xref: /dragonfly/sys/dev/netif/bnx/if_bnx.c (revision 0dace59e)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35 
36 #include "opt_bnx.h"
37 #include "opt_ifpoll.h"
38 
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/rman.h>
48 #include <sys/serialize.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52 
53 #include <netinet/ip.h>
54 #include <netinet/tcp.h>
55 
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_poll.h>
63 #include <net/if_types.h>
64 #include <net/ifq_var.h>
65 #include <net/toeplitz.h>
66 #include <net/toeplitz2.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/vlan/if_vlan_ether.h>
69 
70 #include <dev/netif/mii_layer/mii.h>
71 #include <dev/netif/mii_layer/miivar.h>
72 #include <dev/netif/mii_layer/brgphyreg.h>
73 
74 #include <bus/pci/pcidevs.h>
75 #include <bus/pci/pcireg.h>
76 #include <bus/pci/pcivar.h>
77 
78 #include <dev/netif/bge/if_bgereg.h>
79 #include <dev/netif/bnx/if_bnxvar.h>
80 
81 /* "device miibus" required.  See GENERIC if you get errors here. */
82 #include "miibus_if.h"
83 
84 #define BNX_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
85 
86 #define BNX_INTR_CKINTVL	((10 * hz) / 1000)	/* 10ms */
87 
88 #ifdef BNX_RSS_DEBUG
89 #define BNX_RSS_DPRINTF(sc, lvl, fmt, ...) \
90 do { \
91 	if (sc->bnx_rss_debug >= lvl) \
92 		if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
93 } while (0)
94 #else	/* !BNX_RSS_DEBUG */
95 #define BNX_RSS_DPRINTF(sc, lvl, fmt, ...)	((void)0)
96 #endif	/* BNX_RSS_DEBUG */
97 
98 static const struct bnx_type {
99 	uint16_t		bnx_vid;
100 	uint16_t		bnx_did;
101 	char			*bnx_name;
102 } bnx_devs[] = {
103 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717,
104 		"Broadcom BCM5717 Gigabit Ethernet" },
105 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717C,
106 		"Broadcom BCM5717C Gigabit Ethernet" },
107 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5718,
108 		"Broadcom BCM5718 Gigabit Ethernet" },
109 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5719,
110 		"Broadcom BCM5719 Gigabit Ethernet" },
111 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720_ALT,
112 		"Broadcom BCM5720 Gigabit Ethernet" },
113 
114 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5725,
115 		"Broadcom BCM5725 Gigabit Ethernet" },
116 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5727,
117 		"Broadcom BCM5727 Gigabit Ethernet" },
118 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5762,
119 		"Broadcom BCM5762 Gigabit Ethernet" },
120 
121 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57761,
122 		"Broadcom BCM57761 Gigabit Ethernet" },
123 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57762,
124 		"Broadcom BCM57762 Gigabit Ethernet" },
125 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57765,
126 		"Broadcom BCM57765 Gigabit Ethernet" },
127 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57766,
128 		"Broadcom BCM57766 Gigabit Ethernet" },
129 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57781,
130 		"Broadcom BCM57781 Gigabit Ethernet" },
131 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57782,
132 		"Broadcom BCM57782 Gigabit Ethernet" },
133 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57785,
134 		"Broadcom BCM57785 Gigabit Ethernet" },
135 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57786,
136 		"Broadcom BCM57786 Gigabit Ethernet" },
137 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57791,
138 		"Broadcom BCM57791 Fast Ethernet" },
139 	{ PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57795,
140 		"Broadcom BCM57795 Fast Ethernet" },
141 
142 	{ 0, 0, NULL }
143 };
144 
145 static const int bnx_tx_mailbox[BNX_TX_RING_MAX] = {
146 	BGE_MBX_TX_HOST_PROD0_LO,
147 	BGE_MBX_TX_HOST_PROD0_HI,
148 	BGE_MBX_TX_HOST_PROD1_LO,
149 	BGE_MBX_TX_HOST_PROD1_HI
150 };
151 
152 #define BNX_IS_JUMBO_CAPABLE(sc)	((sc)->bnx_flags & BNX_FLAG_JUMBO)
153 #define BNX_IS_5717_PLUS(sc)		((sc)->bnx_flags & BNX_FLAG_5717_PLUS)
154 #define BNX_IS_57765_PLUS(sc)		((sc)->bnx_flags & BNX_FLAG_57765_PLUS)
155 #define BNX_IS_57765_FAMILY(sc)	 \
156 	((sc)->bnx_flags & BNX_FLAG_57765_FAMILY)
157 
158 typedef int	(*bnx_eaddr_fcn_t)(struct bnx_softc *, uint8_t[]);
159 
160 static int	bnx_probe(device_t);
161 static int	bnx_attach(device_t);
162 static int	bnx_detach(device_t);
163 static void	bnx_shutdown(device_t);
164 static int	bnx_suspend(device_t);
165 static int	bnx_resume(device_t);
166 static int	bnx_miibus_readreg(device_t, int, int);
167 static int	bnx_miibus_writereg(device_t, int, int, int);
168 static void	bnx_miibus_statchg(device_t);
169 
170 static int	bnx_handle_status(struct bnx_softc *);
171 #ifdef IFPOLL_ENABLE
172 static void	bnx_npoll(struct ifnet *, struct ifpoll_info *);
173 static void	bnx_npoll_rx(struct ifnet *, void *, int);
174 static void	bnx_npoll_tx(struct ifnet *, void *, int);
175 static void	bnx_npoll_tx_notag(struct ifnet *, void *, int);
176 static void	bnx_npoll_status(struct ifnet *);
177 static void	bnx_npoll_status_notag(struct ifnet *);
178 #endif
179 static void	bnx_intr_legacy(void *);
180 static void	bnx_msi(void *);
181 static void	bnx_intr(struct bnx_softc *);
182 static void	bnx_msix_status(void *);
183 static void	bnx_msix_tx_status(void *);
184 static void	bnx_msix_rx(void *);
185 static void	bnx_msix_rxtx(void *);
186 static void	bnx_enable_intr(struct bnx_softc *);
187 static void	bnx_disable_intr(struct bnx_softc *);
188 static void	bnx_txeof(struct bnx_tx_ring *, uint16_t);
189 static void	bnx_rxeof(struct bnx_rx_ret_ring *, uint16_t, int);
190 static int	bnx_alloc_intr(struct bnx_softc *);
191 static int	bnx_setup_intr(struct bnx_softc *);
192 static void	bnx_free_intr(struct bnx_softc *);
193 static void	bnx_teardown_intr(struct bnx_softc *, int);
194 static int	bnx_alloc_msix(struct bnx_softc *);
195 static void	bnx_free_msix(struct bnx_softc *, boolean_t);
196 static void	bnx_check_intr_rxtx(void *);
197 static void	bnx_check_intr_rx(void *);
198 static void	bnx_check_intr_tx(void *);
199 static void	bnx_rx_std_refill_ithread(void *);
200 static void	bnx_rx_std_refill(void *, void *);
201 static void	bnx_rx_std_refill_sched_ipi(void *);
202 static void	bnx_rx_std_refill_stop(void *);
203 static void	bnx_rx_std_refill_sched(struct bnx_rx_ret_ring *,
204 		    struct bnx_rx_std_ring *);
205 
206 static void	bnx_start(struct ifnet *, struct ifaltq_subque *);
207 static int	bnx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
208 static void	bnx_init(void *);
209 static void	bnx_stop(struct bnx_softc *);
210 static void	bnx_watchdog(struct ifaltq_subque *);
211 static int	bnx_ifmedia_upd(struct ifnet *);
212 static void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
213 static void	bnx_tick(void *);
214 static void	bnx_serialize(struct ifnet *, enum ifnet_serialize);
215 static void	bnx_deserialize(struct ifnet *, enum ifnet_serialize);
216 static int	bnx_tryserialize(struct ifnet *, enum ifnet_serialize);
217 #ifdef INVARIANTS
218 static void	bnx_serialize_assert(struct ifnet *, enum ifnet_serialize,
219 		    boolean_t);
220 #endif
221 static void	bnx_serialize_skipmain(struct bnx_softc *);
222 static void	bnx_deserialize_skipmain(struct bnx_softc *sc);
223 
224 static int	bnx_alloc_jumbo_mem(struct bnx_softc *);
225 static void	bnx_free_jumbo_mem(struct bnx_softc *);
226 static struct bnx_jslot
227 		*bnx_jalloc(struct bnx_softc *);
228 static void	bnx_jfree(void *);
229 static void	bnx_jref(void *);
230 static int	bnx_newbuf_std(struct bnx_rx_ret_ring *, int, int);
231 static int	bnx_newbuf_jumbo(struct bnx_softc *, int, int);
232 static void	bnx_setup_rxdesc_std(struct bnx_rx_std_ring *, int);
233 static void	bnx_setup_rxdesc_jumbo(struct bnx_softc *, int);
234 static int	bnx_init_rx_ring_std(struct bnx_rx_std_ring *);
235 static void	bnx_free_rx_ring_std(struct bnx_rx_std_ring *);
236 static int	bnx_init_rx_ring_jumbo(struct bnx_softc *);
237 static void	bnx_free_rx_ring_jumbo(struct bnx_softc *);
238 static void	bnx_free_tx_ring(struct bnx_tx_ring *);
239 static int	bnx_init_tx_ring(struct bnx_tx_ring *);
240 static int	bnx_create_tx_ring(struct bnx_tx_ring *);
241 static void	bnx_destroy_tx_ring(struct bnx_tx_ring *);
242 static int	bnx_create_rx_ret_ring(struct bnx_rx_ret_ring *);
243 static void	bnx_destroy_rx_ret_ring(struct bnx_rx_ret_ring *);
244 static int	bnx_dma_alloc(device_t);
245 static void	bnx_dma_free(struct bnx_softc *);
246 static int	bnx_dma_block_alloc(struct bnx_softc *, bus_size_t,
247 		    bus_dma_tag_t *, bus_dmamap_t *, void **, bus_addr_t *);
248 static void	bnx_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
249 static struct mbuf *
250 		bnx_defrag_shortdma(struct mbuf *);
251 static int	bnx_encap(struct bnx_tx_ring *, struct mbuf **,
252 		    uint32_t *, int *);
253 static int	bnx_setup_tso(struct bnx_tx_ring *, struct mbuf **,
254 		    uint16_t *, uint16_t *);
255 static void	bnx_setup_serialize(struct bnx_softc *);
256 static void	bnx_set_tick_cpuid(struct bnx_softc *, boolean_t);
257 static void	bnx_setup_ring_cnt(struct bnx_softc *);
258 
259 static struct pktinfo *bnx_rss_info(struct pktinfo *,
260 		    const struct bge_rx_bd *);
261 static void	bnx_init_rss(struct bnx_softc *);
262 static void	bnx_reset(struct bnx_softc *);
263 static int	bnx_chipinit(struct bnx_softc *);
264 static int	bnx_blockinit(struct bnx_softc *);
265 static void	bnx_stop_block(struct bnx_softc *, bus_size_t, uint32_t);
266 static void	bnx_enable_msi(struct bnx_softc *, boolean_t);
267 static void	bnx_setmulti(struct bnx_softc *);
268 static void	bnx_setpromisc(struct bnx_softc *);
269 static void	bnx_stats_update_regs(struct bnx_softc *);
270 static uint32_t	bnx_dma_swap_options(struct bnx_softc *);
271 
272 static uint32_t	bnx_readmem_ind(struct bnx_softc *, uint32_t);
273 static void	bnx_writemem_ind(struct bnx_softc *, uint32_t, uint32_t);
274 #ifdef notdef
275 static uint32_t	bnx_readreg_ind(struct bnx_softc *, uint32_t);
276 #endif
277 static void	bnx_writemem_direct(struct bnx_softc *, uint32_t, uint32_t);
278 static void	bnx_writembx(struct bnx_softc *, int, int);
279 static int	bnx_read_nvram(struct bnx_softc *, caddr_t, int, int);
280 static uint8_t	bnx_eeprom_getbyte(struct bnx_softc *, uint32_t, uint8_t *);
281 static int	bnx_read_eeprom(struct bnx_softc *, caddr_t, uint32_t, size_t);
282 
283 static void	bnx_tbi_link_upd(struct bnx_softc *, uint32_t);
284 static void	bnx_copper_link_upd(struct bnx_softc *, uint32_t);
285 static void	bnx_autopoll_link_upd(struct bnx_softc *, uint32_t);
286 static void	bnx_link_poll(struct bnx_softc *);
287 
288 static int	bnx_get_eaddr_mem(struct bnx_softc *, uint8_t[]);
289 static int	bnx_get_eaddr_nvram(struct bnx_softc *, uint8_t[]);
290 static int	bnx_get_eaddr_eeprom(struct bnx_softc *, uint8_t[]);
291 static int	bnx_get_eaddr(struct bnx_softc *, uint8_t[]);
292 
293 static void	bnx_coal_change(struct bnx_softc *);
294 static int	bnx_sysctl_force_defrag(SYSCTL_HANDLER_ARGS);
295 static int	bnx_sysctl_tx_wreg(SYSCTL_HANDLER_ARGS);
296 static int	bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
297 static int	bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
298 static int	bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
299 static int	bnx_sysctl_rx_coal_bds_poll(SYSCTL_HANDLER_ARGS);
300 static int	bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
301 static int	bnx_sysctl_tx_coal_bds_poll(SYSCTL_HANDLER_ARGS);
302 static int	bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
303 static int	bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
304 static int	bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
305 		    int, int, uint32_t);
306 #ifdef IFPOLL_ENABLE
307 static int	bnx_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS);
308 static int	bnx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
309 static int	bnx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
310 #endif
311 static int	bnx_sysctl_std_refill(SYSCTL_HANDLER_ARGS);
312 
313 static int	bnx_msi_enable = 1;
314 static int	bnx_msix_enable = 1;
315 
316 static int	bnx_rx_rings = 0; /* auto */
317 static int	bnx_tx_rings = 0; /* auto */
318 
319 TUNABLE_INT("hw.bnx.msi.enable", &bnx_msi_enable);
320 TUNABLE_INT("hw.bnx.msix.enable", &bnx_msix_enable);
321 TUNABLE_INT("hw.bnx.rx_rings", &bnx_rx_rings);
322 TUNABLE_INT("hw.bnx.tx_rings", &bnx_tx_rings);
323 
324 static device_method_t bnx_methods[] = {
325 	/* Device interface */
326 	DEVMETHOD(device_probe,		bnx_probe),
327 	DEVMETHOD(device_attach,	bnx_attach),
328 	DEVMETHOD(device_detach,	bnx_detach),
329 	DEVMETHOD(device_shutdown,	bnx_shutdown),
330 	DEVMETHOD(device_suspend,	bnx_suspend),
331 	DEVMETHOD(device_resume,	bnx_resume),
332 
333 	/* bus interface */
334 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
335 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
336 
337 	/* MII interface */
338 	DEVMETHOD(miibus_readreg,	bnx_miibus_readreg),
339 	DEVMETHOD(miibus_writereg,	bnx_miibus_writereg),
340 	DEVMETHOD(miibus_statchg,	bnx_miibus_statchg),
341 
342 	DEVMETHOD_END
343 };
344 
345 static DEFINE_CLASS_0(bnx, bnx_driver, bnx_methods, sizeof(struct bnx_softc));
346 static devclass_t bnx_devclass;
347 
348 DECLARE_DUMMY_MODULE(if_bnx);
349 DRIVER_MODULE(if_bnx, pci, bnx_driver, bnx_devclass, NULL, NULL);
350 DRIVER_MODULE(miibus, bnx, miibus_driver, miibus_devclass, NULL, NULL);
351 
352 static uint32_t
353 bnx_readmem_ind(struct bnx_softc *sc, uint32_t off)
354 {
355 	device_t dev = sc->bnx_dev;
356 	uint32_t val;
357 
358 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
359 	val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
360 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
361 	return (val);
362 }
363 
364 static void
365 bnx_writemem_ind(struct bnx_softc *sc, uint32_t off, uint32_t val)
366 {
367 	device_t dev = sc->bnx_dev;
368 
369 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
370 	pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
371 	pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
372 }
373 
374 static void
375 bnx_writemem_direct(struct bnx_softc *sc, uint32_t off, uint32_t val)
376 {
377 	CSR_WRITE_4(sc, off, val);
378 }
379 
380 static void
381 bnx_writembx(struct bnx_softc *sc, int off, int val)
382 {
383 	CSR_WRITE_4(sc, off, val);
384 }
385 
386 /*
387  * Read a sequence of bytes from NVRAM.
388  */
389 static int
390 bnx_read_nvram(struct bnx_softc *sc, caddr_t dest, int off, int cnt)
391 {
392 	return (1);
393 }
394 
395 /*
396  * Read a byte of data stored in the EEPROM at address 'addr.' The
397  * BCM570x supports both the traditional bitbang interface and an
398  * auto access interface for reading the EEPROM. We use the auto
399  * access method.
400  */
401 static uint8_t
402 bnx_eeprom_getbyte(struct bnx_softc *sc, uint32_t addr, uint8_t *dest)
403 {
404 	int i;
405 	uint32_t byte = 0;
406 
407 	/*
408 	 * Enable use of auto EEPROM access so we can avoid
409 	 * having to use the bitbang method.
410 	 */
411 	BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
412 
413 	/* Reset the EEPROM, load the clock period. */
414 	CSR_WRITE_4(sc, BGE_EE_ADDR,
415 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
416 	DELAY(20);
417 
418 	/* Issue the read EEPROM command. */
419 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
420 
421 	/* Wait for completion */
422 	for(i = 0; i < BNX_TIMEOUT * 10; i++) {
423 		DELAY(10);
424 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
425 			break;
426 	}
427 
428 	if (i == BNX_TIMEOUT) {
429 		if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
430 		return(1);
431 	}
432 
433 	/* Get result. */
434 	byte = CSR_READ_4(sc, BGE_EE_DATA);
435 
436         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
437 
438 	return(0);
439 }
440 
441 /*
442  * Read a sequence of bytes from the EEPROM.
443  */
444 static int
445 bnx_read_eeprom(struct bnx_softc *sc, caddr_t dest, uint32_t off, size_t len)
446 {
447 	size_t i;
448 	int err;
449 	uint8_t byte;
450 
451 	for (byte = 0, err = 0, i = 0; i < len; i++) {
452 		err = bnx_eeprom_getbyte(sc, off + i, &byte);
453 		if (err)
454 			break;
455 		*(dest + i) = byte;
456 	}
457 
458 	return(err ? 1 : 0);
459 }
460 
461 static int
462 bnx_miibus_readreg(device_t dev, int phy, int reg)
463 {
464 	struct bnx_softc *sc = device_get_softc(dev);
465 	uint32_t val;
466 	int i;
467 
468 	KASSERT(phy == sc->bnx_phyno,
469 	    ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
470 
471 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
472 	if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
473 		CSR_WRITE_4(sc, BGE_MI_MODE,
474 		    sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
475 		DELAY(80);
476 	}
477 
478 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
479 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
480 
481 	/* Poll for the PHY register access to complete. */
482 	for (i = 0; i < BNX_TIMEOUT; i++) {
483 		DELAY(10);
484 		val = CSR_READ_4(sc, BGE_MI_COMM);
485 		if ((val & BGE_MICOMM_BUSY) == 0) {
486 			DELAY(5);
487 			val = CSR_READ_4(sc, BGE_MI_COMM);
488 			break;
489 		}
490 	}
491 	if (i == BNX_TIMEOUT) {
492 		if_printf(&sc->arpcom.ac_if, "PHY read timed out "
493 		    "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
494 		val = 0;
495 	}
496 
497 	/* Restore the autopoll bit if necessary. */
498 	if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
499 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
500 		DELAY(80);
501 	}
502 
503 	if (val & BGE_MICOMM_READFAIL)
504 		return 0;
505 
506 	return (val & 0xFFFF);
507 }
508 
509 static int
510 bnx_miibus_writereg(device_t dev, int phy, int reg, int val)
511 {
512 	struct bnx_softc *sc = device_get_softc(dev);
513 	int i;
514 
515 	KASSERT(phy == sc->bnx_phyno,
516 	    ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
517 
518 	/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
519 	if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
520 		CSR_WRITE_4(sc, BGE_MI_MODE,
521 		    sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
522 		DELAY(80);
523 	}
524 
525 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
526 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
527 
528 	for (i = 0; i < BNX_TIMEOUT; i++) {
529 		DELAY(10);
530 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
531 			DELAY(5);
532 			CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
533 			break;
534 		}
535 	}
536 	if (i == BNX_TIMEOUT) {
537 		if_printf(&sc->arpcom.ac_if, "PHY write timed out "
538 		    "(phy %d, reg %d, val %d)\n", phy, reg, val);
539 	}
540 
541 	/* Restore the autopoll bit if necessary. */
542 	if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
543 		CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
544 		DELAY(80);
545 	}
546 
547 	return 0;
548 }
549 
550 static void
551 bnx_miibus_statchg(device_t dev)
552 {
553 	struct bnx_softc *sc;
554 	struct mii_data *mii;
555 
556 	sc = device_get_softc(dev);
557 	mii = device_get_softc(sc->bnx_miibus);
558 
559 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
560 	    (IFM_ACTIVE | IFM_AVALID)) {
561 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
562 		case IFM_10_T:
563 		case IFM_100_TX:
564 			sc->bnx_link = 1;
565 			break;
566 		case IFM_1000_T:
567 		case IFM_1000_SX:
568 		case IFM_2500_SX:
569 			sc->bnx_link = 1;
570 			break;
571 		default:
572 			sc->bnx_link = 0;
573 			break;
574 		}
575 	} else {
576 		sc->bnx_link = 0;
577 	}
578 	if (sc->bnx_link == 0)
579 		return;
580 
581 	BNX_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
582 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
583 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
584 		BNX_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
585 	} else {
586 		BNX_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
587 	}
588 
589 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
590 		BNX_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
591 	} else {
592 		BNX_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
593 	}
594 }
595 
596 /*
597  * Memory management for jumbo frames.
598  */
599 static int
600 bnx_alloc_jumbo_mem(struct bnx_softc *sc)
601 {
602 	struct ifnet *ifp = &sc->arpcom.ac_if;
603 	struct bnx_jslot *entry;
604 	uint8_t *ptr;
605 	bus_addr_t paddr;
606 	int i, error;
607 
608 	/*
609 	 * Create tag for jumbo mbufs.
610 	 * This is really a bit of a kludge. We allocate a special
611 	 * jumbo buffer pool which (thanks to the way our DMA
612 	 * memory allocation works) will consist of contiguous
613 	 * pages. This means that even though a jumbo buffer might
614 	 * be larger than a page size, we don't really need to
615 	 * map it into more than one DMA segment. However, the
616 	 * default mbuf tag will result in multi-segment mappings,
617 	 * so we have to create a special jumbo mbuf tag that
618 	 * lets us get away with mapping the jumbo buffers as
619 	 * a single segment. I think eventually the driver should
620 	 * be changed so that it uses ordinary mbufs and cluster
621 	 * buffers, i.e. jumbo frames can span multiple DMA
622 	 * descriptors. But that's a project for another day.
623 	 */
624 
625 	/*
626 	 * Create DMA stuffs for jumbo RX ring.
627 	 */
628 	error = bnx_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
629 				    &sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
630 				    &sc->bnx_cdata.bnx_rx_jumbo_ring_map,
631 				    (void *)&sc->bnx_ldata.bnx_rx_jumbo_ring,
632 				    &sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
633 	if (error) {
634 		if_printf(ifp, "could not create jumbo RX ring\n");
635 		return error;
636 	}
637 
638 	/*
639 	 * Create DMA stuffs for jumbo buffer block.
640 	 */
641 	error = bnx_dma_block_alloc(sc, BNX_JMEM,
642 				    &sc->bnx_cdata.bnx_jumbo_tag,
643 				    &sc->bnx_cdata.bnx_jumbo_map,
644 				    (void **)&sc->bnx_ldata.bnx_jumbo_buf,
645 				    &paddr);
646 	if (error) {
647 		if_printf(ifp, "could not create jumbo buffer\n");
648 		return error;
649 	}
650 
651 	SLIST_INIT(&sc->bnx_jfree_listhead);
652 
653 	/*
654 	 * Now divide it up into 9K pieces and save the addresses
655 	 * in an array. Note that we play an evil trick here by using
656 	 * the first few bytes in the buffer to hold the the address
657 	 * of the softc structure for this interface. This is because
658 	 * bnx_jfree() needs it, but it is called by the mbuf management
659 	 * code which will not pass it to us explicitly.
660 	 */
661 	for (i = 0, ptr = sc->bnx_ldata.bnx_jumbo_buf; i < BNX_JSLOTS; i++) {
662 		entry = &sc->bnx_cdata.bnx_jslots[i];
663 		entry->bnx_sc = sc;
664 		entry->bnx_buf = ptr;
665 		entry->bnx_paddr = paddr;
666 		entry->bnx_inuse = 0;
667 		entry->bnx_slot = i;
668 		SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, entry, jslot_link);
669 
670 		ptr += BNX_JLEN;
671 		paddr += BNX_JLEN;
672 	}
673 	return 0;
674 }
675 
676 static void
677 bnx_free_jumbo_mem(struct bnx_softc *sc)
678 {
679 	/* Destroy jumbo RX ring. */
680 	bnx_dma_block_free(sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
681 			   sc->bnx_cdata.bnx_rx_jumbo_ring_map,
682 			   sc->bnx_ldata.bnx_rx_jumbo_ring);
683 
684 	/* Destroy jumbo buffer block. */
685 	bnx_dma_block_free(sc->bnx_cdata.bnx_jumbo_tag,
686 			   sc->bnx_cdata.bnx_jumbo_map,
687 			   sc->bnx_ldata.bnx_jumbo_buf);
688 }
689 
690 /*
691  * Allocate a jumbo buffer.
692  */
693 static struct bnx_jslot *
694 bnx_jalloc(struct bnx_softc *sc)
695 {
696 	struct bnx_jslot *entry;
697 
698 	lwkt_serialize_enter(&sc->bnx_jslot_serializer);
699 	entry = SLIST_FIRST(&sc->bnx_jfree_listhead);
700 	if (entry) {
701 		SLIST_REMOVE_HEAD(&sc->bnx_jfree_listhead, jslot_link);
702 		entry->bnx_inuse = 1;
703 	} else {
704 		if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
705 	}
706 	lwkt_serialize_exit(&sc->bnx_jslot_serializer);
707 	return(entry);
708 }
709 
710 /*
711  * Adjust usage count on a jumbo buffer.
712  */
713 static void
714 bnx_jref(void *arg)
715 {
716 	struct bnx_jslot *entry = (struct bnx_jslot *)arg;
717 	struct bnx_softc *sc = entry->bnx_sc;
718 
719 	if (sc == NULL)
720 		panic("bnx_jref: can't find softc pointer!");
721 
722 	if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
723 		panic("bnx_jref: asked to reference buffer "
724 		    "that we don't manage!");
725 	} else if (entry->bnx_inuse == 0) {
726 		panic("bnx_jref: buffer already free!");
727 	} else {
728 		atomic_add_int(&entry->bnx_inuse, 1);
729 	}
730 }
731 
732 /*
733  * Release a jumbo buffer.
734  */
735 static void
736 bnx_jfree(void *arg)
737 {
738 	struct bnx_jslot *entry = (struct bnx_jslot *)arg;
739 	struct bnx_softc *sc = entry->bnx_sc;
740 
741 	if (sc == NULL)
742 		panic("bnx_jfree: can't find softc pointer!");
743 
744 	if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
745 		panic("bnx_jfree: asked to free buffer that we don't manage!");
746 	} else if (entry->bnx_inuse == 0) {
747 		panic("bnx_jfree: buffer already free!");
748 	} else {
749 		/*
750 		 * Possible MP race to 0, use the serializer.  The atomic insn
751 		 * is still needed for races against bnx_jref().
752 		 */
753 		lwkt_serialize_enter(&sc->bnx_jslot_serializer);
754 		atomic_subtract_int(&entry->bnx_inuse, 1);
755 		if (entry->bnx_inuse == 0) {
756 			SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead,
757 					  entry, jslot_link);
758 		}
759 		lwkt_serialize_exit(&sc->bnx_jslot_serializer);
760 	}
761 }
762 
763 
764 /*
765  * Intialize a standard receive ring descriptor.
