xref: /dragonfly/sys/dev/netif/bge/if_bge.c (revision f7df6c8e)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35 
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42 
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  *
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72 
73 #include "opt_ifpoll.h"
74 
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89 
90 #include <netinet/ip.h>
91 #include <netinet/tcp.h>
92 
93 #include <net/bpf.h>
94 #include <net/ethernet.h>
95 #include <net/if.h>
96 #include <net/if_arp.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_poll.h>
100 #include <net/if_types.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <dev/netif/mii_layer/mii.h>
106 #include <dev/netif/mii_layer/miivar.h>
107 #include <dev/netif/mii_layer/brgphyreg.h>
108 
109 #include "pcidevs.h"
110 #include <bus/pci/pcireg.h>
111 #include <bus/pci/pcivar.h>
112 
113 #include <dev/netif/bge/if_bgereg.h>
114 #include <dev/netif/bge/if_bgevar.h>
115 
116 /* "device miibus" required.  See GENERIC if you get errors here. */
117 #include "miibus_if.h"
118 
119 #define BGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP)
120 
121 #define	BGE_RESET_SHUTDOWN	0
122 #define	BGE_RESET_START		1
123 #define	BGE_RESET_SUSPEND	2
124 
125 static const struct bge_type {
126 	uint16_t		bge_vid;
127 	uint16_t		bge_did;
128 	char			*bge_name;
129 } bge_devs[] = {
130 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
131 		"3COM 3C996 Gigabit Ethernet" },
132 
133 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134 		"Alteon BCM5700 Gigabit Ethernet" },
135 	{ PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136 		"Alteon BCM5701 Gigabit Ethernet" },
137 
138 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
139 		"Altima AC1000 Gigabit Ethernet" },
140 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
141 		"Altima AC1002 Gigabit Ethernet" },
142 	{ PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
143 		"Altima AC9100 Gigabit Ethernet" },
144 
145 	{ PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
146 		"Apple BCM5701 Gigabit Ethernet" },
147 
148 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
149 		"Broadcom BCM5700 Gigabit Ethernet" },
150 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
151 		"Broadcom BCM5701 Gigabit Ethernet" },
152 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
153 		"Broadcom BCM5702 Gigabit Ethernet" },
154 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
155 		"Broadcom BCM5702X Gigabit Ethernet" },
156 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
157 		"Broadcom BCM5702 Gigabit Ethernet" },
158 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
159 		"Broadcom BCM5703 Gigabit Ethernet" },
160 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
161 		"Broadcom BCM5703X Gigabit Ethernet" },
162 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
163 		"Broadcom BCM5703 Gigabit Ethernet" },
164 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
165 		"Broadcom BCM5704C Dual Gigabit Ethernet" },
166 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
167 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
168 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
169 		"Broadcom BCM5704S Dual Gigabit Ethernet" },
170 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
171 		"Broadcom BCM5705 Gigabit Ethernet" },
172 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
173 		"Broadcom BCM5705F Gigabit Ethernet" },
174 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
175 		"Broadcom BCM5705K Gigabit Ethernet" },
176 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
177 		"Broadcom BCM5705M Gigabit Ethernet" },
178 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
179 		"Broadcom BCM5705M Gigabit Ethernet" },
180 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
181 		"Broadcom BCM5714C Gigabit Ethernet" },
182 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
183 		"Broadcom BCM5714S Gigabit Ethernet" },
184 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
185 		"Broadcom BCM5715 Gigabit Ethernet" },
186 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
187 		"Broadcom BCM5715S Gigabit Ethernet" },
188 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
189 		"Broadcom BCM5720 Gigabit Ethernet" },
190 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
191 		"Broadcom BCM5721 Gigabit Ethernet" },
192 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
193 		"Broadcom BCM5722 Gigabit Ethernet" },
194 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
195 		"Broadcom BCM5723 Gigabit Ethernet" },
196 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
197 		"Broadcom BCM5750 Gigabit Ethernet" },
198 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
199 		"Broadcom BCM5750M Gigabit Ethernet" },
200 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
201 		"Broadcom BCM5751 Gigabit Ethernet" },
202 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
203 		"Broadcom BCM5751F Gigabit Ethernet" },
204 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
205 		"Broadcom BCM5751M Gigabit Ethernet" },
206 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
207 		"Broadcom BCM5752 Gigabit Ethernet" },
208 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
209 		"Broadcom BCM5752M Gigabit Ethernet" },
210 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
211 		"Broadcom BCM5753 Gigabit Ethernet" },
212 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
213 		"Broadcom BCM5753F Gigabit Ethernet" },
214 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
215 		"Broadcom BCM5753M Gigabit Ethernet" },
216 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
217 		"Broadcom BCM5754 Gigabit Ethernet" },
218 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
219 		"Broadcom BCM5754M Gigabit Ethernet" },
220 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
221 		"Broadcom BCM5755 Gigabit Ethernet" },
222 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
223 		"Broadcom BCM5755M Gigabit Ethernet" },
224 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
225 		"Broadcom BCM5756 Gigabit Ethernet" },
226 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
227 		"Broadcom BCM5761 Gigabit Ethernet" },
228 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
229 		"Broadcom BCM5761E Gigabit Ethernet" },
230 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
231 		"Broadcom BCM5761S Gigabit Ethernet" },
232 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
233 		"Broadcom BCM5761SE Gigabit Ethernet" },
234 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
235 		"Broadcom BCM5764 Gigabit Ethernet" },
236 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
237 		"Broadcom BCM5780 Gigabit Ethernet" },
238 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
239 		"Broadcom BCM5780S Gigabit Ethernet" },
240 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
241 		"Broadcom BCM5781 Gigabit Ethernet" },
242 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
243 		"Broadcom BCM5782 Gigabit Ethernet" },
244 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
245 		"Broadcom BCM5784 Gigabit Ethernet" },
246 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
247 		"Broadcom BCM5785F Gigabit Ethernet" },
248 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
249 		"Broadcom BCM5785G Gigabit Ethernet" },
250 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
251 		"Broadcom BCM5786 Gigabit Ethernet" },
252 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
253 		"Broadcom BCM5787 Gigabit Ethernet" },
254 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
255 		"Broadcom BCM5787F Gigabit Ethernet" },
256 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
257 		"Broadcom BCM5787M Gigabit Ethernet" },
258 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
259 		"Broadcom BCM5788 Gigabit Ethernet" },
260 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
261 		"Broadcom BCM5789 Gigabit Ethernet" },
262 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
263 		"Broadcom BCM5901 Fast Ethernet" },
264 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
265 		"Broadcom BCM5901A2 Fast Ethernet" },
266 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
267 		"Broadcom BCM5903M Fast Ethernet" },
268 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
269 		"Broadcom BCM5906 Fast Ethernet"},
270 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
271 		"Broadcom BCM5906M Fast Ethernet"},
272 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
273 		"Broadcom BCM57760 Gigabit Ethernet"},
274 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
275 		"Broadcom BCM57780 Gigabit Ethernet"},
276 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
277 		"Broadcom BCM57788 Gigabit Ethernet"},
278 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
279 		"Broadcom BCM57790 Gigabit Ethernet"},
280 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
281 		"SysKonnect Gigabit Ethernet" },
282 
283 	{ 0, 0, NULL }
284 };
285 
286 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_FLAG_JUMBO)
287 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
288 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5705_PLUS)
289 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
290 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_575X_PLUS)
291 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_FLAG_5755_PLUS)
292 #define BGE_IS_5788(sc)			((sc)->bge_flags & BGE_FLAG_5788)
293 
294 #define BGE_IS_CRIPPLED(sc)		\
295 	(BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
296 
297 typedef int	(*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
298 
299 static int	bge_probe(device_t);
300 static int	bge_attach(device_t);
301 static int	bge_detach(device_t);
302 static void	bge_txeof(struct bge_softc *, uint16_t);
303 static void	bge_rxeof(struct bge_softc *, uint16_t, int);
304 
305 static void	bge_tick(void *);
306 static void	bge_stats_update(struct bge_softc *);
307 static void	bge_stats_update_regs(struct bge_softc *);
308 static struct mbuf *
309 		bge_defrag_shortdma(struct mbuf *);
310 static int	bge_encap(struct bge_softc *, struct mbuf **,
311 		    uint32_t *, int *);
312 static void	bge_xmit(struct bge_softc *, uint32_t);
313 static int	bge_setup_tso(struct bge_softc *, struct mbuf **,
314 		    uint16_t *, uint16_t *);
315 
316 #ifdef IFPOLL_ENABLE
317 static void	bge_npoll(struct ifnet *, struct ifpoll_info *);
318 static void	bge_npoll_compat(struct ifnet *, void *, int );
319 #endif
320 static void	bge_intr_crippled(void *);
321 static void	bge_intr_legacy(void *);
322 static void	bge_msi(void *);
323 static void	bge_msi_oneshot(void *);
324 static void	bge_intr(struct bge_softc *);
325 static void	bge_enable_intr(struct bge_softc *);
326 static void	bge_disable_intr(struct bge_softc *);
327 static void	bge_start(struct ifnet *, struct ifaltq_subque *);
328 static int	bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
329 static void	bge_init(void *);
330 static void	bge_stop(struct bge_softc *);
331 static void	bge_watchdog(struct ifnet *);
332 static void	bge_shutdown(device_t);
333 static int	bge_suspend(device_t);
334 static int	bge_resume(device_t);
335 static int	bge_ifmedia_upd(struct ifnet *);
336 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
337 
338 static uint8_t	bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
339 static int	bge_read_nvram(struct bge_softc *, caddr_t, int, int);
340 
341 static uint8_t	bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
342 static int	bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
343 
344 static void	bge_setmulti(struct bge_softc *);
345 static void	bge_setpromisc(struct bge_softc *);
346 static void	bge_enable_msi(struct bge_softc *sc);
347 
348 static int	bge_alloc_jumbo_mem(struct bge_softc *);
349 static void	bge_free_jumbo_mem(struct bge_softc *);
350 static struct bge_jslot
351 		*bge_jalloc(struct bge_softc *);
352 static void	bge_jfree(void *);
353 static void	bge_jref(void *);
354 static int	bge_newbuf_std(struct bge_softc *, int, int);
355 static int	bge_newbuf_jumbo(struct bge_softc *, int, int);
356 static void	bge_setup_rxdesc_std(struct bge_softc *, int);
357 static void	bge_setup_rxdesc_jumbo(struct bge_softc *, int);
358 static int	bge_init_rx_ring_std(struct bge_softc *);
359 static void	bge_free_rx_ring_std(struct bge_softc *);
360 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
361 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
362 static void	bge_free_tx_ring(struct bge_softc *);
363 static int	bge_init_tx_ring(struct bge_softc *);
364 
365 static int	bge_chipinit(struct bge_softc *);
366 static int	bge_blockinit(struct bge_softc *);
367 static void	bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
368 
369 static uint32_t	bge_readmem_ind(struct bge_softc *, uint32_t);
370 static void	bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
371 #ifdef notdef
372 static uint32_t	bge_readreg_ind(struct bge_softc *, uint32_t);
373 #endif
374 static void	bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
375 static void	bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
376 static void	bge_writembx(struct bge_softc *, int, int);
377 
378 static int	bge_miibus_readreg(device_t, int, int);
379 static int	bge_miibus_writereg(device_t, int, int, int);
380 static void	bge_miibus_statchg(device_t);
381 static void	bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
382 static void	bge_tbi_link_upd(struct bge_softc *, uint32_t);
383 static void	bge_copper_link_upd(struct bge_softc *, uint32_t);
384 static void	bge_autopoll_link_upd(struct bge_softc *, uint32_t);
385 static void	bge_link_poll(struct bge_softc *);
386 
387 static void	bge_reset(struct bge_softc *);
388 
389 static int	bge_dma_alloc(struct bge_softc *);
390 static void	bge_dma_free(struct bge_softc *);
391 static int	bge_dma_block_alloc(struct bge_softc *, bus_size_t,
392 				    bus_dma_tag_t *, bus_dmamap_t *,
393 				    void **, bus_addr_t *);
394 static void	bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
395 
396 static int	bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
397 static int	bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
398 static int	bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
399 static int	bge_get_eaddr(struct bge_softc *, uint8_t[]);
400 
401 static void	bge_coal_change(struct bge_softc *);
402 static int	bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
403 static int	bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
404 static int	bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
405 static int	bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
406 static int	bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
407 static int	bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
408 static int	bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
409 static int	bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
410 static int	bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
411 		    int, int, uint32_t);
412 
413 static void	bge_sig_post_reset(struct bge_softc *, int);
414 static void	bge_sig_legacy(struct bge_softc *, int);
415 static void	bge_sig_pre_reset(struct bge_softc *, int);
416 static void	bge_stop_fw(struct bge_softc *);
417 static void	bge_asf_driver_up(struct bge_softc *);
418 
419 static void	bge_ape_lock_init(struct bge_softc *);
420 static void	bge_ape_read_fw_ver(struct bge_softc *);
421 static int	bge_ape_lock(struct bge_softc *, int);
422 static void	bge_ape_unlock(struct bge_softc *, int);
423 static void	bge_ape_send_event(struct bge_softc *, uint32_t);
424 static void	bge_ape_driver_state_change(struct bge_softc *, int);
425 
426 /*
427  * Set following tunable to 1 for some IBM blade servers with the DNLK
428  * switch module. Auto negotiation is broken for those configurations.
429  */
430 static int	bge_fake_autoneg = 0;
431 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
432 
433 static int	bge_msi_enable = 1;
434 TUNABLE_INT("hw.bge.msi.enable", &bge_msi_enable);
435 
436 static int	bge_allow_asf = 1;
437 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
438 
439 #if !defined(KTR_IF_BGE)
440 #define KTR_IF_BGE	KTR_ALL
441 #endif
442 KTR_INFO_MASTER(if_bge);
443 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
444 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
445 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
446 #define logif(name)	KTR_LOG(if_bge_ ## name)
447 
448 static device_method_t bge_methods[] = {
449 	/* Device interface */
450 	DEVMETHOD(device_probe,		bge_probe),
451 	DEVMETHOD(device_attach,	bge_attach),
452 	DEVMETHOD(device_detach,	bge_detach),
453 	DEVMETHOD(device_shutdown,	bge_shutdown),
454 	DEVMETHOD(device_suspend,	bge_suspend),
455 	DEVMETHOD(device_resume,	bge_resume),
456 
457 	/* bus interface */
458 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
459 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
460 
461 	/* MII interface */
462 	DEVMETHOD(miibus_readreg,	bge_miibus_readreg),
463 	DEVMETHOD(miibus_writereg,	bge_miibus_writereg),
464 	DEVMETHOD(miibus_statchg,	bge_miibus_statchg),
465 
466 	DEVMETHOD_END
467 };
468 
469 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
470 static devclass_t bge_devclass;
471 
472 DECLARE_DUMMY_MODULE(if_bge);
473 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
474 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
475 
476 static uint32_t
477 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
478 {
479 	device_t dev = sc->bge_dev;
480 	uint32_t val;
481 
482 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
483 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
484 		return 0;
485 
486 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
487 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
488 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
489 	return (val);
490 }
491 
492 static void
493 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
494 {
495 	device_t dev = sc->bge_dev;
496 
497 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
498 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
499 		return;
500 
501 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
502 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
503 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
504 }
505 
506 #ifdef notdef
507 static uint32_t
508 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
509 {
510 	device_t dev = sc->bge_dev;
511 
512 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
513 	return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
514 }
515 #endif
516 
517 static void
518 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
519 {
520 	device_t dev = sc->bge_dev;
521 
522 	pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
523 	pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
524 }
525 
526 static void
527 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
528 {
529 	CSR_WRITE_4(sc, off, val);
530 }
531 
532 static void
533 bge_writembx(struct bge_softc *sc, int off, int val)
534 {
535 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
536 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
537 
538 	CSR_WRITE_4(sc, off, val);
539 	if (sc->bge_mbox_reorder)
540 		CSR_READ_4(sc, off);
541 }
542 
543 static uint8_t
544 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
545 {
546 	uint32_t access, byte = 0;
547 	int i;
548 
549 	/* Lock. */
550 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
551 	for (i = 0; i < 8000; i++) {
552 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
553 			break;
554 		DELAY(20);
555 	}
556 	if (i == 8000)
557 		return (1);
558 
559 	/* Enable access. */
560 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
561 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
562 
563 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
564 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
565 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
566 		DELAY(10);
567 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
568 			DELAY(10);
569 			break;
570 		}
571 	}
572 
573 	if (i == BGE_TIMEOUT * 10) {
574 		if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
575 		return (1);
576 	}
577 
578 	/* Get result. */
579 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
580 
581 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
582 
583 	/* Disable access. */
584 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
585 
586 	/* Unlock. */
587 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
588 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
589 
590 	return (0);
591 }
592 
593 /*
594  * Read a sequence of bytes from NVRAM.
595  */
596 static int
597 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
598 {
599 	int err = 0, i;
600 	uint8_t byte = 0;
601 
602 	if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
603 		return (1);
604 
605 	for (i = 0; i < cnt; i++) {
606 		err = bge_nvram_getbyte(sc, off + i, &byte);
607 		if (err)
608 			break;
609 		*(dest + i) = byte;
610 	}
611 
612 	return (err ? 1 : 0);
613 }
614 
615 /*
616  * Read a byte of data stored in the EEPROM at address 'addr.' The
617  * BCM570x supports both the traditional bitbang interface and an
618  * auto access interface for reading the EEPROM. We use the auto
619  * access method.
620  */
621 static uint8_t
622 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
623 {
624 	int i;
625 	uint32_t byte = 0;
626 
627 	/*
628 	 * Enable use of auto EEPROM access so we can avoid
629 	 * having to use the bitbang method.
630 	 */
631 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
632 
633 	/* Reset the EEPROM, load the clock period. */
634 	CSR_WRITE_4(sc, BGE_EE_ADDR,
635 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
636 	DELAY(20);
637 
638 	/* Issue the read EEPROM command. */
639 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
640 
641 	/* Wait for completion */
642 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
643 		DELAY(10);
644 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
645 			break;
646 	}
647 
648 	if (i == BGE_TIMEOUT) {
649 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
650 		return(1);
651 	}
652 
653 	/* Get result. */
654 	byte = CSR_READ_4(sc, BGE_EE_DATA);
655 
656         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
657 
658 	return(0);
659 }
660 
661 /*
662  * Read a sequence of bytes from the EEPROM.
663  */
664 static int
665 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
666 {
667 	size_t i;
668 	int err;
669 	uint8_t byte;
670 
671 	for (byte = 0, err = 0, i = 0; i < len; i++) {
672 		err = bge_eeprom_getbyte(sc, off + i, &byte);
673 		if (err)
674 			break;
675 		*(dest + i) = byte;
676 	}
677 
678 	return(err ? 1 : 0);
679 }
680 
681 static int
682 bge_miibus_readreg(device_t dev, int phy, int reg)
683 {
684 	struct bge_softc *sc = device_get_softc(dev);
685 	uint32_t val;
686 	int i;
687 
688 	KASSERT(phy == sc->bge_phyno,
689 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
690 
691 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
692 		return 0;
693 
694 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
695 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
696 		CSR_WRITE_4(sc, BGE_MI_MODE,
697 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
698 		DELAY(80);
699 	}
700 
701 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
702 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
703 
704 	/* Poll for the PHY register access to complete. */
705 	for (i = 0; i < BGE_TIMEOUT; i++) {
706 		DELAY(10);
707 		val = CSR_READ_4(sc, BGE_MI_COMM);
708 		if ((val & BGE_MICOMM_BUSY) == 0) {
709 			DELAY(5);
710 			val = CSR_READ_4(sc, BGE_MI_COMM);
711 			break;
712 		}
713 	}
714 	if (i == BGE_TIMEOUT) {
715 		if_printf(&sc->arpcom.ac_if, "PHY read timed out "
716 		    "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
717 		val = 0;
718 	}
719 
720 	/* Restore the autopoll bit if necessary. */
721 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
722 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
723 		DELAY(80);
724 	}
725 
726 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
727 
728 	if (val & BGE_MICOMM_READFAIL)
729 		return 0;
730 
731 	return (val & 0xFFFF);
732 }
733 
734 static int
735 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
736 {
737 	struct bge_softc *sc = device_get_softc(dev);
738 	int i;
739 
740 	KASSERT(phy == sc->bge_phyno,
741 	    ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
742 
743 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
744 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
745 	       return 0;
746 
747 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
748 		return 0;
749 
750 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
751 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
752 		CSR_WRITE_4(sc, BGE_MI_MODE,
753 		    sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
754 		DELAY(80);
755 	}
756 
757 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
758 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
759 
760 	for (i = 0; i < BGE_TIMEOUT; i++) {
761 		DELAY(10);
762 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
763 			DELAY(5);
764 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
765 			break;
766 		}
767 	}
768 	if (i == BGE_TIMEOUT) {
769 		if_printf(&sc->arpcom.ac_if, "PHY write timed out "
770 		    "(phy %d, reg %d, val %d)\n", phy, reg, val);
771 	}
772 
773 	/* Restore the autopoll bit if necessary. */
774 	if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
775 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
776 		DELAY(80);
777 	}
778 
779 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
780 
781 	return 0;
782 }
783 
784 static void
785 bge_miibus_statchg(device_t dev)
786 {
787 	struct bge_softc *sc;
788 	struct mii_data *mii;
789 	uint32_t mac_mode;
790 
791 	sc = device_get_softc(dev);
792 	if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
793 		return;
794 
795 	mii = device_get_softc(sc->bge_miibus);
796 
797 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
798 	    (IFM_ACTIVE | IFM_AVALID)) {
799 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
800 		case IFM_10_T:
801 		case IFM_100_TX:
802 			sc->bge_link = 1;
803 			break;
804 		case IFM_1000_T:
805 		case IFM_1000_SX:
806 		case IFM_2500_SX:
807 			if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
808 				sc->bge_link = 1;
809 			else
810 				sc->bge_link = 0;
811 			break;
812 		default:
813 			sc->bge_link = 0;
814 			break;
815 		}
816 	} else {
817 		sc->bge_link = 0;
818 	}
819 	if (sc->bge_link == 0)
820 		return;
821 
822 	/*
823 	 * APE firmware touches these registers to keep the MAC
824 	 * connected to the outside world.  Try to keep the
825 	 * accesses atomic.
