmr->ifm_status |= IFM_ACTIVE;
3986 		} else {
3987 			ifmr->ifm_active |= IFM_NONE;
3988 			return;
3989 		}
3990 
3991 		ifmr->ifm_active |= IFM_1000_SX;
3992 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3993 			ifmr->ifm_active |= IFM_HDX;
3994 		else
3995 			ifmr->ifm_active |= IFM_FDX;
3996 	} else {
3997 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3998 
3999 		mii_pollstat(mii);
4000 		ifmr->ifm_active = mii->mii_media_active;
4001 		ifmr->ifm_status = mii->mii_media_status;
4002 	}
4003 }
4004 
4005 static int
4006 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
4007 {
4008 	struct bge_softc *sc = ifp->if_softc;
4009 	struct ifreq *ifr = (struct ifreq *)data;
4010 	int mask, error = 0;
4011 
4012 	ASSERT_SERIALIZED(ifp->if_serializer);
4013 
4014 	switch (command) {
4015 	case SIOCSIFMTU:
4016 		if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
4017 		    (BGE_IS_JUMBO_CAPABLE(sc) &&
4018 		     ifr->ifr_mtu > BGE_JUMBO_MTU)) {
4019 			error = EINVAL;
4020 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
4021 			ifp->if_mtu = ifr->ifr_mtu;
4022 			if (ifp->if_flags & IFF_RUNNING)
4023 				bge_init(sc);
4024 		}
4025 		break;
4026 	case SIOCSIFFLAGS:
4027 		if (ifp->if_flags & IFF_UP) {
4028 			if (ifp->if_flags & IFF_RUNNING) {
4029 				mask = ifp->if_flags ^ sc->bge_if_flags;
4030 
4031 				/*
4032 				 * If only the state of the PROMISC flag
4033 				 * changed, then just use the 'set promisc
4034 				 * mode' command instead of reinitializing
4035 				 * the entire NIC. Doing a full re-init
4036 				 * means reloading the firmware and waiting
4037 				 * for it to start up, which may take a
4038 				 * second or two.  Similarly for ALLMULTI.
4039 				 */
4040 				if (mask & IFF_PROMISC)
4041 					bge_setpromisc(sc);
4042 				if (mask & IFF_ALLMULTI)
4043 					bge_setmulti(sc);
4044 			} else {
4045 				bge_init(sc);
4046 			}
4047 		} else if (ifp->if_flags & IFF_RUNNING) {
4048 			bge_stop(sc);
4049 		}
4050 		sc->bge_if_flags = ifp->if_flags;
4051 		break;
4052 	case SIOCADDMULTI:
4053 	case SIOCDELMULTI:
4054 		if (ifp->if_flags & IFF_RUNNING)
4055 			bge_setmulti(sc);
4056 		break;
4057 	case SIOCSIFMEDIA:
4058 	case SIOCGIFMEDIA:
4059 		if (sc->bge_flags & BGE_FLAG_TBI) {
4060 			error = ifmedia_ioctl(ifp, ifr,
4061 			    &sc->bge_ifmedia, command);
4062 		} else {
4063 			struct mii_data *mii;
4064 
4065 			mii = device_get_softc(sc->bge_miibus);
4066 			error = ifmedia_ioctl(ifp, ifr,
4067 					      &mii->mii_media, command);
4068 		}
4069 		break;
4070         case SIOCSIFCAP:
4071 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4072 		if (mask & IFCAP_HWCSUM) {
4073 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4074 			if (ifp->if_capenable & IFCAP_TXCSUM)
4075 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4076 			else
4077 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4078 		}
4079 		if (mask & IFCAP_TSO) {
4080 			ifp->if_capenable ^= IFCAP_TSO;
4081 			if (ifp->if_capenable & IFCAP_TSO)
4082 				ifp->if_hwassist |= CSUM_TSO;
4083 			else
4084 				ifp->if_hwassist &= ~CSUM_TSO;
4085 		}
4086 		break;
4087 	default:
4088 		error = ether_ioctl(ifp, command, data);
4089 		break;
4090 	}
4091 	return error;
4092 }
4093 
4094 static void
4095 bge_watchdog(struct ifnet *ifp)
4096 {
4097 	struct bge_softc *sc = ifp->if_softc;
4098 
4099 	if_printf(ifp, "watchdog timeout -- resetting\n");
4100 
4101 	bge_init(sc);
4102 
4103 	IFNET_STAT_INC(ifp, oerrors, 1);
4104 
4105 	if (!ifq_is_empty(&ifp->if_snd))
4106 		if_devstart(ifp);
4107 }
4108 
4109 /*
4110  * Stop the adapter and free any mbufs allocated to the
4111  * RX and TX lists.
4112  */
4113 static void
4114 bge_stop(struct bge_softc *sc)
4115 {
4116 	struct ifnet *ifp = &sc->arpcom.ac_if;
4117 
4118 	ASSERT_SERIALIZED(ifp->if_serializer);
4119 
4120 	callout_stop(&sc->bge_stat_timer);
4121 
4122 	/* Disable host interrupts. */
4123 	bge_disable_intr(sc);
4124 
4125 	/*
4126 	 * Tell firmware we're shutting down.
4127 	 */
4128 	bge_stop_fw(sc);
4129 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4130 
4131 	/*
4132 	 * Disable all of the receiver blocks
4133 	 */
4134 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4135 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4136 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4137 	if (BGE_IS_5700_FAMILY(sc))
4138 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4139 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4140 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4141 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4142 
4143 	/*
4144 	 * Disable all of the transmit blocks
4145 	 */
4146 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4147 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4148 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4149 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4150 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4151 	if (BGE_IS_5700_FAMILY(sc))
4152 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4153 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4154 
4155 	/*
4156 	 * Shut down all of the memory managers and related
4157 	 * state machines.