766  */
767 static int
768 bnx_newbuf_std(struct bnx_rx_ret_ring *ret, int i, int init)
769 {
770 	struct mbuf *m_new = NULL;
771 	bus_dma_segment_t seg;
772 	bus_dmamap_t map;
773 	int error, nsegs;
774 	struct bnx_rx_buf *rb;
775 
776 	rb = &ret->bnx_std->bnx_rx_std_buf[i];
777 	KASSERT(!rb->bnx_rx_refilled, ("RX buf %dth has been refilled", i));
778 
779 	m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
780 	if (m_new == NULL) {
781 		error = ENOBUFS;
782 		goto back;
783 	}
784 	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
785 	m_adj(m_new, ETHER_ALIGN);
786 
787 	error = bus_dmamap_load_mbuf_segment(ret->bnx_rx_mtag,
788 	    ret->bnx_rx_tmpmap, m_new, &seg, 1, &nsegs, BUS_DMA_NOWAIT);
789 	if (error) {
790 		m_freem(m_new);
791 		goto back;
792 	}
793 
794 	if (!init) {
795 		bus_dmamap_sync(ret->bnx_rx_mtag, rb->bnx_rx_dmamap,
796 		    BUS_DMASYNC_POSTREAD);
797 		bus_dmamap_unload(ret->bnx_rx_mtag, rb->bnx_rx_dmamap);
798 	}
799 
800 	map = ret->bnx_rx_tmpmap;
801 	ret->bnx_rx_tmpmap = rb->bnx_rx_dmamap;
802 
803 	rb->bnx_rx_dmamap = map;
804 	rb->bnx_rx_mbuf = m_new;
805 	rb->bnx_rx_paddr = seg.ds_addr;
806 	rb->bnx_rx_len = m_new->m_len;
807 back:
808 	cpu_sfence();
809 	rb->bnx_rx_refilled = 1;
810 	return error;
811 }
812 
813 static void
814 bnx_setup_rxdesc_std(struct bnx_rx_std_ring *std, int i)
815 {
816 	struct bnx_rx_buf *rb;
817 	struct bge_rx_bd *r;
818 	bus_addr_t paddr;
819 	int len;
820 
821 	rb = &std->bnx_rx_std_buf[i];
822 	KASSERT(rb->bnx_rx_refilled, ("RX buf %dth is not refilled", i));
823 
824 	paddr = rb->bnx_rx_paddr;
825 	len = rb->bnx_rx_len;
826 
827 	cpu_mfence();
828 
829 	rb->bnx_rx_refilled = 0;
830 
831 	r = &std->bnx_rx_std_ring[i];
832 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
833 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
834 	r->bge_len = len;
835 	r->bge_idx = i;
836 	r->bge_flags = BGE_RXBDFLAG_END;
837 }
838 
839 /*
840  * Initialize a jumbo receive ring descriptor. This allocates
841  * a jumbo buffer from the pool managed internally by the driver.
842  */
843 static int
844 bnx_newbuf_jumbo(struct bnx_softc *sc, int i, int init)
845 {
846 	struct mbuf *m_new = NULL;
847 	struct bnx_jslot *buf;
848 	bus_addr_t paddr;
849 
850 	/* Allocate the mbuf. */
851 	MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
852 	if (m_new == NULL)
853 		return ENOBUFS;
854 
855 	/* Allocate the jumbo buffer */
856 	buf = bnx_jalloc(sc);
857 	if (buf == NULL) {
858 		m_freem(m_new);
859 		return ENOBUFS;
860 	}
861 
862 	/* Attach the buffer to the mbuf. */
863 	m_new->m_ext.ext_arg = buf;
864 	m_new->m_ext.ext_buf = buf->bnx_buf;
865 	m_new->m_ext.ext_free = bnx_jfree;
866 	m_new->m_ext.ext_ref = bnx_jref;
867 	m_new->m_ext.ext_size = BNX_JUMBO_FRAMELEN;
868 
869 	m_new->m_flags |= M_EXT;
870 
871 	m_new->m_data = m_new->m_ext.ext_buf;
872 	m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
873 
874 	paddr = buf->bnx_paddr;
875 	m_adj(m_new, ETHER_ALIGN);
876 	paddr += ETHER_ALIGN;
877 
878 	/* Save necessary information */
879 	sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_rx_mbuf = m_new;
880 	sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_rx_paddr = paddr;
881 
882 	/* Set up the descriptor. */
883 	bnx_setup_rxdesc_jumbo(sc, i);
884 	return 0;
885 }
886 
887 static void
888 bnx_setup_rxdesc_jumbo(struct bnx_softc *sc, int i)
889 {
890 	struct bge_rx_bd *r;
891 	struct bnx_rx_buf *rc;
892 
893 	r = &sc->bnx_ldata.bnx_rx_jumbo_ring[i];
894 	rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
895 
896 	r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bnx_rx_paddr);
897 	r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bnx_rx_paddr);
898 	r->bge_len = rc->bnx_rx_mbuf->m_len;
899 	r->bge_idx = i;
900 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
901 }
902 
903 static int
904 bnx_init_rx_ring_std(struct bnx_rx_std_ring *std)
905 {
906 	int i, error;
907 
908 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
909 		/* Use the first RX return ring's tmp RX mbuf DMA map */
910 		error = bnx_newbuf_std(&std->bnx_sc->bnx_rx_ret_ring[0], i, 1);
911 		if (error)
912 			return error;
913 		bnx_setup_rxdesc_std(std, i);
914 	}
915 
916 	std->bnx_rx_std_used = 0;
917 	std->bnx_rx_std_refill = 0;
918 	std->bnx_rx_std_running = 0;
919 	cpu_sfence();
920 	lwkt_serialize_handler_enable(&std->bnx_rx_std_serialize);
921 
922 	std->bnx_rx_std = BGE_STD_RX_RING_CNT - 1;
923 	bnx_writembx(std->bnx_sc, BGE_MBX_RX_STD_PROD_LO, std->bnx_rx_std);
924 
925 	return(0);
926 }
927 
928 static void
929 bnx_free_rx_ring_std(struct bnx_rx_std_ring *std)
930 {
931 	int i;
932 
933 	lwkt_serialize_handler_disable(&std->bnx_rx_std_serialize);
934 
935 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
936 		struct bnx_rx_buf *rb = &std->bnx_rx_std_buf[i];
937 
938 		rb->bnx_rx_refilled = 0;
939 		if (rb->bnx_rx_mbuf != NULL) {
940 			bus_dmamap_unload(std->bnx_rx_mtag, rb->bnx_rx_dmamap);
941 			m_freem(rb->bnx_rx_mbuf);
942 			rb->bnx_rx_mbuf = NULL;
943 		}
944 		bzero(&std->bnx_rx_std_ring[i], sizeof(struct bge_rx_bd));
945 	}
946 }
947 
948 static int
949 bnx_init_rx_ring_jumbo(struct bnx_softc *sc)
950 {
951 	struct bge_rcb *rcb;
952 	int i, error;
953 
954 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
955 		error = bnx_newbuf_jumbo(sc, i, 1);
956 		if (error)
957 			return error;
958 	}
959 
960 	sc->bnx_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
961 
962 	rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
963 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
964 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
965 
966 	bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bnx_jumbo);
967 
968 	return(0);
969 }
970 
971 static void
972 bnx_free_rx_ring_jumbo(struct bnx_softc *sc)
973 {
974 	int i;
975 
976 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
977 		struct bnx_rx_buf *rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
978 
979 		if (rc->bnx_rx_mbuf != NULL) {
980 			m_freem(rc->bnx_rx_mbuf);
981 			rc->bnx_rx_mbuf = NULL;
982 		}
983 		bzero(&sc->bnx_ldata.bnx_rx_jumbo_ring[i],
984 		    sizeof(struct bge_rx_bd));
985 	}
986 }
987 
988 static void
989 bnx_free_tx_ring(struct bnx_tx_ring *txr)
990 {
991 	int i;
992 
993 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
994 		struct bnx_tx_buf *buf = &txr->bnx_tx_buf[i];
995 
996 		if (buf->bnx_tx_mbuf != NULL) {
997 			bus_dmamap_unload(txr->bnx_tx_mtag,
998 			    buf->bnx_tx_dmamap);
999 			m_freem(buf->bnx_tx_mbuf);
1000 			buf->bnx_tx_mbuf = NULL;
1001 		}
1002 		bzero(&txr->bnx_tx_ring[i], sizeof(struct bge_tx_bd));
1003 	}
1004 	txr->bnx_tx_saved_considx = BNX_TXCONS_UNSET;
1005 }
1006 
1007 static int
1008 bnx_init_tx_ring(struct bnx_tx_ring *txr)
1009 {
1010 	txr->bnx_tx_cnt = 0;
1011 	txr->bnx_tx_saved_considx = 0;
1012 	txr->bnx_tx_prodidx = 0;
1013 
1014 	/* Initialize transmit producer index for host-memory send ring. */
1015 	bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, txr->bnx_tx_prodidx);
1016 
1017 	return(0);
1018 }
1019 
1020 static void
1021 bnx_setmulti(struct bnx_softc *sc)
1022 {
1023 	struct ifnet *ifp;
1024 	struct ifmultiaddr *ifma;
1025 	uint32_t hashes[4] = { 0, 0, 0, 0 };
1026 	int h, i;
1027 
1028 	ifp = &sc->arpcom.ac_if;
1029 
1030 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1031 		for (i = 0; i < 4; i++)
1032 			CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1033 		return;
1034 	}
1035 
1036 	/* First, zot all the existing filters. */
1037 	for (i = 0; i < 4; i++)
1038 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1039 
1040 	/* Now program new ones. */
1041 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1042 		if (ifma->ifma_addr->sa_family != AF_LINK)
1043 			continue;
1044 		h = ether_crc32_le(
1045 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1046 		    ETHER_ADDR_LEN) & 0x7f;
1047 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1048 	}
1049 
1050 	for (i = 0; i < 4; i++)
1051 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1052 }
1053 
1054 /*
1055  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1056  * self-test results.
1057  */
1058 static int
1059 bnx_chipinit(struct bnx_softc *sc)
1060 {
1061 	uint32_t dma_rw_ctl, mode_ctl;
1062 	int i;
1063 
1064 	/* Set endian type before we access any non-PCI registers. */
1065 	pci_write_config(sc->bnx_dev, BGE_PCI_MISC_CTL,
1066 	    BGE_INIT | BGE_PCIMISCCTL_TAGGED_STATUS, 4);
1067 
1068 	/* Clear the MAC control register */
1069 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1070 
1071 	/*
1072 	 * Clear the MAC statistics block in the NIC's
1073 	 * internal memory.
1074 	 */
1075 	for (i = BGE_STATS_BLOCK;
1076 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1077 		BNX_MEMWIN_WRITE(sc, i, 0);
1078 
1079 	for (i = BGE_STATUS_BLOCK;
1080 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1081 		BNX_MEMWIN_WRITE(sc, i, 0);
1082 
1083 	if (BNX_IS_57765_FAMILY(sc)) {
1084 		uint32_t val;
1085 
1086 		if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0) {
1087 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1088 			val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1089 
1090 			/* Access the lower 1K of PL PCI-E block registers. */
1091 			CSR_WRITE_4(sc, BGE_MODE_CTL,
1092 			    val | BGE_MODECTL_PCIE_PL_SEL);
1093 
1094 			val = CSR_READ_4(sc, BGE_PCIE_PL_LO_PHYCTL5);
1095 			val |= BGE_PCIE_PL_LO_PHYCTL5_DIS_L2CLKREQ;
1096 			CSR_WRITE_4(sc, BGE_PCIE_PL_LO_PHYCTL5, val);
1097 
1098 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1099 		}
1100 		if (sc->bnx_chiprev != BGE_CHIPREV_57765_AX) {
1101 			/* Fix transmit hangs */
1102 			val = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
1103 			val |= BGE_CPMU_PADRNG_CTL_RDIV2;
1104 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, val);
1105 
1106 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1107 			val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1108 
1109 			/* Access the lower 1K of DL PCI-E block registers. */
1110 			CSR_WRITE_4(sc, BGE_MODE_CTL,
1111 			    val | BGE_MODECTL_PCIE_DL_SEL);
1112 
1113 			val = CSR_READ_4(sc, BGE_PCIE_DL_LO_FTSMAX);
1114 			val &= ~BGE_PCIE_DL_LO_FTSMAX_MASK;
1115 			val |= BGE_PCIE_DL_LO_FTSMAX_VAL;
1116 			CSR_WRITE_4(sc, BGE_PCIE_DL_LO_FTSMAX, val);
1117 
1118 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1119 		}
1120 
1121 		val = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
1122 		val &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
1123 		val |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
1124 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, val);
1125 	}
1126 
1127 	/*
1128 	 * Set up the PCI DMA control register.
1129 	 */
1130 	dma_rw_ctl = pci_read_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, 4);
1131 	/*
1132 	 * Disable 32bytes cache alignment for DMA write to host memory
1133 	 *
1134 	 * NOTE:
1135 	 * 64bytes cache alignment for DMA write to host memory is still
1136 	 * enabled.
1137 	 */
1138 	dma_rw_ctl |= BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1139 	if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
1140 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1141 	/*
1142 	 * Enable HW workaround for controllers that misinterpret
1143 	 * a status tag update and leave interrupts permanently
1144 	 * disabled.
1145 	 */
1146 	if (sc->bnx_asicrev != BGE_ASICREV_BCM5717 &&
1147 	    sc->bnx_asicrev != BGE_ASICREV_BCM5762 &&
1148 	    !BNX_IS_57765_FAMILY(sc))
1149 		dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1150 	if (bootverbose) {
1151 		if_printf(&sc->arpcom.ac_if, "DMA read/write %#x\n",
1152 		    dma_rw_ctl);
1153 	}
1154 	pci_write_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1155 
1156 	/*
1157 	 * Set up general mode register.
1158 	 */
1159 	mode_ctl = bnx_dma_swap_options(sc) | BGE_MODECTL_MAC_ATTN_INTR |
1160 	    BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1161 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1162 
1163 	/*
1164 	 * Disable memory write invalidate.  Apparently it is not supported
1165 	 * properly by these devices.  Also ensure that INTx isn't disabled,
1166 	 * as these chips need it even when using MSI.
1167 	 */
1168 	PCI_CLRBIT(sc->bnx_dev, BGE_PCI_CMD,
1169 	    (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1170 
1171 	/* Set the timer prescaler (always 66Mhz) */
1172 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1173 
1174 	return(0);
1175 }
1176 
1177 static int
1178 bnx_blockinit(struct bnx_softc *sc)
1179 {
1180 	struct bnx_intr_data *intr;
1181 	struct bge_rcb *rcb;
1182 	bus_size_t vrcb;
1183 	bge_hostaddr taddr;
1184 	uint32_t val;
1185 	int i, limit;
1186 
1187 	/*
1188 	 * Initialize the memory window pointer register so that
1189 	 * we can access the first 32K of internal NIC RAM. This will
1190 	 * allow us to set up the TX send ring RCBs and the RX return
1191 	 * ring RCBs, plus other things which live in NIC memory.
1192 	 */
1193 	CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1194 
1195 	/* Configure mbuf pool watermarks */
1196 	if (BNX_IS_57765_PLUS(sc)) {
1197 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1198 		if (sc->arpcom.ac_if.if_mtu > ETHERMTU) {
1199 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1200 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1201 		} else {
1202 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1203 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1204 		}
1205 	} else {
1206 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1207 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1208 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1209 	}
1210 
1211 	/* Configure DMA resource watermarks */
1212 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1213 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1214 
1215 	/* Enable buffer manager */
1216 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1217 	/*
1218 	 * Change the arbitration algorithm of TXMBUF read request to
1219 	 * round-robin instead of priority based for BCM5719.  When
1220 	 * TXFIFO is almost empty, RDMA will hold its request until
1221 	 * TXFIFO is not almost empty.
1222 	 */
1223 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5719)
1224 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1225 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1226 	    sc->bnx_chipid == BGE_CHIPID_BCM5719_A0 ||
1227 	    sc->bnx_chipid == BGE_CHIPID_BCM5720_A0)
1228 		val |= BGE_BMANMODE_LOMBUF_ATTN;
1229 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1230 
1231 	/* Poll for buffer manager start indication */
1232 	for (i = 0; i < BNX_TIMEOUT; i++) {
1233 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1234 			break;
1235 		DELAY(10);
1236 	}
1237 
1238 	if (i == BNX_TIMEOUT) {
1239 		if_printf(&sc->arpcom.ac_if,
1240 			  "buffer manager failed to start\n");
1241 		return(ENXIO);
1242 	}
1243 
1244 	/* Enable flow-through queues */
1245 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1246 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1247 
1248 	/* Wait until queue initialization is complete */
1249 	for (i = 0; i < BNX_TIMEOUT; i++) {
1250 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1251 			break;
1252 		DELAY(10);
1253 	}
1254 
1255 	if (i == BNX_TIMEOUT) {
1256 		if_printf(&sc->arpcom.ac_if,
1257 			  "flow-through queue init failed\n");
1258 		return(ENXIO);
1259 	}
1260 
1261 	/*
1262 	 * Summary of rings supported by the controller:
1263 	 *
1264 	 * Standard Receive Producer Ring
1265 	 * - This ring is used to feed receive buffers for "standard"
1266 	 *   sized frames (typically 1536 bytes) to the controller.
1267 	 *
1268 	 * Jumbo Receive Producer Ring
1269 	 * - This ring is used to feed receive buffers for jumbo sized
1270 	 *   frames (i.e. anything bigger than the "standard" frames)
1271 	 *   to the controller.
1272 	 *
1273 	 * Mini Receive Producer Ring
1274 	 * - This ring is used to feed receive buffers for "mini"
1275 	 *   sized frames to the controller.
1276 	 * - This feature required external memory for the controller
1277 	 *   but was never used in a production system.  Should always
1278 	 *   be disabled.
1279 	 *
1280 	 * Receive Return Ring
1281 	 * - After the controller has placed an incoming frame into a
1282 	 *   receive buffer that buffer is moved into a receive return
1283 	 *   ring.  The driver is then responsible to passing the
1284 	 *   buffer up to the stack.  BCM5718/BCM57785 families support
1285 	 *   multiple receive return rings.
1286 	 *
1287 	 * Send Ring
1288 	 * - This ring is used for outgoing frames.  BCM5719/BCM5720
1289 	 *   support multiple send rings.
1290 	 */
1291 
1292 	/* Initialize the standard receive producer ring control block. */
1293 	rcb = &sc->bnx_ldata.bnx_info.bnx_std_rx_rcb;
1294 	rcb->bge_hostaddr.bge_addr_lo =
1295 	    BGE_ADDR_LO(sc->bnx_rx_std_ring.bnx_rx_std_ring_paddr);
1296 	rcb->bge_hostaddr.bge_addr_hi =
1297 	    BGE_ADDR_HI(sc->bnx_rx_std_ring.bnx_rx_std_ring_paddr);
1298 	if (BNX_IS_57765_PLUS(sc)) {
1299 		/*
1300 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1301 		 * Bits 15-2 : Maximum RX frame size
1302 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1303 		 * Bit 0     : Reserved
1304 		 */
1305 		rcb->bge_maxlen_flags =
1306 		    BGE_RCB_MAXLEN_FLAGS(512, BNX_MAX_FRAMELEN << 2);
1307 	} else {
1308 		/*
1309 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1310 		 * Bits 15-2 : Reserved (should be 0)
1311 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1312 		 * Bit 0     : Reserved
1313 		 */
1314 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1315 	}
1316 	if (BNX_IS_5717_PLUS(sc))
1317 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1318 	else
1319 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1320 	/* Write the standard receive producer ring control block. */
1321 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1322 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1323 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1324 	if (!BNX_IS_5717_PLUS(sc))
1325 		CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1326 	/* Reset the standard receive producer ring producer index. */
1327 	bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1328 
1329 	/*
1330 	 * Initialize the jumbo RX producer ring control
1331 	 * block.  We set the 'ring disabled' bit in the
1332 	 * flags field until we're actually ready to start
1333 	 * using this ring (i.e. once we set the MTU
1334 	 * high enough to require it).
1335 	 */
1336 	if (BNX_IS_JUMBO_CAPABLE(sc)) {
1337 		rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
1338 		/* Get the jumbo receive producer ring RCB parameters. */
1339 		rcb->bge_hostaddr.bge_addr_lo =
1340 		    BGE_ADDR_LO(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1341 		rcb->bge_hostaddr.bge_addr_hi =
1342 		    BGE_ADDR_HI(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1343 		rcb->bge_maxlen_flags =
1344 		    BGE_RCB_MAXLEN_FLAGS(BNX_MAX_FRAMELEN,
1345 		    BGE_RCB_FLAG_RING_DISABLED);
1346 		if (BNX_IS_5717_PLUS(sc))
1347 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1348 		else
1349 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1350 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1351 		    rcb->bge_hostaddr.bge_addr_hi);
1352 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1353 		    rcb->bge_hostaddr.bge_addr_lo);
1354 		/* Program the jumbo receive producer ring RCB parameters. */
1355 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1356 		    rcb->bge_maxlen_flags);
1357 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1358 		/* Reset the jumbo receive producer ring producer index. */
1359 		bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1360 	}
1361 
1362 	/*
1363 	 * The BD ring replenish thresholds control how often the
1364 	 * hardware fetches new BD's from the producer rings in host
1365 	 * memory.  Setting the value too low on a busy system can
1366 	 * starve the hardware and recue the throughpout.
1367 	 *
1368 	 * Set the BD ring replentish thresholds. The recommended
1369 	 * values are 1/8th the number of descriptors allocated to
1370 	 * each ring.
1371 	 */
1372 	val = 8;
1373 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1374 	if (BNX_IS_JUMBO_CAPABLE(sc)) {
1375 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1376 		    BGE_JUMBO_RX_RING_CNT/8);
1377 	}
1378 	if (BNX_IS_57765_PLUS(sc)) {
1379 		CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1380 		CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1381 	}
1382 
1383 	/*
1384 	 * Disable all send rings by setting the 'ring disabled' bit
1385 	 * in the flags field of all the TX send ring control blocks,
1386 	 * located in NIC memory.
1387 	 */
1388 	if (BNX_IS_5717_PLUS(sc))
1389 		limit = 4;
1390 	else if (BNX_IS_57765_FAMILY(sc) ||
1391 	    sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1392 		limit = 2;
1393 	else
1394 		limit = 1;
1395 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1396 	for (i = 0; i < limit; i++) {
1397 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1398 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1399 		vrcb += sizeof(struct bge_rcb);
1400 	}
1401 
1402 	/*
1403 	 * Configure send ring RCBs
1404 	 */
1405 	vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1406 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
1407 		struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
1408 
1409 		BGE_HOSTADDR(taddr, txr->bnx_tx_ring_paddr);
1410 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi,
1411 		    taddr.bge_addr_hi);
1412 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo,
1413 		    taddr.bge_addr_lo);
1414 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1415 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1416 		vrcb += sizeof(struct bge_rcb);
1417 	}
1418 
1419 	/*
1420 	 * Disable all receive return rings by setting the
1421 	 * 'ring disabled' bit in the flags field of all the receive
1422 	 * return ring control blocks, located in NIC memory.
1423 	 */
1424 	if (BNX_IS_5717_PLUS(sc)) {
1425 		/* Should be 17, use 16 until we get an SRAM map. */
1426 		limit = 16;
1427 	} else if (BNX_IS_57765_FAMILY(sc) ||
1428 	    sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1429 		limit = 4;
1430 	} else {
1431 		limit = 1;
1432 	}
1433 	/* Disable all receive return rings. */
1434 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1435 	for (i = 0; i < limit; i++) {
1436 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1437 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1438 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1439 		    BGE_RCB_FLAG_RING_DISABLED);
1440 		bnx_writembx(sc, BGE_MBX_RX_CONS0_LO +
1441 		    (i * (sizeof(uint64_t))), 0);
1442 		vrcb += sizeof(struct bge_rcb);
1443 	}
1444 
1445 	/*
1446 	 * Set up receive return rings.
1447 	 */
1448 	vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1449 	for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
1450 		struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
1451 
1452 		BGE_HOSTADDR(taddr, ret->bnx_rx_ret_ring_paddr);
1453 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi,
1454 		    taddr.bge_addr_hi);
1455 		RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo,
1456 		    taddr.bge_addr_lo);
1457 		RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1458 		    BGE_RCB_MAXLEN_FLAGS(BNX_RETURN_RING_CNT, 0));
1459 		vrcb += sizeof(struct bge_rcb);
1460 	}
1461 
1462 	/* Set random backoff seed for TX */
1463 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1464 	    sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1465 	    sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1466 	    sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1467 	    BGE_TX_BACKOFF_SEED_MASK);
1468 
1469 	/* Set inter-packet gap */
1470 	val = 0x2620;
1471 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1472 	    sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1473 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1474 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1475 	}
1476 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1477 
1478 	/*
1479 	 * Specify which ring to use for packets that don't match
1480 	 * any RX rules.
1481 	 */
1482 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1483 
1484 	/*
1485 	 * Configure number of RX lists. One interrupt distribution
1486 	 * list, sixteen active lists, one bad frames class.
1487 	 */
1488 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1489 
1490 	/* Inialize RX list placement stats mask. */
1491 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1492 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1493 
1494 	/* Disable host coalescing until we get it set up */
1495 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1496 
1497 	/* Poll to make sure it's shut down. */
1498 	for (i = 0; i < BNX_TIMEOUT; i++) {
1499 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1500 			break;
1501 		DELAY(10);
1502 	}
1503 
1504 	if (i == BNX_TIMEOUT) {
1505 		if_printf(&sc->arpcom.ac_if,
1506 			  "host coalescing engine failed to idle\n");
1507 		return(ENXIO);
1508 	}
1509 
1510 	/* Set up host coalescing defaults */
1511 	sc->bnx_coal_chg = BNX_RX_COAL_TICKS_CHG |
1512 	    BNX_TX_COAL_TICKS_CHG |
1513 	    BNX_RX_COAL_BDS_CHG |
1514 	    BNX_TX_COAL_BDS_CHG |
1515 	    BNX_RX_COAL_BDS_INT_CHG |
1516 	    BNX_TX_COAL_BDS_INT_CHG;
1517 	bnx_coal_change(sc);
1518 
1519 	/*
1520 	 * Set up addresses of status blocks
1521 	 */
1522 	intr = &sc->bnx_intr_data[0];
1523 	bzero(intr->bnx_status_block, BGE_STATUS_BLK_SZ);
1524 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1525 	    BGE_ADDR_HI(intr->bnx_status_block_paddr));
1526 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1527 	    BGE_ADDR_LO(intr->bnx_status_block_paddr));
1528 	for (i = 1; i < sc->bnx_intr_cnt; ++i) {
1529 		intr = &sc->bnx_intr_data[i];
1530 		bzero(intr->bnx_status_block, BGE_STATUS_BLK_SZ);
1531 		CSR_WRITE_4(sc, BGE_VEC1_STATUSBLK_ADDR_HI + ((i - 1) * 8),
1532 		    BGE_ADDR_HI(intr->bnx_status_block_paddr));
1533 		CSR_WRITE_4(sc, BGE_VEC1_STATUSBLK_ADDR_LO + ((i - 1) * 8),
1534 		    BGE_ADDR_LO(intr->bnx_status_block_paddr));
1535 	}
1536 
1537 	/* Set up status block partail update size. */
1538 	val = BGE_STATBLKSZ_32BYTE;
1539 #if 0
1540 	/*
1541 	 * Does not seem to have visible effect in both
1542 	 * bulk data (1472B UDP datagram) and tiny data
1543 	 * (18B UDP datagram) TX tests.
1544 	 */
1545 	val |= BGE_HCCMODE_CLRTICK_TX;
1546 #endif
1547 	/* Turn on host coalescing state machine */
1548 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1549 
1550 	/* Turn on RX BD completion state machine and enable attentions */
1551 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1552 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1553 
1554 	/* Turn on RX list placement state machine */
1555 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1556 
1557 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1558 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1559 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1560 	    BGE_MACMODE_FRMHDR_DMA_ENB;
1561 
1562 	if (sc->bnx_flags & BNX_FLAG_TBI)
1563 		val |= BGE_PORTMODE_TBI;
1564 	else if (sc->bnx_flags & BNX_FLAG_MII_SERDES)
1565 		val |= BGE_PORTMODE_GMII;
1566 	else
1567 		val |= BGE_PORTMODE_MII;
1568 
1569 	/* Turn on DMA, clear stats */
1570 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1571 
1572 	/* Set misc. local control, enable interrupts on attentions */
1573 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1574 
1575 #ifdef notdef
1576 	/* Assert GPIO pins for PHY reset */
1577 	BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1578 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1579 	BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1580 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1581 #endif
1582 
1583 	if (sc->bnx_intr_type == PCI_INTR_TYPE_MSIX)
1584 		bnx_enable_msi(sc, TRUE);
1585 
1586 	/* Turn on write DMA state machine */
1587 	val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1588 	/* Enable host coalescing bug fix. */
1589 	val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1590 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5785) {
1591 		/* Request larger DMA burst size to get better performance. */
1592 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
1593 	}
1594 	CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1595 	DELAY(40);
1596 
1597 	if (BNX_IS_57765_PLUS(sc)) {
1598 		uint32_t dmactl, dmactl_reg;
1599 
1600 		if (sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1601 			dmactl_reg = BGE_RDMA_RSRVCTRL2;
1602 		else
1603 			dmactl_reg = BGE_RDMA_RSRVCTRL;
1604 
1605 		dmactl = CSR_READ_4(sc, dmactl_reg);
1606 		/*
1607 		 * Adjust tx margin to prevent TX data corruption and
1608 		 * fix internal FIFO overflow.