826 	 */
827 
828 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
829 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
830 
831 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
832 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
833 		mac_mode |= BGE_PORTMODE_GMII;
834 	else
835 		mac_mode |= BGE_PORTMODE_MII;
836 
837 	if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
838 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
839 
840 	CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
841 	DELAY(40);
842 }
843 
844 /*
845  * Memory management for jumbo frames.
846  */
847 static int
848 bge_alloc_jumbo_mem(struct bge_softc *sc)
849 {
850 	struct ifnet *ifp = &sc->arpcom.ac_if;
851 	struct bge_jslot *entry;
852 	uint8_t *ptr;
853 	bus_addr_t paddr;
854 	int i, error;
855 
856 	/*
857 	 * Create tag for jumbo mbufs.
858 	 * This is really a bit of a kludge. We allocate a special
859 	 * jumbo buffer pool which (thanks to the way our DMA
860 	 * memory allocation works) will consist of contiguous
861 	 * pages. This means that even though a jumbo buffer might
862 	 * be larger than a page size, we don't really need to
863 	 * map it into more than one DMA segment. However, the
864 	 * default mbuf tag will result in multi-segment mappings,
865 	 * so we have to create a special jumbo mbuf tag that
866 	 * lets us get away with mapping the jumbo buffers as
867 	 * a single segment. I think eventually the driver should
868 	 * be changed so that it uses ordinary mbufs and cluster
869 	 * buffers, i.e. jumbo frames can span multiple DMA
870 	 * descriptors. But that's a project for another day.
871 	 */
872 
873 	/*
874 	 * Create DMA stuffs for jumbo RX ring.
875 	 */
876 	error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
877 				    &sc->bge_cdata.bge_rx_jumbo_ring_tag,
878 				    &sc->bge_cdata.bge_rx_jumbo_ring_map,
879 				    (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
880 				    &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
881 	if (error) {
882 		if_printf(ifp, "could not create jumbo RX ring\n");
883 		return error;
884 	}
885 
886 	/*
887 	 * Create DMA stuffs for jumbo buffer block.
888 	 */
889 	error = bge_dma_block_alloc(sc, BGE_JMEM,
890 				    &sc->bge_cdata.bge_jumbo_tag,
891 				    &sc->bge_cdata.bge_jumbo_map,
892 				    (void **)&sc->bge_ldata.bge_jumbo_buf,
893 				    &paddr);
894 	if (error) {
895 		if_printf(ifp, "could not create jumbo buffer\n");
896 		return error;
897 	}
898 
899 	SLIST_INIT(&sc->bge_jfree_listhead);
900 
901 	/*
902 	 * Now divide it up into 9K pieces and save the addresses
903 	 * in an array. Note that we play an evil trick here by using
904 	 * the first few bytes in the buffer to hold the the address
905 	 * of the softc structure for this interface. This is because
906 	 * bge_jfree() needs it, but it is called by the mbuf management
907 	 * code which will not pass it to us explicitly.
908 	 */
909 	for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
910 		entry = &sc->bge_cdata.bge_jslots[i];
911 		entry->bge_sc = sc;
912 		entry->bge_buf = ptr;
913 		entry->bge_paddr = paddr;
914 		entry->bge_inuse = 0;
915 		entry->bge_slot = i;
916 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
917 
918 		ptr += BGE_JLEN;
919 		paddr += BGE_JLEN;
920 	}
921 	return 0;
922 }
923 
924 static void
925 bge_free_jumbo_mem(struct bge_softc *sc)
926 {
927 	/* Destroy jumbo RX ring. */
928 	bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
929 			   sc->bge_cdata.bge_rx_jumbo_ring_map,
930 			   sc->bge_ldata.bge_rx_jumbo_ring);
931 
932 	/* Destroy jumbo buffer block. */
933 	bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
934 			   sc->bge_cdata.bge_jumbo_map,
935 			   sc->bge_ldata.bge_jumbo_buf);
936 }
937 
938 /*
939  * Allocate a jumbo buffer.
940  */
941 static struct bge_jslot *
942 bge_jalloc(struct bge_softc *sc)
943 {
944 	struct bge_jslot *entry;
945 
946 	lwkt_serialize_enter(&sc->bge_jslot_serializer);
947 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
948 	if (entry) {
949 		SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
950 		entry->bge_inuse = 1;
951 	} else {
952 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
953 	}
954 	lwkt_serialize_exit(&sc->bge_jslot_serializer);
955 	return(entry);
956 }
957 
958 /*
959  * Adjust usage count on a jumbo buffer.
960  */
961 static void
962 bge_jref(void *arg)
963 {
964 	struct bge_jslot *entry = (struct bge_jslot *)arg;
965 	struct bge_softc *sc = entry->bge_sc;
966 
967 	if (sc == NULL)
968 		panic("bge_jref: can't find softc pointer!");
969 
970 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
971 		panic("bge_jref: asked to reference buffer "
972 		    "that we don't manage!");
973 	} else if (entry->bge_inuse == 0) {
974 		panic("bge_jref: buffer already free!");
975 	} else {
976 		atomic_add_int(&entry->bge_inuse, 1);
977 	}
978 }
979 
980 /*
981  * Release a jumbo buffer.
982  */
983 static void
984 bge_jfree(void *arg)
985 {
986 	struct bge_jslot *entry = (struct bge_jslot *)arg;
987 	struct bge_softc *sc = entry->bge_sc;
988 
989 	if (sc == NULL)
990 		panic("bge_jfree: can't find softc pointer!");
991 
992 	if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
993 		panic("bge_jfree: asked to free buffer that we don't manage!");
994 	} else if (entry->bge_inuse == 0) {
995 		panic("bge_jfree: buffer already free!");
996 	} else {
997 		/*
998 		 * Possible MP race to 0, use the serializer.  The atomic insn
999 		 * is still needed for races against bge_jref().
1000 		 */
1001 		lwkt_serialize_enter(&sc->bge_jslot_serializer);
1002 		atomic_subtract_int(&entry->bge_inuse, 1);
1003 		if (entry->bge_inuse == 0) {
1004 			SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1005 					  entry, jslot_link);
1006 		}
1007 		lwkt_serialize_exit(&sc->bge_jslot_serializer);
1008 	}
1009 }
1010 
1011 
1012 /*
1013  * Intialize a standard receive ring descriptor.
1014  */
1015 static int
1016 bge_newbuf_std(struct bge_softc *sc, int i, int init)
1017 {
1018 	struct mbuf *m_new = NULL;
1019 	bus_dma_segment_t seg;
1020 	bus_dmamap_t map;
1021 	int error, nsegs;
1022 
1023 	m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1024 	if (m_new == NULL)
1025 		return ENOBUFS;
1026 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1027 
1028 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1029 		m_adj(m_new, ETHER_ALIGN);
1030 
1031 	error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
1032 			sc->bge_cdata.bge_rx_tmpmap, m_new,
1033 			&seg, 1, &nsegs, BUS_DMA_NOWAIT);
1034 	if (error) {
1035 		m_freem(m_new);
1036 		return error;
1037 	}
1038 
1039 	if (!init) {
1040 		bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1041 				sc->bge_cdata.bge_rx_std_dmamap[i],
1042 				BUS_DMASYNC_POSTREAD);
1043 		bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1044 			sc->bge_cdata.bge_rx_std_dmamap[i]);
1045 	}
1046 
1047 	map = sc->bge_cdata.bge_rx_tmpmap;
1048 	sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
1049 	sc->bge_cdata.bge_rx_std_dmamap[i] = map;
1050 
1051 	sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
1052 	sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
1053 
1054 	bge_setup_rxdesc_std(sc, i);
1055 	return 0;
1056 }
1057 
1058 static void
1059 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
1060 {
1061 	struct bge_rxchain *rc;
1062 	struct bge_rx_bd *r;
1063 
1064 	rc = &sc->bge_cdata.bge_rx_std_chain[i];
1065 	r = &sc->bge_ldata.bge_rx_std_ring[i];
1066 
1067 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1068 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1069 	r->bge_len = rc->bge_mbuf->m_len;
1070 	r->bge_idx = i;
1071 	r->bge_flags = BGE_RXBDFLAG_END;
1072 }
1073 
1074 /*
1075  * Initialize a jumbo receive ring descriptor. This allocates
1076  * a jumbo buffer from the pool managed internally by the driver.
1077  */
1078 static int
1079 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1080 {
1081 	struct mbuf *m_new = NULL;
1082 	struct bge_jslot *buf;
1083 	bus_addr_t paddr;
1084 
1085 	/* Allocate the mbuf. */
1086 	MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1087 	if (m_new == NULL)
1088 		return ENOBUFS;
1089 
1090 	/* Allocate the jumbo buffer */
1091 	buf = bge_jalloc(sc);
1092 	if (buf == NULL) {
1093 		m_freem(m_new);
1094 		return ENOBUFS;
1095 	}
1096 
1097 	/* Attach the buffer to the mbuf. */
1098 	m_new->m_ext.ext_arg = buf;
1099 	m_new->m_ext.ext_buf = buf->bge_buf;
1100 	m_new->m_ext.ext_free = bge_jfree;
1101 	m_new->m_ext.ext_ref = bge_jref;
1102 	m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1103 
1104 	m_new->m_flags |= M_EXT;
1105 
1106 	m_new->m_data = m_new->m_ext.ext_buf;
1107 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1108 
1109 	paddr = buf->bge_paddr;
1110 	if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1111 		m_adj(m_new, ETHER_ALIGN);
1112 		paddr += ETHER_ALIGN;
1113 	}
1114 
1115 	/* Save necessary information */
1116 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1117 	sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1118 
1119 	/* Set up the descriptor. */
1120 	bge_setup_rxdesc_jumbo(sc, i);
1121 	return 0;
1122 }
1123 
1124 static void
1125 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1126 {
1127 	struct bge_rx_bd *r;
1128 	struct bge_rxchain *rc;
1129 
1130 	r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1131 	rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1132 
1133 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1134 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1135 	r->bge_len = rc->bge_mbuf->m_len;
1136 	r->bge_idx = i;
1137 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1138 }
1139 
1140 static int
1141 bge_init_rx_ring_std(struct bge_softc *sc)
1142 {
1143 	int i, error;
1144 
1145 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1146 		error = bge_newbuf_std(sc, i, 1);
1147 		if (error)
1148 			return error;
1149 	}
1150 
1151 	sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1152 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1153 
1154 	return(0);
1155 }
1156 
1157 static void
1158 bge_free_rx_ring_std(struct bge_softc *sc)
1159 {
1160 	int i;
1161 
1162 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1163 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1164 
1165 		if (rc->bge_mbuf != NULL) {
1166 			bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1167 					  sc->bge_cdata.bge_rx_std_dmamap[i]);
1168 			m_freem(rc->bge_mbuf);
1169 			rc->bge_mbuf = NULL;
1170 		}
1171 		bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1172 		    sizeof(struct bge_rx_bd));
1173 	}
1174 }
1175 
1176 static int
1177 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1178 {
1179 	struct bge_rcb *rcb;
1180 	int i, error;
1181 
1182 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1183 		error = bge_newbuf_jumbo(sc, i, 1);
1184 		if (error)
1185 			return error;
1186 	}
1187 
1188 	sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1189 
1190 	rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1191 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1192 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1193 
1194 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1195 
1196 	return(0);
1197 }
1198 
1199 static void
1200 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1201 {
1202 	int i;
1203 
1204 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1205 		struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1206 
1207 		if (rc->bge_mbuf != NULL) {
1208 			m_freem(rc->bge_mbuf);
1209 			rc->bge_mbuf = NULL;
1210 		}
1211 		bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1212 		    sizeof(struct bge_rx_bd));
1213 	}
1214 }
1215 
1216 static void
1217 bge_free_tx_ring(struct bge_softc *sc)
1218 {
1219 	int i;
1220 
1221 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1222 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1223 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1224 					  sc->bge_cdata.bge_tx_dmamap[i]);
1225 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1226 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1227 		}
1228 		bzero(&sc->bge_ldata.bge_tx_ring[i],
1229 		    sizeof(struct bge_tx_bd));
1230 	}
1231 }
1232 
1233 static int
1234 bge_init_tx_ring(struct bge_softc *sc)
1235 {
1236 	sc->bge_txcnt = 0;
1237 	sc->bge_tx_saved_considx = 0;
1238 	sc->bge_tx_prodidx = 0;
1239 
1240 	/* Initialize transmit producer index for host-memory send ring. */
1241 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1242 
1243 	/* 5700 b2 errata */
1244 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1245 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1246 
1247 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1248 	/* 5700 b2 errata */
1249 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1250 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1251 
1252 	return(0);
1253 }
1254 
1255 static void
1256 bge_setmulti(struct bge_softc *sc)
1257 {
1258 	struct ifnet *ifp;
1259 	struct ifmultiaddr *ifma;
1260 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1261 	int h, i;
1262 
1263 	ifp = &sc->arpcom.ac_if;
1264 
1265 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1266 		for (i = 0; i < 4; i++)
1267 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1268 		return;
1269 	}
1270 
1271 	/* First, zot all the existing filters. */
1272 	for (i = 0; i < 4; i++)
1273 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1274 
1275 	/* Now program new ones. */
1276 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1277 		if (ifma->ifma_addr->sa_family != AF_LINK)
1278 			continue;
1279 		h = ether_crc32_le(
1280 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1281 		    ETHER_ADDR_LEN) & 0x7f;
1282 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1283 	}
1284 
1285 	for (i = 0; i < 4; i++)
1286 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1287 }
1288 
1289 /*
1290  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1291  * self-test results.
1292  */
1293 static int
1294 bge_chipinit(struct bge_softc *sc)
1295 {
1296 	int i;
1297 	uint32_t dma_rw_ctl, mode_ctl;
1298 	uint16_t val;
1299 
1300 	/* Set endian type before we access any non-PCI registers. */
1301 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1302 	    BGE_INIT | sc->bge_pci_miscctl, 4);
1303 
1304 	/*
1305 	 * Clear the MAC statistics block in the NIC's
1306 	 * internal memory.
1307 	 */
1308 	for (i = BGE_STATS_BLOCK;
1309 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1310 		BGE_MEMWIN_WRITE(sc, i, 0);
1311 
1312 	for (i = BGE_STATUS_BLOCK;
1313 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1314 		BGE_MEMWIN_WRITE(sc, i, 0);
1315 
1316 	if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1317 		/*
1318 		 * Fix data corruption caused by non-qword write with WB.
1319 		 * Fix master abort in PCI mode.
1320 		 * Fix PCI latency timer.
1321 		 */
1322 		val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1323 		val |= (1 << 10) | (1 << 12) | (1 << 13);
1324 		pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1325 	}
1326 
1327 	/* Set up the PCI DMA control register. */
1328 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1329 	if (sc->bge_flags & BGE_FLAG_PCIE) {
1330 		/* PCI-E bus */
1331 		/* DMA read watermark not used on PCI-E */
1332 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1333 	} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1334 		/* PCI-X bus */
1335 		if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1336 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1337 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1338 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1339 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5714) {
1340 			dma_rw_ctl |= (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1341 			    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1342 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1343 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1344 		    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1345 			uint32_t rd_wat = 0x7;
1346 			uint32_t clkctl;
1347 
1348 			clkctl = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1349 			if ((sc->bge_flags & BGE_FLAG_MAXADDR_40BIT) &&
1350 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1351 				dma_rw_ctl |=
1352 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1353 			} else if (clkctl == 0x6 || clkctl == 0x7) {
1354 				dma_rw_ctl |=
1355 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1356 			}
1357 			if (sc->bge_asicrev == BGE_ASICREV_BCM5703)
1358 				rd_wat = 0x4;
1359 
1360 			dma_rw_ctl |= (rd_wat << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1361 			    (3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1362 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1363 		} else {
1364 			dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1365 			    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1366 			dma_rw_ctl |= 0xf;
1367 		}
1368 	} else {
1369 		/* Conventional PCI bus */
1370 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1371 		    (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1372 		if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1373 		    sc->bge_asicrev != BGE_ASICREV_BCM5750)
1374 			dma_rw_ctl |= 0xf;
1375 	}
1376 
1377 	if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1378 	    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1379 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1380 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1381 	    sc->bge_asicrev == BGE_ASICREV_BCM5701) {
1382 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1383 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1384 	}
1385 	pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1386 
1387 	/*
1388 	 * Set up general mode register.
1389 	 */
1390 	mode_ctl = BGE_DMA_SWAP_OPTIONS|
1391 	    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1392 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
1393 
1394 	/*
1395 	 * BCM5701 B5 have a bug causing data corruption when using
1396 	 * 64-bit DMA reads, which can be terminated early and then
1397 	 * completed later as 32-bit accesses, in combination with
1398 	 * certain bridges.
1399 	 */
1400 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1401 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1402 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1403 
1404 	/*
1405 	 * Tell the firmware the driver is running
1406 	 */
1407 	if (sc->bge_asf_mode & ASF_STACKUP)
1408 		mode_ctl |= BGE_MODECTL_STACKUP;
1409 
1410 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1411 
1412 	/*
1413 	 * Disable memory write invalidate.  Apparently it is not supported
1414 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1415 	 * as these chips need it even when using MSI.
1416 	 */
1417 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD,
1418 	    (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1419 
1420 	/* Set the timer prescaler (always 66Mhz) */
1421 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1422 
1423 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1424 		DELAY(40);	/* XXX */
1425 
1426 		/* Put PHY into ready state */
1427 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1428 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1429 		DELAY(40);
1430 	}
1431 
1432 	return(0);
1433 }
1434 
1435 static int
1436 bge_blockinit(struct bge_softc *sc)
1437 {
1438 	struct bge_rcb *rcb;
1439 	bus_size_t vrcb;
1440 	bge_hostaddr taddr;
1441 	uint32_t val;
1442 	int i, limit;
1443 
1444 	/*
1445 	 * Initialize the memory window pointer register so that
1446 	 * we can access the first 32K of internal NIC RAM. This will
1447 	 * allow us to set up the TX send ring RCBs and the RX return
1448 	 * ring RCBs, plus other things which live in NIC memory.
1449 	 */
1450 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1451 
1452 	/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1453 
1454 	if (!BGE_IS_5705_PLUS(sc)) {
1455 		/* Configure mbuf memory pool */
1456 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1457 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1458 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1459 		else
1460 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1461 
1462 		/* Configure DMA resource pool */
1463 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1464 		    BGE_DMA_DESCRIPTORS);
1465 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1466 	}
1467 
1468 	/* Configure mbuf pool watermarks */
1469 	if (!BGE_IS_5705_PLUS(sc)) {
1470 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1471 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1472 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1473 	} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1474 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1475 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1476 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1477 	} else {
1478 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1479 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1480 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1481 	}
1482 
1483 	/* Configure DMA resource watermarks */
1484 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1485 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1486 
1487 	/* Enable buffer manager */
1488 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1489 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1490 
1491 	/* Poll for buffer manager start indication */
1492 	for (i = 0; i < BGE_TIMEOUT; i++) {
1493 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1494 			break;
1495 		DELAY(10);
1496 	}
1497 
1498 	if (i == BGE_TIMEOUT) {
1499 		if_printf(&sc->arpcom.ac_if,
1500 			  "buffer manager failed to start\n");
1501 		return(ENXIO);
1502 	}
1503 
1504 	/* Enable flow-through queues */
1505 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1506 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1507 
1508 	/* Wait until queue initialization is complete */
1509 	for (i = 0; i < BGE_TIMEOUT; i++) {
1510 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1511 			break;
1512 		DELAY(10);
1513 	}
1514 
1515 	if (i == BGE_TIMEOUT) {
1516 		if_printf(&sc->arpcom.ac_if,
1517 			  "flow-through queue init failed\n");
1518 		return(ENXIO);
1519 	}
1520 
1521 	/*
1522 	 * Summary of rings supported by the controller:
1523 	 *
1524 	 * Standard Receive Producer Ring
1525 	 * - This ring is used to feed receive buffers for "standard"
1526 	 *   sized frames (typically 1536 bytes) to the controller.