4158 	 */
4159 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4160 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4161 	if (BGE_IS_5700_FAMILY(sc))
4162 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4163 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4164 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4165 	if (!BGE_IS_5705_PLUS(sc)) {
4166 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4167 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4168 	}
4169 
4170 	bge_reset(sc);
4171 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4172 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4173 
4174 	/*
4175 	 * Keep the ASF firmware running if up.
4176 	 */
4177 	if (sc->bge_asf_mode & ASF_STACKUP)
4178 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4179 	else
4180 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4181 
4182 	/* Free the RX lists. */
4183 	bge_free_rx_ring_std(sc);
4184 
4185 	/* Free jumbo RX list. */
4186 	if (BGE_IS_JUMBO_CAPABLE(sc))
4187 		bge_free_rx_ring_jumbo(sc);
4188 
4189 	/* Free TX buffers. */
4190 	bge_free_tx_ring(sc);
4191 
4192 	sc->bge_status_tag = 0;
4193 	sc->bge_link = 0;
4194 	sc->bge_coal_chg = 0;
4195 
4196 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4197 
4198 	ifp->if_flags &= ~IFF_RUNNING;
4199 	ifq_clr_oactive(&ifp->if_snd);
4200 	ifp->if_timer = 0;
4201 }
4202 
4203 /*
4204  * Stop all chip I/O so that the kernel's probe routines don't
4205  * get confused by errant DMAs when rebooting.
4206  */
4207 static void
4208 bge_shutdown(device_t dev)
4209 {
4210 	struct bge_softc *sc = device_get_softc(dev);
4211 	struct ifnet *ifp = &sc->arpcom.ac_if;
4212 
4213 	lwkt_serialize_enter(ifp->if_serializer);
4214 	bge_stop(sc);
4215 	lwkt_serialize_exit(ifp->if_serializer);
4216 }
4217 
4218 static int
4219 bge_suspend(device_t dev)
4220 {
4221 	struct bge_softc *sc = device_get_softc(dev);
4222 	struct ifnet *ifp = &sc->arpcom.ac_if;
4223 
4224 	lwkt_serialize_enter(ifp->if_serializer);
4225 	bge_stop(sc);
4226 	lwkt_serialize_exit(ifp->if_serializer);
4227 
4228 	return 0;
4229 }
4230 
4231 static int
4232 bge_resume(device_t dev)
4233 {
4234 	struct bge_softc *sc = device_get_softc(dev);
4235 	struct ifnet *ifp = &sc->arpcom.ac_if;
4236 
4237 	lwkt_serialize_enter(ifp->if_serializer);
4238 
4239 	if (ifp->if_flags & IFF_UP) {
4240 		bge_init(sc);
4241 
4242 		if (!ifq_is_empty(&ifp->if_snd))
4243 			if_devstart(ifp);
4244 	}
4245 
4246 	lwkt_serialize_exit(ifp->if_serializer);
4247 
4248 	return 0;
4249 }
4250 
4251 static void
4252 bge_setpromisc(struct bge_softc *sc)
4253 {
4254 	struct ifnet *ifp = &sc->arpcom.ac_if;
4255 
4256 	if (ifp->if_flags & IFF_PROMISC)
4257 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4258 	else
4259 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4260 }
4261 
4262 static void
4263 bge_dma_free(struct bge_softc *sc)
4264 {
4265 	int i;
4266 
4267 	/* Destroy RX mbuf DMA stuffs. */
4268 	if (sc->bge_cdata.bge_rx_mtag != NULL) {
4269 		for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4270 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4271 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
4272 		}
4273 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4274 				   sc->bge_cdata.bge_rx_tmpmap);
4275 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4276 	}
4277 
4278 	/* Destroy TX mbuf DMA stuffs. */
4279 	if (sc->bge_cdata.bge_tx_mtag != NULL) {
4280 		for (i = 0; i < BGE_TX_RING_CNT; i++) {
4281 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4282 			    sc->bge_cdata.bge_tx_dmamap[i]);
4283 		}
4284 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4285 	}
4286 
4287 	/* Destroy standard RX ring */
4288 	bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4289 			   sc->bge_cdata.bge_rx_std_ring_map,
4290 			   sc->bge_ldata.bge_rx_std_ring);
4291 
4292 	if (BGE_IS_JUMBO_CAPABLE(sc))
4293 		bge_free_jumbo_mem(sc);
4294 
4295 	/* Destroy RX return ring */
4296 	bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4297 			   sc->bge_cdata.bge_rx_return_ring_map,
4298 			   sc->bge_ldata.bge_rx_return_ring);
4299 
4300 	/* Destroy TX ring */
4301 	bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4302 			   sc->bge_cdata.bge_tx_ring_map,
4303 			   sc->bge_ldata.bge_tx_ring);
4304 
4305 	/* Destroy status block */
4306 	bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4307 			   sc->bge_cdata.bge_status_map,
4308 			   sc->bge_ldata.bge_status_block);
4309 
4310 	/* Destroy statistics block */
4311 	bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4312 			   sc->bge_cdata.bge_stats_map,
4313 			   sc->bge_ldata.bge_stats);
4314 
4315 	/* Destroy the parent tag */
4316 	if (sc->bge_cdata.bge_parent_tag != NULL)
4317 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4318 }
4319 
4320 static int
4321 bge_dma_alloc(struct bge_softc *sc)
4322 {
4323 	struct ifnet *ifp = &sc->arpcom.ac_if;
4324 	int i, error;
4325 	bus_addr_t lowaddr;
4326 	bus_size_t txmaxsz;
4327 
4328 	lowaddr = BUS_SPACE_MAXADDR;
4329 	if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4330 		lowaddr = BGE_DMA_MAXADDR_40BIT;
4331 
4332 	/*
4333 	 * Allocate the parent bus DMA tag appropriate for PCI.
4334 	 *
4335 	 * All of the NetExtreme/NetLink controllers have 4GB boundary
4336 	 * DMA bug.
4337 	 * Whenever an address crosses a multiple of the 4GB boundary
4338 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4339 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4340 	 * state machine will lockup and cause the device to hang.