1609 		 */
1610 		if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1611 		    sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1612 		    sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1613 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
1614 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
1615 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
1616 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
1617 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
1618 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
1619 		}
1620 		/*
1621 		 * Enable fix for read DMA FIFO overruns.
1622 		 * The fix is to limit the number of RX BDs
1623 		 * the hardware would fetch at a fime.
1624 		 */
1625 		CSR_WRITE_4(sc, dmactl_reg,
1626 		    dmactl | BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1627 	}
1628 
1629 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5719) {
1630 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
1631 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
1632 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
1633 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1634 	} else if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1635 	    sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1636 		uint32_t ctrl_reg;
1637 
1638 		if (sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1639 			ctrl_reg = BGE_RDMA_LSO_CRPTEN_CTRL2;
1640 		else
1641 			ctrl_reg = BGE_RDMA_LSO_CRPTEN_CTRL;
1642 
1643 		/*
1644 		 * Allow 4KB burst length reads for non-LSO frames.
1645 		 * Enable 512B burst length reads for buffer descriptors.
1646 		 */
1647 		CSR_WRITE_4(sc, ctrl_reg,
1648 		    CSR_READ_4(sc, ctrl_reg) |
1649 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
1650 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1651 	}
1652 
1653 	/* Turn on read DMA state machine */
1654 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1655 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5717)
1656 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
1657         if (sc->bnx_asicrev == BGE_ASICREV_BCM5784 ||
1658             sc->bnx_asicrev == BGE_ASICREV_BCM5785 ||
1659             sc->bnx_asicrev == BGE_ASICREV_BCM57780) {
1660 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1661 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1662 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1663 	}
1664 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1665 	    sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1666 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
1667 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
1668 		/*
1669 		 * Allow multiple outstanding read requests from
1670 		 * non-LSO read DMA engine.
1671 		 */
1672 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
1673 	}
1674 	if (sc->bnx_asicrev == BGE_ASICREV_BCM57766)
1675 		val |= BGE_RDMAMODE_JMB_2K_MMRR;
1676 	if (sc->bnx_flags & BNX_FLAG_TSO)
1677 		val |= BGE_RDMAMODE_TSO4_ENABLE;
1678 	val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1679 	CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1680 	DELAY(40);
1681 
1682 	/* Turn on RX data completion state machine */
1683 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1684 
1685 	/* Turn on RX BD initiator state machine */
1686 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1687 
1688 	/* Turn on RX data and RX BD initiator state machine */
1689 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1690 
1691 	/* Turn on send BD completion state machine */
1692 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1693 
1694 	/* Turn on send data completion state machine */
1695 	val = BGE_SDCMODE_ENABLE;
1696 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5761)
1697 		val |= BGE_SDCMODE_CDELAY;
1698 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1699 
1700 	/* Turn on send data initiator state machine */
1701 	if (sc->bnx_flags & BNX_FLAG_TSO) {
1702 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1703 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
1704 	} else {
1705 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1706 	}
1707 
1708 	/* Turn on send BD initiator state machine */
1709 	val = BGE_SBDIMODE_ENABLE;
1710 	if (sc->bnx_tx_ringcnt > 1)
1711 		val |= BGE_SBDIMODE_MULTI_TXR;
1712 	CSR_WRITE_4(sc, BGE_SBDI_MODE, val);
1713 
1714 	/* Turn on send BD selector state machine */
1715 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1716 
1717 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1718 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1719 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1720 
1721 	/* ack/clear link change events */
1722 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1723 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1724 	    BGE_MACSTAT_LINK_CHANGED);
1725 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1726 
1727 	/*
1728 	 * Enable attention when the link has changed state for
1729 	 * devices that use auto polling.
1730 	 */
1731 	if (sc->bnx_flags & BNX_FLAG_TBI) {
1732 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1733  	} else {
1734 		if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
1735 			CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
1736 			DELAY(80);
1737 		}
1738 	}
1739 
1740 	/*
1741 	 * Clear any pending link state attention.
1742 	 * Otherwise some link state change events may be lost until attention
1743 	 * is cleared by bnx_intr() -> bnx_softc.bnx_link_upd() sequence.
1744 	 * It's not necessary on newer BCM chips - perhaps enabling link
1745 	 * state change attentions implies clearing pending attention.
1746 	 */
1747 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1748 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1749 	    BGE_MACSTAT_LINK_CHANGED);
1750 
1751 	/* Enable link state change attentions. */
1752 	BNX_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1753 
1754 	return(0);
1755 }
1756 
1757 /*
1758  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1759  * against our list and return its name if we find a match. Note
1760  * that since the Broadcom controller contains VPD support, we
1761  * can get the device name string from the controller itself instead
1762  * of the compiled-in string. This is a little slow, but it guarantees
1763  * we'll always announce the right product name.
1764  */
1765 static int
1766 bnx_probe(device_t dev)
1767 {
1768 	const struct bnx_type *t;
1769 	uint16_t product, vendor;
1770 
1771 	if (!pci_is_pcie(dev))
1772 		return ENXIO;
1773 
1774 	product = pci_get_device(dev);
1775 	vendor = pci_get_vendor(dev);
1776 
1777 	for (t = bnx_devs; t->bnx_name != NULL; t++) {
1778 		if (vendor == t->bnx_vid && product == t->bnx_did)
1779 			break;
1780 	}
1781 	if (t->bnx_name == NULL)
1782 		return ENXIO;
1783 
1784 	device_set_desc(dev, t->bnx_name);
1785 	return 0;
1786 }
1787 
1788 static int
1789 bnx_attach(device_t dev)
1790 {
1791 	struct ifnet *ifp;
1792 	struct bnx_softc *sc;
1793 	struct bnx_rx_std_ring *std;
1794 	uint32_t hwcfg = 0;
1795 	int error = 0, rid, capmask, i, std_cpuid, std_cpuid_def;
1796 	uint8_t ether_addr[ETHER_ADDR_LEN];
1797 	uint16_t product;
1798 	uintptr_t mii_priv = 0;
1799 #if defined(BNX_TSO_DEBUG) || defined(BNX_RSS_DEBUG) || defined(BNX_TSS_DEBUG)
1800 	char desc[32];
1801 #endif
1802 #ifdef IFPOLL_ENABLE
1803 	int offset, offset_def;
1804 #endif
1805 
1806 	sc = device_get_softc(dev);
1807 	sc->bnx_dev = dev;
1808 	callout_init_mp(&sc->bnx_tick_timer);
1809 	lwkt_serialize_init(&sc->bnx_jslot_serializer);
1810 	lwkt_serialize_init(&sc->bnx_main_serialize);
1811 
1812 	/* Always setup interrupt mailboxes */
1813 	for (i = 0; i < BNX_INTR_MAX; ++i) {
1814 		callout_init_mp(&sc->bnx_intr_data[i].bnx_intr_timer);
1815 		sc->bnx_intr_data[i].bnx_sc = sc;
1816 		sc->bnx_intr_data[i].bnx_intr_mbx = BGE_MBX_IRQ0_LO + (i * 8);
1817 		sc->bnx_intr_data[i].bnx_intr_rid = -1;
1818 		sc->bnx_intr_data[i].bnx_intr_cpuid = -1;
1819 	}
1820 
1821 	product = pci_get_device(dev);
1822 
1823 #ifndef BURN_BRIDGES
1824 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1825 		uint32_t irq, mem;
1826 
1827 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1828 		mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1829 
1830 		device_printf(dev, "chip is in D%d power mode "
1831 		    "-- setting to D0\n", pci_get_powerstate(dev));
1832 
1833 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1834 
1835 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1836 		pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1837 	}
1838 #endif	/* !BURN_BRIDGE */
1839 
1840 	/*
1841 	 * Map control/status registers.
1842 	 */
1843 	pci_enable_busmaster(dev);
1844 
1845 	rid = BGE_PCI_BAR0;
1846 	sc->bnx_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1847 	    RF_ACTIVE);
1848 
1849 	if (sc->bnx_res == NULL) {
1850 		device_printf(dev, "couldn't map memory\n");
1851 		return ENXIO;
1852 	}
1853 
1854 	sc->bnx_btag = rman_get_bustag(sc->bnx_res);
1855 	sc->bnx_bhandle = rman_get_bushandle(sc->bnx_res);
1856 
1857 	/* Save various chip information */
1858 	sc->bnx_chipid =
1859 	    pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1860 	    BGE_PCIMISCCTL_ASICREV_SHIFT;
1861 	if (BGE_ASICREV(sc->bnx_chipid) == BGE_ASICREV_USE_PRODID_REG) {
1862 		/* All chips having dedicated ASICREV register have CPMU */
1863 		sc->bnx_flags |= BNX_FLAG_CPMU;
1864 
1865 		switch (product) {
1866 		case PCI_PRODUCT_BROADCOM_BCM5717:
1867 		case PCI_PRODUCT_BROADCOM_BCM5717C:
1868 		case PCI_PRODUCT_BROADCOM_BCM5718:
1869 		case PCI_PRODUCT_BROADCOM_BCM5719:
1870 		case PCI_PRODUCT_BROADCOM_BCM5720_ALT:
1871 		case PCI_PRODUCT_BROADCOM_BCM5725:
1872 		case PCI_PRODUCT_BROADCOM_BCM5727:
1873 		case PCI_PRODUCT_BROADCOM_BCM5762:
1874 			sc->bnx_chipid = pci_read_config(dev,
1875 			    BGE_PCI_GEN2_PRODID_ASICREV, 4);
1876 			break;
1877 
1878 		case PCI_PRODUCT_BROADCOM_BCM57761:
1879 		case PCI_PRODUCT_BROADCOM_BCM57762:
1880 		case PCI_PRODUCT_BROADCOM_BCM57765:
1881 		case PCI_PRODUCT_BROADCOM_BCM57766:
1882 		case PCI_PRODUCT_BROADCOM_BCM57781:
1883 		case PCI_PRODUCT_BROADCOM_BCM57782:
1884 		case PCI_PRODUCT_BROADCOM_BCM57785:
1885 		case PCI_PRODUCT_BROADCOM_BCM57786:
1886 		case PCI_PRODUCT_BROADCOM_BCM57791:
1887 		case PCI_PRODUCT_BROADCOM_BCM57795:
1888 			sc->bnx_chipid = pci_read_config(dev,
1889 			    BGE_PCI_GEN15_PRODID_ASICREV, 4);
1890 			break;
1891 
1892 		default:
1893 			sc->bnx_chipid = pci_read_config(dev,
1894 			    BGE_PCI_PRODID_ASICREV, 4);
1895 			break;
1896 		}
1897 	}
1898 	if (sc->bnx_chipid == BGE_CHIPID_BCM5717_C0)
1899 		sc->bnx_chipid = BGE_CHIPID_BCM5720_A0;
1900 
1901 	sc->bnx_asicrev = BGE_ASICREV(sc->bnx_chipid);
1902 	sc->bnx_chiprev = BGE_CHIPREV(sc->bnx_chipid);
1903 
1904 	switch (sc->bnx_asicrev) {
1905 	case BGE_ASICREV_BCM5717:
1906 	case BGE_ASICREV_BCM5719:
1907 	case BGE_ASICREV_BCM5720:
1908 		sc->bnx_flags |= BNX_FLAG_5717_PLUS | BNX_FLAG_57765_PLUS;
1909 		break;
1910 
1911 	case BGE_ASICREV_BCM5762:
1912 		sc->bnx_flags |= BNX_FLAG_57765_PLUS;
1913 		break;
1914 
1915 	case BGE_ASICREV_BCM57765:
1916 	case BGE_ASICREV_BCM57766:
1917 		sc->bnx_flags |= BNX_FLAG_57765_FAMILY | BNX_FLAG_57765_PLUS;
1918 		break;
1919 	}
1920 
1921 	sc->bnx_flags |= BNX_FLAG_TSO;
1922 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 &&
1923 	    sc->bnx_chipid == BGE_CHIPID_BCM5719_A0)
1924 		sc->bnx_flags &= ~BNX_FLAG_TSO;
1925 
1926 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1927 	    BNX_IS_57765_FAMILY(sc)) {
1928 		/*
1929 		 * All BCM57785 and BCM5718 families chips have a bug that
1930 		 * under certain situation interrupt will not be enabled
1931 		 * even if status tag is written to interrupt mailbox.
1932 		 *
1933 		 * While BCM5719 and BCM5720 have a hardware workaround
1934 		 * which could fix the above bug.
1935 		 * See the comment near BGE_PCIDMARWCTL_TAGGED_STATUS_WA in
1936 		 * bnx_chipinit().
1937 		 *
1938 		 * For the rest of the chips in these two families, we will
1939 		 * have to poll the status block at high rate (10ms currently)
1940 		 * to check whether the interrupt is hosed or not.
1941 		 * See bnx_check_intr_*() for details.
1942 		 */
1943 		sc->bnx_flags |= BNX_FLAG_STATUSTAG_BUG;
1944 	}
1945 
1946 	sc->bnx_pciecap = pci_get_pciecap_ptr(sc->bnx_dev);
1947 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1948 	    sc->bnx_asicrev == BGE_ASICREV_BCM5720)
1949 		pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_2048);
1950 	else
1951 		pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
1952 	device_printf(dev, "CHIP ID 0x%08x; "
1953 		      "ASIC REV 0x%02x; CHIP REV 0x%02x\n",
1954 		      sc->bnx_chipid, sc->bnx_asicrev, sc->bnx_chiprev);
1955 
1956 	/*
1957 	 * Set various PHY quirk flags.
1958 	 */
1959 
1960 	capmask = MII_CAPMASK_DEFAULT;
1961 	if (product == PCI_PRODUCT_BROADCOM_BCM57791 ||
1962 	    product == PCI_PRODUCT_BROADCOM_BCM57795) {
1963 		/* 10/100 only */
1964 		capmask &= ~BMSR_EXTSTAT;
1965 	}
1966 
1967 	mii_priv |= BRGPHY_FLAG_WIRESPEED;
1968 	if (sc->bnx_chipid == BGE_CHIPID_BCM5762_A0)
1969 		mii_priv |= BRGPHY_FLAG_5762_A0;
1970 
1971 	/* Initialize if_name earlier, so if_printf could be used */
1972 	ifp = &sc->arpcom.ac_if;
1973 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1974 
1975 	/* Try to reset the chip. */
1976 	bnx_reset(sc);
1977 
1978 	if (bnx_chipinit(sc)) {
1979 		device_printf(dev, "chip initialization failed\n");
1980 		error = ENXIO;
1981 		goto fail;
1982 	}
1983 
1984 	/*
1985 	 * Get station address
1986 	 */
1987 	error = bnx_get_eaddr(sc, ether_addr);
1988 	if (error) {
1989 		device_printf(dev, "failed to read station address\n");
1990 		goto fail;
1991 	}
1992 
1993 	/* Setup RX/TX and interrupt count */
1994 	bnx_setup_ring_cnt(sc);
1995 
1996 	if ((sc->bnx_rx_retcnt == 1 && sc->bnx_tx_ringcnt == 1) ||
1997 	    (sc->bnx_rx_retcnt > 1 && sc->bnx_tx_ringcnt > 1)) {
1998 	    	/*
1999 		 * The RX ring and the corresponding TX ring processing
2000 		 * should be on the same CPU, since they share the same
2001 		 * status block.
2002 		 */
2003 		sc->bnx_flags |= BNX_FLAG_RXTX_BUNDLE;
2004 		if (bootverbose)
2005 			device_printf(dev, "RX/TX bundle\n");
2006 		if (sc->bnx_tx_ringcnt > 1) {
2007 			/*
2008 			 * Multiple TX rings do not share status block
2009 			 * with link status, so link status will have
2010 			 * to save its own status_tag.
2011 			 */
2012 			sc->bnx_flags |= BNX_FLAG_STATUS_HASTAG;
2013 			if (bootverbose)
2014 				device_printf(dev, "status needs tag\n");
2015 		}
2016 	} else {
2017 		KKASSERT(sc->bnx_rx_retcnt > 1 && sc->bnx_tx_ringcnt == 1);
2018 		if (bootverbose)
2019 			device_printf(dev, "RX/TX not bundled\n");
2020 	}
2021 
2022 	error = bnx_dma_alloc(dev);
2023 	if (error)
2024 		goto fail;
2025 
2026 #ifdef IFPOLL_ENABLE
2027 	if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
2028 		/*
2029 		 * NPOLLING RX/TX CPU offset
2030 		 */
2031 		if (sc->bnx_rx_retcnt == ncpus2) {
2032 			offset = 0;
2033 		} else {
2034 			offset_def =
2035 			(sc->bnx_rx_retcnt * device_get_unit(dev)) % ncpus2;
2036 			offset = device_getenv_int(dev, "npoll.offset",
2037 			    offset_def);
2038 			if (offset >= ncpus2 ||
2039 			    offset % sc->bnx_rx_retcnt != 0) {
2040 				device_printf(dev, "invalid npoll.offset %d, "
2041 				    "use %d\n", offset, offset_def);
2042 				offset = offset_def;
2043 			}
2044 		}
2045 		sc->bnx_npoll_rxoff = offset;
2046 		sc->bnx_npoll_txoff = offset;
2047 	} else {
2048 		/*
2049 		 * NPOLLING RX CPU offset
2050 		 */
2051 		if (sc->bnx_rx_retcnt == ncpus2) {
2052 			offset = 0;
2053 		} else {
2054 			offset_def =
2055 			(sc->bnx_rx_retcnt * device_get_unit(dev)) % ncpus2;
2056 			offset = device_getenv_int(dev, "npoll.rxoff",
2057 			    offset_def);
2058 			if (offset >= ncpus2 ||
2059 			    offset % sc->bnx_rx_retcnt != 0) {
2060 				device_printf(dev, "invalid npoll.rxoff %d, "
2061 				    "use %d\n", offset, offset_def);
2062 				offset = offset_def;
2063 			}
2064 		}
2065 		sc->bnx_npoll_rxoff = offset;
2066 
2067 		/*
2068 		 * NPOLLING TX CPU offset
2069 		 */
2070 		offset_def = device_get_unit(dev) % ncpus2;
2071 		offset = device_getenv_int(dev, "npoll.txoff", offset_def);
2072 		if (offset >= ncpus2) {
2073 			device_printf(dev, "invalid npoll.txoff %d, use %d\n",
2074 			    offset, offset_def);
2075 			offset = offset_def;
2076 		}
2077 		sc->bnx_npoll_txoff = offset;
2078 	}
2079 #endif	/* IFPOLL_ENABLE */
2080 
2081 	/*
2082 	 * Allocate interrupt
2083 	 */
2084 	error = bnx_alloc_intr(sc);
2085 	if (error)
2086 		goto fail;
2087 
2088 	/* Setup serializers */
2089 	bnx_setup_serialize(sc);
2090 
2091 	/* Set default tuneable values. */
2092 	sc->bnx_rx_coal_ticks = BNX_RX_COAL_TICKS_DEF;
2093 	sc->bnx_tx_coal_ticks = BNX_TX_COAL_TICKS_DEF;
2094 	sc->bnx_rx_coal_bds = BNX_RX_COAL_BDS_DEF;
2095 	sc->bnx_rx_coal_bds_poll = sc->bnx_rx_ret_ring[0].bnx_rx_cntmax;
2096 	sc->bnx_tx_coal_bds = BNX_TX_COAL_BDS_DEF;
2097 	sc->bnx_tx_coal_bds_poll = BNX_TX_COAL_BDS_POLL_DEF;
2098 	sc->bnx_rx_coal_bds_int = BNX_RX_COAL_BDS_INT_DEF;
2099 	sc->bnx_tx_coal_bds_int = BNX_TX_COAL_BDS_INT_DEF;
2100 
2101 	/* Set up ifnet structure */
2102 	ifp->if_softc = sc;
2103 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2104 	ifp->if_ioctl = bnx_ioctl;
2105 	ifp->if_start = bnx_start;
2106 #ifdef IFPOLL_ENABLE
2107 	ifp->if_npoll = bnx_npoll;
2108 #endif
2109 	ifp->if_init = bnx_init;
2110 	ifp->if_serialize = bnx_serialize;
2111 	ifp->if_deserialize = bnx_deserialize;
2112 	ifp->if_tryserialize = bnx_tryserialize;
2113 #ifdef INVARIANTS
2114 	ifp->if_serialize_assert = bnx_serialize_assert;
2115 #endif
2116 	ifp->if_mtu = ETHERMTU;
2117 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2118 
2119 	ifp->if_capabilities |= IFCAP_HWCSUM;
2120 	ifp->if_hwassist = BNX_CSUM_FEATURES;
2121 	if (sc->bnx_flags & BNX_FLAG_TSO) {
2122 		ifp->if_capabilities |= IFCAP_TSO;
2123 		ifp->if_hwassist |= CSUM_TSO;
2124 	}
2125 	if (BNX_RSS_ENABLED(sc))
2126 		ifp->if_capabilities |= IFCAP_RSS;
2127 	ifp->if_capenable = ifp->if_capabilities;
2128 
2129 	ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2130 	ifq_set_ready(&ifp->if_snd);
2131 	ifq_set_subq_cnt(&ifp->if_snd, sc->bnx_tx_ringcnt);
2132 
2133 	if (sc->bnx_tx_ringcnt > 1) {
2134 		ifp->if_mapsubq = ifq_mapsubq_mask;
2135 		ifq_set_subq_mask(&ifp->if_snd, sc->bnx_tx_ringcnt - 1);
2136 	}
2137 
2138 	/*
2139 	 * Figure out what sort of media we have by checking the
2140 	 * hardware config word in the first 32k of NIC internal memory,
2141 	 * or fall back to examining the EEPROM if necessary.
2142 	 * Note: on some BCM5700 cards, this value appears to be unset.
2143 	 * If that's the case, we have to rely on identifying the NIC
2144 	 * by its PCI subsystem ID, as we do below for the SysKonnect
2145 	 * SK-9D41.
2146 	 */
2147 	if (bnx_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2148 		hwcfg = bnx_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2149 	} else {
2150 		if (bnx_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2151 				    sizeof(hwcfg))) {
2152 			device_printf(dev, "failed to read EEPROM\n");
2153 			error = ENXIO;
2154 			goto fail;
2155 		}
2156 		hwcfg = ntohl(hwcfg);
2157 	}
2158 
2159 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2160 	if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2161 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2162 		sc->bnx_flags |= BNX_FLAG_TBI;
2163 
2164 	/* Setup MI MODE */
2165 	if (sc->bnx_flags & BNX_FLAG_CPMU)
2166 		sc->bnx_mi_mode = BGE_MIMODE_500KHZ_CONST;
2167 	else
2168 		sc->bnx_mi_mode = BGE_MIMODE_BASE;
2169 
2170 	/* Setup link status update stuffs */
2171 	if (sc->bnx_flags & BNX_FLAG_TBI) {
2172 		sc->bnx_link_upd = bnx_tbi_link_upd;
2173 		sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2174 	} else if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
2175 		sc->bnx_link_upd = bnx_autopoll_link_upd;
2176 		sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2177 	} else {
2178 		sc->bnx_link_upd = bnx_copper_link_upd;
2179 		sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2180 	}
2181 
2182 	/* Set default PHY address */
2183 	sc->bnx_phyno = 1;
2184 
2185 	/*
2186 	 * PHY address mapping for various devices.
2187 	 *
2188 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2189 	 * ---------+-------+-------+-------+-------+
2190 	 * BCM57XX  |   1   |   X   |   X   |   X   |
2191 	 * BCM5704  |   1   |   X   |   1   |   X   |
2192 	 * BCM5717  |   1   |   8   |   2   |   9   |
2193 	 * BCM5719  |   1   |   8   |   2   |   9   |
2194 	 * BCM5720  |   1   |   8   |   2   |   9   |
2195 	 *
2196 	 * Other addresses may respond but they are not
2197 	 * IEEE compliant PHYs and should be ignored.
2198 	 */
2199 	if (BNX_IS_5717_PLUS(sc)) {
2200 		int f;
2201 
2202 		f = pci_get_function(dev);
2203 		if (sc->bnx_chipid == BGE_CHIPID_BCM5717_A0) {
2204 			if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2205 			    BGE_SGDIGSTS_IS_SERDES)
2206 				sc->bnx_phyno = f + 8;
2207 			else
2208 				sc->bnx_phyno = f + 1;
2209 		} else {
2210 			if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2211 			    BGE_CPMU_PHY_STRAP_IS_SERDES)
2212 				sc->bnx_phyno = f + 8;
2213 			else
2214 				sc->bnx_phyno = f + 1;
2215 		}
2216 	}
2217 
2218 	if (sc->bnx_flags & BNX_FLAG_TBI) {
2219 		ifmedia_init(&sc->bnx_ifmedia, IFM_IMASK,
2220 		    bnx_ifmedia_upd, bnx_ifmedia_sts);
2221 		ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2222 		ifmedia_add(&sc->bnx_ifmedia,
2223 		    IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2224 		ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2225 		ifmedia_set(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO);
2226 		sc->bnx_ifmedia.ifm_media = sc->bnx_ifmedia.ifm_cur->ifm_media;
2227 	} else {
2228 		struct mii_probe_args mii_args;
2229 
2230 		mii_probe_args_init(&mii_args, bnx_ifmedia_upd, bnx_ifmedia_sts);
2231 		mii_args.mii_probemask = 1 << sc->bnx_phyno;
2232 		mii_args.mii_capmask = capmask;
2233 		mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2234 		mii_args.mii_priv = mii_priv;
2235 
2236 		error = mii_probe(dev, &sc->bnx_miibus, &mii_args);
2237 		if (error) {
2238 			device_printf(dev, "MII without any PHY!\n");
2239 			goto fail;
2240 		}
2241 	}
2242 
2243 	/*
2244 	 * Create sysctl nodes.
2245 	 */
2246 	sysctl_ctx_init(&sc->bnx_sysctl_ctx);
2247 	sc->bnx_sysctl_tree = SYSCTL_ADD_NODE(&sc->bnx_sysctl_ctx,
2248 					      SYSCTL_STATIC_CHILDREN(_hw),
2249 					      OID_AUTO,
2250 					      device_get_nameunit(dev),
2251 					      CTLFLAG_RD, 0, "");
2252 	if (sc->bnx_sysctl_tree == NULL) {
2253 		device_printf(dev, "can't add sysctl node\n");
2254 		error = ENXIO;
2255 		goto fail;
2256 	}
2257 
2258 	SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2259 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2260 	    "rx_rings", CTLFLAG_RD, &sc->bnx_rx_retcnt, 0, "# of RX rings");
2261 	SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2262 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2263 	    "tx_rings", CTLFLAG_RD, &sc->bnx_tx_ringcnt, 0, "# of TX rings");
2264 
2265 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2266 			SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2267 			OID_AUTO, "rx_coal_ticks",
2268 			CTLTYPE_INT | CTLFLAG_RW,
2269 			sc, 0, bnx_sysctl_rx_coal_ticks, "I",
2270 			"Receive coalescing ticks (usec).");
2271 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2272 			SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2273 			OID_AUTO, "tx_coal_ticks",
2274 			CTLTYPE_INT | CTLFLAG_RW,
2275 			sc, 0, bnx_sysctl_tx_coal_ticks, "I",
2276 			"Transmit coalescing ticks (usec).");
2277 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2278 			SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2279 			OID_AUTO, "rx_coal_bds",
2280 			CTLTYPE_INT | CTLFLAG_RW,
2281 			sc, 0, bnx_sysctl_rx_coal_bds, "I",
2282 			"Receive max coalesced BD count.");
2283 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2284 			SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2285 			OID_AUTO, "rx_coal_bds_poll",
2286 			CTLTYPE_INT | CTLFLAG_RW,
2287 			sc, 0, bnx_sysctl_rx_coal_bds_poll, "I",
2288 			"Receive max coalesced BD count in polling.");
2289 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2290 			SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2291 			OID_AUTO, "tx_coal_bds",
2292 			CTLTYPE_INT | CTLFLAG_RW,
2293 			sc, 0, bnx_sysctl_tx_coal_bds, "I",
2294 			"Transmit max coalesced BD count.");
2295 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2296 			SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2297 			OID_AUTO, "tx_coal_bds_poll",
2298 			CTLTYPE_INT | CTLFLAG_RW,
2299 			sc, 0, bnx_sysctl_tx_coal_bds_poll, "I",
2300 			"Transmit max coalesced BD count in polling.");
2301 	/*
2302 	 * A common design characteristic for many Broadcom
2303 	 * client controllers is that they only support a
2304 	 * single outstanding DMA read operation on the PCIe
2305 	 * bus. This means that it will take twice as long to
2306 	 * fetch a TX frame that is split into header and
2307 	 * payload buffers as it does to fetch a single,
2308 	 * contiguous TX frame (2 reads vs. 1 read). For these
2309 	 * controllers, coalescing buffers to reduce the number
2310 	 * of memory reads is effective way to get maximum
2311 	 * performance(about 940Mbps).  Without collapsing TX
2312 	 * buffers the maximum TCP bulk transfer performance
2313 	 * is about 850Mbps. However forcing coalescing mbufs
2314 	 * consumes a lot of CPU cycles, so leave it off by
2315 	 * default.