1527 	 *
1528 	 * Jumbo Receive Producer Ring
1529 	 * - This ring is used to feed receive buffers for jumbo sized
1530 	 *   frames (i.e. anything bigger than the "standard" frames)
1531 	 *   to the controller.
1532 	 *
1533 	 * Mini Receive Producer Ring
1534 	 * - This ring is used to feed receive buffers for "mini"
1535 	 *   sized frames to the controller.
1536 	 * - This feature required external memory for the controller
1537 	 *   but was never used in a production system.  Should always
1538 	 *   be disabled.
1539 	 *
1540 	 * Receive Return Ring
1541 	 * - After the controller has placed an incoming frame into a
1542 	 *   receive buffer that buffer is moved into a receive return
1543 	 *   ring.  The driver is then responsible to passing the
1544 	 *   buffer up to the stack.  Many versions of the controller
1545 	 *   support multiple RR rings.
1546 	 *
1547 	 * Send Ring
1548 	 * - This ring is used for outgoing frames.  Many versions of
1549 	 *   the controller support multiple send rings.
1550 	 */
1551 
1552 	/* Initialize the standard receive producer ring control block. */
1553 	rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1554 	rcb->bge_hostaddr.bge_addr_lo =
1555 	    BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1556 	rcb->bge_hostaddr.bge_addr_hi =
1557 	    BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1558 	if (BGE_IS_5705_PLUS(sc)) {
1559 		/*
1560 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1561 		 * Bits 15-2 : Reserved (should be 0)
1562 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1563 		 * Bit 0     : Reserved
1564 		 */
1565 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1566 	} else {
1567 		/*
1568 		 * Ring size is always XXX entries
1569 		 * Bits 31-16: Maximum RX frame size
1570 		 * Bits 15-2 : Reserved (should be 0)
1571 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1572 		 * Bit 0     : Reserved
1573 		 */
1574 		rcb->bge_maxlen_flags =
1575 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1576 	}
1577 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1578 	/* Write the standard receive producer ring control block. */
1579 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1580 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1581 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1582 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1583 	/* Reset the standard receive producer ring producer index. */
1584 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1585 
1586 	/*
1587 	 * Initialize the jumbo RX producer ring control
1588 	 * block.  We set the 'ring disabled' bit in the
1589 	 * flags field until we're actually ready to start
1590 	 * using this ring (i.e. once we set the MTU
1591 	 * high enough to require it).
1592 	 */
1593 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1594 		rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1595 		/* Get the jumbo receive producer ring RCB parameters. */
1596 		rcb->bge_hostaddr.bge_addr_lo =
1597 		    BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1598 		rcb->bge_hostaddr.bge_addr_hi =
1599 		    BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1600 		rcb->bge_maxlen_flags =
1601 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1602 		    BGE_RCB_FLAG_RING_DISABLED);
1603 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1604 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1605 		    rcb->bge_hostaddr.bge_addr_hi);
1606 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1607 		    rcb->bge_hostaddr.bge_addr_lo);
1608 		/* Program the jumbo receive producer ring RCB parameters. */
1609 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1610 		    rcb->bge_maxlen_flags);
1611 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1612 		/* Reset the jumbo receive producer ring producer index. */
1613 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1614 	}
1615 
1616 	/* Disable the mini receive producer ring RCB. */
1617 	if (BGE_IS_5700_FAMILY(sc)) {
1618 		rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1619 		rcb->bge_maxlen_flags =
1620 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1621 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1622 		    rcb->bge_maxlen_flags);
1623 		/* Reset the mini receive producer ring producer index. */
1624 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1625 	}
1626 
1627 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1628 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1629 	    (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1630 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1631 	     sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1632 		CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1633 		    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1634 	}
1635 
1636 	/*
1637 	 * The BD ring replenish thresholds control how often the
1638 	 * hardware fetches new BD's from the producer rings in host
1639 	 * memory.  Setting the value too low on a busy system can
1640 	 * starve the hardware and recue the throughpout.
1641 	 *
1642 	 * Set the BD ring replentish thresholds. The recommended
1643 	 * values are 1/8th the number of descriptors allocated to
1644 	 * each ring.
1645 	 */
1646 	if (BGE_IS_5705_PLUS(sc))
1647 		val = 8;
1648 	else
1649 		val = BGE_STD_RX_RING_CNT / 8;
1650 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1651 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
1652 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1653 		    BGE_JUMBO_RX_RING_CNT/8);
1654 	}
1655 
1656 	/*
1657 	 * Disable all send rings by setting the 'ring disabled' bit
1658 	 * in the flags field of all the TX send ring control blocks,
1659 	 * located in NIC memory.
1660 	 */
1661 	if (!BGE_IS_5705_PLUS(sc)) {
1662 		/* 5700 to 5704 had 16 send rings. */
1663 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1664 	} else {
1665 		limit = 1;
1666 	}
1667 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1668 	for (i = 0; i < limit; i++) {
1669 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1670 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1671 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1672 		vrcb += sizeof(struct bge_rcb);
1673 	}
1674 
1675 	/* Configure send ring RCB 0 (we use only the first ring) */
1676 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1677 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1678 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1679 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1680 	RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1681 	    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1682 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1683 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1684 
1685 	/*
1686 	 * Disable all receive return rings by setting the
1687 	 * 'ring diabled' bit in the flags field of all the receive
1688 	 * return ring control blocks, located in NIC memory.
1689 	 */
1690 	if (!BGE_IS_5705_PLUS(sc))
1691 		limit = BGE_RX_RINGS_MAX;
1692 	else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1693 		limit = 4;
1694 	else
1695 		limit = 1;
1696 	/* Disable all receive return rings. */
1697 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1698 	for (i = 0; i < limit; i++) {
1699 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1700 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1701 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1702 		    BGE_RCB_FLAG_RING_DISABLED);
1703 		RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1704 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1705 		    (i * (sizeof(uint64_t))), 0);
1706 		vrcb += sizeof(struct bge_rcb);
1707 	}
1708 
1709 	/*
1710 	 * Set up receive return ring 0.  Note that the NIC address
1711 	 * for RX return rings is 0x0.  The return rings live entirely
1712 	 * within the host, so the nicaddr field in the RCB isn't used.
1713 	 */
1714 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1715 	BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1716 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1717 	RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1718 	RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1719 	RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1720 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1721 
1722 	/* Set random backoff seed for TX */
1723 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1724 	    (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1725 	     sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1726 	     sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &
1727 	    BGE_TX_BACKOFF_SEED_MASK);
1728 
1729 	/* Set inter-packet gap */
1730 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1731 
1732 	/*
1733 	 * Specify which ring to use for packets that don't match
1734 	 * any RX rules.
1735 	 */
1736 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1737 
1738 	/*
1739 	 * Configure number of RX lists. One interrupt distribution
1740 	 * list, sixteen active lists, one bad frames class.
1741 	 */
1742 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1743 
1744 	/* Inialize RX list placement stats mask. */
1745 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1746 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1747 
1748 	/* Disable host coalescing until we get it set up */
1749 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1750 
1751 	/* Poll to make sure it's shut down. */
1752 	for (i = 0; i < BGE_TIMEOUT; i++) {
1753 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1754 			break;
1755 		DELAY(10);
1756 	}
1757 
1758 	if (i == BGE_TIMEOUT) {
1759 		if_printf(&sc->arpcom.ac_if,
1760 			  "host coalescing engine failed to idle\n");
1761 		return(ENXIO);
1762 	}
1763 
1764 	/* Set up host coalescing defaults */
1765 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1766 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1767 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1768 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1769 	if (!BGE_IS_5705_PLUS(sc)) {
1770 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1771 		    sc->bge_rx_coal_ticks_int);
1772 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1773 		    sc->bge_tx_coal_ticks_int);
1774 	}
1775 	/*
1776 	 * NOTE:
1777 	 * The datasheet (57XX-PG105-R) says BCM5705+ do not
1778 	 * have following two registers; obviously it is wrong.
1779 	 */
1780 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1781 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1782 
1783 	/* Set up address of statistics block */
1784 	if (!BGE_IS_5705_PLUS(sc)) {
1785 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1786 		    BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1787 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1788 		    BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1789 
1790 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1791 		CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1792 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1793 	}
1794 
1795 	/* Set up address of status block */
1796 	bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1797 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1798 	    BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1799 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1800 	    BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1801 
1802 	/*
1803 	 * Set up status block partail update size.
1804 	 *
1805 	 * Because only single TX ring, RX produce ring and Rx return ring
1806 	 * are used, ask device to update only minimum part of status block
1807 	 * except for BCM5700 AX/BX, whose status block partial update size
1808 	 * can't be configured.
1809 	 */
1810 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1811 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1812 		/* XXX Actually reserved on BCM5700 AX/BX */
1813 		val = BGE_STATBLKSZ_FULL;
1814 	} else {
1815 		val = BGE_STATBLKSZ_32BYTE;
1816 	}
1817 #if 0
1818 	/*
1819 	 * Does not seem to have visible effect in both
1820 	 * bulk data (1472B UDP datagram) and tiny data
1821 	 * (18B UDP datagram) TX tests.
1822 	 */
1823 	if (!BGE_IS_CRIPPLED(sc))
1824 		val |= BGE_HCCMODE_CLRTICK_TX;
1825 #endif
1826 
1827 	/* Turn on host coalescing state machine */
1828 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1829 
1830 	/* Turn on RX BD completion state machine and enable attentions */
1831 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1832 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1833 
1834 	/* Turn on RX list placement state machine */
1835 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1836 
1837 	/* Turn on RX list selector state machine. */
1838 	if (!BGE_IS_5705_PLUS(sc))
1839 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1840 
1841 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1842 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1843 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1844 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1845 
1846 	if (sc->bge_flags & BGE_FLAG_TBI)
1847 		val |= BGE_PORTMODE_TBI;
1848 	else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1849 		val |= BGE_PORTMODE_GMII;
1850 	else
1851 		val |= BGE_PORTMODE_MII;
1852 
1853 	/* Allow APE to send/receive frames. */
1854 	if (sc->bge_mfw_flags & BGE_MFW_ON_APE)
1855 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
1856 
1857 	/* Turn on DMA, clear stats */
1858 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1859 	DELAY(40);
1860 
1861 	/* Set misc. local control, enable interrupts on attentions */
1862 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1863 
1864 #ifdef notdef
1865 	/* Assert GPIO pins for PHY reset */
1866 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1867 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1868 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1869 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1870 #endif
1871 
1872 	/* Turn on DMA completion state machine */
1873 	if (!BGE_IS_5705_PLUS(sc))
1874 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1875 
1876 	/* Turn on write DMA state machine */
1877 	val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1878 	if (BGE_IS_5755_PLUS(sc)) {
1879 		/* Enable host coalescing bug fix. */
1880 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1881 	}
1882 	if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1883 		/* Request larger DMA burst size to get better performance. */
1884 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1885 	}
1886 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1887 	DELAY(40);
1888 
1889 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1890 	    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1891 	    sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1892 	    sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1893 		/*
1894 		 * Enable fix for read DMA FIFO overruns.
1895 		 * The fix is to limit the number of RX BDs
1896 		 * the hardware would fetch at a fime.
1897 		 */
1898 		val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1899 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1900 		    val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1901 	}
1902 
1903 	/* Turn on read DMA state machine */
1904 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1905         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1906             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1907             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1908 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1909                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1910                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1911 	if (sc->bge_flags & BGE_FLAG_PCIE)
1912 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1913 	if (sc->bge_flags & BGE_FLAG_TSO)
1914 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1915 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1916 	DELAY(40);
1917 
1918 	/* Turn on RX data completion state machine */
1919 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1920 
1921 	/* Turn on RX BD initiator state machine */
1922 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1923 
1924 	/* Turn on RX data and RX BD initiator state machine */
1925 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1926 
1927 	/* Turn on Mbuf cluster free state machine */
1928 	if (!BGE_IS_5705_PLUS(sc))
1929 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1930 
1931 	/* Turn on send BD completion state machine */
1932 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1933 
1934 	/* Turn on send data completion state machine */
1935 	val = BGE_SDCMODE_ENABLE;
1936 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1937 		val |= BGE_SDCMODE_CDELAY;
1938 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1939 
1940 	/* Turn on send data initiator state machine */
1941 	if (sc->bge_flags & BGE_FLAG_TSO)
1942 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1943 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
1944 	else
1945 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1946 
1947 	/* Turn on send BD initiator state machine */
1948 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1949 
1950 	/* Turn on send BD selector state machine */
1951 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1952 
1953 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1954 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1955 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1956 
1957 	/* ack/clear link change events */
1958 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1959 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1960 	    BGE_MACSTAT_LINK_CHANGED);
1961 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1962 
1963 	/*
1964 	 * Enable attention when the link has changed state for
1965 	 * devices that use auto polling.
1966 	 */
1967 	if (sc->bge_flags & BGE_FLAG_TBI) {
1968 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1969  	} else {
1970 		if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1971 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1972 			DELAY(80);
1973 		}
1974 		if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1975 		    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1976 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1977 			    BGE_EVTENB_MI_INTERRUPT);
1978 		}
1979 	}
1980 
1981 	/*
1982 	 * Clear any pending link state attention.
1983 	 * Otherwise some link state change events may be lost until attention
1984 	 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1985 	 * It's not necessary on newer BCM chips - perhaps enabling link
1986 	 * state change attentions implies clearing pending attention.
1987 	 */
1988 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1989 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1990 	    BGE_MACSTAT_LINK_CHANGED);
1991 
1992 	/* Enable link state change attentions. */
1993 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1994 
1995 	return(0);
1996 }
1997 
1998 /*
1999  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2000  * against our list and return its name if we find a match. Note
2001  * that since the Broadcom controller contains VPD support, we
2002  * can get the device name string from the controller itself instead
2003  * of the compiled-in string. This is a little slow, but it guarantees
2004  * we'll always announce the right product name.
2005  */
2006 static int
2007 bge_probe(device_t dev)
2008 {
2009 	const struct bge_type *t;
2010 	uint16_t product, vendor;
2011 
2012 	product = pci_get_device(dev);
2013 	vendor = pci_get_vendor(dev);
2014 
2015 	for (t = bge_devs; t->bge_name != NULL; t++) {
2016 		if (vendor == t->bge_vid && product == t->bge_did)
2017 			break;
2018 	}
2019 	if (t->bge_name == NULL)
2020 		return(ENXIO);
2021 
2022 	device_set_desc(dev, t->bge_name);
2023 	return(0);
2024 }
2025 
2026 static int
2027 bge_attach(device_t dev)
2028 {
2029 	struct ifnet *ifp;
2030 	struct bge_softc *sc;
2031 	struct sysctl_ctx_list *ctx;
2032 	struct sysctl_oid *tree;
2033 	uint32_t hwcfg = 0, misccfg;
2034 	int error = 0, rid, capmask;
2035 	uint8_t ether_addr[ETHER_ADDR_LEN];
2036 	uint16_t product, vendor;
2037 	driver_intr_t *intr_func;
2038 	uintptr_t mii_priv = 0;
2039 	u_int intr_flags;
2040 	int msi_enable;
2041 
2042 	sc = device_get_softc(dev);
2043 	sc->bge_dev = dev;
2044 	callout_init_mp(&sc->bge_stat_timer);
2045 	lwkt_serialize_init(&sc->bge_jslot_serializer);
2046 
2047 	sc->bge_func_addr = pci_get_function(dev);
2048 	product = pci_get_device(dev);
2049 	vendor = pci_get_vendor(dev);
2050 
2051 #ifndef BURN_BRIDGES
2052 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
2053 		uint32_t irq, mem;
2054 
2055 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
2056 		mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
2057 
2058 		device_printf(dev, "chip is in D%d power mode "
2059 		    "-- setting to D0\n", pci_get_powerstate(dev));
2060 
2061 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
2062 
2063 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
2064 		pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
2065 	}
2066 #endif	/* !BURN_BRIDGE */
2067 
2068 	/*
2069 	 * Map control/status registers.
2070 	 */
2071 	pci_enable_busmaster(dev);
2072 
2073 	rid = BGE_PCI_BAR0;
2074 	sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2075 	    RF_ACTIVE);
2076 
2077 	if (sc->bge_res == NULL) {
2078 		device_printf(dev, "couldn't map memory\n");
2079 		return ENXIO;
2080 	}
2081 
2082 	sc->bge_btag = rman_get_bustag(sc->bge_res);
2083 	sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2084 
2085 	/* Save various chip information */
2086 	sc->bge_chipid =
2087 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2088 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
2089 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2090 		/* All chips, which use BGE_PCI_PRODID_ASICREV, have CPMU */
2091 		sc->bge_flags |= BGE_FLAG_CPMU;
2092 		sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2093 	}
2094 	sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2095 	sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2096 
2097 	/* Save chipset family. */
2098 	switch (sc->bge_asicrev) {
2099 	case BGE_ASICREV_BCM5755:
2100 	case BGE_ASICREV_BCM5761:
2101 	case BGE_ASICREV_BCM5784:
2102 	case BGE_ASICREV_BCM5785:
2103 	case BGE_ASICREV_BCM5787:
2104 	case BGE_ASICREV_BCM57780:
2105 	    sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2106 		BGE_FLAG_5705_PLUS;
2107 	    break;
2108 
2109 	case BGE_ASICREV_BCM5700:
2110 	case BGE_ASICREV_BCM5701:
2111 	case BGE_ASICREV_BCM5703:
2112 	case BGE_ASICREV_BCM5704:
2113 		sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2114 		break;
2115 
2116 	case BGE_ASICREV_BCM5714_A0:
2117 	case BGE_ASICREV_BCM5780:
2118 	case BGE_ASICREV_BCM5714:
2119 		sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2120 		/* Fall through */
2121 
2122 	case BGE_ASICREV_BCM5750:
2123 	case BGE_ASICREV_BCM5752:
2124 	case BGE_ASICREV_BCM5906:
2125 		sc->bge_flags |= BGE_FLAG_575X_PLUS;
2126 		/* Fall through */
2127 
2128 	case BGE_ASICREV_BCM5705:
2129 		sc->bge_flags |= BGE_FLAG_5705_PLUS;
2130 		break;
2131 	}
2132 
2133 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2134 		sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2135 
2136 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2137 		sc->bge_flags |= BGE_FLAG_APE;
2138 
2139 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2140 	if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2141 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2142 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2143 		sc->bge_flags |= BGE_FLAG_5788;
2144 
2145 	/* BCM5755 or higher and BCM5906 have short DMA bug. */
2146 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2147 		sc->bge_flags |= BGE_FLAG_SHORTDMA;
2148 
2149 	/*
2150 	 * Increase STD RX ring prod index by at most 8 for BCM5750,
2151 	 * BCM5752 and BCM5755 to workaround hardware errata.
2152 	 */
2153 	if (sc->bge_asicrev == BGE_ASICREV_BCM5750 ||
2154 	    sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2155 	    sc->bge_asicrev == BGE_ASICREV_BCM5755)
2156 		sc->bge_rx_wreg = 8;
2157 
2158   	/*
2159 	 * Check if this is a PCI-X or PCI Express device.
2160   	 */
2161 	if (BGE_IS_5705_PLUS(sc)) {
2162 		if (pci_is_pcie(dev)) {
2163 			sc->bge_flags |= BGE_FLAG_PCIE;
2164 			sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2165 			pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2166 		}
2167 	} else {
2168 		/*
2169 		 * Check if the device is in PCI-X Mode.
2170 		 * (This bit is not valid on PCI Express controllers.)
2171 		 */
2172 		if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2173 		    BGE_PCISTATE_PCI_BUSMODE) == 0) {
2174 			sc->bge_flags |= BGE_FLAG_PCIX;
2175 			sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2176 			sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2177 			    "mbox_reorder", 0);
2178 		}
2179  	}
2180 	device_printf(dev, "CHIP ID 0x%08x; "
2181 		      "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2182 		      sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2183 		      (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2184 		      : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2185 			"PCI-E" : "PCI"));
2186 
2187 	/*
2188 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
2189 	 * not actually a MAC controller bug but an issue with the embedded
2190 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2191 	 */
2192 	if ((sc->bge_flags & BGE_FLAG_PCIX) &&
2193 	    (BGE_IS_5714_FAMILY(sc) || device_getenv_int(dev, "dma40b", 0)))
2194 		sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2195 
2196 	/*
2197 	 * When using the BCM5701 in PCI-X mode, data corruption has
2198 	 * been observed in the first few bytes of some received packets.
2199 	 * Aligning the packet buffer in memory eliminates the corruption.
2200 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2201 	 * which do not support unaligned accesses, we will realign the
2202 	 * payloads by copying the received packets.
2203 	 */
2204 	if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2205 	    (sc->bge_flags & BGE_FLAG_PCIX))
2206 		sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2207 
2208 	if (!BGE_IS_CRIPPLED(sc)) {
2209 		if (device_getenv_int(dev, "status_tag", 1)) {
2210 			sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2211 			sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2212 			if (bootverbose)
2213 				device_printf(dev, "enable status tag\n");
2214 		}
2215 	}
2216 
2217 	if (BGE_IS_5755_PLUS(sc)) {
2218 		/*
2219 		 * BCM5754 and BCM5787 shares the same ASIC id so
2220 		 * explicit device id check is required.