4341 	 */
4342 	error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4343 				   lowaddr, BUS_SPACE_MAXADDR,
4344 				   NULL, NULL,
4345 				   BUS_SPACE_MAXSIZE_32BIT, 0,
4346 				   BUS_SPACE_MAXSIZE_32BIT,
4347 				   0, &sc->bge_cdata.bge_parent_tag);
4348 	if (error) {
4349 		if_printf(ifp, "could not allocate parent dma tag\n");
4350 		return error;
4351 	}
4352 
4353 	/*
4354 	 * Create DMA tag and maps for RX mbufs.
4355 	 */
4356 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4357 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4358 				   NULL, NULL, MCLBYTES, 1, MCLBYTES,
4359 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4360 				   &sc->bge_cdata.bge_rx_mtag);
4361 	if (error) {
4362 		if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4363 		return error;
4364 	}
4365 
4366 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4367 				  BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4368 	if (error) {
4369 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4370 		sc->bge_cdata.bge_rx_mtag = NULL;
4371 		return error;
4372 	}
4373 
4374 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4375 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4376 					  BUS_DMA_WAITOK,
4377 					  &sc->bge_cdata.bge_rx_std_dmamap[i]);
4378 		if (error) {
4379 			int j;
4380 
4381 			for (j = 0; j < i; ++j) {
4382 				bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4383 					sc->bge_cdata.bge_rx_std_dmamap[j]);
4384 			}
4385 			bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4386 			sc->bge_cdata.bge_rx_mtag = NULL;
4387 
4388 			if_printf(ifp, "could not create DMA map for RX\n");
4389 			return error;
4390 		}
4391 	}
4392 
4393 	/*
4394 	 * Create DMA tag and maps for TX mbufs.
4395 	 */
4396 	if (sc->bge_flags & BGE_FLAG_TSO)
4397 		txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4398 	else
4399 		txmaxsz = BGE_JUMBO_FRAMELEN;
4400 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4401 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4402 				   NULL, NULL,
4403 				   txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4404 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4405 				   BUS_DMA_ONEBPAGE,
4406 				   &sc->bge_cdata.bge_tx_mtag);
4407 	if (error) {
4408 		if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4409 		return error;
4410 	}
4411 
4412 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
4413 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4414 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4415 					  &sc->bge_cdata.bge_tx_dmamap[i]);
4416 		if (error) {
4417 			int j;
4418 
4419 			for (j = 0; j < i; ++j) {
4420 				bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4421 					sc->bge_cdata.bge_tx_dmamap[j]);
4422 			}
4423 			bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4424 			sc->bge_cdata.bge_tx_mtag = NULL;
4425 
4426 			if_printf(ifp, "could not create DMA map for TX\n");
4427 			return error;
4428 		}
4429 	}
4430 
4431 	/*
4432 	 * Create DMA stuffs for standard RX ring.
4433 	 */
4434 	error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4435 				    &sc->bge_cdata.bge_rx_std_ring_tag,
4436 				    &sc->bge_cdata.bge_rx_std_ring_map,
4437 				    (void *)&sc->bge_ldata.bge_rx_std_ring,
4438 				    &sc->bge_ldata.bge_rx_std_ring_paddr);
4439 	if (error) {
4440 		if_printf(ifp, "could not create std RX ring\n");
4441 		return error;
4442 	}
4443 
4444 	/*
4445 	 * Create jumbo buffer pool.
4446 	 */
4447 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
4448 		error = bge_alloc_jumbo_mem(sc);
4449 		if (error) {
4450 			if_printf(ifp, "could not create jumbo buffer pool\n");
4451 			return error;
4452 		}
4453 	}
4454 
4455 	/*
4456 	 * Create DMA stuffs for RX return ring.
4457 	 */
4458 	error = bge_dma_block_alloc(sc,
4459 	    BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4460 	    &sc->bge_cdata.bge_rx_return_ring_tag,
4461 	    &sc->bge_cdata.bge_rx_return_ring_map,
4462 	    (void *)&sc->bge_ldata.bge_rx_return_ring,
4463 	    &sc->bge_ldata.bge_rx_return_ring_paddr);
4464 	if (error) {
4465 		if_printf(ifp, "could not create RX ret ring\n");
4466 		return error;
4467 	}
4468 
4469 	/*
4470 	 * Create DMA stuffs for TX ring.
4471 	 */
4472 	error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4473 				    &sc->bge_cdata.bge_tx_ring_tag,
4474 				    &sc->bge_cdata.bge_tx_ring_map,
4475 				    (void *)&sc->bge_ldata.bge_tx_ring,
4476 				    &sc->bge_ldata.bge_tx_ring_paddr);
4477 	if (error) {
4478 		if_printf(ifp, "could not create TX ring\n");
4479 		return error;
4480 	}
4481 
4482 	/*
4483 	 * Create DMA stuffs for status block.
4484 	 */
4485 	error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4486 				    &sc->bge_cdata.bge_status_tag,
4487 				    &sc->bge_cdata.bge_status_map,
4488 				    (void *)&sc->bge_ldata.bge_status_block,
4489 				    &sc->bge_ldata.bge_status_block_paddr);
4490 	if (error) {
4491 		if_printf(ifp, "could not create status block\n");
4492 		return error;
4493 	}
4494 
4495 	/*
4496 	 * Create DMA stuffs for statistics block.