2316 	 */
2317 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2318 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2319 	    "force_defrag", CTLTYPE_INT | CTLFLAG_RW,
2320 	    sc, 0, bnx_sysctl_force_defrag, "I",
2321 	    "Force defragment on TX path");
2322 
2323 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2324 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2325 	    "tx_wreg", CTLTYPE_INT | CTLFLAG_RW,
2326 	    sc, 0, bnx_sysctl_tx_wreg, "I",
2327 	    "# of segments before writing to hardware register");
2328 
2329 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2330 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2331 	    "std_refill", CTLTYPE_INT | CTLFLAG_RW,
2332 	    sc, 0, bnx_sysctl_std_refill, "I",
2333 	    "# of packets received before scheduling standard refilling");
2334 
2335 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2336 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2337 	    "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2338 	    sc, 0, bnx_sysctl_rx_coal_bds_int, "I",
2339 	    "Receive max coalesced BD count during interrupt.");
2340 	SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2341 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2342 	    "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2343 	    sc, 0, bnx_sysctl_tx_coal_bds_int, "I",
2344 	    "Transmit max coalesced BD count during interrupt.");
2345 
2346 #ifdef IFPOLL_ENABLE
2347 	if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
2348 		SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2349 		    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2350 		    "npoll_offset", CTLTYPE_INT | CTLFLAG_RW,
2351 		    sc, 0, bnx_sysctl_npoll_offset, "I",
2352 		    "NPOLLING cpu offset");
2353 	} else {
2354 		SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2355 		    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2356 		    "npoll_rxoff", CTLTYPE_INT | CTLFLAG_RW,
2357 		    sc, 0, bnx_sysctl_npoll_rxoff, "I",
2358 		    "NPOLLING RX cpu offset");
2359 		SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2360 		    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2361 		    "npoll_txoff", CTLTYPE_INT | CTLFLAG_RW,
2362 		    sc, 0, bnx_sysctl_npoll_txoff, "I",
2363 		    "NPOLLING TX cpu offset");
2364 	}
2365 #endif
2366 
2367 #ifdef BNX_RSS_DEBUG
2368 	SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2369 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2370 	    "std_refill_mask", CTLFLAG_RD,
2371 	    &sc->bnx_rx_std_ring.bnx_rx_std_refill, 0, "");
2372 	SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2373 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2374 	    "std_used", CTLFLAG_RD,
2375 	    &sc->bnx_rx_std_ring.bnx_rx_std_used, 0, "");
2376 	SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2377 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2378 	    "rss_debug", CTLFLAG_RW, &sc->bnx_rss_debug, 0, "");
2379 	for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
2380 		ksnprintf(desc, sizeof(desc), "rx_pkt%d", i);
2381 		SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2382 		    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2383 		    desc, CTLFLAG_RW, &sc->bnx_rx_ret_ring[i].bnx_rx_pkt, "");
2384 
2385 		ksnprintf(desc, sizeof(desc), "rx_force_sched%d", i);
2386 		SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2387 		    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2388 		    desc, CTLFLAG_RW,
2389 		    &sc->bnx_rx_ret_ring[i].bnx_rx_force_sched, "");
2390 	}
2391 #endif
2392 #ifdef BNX_TSS_DEBUG
2393 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
2394 		ksnprintf(desc, sizeof(desc), "tx_pkt%d", i);
2395 		SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2396 		    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2397 		    desc, CTLFLAG_RW, &sc->bnx_tx_ring[i].bnx_tx_pkt, "");
2398 	}
2399 #endif
2400 
2401 	SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2402 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2403 	    "norxbds", CTLFLAG_RW, &sc->bnx_norxbds, "");
2404 
2405 	SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2406 	    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2407 	    "errors", CTLFLAG_RW, &sc->bnx_errors, "");
2408 
2409 #ifdef BNX_TSO_DEBUG
2410 	for (i = 0; i < BNX_TSO_NSTATS; ++i) {
2411 		ksnprintf(desc, sizeof(desc), "tso%d", i + 1);
2412 		SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2413 		    SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2414 		    desc, CTLFLAG_RW, &sc->bnx_tsosegs[i], "");
2415 	}
2416 #endif
2417 
2418 	/*
2419 	 * Call MI attach routine.
2420 	 */
2421 	ether_ifattach(ifp, ether_addr, NULL);
2422 
2423 	/* Setup TX rings and subqueues */
2424 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
2425 		struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2426 		struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
2427 
2428 		ifsq_set_cpuid(ifsq, txr->bnx_tx_cpuid);
2429 		ifsq_set_hw_serialize(ifsq, &txr->bnx_tx_serialize);
2430 		ifsq_set_priv(ifsq, txr);
2431 		txr->bnx_ifsq = ifsq;
2432 
2433 		ifsq_watchdog_init(&txr->bnx_tx_watchdog, ifsq, bnx_watchdog);
2434 
2435 		if (bootverbose) {
2436 			device_printf(dev, "txr %d -> cpu%d\n", i,
2437 			    txr->bnx_tx_cpuid);
2438 		}
2439 	}
2440 
2441 	error = bnx_setup_intr(sc);
2442 	if (error) {
2443 		ether_ifdetach(ifp);
2444 		goto fail;
2445 	}
2446 	bnx_set_tick_cpuid(sc, FALSE);
2447 
2448 	/*
2449 	 * Create RX standard ring refilling thread
2450 	 */
2451 	std_cpuid_def = device_get_unit(dev) % ncpus;
2452 	std_cpuid = device_getenv_int(dev, "std.cpuid", std_cpuid_def);
2453 	if (std_cpuid < 0 || std_cpuid >= ncpus) {
2454 		device_printf(dev, "invalid std.cpuid %d, use %d\n",
2455 		    std_cpuid, std_cpuid_def);
2456 		std_cpuid = std_cpuid_def;
2457 	}
2458 
2459 	std = &sc->bnx_rx_std_ring;
2460 	lwkt_create(bnx_rx_std_refill_ithread, std, NULL,
2461 	    &std->bnx_rx_std_ithread, TDF_NOSTART | TDF_INTTHREAD, std_cpuid,
2462 	    "%s std", device_get_nameunit(dev));
2463 	lwkt_setpri(&std->bnx_rx_std_ithread, TDPRI_INT_MED);
2464 	std->bnx_rx_std_ithread.td_preemptable = lwkt_preempt;
2465 	sc->bnx_flags |= BNX_FLAG_STD_THREAD;
2466 
2467 	return(0);
2468 fail:
2469 	bnx_detach(dev);
2470 	return(error);
2471 }
2472 
2473 static int
2474 bnx_detach(device_t dev)
2475 {
2476 	struct bnx_softc *sc = device_get_softc(dev);
2477 
2478 	if (device_is_attached(dev)) {
2479 		struct ifnet *ifp = &sc->arpcom.ac_if;
2480 
2481 		ifnet_serialize_all(ifp);
2482 		bnx_stop(sc);
2483 		bnx_reset(sc);
2484 		bnx_teardown_intr(sc, sc->bnx_intr_cnt);
2485 		ifnet_deserialize_all(ifp);
2486 
2487 		ether_ifdetach(ifp);
2488 	}
2489 
2490 	if (sc->bnx_flags & BNX_FLAG_STD_THREAD) {
2491 		struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
2492 
2493 		tsleep_interlock(std, 0);
2494 
2495 		if (std->bnx_rx_std_ithread.td_gd == mycpu) {
2496 			bnx_rx_std_refill_stop(std);
2497 		} else {
2498 			lwkt_send_ipiq(std->bnx_rx_std_ithread.td_gd,
2499 			    bnx_rx_std_refill_stop, std);
2500 		}
2501 
2502 		tsleep(std, PINTERLOCKED, "bnx_detach", 0);
2503 		if (bootverbose)
2504 			device_printf(dev, "RX std ithread exited\n");
2505 
2506 		lwkt_synchronize_ipiqs("bnx_detach_ipiq");
2507 	}
2508 
2509 	if (sc->bnx_flags & BNX_FLAG_TBI)
2510 		ifmedia_removeall(&sc->bnx_ifmedia);
2511 	if (sc->bnx_miibus)
2512 		device_delete_child(dev, sc->bnx_miibus);
2513 	bus_generic_detach(dev);
2514 
2515 	bnx_free_intr(sc);
2516 
2517 	if (sc->bnx_msix_mem_res != NULL) {
2518 		bus_release_resource(dev, SYS_RES_MEMORY, sc->bnx_msix_mem_rid,
2519 		    sc->bnx_msix_mem_res);
2520 	}
2521 	if (sc->bnx_res != NULL) {
2522 		bus_release_resource(dev, SYS_RES_MEMORY,
2523 		    BGE_PCI_BAR0, sc->bnx_res);
2524 	}
2525 
2526 	if (sc->bnx_sysctl_tree != NULL)
2527 		sysctl_ctx_free(&sc->bnx_sysctl_ctx);
2528 
2529 	bnx_dma_free(sc);
2530 
2531 	if (sc->bnx_serialize != NULL)
2532 		kfree(sc->bnx_serialize, M_DEVBUF);
2533 
2534 	return 0;
2535 }
2536 
2537 static void
2538 bnx_reset(struct bnx_softc *sc)
2539 {
2540 	device_t dev;
2541 	uint32_t cachesize, command, pcistate, reset;
2542 	void (*write_op)(struct bnx_softc *, uint32_t, uint32_t);
2543 	int i, val = 0;
2544 	uint16_t devctl;
2545 
2546 	dev = sc->bnx_dev;
2547 
2548 	write_op = bnx_writemem_direct;
2549 
2550 	/* Save some important PCI state. */
2551 	cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2552 	command = pci_read_config(dev, BGE_PCI_CMD, 4);
2553 	pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2554 
2555 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2556 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2557 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2558 	    BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2559 
2560 	/* Disable fastboot on controllers that support it. */
2561 	if (bootverbose)
2562 		if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2563 	CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2564 
2565 	/*
2566 	 * Write the magic number to SRAM at offset 0xB50.
2567 	 * When firmware finishes its initialization it will
2568 	 * write ~BGE_MAGIC_NUMBER to the same location.
2569 	 */
2570 	bnx_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2571 
2572 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2573 
2574 	/* XXX: Broadcom Linux driver. */
2575 	/* Force PCI-E 1.0a mode */
2576 	if (!BNX_IS_57765_PLUS(sc) &&
2577 	    CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2578 	    (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2579 	     BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2580 		CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2581 		    BGE_PCIE_PHY_TSTCTL_PSCRAM);
2582 	}
2583 	if (sc->bnx_chipid != BGE_CHIPID_BCM5750_A0) {
2584 		/* Prevent PCIE link training during global reset */
2585 		CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2586 		reset |= (1<<29);
2587 	}
2588 
2589 	/*
2590 	 * Set GPHY Power Down Override to leave GPHY
2591 	 * powered up in D0 uninitialized.
2592 	 */
2593 	if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0)
2594 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2595 
2596 	/* Issue global reset */
2597 	write_op(sc, BGE_MISC_CFG, reset);
2598 
2599 	DELAY(1000);
2600 
2601 	/* XXX: Broadcom Linux driver. */
2602 	if (sc->bnx_chipid == BGE_CHIPID_BCM5750_A0) {
2603 		uint32_t v;
2604 
2605 		DELAY(500000); /* wait for link training to complete */
2606 		v = pci_read_config(dev, 0xc4, 4);
2607 		pci_write_config(dev, 0xc4, v | (1<<15), 4);
2608 	}
2609 
2610 	devctl = pci_read_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL, 2);
2611 
2612 	/* Disable no snoop and disable relaxed ordering. */
2613 	devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2614 
2615 	/* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2616 	if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0) {
2617 		devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2618 		devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2619 	}
2620 
2621 	pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL,
2622 	    devctl, 2);
2623 
2624 	/* Clear error status. */
2625 	pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVSTS,
2626 	    PCIEM_DEVSTS_CORR_ERR |
2627 	    PCIEM_DEVSTS_NFATAL_ERR |
2628 	    PCIEM_DEVSTS_FATAL_ERR |
2629 	    PCIEM_DEVSTS_UNSUPP_REQ, 2);
2630 
2631 	/* Reset some of the PCI state that got zapped by reset */
2632 	pci_write_config(dev, BGE_PCI_MISC_CTL,
2633 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2634 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2635 	    BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2636 	pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2637 	pci_write_config(dev, BGE_PCI_CMD, command, 4);
2638 	write_op(sc, BGE_MISC_CFG, (65 << 1));
2639 
2640 	/* Enable memory arbiter */
2641 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2642 
2643 	/*
2644 	 * Poll until we see the 1's complement of the magic number.
2645 	 * This indicates that the firmware initialization is complete.
2646 	 */
2647 	for (i = 0; i < BNX_FIRMWARE_TIMEOUT; i++) {
2648 		val = bnx_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2649 		if (val == ~BGE_MAGIC_NUMBER)
2650 			break;
2651 		DELAY(10);
2652 	}
2653 	if (i == BNX_FIRMWARE_TIMEOUT) {
2654 		if_printf(&sc->arpcom.ac_if, "firmware handshake "
2655 			  "timed out, found 0x%08x\n", val);
2656 	}
2657 
2658 	/* BCM57765 A0 needs additional time before accessing. */
2659 	if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
2660 		DELAY(10 * 1000);
2661 
2662 	/*
2663 	 * XXX Wait for the value of the PCISTATE register to
2664 	 * return to its original pre-reset state. This is a
2665 	 * fairly good indicator of reset completion. If we don't
2666 	 * wait for the reset to fully complete, trying to read
2667 	 * from the device's non-PCI registers may yield garbage
2668 	 * results.
2669 	 */
2670 	for (i = 0; i < BNX_TIMEOUT; i++) {
2671 		if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2672 			break;
2673 		DELAY(10);
2674 	}
2675 
2676 	/* Fix up byte swapping */
2677 	CSR_WRITE_4(sc, BGE_MODE_CTL, bnx_dma_swap_options(sc));
2678 
2679 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2680 
2681 	/*
2682 	 * The 5704 in TBI mode apparently needs some special
2683 	 * adjustment to insure the SERDES drive level is set
2684 	 * to 1.2V.
2685 	 */
2686 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5704 &&
2687 	    (sc->bnx_flags & BNX_FLAG_TBI)) {
2688 		uint32_t serdescfg;
2689 
2690 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2691 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
2692 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2693 	}
2694 
2695 	CSR_WRITE_4(sc, BGE_MI_MODE,
2696 	    sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
2697 	DELAY(80);
2698 
2699 	/* XXX: Broadcom Linux driver. */
2700 	if (!BNX_IS_57765_PLUS(sc)) {
2701 		uint32_t v;
2702 
2703 		/* Enable Data FIFO protection. */
2704 		v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2705 		CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2706 	}
2707 
2708 	DELAY(10000);
2709 
2710 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
2711 		BNX_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
2712 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
2713 	}
2714 }
2715 
2716 /*
2717  * Frame reception handling. This is called if there's a frame
2718  * on the receive return list.
2719  *
2720  * Note: we have to be able to handle two possibilities here:
2721  * 1) the frame is from the jumbo recieve ring
2722  * 2) the frame is from the standard receive ring
2723  */
2724 
2725 static void
2726 bnx_rxeof(struct bnx_rx_ret_ring *ret, uint16_t rx_prod, int count)
2727 {
2728 	struct bnx_softc *sc = ret->bnx_sc;
2729 	struct bnx_rx_std_ring *std = ret->bnx_std;
2730 	struct ifnet *ifp = &sc->arpcom.ac_if;
2731 	int std_used = 0;
2732 
2733 	while (ret->bnx_rx_saved_considx != rx_prod && count != 0) {
2734 		struct pktinfo pi0, *pi = NULL;
2735 		struct bge_rx_bd *cur_rx;
2736 		struct bnx_rx_buf *rb;
2737 		uint32_t rxidx;
2738 		struct mbuf *m = NULL;
2739 		uint16_t vlan_tag = 0;
2740 		int have_tag = 0;
2741 
2742 		--count;
2743 
2744 		cur_rx = &ret->bnx_rx_ret_ring[ret->bnx_rx_saved_considx];
2745 
2746 		rxidx = cur_rx->bge_idx;
2747 		KKASSERT(rxidx < BGE_STD_RX_RING_CNT);
2748 
2749 		BNX_INC(ret->bnx_rx_saved_considx, BNX_RETURN_RING_CNT);
2750 #ifdef BNX_RSS_DEBUG
2751 		ret->bnx_rx_pkt++;
2752 #endif
2753 
2754 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2755 			have_tag = 1;
2756 			vlan_tag = cur_rx->bge_vlan_tag;
2757 		}
2758 
2759 		if (ret->bnx_rx_cnt >= ret->bnx_rx_cntmax) {
2760 			atomic_add_int(&std->bnx_rx_std_used, std_used);
2761 			std_used = 0;
2762 
2763 			bnx_rx_std_refill_sched(ret, std);
2764 		}
2765 		ret->bnx_rx_cnt++;
2766 		++std_used;
2767 
2768 		rb = &std->bnx_rx_std_buf[rxidx];
2769 		m = rb->bnx_rx_mbuf;
2770 		if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2771 			IFNET_STAT_INC(ifp, ierrors, 1);
2772 			cpu_sfence();
2773 			rb->bnx_rx_refilled = 1;
2774 			continue;
2775 		}
2776 		if (bnx_newbuf_std(ret, rxidx, 0)) {
2777 			IFNET_STAT_INC(ifp, ierrors, 1);
2778 			continue;
2779 		}
2780 
2781 		IFNET_STAT_INC(ifp, ipackets, 1);
2782 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2783 		m->m_pkthdr.rcvif = ifp;
2784 
2785 		if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2786 		    (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
2787 			if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2788 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2789 				if ((cur_rx->bge_error_flag &
2790 				    BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
2791 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2792 			}
2793 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2794 				m->m_pkthdr.csum_data =
2795 				    cur_rx->bge_tcp_udp_csum;
2796 				m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2797 				    CSUM_PSEUDO_HDR;
2798 			}
2799 		}
2800 		if (ifp->if_capenable & IFCAP_RSS) {
2801 			pi = bnx_rss_info(&pi0, cur_rx);
2802 			if (pi != NULL &&
2803 			    (cur_rx->bge_flags & BGE_RXBDFLAG_RSS_HASH)) {
2804 				m->m_flags |= M_HASH;
2805 				m->m_pkthdr.hash =
2806 				    toeplitz_hash(cur_rx->bge_hash);
2807 			}
2808 		}
2809 
2810 		/*
2811 		 * If we received a packet with a vlan tag, pass it
2812 		 * to vlan_input() instead of ether_input().
2813 		 */
2814 		if (have_tag) {
2815 			m->m_flags |= M_VLANTAG;
2816 			m->m_pkthdr.ether_vlantag = vlan_tag;
2817 		}
2818 		ether_input_pkt(ifp, m, pi);
2819 	}
2820 	bnx_writembx(sc, ret->bnx_rx_mbx, ret->bnx_rx_saved_considx);
2821 
2822 	if (std_used > 0) {
2823 		int cur_std_used;
2824 
2825 		cur_std_used = atomic_fetchadd_int(&std->bnx_rx_std_used,
2826 		    std_used);
2827 		if (cur_std_used + std_used >= (BGE_STD_RX_RING_CNT / 2)) {
2828 #ifdef BNX_RSS_DEBUG
2829 			ret->bnx_rx_force_sched++;
2830 #endif
2831 			bnx_rx_std_refill_sched(ret, std);
2832 		}
2833 	}
2834 }
2835 
2836 static void
2837 bnx_txeof(struct bnx_tx_ring *txr, uint16_t tx_cons)
2838 {
2839 	struct ifnet *ifp = &txr->bnx_sc->arpcom.ac_if;
2840 
2841 	/*
2842 	 * Go through our tx ring and free mbufs for those
2843 	 * frames that have been sent.
2844 	 */
2845 	while (txr->bnx_tx_saved_considx != tx_cons) {
2846 		struct bnx_tx_buf *buf;
2847 		uint32_t idx = 0;
2848 
2849 		idx = txr->bnx_tx_saved_considx;
2850 		buf = &txr->bnx_tx_buf[idx];
2851 		if (buf->bnx_tx_mbuf != NULL) {
2852 			IFNET_STAT_INC(ifp, opackets, 1);
2853 #ifdef BNX_TSS_DEBUG
2854 			txr->bnx_tx_pkt++;
2855 #endif
2856 			bus_dmamap_unload(txr->bnx_tx_mtag,
2857 			    buf->bnx_tx_dmamap);
2858 			m_freem(buf->bnx_tx_mbuf);
2859 			buf->bnx_tx_mbuf = NULL;
2860 		}
2861 		txr->bnx_tx_cnt--;
2862 		BNX_INC(txr->bnx_tx_saved_considx, BGE_TX_RING_CNT);
2863 	}
2864 
2865 	if ((BGE_TX_RING_CNT - txr->bnx_tx_cnt) >=
2866 	    (BNX_NSEG_RSVD + BNX_NSEG_SPARE))
2867 		ifsq_clr_oactive(txr->bnx_ifsq);
2868 
2869 	if (txr->bnx_tx_cnt == 0)
2870 		txr->bnx_tx_watchdog.wd_timer = 0;
2871 
2872 	if (!ifsq_is_empty(txr->bnx_ifsq))
2873 		ifsq_devstart(txr->bnx_ifsq);
2874 }
2875 
2876 static int
2877 bnx_handle_status(struct bnx_softc *sc)
2878 {
2879 	uint32_t status;
2880 	int handle = 0;
2881 
2882 	status = *sc->bnx_hw_status;
2883 
2884 	if (status & BGE_STATFLAG_ERROR) {
2885 		uint32_t val;
2886 		int reset = 0;
2887 
2888 		sc->bnx_errors++;
2889 
2890 		val = CSR_READ_4(sc, BGE_FLOW_ATTN);
2891 		if (val & ~BGE_FLOWATTN_MB_LOWAT) {
2892 			if_printf(&sc->arpcom.ac_if,
2893 			    "flow attn 0x%08x\n", val);
2894 			reset = 1;
2895 		}
2896 
2897 		val = CSR_READ_4(sc, BGE_MSI_STATUS);
2898 		if (val & ~BGE_MSISTAT_MSI_PCI_REQ) {
2899 			if_printf(&sc->arpcom.ac_if,
2900 			    "msi status 0x%08x\n", val);
2901 			reset = 1;
2902 		}
2903 
2904 		val = CSR_READ_4(sc, BGE_RDMA_STATUS);
2905 		if (val) {
2906 			if_printf(&sc->arpcom.ac_if,
2907 			    "rmda status 0x%08x\n", val);
2908 			reset = 1;
2909 		}
2910 
2911 		val = CSR_READ_4(sc, BGE_WDMA_STATUS);
2912 		if (val) {
2913 			if_printf(&sc->arpcom.ac_if,
2914 			    "wdma status 0x%08x\n", val);
2915 			reset = 1;
2916 		}
2917 
2918 		if (reset) {
2919 			bnx_serialize_skipmain(sc);
2920 			bnx_init(sc);
2921 			bnx_deserialize_skipmain(sc);
2922 		}
2923 		handle = 1;
2924 	}
2925 
2926 	if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bnx_link_evt) {
2927 		if (bootverbose) {
2928 			if_printf(&sc->arpcom.ac_if, "link change, "
2929 			    "link_evt %d\n", sc->bnx_link_evt);
2930 		}
2931 		bnx_link_poll(sc);
2932 		handle = 1;
2933 	}
2934 
2935 	return handle;
2936 }
2937 
2938 #ifdef IFPOLL_ENABLE
2939 
2940 static void
2941 bnx_npoll_rx(struct ifnet *ifp __unused, void *xret, int cycle)
2942 {
2943 	struct bnx_rx_ret_ring *ret = xret;
2944 	uint16_t rx_prod;
2945 
2946 	ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
2947 
2948 	ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
2949 	cpu_lfence();
2950 
2951 	rx_prod = *ret->bnx_rx_considx;
2952 	if (ret->bnx_rx_saved_considx != rx_prod)
2953 		bnx_rxeof(ret, rx_prod, cycle);
2954 }
2955 
2956 static void
2957 bnx_npoll_tx_notag(struct ifnet *ifp __unused, void *xtxr, int cycle __unused)
2958 {
2959 	struct bnx_tx_ring *txr = xtxr;
2960 	uint16_t tx_cons;
2961 
2962 	ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
2963 
2964 	tx_cons = *txr->bnx_tx_considx;
2965 	if (txr->bnx_tx_saved_considx != tx_cons)
2966 		bnx_txeof(txr, tx_cons);
2967 }
2968 
2969 static void
2970 bnx_npoll_tx(struct ifnet *ifp, void *xtxr, int cycle)
2971 {
2972 	struct bnx_tx_ring *txr = xtxr;
2973 
2974 	ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
2975 
2976 	txr->bnx_saved_status_tag = *txr->bnx_hw_status_tag;
2977 	cpu_lfence();
2978 	bnx_npoll_tx_notag(ifp, txr, cycle);
2979 }
2980 
2981 static void
2982 bnx_npoll_status_notag(struct ifnet *ifp)
2983 {
2984 	struct bnx_softc *sc = ifp->if_softc;
2985 
2986 	ASSERT_SERIALIZED(&sc->bnx_main_serialize);
2987 
2988 	if (bnx_handle_status(sc)) {
2989 		/*
2990 		 * Status changes are handled; force the chip to
2991 		 * update the status block to reflect whether there
2992 		 * are more status changes or not, else staled status
2993 		 * changes are always seen.
2994 		 */
2995 		BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
2996 	}
2997 }
2998 
2999 static void
3000 bnx_npoll_status(struct ifnet *ifp)
3001 {
3002 	struct bnx_softc *sc = ifp->if_softc;
3003 
3004 	ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3005 
3006 	sc->bnx_saved_status_tag = *sc->bnx_hw_status_tag;
3007 	cpu_lfence();
3008 	bnx_npoll_status_notag(ifp);
3009 }
3010 
3011 static void
3012 bnx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3013 {
3014 	struct bnx_softc *sc = ifp->if_softc;
3015 	int i;
3016 
3017 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3018 
3019 	if (info != NULL) {
3020 		if (sc->bnx_flags & BNX_FLAG_STATUS_HASTAG)
3021 			info->ifpi_status.status_func = bnx_npoll_status;
3022 		else
3023 			info->ifpi_status.status_func = bnx_npoll_status_notag;
3024 		info->ifpi_status.serializer = &sc->bnx_main_serialize;
3025 
3026 		for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3027 			struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3028 			int idx = i + sc->bnx_npoll_txoff;
3029 
3030 			KKASSERT(idx < ncpus2);
3031 			if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
3032 				info->ifpi_tx[idx].poll_func =
3033 				    bnx_npoll_tx_notag;
3034 			} else {
3035 				info->ifpi_tx[idx].poll_func = bnx_npoll_tx;
3036 			}
3037 			info->ifpi_tx[idx].arg = txr;
3038 			info->ifpi_tx[idx].serializer = &txr->bnx_tx_serialize;
3039 			ifsq_set_cpuid(txr->bnx_ifsq, idx);
3040 		}
3041 
3042 		for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
3043 			struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
3044 			int idx = i + sc->bnx_npoll_rxoff;
3045 
3046 			KKASSERT(idx < ncpus2);
3047 			info->ifpi_rx[idx].poll_func = bnx_npoll_rx;
3048 			info->ifpi_rx[idx].arg = ret;
3049 			info->ifpi_rx[idx].serializer =
3050 			    &ret->bnx_rx_ret_serialize;
3051 		}
3052 
3053 		if (ifp->if_flags & IFF_RUNNING) {
3054 			bnx_disable_intr(sc);
3055 			bnx_set_tick_cpuid(sc, TRUE);
3056 
3057 			sc->bnx_coal_chg = BNX_TX_COAL_BDS_CHG |
3058 			    BNX_RX_COAL_BDS_CHG;
3059 			bnx_coal_change(sc);
3060 		}
3061 	} else {
3062 		for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3063 			ifsq_set_cpuid(sc->bnx_tx_ring[i].bnx_ifsq,
3064 			    sc->bnx_tx_ring[i].bnx_tx_cpuid);
3065 		}
3066 		if (ifp->if_flags & IFF_RUNNING) {
3067 			sc->bnx_coal_chg = BNX_TX_COAL_BDS_CHG |
3068 			    BNX_RX_COAL_BDS_CHG;
3069 			bnx_coal_change(sc);
3070 
3071 			bnx_enable_intr(sc);
3072 			bnx_set_tick_cpuid(sc, FALSE);
3073 		}
3074 	}
3075 }
3076 
3077 #endif	/* IFPOLL_ENABLE */
3078 
3079 static void
3080 bnx_intr_legacy(void *xsc)
3081 {
3082 	struct bnx_softc *sc = xsc;
3083 	struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
3084 
3085 	if (ret->bnx_saved_status_tag == *ret->bnx_hw_status_tag) {
3086 		uint32_t val;
3087 
3088 		val = pci_read_config(sc->bnx_dev, BGE_PCI_PCISTATE, 4);
3089 		if (val & BGE_PCISTAT_INTR_NOTACT)
3090 			return;
3091 	}
3092 
3093 	/*
3094 	 * NOTE:
3095 	 * Interrupt will have to be disabled if tagged status
3096 	 * is used, else interrupt will always be asserted on
3097 	 * certain chips (at least on BCM5750 AX/BX).