2221 		 * Due to unknown reason TSO does not work on BCM5755M.
2222 		 */
2223 		if (product != PCI_PRODUCT_BROADCOM_BCM5754 &&
2224 		    product != PCI_PRODUCT_BROADCOM_BCM5754M &&
2225 		    product != PCI_PRODUCT_BROADCOM_BCM5755M)
2226 			sc->bge_flags |= BGE_FLAG_TSO;
2227 	}
2228 
2229 	/*
2230 	 * Set various PHY quirk flags.
2231 	 */
2232 
2233 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2234 	     sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2235 	    pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2236 		mii_priv |= BRGPHY_FLAG_NO_3LED;
2237 
2238 	capmask = MII_CAPMASK_DEFAULT;
2239 	if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2240 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2241 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2242 	     vendor == PCI_VENDOR_BROADCOM &&
2243 	     (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2244 	      product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2245 	      product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2246 	    (vendor == PCI_VENDOR_BROADCOM &&
2247 	     (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2248 	      product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2249 	      product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2250 	    product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2251 	    sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2252 		/* 10/100 only */
2253 		capmask &= ~BMSR_EXTSTAT;
2254 	}
2255 
2256 	mii_priv |= BRGPHY_FLAG_WIRESPEED;
2257 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2258 	    (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2259 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2260 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2261 	    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2262 		mii_priv &= ~BRGPHY_FLAG_WIRESPEED;
2263 
2264 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2265 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2266 		mii_priv |= BRGPHY_FLAG_CRC_BUG;
2267 
2268 	if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2269 	    sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2270 		mii_priv |= BRGPHY_FLAG_ADC_BUG;
2271 
2272 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2273 		mii_priv |= BRGPHY_FLAG_5704_A0;
2274 
2275 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2276 		mii_priv |= BRGPHY_FLAG_5906;
2277 
2278 	if (BGE_IS_5705_PLUS(sc) &&
2279 	    sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2280 	    /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2281 	    sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2282 	    /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2283 	    sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2284 		if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2285 		    sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2286 		    sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2287 		    sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2288 			if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2289 			    product != PCI_PRODUCT_BROADCOM_BCM5756)
2290 				mii_priv |= BRGPHY_FLAG_JITTER_BUG;
2291 			if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2292 				mii_priv |= BRGPHY_FLAG_ADJUST_TRIM;
2293 		} else {
2294 			mii_priv |= BRGPHY_FLAG_BER_BUG;
2295 		}
2296 	}
2297 
2298 	/*
2299 	 * Chips with APE need BAR2 access for APE registers/memory.
2300 	 */
2301 	if (sc->bge_flags & BGE_FLAG_APE) {
2302 		uint32_t pcistate;
2303 
2304 		rid = PCIR_BAR(2);
2305 		sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2306 		    RF_ACTIVE);
2307 		if (sc->bge_res2 == NULL) {
2308 			device_printf(dev, "couldn't map BAR2 memory\n");
2309 			error = ENXIO;
2310 			goto fail;
2311 		}
2312 
2313 		/* Enable APE register/memory access by host driver. */
2314 		pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2315 		pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2316 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2317 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2318 		pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
2319 
2320 		bge_ape_lock_init(sc);
2321 		bge_ape_read_fw_ver(sc);
2322 	}
2323 
2324 	/*
2325 	 * Allocate interrupt
2326 	 */
2327 	msi_enable = bge_msi_enable;
2328 	if ((sc->bge_flags & BGE_FLAG_STATUS_TAG) == 0) {
2329 		/* If "tagged status" is disabled, don't enable MSI */
2330 		msi_enable = 0;
2331 	} else if (msi_enable) {
2332 		msi_enable = 0; /* Disable by default */
2333 		if (BGE_IS_575X_PLUS(sc)) {
2334 			msi_enable = 1;
2335 			/* XXX we filter all 5714 chips */
2336 			if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
2337 			    (sc->bge_asicrev == BGE_ASICREV_BCM5750 &&
2338 			     (sc->bge_chiprev == BGE_CHIPREV_5750_AX ||
2339 			      sc->bge_chiprev == BGE_CHIPREV_5750_BX)))
2340 				msi_enable = 0;
2341 			else if (BGE_IS_5755_PLUS(sc) ||
2342 			    sc->bge_asicrev == BGE_ASICREV_BCM5906)
2343 				sc->bge_flags |= BGE_FLAG_ONESHOT_MSI;
2344 		}
2345 	}
2346 	if (msi_enable) {
2347 		if (pci_find_extcap(dev, PCIY_MSI, &sc->bge_msicap)) {
2348 			device_printf(dev, "no MSI capability\n");
2349 			msi_enable = 0;
2350 		}
2351 	}
2352 
2353 	sc->bge_irq_type = pci_alloc_1intr(dev, msi_enable, &sc->bge_irq_rid,
2354 	    &intr_flags);
2355 
2356 	sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bge_irq_rid,
2357 	    intr_flags);
2358 	if (sc->bge_irq == NULL) {
2359 		device_printf(dev, "couldn't map interrupt\n");
2360 		error = ENXIO;
2361 		goto fail;
2362 	}
2363 
2364 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2365 		bge_enable_msi(sc);
2366 	else
2367 		sc->bge_flags &= ~BGE_FLAG_ONESHOT_MSI;
2368 
2369 	/* Initialize if_name earlier, so if_printf could be used */
2370 	ifp = &sc->arpcom.ac_if;
2371 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2372 
2373 	sc->bge_asf_mode = 0;
2374 	/* No ASF if APE present. */
2375 	if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
2376 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
2377 		    BGE_SRAM_DATA_SIG_MAGIC)) {
2378 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
2379 			    BGE_HWCFG_ASF) {
2380 				sc->bge_asf_mode |= ASF_ENABLE;
2381 				sc->bge_asf_mode |= ASF_STACKUP;
2382 				if (BGE_IS_575X_PLUS(sc))
2383 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2384 			}
2385 		}
2386 	}
2387 
2388 	/*
2389 	 * Try to reset the chip.
2390 	 */
2391 	bge_stop_fw(sc);
2392 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
2393 	bge_reset(sc);
2394 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
2395 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
2396 
2397 	if (bge_chipinit(sc)) {
2398 		device_printf(dev, "chip initialization failed\n");
2399 		error = ENXIO;
2400 		goto fail;
2401 	}
2402 
2403 	/*
2404 	 * Get station address
2405 	 */
2406 	error = bge_get_eaddr(sc, ether_addr);
2407 	if (error) {
2408 		device_printf(dev, "failed to read station address\n");
2409 		goto fail;
2410 	}
2411 
2412 	/* 5705/5750 limits RX return ring to 512 entries. */
2413 	if (BGE_IS_5705_PLUS(sc))
2414 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2415 	else
2416 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2417 
2418 	error = bge_dma_alloc(sc);
2419 	if (error)
2420 		goto fail;
2421 
2422 	/* Set default tuneable values. */
2423 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2424 	sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2425 	sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2426 	sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2427 	sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2428 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2429 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2430 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2431 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2432 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2433 	} else {
2434 		sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2435 		sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2436 		sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2437 		sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2438 	}
2439 	sc->bge_tx_wreg = BGE_TX_WREG_NSEGS;
2440 
2441 	/* Set up TX spare and reserved descriptor count */
2442 	if (sc->bge_flags & BGE_FLAG_TSO) {
2443 		sc->bge_txspare = BGE_NSEG_SPARE_TSO;
2444 		sc->bge_txrsvd = BGE_NSEG_RSVD_TSO;
2445 	} else {
2446 		sc->bge_txspare = BGE_NSEG_SPARE;
2447 		sc->bge_txrsvd = BGE_NSEG_RSVD;
2448 	}
2449 
2450 	/* Set up ifnet structure */
2451 	ifp->if_softc = sc;
2452 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2453 	ifp->if_ioctl = bge_ioctl;
2454 	ifp->if_start = bge_start;
2455 #ifdef IFPOLL_ENABLE
2456 	ifp->if_npoll = bge_npoll;
2457 #endif
2458 	ifp->if_watchdog = bge_watchdog;
2459 	ifp->if_init = bge_init;
2460 	ifp->if_mtu = ETHERMTU;
2461 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2462 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2463 	ifq_set_ready(&ifp->if_snd);
2464 
2465 	/*
2466 	 * 5700 B0 chips do not support checksumming correctly due
2467 	 * to hardware bugs.
2468 	 */
2469 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2470 		ifp->if_capabilities |= IFCAP_HWCSUM;
2471 		ifp->if_hwassist |= BGE_CSUM_FEATURES;
2472 	}
2473 	if (sc->bge_flags & BGE_FLAG_TSO) {
2474 		ifp->if_capabilities |= IFCAP_TSO;
2475 		ifp->if_hwassist |= CSUM_TSO;
2476 	}
2477 	ifp->if_capenable = ifp->if_capabilities;
2478 
2479 	/*
2480 	 * Figure out what sort of media we have by checking the
2481 	 * hardware config word in the first 32k of NIC internal memory,
2482 	 * or fall back to examining the EEPROM if necessary.
2483 	 * Note: on some BCM5700 cards, this value appears to be unset.
2484 	 * If that's the case, we have to rely on identifying the NIC
2485 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2486 	 * SK-9D41.
2487 	 */
2488 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2489 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2490 	} else {
2491 		if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2492 				    sizeof(hwcfg))) {
2493 			device_printf(dev, "failed to read EEPROM\n");
2494 			error = ENXIO;
2495 			goto fail;
2496 		}
2497 		hwcfg = ntohl(hwcfg);
2498 	}
2499 
2500 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2501 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2502 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2503 		if (BGE_IS_5714_FAMILY(sc))
2504 			sc->bge_flags |= BGE_FLAG_MII_SERDES;
2505 		else
2506 			sc->bge_flags |= BGE_FLAG_TBI;
2507 	}
2508 
2509 	/* Setup MI MODE */
2510 	if (sc->bge_flags & BGE_FLAG_CPMU)
2511 		sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2512 	else
2513 		sc->bge_mi_mode = BGE_MIMODE_BASE;
2514 	if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2515 		/* Enable auto polling for BCM570[0-5]. */
2516 		sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2517 	}
2518 
2519 	/* Setup link status update stuffs */
2520 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2521 	    sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2522 		sc->bge_link_upd = bge_bcm5700_link_upd;
2523 		sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2524 	} else if (sc->bge_flags & BGE_FLAG_TBI) {
2525 		sc->bge_link_upd = bge_tbi_link_upd;
2526 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2527 	} else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2528 		sc->bge_link_upd = bge_autopoll_link_upd;
2529 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2530 	} else {
2531 		sc->bge_link_upd = bge_copper_link_upd;
2532 		sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2533 	}
2534 
2535 	/*
2536 	 * Broadcom's own driver always assumes the internal
2537 	 * PHY is at GMII address 1.  On some chips, the PHY responds
2538 	 * to accesses at all addresses, which could cause us to
2539 	 * bogusly attach the PHY 32 times at probe type.  Always
2540 	 * restricting the lookup to address 1 is simpler than
2541 	 * trying to figure out which chips revisions should be
2542 	 * special-cased.
2543 	 */
2544 	sc->bge_phyno = 1;
2545 
2546 	if (sc->bge_flags & BGE_FLAG_TBI) {
2547 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2548 		    bge_ifmedia_upd, bge_ifmedia_sts);
2549 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2550 		ifmedia_add(&sc->bge_ifmedia,
2551 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2552 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2553 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2554 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2555 	} else {
2556 		struct mii_probe_args mii_args;
2557 		int tries;
2558 
2559 		/*
2560 		 * Do transceiver setup and tell the firmware the
2561 		 * driver is down so we can try to get access the
2562 		 * probe if ASF is running.  Retry a couple of times
2563 		 * if we get a conflict with the ASF firmware accessing
2564 		 * the PHY.
2565 		 */
2566 		tries = 0;
2567 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2568 again:
2569 		bge_asf_driver_up(sc);
2570 
2571 		mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2572 		mii_args.mii_probemask = 1 << sc->bge_phyno;
2573 		mii_args.mii_capmask = capmask;
2574 		mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2575 		mii_args.mii_priv = mii_priv;
2576 
2577 		error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2578 		if (error) {
2579 			if (tries++ < 4) {
2580 				device_printf(sc->bge_dev, "Probe MII again\n");
2581 				bge_miibus_writereg(sc->bge_dev,
2582 				    sc->bge_phyno, MII_BMCR, BMCR_RESET);
2583 				goto again;
2584 			}
2585 			device_printf(dev, "MII without any PHY!\n");
2586 			goto fail;
2587 		}
2588 
2589 		/*
2590 		 * Now tell the firmware we are going up after probing the PHY
2591 		 */
2592 		if (sc->bge_asf_mode & ASF_STACKUP)
2593 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2594 	}
2595 
2596 	ctx = device_get_sysctl_ctx(sc->bge_dev);
2597 	tree = device_get_sysctl_tree(sc->bge_dev);
2598 
2599 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rx_coal_ticks",
2600 			CTLTYPE_INT | CTLFLAG_RW,
2601 			sc, 0, bge_sysctl_rx_coal_ticks, "I",
2602 			"Receive coalescing ticks (usec).");
2603 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_coal_ticks",
2604 			CTLTYPE_INT | CTLFLAG_RW,
2605 			sc, 0, bge_sysctl_tx_coal_ticks, "I",
2606 			"Transmit coalescing ticks (usec).");
2607 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "rx_coal_bds",
2608 			CTLTYPE_INT | CTLFLAG_RW,
2609 			sc, 0, bge_sysctl_rx_coal_bds, "I",
2610 			"Receive max coalesced BD count.");
2611 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_coal_bds",
2612 			CTLTYPE_INT | CTLFLAG_RW,
2613 			sc, 0, bge_sysctl_tx_coal_bds, "I",
2614 			"Transmit max coalesced BD count.");
2615 
2616 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_wreg", CTLFLAG_RW,
2617 		       &sc->bge_tx_wreg, 0,
2618 		       "# of segments before writing to hardware register");
2619 
2620 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2621 		/*
2622 		 * A common design characteristic for many Broadcom
2623 		 * client controllers is that they only support a
2624 		 * single outstanding DMA read operation on the PCIe
2625 		 * bus. This means that it will take twice as long to
2626 		 * fetch a TX frame that is split into header and
2627 		 * payload buffers as it does to fetch a single,
2628 		 * contiguous TX frame (2 reads vs. 1 read). For these
2629 		 * controllers, coalescing buffers to reduce the number
2630 		 * of memory reads is effective way to get maximum
2631 		 * performance(about 940Mbps).  Without collapsing TX
2632 		 * buffers the maximum TCP bulk transfer performance
2633 		 * is about 850Mbps. However forcing coalescing mbufs
2634 		 * consumes a lot of CPU cycles, so leave it off by
2635 		 * default.
2636 		 */
2637 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2638 			       "force_defrag", CTLFLAG_RW,
2639 			       &sc->bge_force_defrag, 0,
2640 			       "Force defragment on TX path");
2641 	}
2642 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2643 		if (!BGE_IS_5705_PLUS(sc)) {
2644 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2645 			    "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2646 			    sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2647 			    "Receive coalescing ticks "
2648 			    "during interrupt (usec).");
2649 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2650 			    "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2651 			    sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2652 			    "Transmit coalescing ticks "
2653 			    "during interrupt (usec).");
2654 		}
2655 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2656 		    "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2657 		    sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2658 		    "Receive max coalesced BD count during interrupt.");
2659 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2660 		    "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2661 		    sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2662 		    "Transmit max coalesced BD count during interrupt.");
2663 	}
2664 
2665 	/*
2666 	 * Call MI attach routine.
2667 	 */
2668 	ether_ifattach(ifp, ether_addr, NULL);
2669 
2670 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
2671 
2672 #ifdef IFPOLL_ENABLE
2673 	/* Polling setup */
2674 	ifpoll_compat_setup(&sc->bge_npoll, ctx, tree,
2675 	    device_get_unit(dev), ifp->if_serializer);
2676 #endif
2677 
2678 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2679 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
2680 			intr_func = bge_msi_oneshot;
2681 			if (bootverbose)
2682 				device_printf(dev, "oneshot MSI\n");
2683 		} else {
2684 			intr_func = bge_msi;
2685 		}
2686 	} else if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2687 		intr_func = bge_intr_legacy;
2688 	} else {
2689 		intr_func = bge_intr_crippled;
2690 	}
2691 	error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2692 	    &sc->bge_intrhand, ifp->if_serializer);
2693 	if (error) {
2694 		ether_ifdetach(ifp);
2695 		device_printf(dev, "couldn't set up irq\n");
2696 		goto fail;
2697 	}
2698 
2699 	return(0);
2700 fail:
2701 	bge_detach(dev);
2702 	return(error);
2703 }
2704 
2705 static int
2706 bge_detach(device_t dev)
2707 {
2708 	struct bge_softc *sc = device_get_softc(dev);
2709 
2710 	if (device_is_attached(dev)) {
2711 		struct ifnet *ifp = &sc->arpcom.ac_if;
2712 
2713 		lwkt_serialize_enter(ifp->if_serializer);
2714 		bge_stop(sc);
2715 		bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2716 		lwkt_serialize_exit(ifp->if_serializer);
2717 
2718 		ether_ifdetach(ifp);
2719 	}
2720 
2721 	if (sc->bge_flags & BGE_FLAG_TBI)
2722 		ifmedia_removeall(&sc->bge_ifmedia);
2723 	if (sc->bge_miibus)
2724 		device_delete_child(dev, sc->bge_miibus);
2725 	bus_generic_detach(dev);
2726 
2727 	if (sc->bge_irq != NULL) {
2728 		bus_release_resource(dev, SYS_RES_IRQ, sc->bge_irq_rid,
2729 		    sc->bge_irq);
2730 	}
2731 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI)
2732 		pci_release_msi(dev);
2733 
2734 	if (sc->bge_res != NULL) {
2735 		bus_release_resource(dev, SYS_RES_MEMORY,
2736 		    BGE_PCI_BAR0, sc->bge_res);
2737 	}
2738 	if (sc->bge_res2 != NULL) {
2739 		bus_release_resource(dev, SYS_RES_MEMORY,
2740 		    PCIR_BAR(2), sc->bge_res2);
2741 	}
2742 
2743 	bge_dma_free(sc);
2744 
2745 	return 0;
2746 }
2747 
2748 static void
2749 bge_reset(struct bge_softc *sc)
2750 {
2751 	device_t dev = sc->bge_dev;
2752 	uint32_t cachesize, command, reset, mac_mode, mac_mode_mask;
2753 	void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2754 	int i, val = 0;
2755 
2756 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
2757 	if (sc->bge_mfw_flags & BGE_MFW_ON_APE)
2758 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2759 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
2760 
2761 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2762 	    sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2763 		if (sc->bge_flags & BGE_FLAG_PCIE)
2764 			write_op = bge_writemem_direct;
2765 		else
2766 			write_op = bge_writemem_ind;
2767 	} else {
2768 		write_op = bge_writereg_ind;
2769 	}
2770 
2771 	if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2772 	    sc->bge_asicrev != BGE_ASICREV_BCM5701) {
2773 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
2774 		for (i = 0; i < 8000; i++) {
2775 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
2776 			    BGE_NVRAMSWARB_GNT1)
2777 				break;
2778 			DELAY(20);
2779 		}
2780 		if (i == 8000) {
2781 			if (bootverbose) {
2782 				if_printf(&sc->arpcom.ac_if,
2783 				    "NVRAM lock timedout!\n");
2784 			}
2785 		}
2786 	}
2787 	/* Take APE lock when performing reset. */
2788 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
2789 
2790 	/* Save some important PCI state. */
2791 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2792 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2793 
2794 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2795 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2796 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2797 	    sc->bge_pci_miscctl, 4);
2798 
2799 	/* Disable fastboot on controllers that support it. */
2800 	if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2801 	    BGE_IS_5755_PLUS(sc)) {
2802 		if (bootverbose)
2803 			if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2804 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2805 	}
2806 
2807 	/*
2808 	 * Write the magic number to SRAM at offset 0xB50.
2809 	 * When firmware finishes its initialization it will
2810 	 * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2811 	 */
2812 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2813 
2814 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2815 
2816 	/* XXX: Broadcom Linux driver. */
2817 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2818 		/* Force PCI-E 1.0a mode */
2819 		if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2820 		    CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2821 		    (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2822 		     BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2823 			CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2824 			    BGE_PCIE_PHY_TSTCTL_PSCRAM);
2825 		}
2826 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2827 			/* Prevent PCIE link training during global reset */
2828 			CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2829 			reset |= (1<<29);
2830 		}
2831 	}
2832 
2833 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2834 		uint32_t status, ctrl;
2835 
2836 		status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2837 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2838 		    status | BGE_VCPU_STATUS_DRV_RESET);
2839 		ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2840 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2841 		    ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2842 	}
2843 
2844 	/*
2845 	 * Set GPHY Power Down Override to leave GPHY
2846 	 * powered up in D0 uninitialized.