4497 	 */
4498 	error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4499 				    &sc->bge_cdata.bge_stats_tag,
4500 				    &sc->bge_cdata.bge_stats_map,
4501 				    (void *)&sc->bge_ldata.bge_stats,
4502 				    &sc->bge_ldata.bge_stats_paddr);
4503 	if (error) {
4504 		if_printf(ifp, "could not create stats block\n");
4505 		return error;
4506 	}
4507 	return 0;
4508 }
4509 
4510 static int
4511 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4512 		    bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4513 {
4514 	bus_dmamem_t dmem;
4515 	int error;
4516 
4517 	error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4518 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4519 				    size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4520 	if (error)
4521 		return error;
4522 
4523 	*tag = dmem.dmem_tag;
4524 	*map = dmem.dmem_map;
4525 	*addr = dmem.dmem_addr;
4526 	*paddr = dmem.dmem_busaddr;
4527 
4528 	return 0;
4529 }
4530 
4531 static void
4532 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4533 {
4534 	if (tag != NULL) {
4535 		bus_dmamap_unload(tag, map);
4536 		bus_dmamem_free(tag, addr, map);
4537 		bus_dma_tag_destroy(tag);
4538 	}
4539 }
4540 
4541 /*
4542  * Grrr. The link status word in the status block does
4543  * not work correctly on the BCM5700 rev AX and BX chips,
4544  * according to all available information. Hence, we have
4545  * to enable MII interrupts in order to properly obtain
4546  * async link changes. Unfortunately, this also means that
4547  * we have to read the MAC status register to detect link
4548  * changes, thereby adding an additional register access to
4549  * the interrupt handler.
4550  *
4551  * XXX: perhaps link state detection procedure used for
4552  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4553  */
4554 static void
4555 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4556 {
4557 	struct ifnet *ifp = &sc->arpcom.ac_if;
4558 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4559 
4560 	mii_pollstat(mii);
4561 
4562 	if (!sc->bge_link &&
4563 	    (mii->mii_media_status & IFM_ACTIVE) &&
4564 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4565 		sc->bge_link++;
4566 		if (bootverbose)
4567 			if_printf(ifp, "link UP\n");
4568 	} else if (sc->bge_link &&
4569 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4570 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4571 		sc->bge_link = 0;
4572 		if (bootverbose)
4573 			if_printf(ifp, "link DOWN\n");
4574 	}
4575 
4576 	/* Clear the interrupt. */
4577 	CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4578 	bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4579 	bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4580 }
4581 
4582 static void
4583 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4584 {
4585 	struct ifnet *ifp = &sc->arpcom.ac_if;
4586 
4587 #define PCS_ENCODE_ERR	(BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4588 
4589 	/*
4590 	 * Sometimes PCS encoding errors are detected in
4591 	 * TBI mode (on fiber NICs), and for some reason
4592 	 * the chip will signal them as link changes.
4593 	 * If we get a link change event, but the 'PCS
4594 	 * encoding error' bit in the MAC status register
4595 	 * is set, don't bother doing a link check.
4596 	 * This avoids spurious "gigabit link up" messages
4597 	 * that sometimes appear on fiber NICs during
4598 	 * periods of heavy traffic.
4599 	 */
4600 	if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4601 		if (!sc->bge_link) {
4602 			sc->bge_link++;
4603 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4604 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4605 				    BGE_MACMODE_TBI_SEND_CFGS);
4606 				DELAY(40);
4607 			}
4608 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4609 
4610 			if (bootverbose)
4611 				if_printf(ifp, "link UP\n");
4612 
4613 			ifp->if_link_state = LINK_STATE_UP;
4614 			if_link_state_change(ifp);
4615 		}
4616 	} else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4617 		if (sc->bge_link) {
4618 			sc->bge_link = 0;
4619 
4620 			if (bootverbose)
4621 				if_printf(ifp, "link DOWN\n");
4622 
4623 			ifp->if_link_state = LINK_STATE_DOWN;
4624 			if_link_state_change(ifp);
4625 		}
4626 	}
4627 
4628 #undef PCS_ENCODE_ERR
4629 
4630 	/* Clear the attention. */
4631 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4632 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4633 	    BGE_MACSTAT_LINK_CHANGED);
4634 }
4635 
4636 static void
4637 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4638 {
4639 	struct ifnet *ifp = &sc->arpcom.ac_if;
4640 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4641 
4642 	mii_pollstat(mii);
4643 	bge_miibus_statchg(sc->bge_dev);
4644 
4645 	if (bootverbose) {
4646 		if (sc->bge_link)
4647 			if_printf(ifp, "link UP\n");
4648 		else
4649 			if_printf(ifp, "link DOWN\n");
4650 	}
4651 
4652 	/* Clear the attention. */
4653 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4654 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4655 	    BGE_MACSTAT_LINK_CHANGED);
4656 }
4657 
4658 static void
4659 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4660 {
4661 	struct ifnet *ifp = &sc->arpcom.ac_if;
4662 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4663 
4664 	mii_pollstat(mii);
4665 
4666 	if (!sc->bge_link &&
4667 	    (mii->mii_media_status & IFM_ACTIVE) &&
4668 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4669 		sc->bge_link++;
4670 		if (bootverbose)
4671 			if_printf(ifp, "link UP\n");
4672 	} else if (sc->bge_link &&
4673 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4674 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4675 		sc->bge_link = 0;
4676 		if (bootverbose)
4677 			if_printf(ifp, "link DOWN\n");
4678 	}
4679 
4680 	/* Clear the attention. */
4681 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4682 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4683 	    BGE_MACSTAT_LINK_CHANGED);
4684 }
4685 
4686 static int
4687 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4688 {
4689 	struct bge_softc *sc = arg1;
4690 
4691 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4692 	    &sc->bge_rx_coal_ticks,
4693 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4694 	    BGE_RX_COAL_TICKS_CHG);
4695 }
4696 
4697 static int
4698 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4699 {
4700 	struct bge_softc *sc = arg1;
4701 
4702 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4703 	    &sc->bge_tx_coal_ticks,
4704 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4705 	    BGE_TX_COAL_TICKS_CHG);
4706 }
4707 
4708 static int
4709 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4710 {
