xref: /dragonfly/sys/dev/netif/dc/if_dc.c (revision 0bb9290e)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.50 2006/04/30 02:02:06 sephe Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Conexant LANfinity (www.conexant.com)
52  *
53  * Datasheets for the 21143 are available at developer.intel.com.
54  * Datasheets for the clone parts can be found at their respective sites.
55  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
56  * The PNIC II is essentially a Macronix 98715A chip; the only difference
57  * worth noting is that its multicast hash table is only 128 bits wide
58  * instead of 512.
59  *
60  * Written by Bill Paul <wpaul@ee.columbia.edu>
61  * Electrical Engineering Department
62  * Columbia University, New York City
63  */
64 
65 /*
66  * The Intel 21143 is the successor to the DEC 21140. It is basically
67  * the same as the 21140 but with a few new features. The 21143 supports
68  * three kinds of media attachments:
69  *
70  * o MII port, for 10Mbps and 100Mbps support and NWAY
71  *   autonegotiation provided by an external PHY.
72  * o SYM port, for symbol mode 100Mbps support.
73  * o 10baseT port.
74  * o AUI/BNC port.
75  *
76  * The 100Mbps SYM port and 10baseT port can be used together in
77  * combination with the internal NWAY support to create a 10/100
78  * autosensing configuration.
79  *
80  * Note that not all tulip workalikes are handled in this driver: we only
81  * deal with those which are relatively well behaved. The Winbond is
82  * handled separately due to its different register offsets and the
83  * special handling needed for its various bugs. The PNIC is handled
84  * here, but I'm not thrilled about it.
85  *
86  * All of the workalike chips use some form of MII transceiver support
87  * with the exception of the Macronix chips, which also have a SYM port.
88  * The ASIX AX88140A is also documented to have a SYM port, but all
89  * the cards I've seen use an MII transceiver, probably because the
90  * AX88140A doesn't support internal NWAY.
91  */
92 
93 #include "opt_polling.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102 #include <sys/sysctl.h>
103 #include <sys/thread2.h>
104 
105 #include <net/if.h>
106 #include <net/ifq_var.h>
107 #include <net/if_arp.h>
108 #include <net/ethernet.h>
109 #include <net/if_dl.h>
110 #include <net/if_media.h>
111 #include <net/if_types.h>
112 #include <net/vlan/if_vlan_var.h>
113 
114 #include <net/bpf.h>
115 
116 #include <vm/vm.h>              /* for vtophys */
117 #include <vm/pmap.h>            /* for vtophys */
118 #include <machine/bus_pio.h>
119 #include <machine/bus_memio.h>
120 #include <machine/bus.h>
121 #include <machine/resource.h>
122 #include <sys/bus.h>
123 #include <sys/rman.h>
124 
125 #include "../mii_layer/mii.h"
126 #include "../mii_layer/miivar.h"
127 
128 #include <bus/pci/pcireg.h>
129 #include <bus/pci/pcivar.h>
130 
131 #define DC_USEIOSPACE
132 
133 #include "if_dcreg.h"
134 
135 /* "controller miibus0" required.  See GENERIC if you get errors here. */
136 #include "miibus_if.h"
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static const struct dc_type dc_devs[] = {
142 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
143 		"Intel 21143 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
145 		"Davicom DM9009 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
147 		"Davicom DM9100 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
149 		"Davicom DM9102 10/100BaseTX" },
150 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
151 		"Davicom DM9102A 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
153 		"ADMtek AL981 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
155 		"ADMtek AN985 10/100BaseTX" },
156 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
157 		"Netgear FA511 10/100BaseTX" },
158 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
159 		"ADMtek ADM9511 10/100BaseTX" },
160 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
161 		"ADMtek ADM9513 10/100BaseTX" },
162 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
163 		"ASIX AX88140A 10/100BaseTX" },
164 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
165 		"ASIX AX88141 10/100BaseTX" },
166 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
167 		"Macronix 98713 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
169 		"Macronix 98713A 10/100BaseTX" },
170 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
171 		"Compex RL100-TX 10/100BaseTX" },
172 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
173 		"Compex RL100-TX 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
175 		"Macronix 98715/98715A 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
177 		"Macronix 98715AEC-C 10/100BaseTX" },
178 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
179 		"Macronix 98725 10/100BaseTX" },
180 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
181 		"Macronix 98727/98732 10/100BaseTX" },
182 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
183 		"LC82C115 PNIC II 10/100BaseTX" },
184 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
185 		"82c168 PNIC 10/100BaseTX" },
186 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
187 		"82c169 PNIC 10/100BaseTX" },
188 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
189 		"Accton EN1217 10/100BaseTX" },
190 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
191 		"Accton EN2242 MiniPCI 10/100BaseTX" },
192     	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
193 	  	"Xircom X3201 10/100BaseTX" },
194 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