2847 	 */
2848 	if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2849 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2850 
2851 	/* Issue global reset */
2852 	write_op(sc, BGE_MISC_CFG, reset);
2853 
2854 	if (sc->bge_flags & BGE_FLAG_PCIE)
2855 		DELAY(100 * 1000);
2856 	else
2857 		DELAY(1000);
2858 
2859 	/* XXX: Broadcom Linux driver. */
2860 	if (sc->bge_flags & BGE_FLAG_PCIE) {
2861 		uint16_t devctl;
2862 
2863 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2864 			uint32_t v;
2865 
2866 			DELAY(500000); /* wait for link training to complete */
2867 			v = pci_read_config(dev, 0xc4, 4);
2868 			pci_write_config(dev, 0xc4, v | (1<<15), 4);
2869 		}
2870 
2871 		devctl = pci_read_config(dev,
2872 		    sc->bge_pciecap + PCIER_DEVCTRL, 2);
2873 
2874 		/* Disable no snoop and disable relaxed ordering. */
2875 		devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2876 
2877 		/* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2878 		if ((sc->bge_flags & BGE_FLAG_CPMU) == 0) {
2879 			devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2880 			devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2881 		}
2882 
2883 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2884 		    devctl, 2);
2885 
2886 		/* Clear error status. */
2887 		pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2888 		    PCIEM_DEVSTS_CORR_ERR |
2889 		    PCIEM_DEVSTS_NFATAL_ERR |
2890 		    PCIEM_DEVSTS_FATAL_ERR |
2891 		    PCIEM_DEVSTS_UNSUPP_REQ, 2);
2892 	}
2893 
2894 	/* Reset some of the PCI state that got zapped by reset */
2895 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2896 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2897 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2898 	    sc->bge_pci_miscctl, 4);
2899 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
2900 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
2901 	    (sc->bge_flags & BGE_FLAG_PCIX))
2902 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
2903 	if (sc->bge_mfw_flags & BGE_MFW_ON_APE) {
2904 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2905 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2906 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2907 	}
2908 	pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
2909 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2910 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2911 
2912 	/*
2913 	 * Disable PCI-X relaxed ordering to ensure status block update
2914 	 * comes first then packet buffer DMA. Otherwise driver may
2915 	 * read stale status block.
2916 	 */
2917 	if (sc->bge_flags & BGE_FLAG_PCIX) {
2918 		uint16_t devctl;
2919 
2920 		devctl = pci_read_config(dev,
2921 		    sc->bge_pcixcap + PCIXR_COMMAND, 2);
2922 		devctl &= ~PCIXM_COMMAND_ERO;
2923 		if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2924 			devctl &= ~PCIXM_COMMAND_MAX_READ;
2925 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2926 		} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2927 			devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2928 			    PCIXM_COMMAND_MAX_READ);
2929 			devctl |= PCIXM_COMMAND_MAX_READ_2048;
2930 		}
2931 		pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2932 		    devctl, 2);
2933 	}
2934 
2935 	/*
2936 	 * Enable memory arbiter and re-enable MSI if necessary.
2937 	 */
2938 	if (BGE_IS_5714_FAMILY(sc)) {
2939 		uint32_t val;
2940 
2941 		if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
2942 			/*
2943 			 * Resetting BCM5714 family will clear MSI
2944 			 * enable bit; restore it after resetting.
2945 			 */
2946 			PCI_SETBIT(sc->bge_dev, sc->bge_msicap + PCIR_MSI_CTRL,
2947 			    PCIM_MSICTRL_MSI_ENABLE, 2);
2948 			BGE_SETBIT(sc, BGE_MSI_MODE, BGE_MSIMODE_ENABLE);
2949 		}
2950 		val = CSR_READ_4(sc, BGE_MARB_MODE);
2951 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2952 	} else {
2953 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2954 	}
2955 
2956 	/* Fix up byte swapping. */
2957 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2958 	    BGE_MODECTL_BYTESWAP_DATA);
2959 
2960 	val = CSR_READ_4(sc, BGE_MAC_MODE);
2961 	val = (val & ~mac_mode_mask) | mac_mode;
2962 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2963 	DELAY(40);
2964 
2965 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
2966 
2967 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2968 		for (i = 0; i < BGE_TIMEOUT; i++) {
2969 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2970 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2971 				break;
2972 			DELAY(100);
2973 		}
2974 		if (i == BGE_TIMEOUT) {
2975 			if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2976 			return;
2977 		}
2978 	} else {
2979 		int delay_us = 10;
2980 
2981 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2982 			delay_us = 100;
2983 
2984 		/*
2985 		 * Poll until we see the 1's complement of the magic number.
2986 		 * This indicates that the firmware initialization
2987 		 * is complete.
2988 		 */
2989 		for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2990 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2991 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2992 				break;
2993 			DELAY(delay_us);
2994 		}
2995 		if (i == BGE_FIRMWARE_TIMEOUT) {
2996 			if_printf(&sc->arpcom.ac_if, "firmware handshake "
2997 				  "timed out, found 0x%08x\n", val);
2998 		}
2999 	}
3000 
3001 	/*
3002 	 * The 5704 in TBI mode apparently needs some special
3003 	 * adjustment to insure the SERDES drive level is set
3004 	 * to 1.2V.
3005 	 */
3006 	if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
3007 	    (sc->bge_flags & BGE_FLAG_TBI)) {
3008 		uint32_t serdescfg;
3009 
3010 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3011 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
3012 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3013 	}
3014 
3015 	/* XXX: Broadcom Linux driver. */
3016 	if ((sc->bge_flags & BGE_FLAG_PCIE) &&
3017 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3018 	    sc->bge_asicrev != BGE_ASICREV_BCM5785) {
3019 		uint32_t v;
3020 
3021 		/* Enable Data FIFO protection. */
3022 		v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
3023 		CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
3024 	}
3025 
3026 	DELAY(10000);
3027 }
3028 
3029 /*
3030  * Frame reception handling. This is called if there's a frame
3031  * on the receive return list.
3032  *
3033  * Note: we have to be able to handle two possibilities here:
3034  * 1) the frame is from the jumbo recieve ring
3035  * 2) the frame is from the standard receive ring
3036  */
3037 
3038 static void
3039 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int count)
3040 {
3041 	struct ifnet *ifp;
3042 	int stdcnt = 0, jumbocnt = 0;
3043 
3044 	ifp = &sc->arpcom.ac_if;
3045 
3046 	while (sc->bge_rx_saved_considx != rx_prod && count != 0) {
3047 		struct bge_rx_bd	*cur_rx;
3048 		uint32_t		rxidx;
3049 		struct mbuf		*m = NULL;
3050 		uint16_t		vlan_tag = 0;
3051 		int			have_tag = 0;
3052 
3053 		--count;
3054 
3055 		cur_rx =
3056 	    &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3057 
3058 		rxidx = cur_rx->bge_idx;
3059 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3060 		logif(rx_pkt);
3061 
3062 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3063 			have_tag = 1;
3064 			vlan_tag = cur_rx->bge_vlan_tag;
3065 		}
3066 
3067 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3068 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3069 			jumbocnt++;
3070 
3071 			if (rxidx != sc->bge_jumbo) {
3072 				IFNET_STAT_INC(ifp, ierrors, 1);
3073 				if_printf(ifp, "sw jumbo index(%d) "
3074 				    "and hw jumbo index(%d) mismatch, drop!\n",
3075 				    sc->bge_jumbo, rxidx);
3076 				bge_setup_rxdesc_jumbo(sc, rxidx);
3077 				continue;
3078 			}
3079 
3080 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
3081 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3082 				IFNET_STAT_INC(ifp, ierrors, 1);
3083 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3084 				continue;
3085 			}
3086 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
3087 				IFNET_STAT_INC(ifp, ierrors, 1);
3088 				bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
3089 				continue;
3090 			}
3091 		} else {
3092 			int discard = 0;
3093 
3094 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3095 			stdcnt++;
3096 
3097 			if (rxidx != sc->bge_std) {
3098 				IFNET_STAT_INC(ifp, ierrors, 1);
3099 				if_printf(ifp, "sw std index(%d) "
3100 				    "and hw std index(%d) mismatch, drop!\n",
3101 				    sc->bge_std, rxidx);
3102 				bge_setup_rxdesc_std(sc, rxidx);
3103 				discard = 1;
3104 				goto refresh_rx;
3105 			}
3106 
3107 			m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
3108 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3109 				IFNET_STAT_INC(ifp, ierrors, 1);
3110 				bge_setup_rxdesc_std(sc, sc->bge_std);
3111 				discard = 1;
3112 				goto refresh_rx;
3113 			}
3114 			if (bge_newbuf_std(sc, sc->bge_std, 0)) {
3115 				IFNET_STAT_INC(ifp, ierrors, 1);
3116 				bge_setup_rxdesc_std(sc, sc->bge_std);
3117 				discard = 1;
3118 			}
3119 refresh_rx:
3120 			if (sc->bge_rx_wreg > 0 && stdcnt >= sc->bge_rx_wreg) {
3121 				bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO,
3122 				    sc->bge_std);
3123 				stdcnt = 0;
3124 			}
3125 			if (discard)
3126 				continue;
3127 		}
3128 
3129 		IFNET_STAT_INC(ifp, ipackets, 1);
3130 #if !defined(__i386__) && !defined(__x86_64__)
3131 		/*
3132 		 * The x86 allows unaligned accesses, but for other
3133 		 * platforms we must make sure the payload is aligned.
3134 		 */
3135 		if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3136 			bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3137 			    cur_rx->bge_len);
3138 			m->m_data += ETHER_ALIGN;
3139 		}
3140 #endif
3141 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3142 		m->m_pkthdr.rcvif = ifp;
3143 
3144 		if (ifp->if_capenable & IFCAP_RXCSUM) {
3145 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3146 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3147 				if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
3148 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3149 			}
3150 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
3151 			    m->m_pkthdr.len >= BGE_MIN_FRAMELEN) {
3152 				m->m_pkthdr.csum_data =
3153 					cur_rx->bge_tcp_udp_csum;
3154 				m->m_pkthdr.csum_flags |=
3155 					CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3156 			}
3157 		}
3158 
3159 		/*
3160 		 * If we received a packet with a vlan tag, pass it
3161 		 * to vlan_input() instead of ether_input().
3162 		 */
3163 		if (have_tag) {
3164 			m->m_flags |= M_VLANTAG;
3165 			m->m_pkthdr.ether_vlantag = vlan_tag;
3166 		}
3167 		ifp->if_input(ifp, m, NULL, -1);
3168 	}
3169 
3170 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3171 	if (stdcnt)
3172 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3173 	if (jumbocnt)
3174 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3175 }
3176 
3177 static void
3178 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
3179 {
3180 	struct ifnet *ifp;
3181 
3182 	ifp = &sc->arpcom.ac_if;
3183 
3184 	/*
3185 	 * Go through our tx ring and free mbufs for those
3186 	 * frames that have been sent.
3187 	 */
3188 	while (sc->bge_tx_saved_considx != tx_cons) {
3189 		uint32_t idx = 0;
3190 
3191 		idx = sc->bge_tx_saved_considx;
3192 		if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3193 			IFNET_STAT_INC(ifp, opackets, 1);
3194 			bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
3195 			    sc->bge_cdata.bge_tx_dmamap[idx]);
3196 			m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3197 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3198 		}
3199 		sc->bge_txcnt--;
3200 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3201 		logif(tx_pkt);
3202 	}
3203 
3204 	if ((BGE_TX_RING_CNT - sc->bge_txcnt) >=
3205 	    (sc->bge_txrsvd + sc->bge_txspare))
3206 		ifq_clr_oactive(&ifp->if_snd);
3207 
3208 	if (sc->bge_txcnt == 0)
3209 		ifp->if_timer = 0;
3210 
3211 	if (!ifq_is_empty(&ifp->if_snd))
3212 		if_devstart(ifp);
3213 }
3214 
3215 #ifdef IFPOLL_ENABLE
3216 
3217 static void
3218 bge_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycles)
3219 {
3220 	struct bge_softc *sc = ifp->if_softc;
3221 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3222 	uint16_t rx_prod, tx_cons;
3223 
3224 	ASSERT_SERIALIZED(ifp->if_serializer);
3225 
3226 	if (sc->bge_npoll.ifpc_stcount-- == 0) {
3227 		sc->bge_npoll.ifpc_stcount = sc->bge_npoll.ifpc_stfrac;
3228 		/*
3229 		 * Process link state changes.
3230 		 */
3231 		bge_link_poll(sc);
3232 	}
3233 
3234 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
3235 		sc->bge_status_tag = sblk->bge_status_tag;
3236 		/*
3237 		 * Use a load fence to ensure that status_tag
3238 		 * is saved  before rx_prod and tx_cons.
3239 		 */
3240 		cpu_lfence();
3241 	}
3242 
3243 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3244 	if (sc->bge_rx_saved_considx != rx_prod)
3245 		bge_rxeof(sc, rx_prod, cycles);
3246 
3247 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3248 	if (sc->bge_tx_saved_considx != tx_cons)
3249 		bge_txeof(sc, tx_cons);
3250 
3251 	if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
3252 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3253 
3254 	if (sc->bge_coal_chg)
3255 		bge_coal_change(sc);
3256 }
3257 
3258 static void
3259 bge_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3260 {
3261 	struct bge_softc *sc = ifp->if_softc;
3262 
3263 	ASSERT_SERIALIZED(ifp->if_serializer);
3264 
3265 	if (info != NULL) {
3266 		int cpuid = sc->bge_npoll.ifpc_cpuid;
3267 
3268 		info->ifpi_rx[cpuid].poll_func = bge_npoll_compat;
3269 		info->ifpi_rx[cpuid].arg = NULL;
3270 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
3271 
3272 		if (ifp->if_flags & IFF_RUNNING)
3273 			bge_disable_intr(sc);
3274 		ifq_set_cpuid(&ifp->if_snd, cpuid);
3275 	} else {
3276 		if (ifp->if_flags & IFF_RUNNING)
3277 			bge_enable_intr(sc);
3278 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->bge_irq));
3279 	}
3280 }
3281 
3282 #endif	/* IFPOLL_ENABLE */
3283 
3284 static void
3285 bge_intr_crippled(void *xsc)
3286 {
3287 	struct bge_softc *sc = xsc;
3288 	struct ifnet *ifp = &sc->arpcom.ac_if;
3289 
3290 	logif(intr);
3291 
3292  	/*
3293 	 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3294 	 * disable interrupts by writing nonzero like we used to, since with
3295 	 * our current organization this just gives complications and
3296 	 * pessimizations for re-enabling interrupts.  We used to have races
3297 	 * instead of the necessary complications.  Disabling interrupts
3298 	 * would just reduce the chance of a status update while we are
3299 	 * running (by switching to the interrupt-mode coalescence
3300 	 * parameters), but this chance is already very low so it is more
3301 	 * efficient to get another interrupt than prevent it.
3302 	 *
3303 	 * We do the ack first to ensure another interrupt if there is a
3304 	 * status update after the ack.  We don't check for the status
3305 	 * changing later because it is more efficient to get another
3306 	 * interrupt than prevent it, not quite as above (not checking is
3307 	 * a smaller optimization than not toggling the interrupt enable,
3308 	 * since checking doesn't involve PCI accesses and toggling require
3309 	 * the status check).  So toggling would probably be a pessimization
3310 	 * even with MSI.  It would only be needed for using a task queue.
3311 	 */
3312 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3313 
3314 	/*
3315 	 * Process link state changes.
3316 	 */
3317 	bge_link_poll(sc);
3318 
3319 	if (ifp->if_flags & IFF_RUNNING) {
3320 		struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3321 		uint16_t rx_prod, tx_cons;
3322 
3323 		rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3324 		if (sc->bge_rx_saved_considx != rx_prod)
3325 			bge_rxeof(sc, rx_prod, -1);
3326 
3327 		tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3328 		if (sc->bge_tx_saved_considx != tx_cons)
3329 			bge_txeof(sc, tx_cons);
3330 	}
3331 
3332 	if (sc->bge_coal_chg)
3333 		bge_coal_change(sc);
3334 }
3335 
3336 static void
3337 bge_intr_legacy(void *xsc)
3338 {
3339 	struct bge_softc *sc = xsc;
3340 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3341 
3342 	if (sc->bge_status_tag == sblk->bge_status_tag) {
3343 		uint32_t val;
3344 
3345 		val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3346 		if (val & BGE_PCISTAT_INTR_NOTACT)
3347 			return;
3348 	}
3349 
3350 	/*
3351 	 * NOTE:
3352 	 * Interrupt will have to be disabled if tagged status
3353 	 * is used, else interrupt will always be asserted on
3354 	 * certain chips (at least on BCM5750 AX/BX).
3355 	 */
3356 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3357 
3358 	bge_intr(sc);
3359 }
3360 
3361 static void
3362 bge_msi(void *xsc)
3363 {
3364 	struct bge_softc *sc = xsc;
3365 
3366 	/* Disable interrupt first */
3367 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3368 	bge_intr(sc);
3369 }
3370 
3371 static void
3372 bge_msi_oneshot(void *xsc)
3373 {
3374 	bge_intr(xsc);
3375 }
3376 
3377 static void
3378 bge_intr(struct bge_softc *sc)
3379 {
3380 	struct ifnet *ifp = &sc->arpcom.ac_if;
3381 	struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3382 	uint16_t rx_prod, tx_cons;
3383 	uint32_t status;
3384 
3385 	sc->bge_status_tag = sblk->bge_status_tag;
3386 	/*
3387 	 * Use a load fence to ensure that status_tag is saved
3388 	 * before rx_prod, tx_cons and status.
3389 	 */
3390 	cpu_lfence();
3391 
3392 	rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3393 	tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3394 	status = sblk->bge_status;
3395 
3396 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3397 		bge_link_poll(sc);
3398 
3399 	if (ifp->if_flags & IFF_RUNNING) {
3400 		if (sc->bge_rx_saved_considx != rx_prod)
3401 			bge_rxeof(sc, rx_prod, -1);
3402 
3403 		if (sc->bge_tx_saved_considx != tx_cons)
3404 			bge_txeof(sc, tx_cons);
3405 	}
3406 
3407 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3408 
3409 	if (sc->bge_coal_chg)
3410 		bge_coal_change(sc);
3411 }
3412 
3413 static void
3414 bge_tick(void *xsc)
3415 {
3416 	struct bge_softc *sc = xsc;
3417 	struct ifnet *ifp = &sc->arpcom.ac_if;
3418 
3419 	lwkt_serialize_enter(ifp->if_serializer);
3420 
3421 	if (BGE_IS_5705_PLUS(sc))
3422 		bge_stats_update_regs(sc);
3423 	else
3424 		bge_stats_update(sc);
3425 
3426 	if (sc->bge_flags & BGE_FLAG_TBI) {
3427 		/*
3428 		 * Since in TBI mode auto-polling can't be used we should poll
3429 		 * link status manually. Here we register pending link event
3430 		 * and trigger interrupt.
3431 		 */
3432 		sc->bge_link_evt++;
3433 		if (BGE_IS_CRIPPLED(sc))
3434 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3435 		else
3436 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3437 	} else if (!sc->bge_link) {
3438 		mii_tick(device_get_softc(sc->bge_miibus));
3439 	}
3440 
3441 	bge_asf_driver_up(sc);
3442 
3443 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3444 
3445 	lwkt_serialize_exit(ifp->if_serializer);
3446 }
3447 
3448 static void
3449 bge_stats_update_regs(struct bge_softc *sc)
3450 {
3451 	struct ifnet *ifp = &sc->arpcom.ac_if;
3452 	struct bge_mac_stats_regs stats;
3453 	uint32_t *s;
3454 	int i;
3455 
3456 	s = (uint32_t *)&stats;
3457 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3458 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
3459 		s++;
3460 	}
3461 
3462 	IFNET_STAT_SET(ifp, collisions,
3463 	   (stats.dot3StatsSingleCollisionFrames +
3464 	   stats.dot3StatsMultipleCollisionFrames +
3465 	   stats.dot3StatsExcessiveCollisions +
3466 	   stats.dot3StatsLateCollisions));
3467 }
3468 
3469 static void
3470 bge_stats_update(struct bge_softc *sc)
3471 {
3472 	struct ifnet *ifp = &sc->arpcom.ac_if;
3473 	bus_size_t stats;
3474 
3475 	stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3476 
3477 #define READ_STAT(sc, stats, stat)	\
3478 	CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3479 
3480 	IFNET_STAT_SET(ifp, collisions,
3481 	   (READ_STAT(sc, stats,
3482 		txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3483 	    READ_STAT(sc, stats,
3484 		txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3485 	    READ_STAT(sc, stats,
3486 		txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3487 	    READ_STAT(sc, stats,
3488 		txstats.dot3StatsLateCollisions.bge_addr_lo)));
3489 
3490 #undef READ_STAT
3491 
3492 #ifdef notdef
3493 	IFNET_STAT_SET(ifp, collisions,
3494 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3495 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3496 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3497 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions));
3498 #endif
3499 }
3500 
3501 /*
3502  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3503  * pointers to descriptors.