4711 	struct bge_softc *sc = arg1;
4712 
4713 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4714 	    &sc->bge_rx_coal_bds,
4715 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4716 	    BGE_RX_COAL_BDS_CHG);
4717 }
4718 
4719 static int
4720 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4721 {
4722 	struct bge_softc *sc = arg1;
4723 
4724 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4725 	    &sc->bge_tx_coal_bds,
4726 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4727 	    BGE_TX_COAL_BDS_CHG);
4728 }
4729 
4730 static int
4731 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4732 {
4733 	struct bge_softc *sc = arg1;
4734 
4735 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4736 	    &sc->bge_rx_coal_ticks_int,
4737 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4738 	    BGE_RX_COAL_TICKS_INT_CHG);
4739 }
4740 
4741 static int
4742 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4743 {
4744 	struct bge_softc *sc = arg1;
4745 
4746 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4747 	    &sc->bge_tx_coal_ticks_int,
4748 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4749 	    BGE_TX_COAL_TICKS_INT_CHG);
4750 }
4751 
4752 static int
4753 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4754 {
4755 	struct bge_softc *sc = arg1;
4756 
4757 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4758 	    &sc->bge_rx_coal_bds_int,
4759 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4760 	    BGE_RX_COAL_BDS_INT_CHG);
4761 }
4762 
4763 static int
4764 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4765 {
4766 	struct bge_softc *sc = arg1;
4767 
4768 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4769 	    &sc->bge_tx_coal_bds_int,
4770 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4771 	    BGE_TX_COAL_BDS_INT_CHG);
4772 }
4773 
4774 static int
4775 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4776     int coal_min, int coal_max, uint32_t coal_chg_mask)
4777 {
4778 	struct bge_softc *sc = arg1;
4779 	struct ifnet *ifp = &sc->arpcom.ac_if;
4780 	int error = 0, v;
4781 
4782 	lwkt_serialize_enter(ifp->if_serializer);
4783 
4784 	v = *coal;
4785 	error = sysctl_handle_int(oidp, &v, 0, req);
4786 	if (!error && req->newptr != NULL) {
4787 		if (v < coal_min || v > coal_max) {
4788 			error = EINVAL;
4789 		} else {
4790 			*coal = v;
4791 			sc->bge_coal_chg |= coal_chg_mask;
4792 		}
4793 	}
4794 
4795 	lwkt_serialize_exit(ifp->if_serializer);
4796 	return error;
4797 }
4798 
4799 static void
4800 bge_coal_change(struct bge_softc *sc)
4801 {
4802 	struct ifnet *ifp = &sc->arpcom.ac_if;
4803 
4804 	ASSERT_SERIALIZED(ifp->if_serializer);
4805 
4806 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4807 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4808 			    sc->bge_rx_coal_ticks);
4809 		DELAY(10);
4810 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4811 
4812 		if (bootverbose) {
4813 			if_printf(ifp, "rx_coal_ticks -> %u\n",
4814 				  sc->bge_rx_coal_ticks);
4815 		}
4816 	}
4817 
4818 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4819 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4820 			    sc->bge_tx_coal_ticks);
4821 		DELAY(10);
4822 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4823 
4824 		if (bootverbose) {
4825 			if_printf(ifp, "tx_coal_ticks -> %u\n",
4826 				  sc->bge_tx_coal_ticks);
4827 		}
4828 	}
4829 
4830 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4831 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4832 			    sc->bge_rx_coal_bds);
4833 		DELAY(10);
4834 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4835 
4836 		if (bootverbose) {
4837 			if_printf(ifp, "rx_coal_bds -> %u\n",
4838 				  sc->bge_rx_coal_bds);
4839 		}
4840 	}
4841 
4842 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4843 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4844 			    sc->bge_tx_coal_bds);
4845 		DELAY(10);
4846 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4847 
4848 		if (bootverbose) {
4849 			if_printf(ifp, "tx_max_coal_bds -> %u\n",
4850 				  sc->bge_tx_coal_bds);
4851 		}
4852 	}
4853 
4854 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4855 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4856 		    sc->bge_rx_coal_ticks_int);
4857 		DELAY(10);
4858 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4859 
4860 		if (bootverbose) {
4861 			if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4862 			    sc->bge_rx_coal_ticks_int);
4863 		}
4864 	}
4865 
4866 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4867 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4868 		    sc->bge_tx_coal_ticks_int);
4869 		DELAY(10);
4870 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4871 
4872 		if (bootverbose) {
4873 			if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4874 			    sc->bge_tx_coal_ticks_int);
4875 		}
4876 	}
4877 
4878 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4879 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4880 		    sc->bge_rx_coal_bds_int);
4881 		DELAY(10);
4882 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4883 
4884 		if (bootverbose) {
4885 			if_printf(ifp, "rx_coal_bds_int -> %u\n",
4886 			    sc->bge_rx_coal_bds_int);
4887 		}
4888 	}
4889 
4890 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4891 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4892 		    sc->bge_tx_coal_bds_int);
4893 		DELAY(10);
4894 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4895 
4896 		if (bootverbose) {
4897 			if_printf(ifp, "tx_coal_bds_int -> %u\n",
4898 			    sc->bge_tx_coal_bds_int);
4899 		}
4900 	}
4901 
4902 	sc->bge_coal_chg = 0;
4903 }
4904 
4905 static void
4906 bge_enable_intr(struct bge_softc *sc)
4907 {
4908 	struct ifnet *ifp = &sc->arpcom.ac_if;
4909 
4910 	lwkt_serialize_handler_enable(ifp->if_serializer);
4911 
4912 	/*
4913 	 * Enable interrupt.
4914 	 */
4915 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4916 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4917 		/* XXX Linux driver */
4918 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4919 	}
4920 
4921 	/*
4922 	 * Unmask the interrupt when we stop polling.
4923 	 */
4924 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4925 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4926 
4927 	/*
4928 	 * Trigger another interrupt, since above writing
4929 	 * to interrupt mailbox0 may acknowledge pending
4930 	 * interrupt.
4931 	 */
4932 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4933 }
4934 
4935 static void
4936 bge_disable_intr(struct bge_softc *sc)
4937 {
4938 	struct ifnet *ifp = &sc->arpcom.ac_if;
4939 
4940 	/*
4941 	 * Mask the interrupt when we start polling.