3098 	 */
3099 	bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3100 
3101 	bnx_intr(sc);
3102 }
3103 
3104 static void
3105 bnx_msi(void *xsc)
3106 {
3107 	bnx_intr(xsc);
3108 }
3109 
3110 static void
3111 bnx_intr(struct bnx_softc *sc)
3112 {
3113 	struct ifnet *ifp = &sc->arpcom.ac_if;
3114 	struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
3115 
3116 	ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3117 
3118 	ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3119 	/*
3120 	 * Use a load fence to ensure that status_tag is saved
3121 	 * before rx_prod, tx_cons and status.
3122 	 */
3123 	cpu_lfence();
3124 
3125 	bnx_handle_status(sc);
3126 
3127 	if (ifp->if_flags & IFF_RUNNING) {
3128 		struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
3129 		uint16_t rx_prod, tx_cons;
3130 
3131 		lwkt_serialize_enter(&ret->bnx_rx_ret_serialize);
3132 		rx_prod = *ret->bnx_rx_considx;
3133 		if (ret->bnx_rx_saved_considx != rx_prod)
3134 			bnx_rxeof(ret, rx_prod, -1);
3135 		lwkt_serialize_exit(&ret->bnx_rx_ret_serialize);
3136 
3137 		lwkt_serialize_enter(&txr->bnx_tx_serialize);
3138 		tx_cons = *txr->bnx_tx_considx;
3139 		if (txr->bnx_tx_saved_considx != tx_cons)
3140 			bnx_txeof(txr, tx_cons);
3141 		lwkt_serialize_exit(&txr->bnx_tx_serialize);
3142 	}
3143 
3144 	bnx_writembx(sc, BGE_MBX_IRQ0_LO, ret->bnx_saved_status_tag << 24);
3145 }
3146 
3147 static void
3148 bnx_msix_tx_status(void *xtxr)
3149 {
3150 	struct bnx_tx_ring *txr = xtxr;
3151 	struct bnx_softc *sc = txr->bnx_sc;
3152 	struct ifnet *ifp = &sc->arpcom.ac_if;
3153 
3154 	ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3155 
3156 	txr->bnx_saved_status_tag = *txr->bnx_hw_status_tag;
3157 	/*
3158 	 * Use a load fence to ensure that status_tag is saved
3159 	 * before tx_cons and status.
3160 	 */
3161 	cpu_lfence();
3162 
3163 	bnx_handle_status(sc);
3164 
3165 	if (ifp->if_flags & IFF_RUNNING) {
3166 		uint16_t tx_cons;
3167 
3168 		lwkt_serialize_enter(&txr->bnx_tx_serialize);
3169 		tx_cons = *txr->bnx_tx_considx;
3170 		if (txr->bnx_tx_saved_considx != tx_cons)
3171 			bnx_txeof(txr, tx_cons);
3172 		lwkt_serialize_exit(&txr->bnx_tx_serialize);
3173 	}
3174 
3175 	bnx_writembx(sc, BGE_MBX_IRQ0_LO, txr->bnx_saved_status_tag << 24);
3176 }
3177 
3178 static void
3179 bnx_msix_rx(void *xret)
3180 {
3181 	struct bnx_rx_ret_ring *ret = xret;
3182 	uint16_t rx_prod;
3183 
3184 	ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3185 
3186 	ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3187 	/*
3188 	 * Use a load fence to ensure that status_tag is saved
3189 	 * before rx_prod.
3190 	 */
3191 	cpu_lfence();
3192 
3193 	rx_prod = *ret->bnx_rx_considx;
3194 	if (ret->bnx_rx_saved_considx != rx_prod)
3195 		bnx_rxeof(ret, rx_prod, -1);
3196 
3197 	bnx_writembx(ret->bnx_sc, ret->bnx_msix_mbx,
3198 	    ret->bnx_saved_status_tag << 24);
3199 }
3200 
3201 static void
3202 bnx_msix_rxtx(void *xret)
3203 {
3204 	struct bnx_rx_ret_ring *ret = xret;
3205 	struct bnx_tx_ring *txr = ret->bnx_txr;
3206 	uint16_t rx_prod, tx_cons;
3207 
3208 	ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3209 
3210 	ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3211 	/*
3212 	 * Use a load fence to ensure that status_tag is saved
3213 	 * before rx_prod and tx_cons.
3214 	 */
3215 	cpu_lfence();
3216 
3217 	rx_prod = *ret->bnx_rx_considx;
3218 	if (ret->bnx_rx_saved_considx != rx_prod)
3219 		bnx_rxeof(ret, rx_prod, -1);
3220 
3221 	lwkt_serialize_enter(&txr->bnx_tx_serialize);
3222 	tx_cons = *txr->bnx_tx_considx;
3223 	if (txr->bnx_tx_saved_considx != tx_cons)
3224 		bnx_txeof(txr, tx_cons);
3225 	lwkt_serialize_exit(&txr->bnx_tx_serialize);
3226 
3227 	bnx_writembx(ret->bnx_sc, ret->bnx_msix_mbx,
3228 	    ret->bnx_saved_status_tag << 24);
3229 }
3230 
3231 static void
3232 bnx_msix_status(void *xsc)
3233 {
3234 	struct bnx_softc *sc = xsc;
3235 
3236 	ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3237 
3238 	sc->bnx_saved_status_tag = *sc->bnx_hw_status_tag;
3239 	/*
3240 	 * Use a load fence to ensure that status_tag is saved
3241 	 * before status.
3242 	 */
3243 	cpu_lfence();
3244 
3245 	bnx_handle_status(sc);
3246 
3247 	bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_saved_status_tag << 24);
3248 }
3249 
3250 static void
3251 bnx_tick(void *xsc)
3252 {
3253 	struct bnx_softc *sc = xsc;
3254 
3255 	lwkt_serialize_enter(&sc->bnx_main_serialize);
3256 
3257 	bnx_stats_update_regs(sc);
3258 
3259 	if (sc->bnx_flags & BNX_FLAG_TBI) {
3260 		/*
3261 		 * Since in TBI mode auto-polling can't be used we should poll
3262 		 * link status manually. Here we register pending link event
3263 		 * and trigger interrupt.
3264 		 */
3265 		sc->bnx_link_evt++;
3266 		BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3267 	} else if (!sc->bnx_link) {
3268 		mii_tick(device_get_softc(sc->bnx_miibus));
3269 	}
3270 
3271 	callout_reset_bycpu(&sc->bnx_tick_timer, hz, bnx_tick, sc,
3272 	    sc->bnx_tick_cpuid);
3273 
3274 	lwkt_serialize_exit(&sc->bnx_main_serialize);
3275 }
3276 
3277 static void
3278 bnx_stats_update_regs(struct bnx_softc *sc)
3279 {
3280 	struct ifnet *ifp = &sc->arpcom.ac_if;
3281 	struct bge_mac_stats_regs stats;
3282 	uint32_t *s, val;
3283 	int i;
3284 
3285 	s = (uint32_t *)&stats;
3286 	for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3287 		*s = CSR_READ_4(sc, BGE_RX_STATS + i);
3288 		s++;
3289 	}
3290 
3291 	IFNET_STAT_SET(ifp, collisions,
3292 	   (stats.dot3StatsSingleCollisionFrames +
3293 	   stats.dot3StatsMultipleCollisionFrames +
3294 	   stats.dot3StatsExcessiveCollisions +
3295 	   stats.dot3StatsLateCollisions));
3296 
3297 	val = CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3298 	sc->bnx_norxbds += val;
3299 }
3300 
3301 /*
3302  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3303  * pointers to descriptors.
3304  */
3305 static int
3306 bnx_encap(struct bnx_tx_ring *txr, struct mbuf **m_head0, uint32_t *txidx,
3307     int *segs_used)
3308 {
3309 	struct bge_tx_bd *d = NULL;
3310 	uint16_t csum_flags = 0, vlan_tag = 0, mss = 0;
3311 	bus_dma_segment_t segs[BNX_NSEG_NEW];
3312 	bus_dmamap_t map;
3313 	int error, maxsegs, nsegs, idx, i;
3314 	struct mbuf *m_head = *m_head0, *m_new;
3315 
3316 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3317 #ifdef BNX_TSO_DEBUG
3318 		int tso_nsegs;
3319 #endif
3320 
3321 		error = bnx_setup_tso(txr, m_head0, &mss, &csum_flags);
3322 		if (error)
3323 			return error;
3324 		m_head = *m_head0;
3325 
3326 #ifdef BNX_TSO_DEBUG
3327 		tso_nsegs = (m_head->m_pkthdr.len /
3328 		    m_head->m_pkthdr.tso_segsz) - 1;
3329 		if (tso_nsegs > (BNX_TSO_NSTATS - 1))
3330 			tso_nsegs = BNX_TSO_NSTATS - 1;
3331 		else if (tso_nsegs < 0)
3332 			tso_nsegs = 0;
3333 		txr->bnx_sc->bnx_tsosegs[tso_nsegs]++;
3334 #endif
3335 	} else if (m_head->m_pkthdr.csum_flags & BNX_CSUM_FEATURES) {
3336 		if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3337 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3338 		if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3339 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3340 		if (m_head->m_flags & M_LASTFRAG)
3341 			csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3342 		else if (m_head->m_flags & M_FRAG)
3343 			csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3344 	}
3345 	if (m_head->m_flags & M_VLANTAG) {
3346 		csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3347 		vlan_tag = m_head->m_pkthdr.ether_vlantag;
3348 	}
3349 
3350 	idx = *txidx;
3351 	map = txr->bnx_tx_buf[idx].bnx_tx_dmamap;
3352 
3353 	maxsegs = (BGE_TX_RING_CNT - txr->bnx_tx_cnt) - BNX_NSEG_RSVD;
3354 	KASSERT(maxsegs >= BNX_NSEG_SPARE,
3355 		("not enough segments %d", maxsegs));
3356 
3357 	if (maxsegs > BNX_NSEG_NEW)
3358 		maxsegs = BNX_NSEG_NEW;
3359 
3360 	/*
3361 	 * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3362 	 * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3363 	 * but when such padded frames employ the bge IP/TCP checksum
3364 	 * offload, the hardware checksum assist gives incorrect results
3365 	 * (possibly from incorporating its own padding into the UDP/TCP
3366 	 * checksum; who knows).  If we pad such runts with zeros, the
3367 	 * onboard checksum comes out correct.
3368 	 */
3369 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3370 	    m_head->m_pkthdr.len < BNX_MIN_FRAMELEN) {
3371 		error = m_devpad(m_head, BNX_MIN_FRAMELEN);
3372 		if (error)
3373 			goto back;
3374 	}
3375 
3376 	if ((txr->bnx_tx_flags & BNX_TX_FLAG_SHORTDMA) &&
3377 	    m_head->m_next != NULL) {
3378 		m_new = bnx_defrag_shortdma(m_head);
3379 		if (m_new == NULL) {
3380 			error = ENOBUFS;
3381 			goto back;
3382 		}
3383 		*m_head0 = m_head = m_new;
3384 	}
3385 	if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3386 	    (txr->bnx_tx_flags & BNX_TX_FLAG_FORCE_DEFRAG) &&
3387 	    m_head->m_next != NULL) {
3388 		/*
3389 		 * Forcefully defragment mbuf chain to overcome hardware
3390 		 * limitation which only support a single outstanding
3391 		 * DMA read operation.  If it fails, keep moving on using
3392 		 * the original mbuf chain.
3393 		 */
3394 		m_new = m_defrag(m_head, MB_DONTWAIT);
3395 		if (m_new != NULL)
3396 			*m_head0 = m_head = m_new;
3397 	}
3398 
3399 	error = bus_dmamap_load_mbuf_defrag(txr->bnx_tx_mtag, map,
3400 	    m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3401 	if (error)
3402 		goto back;
3403 	*segs_used += nsegs;
3404 
3405 	m_head = *m_head0;
3406 	bus_dmamap_sync(txr->bnx_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3407 
3408 	for (i = 0; ; i++) {
3409 		d = &txr->bnx_tx_ring[idx];
3410 
3411 		d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3412 		d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3413 		d->bge_len = segs[i].ds_len;
3414 		d->bge_flags = csum_flags;
3415 		d->bge_vlan_tag = vlan_tag;
3416 		d->bge_mss = mss;
3417 
3418 		if (i == nsegs - 1)
3419 			break;
3420 		BNX_INC(idx, BGE_TX_RING_CNT);
3421 	}
3422 	/* Mark the last segment as end of packet... */
3423 	d->bge_flags |= BGE_TXBDFLAG_END;
3424 
3425 	/*
3426 	 * Insure that the map for this transmission is placed at
3427 	 * the array index of the last descriptor in this chain.
3428 	 */
3429 	txr->bnx_tx_buf[*txidx].bnx_tx_dmamap = txr->bnx_tx_buf[idx].bnx_tx_dmamap;
3430 	txr->bnx_tx_buf[idx].bnx_tx_dmamap = map;
3431 	txr->bnx_tx_buf[idx].bnx_tx_mbuf = m_head;
3432 	txr->bnx_tx_cnt += nsegs;
3433 
3434 	BNX_INC(idx, BGE_TX_RING_CNT);
3435 	*txidx = idx;
3436 back:
3437 	if (error) {
3438 		m_freem(*m_head0);
3439 		*m_head0 = NULL;
3440 	}
3441 	return error;
3442 }
3443 
3444 /*
3445  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3446  * to the mbuf data regions directly in the transmit descriptors.
3447  */
3448 static void
3449 bnx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3450 {
3451 	struct bnx_tx_ring *txr = ifsq_get_priv(ifsq);
3452 	struct mbuf *m_head = NULL;
3453 	uint32_t prodidx;
3454 	int nsegs = 0;
3455 
3456 	KKASSERT(txr->bnx_ifsq == ifsq);
3457 	ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
3458 
3459 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3460 		return;
3461 
3462 	prodidx = txr->bnx_tx_prodidx;
3463 
3464 	while (txr->bnx_tx_buf[prodidx].bnx_tx_mbuf == NULL) {
3465 		/*
3466 		 * Sanity check: avoid coming within BGE_NSEG_RSVD
3467 		 * descriptors of the end of the ring.  Also make
3468 		 * sure there are BGE_NSEG_SPARE descriptors for
3469 		 * jumbo buffers' or TSO segments' defragmentation.
3470 		 */
3471 		if ((BGE_TX_RING_CNT - txr->bnx_tx_cnt) <
3472 		    (BNX_NSEG_RSVD + BNX_NSEG_SPARE)) {
3473 			ifsq_set_oactive(ifsq);
3474 			break;
3475 		}
3476 
3477 		m_head = ifsq_dequeue(ifsq);
3478 		if (m_head == NULL)
3479 			break;
3480 
3481 		/*
3482 		 * Pack the data into the transmit ring. If we
3483 		 * don't have room, set the OACTIVE flag and wait
3484 		 * for the NIC to drain the ring.
3485 		 */
3486 		if (bnx_encap(txr, &m_head, &prodidx, &nsegs)) {
3487 			ifsq_set_oactive(ifsq);
3488 			IFNET_STAT_INC(ifp, oerrors, 1);
3489 			break;
3490 		}
3491 
3492 		if (nsegs >= txr->bnx_tx_wreg) {
3493 			/* Transmit */
3494 			bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, prodidx);
3495 			nsegs = 0;
3496 		}
3497 
3498 		ETHER_BPF_MTAP(ifp, m_head);
3499 
3500 		/*
3501 		 * Set a timeout in case the chip goes out to lunch.
3502 		 */
3503 		txr->bnx_tx_watchdog.wd_timer = 5;
3504 	}
3505 
3506 	if (nsegs > 0) {
3507 		/* Transmit */
3508 		bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, prodidx);
3509 	}
3510 	txr->bnx_tx_prodidx = prodidx;
3511 }
3512 
3513 static void
3514 bnx_init(void *xsc)
3515 {
3516 	struct bnx_softc *sc = xsc;
3517 	struct ifnet *ifp = &sc->arpcom.ac_if;
3518 	uint16_t *m;
3519 	uint32_t mode;
3520 	int i;
3521 	boolean_t polling;
3522 
3523 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3524 
3525 	/* Cancel pending I/O and flush buffers. */
3526 	bnx_stop(sc);
3527 	bnx_reset(sc);
3528 	bnx_chipinit(sc);
3529 
3530 	/*
3531 	 * Init the various state machines, ring
3532 	 * control blocks and firmware.
3533 	 */
3534 	if (bnx_blockinit(sc)) {
3535 		if_printf(ifp, "initialization failure\n");
3536 		bnx_stop(sc);
3537 		return;
3538 	}
3539 
3540 	/* Specify MTU. */
3541 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3542 	    ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3543 
3544 	/* Load our MAC address. */
3545 	m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3546 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3547 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3548 
3549 	/* Enable or disable promiscuous mode as needed. */
3550 	bnx_setpromisc(sc);
3551 
3552 	/* Program multicast filter. */
3553 	bnx_setmulti(sc);
3554 
3555 	/* Init RX ring. */
3556 	if (bnx_init_rx_ring_std(&sc->bnx_rx_std_ring)) {
3557 		if_printf(ifp, "RX ring initialization failed\n");
3558 		bnx_stop(sc);
3559 		return;
3560 	}
3561 
3562 	/* Init jumbo RX ring. */
3563 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3564 		if (bnx_init_rx_ring_jumbo(sc)) {
3565 			if_printf(ifp, "Jumbo RX ring initialization failed\n");
3566 			bnx_stop(sc);
3567 			return;
3568 		}
3569 	}
3570 
3571 	/* Init our RX return ring index */
3572 	for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
3573 		struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
3574 
3575 		ret->bnx_rx_saved_considx = 0;
3576 		ret->bnx_rx_cnt = 0;
3577 	}
3578 
3579 	/* Init TX ring. */
3580 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
3581 		bnx_init_tx_ring(&sc->bnx_tx_ring[i]);
3582 
3583 	/* Enable TX MAC state machine lockup fix. */
3584 	mode = CSR_READ_4(sc, BGE_TX_MODE);
3585 	mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3586 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
3587 	    sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
3588 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3589 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
3590 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3591 	}
3592 	/* Turn on transmitter */
3593 	CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3594 
3595 	/* Initialize RSS */
3596 	mode = BGE_RXMODE_ENABLE;
3597 	if (BNX_RSS_ENABLED(sc)) {
3598 		bnx_init_rss(sc);
3599 		mode |= BGE_RXMODE_RSS_ENABLE |
3600 		    BGE_RXMODE_RSS_HASH_MASK_BITS |
3601 		    BGE_RXMODE_RSS_IPV4_HASH |
3602 		    BGE_RXMODE_RSS_TCP_IPV4_HASH;
3603 	}
3604 	/* Turn on receiver */
3605 	BNX_SETBIT(sc, BGE_RX_MODE, mode);
3606 
3607 	/*
3608 	 * Set the number of good frames to receive after RX MBUF
3609 	 * Low Watermark has been reached.  After the RX MAC receives
3610 	 * this number of frames, it will drop subsequent incoming
3611 	 * frames until the MBUF High Watermark is reached.
3612 	 */
3613 	if (BNX_IS_57765_FAMILY(sc))
3614 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
3615 	else
3616 		CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3617 
3618 	if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI ||
3619 	    sc->bnx_intr_type == PCI_INTR_TYPE_MSIX) {
3620 		if (bootverbose) {
3621 			if_printf(ifp, "MSI_MODE: %#x\n",
3622 			    CSR_READ_4(sc, BGE_MSI_MODE));
3623 		}
3624 	}
3625 
3626 	/* Tell firmware we're alive. */
3627 	BNX_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3628 
3629 	/* Enable host interrupts if polling(4) is not enabled. */
3630 	PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3631 
3632 	polling = FALSE;
3633 #ifdef IFPOLL_ENABLE
3634 	if (ifp->if_flags & IFF_NPOLLING)
3635 		polling = TRUE;
3636 #endif
3637 	if (polling)
3638 		bnx_disable_intr(sc);
3639 	else
3640 		bnx_enable_intr(sc);
3641 	bnx_set_tick_cpuid(sc, polling);
3642 
3643 	bnx_ifmedia_upd(ifp);
3644 
3645 	ifp->if_flags |= IFF_RUNNING;
3646 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3647 		struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3648 
3649 		ifsq_clr_oactive(txr->bnx_ifsq);
3650 		ifsq_watchdog_start(&txr->bnx_tx_watchdog);
3651 	}
3652 
3653 	callout_reset_bycpu(&sc->bnx_tick_timer, hz, bnx_tick, sc,
3654 	    sc->bnx_tick_cpuid);
3655 }
3656 
3657 /*
3658  * Set media options.
3659  */
3660 static int
3661 bnx_ifmedia_upd(struct ifnet *ifp)
3662 {
3663 	struct bnx_softc *sc = ifp->if_softc;
3664 
3665 	/* If this is a 1000baseX NIC, enable the TBI port. */
3666 	if (sc->bnx_flags & BNX_FLAG_TBI) {
3667 		struct ifmedia *ifm = &sc->bnx_ifmedia;
3668 
3669 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3670 			return(EINVAL);
3671 
3672 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3673 		case IFM_AUTO:
3674 			break;
3675 
3676 		case IFM_1000_SX:
3677 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3678 				BNX_CLRBIT(sc, BGE_MAC_MODE,
3679 				    BGE_MACMODE_HALF_DUPLEX);
3680 			} else {
3681 				BNX_SETBIT(sc, BGE_MAC_MODE,
3682 				    BGE_MACMODE_HALF_DUPLEX);
3683 			}
3684 			break;
3685 		default:
3686 			return(EINVAL);
3687 		}
3688 	} else {
3689 		struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3690 
3691 		sc->bnx_link_evt++;
3692 		sc->bnx_link = 0;
3693 		if (mii->mii_instance) {
3694 			struct mii_softc *miisc;
3695 
3696 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3697 				mii_phy_reset(miisc);
3698 		}
3699 		mii_mediachg(mii);
3700 
3701 		/*
3702 		 * Force an interrupt so that we will call bnx_link_upd
3703 		 * if needed and clear any pending link state attention.
3704 		 * Without this we are not getting any further interrupts
3705 		 * for link state changes and thus will not UP the link and
3706 		 * not be able to send in bnx_start.  The only way to get
3707 		 * things working was to receive a packet and get an RX
3708 		 * intr.
3709 		 *
3710 		 * bnx_tick should help for fiber cards and we might not
3711 		 * need to do this here if BNX_FLAG_TBI is set but as
3712 		 * we poll for fiber anyway it should not harm.
3713 		 */
3714 		BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3715 	}
3716 	return(0);
3717 }
3718 
3719 /*
3720  * Report current media status.
3721  */
3722 static void
3723 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3724 {
3725 	struct bnx_softc *sc = ifp->if_softc;
3726 
3727 	if (sc->bnx_flags & BNX_FLAG_TBI) {
3728 		ifmr->ifm_status = IFM_AVALID;
3729 		ifmr->ifm_active = IFM_ETHER;
3730 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3731 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3732 			ifmr->ifm_status |= IFM_ACTIVE;
3733 		} else {
3734 			ifmr->ifm_active |= IFM_NONE;
3735 			return;
3736 		}
3737 
3738 		ifmr->ifm_active |= IFM_1000_SX;
3739 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3740 			ifmr->ifm_active |= IFM_HDX;
3741 		else
3742 			ifmr->ifm_active |= IFM_FDX;
3743 	} else {
3744 		struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3745 
3746 		mii_pollstat(mii);
3747 		ifmr->ifm_active = mii->mii_media_active;
3748 		ifmr->ifm_status = mii->mii_media_status;
3749 	}
3750 }
3751 
3752 static int
3753 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3754 {
3755 	struct bnx_softc *sc = ifp->if_softc;
3756 	struct ifreq *ifr = (struct ifreq *)data;
3757 	int mask, error = 0;
3758 
3759 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3760 
3761 	switch (command) {
3762 	case SIOCSIFMTU:
3763 		if ((!BNX_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3764 		    (BNX_IS_JUMBO_CAPABLE(sc) &&
3765 		     ifr->ifr_mtu > BNX_JUMBO_MTU)) {
3766 			error = EINVAL;
3767 		} else if (ifp->if_mtu != ifr->ifr_mtu) {
3768 			ifp->if_mtu = ifr->ifr_mtu;
3769 			if (ifp->if_flags & IFF_RUNNING)
3770 				bnx_init(sc);
3771 		}
3772 		break;
3773 	case SIOCSIFFLAGS:
3774 		if (ifp->if_flags & IFF_UP) {
3775 			if (ifp->if_flags & IFF_RUNNING) {
3776 				mask = ifp->if_flags ^ sc->bnx_if_flags;
3777 
3778 				/*
3779 				 * If only the state of the PROMISC flag
3780 				 * changed, then just use the 'set promisc
3781 				 * mode' command instead of reinitializing
3782 				 * the entire NIC. Doing a full re-init
3783 				 * means reloading the firmware and waiting
3784 				 * for it to start up, which may take a
3785 				 * second or two.  Similarly for ALLMULTI.
3786 				 */
3787 				if (mask & IFF_PROMISC)
3788 					bnx_setpromisc(sc);
3789 				if (mask & IFF_ALLMULTI)
3790 					bnx_setmulti(sc);
3791 			} else {
3792 				bnx_init(sc);
3793 			}
3794 		} else if (ifp->if_flags & IFF_RUNNING) {
3795 			bnx_stop(sc);
3796 		}
3797 		sc->bnx_if_flags = ifp->if_flags;
3798 		break;
3799 	case SIOCADDMULTI:
3800 	case SIOCDELMULTI:
3801 		if (ifp->if_flags & IFF_RUNNING)
3802 			bnx_setmulti(sc);
3803 		break;
3804 	case SIOCSIFMEDIA:
3805 	case SIOCGIFMEDIA:
3806 		if (sc->bnx_flags & BNX_FLAG_TBI) {
3807 			error = ifmedia_ioctl(ifp, ifr,
3808 			    &sc->bnx_ifmedia, command);
3809 		} else {
3810 			struct mii_data *mii;
3811 
3812 			mii = device_get_softc(sc->bnx_miibus);
3813 			error = ifmedia_ioctl(ifp, ifr,
3814 					      &mii->mii_media, command);
3815 		}
3816 		break;
3817         case SIOCSIFCAP:
3818 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3819 		if (mask & IFCAP_HWCSUM) {
3820 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3821 			if (ifp->if_capenable & IFCAP_TXCSUM)
3822 				ifp->if_hwassist |= BNX_CSUM_FEATURES;
3823 			else
3824 				ifp->if_hwassist &= ~BNX_CSUM_FEATURES;
3825 		}
3826 		if (mask & IFCAP_TSO) {
3827 			ifp->if_capenable ^= (mask & IFCAP_TSO);
3828 			if (ifp->if_capenable & IFCAP_TSO)
3829 				ifp->if_hwassist |= CSUM_TSO;
3830 			else
3831 				ifp->if_hwassist &= ~CSUM_TSO;
3832 		}
3833 		if (mask & IFCAP_RSS)
3834 			ifp->if_capenable ^= IFCAP_RSS;
3835 		break;
3836 	default:
3837 		error = ether_ioctl(ifp, command, data);
3838 		break;
3839 	}
3840 	return error;
3841 }
3842 
3843 static void
3844 bnx_watchdog(struct ifaltq_subque *ifsq)
3845 {
3846 	struct ifnet *ifp = ifsq_get_ifp(ifsq);
3847 	struct bnx_softc *sc = ifp->if_softc;
3848 	int i;
3849 
3850 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3851 
3852 	if_printf(ifp, "watchdog timeout -- resetting\n");
3853 
3854 	bnx_init(sc);
3855 
3856 	IFNET_STAT_INC(ifp, oerrors, 1);
3857 
3858 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
3859 		ifsq_devstart_sched(sc->bnx_tx_ring[i].bnx_ifsq);
3860 }
3861 
3862 /*
3863  * Stop the adapter and free any mbufs allocated to the
3864  * RX and TX lists.