3504  */
3505 static int
3506 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
3507     int *segs_used)
3508 {
3509 	struct bge_tx_bd *d = NULL, *last_d;
3510 	uint16_t csum_flags = 0, mss = 0;
3511 	bus_dma_segment_t segs[BGE_NSEG_NEW];
3512 	bus_dmamap_t map;
3513 	int error, maxsegs, nsegs, idx, i;
3514 	struct mbuf *m_head = *m_head0, *m_new;
3515 
3516 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3517 		error = bge_setup_tso(sc, m_head0, &mss, &csum_flags);
3518 		if (error)
3519 			return ENOBUFS;
3520 		m_head = *m_head0;
3521 	} else if (m_head->m_pkthdr.csum_flags & BGE_CSUM_FEATURES) {
3522 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3523 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3524 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3525 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3526 		if (m_head->m_flags & M_LASTFRAG)
3527 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3528 		else if (m_head->m_flags & M_FRAG)
3529 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3530 	}
3531 
3532 	idx = *txidx;
3533 	map = sc->bge_cdata.bge_tx_dmamap[idx];
3534 
3535 	maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - sc->bge_txrsvd;
3536 	KASSERT(maxsegs >= sc->bge_txspare,
3537 		("not enough segments %d", maxsegs));
3538 
3539 	if (maxsegs > BGE_NSEG_NEW)
3540 		maxsegs = BGE_NSEG_NEW;
3541 
3542 	/*
3543 	 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3544 	 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3545 	 * but when such padded frames employ the bge IP/TCP checksum
3546 	 * offload, the hardware checksum assist gives incorrect results
3547 	 * (possibly from incorporating its own padding into the UDP/TCP
3548 	 * checksum; who knows).  If we pad such runts with zeros, the
3549 	 * onboard checksum comes out correct.
3550 	 */
3551 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3552 	    m_head->m_pkthdr.len < BGE_MIN_FRAMELEN) {
3553 		error = m_devpad(m_head, BGE_MIN_FRAMELEN);
3554 		if (error)
3555 			goto back;
3556 	}
3557 
3558 	if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3559 		m_new = bge_defrag_shortdma(m_head);
3560 		if (m_new == NULL) {
3561 			error = ENOBUFS;
3562 			goto back;
3563 		}
3564 		*m_head0 = m_head = m_new;
3565 	}
3566 	if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3567 	    sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3568 	    m_head->m_next != NULL) {
3569 		/*
3570 		 * Forcefully defragment mbuf chain to overcome hardware
3571 		 * limitation which only support a single outstanding
3572 		 * DMA read operation.  If it fails, keep moving on using
3573 		 * the original mbuf chain.
3574 		 */
3575 		m_new = m_defrag(m_head, MB_DONTWAIT);
3576 		if (m_new != NULL)
3577 			*m_head0 = m_head = m_new;
3578 	}
3579 
3580 	error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3581 			m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3582 	if (error)
3583 		goto back;
3584 	*segs_used += nsegs;
3585 
3586 	m_head = *m_head0;
3587 	bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3588 
3589 	for (i = 0; ; i++) {
3590 		d = &sc->bge_ldata.bge_tx_ring[idx];
3591 
3592 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3593 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3594 		d->bge_len = segs[i].ds_len;
3595 		d->bge_flags = csum_flags;
3596 		d->bge_mss = mss;
3597 
3598 		if (i == nsegs - 1)
3599 			break;
3600 		BGE_INC(idx, BGE_TX_RING_CNT);
3601 	}
3602 	last_d = d;
3603 
3604 	/* Set vlan tag to the first segment of the packet. */
3605 	d = &sc->bge_ldata.bge_tx_ring[*txidx];
3606 	if (m_head->m_flags & M_VLANTAG) {
3607 		d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3608 		d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3609 	} else {
3610 		d->bge_vlan_tag = 0;
3611 	}
3612 
3613 	/* Mark the last segment as end of packet... */
3614 	last_d->bge_flags |= BGE_TXBDFLAG_END;
3615 
3616 	/*
3617 	 * Insure that the map for this transmission is placed at
3618 	 * the array index of the last descriptor in this chain.
3619 	 */
3620 	sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3621 	sc->bge_cdata.bge_tx_dmamap[idx] = map;
3622 	sc->bge_cdata.bge_tx_chain[idx] = m_head;
3623 	sc->bge_txcnt += nsegs;
3624 
3625 	BGE_INC(idx, BGE_TX_RING_CNT);
3626 	*txidx = idx;
3627 back:
3628 	if (error) {
3629 		m_freem(*m_head0);
3630 		*m_head0 = NULL;
3631 	}
3632 	return error;
3633 }
3634 
3635 static void
3636 bge_xmit(struct bge_softc *sc, uint32_t prodidx)
3637 {
3638 	/* Transmit */
3639 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3640 	/* 5700 b2 errata */
3641 	if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3642 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3643 }
3644 
3645 /*
3646  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3647  * to the mbuf data regions directly in the transmit descriptors.
3648  */
3649 static void
3650 bge_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3651 {
3652 	struct bge_softc *sc = ifp->if_softc;
3653 	struct mbuf *m_head = NULL;
3654 	uint32_t prodidx;
3655 	int nsegs = 0;
3656 
3657 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3658 
3659 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
3660 		return;
3661 
3662 	prodidx = sc->bge_tx_prodidx;
3663 
3664 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3665 		m_head = ifq_dequeue(&ifp->if_snd);
3666 		if (m_head == NULL)
3667 			break;
3668 
3669 		/*
3670 		 * XXX
3671 		 * The code inside the if() block is never reached since we
3672 		 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3673 		 * requests to checksum TCP/UDP in a fragmented packet.
3674 		 *
3675 		 * XXX
3676 		 * safety overkill.  If this is a fragmented packet chain
3677 		 * with delayed TCP/UDP checksums, then only encapsulate
3678 		 * it if we have enough descriptors to handle the entire
3679 		 * chain at once.
3680 		 * (paranoia -- may not actually be needed)
3681 		 */
3682 		if ((m_head->m_flags & M_FIRSTFRAG) &&
3683 		    (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3684 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3685 			    m_head->m_pkthdr.csum_data + sc->bge_txrsvd) {
3686 				ifq_set_oactive(&ifp->if_snd);
3687 				ifq_prepend(&ifp->if_snd, m_head);
3688 				break;
3689 			}
3690 		}
3691 
3692 		/*
3693 		 * Sanity check: avoid coming within bge_txrsvd
3694 		 * descriptors of the end of the ring.  Also make
3695 		 * sure there are bge_txspare descriptors for
3696 		 * jumbo buffers' defragmentation.
3697 		 */
3698 		if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3699 		    (sc->bge_txrsvd + sc->bge_txspare)) {
3700 			ifq_set_oactive(&ifp->if_snd);
3701 			ifq_prepend(&ifp->if_snd, m_head);
3702 			break;
3703 		}
3704 
3705 		/*
3706 		 * Pack the data into the transmit ring. If we
3707 		 * don't have room, set the OACTIVE flag and wait
3708 		 * for the NIC to drain the ring.
3709 		 */
3710 		if (bge_encap(sc, &m_head, &prodidx, &nsegs)) {
3711 			ifq_set_oactive(&ifp->if_snd);
3712 			IFNET_STAT_INC(ifp, oerrors, 1);
3713 			break;
3714 		}
3715 
3716 		if (nsegs >= sc->bge_tx_wreg) {
3717 			bge_xmit(sc, prodidx);
3718 			nsegs = 0;
3719 		}
3720 
3721 		ETHER_BPF_MTAP(ifp, m_head);
3722 
3723 		/*
3724 		 * Set a timeout in case the chip goes out to lunch.
3725 		 */
3726 		ifp->if_timer = 5;
3727 	}
3728 
3729 	if (nsegs > 0)
3730 		bge_xmit(sc, prodidx);
3731 	sc->bge_tx_prodidx = prodidx;
3732 }
3733 
3734 static void
3735 bge_init(void *xsc)
3736 {
3737 	struct bge_softc *sc = xsc;
3738 	struct ifnet *ifp = &sc->arpcom.ac_if;
3739 	uint16_t *m;
3740 	uint32_t mode;
3741 
3742 	ASSERT_SERIALIZED(ifp->if_serializer);
3743 
3744 	/* Cancel pending I/O and flush buffers. */
3745 	bge_stop(sc);
3746 
3747 	bge_stop_fw(sc);
3748 	bge_sig_pre_reset(sc, BGE_RESET_START);
3749 	bge_reset(sc);
3750 	bge_sig_legacy(sc, BGE_RESET_START);
3751 	bge_sig_post_reset(sc, BGE_RESET_START);
3752 
3753 	bge_chipinit(sc);
3754 
3755 	/*
3756 	 * Init the various state machines, ring
3757 	 * control blocks and firmware.
3758 	 */
3759 	if (bge_blockinit(sc)) {
3760 		if_printf(ifp, "initialization failure\n");
3761 		bge_stop(sc);
3762 		return;
3763 	}
3764 
3765 	/* Specify MTU. */
3766 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3767 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3768 
3769 	/* Load our MAC address. */
3770 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3771 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3772 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3773 
3774 	/* Enable or disable promiscuous mode as needed. */
3775 	bge_setpromisc(sc);
3776 
3777 	/* Program multicast filter. */
3778 	bge_setmulti(sc);
3779 
3780 	/* Init RX ring. */
3781 	if (bge_init_rx_ring_std(sc)) {
3782 		if_printf(ifp, "RX ring initialization failed\n");
3783 		bge_stop(sc);
3784 		return;
3785 	}
3786 
3787 	/*
3788 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3789 	 * memory to insure that the chip has in fact read the first
3790 	 * entry of the ring.
3791 	 */
3792 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3793 		uint32_t		v, i;
3794 		for (i = 0; i < 10; i++) {
3795 			DELAY(20);
3796 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3797 			if (v == (MCLBYTES - ETHER_ALIGN))
3798 				break;
3799 		}
3800 		if (i == 10)
3801 			if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3802 	}
3803 
3804 	/* Init jumbo RX ring. */
3805 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3806 		if (bge_init_rx_ring_jumbo(sc)) {
3807 			if_printf(ifp, "Jumbo RX ring initialization failed\n");
3808 			bge_stop(sc);
3809 			return;
3810 		}
3811 	}
3812 
3813 	/* Init our RX return ring index */
3814 	sc->bge_rx_saved_considx = 0;
3815 
3816 	/* Init TX ring. */
3817 	bge_init_tx_ring(sc);
3818 
3819 	/* Enable TX MAC state machine lockup fix. */
3820 	mode = CSR_READ_4(sc, BGE_TX_MODE);
3821 	if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3822 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3823 	/* Turn on transmitter */
3824 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3825 	DELAY(100);
3826 
3827 	/* Turn on receiver */
3828 	mode = CSR_READ_4(sc, BGE_RX_MODE);
3829 	if (BGE_IS_5755_PLUS(sc))
3830 		mode |= BGE_RXMODE_IPV6_ENABLE;
3831 	CSR_WRITE_4(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
3832 	DELAY(10);
3833 
3834 	/*
3835 	 * Set the number of good frames to receive after RX MBUF
3836 	 * Low Watermark has been reached.  After the RX MAC receives
3837 	 * this number of frames, it will drop subsequent incoming
3838 	 * frames until the MBUF High Watermark is reached.
3839 	 */
3840 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3841 
3842 	if (sc->bge_irq_type == PCI_INTR_TYPE_MSI) {
3843 		if (bootverbose) {
3844 			if_printf(ifp, "MSI_MODE: %#x\n",
3845 			    CSR_READ_4(sc, BGE_MSI_MODE));
3846 		}
3847 
3848 		/*
3849 		 * XXX
3850 		 * Linux driver turns it on for all chips supporting MSI?!
3851 		 */
3852 		if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
3853 			/*
3854 			 * XXX
3855 			 * According to 5722-PG101-R,
3856 			 * BGE_PCIE_TRANSACT_ONESHOT_MSI applies only to
3857 			 * BCM5906.
3858 			 */
3859 			BGE_SETBIT(sc, BGE_PCIE_TRANSACT,
3860 			    BGE_PCIE_TRANSACT_ONESHOT_MSI);
3861 		}
3862 	}
3863 
3864 	/* Tell firmware we're alive. */
3865 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3866 
3867 	/* Enable host interrupts if polling(4) is not enabled. */
3868 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3869 #ifdef IFPOLL_ENABLE
3870 	if (ifp->if_flags & IFF_NPOLLING)
3871 		bge_disable_intr(sc);
3872 	else
3873 #endif
3874 	bge_enable_intr(sc);
3875 
3876 	ifp->if_flags |= IFF_RUNNING;
3877 	ifq_clr_oactive(&ifp->if_snd);
3878 
3879 	bge_ifmedia_upd(ifp);
3880 
3881 	callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3882 }
3883 
3884 /*
3885  * Set media options.
3886  */
3887 static int
3888 bge_ifmedia_upd(struct ifnet *ifp)
3889 {
3890 	struct bge_softc *sc = ifp->if_softc;
3891 
3892 	/* If this is a 1000baseX NIC, enable the TBI port. */
3893 	if (sc->bge_flags & BGE_FLAG_TBI) {
3894 		struct ifmedia *ifm = &sc->bge_ifmedia;
3895 
3896 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3897 			return(EINVAL);
3898 
3899 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3900 		case IFM_AUTO:
3901 			/*
3902 			 * The BCM5704 ASIC appears to have a special
3903 			 * mechanism for programming the autoneg
3904 			 * advertisement registers in TBI mode.
3905 			 */
3906 			if (!bge_fake_autoneg &&
3907 			    sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3908 				uint32_t sgdig;
3909 
3910 				CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3911 				sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3912 				sgdig |= BGE_SGDIGCFG_AUTO |
3913 					 BGE_SGDIGCFG_PAUSE_CAP |
3914 					 BGE_SGDIGCFG_ASYM_PAUSE;
3915 				CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3916 					    sgdig | BGE_SGDIGCFG_SEND);
3917 				DELAY(5);
3918 				CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3919 			}
3920 			break;
3921 		case IFM_1000_SX:
3922 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3923 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3924 				    BGE_MACMODE_HALF_DUPLEX);
3925 			} else {
3926 				BGE_SETBIT(sc, BGE_MAC_MODE,
3927 				    BGE_MACMODE_HALF_DUPLEX);
3928 			}
3929 			DELAY(40);
3930 			break;
3931 		default:
3932 			return(EINVAL);
3933 		}
3934 	} else {
3935 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3936 
3937 		sc->bge_link_evt++;
3938 		sc->bge_link = 0;
3939 		if (mii->mii_instance) {
3940 			struct mii_softc *miisc;
3941 
3942 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3943 				mii_phy_reset(miisc);
3944 		}
3945 		mii_mediachg(mii);
3946 
3947 		/*
3948 		 * Force an interrupt so that we will call bge_link_upd
3949 		 * if needed and clear any pending link state attention.
3950 		 * Without this we are not getting any further interrupts
3951 		 * for link state changes and thus will not UP the link and
3952 		 * not be able to send in bge_start.  The only way to get
3953 		 * things working was to receive a packet and get an RX
3954 		 * intr.
3955 		 *
3956 		 * bge_tick should help for fiber cards and we might not
3957 		 * need to do this here if BGE_FLAG_TBI is set but as
3958 		 * we poll for fiber anyway it should not harm.
3959 		 */
3960 		if (BGE_IS_CRIPPLED(sc))
3961 			BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3962 		else
3963 			BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3964 	}
3965 	return(0);
3966 }
3967 
3968 /*
3969  * Report current media status.
3970  */
3971 static void
3972 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3973 {
3974 	struct bge_softc *sc = ifp->if_softc;
3975 
3976 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3977 		return;
3978 
3979 	if (sc->bge_flags & BGE_FLAG_TBI) {
3980 		ifmr->ifm_status = IFM_AVALID;
3981 		ifmr->ifm_active = IFM_ETHER;
3982 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3983 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3984 			ifmr->ifm_status |= IFM_ACTIVE;
3985 		} else {
3986 			ifmr->ifm_active |= IFM_NONE;
3987 			return;
3988 		}
3989 
3990 		ifmr->ifm_active |= IFM_1000_SX;
3991 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3992 			ifmr->ifm_active |= IFM_HDX;
3993 		else
3994 			ifmr->ifm_active |= IFM_FDX;
3995 	} else {
3996 		struct mii_data *mii = device_get_softc(sc->bge_miibus);
3997 
3998 		mii_pollstat(mii);
3999 		ifmr->ifm_active = mii->mii_media_active;
4000 		ifmr->ifm_status = mii->mii_media_status;
4001 	}
4002 }
4003 
4004 static int
4005 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
4006 {
4007 	struct bge_softc *sc = ifp->if_softc;
4008 	struct ifreq *ifr = (struct ifreq *)data;
4009 	int mask, error = 0;
4010 
4011 	ASSERT_SERIALIZED(ifp->if_serializer);
4012 
4013 	switch (command) {
4014 	case SIOCSIFMTU:
4015 		if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
4016 		    (BGE_IS_JUMBO_CAPABLE(sc) &&
4017 		     ifr->ifr_mtu > BGE_JUMBO_MTU)) {
4018 			error = EINVAL;
4019 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
4020 			ifp->if_mtu = ifr->ifr_mtu;
4021 			if (ifp->if_flags & IFF_RUNNING)
4022 				bge_init(sc);
4023 		}
4024 		break;
4025 	case SIOCSIFFLAGS:
4026 		if (ifp->if_flags & IFF_UP) {
4027 			if (ifp->if_flags & IFF_RUNNING) {
4028 				mask = ifp->if_flags ^ sc->bge_if_flags;
4029 
4030 				/*
4031 				 * If only the state of the PROMISC flag
4032 				 * changed, then just use the 'set promisc
4033 				 * mode' command instead of reinitializing
4034 				 * the entire NIC. Doing a full re-init
4035 				 * means reloading the firmware and waiting
4036 				 * for it to start up, which may take a
4037 				 * second or two.  Similarly for ALLMULTI.
4038 				 */
4039 				if (mask & IFF_PROMISC)
4040 					bge_setpromisc(sc);
4041 				if (mask & IFF_ALLMULTI)
4042 					bge_setmulti(sc);
4043 			} else {
4044 				bge_init(sc);
4045 			}
4046 		} else if (ifp->if_flags & IFF_RUNNING) {
4047 			bge_stop(sc);
4048 		}
4049 		sc->bge_if_flags = ifp->if_flags;
4050 		break;
4051 	case SIOCADDMULTI:
4052 	case SIOCDELMULTI:
4053 		if (ifp->if_flags & IFF_RUNNING)
4054 			bge_setmulti(sc);
4055 		break;
4056 	case SIOCSIFMEDIA:
4057 	case SIOCGIFMEDIA:
4058 		if (sc->bge_flags & BGE_FLAG_TBI) {
4059 			error = ifmedia_ioctl(ifp, ifr,
4060 			    &sc->bge_ifmedia, command);
4061 		} else {
4062 			struct mii_data *mii;
4063 
4064 			mii = device_get_softc(sc->bge_miibus);
4065 			error = ifmedia_ioctl(ifp, ifr,
4066 					      &mii->mii_media, command);
4067 		}
4068 		break;
4069         case SIOCSIFCAP:
4070 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4071 		if (mask & IFCAP_HWCSUM) {
4072 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
4073 			if (ifp->if_capenable & IFCAP_TXCSUM)
4074 				ifp->if_hwassist |= BGE_CSUM_FEATURES;
4075 			else
4076 				ifp->if_hwassist &= ~BGE_CSUM_FEATURES;
4077 		}
4078 		if (mask & IFCAP_TSO) {
4079 			ifp->if_capenable ^= IFCAP_TSO;
4080 			if (ifp->if_capenable & IFCAP_TSO)
4081 				ifp->if_hwassist |= CSUM_TSO;
4082 			else
4083 				ifp->if_hwassist &= ~CSUM_TSO;
4084 		}
4085 		break;
4086 	default:
4087 		error = ether_ioctl(ifp, command, data);
4088 		break;
4089 	}
4090 	return error;
4091 }
4092 
4093 static void
4094 bge_watchdog(struct ifnet *ifp)
4095 {
4096 	struct bge_softc *sc = ifp->if_softc;
4097 
4098 	if_printf(ifp, "watchdog timeout -- resetting\n");
4099 
4100 	bge_init(sc);
4101 
4102 	IFNET_STAT_INC(ifp, oerrors, 1);
4103 
4104 	if (!ifq_is_empty(&ifp->if_snd))
4105 		if_devstart(ifp);
4106 }
4107 
4108 /*
4109  * Stop the adapter and free any mbufs allocated to the
4110  * RX and TX lists.
4111  */
4112 static void
4113 bge_stop(struct bge_softc *sc)
4114 {
4115 	struct ifnet *ifp = &sc->arpcom.ac_if;
4116 
4117 	ASSERT_SERIALIZED(ifp->if_serializer);
4118 
4119 	callout_stop(&sc->bge_stat_timer);
4120 
4121 	/* Disable host interrupts. */
4122 	bge_disable_intr(sc);
4123 
4124 	/*
4125 	 * Tell firmware we're shutting down.