4942 	 */
4943 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4944 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4945 
4946 	/*
4947 	 * Acknowledge possible asserted interrupt.
4948 	 */
4949 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4950 
4951 	sc->bge_npoll.ifpc_stcount = 0;
4952 
4953 	lwkt_serialize_handler_disable(ifp->if_serializer);
4954 }
4955 
4956 static int
4957 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4958 {
4959 	uint32_t mac_addr;
4960 	int ret = 1;
4961 
4962 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4963 	if ((mac_addr >> 16) == 0x484b) {
4964 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4965 		ether_addr[1] = (uint8_t)mac_addr;
4966 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4967 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4968 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4969 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4970 		ether_addr[5] = (uint8_t)mac_addr;
4971 		ret = 0;
4972 	}
4973 	return ret;
4974 }
4975 
4976 static int
4977 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4978 {
4979 	int mac_offset = BGE_EE_MAC_OFFSET;
4980 
4981 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4982 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4983 
4984 	return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4985 }
4986 
4987 static int
4988 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4989 {
4990 	if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4991 		return 1;
4992 
4993 	return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4994 			       ETHER_ADDR_LEN);
4995 }
4996 
4997 static int
4998 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4999 {
5000 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5001 		/* NOTE: Order is critical */
5002 		bge_get_eaddr_mem,
5003 		bge_get_eaddr_nvram,
5004 		bge_get_eaddr_eeprom,
5005 		NULL
5006 	};
5007 	const bge_eaddr_fcn_t *func;
5008 
5009 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5010 		if ((*func)(sc, eaddr) == 0)
5011 			break;
5012 	}
5013 	return (*func == NULL ? ENXIO : 0);
5014 }
5015 
5016 /*
5017  * NOTE: 'm' is not freed upon failure
5018  */
5019 struct mbuf *
5020 bge_defrag_shortdma(struct mbuf *m)
5021 {
5022 	struct mbuf *n;
5023 	int found;
5024 
5025 	/*
5026 	 * If device receive two back-to-back send BDs with less than
5027 	 * or equal to 8 total bytes then the device may hang.  The two
5028 	 * back-to-back send BDs must in the same frame for this failure
5029 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5030 	 * send BDs are there.  If this is the case, allocate new mbuf
5031 	 * and copy the frame to workaround the silicon bug.
5032 	 */
5033 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5034 		if (n->m_len < 8) {
5035 			found++;
5036 			if (found > 1)
5037 				break;
5038 			continue;
5039 		}
5040 		found = 0;
5041 	}
5042 
5043 	if (found > 1)
5044 		n = m_defrag(m, M_NOWAIT);
5045 	else
5046 		n = m;
5047 	return n;
5048 }
5049 
5050 static void
5051 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5052 {
5053 	int i;
5054 
5055 	BGE_CLRBIT(sc, reg, bit);
5056 	for (i = 0; i < BGE_TIMEOUT; i++) {
5057 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5058 			return;
5059 		DELAY(100);
5060 	}
5061 }
5062 
5063 static void
5064 bge_link_poll(struct bge_softc *sc)
5065 {
5066 	uint32_t status;
5067 
5068 	status = CSR_READ_4(sc, BGE_MAC_STS);
5069 	if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5070 		sc->bge_link_evt = 0;
5071 		sc->bge_link_upd(sc, status);
5072 	}
5073 }
5074 
5075 static void
5076 bge_enable_msi(struct bge_softc *sc)
5077 {
5078 	uint32_t msi_mode;
5079 
5080 	msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5081 	msi_mode |= BGE_MSIMODE_ENABLE;
5082 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5083 		/*
5084 		 * According to all of the datasheets that are publicly
5085 		 * available, bit 5 of the MSI_MODE is defined to be
5086 		 * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5087 		 * which "oneshot MSI" is enabled.  However, it is always
5088 		 * safe to clear it here.
5089 		 */
5090 		msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5091 	}
5092 	CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5093 }
5094 
5095 static int
5096 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5097     uint16_t *mss0, uint16_t *flags0)
5098 {
5099 	struct mbuf *m;
5100 	struct ip *ip;
5101 	struct tcphdr *th;
5102 	int thoff, iphlen, hoff, hlen;
5103 	uint16_t flags, mss;
5104 
5105 	m = *mp;
5106 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5107 
5108 	hoff = m->m_pkthdr.csum_lhlen;
5109 	iphlen = m->m_pkthdr.csum_iphlen;
5110 	thoff = m->m_pkthdr.csum_thlen;
5111 
5112 	KASSERT(hoff > 0, ("invalid ether header len"));
5113 	KASSERT(iphlen > 0, ("invalid ip header len"));
5114 	KASSERT(thoff > 0, ("invalid tcp header len"));
5115 
5116 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5117 		m = m_pullup(m, hoff + iphlen + thoff);
5118 		if (m == NULL) {
5119 			*mp = NULL;
5120 			return ENOBUFS;
5121 		}
5122 		*mp = m;