3865  */
3866 static void
3867 bnx_stop(struct bnx_softc *sc)
3868 {
3869 	struct ifnet *ifp = &sc->arpcom.ac_if;
3870 	int i;
3871 
3872 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
3873 
3874 	callout_stop(&sc->bnx_tick_timer);
3875 
3876 	/*
3877 	 * Disable all of the receiver blocks
3878 	 */
3879 	bnx_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3880 	bnx_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3881 	bnx_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3882 	bnx_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3883 	bnx_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3884 	bnx_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3885 
3886 	/*
3887 	 * Disable all of the transmit blocks
3888 	 */
3889 	bnx_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3890 	bnx_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3891 	bnx_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3892 	bnx_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3893 	bnx_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3894 	bnx_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3895 
3896 	/*
3897 	 * Shut down all of the memory managers and related
3898 	 * state machines.
3899 	 */
3900 	bnx_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3901 	bnx_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3902 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3903 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3904 
3905 	/* Disable host interrupts. */
3906 	bnx_disable_intr(sc);
3907 
3908 	/*
3909 	 * Tell firmware we're shutting down.
3910 	 */
3911 	BNX_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3912 
3913 	/* Free the RX lists. */
3914 	bnx_free_rx_ring_std(&sc->bnx_rx_std_ring);
3915 
3916 	/* Free jumbo RX list. */
3917 	if (BNX_IS_JUMBO_CAPABLE(sc))
3918 		bnx_free_rx_ring_jumbo(sc);
3919 
3920 	/* Free TX buffers. */
3921 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3922 		struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3923 
3924 		txr->bnx_saved_status_tag = 0;
3925 		bnx_free_tx_ring(txr);
3926 	}
3927 
3928 	/* Clear saved status tag */
3929 	for (i = 0; i < sc->bnx_rx_retcnt; ++i)
3930 		sc->bnx_rx_ret_ring[i].bnx_saved_status_tag = 0;
3931 
3932 	sc->bnx_link = 0;
3933 	sc->bnx_coal_chg = 0;
3934 
3935 	ifp->if_flags &= ~IFF_RUNNING;
3936 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3937 		struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3938 
3939 		ifsq_clr_oactive(txr->bnx_ifsq);
3940 		ifsq_watchdog_stop(&txr->bnx_tx_watchdog);
3941 	}
3942 }
3943 
3944 /*
3945  * Stop all chip I/O so that the kernel's probe routines don't
3946  * get confused by errant DMAs when rebooting.
3947  */
3948 static void
3949 bnx_shutdown(device_t dev)
3950 {
3951 	struct bnx_softc *sc = device_get_softc(dev);
3952 	struct ifnet *ifp = &sc->arpcom.ac_if;
3953 
3954 	ifnet_serialize_all(ifp);
3955 	bnx_stop(sc);
3956 	bnx_reset(sc);
3957 	ifnet_deserialize_all(ifp);
3958 }
3959 
3960 static int
3961 bnx_suspend(device_t dev)
3962 {
3963 	struct bnx_softc *sc = device_get_softc(dev);
3964 	struct ifnet *ifp = &sc->arpcom.ac_if;
3965 
3966 	ifnet_serialize_all(ifp);
3967 	bnx_stop(sc);
3968 	ifnet_deserialize_all(ifp);
3969 
3970 	return 0;
3971 }
3972 
3973 static int
3974 bnx_resume(device_t dev)
3975 {
3976 	struct bnx_softc *sc = device_get_softc(dev);
3977 	struct ifnet *ifp = &sc->arpcom.ac_if;
3978 
3979 	ifnet_serialize_all(ifp);
3980 
3981 	if (ifp->if_flags & IFF_UP) {
3982 		int i;
3983 
3984 		bnx_init(sc);
3985 		for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
3986 			ifsq_devstart_sched(sc->bnx_tx_ring[i].bnx_ifsq);
3987 	}
3988 
3989 	ifnet_deserialize_all(ifp);
3990 
3991 	return 0;
3992 }
3993 
3994 static void
3995 bnx_setpromisc(struct bnx_softc *sc)
3996 {
3997 	struct ifnet *ifp = &sc->arpcom.ac_if;
3998 
3999 	if (ifp->if_flags & IFF_PROMISC)
4000 		BNX_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4001 	else
4002 		BNX_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4003 }
4004 
4005 static void
4006 bnx_dma_free(struct bnx_softc *sc)
4007 {
4008 	struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
4009 	int i;
4010 
4011 	/* Destroy RX return rings */
4012 	if (sc->bnx_rx_ret_ring != NULL) {
4013 		for (i = 0; i < sc->bnx_rx_retcnt; ++i)
4014 			bnx_destroy_rx_ret_ring(&sc->bnx_rx_ret_ring[i]);
4015 		kfree(sc->bnx_rx_ret_ring, M_DEVBUF);
4016 	}
4017 
4018 	/* Destroy RX mbuf DMA stuffs. */
4019 	if (std->bnx_rx_mtag != NULL) {
4020 		for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4021 			KKASSERT(std->bnx_rx_std_buf[i].bnx_rx_mbuf == NULL);
4022 			bus_dmamap_destroy(std->bnx_rx_mtag,
4023 			    std->bnx_rx_std_buf[i].bnx_rx_dmamap);
4024 		}
4025 		bus_dma_tag_destroy(std->bnx_rx_mtag);
4026 	}
4027 
4028 	/* Destroy standard RX ring */
4029 	bnx_dma_block_free(std->bnx_rx_std_ring_tag,
4030 	    std->bnx_rx_std_ring_map, std->bnx_rx_std_ring);
4031 
4032 	/* Destroy TX rings */
4033 	if (sc->bnx_tx_ring != NULL) {
4034 		for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
4035 			bnx_destroy_tx_ring(&sc->bnx_tx_ring[i]);
4036 		kfree(sc->bnx_tx_ring, M_DEVBUF);
4037 	}
4038 
4039 	if (BNX_IS_JUMBO_CAPABLE(sc))
4040 		bnx_free_jumbo_mem(sc);
4041 
4042 	/* Destroy status blocks */
4043 	for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4044 		struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4045 
4046 		bnx_dma_block_free(intr->bnx_status_tag,
4047 		    intr->bnx_status_map, intr->bnx_status_block);
4048 	}
4049 
4050 	/* Destroy the parent tag */
4051 	if (sc->bnx_cdata.bnx_parent_tag != NULL)
4052 		bus_dma_tag_destroy(sc->bnx_cdata.bnx_parent_tag);
4053 }
4054 
4055 static int
4056 bnx_dma_alloc(device_t dev)
4057 {
4058 	struct bnx_softc *sc = device_get_softc(dev);
4059 	struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
4060 	int i, error, mbx;
4061 
4062 	/*
4063 	 * Allocate the parent bus DMA tag appropriate for PCI.
4064 	 *
4065 	 * All of the NetExtreme/NetLink controllers have 4GB boundary
4066 	 * DMA bug.
4067 	 * Whenever an address crosses a multiple of the 4GB boundary
4068 	 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4069 	 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4070 	 * state machine will lockup and cause the device to hang.
4071 	 */
4072 	error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4073 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
4074 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
4075 	    0, &sc->bnx_cdata.bnx_parent_tag);
4076 	if (error) {
4077 		device_printf(dev, "could not create parent DMA tag\n");
4078 		return error;
4079 	}
4080 
4081 	/*
4082 	 * Create DMA stuffs for status blocks.
4083 	 */
4084 	for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4085 		struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4086 
4087 		error = bnx_dma_block_alloc(sc,
4088 		    __VM_CACHELINE_ALIGN(BGE_STATUS_BLK_SZ),
4089 		    &intr->bnx_status_tag, &intr->bnx_status_map,
4090 		    (void *)&intr->bnx_status_block,
4091 		    &intr->bnx_status_block_paddr);
4092 		if (error) {
4093 			device_printf(dev,
4094 			    "could not create %dth status block\n", i);
4095 			return error;
4096 		}
4097 	}
4098 	sc->bnx_hw_status = &sc->bnx_intr_data[0].bnx_status_block->bge_status;
4099 	if (sc->bnx_flags & BNX_FLAG_STATUS_HASTAG) {
4100 		sc->bnx_hw_status_tag =
4101 		    &sc->bnx_intr_data[0].bnx_status_block->bge_status_tag;
4102 	}
4103 
4104 	/*
4105 	 * Create DMA tag and maps for RX mbufs.
4106 	 */
4107 	std->bnx_sc = sc;
4108 	lwkt_serialize_init(&std->bnx_rx_std_serialize);
4109 	error = bus_dma_tag_create(sc->bnx_cdata.bnx_parent_tag, 1, 0,
4110 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4111 	    NULL, NULL, MCLBYTES, 1, MCLBYTES,
4112 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK, &std->bnx_rx_mtag);
4113 	if (error) {
4114 		device_printf(dev, "could not create RX mbuf DMA tag\n");
4115 		return error;
4116 	}
4117 
4118 	for (i = 0; i < BGE_STD_RX_RING_CNT; ++i) {
4119 		error = bus_dmamap_create(std->bnx_rx_mtag, BUS_DMA_WAITOK,
4120 		    &std->bnx_rx_std_buf[i].bnx_rx_dmamap);
4121 		if (error) {
4122 			int j;
4123 
4124 			for (j = 0; j < i; ++j) {
4125 				bus_dmamap_destroy(std->bnx_rx_mtag,
4126 				    std->bnx_rx_std_buf[j].bnx_rx_dmamap);
4127 			}
4128 			bus_dma_tag_destroy(std->bnx_rx_mtag);
4129 			std->bnx_rx_mtag = NULL;
4130 
4131 			device_printf(dev,
4132 			    "could not create %dth RX mbuf DMA map\n", i);
4133 			return error;
4134 		}
4135 	}
4136 
4137 	/*
4138 	 * Create DMA stuffs for standard RX ring.
4139 	 */
4140 	error = bnx_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4141 	    &std->bnx_rx_std_ring_tag,
4142 	    &std->bnx_rx_std_ring_map,
4143 	    (void *)&std->bnx_rx_std_ring,
4144 	    &std->bnx_rx_std_ring_paddr);
4145 	if (error) {
4146 		device_printf(dev, "could not create std RX ring\n");
4147 		return error;
4148 	}
4149 
4150 	/*
4151 	 * Create RX return rings
4152 	 */
4153 	mbx = BGE_MBX_RX_CONS0_LO;
4154 	sc->bnx_rx_ret_ring = kmalloc_cachealign(
4155 	    sizeof(struct bnx_rx_ret_ring) * sc->bnx_rx_retcnt, M_DEVBUF,
4156 	    M_WAITOK | M_ZERO);
4157 	for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4158 		struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
4159 		struct bnx_intr_data *intr;
4160 
4161 		ret->bnx_sc = sc;
4162 		ret->bnx_std = std;
4163 		ret->bnx_rx_mbx = mbx;
4164 		ret->bnx_rx_cntmax = (BGE_STD_RX_RING_CNT / 4) /
4165 		    sc->bnx_rx_retcnt;
4166 		ret->bnx_rx_mask = 1 << i;
4167 
4168 		if (!BNX_RSS_ENABLED(sc)) {
4169 			intr = &sc->bnx_intr_data[0];
4170 		} else {
4171 			KKASSERT(i + 1 < sc->bnx_intr_cnt);
4172 			intr = &sc->bnx_intr_data[i + 1];
4173 		}
4174 
4175 		if (i == 0) {
4176 			ret->bnx_rx_considx =
4177 			    &intr->bnx_status_block->bge_idx[0].bge_rx_prod_idx;
4178 		} else if (i == 1) {
4179 			ret->bnx_rx_considx =
4180 			    &intr->bnx_status_block->bge_rx_jumbo_cons_idx;
4181 		} else if (i == 2) {
4182 			ret->bnx_rx_considx =
4183 			    &intr->bnx_status_block->bge_rsvd1;
4184 		} else if (i == 3) {
4185 			ret->bnx_rx_considx =
4186 			    &intr->bnx_status_block->bge_rx_mini_cons_idx;
4187 		} else {
4188 			panic("unknown RX return ring %d\n", i);
4189 		}
4190 		ret->bnx_hw_status_tag =
4191 		    &intr->bnx_status_block->bge_status_tag;
4192 
4193 		error = bnx_create_rx_ret_ring(ret);
4194 		if (error) {
4195 			device_printf(dev,
4196 			    "could not create %dth RX ret ring\n", i);
4197 			return error;
4198 		}
4199 		mbx += 8;
4200 	}
4201 
4202 	/*
4203 	 * Create TX rings
4204 	 */
4205 	sc->bnx_tx_ring = kmalloc_cachealign(
4206 	    sizeof(struct bnx_tx_ring) * sc->bnx_tx_ringcnt, M_DEVBUF,
4207 	    M_WAITOK | M_ZERO);
4208 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4209 		struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
4210 		struct bnx_intr_data *intr;
4211 
4212 		txr->bnx_sc = sc;
4213 		txr->bnx_tx_mbx = bnx_tx_mailbox[i];
4214 
4215 		if (sc->bnx_tx_ringcnt == 1) {
4216 			intr = &sc->bnx_intr_data[0];
4217 		} else {
4218 			KKASSERT(i + 1 < sc->bnx_intr_cnt);
4219 			intr = &sc->bnx_intr_data[i + 1];
4220 		}
4221 
4222 		if ((sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) == 0) {
4223 			txr->bnx_hw_status_tag =
4224 			    &intr->bnx_status_block->bge_status_tag;
4225 		}
4226 		txr->bnx_tx_considx =
4227 		    &intr->bnx_status_block->bge_idx[0].bge_tx_cons_idx;
4228 
4229 		error = bnx_create_tx_ring(txr);
4230 		if (error) {
4231 			device_printf(dev,
4232 			    "could not create %dth TX ring\n", i);
4233 			return error;
4234 		}
4235 	}
4236 
4237 	/*
4238 	 * Create jumbo buffer pool.
4239 	 */
4240 	if (BNX_IS_JUMBO_CAPABLE(sc)) {
4241 		error = bnx_alloc_jumbo_mem(sc);
4242 		if (error) {
4243 			device_printf(dev,
4244 			    "could not create jumbo buffer pool\n");
4245 			return error;
4246 		}
4247 	}
4248 
4249 	return 0;
4250 }
4251 
4252 static int
4253 bnx_dma_block_alloc(struct bnx_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4254 		    bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4255 {
4256 	bus_dmamem_t dmem;
4257 	int error;
4258 
4259 	error = bus_dmamem_coherent(sc->bnx_cdata.bnx_parent_tag, PAGE_SIZE, 0,
4260 				    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4261 				    size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4262 	if (error)
4263 		return error;
4264 
4265 	*tag = dmem.dmem_tag;
4266 	*map = dmem.dmem_map;
4267 	*addr = dmem.dmem_addr;
4268 	*paddr = dmem.dmem_busaddr;
4269 
4270 	return 0;
4271 }
4272 
4273 static void
4274 bnx_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4275 {
4276 	if (tag != NULL) {
4277 		bus_dmamap_unload(tag, map);
4278 		bus_dmamem_free(tag, addr, map);
4279 		bus_dma_tag_destroy(tag);
4280 	}
4281 }
4282 
4283 static void
4284 bnx_tbi_link_upd(struct bnx_softc *sc, uint32_t status)
4285 {
4286 	struct ifnet *ifp = &sc->arpcom.ac_if;
4287 
4288 #define PCS_ENCODE_ERR	(BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4289 
4290 	/*
4291 	 * Sometimes PCS encoding errors are detected in
4292 	 * TBI mode (on fiber NICs), and for some reason
4293 	 * the chip will signal them as link changes.
4294 	 * If we get a link change event, but the 'PCS
4295 	 * encoding error' bit in the MAC status register
4296 	 * is set, don't bother doing a link check.
4297 	 * This avoids spurious "gigabit link up" messages
4298 	 * that sometimes appear on fiber NICs during
4299 	 * periods of heavy traffic.
4300 	 */
4301 	if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4302 		if (!sc->bnx_link) {
4303 			sc->bnx_link++;
4304 			if (sc->bnx_asicrev == BGE_ASICREV_BCM5704) {
4305 				BNX_CLRBIT(sc, BGE_MAC_MODE,
4306 				    BGE_MACMODE_TBI_SEND_CFGS);
4307 			}
4308 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4309 
4310 			if (bootverbose)
4311 				if_printf(ifp, "link UP\n");
4312 
4313 			ifp->if_link_state = LINK_STATE_UP;
4314 			if_link_state_change(ifp);
4315 		}
4316 	} else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4317 		if (sc->bnx_link) {
4318 			sc->bnx_link = 0;
4319 
4320 			if (bootverbose)
4321 				if_printf(ifp, "link DOWN\n");
4322 
4323 			ifp->if_link_state = LINK_STATE_DOWN;
4324 			if_link_state_change(ifp);
4325 		}
4326 	}
4327 
4328 #undef PCS_ENCODE_ERR
4329 
4330 	/* Clear the attention. */
4331 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4332 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4333 	    BGE_MACSTAT_LINK_CHANGED);
4334 }
4335 
4336 static void
4337 bnx_copper_link_upd(struct bnx_softc *sc, uint32_t status __unused)
4338 {
4339 	struct ifnet *ifp = &sc->arpcom.ac_if;
4340 	struct mii_data *mii = device_get_softc(sc->bnx_miibus);
4341 
4342 	mii_pollstat(mii);
4343 	bnx_miibus_statchg(sc->bnx_dev);
4344 
4345 	if (bootverbose) {
4346 		if (sc->bnx_link)
4347 			if_printf(ifp, "link UP\n");
4348 		else
4349 			if_printf(ifp, "link DOWN\n");
4350 	}
4351 
4352 	/* Clear the attention. */
4353 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4354 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4355 	    BGE_MACSTAT_LINK_CHANGED);
4356 }
4357 
4358 static void
4359 bnx_autopoll_link_upd(struct bnx_softc *sc, uint32_t status __unused)
4360 {
4361 	struct ifnet *ifp = &sc->arpcom.ac_if;
4362 	struct mii_data *mii = device_get_softc(sc->bnx_miibus);
4363 
4364 	mii_pollstat(mii);
4365 
4366 	if (!sc->bnx_link &&
4367 	    (mii->mii_media_status & IFM_ACTIVE) &&
4368 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4369 		sc->bnx_link++;
4370 		if (bootverbose)
4371 			if_printf(ifp, "link UP\n");
4372 	} else if (sc->bnx_link &&
4373 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
4374 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4375 		sc->bnx_link = 0;
4376 		if (bootverbose)
4377 			if_printf(ifp, "link DOWN\n");
4378 	}
4379 
4380 	/* Clear the attention. */
4381 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4382 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4383 	    BGE_MACSTAT_LINK_CHANGED);
4384 }
4385 
4386 static int
4387 bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4388 {
4389 	struct bnx_softc *sc = arg1;
4390 
4391 	return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4392 	    &sc->bnx_rx_coal_ticks,
4393 	    BNX_RX_COAL_TICKS_MIN, BNX_RX_COAL_TICKS_MAX,
4394 	    BNX_RX_COAL_TICKS_CHG);
4395 }
4396 
4397 static int
4398 bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4399 {
4400 	struct bnx_softc *sc = arg1;
4401 
4402 	return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4403 	    &sc->bnx_tx_coal_ticks,
4404 	    BNX_TX_COAL_TICKS_MIN, BNX_TX_COAL_TICKS_MAX,
4405 	    BNX_TX_COAL_TICKS_CHG);
4406 }
4407 
4408 static int
4409 bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4410 {
4411 	struct bnx_softc *sc = arg1;
4412 
4413 	return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4414 	    &sc->bnx_rx_coal_bds,
4415 	    BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4416 	    BNX_RX_COAL_BDS_CHG);
4417 }
4418 
4419 static int
4420 bnx_sysctl_rx_coal_bds_poll(SYSCTL_HANDLER_ARGS)
4421 {
4422 	struct bnx_softc *sc = arg1;
4423 
4424 	return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4425 	    &sc->bnx_rx_coal_bds_poll,
4426 	    BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4427 	    BNX_RX_COAL_BDS_CHG);
4428 }
4429 
4430 static int
4431 bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4432 {
4433 	struct bnx_softc *sc = arg1;
4434 
4435 	return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4436 	    &sc->bnx_tx_coal_bds,
4437 	    BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4438 	    BNX_TX_COAL_BDS_CHG);
4439 }
4440 
4441 static int
4442 bnx_sysctl_tx_coal_bds_poll(SYSCTL_HANDLER_ARGS)
4443 {
4444 	struct bnx_softc *sc = arg1;
4445 
4446 	return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4447 	    &sc->bnx_tx_coal_bds_poll,
4448 	    BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4449 	    BNX_TX_COAL_BDS_CHG);
4450 }
4451 
4452 static int
4453 bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4454 {
4455 	struct bnx_softc *sc = arg1;
4456 
4457 	return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4458 	    &sc->bnx_rx_coal_bds_int,
4459 	    BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4460 	    BNX_RX_COAL_BDS_INT_CHG);
4461 }
4462 
4463 static int
4464 bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4465 {
4466 	struct bnx_softc *sc = arg1;
4467 
4468 	return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4469 	    &sc->bnx_tx_coal_bds_int,
4470 	    BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4471 	    BNX_TX_COAL_BDS_INT_CHG);
4472 }
4473 
4474 static int
4475 bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4476     int coal_min, int coal_max, uint32_t coal_chg_mask)
4477 {
4478 	struct bnx_softc *sc = arg1;
4479 	struct ifnet *ifp = &sc->arpcom.ac_if;
4480 	int error = 0, v;
4481 
4482 	ifnet_serialize_all(ifp);
4483 
4484 	v = *coal;
4485 	error = sysctl_handle_int(oidp, &v, 0, req);
4486 	if (!error && req->newptr != NULL) {
4487 		if (v < coal_min || v > coal_max) {
4488 			error = EINVAL;
4489 		} else {
4490 			*coal = v;
4491 			sc->bnx_coal_chg |= coal_chg_mask;
4492 
4493 			/* Commit changes */
4494 			bnx_coal_change(sc);
4495 		}
4496 	}
4497 
4498 	ifnet_deserialize_all(ifp);
4499 	return error;
4500 }
4501 
4502 static void
4503 bnx_coal_change(struct bnx_softc *sc)
4504 {
4505 	struct ifnet *ifp = &sc->arpcom.ac_if;
4506 	int i;
4507 
4508 	ASSERT_IFNET_SERIALIZED_ALL(ifp);
4509 
4510 	if (sc->bnx_coal_chg & BNX_RX_COAL_TICKS_CHG) {
4511 		if (sc->bnx_rx_retcnt == 1) {
4512 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4513 			    sc->bnx_rx_coal_ticks);
4514 			i = 0;
4515 		} else {
4516 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, 0);
4517 			for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4518 				CSR_WRITE_4(sc, BGE_VEC1_RX_COAL_TICKS +
4519 				    (i * BGE_VEC_COALSET_SIZE),
4520 				    sc->bnx_rx_coal_ticks);
4521 			}
4522 		}
4523 		for (; i < BNX_INTR_MAX - 1; ++i) {
4524 			CSR_WRITE_4(sc, BGE_VEC1_RX_COAL_TICKS +
4525 			    (i * BGE_VEC_COALSET_SIZE), 0);
4526 		}
4527 		if (bootverbose) {
4528 			if_printf(ifp, "rx_coal_ticks -> %u\n",
4529 			    sc->bnx_rx_coal_ticks);
4530 		}
4531 	}
4532 
4533 	if (sc->bnx_coal_chg & BNX_TX_COAL_TICKS_CHG) {
4534 		if (sc->bnx_tx_ringcnt == 1) {
4535 			CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4536 			    sc->bnx_tx_coal_ticks);
4537 			i = 0;
4538 		} else {
4539 			CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, 0);
4540 			for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4541 				CSR_WRITE_4(sc, BGE_VEC1_TX_COAL_TICKS +
4542 				    (i * BGE_VEC_COALSET_SIZE),
4543 				    sc->bnx_tx_coal_ticks);
4544 			}
4545 		}
4546 		for (; i < BNX_INTR_MAX - 1; ++i) {
4547 			CSR_WRITE_4(sc, BGE_VEC1_TX_COAL_TICKS +
4548 			    (i * BGE_VEC_COALSET_SIZE), 0);
4549 		}
4550 		if (bootverbose) {
4551 			if_printf(ifp, "tx_coal_ticks -> %u\n",
4552 			    sc->bnx_tx_coal_ticks);
4553 		}
4554 	}
4555 
4556 	if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_CHG) {
4557 		uint32_t rx_coal_bds;
4558 
4559 		if (ifp->if_flags & IFF_NPOLLING)
4560 			rx_coal_bds = sc->bnx_rx_coal_bds_poll;
4561 		else
4562 			rx_coal_bds = sc->bnx_rx_coal_bds;
4563 
4564 		if (sc->bnx_rx_retcnt == 1) {
4565 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_coal_bds);
4566 			i = 0;
4567 		} else {
4568 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, 0);
4569 			for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4570 				CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS +
4571 				    (i * BGE_VEC_COALSET_SIZE), rx_coal_bds);
4572 			}
4573 		}
4574 		for (; i < BNX_INTR_MAX - 1; ++i) {
4575 			CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS +
4576 			    (i * BGE_VEC_COALSET_SIZE), 0);
4577 		}
4578 		if (bootverbose) {
4579 			if_printf(ifp, "%srx_coal_bds -> %u\n",
4580 			    (ifp->if_flags & IFF_NPOLLING) ? "polling " : "",
4581 			    rx_coal_bds);
4582 		}
4583 	}
4584 
4585 	if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_CHG) {
4586 		uint32_t tx_coal_bds;
4587 
4588 		if (ifp->if_flags & IFF_NPOLLING)
4589 			tx_coal_bds = sc->bnx_tx_coal_bds_poll;
4590 		else
4591 			tx_coal_bds = sc->bnx_tx_coal_bds;
4592 
4593 		if (sc->bnx_tx_ringcnt == 1) {
4594 			CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_coal_bds);
4595 			i = 0;
4596 		} else {
4597 			CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, 0);
4598 			for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4599 				CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS +
4600 				    (i * BGE_VEC_COALSET_SIZE), tx_coal_bds);
4601 			}
4602 		}
4603 		for (; i < BNX_INTR_MAX - 1; ++i) {
4604 			CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS +
4605 			    (i * BGE_VEC_COALSET_SIZE), 0);
4606 		}
4607 		if (bootverbose) {
4608 			if_printf(ifp, "%stx_coal_bds -> %u\n",
4609 			    (ifp->if_flags & IFF_NPOLLING) ? "polling " : "",
4610 			    tx_coal_bds);
4611 		}
4612 	}
4613 
4614 	if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_INT_CHG) {
4615 		if (sc->bnx_rx_retcnt == 1) {
4616 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4617 			    sc->bnx_rx_coal_bds_int);
4618 			i = 0;
4619 		} else {
4620 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
4621 			for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4622 				CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS_INT +
4623 				    (i * BGE_VEC_COALSET_SIZE),
4624 				    sc->bnx_rx_coal_bds_int);
4625 			}
4626 		}
4627 		for (; i < BNX_INTR_MAX - 1; ++i) {
4628 			CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS_INT +
4629 			    (i * BGE_VEC_COALSET_SIZE), 0);
4630 		}
4631 		if (bootverbose) {
4632 			if_printf(ifp, "rx_coal_bds_int -> %u\n",
4633 			    sc->bnx_rx_coal_bds_int);
4634 		}
4635 	}
4636 
4637 	if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_INT_CHG) {
4638 		if (sc->bnx_tx_ringcnt == 1) {
4639 			CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4640 			    sc->bnx_tx_coal_bds_int);
4641 			i = 0;
4642 		} else {
4643 			CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
4644 			for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4645 				CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS_INT +
4646 				    (i * BGE_VEC_COALSET_SIZE),
4647 				    sc->bnx_tx_coal_bds_int);
4648 			}
4649 		}
4650 		for (; i < BNX_INTR_MAX - 1; ++i) {
4651 			CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS_INT +
4652 			    (i * BGE_VEC_COALSET_SIZE), 0);
4653 		}
4654 		if (bootverbose) {
4655 			if_printf(ifp, "tx_coal_bds_int -> %u\n",
4656 			    sc->bnx_tx_coal_bds_int);
4657 		}
4658 	}
4659 
4660 	sc->bnx_coal_chg = 0;
4661 }
4662 
4663 static void
4664 bnx_check_intr_rxtx(void *xintr)
4665 {
4666 	struct bnx_intr_data *intr = xintr;
4667 	struct bnx_rx_ret_ring *ret;
4668 	struct bnx_tx_ring *txr;
4669 	struct ifnet *ifp;
4670 
4671 	lwkt_serialize_enter(intr->bnx_intr_serialize);
4672 
4673 	KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4674 
4675 	ifp = &intr->bnx_sc->arpcom.ac_if;
4676 	if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4677 		lwkt_serialize_exit(intr->bnx_intr_serialize);
4678 		return;
4679 	}
4680 
4681 	txr = intr->bnx_txr;
4682 	ret = intr->bnx_ret;
4683 
4684 	if (*ret->bnx_rx_considx != ret->bnx_rx_saved_considx ||
4685 	    *txr->bnx_tx_considx != txr->bnx_tx_saved_considx) {
4686 		if (intr->bnx_rx_check_considx == ret->bnx_rx_saved_considx &&
4687 		    intr->bnx_tx_check_considx == txr->bnx_tx_saved_considx) {
4688 			if (!intr->bnx_intr_maylose) {
4689 				intr->bnx_intr_maylose = TRUE;
4690 				goto done;
4691 			}
4692 			if (bootverbose)
4693 				if_printf(ifp, "lost interrupt\n");
4694 			intr->bnx_intr_func(intr->bnx_intr_arg);
4695 		}
4696 	}
4697 	intr->bnx_intr_maylose = FALSE;
4698 	intr->bnx_rx_check_considx = ret->bnx_rx_saved_considx;
4699 	intr->bnx_tx_check_considx = txr->bnx_tx_saved_considx;
4700 
4701 done:
4702 	callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4703 	    intr->bnx_intr_check, intr);
4704 	lwkt_serialize_exit(intr->bnx_intr_serialize);
4705 }
4706 
4707 static void
4708 bnx_check_intr_tx(void *xintr)
4709 {
4710 	struct bnx_intr_data *intr = xintr;
4711 	struct bnx_tx_ring *txr;
4712 	struct ifnet *ifp;
4713 
4714 	lwkt_serialize_enter(intr->bnx_intr_serialize);
4715 
4716 	KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4717 
4718 	ifp = &intr->bnx_sc->arpcom.ac_if;
4719 	if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4720 		lwkt_serialize_exit(intr->bnx_intr_serialize);
4721 		return;
4722 	}
4723 
4724 	txr = intr->bnx_txr;
4725 
4726 	if (*txr->bnx_tx_considx != txr->bnx_tx_saved_considx) {
4727 		if (intr->bnx_tx_check_considx == txr->bnx_tx_saved_considx) {
4728 			if (!intr->bnx_intr_maylose) {
4729 				intr->bnx_intr_maylose = TRUE;
4730 				goto done;
4731 			}
4732 			if (bootverbose)
4733 				if_printf(ifp, "lost interrupt\n");
4734 			intr->bnx_intr_func(intr->bnx_intr_arg);
4735 		}
4736 	}
4737 	intr->bnx_intr_maylose = FALSE;
4738 	intr->bnx_tx_check_considx = txr->bnx_tx_saved_considx;
4739 
4740 done:
4741 	callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4742 	    intr->bnx_intr_check, intr);
4743 	lwkt_serialize_exit(intr->bnx_intr_serialize);
4744 }
4745 
4746 static void
4747 bnx_check_intr_rx(void *xintr)
4748 {
4749 	struct bnx_intr_data *intr = xintr;
4750 	struct bnx_rx_ret_ring *ret;
4751 	struct ifnet *ifp;
4752 
4753 	lwkt_serialize_enter(intr->bnx_intr_serialize);
4754 
4755 	KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4756 
4757 	ifp = &intr->bnx_sc->arpcom.ac_if;
4758 	if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4759 		lwkt_serialize_exit(intr->bnx_intr_serialize);
4760 		return;
4761 	}
4762 
4763 	ret = intr->bnx_ret;
4764 
4765 	if (*ret->bnx_rx_considx != ret->bnx_rx_saved_considx) {
4766 		if (intr->bnx_rx_check_considx == ret->bnx_rx_saved_considx) {
4767 			if (!intr->bnx_intr_maylose) {
4768 				intr->bnx_intr_maylose = TRUE;
4769 				goto done;
4770 			}
4771 			if (bootverbose)
4772 				if_printf(ifp, "lost interrupt\n");
4773 			intr->bnx_intr_func(intr->bnx_intr_arg);
4774 		}
4775 	}
4776 	intr->bnx_intr_maylose = FALSE;
4777 	intr->bnx_rx_check_considx = ret->bnx_rx_saved_considx;
4778 
4779 done:
4780 	callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4781 	    intr->bnx_intr_check, intr);
4782 	lwkt_serialize_exit(intr->bnx_intr_serialize);
4783 }
4784 
4785 static void
4786 bnx_enable_intr(struct bnx_softc *sc)
4787 {
4788 	struct ifnet *ifp = &sc->arpcom.ac_if;
4789 	int i;
4790 
4791 	for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4792 		lwkt_serialize_handler_enable(
4793 		    sc->bnx_intr_data[i].bnx_intr_serialize);
4794 	}
4795 
4796 	/*
4797 	 * Enable interrupt.