4126 	 */
4127 	bge_stop_fw(sc);
4128 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
4129 
4130 	/*
4131 	 * Disable all of the receiver blocks
4132 	 */
4133 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4134 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4135 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4136 	if (BGE_IS_5700_FAMILY(sc))
4137 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4138 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4139 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4140 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4141 
4142 	/*
4143 	 * Disable all of the transmit blocks
4144 	 */
4145 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4146 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4147 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4148 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4149 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4150 	if (BGE_IS_5700_FAMILY(sc))
4151 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4152 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4153 
4154 	/*
4155 	 * Shut down all of the memory managers and related
4156 	 * state machines.
4157 	 */
4158 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4159 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4160 	if (BGE_IS_5700_FAMILY(sc))
4161 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4162 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4163 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4164 	if (!BGE_IS_5705_PLUS(sc)) {
4165 		BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4166 		BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4167 	}
4168 
4169 	bge_reset(sc);
4170 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
4171 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
4172 
4173 	/*
4174 	 * Keep the ASF firmware running if up.
4175 	 */
4176 	if (sc->bge_asf_mode & ASF_STACKUP)
4177 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4178 	else
4179 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4180 
4181 	/* Free the RX lists. */
4182 	bge_free_rx_ring_std(sc);
4183 
4184 	/* Free jumbo RX list. */
4185 	if (BGE_IS_JUMBO_CAPABLE(sc))
4186 		bge_free_rx_ring_jumbo(sc);
4187 
4188 	/* Free TX buffers. */
4189 	bge_free_tx_ring(sc);
4190 
4191 	sc->bge_status_tag = 0;
4192 	sc->bge_link = 0;
4193 	sc->bge_coal_chg = 0;
4194 
4195 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4196 
4197 	ifp->if_flags &= ~IFF_RUNNING;
4198 	ifq_clr_oactive(&ifp->if_snd);
4199 	ifp->if_timer = 0;
4200 }
4201 
4202 /*
4203  * Stop all chip I/O so that the kernel's probe routines don't
4204  * get confused by errant DMAs when rebooting.
4205  */
4206 static void
4207 bge_shutdown(device_t dev)
4208 {
4209 	struct bge_softc *sc = device_get_softc(dev);
4210 	struct ifnet *ifp = &sc->arpcom.ac_if;
4211 
4212 	lwkt_serialize_enter(ifp->if_serializer);
4213 	bge_stop(sc);
4214 	lwkt_serialize_exit(ifp->if_serializer);
4215 }
4216 
4217 static int
4218 bge_suspend(device_t dev)
4219 {
4220 	struct bge_softc *sc = device_get_softc(dev);
4221 	struct ifnet *ifp = &sc->arpcom.ac_if;
4222 
4223 	lwkt_serialize_enter(ifp->if_serializer);
4224 	bge_stop(sc);
4225 	lwkt_serialize_exit(ifp->if_serializer);
4226 
4227 	return 0;
4228 }
4229 
4230 static int
4231 bge_resume(device_t dev)
4232 {
4233 	struct bge_softc *sc = device_get_softc(dev);
4234 	struct ifnet *ifp = &sc->arpcom.ac_if;
4235 
4236 	lwkt_serialize_enter(ifp->if_serializer);
4237 
4238 	if (ifp->if_flags & IFF_UP) {
4239 		bge_init(sc);
4240 
4241 		if (!ifq_is_empty(&ifp->if_snd))
4242 			if_devstart(ifp);
4243 	}
4244 
4245 	lwkt_serialize_exit(ifp->if_serializer);
4246 
4247 	return 0;
4248 }
4249 
4250 static void
4251 bge_setpromisc(struct bge_softc *sc)
4252 {
4253 	struct ifnet *ifp = &sc->arpcom.ac_if;
4254 
4255 	if (ifp->if_flags & IFF_PROMISC)
4256 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4257 	else
4258 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4259 }
4260 
4261 static void
4262 bge_dma_free(struct bge_softc *sc)
4263 {
4264 	int i;
4265 
4266 	/* Destroy RX mbuf DMA stuffs. */
4267 	if (sc->bge_cdata.bge_rx_mtag != NULL) {
4268 		for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4269 			bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4270 			    sc->bge_cdata.bge_rx_std_dmamap[i]);
4271 		}
4272 		bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4273 				   sc->bge_cdata.bge_rx_tmpmap);
4274 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4275 	}
4276 
4277 	/* Destroy TX mbuf DMA stuffs. */
4278 	if (sc->bge_cdata.bge_tx_mtag != NULL) {
4279 		for (i = 0; i < BGE_TX_RING_CNT; i++) {
4280 			bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4281 			    sc->bge_cdata.bge_tx_dmamap[i]);
4282 		}
4283 		bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4284 	}
4285 
4286 	/* Destroy standard RX ring */
4287 	bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
4288 			   sc->bge_cdata.bge_rx_std_ring_map,
4289 			   sc->bge_ldata.bge_rx_std_ring);
4290 
4291 	if (BGE_IS_JUMBO_CAPABLE(sc))
4292 		bge_free_jumbo_mem(sc);
4293 
4294 	/* Destroy RX return ring */
4295 	bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
4296 			   sc->bge_cdata.bge_rx_return_ring_map,
4297 			   sc->bge_ldata.bge_rx_return_ring);
4298 
4299 	/* Destroy TX ring */
4300 	bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
4301 			   sc->bge_cdata.bge_tx_ring_map,
4302 			   sc->bge_ldata.bge_tx_ring);
4303 
4304 	/* Destroy status block */
4305 	bge_dma_block_free(sc->bge_cdata.bge_status_tag,
4306 			   sc->bge_cdata.bge_status_map,
4307 			   sc->bge_ldata.bge_status_block);
4308 
4309 	/* Destroy statistics block */
4310 	bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
4311 			   sc->bge_cdata.bge_stats_map,
4312 			   sc->bge_ldata.bge_stats);
4313 
4314 	/* Destroy the parent tag */
4315 	if (sc->bge_cdata.bge_parent_tag != NULL)
4316 		bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
4317 }
4318 
4319 static int
4320 bge_dma_alloc(struct bge_softc *sc)
4321 {
4322 	struct ifnet *ifp = &sc->arpcom.ac_if;
4323 	int i, error;
4324 	bus_addr_t lowaddr;
4325 	bus_size_t txmaxsz;
4326 
4327 	lowaddr = BUS_SPACE_MAXADDR;
4328 	if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
4329 		lowaddr = BGE_DMA_MAXADDR_40BIT;
4330 
4331 	/*
4332 	 * Allocate the parent bus DMA tag appropriate for PCI.
4333 	 *
4334 	 * All of the NetExtreme/NetLink controllers have 4GB boundary
4335 	 * DMA bug.
4336 	 * Whenever an address crosses a multiple of the 4GB boundary
4337 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4338 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4339 	 * state machine will lockup and cause the device to hang.
4340 	 */
4341 	error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4342 				   lowaddr, BUS_SPACE_MAXADDR,
4343 				   NULL, NULL,
4344 				   BUS_SPACE_MAXSIZE_32BIT, 0,
4345 				   BUS_SPACE_MAXSIZE_32BIT,
4346 				   0, &sc->bge_cdata.bge_parent_tag);
4347 	if (error) {
4348 		if_printf(ifp, "could not allocate parent dma tag\n");
4349 		return error;
4350 	}
4351 
4352 	/*
4353 	 * Create DMA tag and maps for RX mbufs.
4354 	 */
4355 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4356 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4357 				   NULL, NULL, MCLBYTES, 1, MCLBYTES,
4358 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
4359 				   &sc->bge_cdata.bge_rx_mtag);
4360 	if (error) {
4361 		if_printf(ifp, "could not allocate RX mbuf dma tag\n");
4362 		return error;
4363 	}
4364 
4365 	error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4366 				  BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
4367 	if (error) {
4368 		bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4369 		sc->bge_cdata.bge_rx_mtag = NULL;
4370 		return error;
4371 	}
4372 
4373 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4374 		error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
4375 					  BUS_DMA_WAITOK,
4376 					  &sc->bge_cdata.bge_rx_std_dmamap[i]);
4377 		if (error) {
4378 			int j;
4379 
4380 			for (j = 0; j < i; ++j) {
4381 				bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
4382 					sc->bge_cdata.bge_rx_std_dmamap[j]);
4383 			}
4384 			bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
4385 			sc->bge_cdata.bge_rx_mtag = NULL;
4386 
4387 			if_printf(ifp, "could not create DMA map for RX\n");
4388 			return error;
4389 		}
4390 	}
4391 
4392 	/*
4393 	 * Create DMA tag and maps for TX mbufs.
4394 	 */
4395 	if (sc->bge_flags & BGE_FLAG_TSO)
4396 		txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
4397 	else
4398 		txmaxsz = BGE_JUMBO_FRAMELEN;
4399 	error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
4400 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4401 				   NULL, NULL,
4402 				   txmaxsz, BGE_NSEG_NEW, PAGE_SIZE,
4403 				   BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
4404 				   BUS_DMA_ONEBPAGE,
4405 				   &sc->bge_cdata.bge_tx_mtag);
4406 	if (error) {
4407 		if_printf(ifp, "could not allocate TX mbuf dma tag\n");
4408 		return error;
4409 	}
4410 
4411 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
4412 		error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4413 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4414 					  &sc->bge_cdata.bge_tx_dmamap[i]);
4415 		if (error) {
4416 			int j;
4417 
4418 			for (j = 0; j < i; ++j) {
4419 				bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4420 					sc->bge_cdata.bge_tx_dmamap[j]);
4421 			}
4422 			bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4423 			sc->bge_cdata.bge_tx_mtag = NULL;
4424 
4425 			if_printf(ifp, "could not create DMA map for TX\n");
4426 			return error;
4427 		}
4428 	}
4429 
4430 	/*
4431 	 * Create DMA stuffs for standard RX ring.
4432 	 */
4433 	error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4434 				    &sc->bge_cdata.bge_rx_std_ring_tag,
4435 				    &sc->bge_cdata.bge_rx_std_ring_map,
4436 				    (void *)&sc->bge_ldata.bge_rx_std_ring,
4437 				    &sc->bge_ldata.bge_rx_std_ring_paddr);
4438 	if (error) {
4439 		if_printf(ifp, "could not create std RX ring\n");
4440 		return error;
4441 	}
4442 
4443 	/*
4444 	 * Create jumbo buffer pool.
4445 	 */
4446 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
4447 		error = bge_alloc_jumbo_mem(sc);
4448 		if (error) {
4449 			if_printf(ifp, "could not create jumbo buffer pool\n");
4450 			return error;
4451 		}
4452 	}
4453 
4454 	/*
4455 	 * Create DMA stuffs for RX return ring.
4456 	 */
4457 	error = bge_dma_block_alloc(sc,
4458 	    BGE_RX_RTN_RING_SZ(sc->bge_return_ring_cnt),
4459 	    &sc->bge_cdata.bge_rx_return_ring_tag,
4460 	    &sc->bge_cdata.bge_rx_return_ring_map,
4461 	    (void *)&sc->bge_ldata.bge_rx_return_ring,
4462 	    &sc->bge_ldata.bge_rx_return_ring_paddr);
4463 	if (error) {
4464 		if_printf(ifp, "could not create RX ret ring\n");
4465 		return error;
4466 	}
4467 
4468 	/*
4469 	 * Create DMA stuffs for TX ring.
4470 	 */
4471 	error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4472 				    &sc->bge_cdata.bge_tx_ring_tag,
4473 				    &sc->bge_cdata.bge_tx_ring_map,
4474 				    (void *)&sc->bge_ldata.bge_tx_ring,
4475 				    &sc->bge_ldata.bge_tx_ring_paddr);
4476 	if (error) {
4477 		if_printf(ifp, "could not create TX ring\n");
4478 		return error;
4479 	}
4480 
4481 	/*
4482 	 * Create DMA stuffs for status block.
4483 	 */
4484 	error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4485 				    &sc->bge_cdata.bge_status_tag,
4486 				    &sc->bge_cdata.bge_status_map,
4487 				    (void *)&sc->bge_ldata.bge_status_block,
4488 				    &sc->bge_ldata.bge_status_block_paddr);
4489 	if (error) {
4490 		if_printf(ifp, "could not create status block\n");
4491 		return error;
4492 	}
4493 
4494 	/*
4495 	 * Create DMA stuffs for statistics block.
4496 	 */
4497 	error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4498 				    &sc->bge_cdata.bge_stats_tag,
4499 				    &sc->bge_cdata.bge_stats_map,
4500 				    (void *)&sc->bge_ldata.bge_stats,
4501 				    &sc->bge_ldata.bge_stats_paddr);
4502 	if (error) {
4503 		if_printf(ifp, "could not create stats block\n");
4504 		return error;
4505 	}
4506 	return 0;
4507 }
4508 
4509 static int
4510 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4511 		    bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4512 {
4513 	bus_dmamem_t dmem;
4514 	int error;
4515 
4516 	error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4517 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4518 				    size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4519 	if (error)
4520 		return error;
4521 
4522 	*tag = dmem.dmem_tag;
4523 	*map = dmem.dmem_map;
4524 	*addr = dmem.dmem_addr;
4525 	*paddr = dmem.dmem_busaddr;
4526 
4527 	return 0;
4528 }
4529 
4530 static void
4531 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4532 {
4533 	if (tag != NULL) {
4534 		bus_dmamap_unload(tag, map);
4535 		bus_dmamem_free(tag, addr, map);
4536 		bus_dma_tag_destroy(tag);
4537 	}
4538 }
4539 
4540 /*
4541  * Grrr. The link status word in the status block does
4542  * not work correctly on the BCM5700 rev AX and BX chips,
4543  * according to all available information. Hence, we have
4544  * to enable MII interrupts in order to properly obtain
4545  * async link changes. Unfortunately, this also means that
4546  * we have to read the MAC status register to detect link
4547  * changes, thereby adding an additional register access to
4548  * the interrupt handler.
4549  *
4550  * XXX: perhaps link state detection procedure used for
4551  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4552  */
4553 static void
4554 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4555 {
4556 	struct ifnet *ifp = &sc->arpcom.ac_if;
4557 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4558 
4559 	mii_pollstat(mii);
4560 
4561 	if (!sc->bge_link &&
4562 	    (mii->mii_media_status & IFM_ACTIVE) &&
4563 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4564 		sc->bge_link++;
4565 		if (bootverbose)
4566 			if_printf(ifp, "link UP\n");
4567 	} else if (sc->bge_link &&
4568 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4569 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4570 		sc->bge_link = 0;
4571 		if (bootverbose)
4572 			if_printf(ifp, "link DOWN\n");
4573 	}
4574 
4575 	/* Clear the interrupt. */
4576 	CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4577 	bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4578 	bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4579 }
4580 
4581 static void
4582 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4583 {
4584 	struct ifnet *ifp = &sc->arpcom.ac_if;
4585 
4586 #define PCS_ENCODE_ERR	(BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4587 
4588 	/*
4589 	 * Sometimes PCS encoding errors are detected in
4590 	 * TBI mode (on fiber NICs), and for some reason
4591 	 * the chip will signal them as link changes.
4592 	 * If we get a link change event, but the 'PCS
4593 	 * encoding error' bit in the MAC status register
4594 	 * is set, don't bother doing a link check.
4595 	 * This avoids spurious "gigabit link up" messages
4596 	 * that sometimes appear on fiber NICs during
4597 	 * periods of heavy traffic.
4598 	 */
4599 	if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4600 		if (!sc->bge_link) {
4601 			sc->bge_link++;
4602 			if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4603 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4604 				    BGE_MACMODE_TBI_SEND_CFGS);
4605 				DELAY(40);
4606 			}
4607 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4608 
4609 			if (bootverbose)
4610 				if_printf(ifp, "link UP\n");
4611 
4612 			ifp->if_link_state = LINK_STATE_UP;
4613 			if_link_state_change(ifp);
4614 		}
4615 	} else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4616 		if (sc->bge_link) {
4617 			sc->bge_link = 0;
4618 
4619 			if (bootverbose)
4620 				if_printf(ifp, "link DOWN\n");
4621 
4622 			ifp->if_link_state = LINK_STATE_DOWN;
4623 			if_link_state_change(ifp);
4624 		}
4625 	}
4626 
4627 #undef PCS_ENCODE_ERR
4628 
4629 	/* Clear the attention. */
4630 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4631 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4632 	    BGE_MACSTAT_LINK_CHANGED);
4633 }
4634 
4635 static void
4636 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4637 {
4638 	struct ifnet *ifp = &sc->arpcom.ac_if;
4639 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4640 
4641 	mii_pollstat(mii);
4642 	bge_miibus_statchg(sc->bge_dev);
4643 
4644 	if (bootverbose) {
4645 		if (sc->bge_link)
4646 			if_printf(ifp, "link UP\n");
4647 		else
4648 			if_printf(ifp, "link DOWN\n");
4649 	}
4650 
4651 	/* Clear the attention. */
4652 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4653 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4654 	    BGE_MACSTAT_LINK_CHANGED);
4655 }
4656 
4657 static void
4658 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4659 {
4660 	struct ifnet *ifp = &sc->arpcom.ac_if;
4661 	struct mii_data *mii = device_get_softc(sc->bge_miibus);
4662 
4663 	mii_pollstat(mii);
4664 
4665 	if (!sc->bge_link &&
4666 	    (mii->mii_media_status & IFM_ACTIVE) &&
4667 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4668 		sc->bge_link++;
4669 		if (bootverbose)
4670 			if_printf(ifp, "link UP\n");
4671 	} else if (sc->bge_link &&
4672 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4673 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4674 		sc->bge_link = 0;
4675 		if (bootverbose)
4676 			if_printf(ifp, "link DOWN\n");
4677 	}
4678 
4679 	/* Clear the attention. */
4680 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4681 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4682 	    BGE_MACSTAT_LINK_CHANGED);
4683 }
4684 
4685 static int
4686 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4687 {
4688 	struct bge_softc *sc = arg1;
4689 
4690 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4691 	    &sc->bge_rx_coal_ticks,
4692 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4693 	    BGE_RX_COAL_TICKS_CHG);
4694 }
4695 
4696 static int
4697 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4698 {
4699 	struct bge_softc *sc = arg1;
4700 
4701 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4702 	    &sc->bge_tx_coal_ticks,
4703 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4704 	    BGE_TX_COAL_TICKS_CHG);
4705 }
4706 
4707 static int
4708 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4709 {
4710 	struct bge_softc *sc = arg1;
4711 
4712 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4713 	    &sc->bge_rx_coal_bds,
4714 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4715 	    BGE_RX_COAL_BDS_CHG);
4716 }
4717 
4718 static int
4719 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4720 {
4721 	struct bge_softc *sc = arg1;
4722 
4723 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4724 	    &sc->bge_tx_coal_bds,
4725 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4726 	    BGE_TX_COAL_BDS_CHG);
4727 }
4728 
4729 static int
4730 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4731 {
4732 	struct bge_softc *sc = arg1;
4733 
4734 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4735 	    &sc->bge_rx_coal_ticks_int,
4736 	    BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4737 	    BGE_RX_COAL_TICKS_INT_CHG);
4738 }
4739 
4740 static int
4741 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4742 {
4743 	struct bge_softc *sc = arg1;
4744 
4745 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4746 	    &sc->bge_tx_coal_ticks_int,
4747 	    BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4748 	    BGE_TX_COAL_TICKS_INT_CHG);
4749 }
4750 
4751 static int
4752 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4753 {
4754 	struct bge_softc *sc = arg1;
4755 
4756 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4757 	    &sc->bge_rx_coal_bds_int,
4758 	    BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4759 	    BGE_RX_COAL_BDS_INT_CHG);
4760 }
4761 
4762 static int
4763 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4764 {
4765 	struct bge_softc *sc = arg1;
4766 
4767 	return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4768 	    &sc->bge_tx_coal_bds_int,
4769 	    BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4770 	    BGE_TX_COAL_BDS_INT_CHG);
4771 }
4772 
4773 static int
4774 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4775     int coal_min, int coal_max, uint32_t coal_chg_mask)
4776 {
4777 	struct bge_softc *sc = arg1;
4778 	struct ifnet *ifp = &sc->arpcom.ac_if;
4779 	int error = 0, v;
4780 
4781 	lwkt_serialize_enter(ifp->if_serializer);
4782 
4783 	v = *coal;
4784 	error = sysctl_handle_int(oidp, &v, 0, req);
4785 	if (!error && req->newptr != NULL) {
4786 		if (v < coal_min || v > coal_max) {
4787 			error = EINVAL;
4788 		} else {
4789 			*coal = v;
4790 			sc->bge_coal_chg |= coal_chg_mask;
4791 		}
4792 	}
4793 
4794 	lwkt_serialize_exit(ifp->if_serializer);
4795 	return error;
4796 }
4797 
4798 static void
4799 bge_coal_change(struct bge_softc *sc)
4800 {
4801 	struct ifnet *ifp = &sc->arpcom.ac_if;
4802 
4803 	ASSERT_SERIALIZED(ifp->if_serializer);
4804 
4805 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4806 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4807 			    sc->bge_rx_coal_ticks);
4808 		DELAY(10);
4809 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4810 
4811 		if (bootverbose) {
4812 			if_printf(ifp, "rx_coal_ticks -> %u\n",
4813 				  sc->bge_rx_coal_ticks);
4814 		}
4815 	}
4816 
4817 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4818 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4819 			    sc->bge_tx_coal_ticks);
4820 		DELAY(10);
4821 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4822 
4823 		if (bootverbose) {
4824 			if_printf(ifp, "tx_coal_ticks -> %u\n",
4825 				  sc->bge_tx_coal_ticks);
4826 		}
4827 	}
4828 
4829 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4830 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4831 			    sc->bge_rx_coal_bds);
4832 		DELAY(10);
4833 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4834 
4835 		if (bootverbose) {
4836 			if_printf(ifp, "rx_coal_bds -> %u\n",
4837 				  sc->bge_rx_coal_bds);
4838 		}
4839 	}
4840 
4841 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4842 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4843 			    sc->bge_tx_coal_bds);
4844 		DELAY(10);
4845 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4846 
4847 		if (bootverbose) {
4848 			if_printf(ifp, "tx_max_coal_bds -> %u\n",
4849 				  sc->bge_tx_coal_bds);
4850 		}
4851 	}
4852 
4853 	if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4854 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4855 		    sc->bge_rx_coal_ticks_int);
4856 		DELAY(10);
4857 		CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4858 
4859 		if (bootverbose) {
4860 			if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4861 			    sc->bge_rx_coal_ticks_int);
4862 		}
4863 	}
4864 
4865 	if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4866 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4867 		    sc->bge_tx_coal_ticks_int);
4868 		DELAY(10);
4869 		CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4870 
4871 		if (bootverbose) {
4872 			if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4873 			    sc->bge_tx_coal_ticks_int);
4874 		}
4875 	}
4876 
4877 	if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4878 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4879 		    sc->bge_rx_coal_bds_int);
4880 		DELAY(10);
4881 		CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4882 
4883 		if (bootverbose) {
4884 			if_printf(ifp, "rx_coal_bds_int -> %u\n",
4885 			    sc->bge_rx_coal_bds_int);
4886 		}
4887 	}
4888 
4889 	if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4890 		CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4891 		    sc->bge_tx_coal_bds_int);
4892 		DELAY(10);
4893 		CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4894 
4895 		if (bootverbose) {
4896 			if_printf(ifp, "tx_coal_bds_int -> %u\n",
4897 			    sc->bge_tx_coal_bds_int);
4898 		}
4899 	}
4900 
4901 	sc->bge_coal_chg = 0;
4902 }
4903 
4904 static void
4905 bge_enable_intr(struct bge_softc *sc)
4906 {
4907 	struct ifnet *ifp = &sc->arpcom.ac_if;
4908 
4909 	lwkt_serialize_handler_enable(ifp->if_serializer);
4910 
4911 	/*
4912 	 * Enable interrupt.