5123 	}
5124 	ip = mtodoff(m, struct ip *, hoff);
5125 	th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5126 
5127 	mss = m->m_pkthdr.tso_segsz;
5128 	flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5129 
5130 	ip->ip_len = htons(mss + iphlen + thoff);
5131 	th->th_sum = 0;
5132 
5133 	hlen = (iphlen + thoff) >> 2;
5134 	mss |= (hlen << 11);
5135 
5136 	*mss0 = mss;
5137 	*flags0 = flags;
5138 
5139 	return 0;
5140 }
5141 
5142 static void
5143 bge_stop_fw(struct bge_softc *sc)
5144 {
5145 	int i;
5146 
5147 	if (sc->bge_asf_mode) {
5148 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5149 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5150 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5151 
5152 		for (i = 0; i < 100; i++ ) {
5153 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5154 			    BGE_RX_CPU_DRV_EVENT))
5155 				break;
5156 			DELAY(10);
5157 		}
5158 	}
5159 }
5160 
5161 static void
5162 bge_sig_pre_reset(struct bge_softc *sc, int type)
5163 {
5164 	/*
5165 	 * Some chips don't like this so only do this if ASF is enabled
5166 	 */
5167 	if (sc->bge_asf_mode)
5168 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5169 
5170 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5171 		switch (type) {
5172 		case BGE_RESET_START:
5173 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5174 			    BGE_FW_DRV_STATE_START);
5175 			break;
5176 		case BGE_RESET_SHUTDOWN:
5177 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5178 			    BGE_FW_DRV_STATE_UNLOAD);
5179 			break;
5180 		case BGE_RESET_SUSPEND:
5181 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5182 			    BGE_FW_DRV_STATE_SUSPEND);
5183 			break;
5184 		}
5185 	}
5186 
5187 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5188 		bge_ape_driver_state_change(sc, type);
5189 }
5190 
5191 static void
5192 bge_sig_legacy(struct bge_softc *sc, int type)
5193 {
5194 	if (sc->bge_asf_mode) {
5195 		switch (type) {
5196 		case BGE_RESET_START:
5197 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5198 			    BGE_FW_DRV_STATE_START);
5199 			break;
5200 		case BGE_RESET_SHUTDOWN:
5201 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5202 			    BGE_FW_DRV_STATE_UNLOAD);
5203 			break;
5204 		}
5205 	}
5206 }
5207 
5208 static void
5209 bge_sig_post_reset(struct bge_softc *sc, int type)
5210 {
5211 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5212 		switch (type) {
5213 		case BGE_RESET_START:
5214 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5215 			    BGE_FW_DRV_STATE_START_DONE);
5216 			/* START DONE */
5217 			break;
5218 		case BGE_RESET_SHUTDOWN:
5219 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5220 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
5221 			break;
5222 		}
5223 	}
5224 	if (type == BGE_RESET_SHUTDOWN)
5225 		bge_ape_driver_state_change(sc, type);
5226 }
5227 
5228 static void
5229 bge_asf_driver_up(struct bge_softc *sc)
5230 {
5231 	if (sc->bge_asf_mode & ASF_STACKUP) {
5232 		/* Send ASF heartbeat aprox. every 2s */
5233 		if (sc->bge_asf_count)
5234 			sc->bge_asf_count --;
5235 		else {
5236 			sc->bge_asf_count = 2;
5237 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5238 			    BGE_FW_CMD_DRV_ALIVE);
5239 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5240 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5241 			    BGE_FW_HB_TIMEOUT_SEC);
5242 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5243 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5244 			    BGE_RX_CPU_DRV_EVENT);
5245 		}
5246 	}
5247 }
5248 
5249 /*
5250  * Clear all stale locks and select the lock for this driver instance.
5251  */
5252 static void
5253 bge_ape_lock_init(struct bge_softc *sc)
5254 {
5255 	uint32_t bit, regbase;
5256 	int i;
5257 
5258 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5259 		regbase = BGE_APE_LOCK_GRANT;
5260 	else
5261 		regbase = BGE_APE_PER_LOCK_GRANT;
5262 
5263 	/* Clear any stale locks. */
5264 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
5265 		switch (i) {
5266 		case BGE_APE_LOCK_PHY0:
5267 		case BGE_APE_LOCK_PHY1:
5268 		case BGE_APE_LOCK_PHY2:
5269 		case BGE_APE_LOCK_PHY3:
5270 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5271 			break;
5272 		default:
5273 			if (sc->bge_func_addr == 0)
5274 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
5275 			else
5276 				bit = (1 << sc->bge_func_addr);
5277 		}
5278 		APE_WRITE_4(sc, regbase + 4 * i, bit);
5279 	}
5280 
5281 	/* Select the PHY lock based on the device's function number. */
5282 	switch (sc->bge_func_addr) {
5283 	case 0:
5284 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
5285 		break;
5286 	case 1:
5287 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
5288 		break;
5289 	case 2:
5290 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
5291 		break;
5292 	case 3:
5293 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
5294 		break;
5295 	default:
5296 		device_printf(sc->bge_dev,
5297 		    "PHY lock not supported on this function\n");
5298 	}
5299 }
5300 
5301 /*
5302  * Check for APE firmware, set flags, and print version info.