4798 	 */
4799 	for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4800 		struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4801 
4802 		bnx_writembx(sc, intr->bnx_intr_mbx,
4803 		    (*intr->bnx_saved_status_tag) << 24);
4804 		/* XXX Linux driver */
4805 		bnx_writembx(sc, intr->bnx_intr_mbx,
4806 		    (*intr->bnx_saved_status_tag) << 24);
4807 	}
4808 
4809 	/*
4810 	 * Unmask the interrupt when we stop polling.
4811 	 */
4812 	PCI_CLRBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4813 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4814 
4815 	/*
4816 	 * Trigger another interrupt, since above writing
4817 	 * to interrupt mailbox0 may acknowledge pending
4818 	 * interrupt.
4819 	 */
4820 	BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4821 
4822 	if (sc->bnx_flags & BNX_FLAG_STATUSTAG_BUG) {
4823 		if (bootverbose)
4824 			if_printf(ifp, "status tag bug workaround\n");
4825 
4826 		for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4827 			struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4828 
4829 			if (intr->bnx_intr_check == NULL)
4830 				continue;
4831 			intr->bnx_intr_maylose = FALSE;
4832 			intr->bnx_rx_check_considx = 0;
4833 			intr->bnx_tx_check_considx = 0;
4834 			callout_reset_bycpu(&intr->bnx_intr_timer,
4835 			    BNX_INTR_CKINTVL, intr->bnx_intr_check, intr,
4836 			    intr->bnx_intr_cpuid);
4837 		}
4838 	}
4839 }
4840 
4841 static void
4842 bnx_disable_intr(struct bnx_softc *sc)
4843 {
4844 	int i;
4845 
4846 	for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4847 		struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4848 
4849 		callout_stop(&intr->bnx_intr_timer);
4850 		intr->bnx_intr_maylose = FALSE;
4851 		intr->bnx_rx_check_considx = 0;
4852 		intr->bnx_tx_check_considx = 0;
4853 	}
4854 
4855 	/*
4856 	 * Mask the interrupt when we start polling.
4857 	 */
4858 	PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4859 	    BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4860 
4861 	/*
4862 	 * Acknowledge possible asserted interrupt.
4863 	 */
4864 	for (i = 0; i < BNX_INTR_MAX; ++i)
4865 		bnx_writembx(sc, sc->bnx_intr_data[i].bnx_intr_mbx, 1);
4866 
4867 	for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4868 		lwkt_serialize_handler_disable(
4869 		    sc->bnx_intr_data[i].bnx_intr_serialize);
4870 	}
4871 }
4872 
4873 static int
4874 bnx_get_eaddr_mem(struct bnx_softc *sc, uint8_t ether_addr[])
4875 {
4876 	uint32_t mac_addr;
4877 	int ret = 1;
4878 
4879 	mac_addr = bnx_readmem_ind(sc, 0x0c14);
4880 	if ((mac_addr >> 16) == 0x484b) {
4881 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4882 		ether_addr[1] = (uint8_t)mac_addr;
4883 		mac_addr = bnx_readmem_ind(sc, 0x0c18);
4884 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4885 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4886 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4887 		ether_addr[5] = (uint8_t)mac_addr;
4888 		ret = 0;
4889 	}
4890 	return ret;
4891 }
4892 
4893 static int
4894 bnx_get_eaddr_nvram(struct bnx_softc *sc, uint8_t ether_addr[])
4895 {
4896 	int mac_offset = BGE_EE_MAC_OFFSET;
4897 
4898 	if (BNX_IS_5717_PLUS(sc)) {
4899 		int f;
4900 
4901 		f = pci_get_function(sc->bnx_dev);
4902 		if (f & 1)
4903 			mac_offset = BGE_EE_MAC_OFFSET_5717;
4904 		if (f > 1)
4905 			mac_offset += BGE_EE_MAC_OFFSET_5717_OFF;
4906 	}
4907 
4908 	return bnx_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4909 }
4910 
4911 static int
4912 bnx_get_eaddr_eeprom(struct bnx_softc *sc, uint8_t ether_addr[])
4913 {
4914 	if (sc->bnx_flags & BNX_FLAG_NO_EEPROM)
4915 		return 1;
4916 
4917 	return bnx_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4918 			       ETHER_ADDR_LEN);
4919 }
4920 
4921 static int
4922 bnx_get_eaddr(struct bnx_softc *sc, uint8_t eaddr[])
4923 {
4924 	static const bnx_eaddr_fcn_t bnx_eaddr_funcs[] = {
4925 		/* NOTE: Order is critical */
4926 		bnx_get_eaddr_mem,
4927 		bnx_get_eaddr_nvram,
4928 		bnx_get_eaddr_eeprom,
4929 		NULL
4930 	};
4931 	const bnx_eaddr_fcn_t *func;
4932 
4933 	for (func = bnx_eaddr_funcs; *func != NULL; ++func) {
4934 		if ((*func)(sc, eaddr) == 0)
4935 			break;
4936 	}
4937 	return (*func == NULL ? ENXIO : 0);
4938 }
4939 
4940 /*
4941  * NOTE: 'm' is not freed upon failure
4942  */
4943 struct mbuf *
4944 bnx_defrag_shortdma(struct mbuf *m)
4945 {
4946 	struct mbuf *n;
4947 	int found;
4948 
4949 	/*
4950 	 * If device receive two back-to-back send BDs with less than
4951 	 * or equal to 8 total bytes then the device may hang.  The two
4952 	 * back-to-back send BDs must in the same frame for this failure
4953 	 * to occur.  Scan mbuf chains and see whether two back-to-back
4954 	 * send BDs are there.  If this is the case, allocate new mbuf
4955 	 * and copy the frame to workaround the silicon bug.
4956 	 */
4957 	for (n = m, found = 0; n != NULL; n = n->m_next) {
4958 		if (n->m_len < 8) {
4959 			found++;
4960 			if (found > 1)
4961 				break;
4962 			continue;
4963 		}
4964 		found = 0;
4965 	}
4966 
4967 	if (found > 1)
4968 		n = m_defrag(m, MB_DONTWAIT);
4969 	else
4970 		n = m;
4971 	return n;
4972 }
4973 
4974 static void
4975 bnx_stop_block(struct bnx_softc *sc, bus_size_t reg, uint32_t bit)
4976 {
4977 	int i;
4978 
4979 	BNX_CLRBIT(sc, reg, bit);
4980 	for (i = 0; i < BNX_TIMEOUT; i++) {
4981 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4982 			return;
4983 		DELAY(100);
4984 	}
4985 }
4986 
4987 static void
4988 bnx_link_poll(struct bnx_softc *sc)
4989 {
4990 	uint32_t status;
4991 
4992 	status = CSR_READ_4(sc, BGE_MAC_STS);
4993 	if ((status & sc->bnx_link_chg) || sc->bnx_link_evt) {
4994 		sc->bnx_link_evt = 0;
4995 		sc->bnx_link_upd(sc, status);
4996 	}
4997 }
4998 
4999 static void
5000 bnx_enable_msi(struct bnx_softc *sc, boolean_t is_msix)
5001 {
5002 	uint32_t msi_mode;
5003 
5004 	msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5005 	msi_mode |= BGE_MSIMODE_ENABLE;
5006 	/*
5007 	 * NOTE:
5008 	 * 5718-PG105-R says that "one shot" mode does not work
5009 	 * if MSI is used, however, it obviously works.
5010 	 */
5011 	msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5012 	if (is_msix)
5013 		msi_mode |= BGE_MSIMODE_MSIX_MULTIMODE;
5014 	else
5015 		msi_mode &= ~BGE_MSIMODE_MSIX_MULTIMODE;
5016 	CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5017 }
5018 
5019 static uint32_t
5020 bnx_dma_swap_options(struct bnx_softc *sc)
5021 {
5022 	uint32_t dma_options;
5023 
5024 	dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
5025 	    BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
5026 #if BYTE_ORDER == BIG_ENDIAN
5027 	dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
5028 #endif
5029 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
5030 	    sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
5031 		dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA |
5032 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE |
5033 		    BGE_MODECTL_HTX2B_ENABLE;
5034 	}
5035 	return dma_options;
5036 }
5037 
5038 static int
5039 bnx_setup_tso(struct bnx_tx_ring *txr, struct mbuf **mp,
5040     uint16_t *mss0, uint16_t *flags0)
5041 {
5042 	struct mbuf *m;
5043 	struct ip *ip;
5044 	struct tcphdr *th;
5045 	int thoff, iphlen, hoff, hlen;
5046 	uint16_t flags, mss;
5047 
5048 	m = *mp;
5049 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5050 
5051 	hoff = m->m_pkthdr.csum_lhlen;
5052 	iphlen = m->m_pkthdr.csum_iphlen;
5053 	thoff = m->m_pkthdr.csum_thlen;
5054 
5055 	KASSERT(hoff > 0, ("invalid ether header len"));
5056 	KASSERT(iphlen > 0, ("invalid ip header len"));
5057 	KASSERT(thoff > 0, ("invalid tcp header len"));
5058 
5059 	if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5060 		m = m_pullup(m, hoff + iphlen + thoff);
5061 		if (m == NULL) {
5062 			*mp = NULL;
5063 			return ENOBUFS;
5064 		}
5065 		*mp = m;
5066 	}
5067 	ip = mtodoff(m, struct ip *, hoff);
5068 	th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5069 
5070 	mss = m->m_pkthdr.tso_segsz;
5071 	flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5072 
5073 	ip->ip_len = htons(mss + iphlen + thoff);
5074 	th->th_sum = 0;
5075 
5076 	hlen = (iphlen + thoff) >> 2;
5077 	mss |= ((hlen & 0x3) << 14);
5078 	flags |= ((hlen & 0xf8) << 7) | ((hlen & 0x4) << 2);
5079 
5080 	*mss0 = mss;
5081 	*flags0 = flags;
5082 
5083 	return 0;
5084 }
5085 
5086 static int
5087 bnx_create_tx_ring(struct bnx_tx_ring *txr)
5088 {
5089 	bus_size_t txmaxsz, txmaxsegsz;
5090 	int i, error;
5091 
5092 	lwkt_serialize_init(&txr->bnx_tx_serialize);
5093 
5094 	/*
5095 	 * Create DMA tag and maps for TX mbufs.
5096 	 */
5097 	if (txr->bnx_sc->bnx_flags & BNX_FLAG_TSO)
5098 		txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
5099 	else
5100 		txmaxsz = BNX_JUMBO_FRAMELEN;
5101 	if (txr->bnx_sc->bnx_asicrev == BGE_ASICREV_BCM57766)
5102 		txmaxsegsz = MCLBYTES;
5103 	else
5104 		txmaxsegsz = PAGE_SIZE;
5105 	error = bus_dma_tag_create(txr->bnx_sc->bnx_cdata.bnx_parent_tag,
5106 	    1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
5107 	    txmaxsz, BNX_NSEG_NEW, txmaxsegsz,
5108 	    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
5109 	    &txr->bnx_tx_mtag);
5110 	if (error) {
5111 		device_printf(txr->bnx_sc->bnx_dev,
5112 		    "could not create TX mbuf DMA tag\n");
5113 		return error;
5114 	}
5115 
5116 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
5117 		error = bus_dmamap_create(txr->bnx_tx_mtag,
5118 		    BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
5119 		    &txr->bnx_tx_buf[i].bnx_tx_dmamap);
5120 		if (error) {
5121 			int j;
5122 
5123 			for (j = 0; j < i; ++j) {
5124 				bus_dmamap_destroy(txr->bnx_tx_mtag,
5125 				    txr->bnx_tx_buf[j].bnx_tx_dmamap);
5126 			}
5127 			bus_dma_tag_destroy(txr->bnx_tx_mtag);
5128 			txr->bnx_tx_mtag = NULL;
5129 
5130 			device_printf(txr->bnx_sc->bnx_dev,
5131 			    "could not create TX mbuf DMA map\n");
5132 			return error;
5133 		}
5134 	}
5135 
5136 	/*
5137 	 * Create DMA stuffs for TX ring.
5138 	 */
5139 	error = bnx_dma_block_alloc(txr->bnx_sc, BGE_TX_RING_SZ,
5140 	    &txr->bnx_tx_ring_tag,
5141 	    &txr->bnx_tx_ring_map,
5142 	    (void *)&txr->bnx_tx_ring,
5143 	    &txr->bnx_tx_ring_paddr);
5144 	if (error) {
5145 		device_printf(txr->bnx_sc->bnx_dev,
5146 		    "could not create TX ring\n");
5147 		return error;
5148 	}
5149 
5150 	txr->bnx_tx_flags |= BNX_TX_FLAG_SHORTDMA;
5151 	txr->bnx_tx_wreg = BNX_TX_WREG_NSEGS;
5152 
5153 	return 0;
5154 }
5155 
5156 static void
5157 bnx_destroy_tx_ring(struct bnx_tx_ring *txr)
5158 {
5159 	/* Destroy TX mbuf DMA stuffs. */
5160 	if (txr->bnx_tx_mtag != NULL) {
5161 		int i;
5162 
5163 		for (i = 0; i < BGE_TX_RING_CNT; i++) {
5164 			KKASSERT(txr->bnx_tx_buf[i].bnx_tx_mbuf == NULL);
5165 			bus_dmamap_destroy(txr->bnx_tx_mtag,
5166 			    txr->bnx_tx_buf[i].bnx_tx_dmamap);
5167 		}
5168 		bus_dma_tag_destroy(txr->bnx_tx_mtag);
5169 	}
5170 
5171 	/* Destroy TX ring */
5172 	bnx_dma_block_free(txr->bnx_tx_ring_tag,
5173 	    txr->bnx_tx_ring_map, txr->bnx_tx_ring);
5174 }
5175 
5176 static int
5177 bnx_sysctl_force_defrag(SYSCTL_HANDLER_ARGS)
5178 {
5179 	struct bnx_softc *sc = (void *)arg1;
5180 	struct ifnet *ifp = &sc->arpcom.ac_if;
5181 	struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
5182 	int error, defrag, i;
5183 
5184 	if (txr->bnx_tx_flags & BNX_TX_FLAG_FORCE_DEFRAG)
5185 		defrag = 1;
5186 	else
5187 		defrag = 0;
5188 
5189 	error = sysctl_handle_int(oidp, &defrag, 0, req);
5190 	if (error || req->newptr == NULL)
5191 		return error;
5192 
5193 	ifnet_serialize_all(ifp);
5194 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
5195 		txr = &sc->bnx_tx_ring[i];
5196 		if (defrag)
5197 			txr->bnx_tx_flags |= BNX_TX_FLAG_FORCE_DEFRAG;
5198 		else
5199 			txr->bnx_tx_flags &= ~BNX_TX_FLAG_FORCE_DEFRAG;
5200 	}
5201 	ifnet_deserialize_all(ifp);
5202 
5203 	return 0;
5204 }
5205 
5206 static int
5207 bnx_sysctl_tx_wreg(SYSCTL_HANDLER_ARGS)
5208 {
5209 	struct bnx_softc *sc = (void *)arg1;
5210 	struct ifnet *ifp = &sc->arpcom.ac_if;
5211 	struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
5212 	int error, tx_wreg, i;
5213 
5214 	tx_wreg = txr->bnx_tx_wreg;
5215 	error = sysctl_handle_int(oidp, &tx_wreg, 0, req);
5216 	if (error || req->newptr == NULL)
5217 		return error;
5218 
5219 	ifnet_serialize_all(ifp);
5220 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
5221 		sc->bnx_tx_ring[i].bnx_tx_wreg = tx_wreg;
5222 	ifnet_deserialize_all(ifp);
5223 
5224 	return 0;
5225 }
5226 
5227 static int
5228 bnx_create_rx_ret_ring(struct bnx_rx_ret_ring *ret)
5229 {
5230 	int error;
5231 
5232 	lwkt_serialize_init(&ret->bnx_rx_ret_serialize);
5233 
5234 	/*
5235 	 * Create DMA stuffs for RX return ring.
5236 	 */
5237 	error = bnx_dma_block_alloc(ret->bnx_sc,
5238 	    BGE_RX_RTN_RING_SZ(BNX_RETURN_RING_CNT),
5239 	    &ret->bnx_rx_ret_ring_tag,
5240 	    &ret->bnx_rx_ret_ring_map,
5241 	    (void *)&ret->bnx_rx_ret_ring,
5242 	    &ret->bnx_rx_ret_ring_paddr);
5243 	if (error) {
5244 		device_printf(ret->bnx_sc->bnx_dev,
5245 		    "could not create RX ret ring\n");
5246 		return error;
5247 	}
5248 
5249 	/* Shadow standard ring's RX mbuf DMA tag */
5250 	ret->bnx_rx_mtag = ret->bnx_std->bnx_rx_mtag;
5251 
5252 	/*
5253 	 * Create tmp DMA map for RX mbufs.