4913 	 */
4914 	bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4915 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
4916 		/* XXX Linux driver */
4917 		bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4918 	}
4919 
4920 	/*
4921 	 * Unmask the interrupt when we stop polling.
4922 	 */
4923 	PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4924 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4925 
4926 	/*
4927 	 * Trigger another interrupt, since above writing
4928 	 * to interrupt mailbox0 may acknowledge pending
4929 	 * interrupt.
4930 	 */
4931 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4932 }
4933 
4934 static void
4935 bge_disable_intr(struct bge_softc *sc)
4936 {
4937 	struct ifnet *ifp = &sc->arpcom.ac_if;
4938 
4939 	/*
4940 	 * Mask the interrupt when we start polling.
4941 	 */
4942 	PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4943 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4944 
4945 	/*
4946 	 * Acknowledge possible asserted interrupt.
4947 	 */
4948 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4949 
4950 	sc->bge_npoll.ifpc_stcount = 0;
4951 
4952 	lwkt_serialize_handler_disable(ifp->if_serializer);
4953 }
4954 
4955 static int
4956 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4957 {
4958 	uint32_t mac_addr;
4959 	int ret = 1;
4960 
4961 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4962 	if ((mac_addr >> 16) == 0x484b) {
4963 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4964 		ether_addr[1] = (uint8_t)mac_addr;
4965 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4966 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4967 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4968 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4969 		ether_addr[5] = (uint8_t)mac_addr;
4970 		ret = 0;
4971 	}
4972 	return ret;
4973 }
4974 
4975 static int
4976 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4977 {
4978 	int mac_offset = BGE_EE_MAC_OFFSET;
4979 
4980 	if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4981 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4982 
4983 	return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4984 }
4985 
4986 static int
4987 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4988 {
4989 	if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4990 		return 1;
4991 
4992 	return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4993 			       ETHER_ADDR_LEN);
4994 }
4995 
4996 static int
4997 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4998 {
4999 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5000 		/* NOTE: Order is critical */
5001 		bge_get_eaddr_mem,
5002 		bge_get_eaddr_nvram,
5003 		bge_get_eaddr_eeprom,
5004 		NULL
5005 	};
5006 	const bge_eaddr_fcn_t *func;
5007 
5008 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5009 		if ((*func)(sc, eaddr) == 0)
5010 			break;
5011 	}
5012 	return (*func == NULL ? ENXIO : 0);
5013 }
5014 
5015 /*
5016  * NOTE: 'm' is not freed upon failure
5017  */
5018 struct mbuf *
5019 bge_defrag_shortdma(struct mbuf *m)
5020 {
5021 	struct mbuf *n;
5022 	int found;
5023 
5024 	/*
5025 	 * If device receive two back-to-back send BDs with less than
5026 	 * or equal to 8 total bytes then the device may hang.  The two
5027 	 * back-to-back send BDs must in the same frame for this failure
5028 	 * to occur.  Scan mbuf chains and see whether two back-to-back
5029 	 * send BDs are there.  If this is the case, allocate new mbuf
5030 	 * and copy the frame to workaround the silicon bug.
5031 	 */
5032 	for (n = m, found = 0; n != NULL; n = n->m_next) {
5033 		if (n->m_len < 8) {
5034 			found++;
5035 			if (found > 1)
5036 				break;
5037 			continue;
5038 		}
5039 		found = 0;
5040 	}
5041 
5042 	if (found > 1)
5043 		n = m_defrag(m, MB_DONTWAIT);
5044 	else
5045 		n = m;
5046 	return n;
5047 }
5048 
5049 static void
5050 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5051 {
5052 	int i;
5053 
5054 	BGE_CLRBIT(sc, reg, bit);
5055 	for (i = 0; i < BGE_TIMEOUT; i++) {
5056 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5057 			return;
5058 		DELAY(100);
5059 	}
5060 }
5061 
5062 static void
5063 bge_link_poll(struct bge_softc *sc)
5064 {
5065 	uint32_t status;
5066 
5067 	status = CSR_READ_4(sc, BGE_MAC_STS);
5068 	if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
5069 		sc->bge_link_evt = 0;
5070 		sc->bge_link_upd(sc, status);
5071 	}
5072 }
5073 
5074 static void
5075 bge_enable_msi(struct bge_softc *sc)
5076 {
5077 	uint32_t msi_mode;
5078 
5079 	msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5080 	msi_mode |= BGE_MSIMODE_ENABLE;
5081 	if (sc->bge_flags & BGE_FLAG_ONESHOT_MSI) {
5082 		/*
5083 		 * According to all of the datasheets that are publicly
5084 		 * available, bit 5 of the MSI_MODE is defined to be
5085 		 * "MSI FIFO Underrun Attn" for BCM5755+ and BCM5906, on
5086 		 * which "oneshot MSI" is enabled.  However, it is always
5087 		 * safe to clear it here.
5088 		 */
5089 		msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5090 	}
5091 	CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5092 }
5093 
5094 static int
5095 bge_setup_tso(struct bge_softc *sc, struct mbuf **mp,
5096     uint16_t *mss0, uint16_t *flags0)
5097 {
5098 	struct mbuf *m;
5099 	struct ip *ip;
5100 	struct tcphdr *th;
5101 	int thoff, iphlen, hoff, hlen;
5102 	uint16_t flags, mss;
5103 
5104 	m = *mp;
5105 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5106 
5107 	hoff = m->m_pkthdr.csum_lhlen;
5108 	iphlen = m->m_pkthdr.csum_iphlen;
5109 	thoff = m->m_pkthdr.csum_thlen;
5110 
5111 	KASSERT(hoff > 0, ("invalid ether header len"));
5112 	KASSERT(iphlen > 0, ("invalid ip header len"));
5113 	KASSERT(thoff > 0, ("invalid tcp header len"));
5114 
5115 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5116 		m = m_pullup(m, hoff + iphlen + thoff);
5117 		if (m == NULL) {
5118 			*mp = NULL;
5119 			return ENOBUFS;
5120 		}
5121 		*mp = m;
5122 	}
5123 	ip = mtodoff(m, struct ip *, hoff);
5124 	th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5125 
5126 	mss = m->m_pkthdr.tso_segsz;
5127 	flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5128 
5129 	ip->ip_len = htons(mss + iphlen + thoff);
5130 	th->th_sum = 0;
5131 
5132 	hlen = (iphlen + thoff) >> 2;
5133 	mss |= (hlen << 11);
5134 
5135 	*mss0 = mss;
5136 	*flags0 = flags;
5137 
5138 	return 0;
5139 }
5140 
5141 static void
5142 bge_stop_fw(struct bge_softc *sc)
5143 {
5144 	int i;
5145 
5146 	if (sc->bge_asf_mode) {
5147 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
5148 		CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5149 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
5150 
5151 		for (i = 0; i < 100; i++ ) {
5152 			if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
5153 			    BGE_RX_CPU_DRV_EVENT))
5154 				break;
5155 			DELAY(10);
5156 		}
5157 	}
5158 }
5159 
5160 static void
5161 bge_sig_pre_reset(struct bge_softc *sc, int type)
5162 {
5163 	/*
5164 	 * Some chips don't like this so only do this if ASF is enabled
5165 	 */
5166 	if (sc->bge_asf_mode)
5167 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
5168 
5169 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5170 		switch (type) {
5171 		case BGE_RESET_START:
5172 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5173 			    BGE_FW_DRV_STATE_START);
5174 			break;
5175 		case BGE_RESET_SHUTDOWN:
5176 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5177 			    BGE_FW_DRV_STATE_UNLOAD);
5178 			break;
5179 		case BGE_RESET_SUSPEND:
5180 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5181 			    BGE_FW_DRV_STATE_SUSPEND);
5182 			break;
5183 		}
5184 	}
5185 
5186 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
5187 		bge_ape_driver_state_change(sc, type);
5188 }
5189 
5190 static void
5191 bge_sig_legacy(struct bge_softc *sc, int type)
5192 {
5193 	if (sc->bge_asf_mode) {
5194 		switch (type) {
5195 		case BGE_RESET_START:
5196 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5197 			    BGE_FW_DRV_STATE_START);
5198 			break;
5199 		case BGE_RESET_SHUTDOWN:
5200 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5201 			    BGE_FW_DRV_STATE_UNLOAD);
5202 			break;
5203 		}
5204 	}
5205 }
5206 
5207 static void
5208 bge_sig_post_reset(struct bge_softc *sc, int type)
5209 {
5210 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
5211 		switch (type) {
5212 		case BGE_RESET_START:
5213 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5214 			    BGE_FW_DRV_STATE_START_DONE);
5215 			/* START DONE */
5216 			break;
5217 		case BGE_RESET_SHUTDOWN:
5218 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
5219 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
5220 			break;
5221 		}
5222 	}
5223 	if (type == BGE_RESET_SHUTDOWN)
5224 		bge_ape_driver_state_change(sc, type);
5225 }
5226 
5227 static void
5228 bge_asf_driver_up(struct bge_softc *sc)
5229 {
5230 	if (sc->bge_asf_mode & ASF_STACKUP) {
5231 		/* Send ASF heartbeat aprox. every 2s */
5232 		if (sc->bge_asf_count)
5233 			sc->bge_asf_count --;
5234 		else {
5235 			sc->bge_asf_count = 2;
5236 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
5237 			    BGE_FW_CMD_DRV_ALIVE);
5238 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
5239 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
5240 			    BGE_FW_HB_TIMEOUT_SEC);
5241 			CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
5242 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
5243 			    BGE_RX_CPU_DRV_EVENT);
5244 		}
5245 	}
5246 }
5247 
5248 /*
5249  * Clear all stale locks and select the lock for this driver instance.
5250  */
5251 static void
5252 bge_ape_lock_init(struct bge_softc *sc)
5253 {
5254 	uint32_t bit, regbase;
5255 	int i;
5256 
5257 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5258 		regbase = BGE_APE_LOCK_GRANT;
5259 	else
5260 		regbase = BGE_APE_PER_LOCK_GRANT;
5261 
5262 	/* Clear any stale locks. */
5263 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
5264 		switch (i) {
5265 		case BGE_APE_LOCK_PHY0:
5266 		case BGE_APE_LOCK_PHY1:
5267 		case BGE_APE_LOCK_PHY2:
5268 		case BGE_APE_LOCK_PHY3:
5269 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5270 			break;
5271 		default:
5272 			if (sc->bge_func_addr == 0)
5273 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
5274 			else
5275 				bit = (1 << sc->bge_func_addr);
5276 		}
5277 		APE_WRITE_4(sc, regbase + 4 * i, bit);
5278 	}
5279 
5280 	/* Select the PHY lock based on the device's function number. */
5281 	switch (sc->bge_func_addr) {
5282 	case 0:
5283 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
5284 		break;
5285 	case 1:
5286 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
5287 		break;
5288 	case 2:
5289 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
5290 		break;
5291 	case 3:
5292 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
5293 		break;
5294 	default:
5295 		device_printf(sc->bge_dev,
5296 		    "PHY lock not supported on this function\n");
5297 	}
5298 }
5299 
5300 /*
5301  * Check for APE firmware, set flags, and print version info.
5302  */
5303 static void
5304 bge_ape_read_fw_ver(struct bge_softc *sc)
5305 {
5306 	const char *fwtype;
5307 	uint32_t apedata, features;
5308 
5309 	/* Check for a valid APE signature in shared memory. */
5310 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
5311 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
5312 		device_printf(sc->bge_dev, "no APE signature\n");
5313 		sc->bge_mfw_flags &= ~BGE_MFW_ON_APE;
5314 		return;
5315 	}
5316 
5317 	/* Check if APE firmware is running. */
5318 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
5319 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
5320 		device_printf(sc->bge_dev, "APE signature found "
5321 		    "but FW status not ready! 0x%08x\n", apedata);
5322 		return;
5323 	}
5324 
5325 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
5326 
5327 	/* Fetch the APE firwmare type and version. */
5328 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
5329 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
5330 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
5331 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
5332 		fwtype = "NCSI";
5333 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
5334 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
5335 		fwtype = "DASH";
5336 	} else
5337 		fwtype = "UNKN";
5338 
5339 	/* Print the APE firmware version. */
5340 	device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
5341 	    fwtype,
5342 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
5343 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
5344 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
5345 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
5346 }
5347 
5348 static int
5349 bge_ape_lock(struct bge_softc *sc, int locknum)
5350 {
5351 	uint32_t bit, gnt, req, status;
5352 	int i, off;
5353 
5354 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5355 		return (0);
5356 
5357 	/* Lock request/grant registers have different bases. */
5358 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
5359 		req = BGE_APE_LOCK_REQ;
5360 		gnt = BGE_APE_LOCK_GRANT;
5361 	} else {
5362 		req = BGE_APE_PER_LOCK_REQ;
5363 		gnt = BGE_APE_PER_LOCK_GRANT;
5364 	}
5365 
5366 	off = 4 * locknum;
5367 
5368 	switch (locknum) {
5369 	case BGE_APE_LOCK_GPIO:
5370 		/* Lock required when using GPIO. */
5371 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5372 			return (0);
5373 		if (sc->bge_func_addr == 0)
5374 			bit = BGE_APE_LOCK_REQ_DRIVER0;
5375 		else
5376 			bit = (1 << sc->bge_func_addr);
5377 		break;
5378 	case BGE_APE_LOCK_GRC:
5379 		/* Lock required to reset the device. */
5380 		if (sc->bge_func_addr == 0)
5381 			bit = BGE_APE_LOCK_REQ_DRIVER0;
5382 		else
5383 			bit = (1 << sc->bge_func_addr);
5384 		break;
5385 	case BGE_APE_LOCK_MEM:
5386 		/* Lock required when accessing certain APE memory. */
5387 		if (sc->bge_func_addr == 0)
5388 			bit = BGE_APE_LOCK_REQ_DRIVER0;
5389 		else
5390 			bit = (1 << sc->bge_func_addr);
5391 		break;
5392 	case BGE_APE_LOCK_PHY0:
5393 	case BGE_APE_LOCK_PHY1:
5394 	case BGE_APE_LOCK_PHY2:
5395 	case BGE_APE_LOCK_PHY3:
5396 		/* Lock required when accessing PHYs. */
5397 		bit = BGE_APE_LOCK_REQ_DRIVER0;
5398 		break;
5399 	default:
5400 		return (EINVAL);
5401 	}
5402 
5403 	/* Request a lock. */
5404 	APE_WRITE_4(sc, req + off, bit);
5405 
5406 	/* Wait up to 1 second to acquire lock. */
5407 	for (i = 0; i < 20000; i++) {
5408 		status = APE_READ_4(sc, gnt + off);
5409 		if (status == bit)
5410 			break;
5411 		DELAY(50);
5412 	}
5413 
5414 	/* Handle any errors. */
5415 	if (status != bit) {
5416 		device_printf(sc->bge_dev, "APE lock %d request failed! "
5417 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
5418 		    locknum, req + off, bit & 0xFFFF, gnt + off,
5419 		    status & 0xFFFF);
5420 		/* Revoke the lock request. */
5421 		APE_WRITE_4(sc, gnt + off, bit);
5422 		return (EBUSY);
5423 	}
5424 
5425 	return (0);
5426 }
5427 
5428 static void
5429 bge_ape_unlock(struct bge_softc *sc, int locknum)
5430 {
5431 	uint32_t bit, gnt;
5432 	int off;
5433 
5434 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5435 		return;
5436 
5437 	if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5438 		gnt = BGE_APE_LOCK_GRANT;
5439 	else
5440 		gnt = BGE_APE_PER_LOCK_GRANT;
5441 
5442 	off = 4 * locknum;
5443 
5444 	switch (locknum) {
5445 	case BGE_APE_LOCK_GPIO:
5446 		if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
5447 			return;
5448 		if (sc->bge_func_addr == 0)
5449 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5450 		else
5451 			bit = (1 << sc->bge_func_addr);
5452 		break;
5453 	case BGE_APE_LOCK_GRC:
5454 		if (sc->bge_func_addr == 0)
5455 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5456 		else
5457 			bit = (1 << sc->bge_func_addr);
5458 		break;
5459 	case BGE_APE_LOCK_MEM:
5460 		if (sc->bge_func_addr == 0)
5461 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
5462 		else
5463 			bit = (1 << sc->bge_func_addr);
5464 		break;
5465 	case BGE_APE_LOCK_PHY0:
5466 	case BGE_APE_LOCK_PHY1:
5467 	case BGE_APE_LOCK_PHY2:
5468 	case BGE_APE_LOCK_PHY3:
5469 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
5470 		break;
5471 	default:
5472 		return;
5473 	}
5474 
5475 	APE_WRITE_4(sc, gnt + off, bit);
5476 }
5477 
5478 /*
5479  * Send an event to the APE firmware.
5480  */
5481 static void
5482 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
5483 {
5484 	uint32_t apedata;
5485 	int i;
5486 
5487 	/* NCSI does not support APE events. */
5488 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5489 		return;
5490 
5491 	/* Wait up to 1ms for APE to service previous event. */
5492 	for (i = 10; i > 0; i--) {
5493 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
5494 			break;
5495 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
5496 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
5497 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
5498 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
5499 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
5500 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
5501 			break;
5502 		}
5503 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
5504 		DELAY(100);
5505 	}
5506 	if (i == 0)
5507 		device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
5508 		    event);
5509 }
5510 
5511 static void
5512 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
5513 {
5514 	uint32_t apedata, event;
5515 
5516 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
5517 		return;
5518 
5519 	switch (kind) {
5520 	case BGE_RESET_START:
5521 		/* If this is the first load, clear the load counter. */
5522 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
5523 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
5524 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
5525 		else {
5526 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
5527 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
5528 		}
5529 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
5530 		    BGE_APE_HOST_SEG_SIG_MAGIC);
5531 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
5532 		    BGE_APE_HOST_SEG_LEN_MAGIC);
5533 
5534 		/* Add some version info if bge(4) supports it. */
5535 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
5536 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
5537 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
5538 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
5539 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
5540 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
5541 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
5542 		    BGE_APE_HOST_DRVR_STATE_START);
5543 		event = BGE_APE_EVENT_STATUS_STATE_START;
5544 		break;
5545 	case BGE_RESET_SHUTDOWN:
5546 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
5547 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
5548 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
5549 		break;
5550 	case BGE_RESET_SUSPEND:
5551 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
5552 		break;
5553 	default:
5554 		return;
5555 	}
5556 
5557 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
5558 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
5559 }
5560