5303  */
5304 static void
5305 bge_ape_read_fw_ver(struct bge_softc *sc)
5306 {
5307 	const char *fwtype;
5308 	uint32_t apedata, features;
5309 
5310 	/* Check for a valid APE signature in shared memory. */
5311 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
5312 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
5313 		device_printf(sc->bge_dev, "no APE signature\n");
5314 		sc->bge_mfw_flags &= ~BGE_MFW_ON_APE;
5315 		return;
5316 	}
5317 
5318 	/* Check if APE firmware is running. */
5319 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
5320 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
5321 		device_printf(sc->bge_dev, "APE signature found "
5322 		    "but FW status not ready! 0x%08x\n", apedata);
5323 		return;
5324 	}
5325 
5326 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
5327 
5328 	/* Fetch the APE firwmare type and version. */
5329 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
5330 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
5331 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
5332 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
5333 		fwtype = "NCSI";
5334 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
5335 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
5336 		fwtype = "DASH";
5337 	} else
5338 		fwtype = "UNKN";
5339 
5340 	/* Print the APE firmware version. */
5341 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
5342 	    fwtype,
5343 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
5344 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
5345 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
5346 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
5347 }
5348 
5349 static int
5350 bge_ape_lock(struct bge_softc *sc, int locknum)
5351 {
5352 	uint32_t bit, gnt, req, status;
5353 	int i, off;
5354 
5355 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5356 		return (0);
5357 
5358 	/* Lock request/grant registers have different bases. */
5359 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
5360 		req = BGE_APE_LOCK_REQ;
5361 		gnt = BGE_APE_LOCK_GRANT;
5362 	} else {
5363 		req = BGE_APE_PER_LOCK_REQ;
5364 		gnt = BGE_APE_PER_LOCK_GRANT;
5365 	}
5366 
5367 	off = 4 * locknum;
5368 
5369 	switch (locknum) {
5370 	case BGE_APE_LOCK_GPIO:
5371 		/* Lock required when using GPIO. */
5372 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5373 			return (0);
5374 		if (sc->bge_func_addr == 0)
5375 			bit = BGE_APE_LOCK_REQ_DRIVER0;
5376 		else
5377 			bit = (1 << sc->bge_func_addr);
5378 		break;
5379 	case BGE_APE_LOCK_GRC:
5380 		/* Lock required to reset the device. */
5381 		if (sc->bge_func_addr == 0)
5382 			bit = BGE_APE_LOCK_REQ_DRIVER0;
5383 		else
5384 			bit = (1 << sc->bge_func_addr);
5385 		break;
5386 	case BGE_APE_LOCK_MEM:
5387 		/* Lock required when accessing certain APE memory. */
5388 		if (sc->bge_func_addr == 0)
5389 			bit = BGE_APE_LOCK_REQ_DRIVER0;
5390 		else
5391 			bit = (1 << sc->bge_func_addr);
5392 		break;
5393 	case BGE_APE_LOCK_PHY0:
5394 	case BGE_APE_LOCK_PHY1:
5395 	case BGE_APE_LOCK_PHY2:
5396 	case BGE_APE_LOCK_PHY3:
5397 		/* Lock required when accessing PHYs. */
5398 		bit = BGE_APE_LOCK_REQ_DRIVER0;
5399 		break;
5400 	default:
5401 		return (EINVAL);
5402 	}
5403 
5404 	/* Request a lock. */
5405 	APE_WRITE_4(sc, req + off, bit);
5406 
5407 	/* Wait up to 1 second to acquire lock. */
5408 	for (i = 0; i < 20000; i++) {
5409 		status = APE_READ_4(sc, gnt + off);
5410 		if (status == bit)
5411 			break;
5412 		DELAY(50);
5413 	}
5414 
5415 	/* Handle any errors. */
5416 	if (status != bit) {
5417 		device_printf(sc->bge_dev, "APE lock %d request failed! "
5418 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
5419 		    locknum, req + off, bit & 0xFFFF, gnt + off,
5420 		    status & 0xFFFF);
5421 		/* Revoke the lock request. */
5422 		APE_WRITE_4(sc, gnt + off, bit);
5423 		return (EBUSY);
5424 	}
5425 
5426 	return (0);
5427 }
5428 
5429 static void
5430 bge_ape_unlock(struct bge_softc *sc, int locknum)
5431 {
5432 	uint32_t bit, gnt;
5433 	int off;
5434 
5435 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5436 		return;
5437 
5438 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5439 		gnt = BGE_APE_LOCK_GRANT;
5440 	else
5441 		gnt = BGE_APE_PER_LOCK_GRANT;
5442 
5443 	off = 4 * locknum;
5444 
5445 	switch (locknum) {
5446 	case BGE_APE_LOCK_GPIO:
5447 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5448 			return;
5449 		if (sc->bge_func_addr == 0)
5450 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5451 		else
5452 			bit = (1 << sc->bge_func_addr);
5453 		break;
5454 	case BGE_APE_LOCK_GRC:
5455 		if (sc->bge_func_addr == 0)
5456 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5457 		else
5458 			bit = (1 << sc->bge_func_addr);
5459 		break;
5460 	case BGE_APE_LOCK_MEM:
5461 		if (sc->bge_func_addr == 0)
5462 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5463 		else
5464 			bit = (1 << sc->bge_func_addr);
5465 		break;
5466 	case BGE_APE_LOCK_PHY0:
5467 	case BGE_APE_LOCK_PHY1:
5468 	case BGE_APE_LOCK_PHY2:
5469 	case BGE_APE_LOCK_PHY3:
5470 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
5471 		break;
5472 	default:
5473 		return;
5474 	}
5475 
5476 	APE_WRITE_4(sc, gnt + off, bit);
5477 }
5478 
5479 /*
5480  * Send an event to the APE firmware.
5481  */
5482 static void
5483 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
5484 {
5485 	uint32_t apedata;
5486 	int i;
5487 
5488 	/* NCSI does not support APE events. */
5489 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5490 		return;
5491 
5492 	/* Wait up to 1ms for APE to service previous event. */
5493 	for (i = 10; i > 0; i--) {
5494 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
5495 			break;
5496 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
5497 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
5498 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
5499 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
5500 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
5501 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
5502 			break;
5503 		}
5504 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
5505 		DELAY(100);
5506 	}
5507 	if (i == 0)
5508 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
5509 		    event);
5510 }
5511 
5512 static void
5513 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
5514 {
5515 	uint32_t apedata, event;
5516 
5517 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5518 		return;
5519 
5520 	switch (kind) {
5521 	case BGE_RESET_START:
5522 		/* If this is the first load, clear the load counter. */
5523 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
5524 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
5525 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
5526 		else {
5527 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
5528 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
5529 		}
5530 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
5531 		    BGE_APE_HOST_SEG_SIG_MAGIC);
5532 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
5533 		    BGE_APE_HOST_SEG_LEN_MAGIC);
5534 
5535 		/* Add some version info if bge(4) supports it. */
5536 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
5537 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
5538 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
5539 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
5540 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
5541 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
5542 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
5543 		    BGE_APE_HOST_DRVR_STATE_START);
5544 		event = BGE_APE_EVENT_STATUS_STATE_START;
5545 		break;
5546 	case BGE_RESET_SHUTDOWN:
5547 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
5548 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
5549 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
5550 		break;
5551 	case BGE_RESET_SUSPEND:
5552 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
5553 		break;
5554 	default:
5555 		return;
5556 	}
5557 
5558 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
5559 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
5560 }
5561