5254 	 */
5255 	error = bus_dmamap_create(ret->bnx_rx_mtag, BUS_DMA_WAITOK,
5256 	    &ret->bnx_rx_tmpmap);
5257 	if (error) {
5258 		device_printf(ret->bnx_sc->bnx_dev,
5259 		    "could not create tmp RX mbuf DMA map\n");
5260 		ret->bnx_rx_mtag = NULL;
5261 		return error;
5262 	}
5263 	return 0;
5264 }
5265 
5266 static void
5267 bnx_destroy_rx_ret_ring(struct bnx_rx_ret_ring *ret)
5268 {
5269 	/* Destroy tmp RX mbuf DMA map */
5270 	if (ret->bnx_rx_mtag != NULL)
5271 		bus_dmamap_destroy(ret->bnx_rx_mtag, ret->bnx_rx_tmpmap);
5272 
5273 	/* Destroy RX return ring */
5274 	bnx_dma_block_free(ret->bnx_rx_ret_ring_tag,
5275 	    ret->bnx_rx_ret_ring_map, ret->bnx_rx_ret_ring);
5276 }
5277 
5278 static int
5279 bnx_alloc_intr(struct bnx_softc *sc)
5280 {
5281 	struct bnx_intr_data *intr;
5282 	u_int intr_flags;
5283 	int error;
5284 
5285 	if (sc->bnx_intr_cnt > 1) {
5286 		error = bnx_alloc_msix(sc);
5287 		if (error)
5288 			return error;
5289 		KKASSERT(sc->bnx_intr_type == PCI_INTR_TYPE_MSIX);
5290 		return 0;
5291 	}
5292 
5293 	KKASSERT(sc->bnx_intr_cnt == 1);
5294 
5295 	intr = &sc->bnx_intr_data[0];
5296 	intr->bnx_ret = &sc->bnx_rx_ret_ring[0];
5297 	intr->bnx_txr = &sc->bnx_tx_ring[0];
5298 	intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5299 	intr->bnx_intr_check = bnx_check_intr_rxtx;
5300 	intr->bnx_saved_status_tag = &intr->bnx_ret->bnx_saved_status_tag;
5301 
5302 	sc->bnx_intr_type = pci_alloc_1intr(sc->bnx_dev, bnx_msi_enable,
5303 	    &intr->bnx_intr_rid, &intr_flags);
5304 
5305 	intr->bnx_intr_res = bus_alloc_resource_any(sc->bnx_dev, SYS_RES_IRQ,
5306 	    &intr->bnx_intr_rid, intr_flags);
5307 	if (intr->bnx_intr_res == NULL) {
5308 		device_printf(sc->bnx_dev, "could not alloc interrupt\n");
5309 		return ENXIO;
5310 	}
5311 
5312 	if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI) {
5313 		bnx_enable_msi(sc, FALSE);
5314 		intr->bnx_intr_func = bnx_msi;
5315 		if (bootverbose)
5316 			device_printf(sc->bnx_dev, "oneshot MSI\n");
5317 	} else {
5318 		intr->bnx_intr_func = bnx_intr_legacy;
5319 	}
5320 	intr->bnx_intr_arg = sc;
5321 	intr->bnx_intr_cpuid = rman_get_cpuid(intr->bnx_intr_res);
5322 
5323 	intr->bnx_txr->bnx_tx_cpuid = intr->bnx_intr_cpuid;
5324 
5325 	return 0;
5326 }
5327 
5328 static int
5329 bnx_setup_intr(struct bnx_softc *sc)
5330 {
5331 	int error, i;
5332 
5333 	for (i = 0; i < sc->bnx_intr_cnt; ++i) {
5334 		struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
5335 
5336 		error = bus_setup_intr_descr(sc->bnx_dev, intr->bnx_intr_res,
5337 		    INTR_MPSAFE, intr->bnx_intr_func, intr->bnx_intr_arg,
5338 		    &intr->bnx_intr_hand, intr->bnx_intr_serialize,
5339 		    intr->bnx_intr_desc);
5340 		if (error) {
5341 			device_printf(sc->bnx_dev,
5342 			    "could not set up %dth intr\n", i);
5343 			bnx_teardown_intr(sc, i);
5344 			return error;
5345 		}
5346 	}
5347 	return 0;
5348 }
5349 
5350 static void
5351 bnx_teardown_intr(struct bnx_softc *sc, int cnt)
5352 {
5353 	int i;
5354 
5355 	for (i = 0; i < cnt; ++i) {
5356 		struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
5357 
5358 		bus_teardown_intr(sc->bnx_dev, intr->bnx_intr_res,
5359 		    intr->bnx_intr_hand);
5360 	}
5361 }
5362 
5363 static void
5364 bnx_free_intr(struct bnx_softc *sc)
5365 {
5366 	if (sc->bnx_intr_type != PCI_INTR_TYPE_MSIX) {
5367 		struct bnx_intr_data *intr;
5368 
5369 		KKASSERT(sc->bnx_intr_cnt <= 1);
5370 		intr = &sc->bnx_intr_data[0];
5371 
5372 		if (intr->bnx_intr_res != NULL) {
5373 			bus_release_resource(sc->bnx_dev, SYS_RES_IRQ,
5374 			    intr->bnx_intr_rid, intr->bnx_intr_res);
5375 		}
5376 		if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI)
5377 			pci_release_msi(sc->bnx_dev);
5378 	} else {
5379 		bnx_free_msix(sc, TRUE);
5380 	}
5381 }
5382 
5383 static void
5384 bnx_setup_serialize(struct bnx_softc *sc)
5385 {
5386 	int i, j;
5387 
5388 	/*
5389 	 * Allocate serializer array
5390 	 */
5391 
5392 	/* Main + RX STD + TX + RX RET */
5393 	sc->bnx_serialize_cnt = 1 + 1 + sc->bnx_tx_ringcnt + sc->bnx_rx_retcnt;
5394 
5395 	sc->bnx_serialize =
5396 	    kmalloc(sc->bnx_serialize_cnt * sizeof(struct lwkt_serialize *),
5397 	        M_DEVBUF, M_WAITOK | M_ZERO);
5398 
5399 	/*
5400 	 * Setup serializers
5401 	 *
5402 	 * NOTE: Order is critical
5403 	 */
5404 
5405 	i = 0;
5406 
5407 	KKASSERT(i < sc->bnx_serialize_cnt);
5408 	sc->bnx_serialize[i++] = &sc->bnx_main_serialize;
5409 
5410 	KKASSERT(i < sc->bnx_serialize_cnt);
5411 	sc->bnx_serialize[i++] = &sc->bnx_rx_std_ring.bnx_rx_std_serialize;
5412 
5413 	for (j = 0; j < sc->bnx_rx_retcnt; ++j) {
5414 		KKASSERT(i < sc->bnx_serialize_cnt);
5415 		sc->bnx_serialize[i++] =
5416 		    &sc->bnx_rx_ret_ring[j].bnx_rx_ret_serialize;
5417 	}
5418 
5419 	for (j = 0; j < sc->bnx_tx_ringcnt; ++j) {
5420 		KKASSERT(i < sc->bnx_serialize_cnt);
5421 		sc->bnx_serialize[i++] =
5422 		    &sc->bnx_tx_ring[j].bnx_tx_serialize;
5423 	}
5424 
5425 	KKASSERT(i == sc->bnx_serialize_cnt);
5426 }
5427 
5428 static void
5429 bnx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
5430 {
5431 	struct bnx_softc *sc = ifp->if_softc;
5432 
5433 	ifnet_serialize_array_enter(sc->bnx_serialize,
5434 	    sc->bnx_serialize_cnt, slz);
5435 }
5436 
5437 static void
5438 bnx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
5439 {
5440 	struct bnx_softc *sc = ifp->if_softc;
5441 
5442 	ifnet_serialize_array_exit(sc->bnx_serialize,
5443 	    sc->bnx_serialize_cnt, slz);
5444 }
5445 
5446 static int
5447 bnx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
5448 {
5449 	struct bnx_softc *sc = ifp->if_softc;
5450 
5451 	return ifnet_serialize_array_try(sc->bnx_serialize,
5452 	    sc->bnx_serialize_cnt, slz);
5453 }
5454 
5455 #ifdef INVARIANTS
5456 
5457 static void
5458 bnx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
5459     boolean_t serialized)
5460 {
5461 	struct bnx_softc *sc = ifp->if_softc;
5462 
5463 	ifnet_serialize_array_assert(sc->bnx_serialize, sc->bnx_serialize_cnt,
5464 	    slz, serialized);
5465 }
5466 
5467 #endif	/* INVARIANTS */
5468 
5469 #ifdef IFPOLL_ENABLE
5470 
5471 static int
5472 bnx_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS)
5473 {
5474 	struct bnx_softc *sc = (void *)arg1;
5475 	struct ifnet *ifp = &sc->arpcom.ac_if;
5476 	int error, off;
5477 
5478 	off = sc->bnx_npoll_rxoff;
5479 	error = sysctl_handle_int(oidp, &off, 0, req);
5480 	if (error || req->newptr == NULL)
5481 		return error;
5482 	if (off < 0)
5483 		return EINVAL;
5484 
5485 	ifnet_serialize_all(ifp);
5486 	if (off >= ncpus2 || off % sc->bnx_rx_retcnt != 0) {
5487 		error = EINVAL;
5488 	} else {
5489 		error = 0;
5490 		sc->bnx_npoll_txoff = off;
5491 		sc->bnx_npoll_rxoff = off;
5492 	}
5493 	ifnet_deserialize_all(ifp);
5494 
5495 	return error;
5496 }
5497 
5498 static int
5499 bnx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
5500 {
5501 	struct bnx_softc *sc = (void *)arg1;
5502 	struct ifnet *ifp = &sc->arpcom.ac_if;
5503 	int error, off;
5504 
5505 	off = sc->bnx_npoll_rxoff;
5506 	error = sysctl_handle_int(oidp, &off, 0, req);
5507 	if (error || req->newptr == NULL)
5508 		return error;
5509 	if (off < 0)
5510 		return EINVAL;
5511 
5512 	ifnet_serialize_all(ifp);
5513 	if (off >= ncpus2 || off % sc->bnx_rx_retcnt != 0) {
5514 		error = EINVAL;
5515 	} else {
5516 		error = 0;
5517 		sc->bnx_npoll_rxoff = off;
5518 	}
5519 	ifnet_deserialize_all(ifp);
5520 
5521 	return error;
5522 }
5523 
5524 static int
5525 bnx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
5526 {
5527 	struct bnx_softc *sc = (void *)arg1;
5528 	struct ifnet *ifp = &sc->arpcom.ac_if;
5529 	int error, off;
5530 
5531 	off = sc->bnx_npoll_txoff;
5532 	error = sysctl_handle_int(oidp, &off, 0, req);
5533 	if (error || req->newptr == NULL)
5534 		return error;
5535 	if (off < 0)
5536 		return EINVAL;
5537 
5538 	ifnet_serialize_all(ifp);
5539 	if (off >= ncpus2) {
5540 		error = EINVAL;
5541 	} else {
5542 		error = 0;
5543 		sc->bnx_npoll_txoff = off;
5544 	}
5545 	ifnet_deserialize_all(ifp);
5546 
5547 	return error;
5548 }
5549 
5550 #endif	/* IFPOLL_ENABLE */
5551 
5552 static void
5553 bnx_set_tick_cpuid(struct bnx_softc *sc, boolean_t polling)
5554 {
5555 	if (polling)
5556 		sc->bnx_tick_cpuid = 0; /* XXX */
5557 	else
5558 		sc->bnx_tick_cpuid = sc->bnx_intr_data[0].bnx_intr_cpuid;
5559 }
5560 
5561 static void
5562 bnx_rx_std_refill_ithread(void *xstd)
5563 {
5564 	struct bnx_rx_std_ring *std = xstd;
5565 	struct globaldata *gd = mycpu;
5566 
5567 	crit_enter_gd(gd);
5568 
5569 	while (!std->bnx_rx_std_stop) {
5570 		if (std->bnx_rx_std_refill) {
5571 			lwkt_serialize_handler_call(
5572 			    &std->bnx_rx_std_serialize,
5573 			    bnx_rx_std_refill, std, NULL);
5574 		}
5575 
5576 		crit_exit_gd(gd);
5577 		crit_enter_gd(gd);
5578 
5579 		atomic_poll_release_int(&std->bnx_rx_std_running);
5580 		cpu_mfence();
5581 
5582 		if (!std->bnx_rx_std_refill && !std->bnx_rx_std_stop) {
5583 			lwkt_deschedule_self(gd->gd_curthread);
5584 			lwkt_switch();
5585 		}
5586 	}
5587 
5588 	crit_exit_gd(gd);
5589 
5590 	wakeup(std);
5591 
5592 	lwkt_exit();
5593 }
5594 
5595 static void
5596 bnx_rx_std_refill(void *xstd, void *frame __unused)
5597 {
5598 	struct bnx_rx_std_ring *std = xstd;
5599 	int cnt, refill_mask;
5600 
5601 again:
5602 	cnt = 0;
5603 
5604 	cpu_lfence();
5605 	refill_mask = std->bnx_rx_std_refill;
5606 	atomic_clear_int(&std->bnx_rx_std_refill, refill_mask);
5607 
5608 	while (refill_mask) {
5609 		uint16_t check_idx = std->bnx_rx_std;
5610 		int ret_idx;
5611 
5612 		ret_idx = bsfl(refill_mask);
5613 		for (;;) {
5614 			struct bnx_rx_buf *rb;
5615 			int refilled;
5616 
5617 			BNX_INC(check_idx, BGE_STD_RX_RING_CNT);
5618 			rb = &std->bnx_rx_std_buf[check_idx];
5619 			refilled = rb->bnx_rx_refilled;
5620 			cpu_lfence();
5621 			if (refilled) {
5622 				bnx_setup_rxdesc_std(std, check_idx);
5623 				std->bnx_rx_std = check_idx;
5624 				++cnt;
5625 				if (cnt >= 8) {
5626 					atomic_subtract_int(
5627 					    &std->bnx_rx_std_used, cnt);
5628 					bnx_writembx(std->bnx_sc,
5629 					    BGE_MBX_RX_STD_PROD_LO,
5630 					    std->bnx_rx_std);
5631 					cnt = 0;
5632 				}
5633 			} else {
5634 				break;
5635 			}
5636 		}
5637 		refill_mask &= ~(1 << ret_idx);
5638 	}
5639 
5640 	if (cnt) {
5641 		atomic_subtract_int(&std->bnx_rx_std_used, cnt);
5642 		bnx_writembx(std->bnx_sc, BGE_MBX_RX_STD_PROD_LO,
5643 		    std->bnx_rx_std);
5644 	}
5645 
5646 	if (std->bnx_rx_std_refill)
5647 		goto again;
5648 
5649 	atomic_poll_release_int(&std->bnx_rx_std_running);
5650 	cpu_mfence();
5651 
5652 	if (std->bnx_rx_std_refill)
5653 		goto again;
5654 }
5655 
5656 static int
5657 bnx_sysctl_std_refill(SYSCTL_HANDLER_ARGS)
5658 {
5659 	struct bnx_softc *sc = (void *)arg1;
5660 	struct ifnet *ifp = &sc->arpcom.ac_if;
5661 	struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
5662 	int error, cntmax, i;
5663 
5664 	cntmax = ret->bnx_rx_cntmax;
5665 	error = sysctl_handle_int(oidp, &cntmax, 0, req);
5666 	if (error || req->newptr == NULL)
5667 		return error;
5668 
5669 	ifnet_serialize_all(ifp);
5670 
5671 	if ((cntmax * sc->bnx_rx_retcnt) >= BGE_STD_RX_RING_CNT / 2) {
5672 		error = EINVAL;
5673 		goto back;
5674 	}
5675 
5676 	for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
5677 		sc->bnx_rx_ret_ring[i].bnx_rx_cntmax = cntmax;
5678 	error = 0;
5679 
5680 back:
5681 	ifnet_deserialize_all(ifp);
5682 
5683 	return error;
5684 }
5685 
5686 static void
5687 bnx_init_rss(struct bnx_softc *sc)
5688 {
5689 	uint8_t key[BGE_RSS_KEYREG_CNT * BGE_RSS_KEYREG_SIZE];
5690 	int i, j, r;
5691 
5692 	KKASSERT(BNX_RSS_ENABLED(sc));
5693 
5694 	/*
5695 	 * Configure RSS redirect table in following fashion:
5696 	 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
5697 	 */
5698 	r = 0;
5699 	for (j = 0; j < BGE_RSS_INDIR_TBL_CNT; ++j) {
5700 		uint32_t tbl = 0;
5701 
5702 		for (i = 0; i < BGE_RSS_INDIR_TBLENT_CNT; ++i) {
5703 			uint32_t q;
5704 
5705 			q = r % sc->bnx_rx_retcnt;
5706 			tbl |= q << (BGE_RSS_INDIR_TBLENT_SHIFT *
5707 			    (BGE_RSS_INDIR_TBLENT_CNT - i - 1));
5708 			++r;
5709 		}
5710 
5711 		BNX_RSS_DPRINTF(sc, 1, "tbl%d %08x\n", j, tbl);
5712 		CSR_WRITE_4(sc, BGE_RSS_INDIR_TBL(j), tbl);
5713 	}
5714 
5715 	toeplitz_get_key(key, sizeof(key));
5716 	for (i = 0; i < BGE_RSS_KEYREG_CNT; ++i) {
5717 		uint32_t keyreg;
5718 
5719 		keyreg = BGE_RSS_KEYREG_VAL(key, i);
5720 
5721 		BNX_RSS_DPRINTF(sc, 1, "key%d %08x\n", i, keyreg);
5722 		CSR_WRITE_4(sc, BGE_RSS_KEYREG(i), keyreg);
5723 	}
5724 }
5725 
5726 static void
5727 bnx_setup_ring_cnt(struct bnx_softc *sc)
5728 {
5729 	int msix_enable, i, msix_cnt, msix_cnt2, ring_max;
5730 
5731 	sc->bnx_tx_ringcnt = 1;
5732 	sc->bnx_rx_retcnt = 1;
5733 	sc->bnx_intr_cnt = 1;
5734 
5735 	msix_enable = device_getenv_int(sc->bnx_dev, "msix.enable",
5736 	    bnx_msix_enable);
5737 	if (!msix_enable)
5738 		return;
5739 
5740 	if (ncpus2 == 1)
5741 		return;
5742 
5743 	msix_cnt = pci_msix_count(sc->bnx_dev);
5744 	if (msix_cnt <= 1)
5745 		return;
5746 
5747 	i = 0;
5748 	while ((1 << (i + 1)) <= msix_cnt)
5749 		++i;
5750 	msix_cnt2 = 1 << i;
5751 
5752 	/*
5753 	 * One MSI-X vector is dedicated to status or single TX queue,
5754 	 * so make sure that there are enough MSI-X vectors.
5755 	 */
5756 	if (msix_cnt == msix_cnt2) {
5757 		/*
5758 		 * XXX
5759 		 * This probably will not happen; 57785/5718 families
5760 		 * come with at least 5 MSI-X vectors.
5761 		 */
5762 		msix_cnt2 >>= 1;
5763 		if (msix_cnt2 <= 1) {
5764 			device_printf(sc->bnx_dev,
5765 			    "MSI-X count %d could not be used\n", msix_cnt);
5766 			return;
5767 		}
5768 		device_printf(sc->bnx_dev, "MSI-X count %d is power of 2\n",
5769 		    msix_cnt);
5770 	}
5771 
5772 	/*
5773 	 * Setup RX ring count
5774 	 */
5775 	ring_max = BNX_RX_RING_MAX;
5776 	if (ring_max > msix_cnt2)
5777 		ring_max = msix_cnt2;
5778 	sc->bnx_rx_retcnt = device_getenv_int(sc->bnx_dev, "rx_rings",
5779 	    bnx_rx_rings);
5780 	sc->bnx_rx_retcnt = if_ring_count2(sc->bnx_rx_retcnt, ring_max);
5781 
5782 	if (sc->bnx_rx_retcnt == 1)
5783 		return;
5784 
5785 	/*
5786 	 * We need one extra MSI-X vector for link status or
5787 	 * TX ring (if only one TX ring is enabled).
5788 	 */
5789 	sc->bnx_intr_cnt = sc->bnx_rx_retcnt + 1;
5790 
5791 	/*
5792 	 * Setup TX ring count
5793 	 *
5794 	 * Currently only BCM5719 and BCM5720 support multiple TX rings
5795 	 * and the TX ring count must be less than the RX ring count.
5796 	 */
5797 	if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
5798 	    sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
5799 		ring_max = BNX_TX_RING_MAX;
5800 		if (ring_max > msix_cnt2)
5801 			ring_max = msix_cnt2;
5802 		if (ring_max > sc->bnx_rx_retcnt)
5803 			ring_max = sc->bnx_rx_retcnt;
5804 		sc->bnx_tx_ringcnt = device_getenv_int(sc->bnx_dev, "tx_rings",
5805 		    bnx_tx_rings);
5806 		sc->bnx_tx_ringcnt = if_ring_count2(sc->bnx_tx_ringcnt,
5807 		    ring_max);
5808 	}
5809 }
5810 
5811 static int
5812 bnx_alloc_msix(struct bnx_softc *sc)
5813 {
5814 	struct bnx_intr_data *intr;
5815 	boolean_t setup = FALSE;
5816 	int error, i, offset, offset_def;
5817 
5818 	KKASSERT(sc->bnx_intr_cnt > 1);
5819 	KKASSERT(sc->bnx_intr_cnt == sc->bnx_rx_retcnt + 1);
5820 
5821 	if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
5822 		/*
5823 		 * Link status
5824 		 */
5825 		intr = &sc->bnx_intr_data[0];
5826 
5827 		intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5828 		intr->bnx_saved_status_tag = &sc->bnx_saved_status_tag;
5829 
5830 		intr->bnx_intr_func = bnx_msix_status;
5831 		intr->bnx_intr_arg = sc;
5832 		intr->bnx_intr_cpuid = 0; /* XXX */
5833 
5834 		ksnprintf(intr->bnx_intr_desc0, sizeof(intr->bnx_intr_desc0),
5835 		    "%s sts", device_get_nameunit(sc->bnx_dev));
5836 		intr->bnx_intr_desc = intr->bnx_intr_desc0;
5837 
5838 		/*
5839 		 * RX/TX rings
5840 		 */
5841 		if (sc->bnx_rx_retcnt == ncpus2) {
5842 			offset = 0;
5843 		} else {
5844 			offset_def = (sc->bnx_rx_retcnt *
5845 			    device_get_unit(sc->bnx_dev)) % ncpus2;
5846 
5847 			offset = device_getenv_int(sc->bnx_dev,
5848 			    "msix.offset", offset_def);
5849 			if (offset >= ncpus2 ||
5850 			    offset % sc->bnx_rx_retcnt != 0) {
5851 				device_printf(sc->bnx_dev,
5852 				    "invalid msix.offset %d, use %d\n",
5853 				    offset, offset_def);
5854 				offset = offset_def;
5855 			}
5856 		}
5857 
5858 		for (i = 1; i < sc->bnx_intr_cnt; ++i) {
5859 			int idx = i - 1;
5860 
5861 			intr = &sc->bnx_intr_data[i];
5862 
5863 			KKASSERT(idx < sc->bnx_rx_retcnt);
5864 			intr->bnx_ret = &sc->bnx_rx_ret_ring[idx];
5865 			if (idx < sc->bnx_tx_ringcnt) {
5866 				intr->bnx_txr = &sc->bnx_tx_ring[idx];
5867 				intr->bnx_ret->bnx_txr = intr->bnx_txr;
5868 			}
5869 
5870 			intr->bnx_intr_serialize =
5871 			    &intr->bnx_ret->bnx_rx_ret_serialize;
5872 			intr->bnx_saved_status_tag =
5873 			    &intr->bnx_ret->bnx_saved_status_tag;
5874 
5875 			intr->bnx_intr_arg = intr->bnx_ret;
5876 			KKASSERT(idx + offset < ncpus2);
5877 			intr->bnx_intr_cpuid = idx + offset;
5878 
5879 			if (intr->bnx_txr == NULL) {
5880 				intr->bnx_intr_check = bnx_check_intr_rx;
5881 				intr->bnx_intr_func = bnx_msix_rx;
5882 				ksnprintf(intr->bnx_intr_desc0,
5883 				    sizeof(intr->bnx_intr_desc0), "%s rx%d",
5884 				    device_get_nameunit(sc->bnx_dev), idx);
5885 			} else {
5886 				intr->bnx_intr_check = bnx_check_intr_rxtx;
5887 				intr->bnx_intr_func = bnx_msix_rxtx;
5888 				ksnprintf(intr->bnx_intr_desc0,
5889 				    sizeof(intr->bnx_intr_desc0), "%s rxtx%d",
5890 				    device_get_nameunit(sc->bnx_dev), idx);
5891 
5892 				intr->bnx_txr->bnx_tx_cpuid =
5893 				    intr->bnx_intr_cpuid;
5894 			}
5895 			intr->bnx_intr_desc = intr->bnx_intr_desc0;
5896 
5897 			intr->bnx_ret->bnx_msix_mbx = intr->bnx_intr_mbx;
5898 		}
5899 	} else {
5900 		/*
5901 		 * TX ring and link status
5902 		 */
5903 		offset_def = device_get_unit(sc->bnx_dev) % ncpus2;
5904 		offset = device_getenv_int(sc->bnx_dev, "msix.txoff",
5905 		    offset_def);
5906 		if (offset >= ncpus2) {
5907 			device_printf(sc->bnx_dev,
5908 			    "invalid msix.txoff %d, use %d\n",
5909 			    offset, offset_def);
5910 			offset = offset_def;
5911 		}
5912 
5913 		intr = &sc->bnx_intr_data[0];
5914 
5915 		intr->bnx_txr = &sc->bnx_tx_ring[0];
5916 		intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5917 		intr->bnx_intr_check = bnx_check_intr_tx;
5918 		intr->bnx_saved_status_tag =
5919 		    &intr->bnx_txr->bnx_saved_status_tag;
5920 
5921 		intr->bnx_intr_func = bnx_msix_tx_status;
5922 		intr->bnx_intr_arg = intr->bnx_txr;
5923 		intr->bnx_intr_cpuid = offset;
5924 
5925 		ksnprintf(intr->bnx_intr_desc0, sizeof(intr->bnx_intr_desc0),
5926 		    "%s ststx", device_get_nameunit(sc->bnx_dev));
5927 		intr->bnx_intr_desc = intr->bnx_intr_desc0;
5928 
5929 		intr->bnx_txr->bnx_tx_cpuid = intr->bnx_intr_cpuid;
5930 
5931 		/*
5932 		 * RX rings
5933 		 */
5934 		if (sc->bnx_rx_retcnt == ncpus2) {
5935 			offset = 0;
5936 		} else {
5937 			offset_def = (sc->bnx_rx_retcnt *
5938 			    device_get_unit(sc->bnx_dev)) % ncpus2;
5939 
5940 			offset = device_getenv_int(sc->bnx_dev,
5941 			    "msix.rxoff", offset_def);
5942 			if (offset >= ncpus2 ||
5943 			    offset % sc->bnx_rx_retcnt != 0) {
5944 				device_printf(sc->bnx_dev,
5945 				    "invalid msix.rxoff %d, use %d\n",
5946 				    offset, offset_def);
5947 				offset = offset_def;
5948 			}
5949 		}
5950 
5951 		for (i = 1; i < sc->bnx_intr_cnt; ++i) {
5952 			int idx = i - 1;
5953 
5954 			intr = &sc->bnx_intr_data[i];
5955 
5956 			KKASSERT(idx < sc->bnx_rx_retcnt);
5957 			intr->bnx_ret = &sc->bnx_rx_ret_ring[idx];
5958 			intr->bnx_intr_serialize =
5959 			    &intr->bnx_ret->bnx_rx_ret_serialize;
5960 			intr->bnx_intr_check = bnx_check_intr_rx;
5961 			intr->bnx_saved_status_tag =
5962 			    &intr->bnx_ret->bnx_saved_status_tag;
5963 
5964 			intr->bnx_intr_func = bnx_msix_rx;
5965 			intr->bnx_intr_arg = intr->bnx_ret;
5966 			KKASSERT(idx + offset < ncpus2);
5967 			intr->bnx_intr_cpuid = idx + offset;
5968 
5969 			ksnprintf(intr->bnx_intr_desc0,
5970 			    sizeof(intr->bnx_intr_desc0), "%s rx%d",
5971 			    device_get_nameunit(sc->bnx_dev), idx);
5972 			intr->bnx_intr_desc = intr->bnx_intr_desc0;
5973 
5974 			intr->bnx_ret->bnx_msix_mbx = intr->bnx_intr_mbx;
5975 		}
5976 	}
5977 
5978 	sc->bnx_msix_mem_rid = PCIR_BAR(4);
5979 	sc->bnx_msix_mem_res = bus_alloc_resource_any(sc->bnx_dev,
5980 	    SYS_RES_MEMORY, &sc->bnx_msix_mem_rid, RF_ACTIVE);
5981 	if (sc->bnx_msix_mem_res == NULL) {
5982 		device_printf(sc->bnx_dev, "could not alloc MSI-X table\n");
5983 		return ENXIO;
5984 	}
5985 
5986 	bnx_enable_msi(sc, TRUE);
5987 
5988 	error = pci_setup_msix(sc->bnx_dev);
5989 	if (error) {
5990 		device_printf(sc->bnx_dev, "could not setup MSI-X\n");
5991 		goto back;
5992 	}
5993 	setup = TRUE;
5994 
5995 	for (i = 0; i < sc->bnx_intr_cnt; ++i) {
5996 		intr = &sc->bnx_intr_data[i];
5997 
5998 		error = pci_alloc_msix_vector(sc->bnx_dev, i,
5999 		    &intr->bnx_intr_rid, intr->bnx_intr_cpuid);
6000 		if (error) {
6001 			device_printf(sc->bnx_dev,
6002 			    "could not alloc MSI-X %d on cpu%d\n",
6003 			    i, intr->bnx_intr_cpuid);
6004 			goto back;
6005 		}
6006 
6007 		intr->bnx_intr_res = bus_alloc_resource_any(sc->bnx_dev,
6008 		    SYS_RES_IRQ, &intr->bnx_intr_rid, RF_ACTIVE);
6009 		if (intr->bnx_intr_res == NULL) {
6010 			device_printf(sc->bnx_dev,
6011 			    "could not alloc MSI-X %d resource\n", i);
6012 			error = ENXIO;
6013 			goto back;
6014 		}
6015 	}
6016 
6017 	pci_enable_msix(sc->bnx_dev);
6018 	sc->bnx_intr_type = PCI_INTR_TYPE_MSIX;
6019 back:
6020 	if (error)
6021 		bnx_free_msix(sc, setup);
6022 	return error;
6023 }
6024 
6025 static void
6026 bnx_free_msix(struct bnx_softc *sc, boolean_t setup)
6027 {
6028 	int i;
6029 
6030 	KKASSERT(sc->bnx_intr_cnt > 1);
6031 
6032 	for (i = 0; i < sc->bnx_intr_cnt; ++i) {
6033 		struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
6034 
6035 		if (intr->bnx_intr_res != NULL) {
6036 			bus_release_resource(sc->bnx_dev, SYS_RES_IRQ,
6037 			    intr->bnx_intr_rid, intr->bnx_intr_res);
6038 		}
6039 		if (intr->bnx_intr_rid >= 0) {
6040 			pci_release_msix_vector(sc->bnx_dev,
6041 			    intr->bnx_intr_rid);
6042 		}
6043 	}
6044 	if (setup)
6045 		pci_teardown_msix(sc->bnx_dev);
6046 }
6047 
6048 static void
6049 bnx_rx_std_refill_sched_ipi(void *xret)
6050 {
6051 	struct bnx_rx_ret_ring *ret = xret;
6052 	struct bnx_rx_std_ring *std = ret->bnx_std;
6053 	struct globaldata *gd = mycpu;
6054 
6055 	crit_enter_gd(gd);
6056 
6057 	atomic_set_int(&std->bnx_rx_std_refill, ret->bnx_rx_mask);
6058 	cpu_sfence();
6059 
6060 	KKASSERT(std->bnx_rx_std_ithread.td_gd == gd);
6061 	lwkt_schedule(&std->bnx_rx_std_ithread);
6062 
6063 	crit_exit_gd(gd);
6064 }
6065 
6066 static void
6067 bnx_rx_std_refill_stop(void *xstd)
6068 {
6069 	struct bnx_rx_std_ring *std = xstd;
6070 	struct globaldata *gd = mycpu;
6071 
6072 	crit_enter_gd(gd);
6073 
6074 	std->bnx_rx_std_stop = 1;
6075 	cpu_sfence();
6076 
6077 	KKASSERT(std->bnx_rx_std_ithread.td_gd == gd);
6078 	lwkt_schedule(&std->bnx_rx_std_ithread);
6079 
6080 	crit_exit_gd(gd);
6081 }
6082 
6083 static void
6084 bnx_serialize_skipmain(struct bnx_softc *sc)
6085 {
6086 	lwkt_serialize_array_enter(sc->bnx_serialize,
6087 	    sc->bnx_serialize_cnt, 1);
6088 }
6089 
6090 static void
6091 bnx_deserialize_skipmain(struct bnx_softc *sc)
6092 {
6093 	lwkt_serialize_array_exit(sc->bnx_serialize,
6094 	    sc->bnx_serialize_cnt, 1);
6095 }
6096 
6097 static void
6098 bnx_rx_std_refill_sched(struct bnx_rx_ret_ring *ret,
6099     struct bnx_rx_std_ring *std)
6100 {
6101 	struct globaldata *gd = mycpu;
6102 
6103 	ret->bnx_rx_cnt = 0;
6104 	cpu_sfence();
6105 
6106 	crit_enter_gd(gd);
6107 
6108 	atomic_set_int(&std->bnx_rx_std_refill, ret->bnx_rx_mask);
6109 	cpu_sfence();
6110 	if (atomic_poll_acquire_int(&std->bnx_rx_std_running)) {
6111 		if (std->bnx_rx_std_ithread.td_gd == gd) {
6112 			lwkt_schedule(&std->bnx_rx_std_ithread);
6113 		} else {
6114 			lwkt_send_ipiq(
6115 			    std->bnx_rx_std_ithread.td_gd,
6116 			    bnx_rx_std_refill_sched_ipi, ret);
6117 		}
6118 	}
6119 
6120 	crit_exit_gd(gd);
6121 }
6122 
6123 static struct pktinfo *
6124 bnx_rss_info(struct pktinfo *pi, const struct bge_rx_bd *cur_rx)
6125 {
6126 	/* Don't pick up IPv6 packet */
6127 	if (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6)
6128 		return NULL;
6129 
6130 	/* Don't pick up IP packet w/o IP checksum */
6131 	if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) == 0 ||
6132 	    (cur_rx->bge_error_flag & BGE_RXERRFLAG_IP_CSUM_NOK))
6133 		return NULL;
6134 
6135 	/* Don't pick up IP packet w/o TCP/UDP checksum */
6136 	if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) == 0)
6137 		return NULL;
6138 
6139 	/* May be IP fragment */
6140 	if (cur_rx->bge_tcp_udp_csum != 0xffff)
6141 		return NULL;
6142 
6143 	if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_IS_TCP)
6144 		pi->pi_l3proto = IPPROTO_TCP;
6145 	else
6146 		pi->pi_l3proto = IPPROTO_UDP;
6147 	pi->pi_netisr = NETISR_IP;
6148 	pi->pi_flags = 0;
6149 
6150 	return pi;
6151 }
6152