195 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
196 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
197 		"3Com OfficeConnect 10/100B" },
198 	{ 0, 0, NULL }
199 };
200 
201 static int dc_probe		(device_t);
202 static int dc_attach		(device_t);
203 static int dc_detach		(device_t);
204 static int dc_suspend		(device_t);
205 static int dc_resume		(device_t);
206 static void dc_acpi		(device_t);
207 static const struct dc_type *dc_devtype	(device_t);
208 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
209 static int dc_encap		(struct dc_softc *, struct mbuf *,
210 					u_int32_t *);
211 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
212 static int dc_rx_resync		(struct dc_softc *);
213 static void dc_rxeof		(struct dc_softc *);
214 static void dc_txeof		(struct dc_softc *);
215 static void dc_tick		(void *);
216 static void dc_tx_underrun	(struct dc_softc *);
217 static void dc_intr		(void *);
218 static void dc_start		(struct ifnet *);
219 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
220 					struct ucred *);
221 #ifdef DEVICE_POLLING
222 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
223 					int count);
224 #endif
225 static void dc_init		(void *);
226 static void dc_stop		(struct dc_softc *);
227 static void dc_watchdog		(struct ifnet *);
228 static void dc_shutdown		(device_t);
229 static int dc_ifmedia_upd	(struct ifnet *);
230 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
231 
232 static void dc_delay		(struct dc_softc *);
233 static void dc_eeprom_idle	(struct dc_softc *);
234 static void dc_eeprom_putbyte	(struct dc_softc *, int);
235 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
236 static void dc_eeprom_getword_pnic
237 				(struct dc_softc *, int, u_int16_t *);
238 static void dc_eeprom_getword_xircom
239 				(struct dc_softc *, int, u_int16_t *);
240 static void dc_eeprom_width	(struct dc_softc *);
241 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
242 							int, int);
243 
244 static void dc_mii_writebit	(struct dc_softc *, int);
245 static int dc_mii_readbit	(struct dc_softc *);
246 static void dc_mii_sync		(struct dc_softc *);
247 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
248 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
249 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
250 static int dc_miibus_readreg	(device_t, int, int);
251 static int dc_miibus_writereg	(device_t, int, int, int);
252 static void dc_miibus_statchg	(device_t);
253 static void dc_miibus_mediainit	(device_t);
254 
255 static u_int32_t dc_crc_mask	(struct dc_softc *);
256 static void dc_setcfg		(struct dc_softc *, int);
257 static void dc_setfilt_21143	(struct dc_softc *);
258 static void dc_setfilt_asix	(struct dc_softc *);
259 static void dc_setfilt_admtek	(struct dc_softc *);
260 static void dc_setfilt_xircom	(struct dc_softc *);
261 
262 static void dc_setfilt		(struct dc_softc *);
263 
264 static void dc_reset		(struct dc_softc *);
265 static int dc_list_rx_init	(struct dc_softc *);
266 static int dc_list_tx_init	(struct dc_softc *);
267 
268 static void dc_read_srom	(struct dc_softc *, int);
269 static void dc_parse_21143_srom	(struct dc_softc *);
270 static void dc_decode_leaf_sia	(struct dc_softc *,
271 				    struct dc_eblock_sia *);
272 static void dc_decode_leaf_mii	(struct dc_softc *,
273 				    struct dc_eblock_mii *);
274 static void dc_decode_leaf_sym	(struct dc_softc *,
275 				    struct dc_eblock_sym *);
276 static void dc_apply_fixup	(struct dc_softc *, int);
277 static uint32_t dc_mchash_xircom(struct dc_softc *, const uint8_t *);
278 
279 #ifdef DC_USEIOSPACE
280 #define DC_RES			SYS_RES_IOPORT
281 #define DC_RID			DC_PCI_CFBIO
282 #else
283 #define DC_RES			SYS_RES_MEMORY
284 #define DC_RID			DC_PCI_CFBMA
285 #endif
286 
287 static device_method_t dc_methods[] = {
288 	/* Device interface */
289 	DEVMETHOD(device_probe,		dc_probe),
290 	DEVMETHOD(device_attach,	dc_attach),
291 	DEVMETHOD(device_detach,	dc_detach),
292 	DEVMETHOD(device_suspend,	dc_suspend),
293 	DEVMETHOD(device_resume,	dc_resume),
294 	DEVMETHOD(device_shutdown,	dc_shutdown),
295 
296 	/* bus interface */
297 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
298 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
299 
300 	/* MII interface */
301 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
302 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
303 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
304 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
305 
306 	{ 0, 0 }
307 };
308 
309 static driver_t dc_driver = {
310 	"dc",
311 	dc_methods,
312 	sizeof(struct dc_softc)
313 };
314 
315 static devclass_t dc_devclass;
316 
317 #ifdef __i386__
318 static int dc_quick=1;
319 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
320 	&dc_quick,0,"do not mdevget in dc driver");
321 #endif
322 
323 DECLARE_DUMMY_MODULE(if_dc);
324 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0);
325 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
326 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
327 
328 #define DC_SETBIT(sc, reg, x)				\
329 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
330 
331 #define DC_CLRBIT(sc, reg, x)				\
332 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
333 
334 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
335 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
336 
337 static void
338 dc_delay(struct dc_softc *sc)
339 {
340 	int			idx;
341 
342 	for (idx = (300 / 33) + 1; idx > 0; idx--)
343 		CSR_READ_4(sc, DC_BUSCTL);
344 }
345 
346 static void
347 dc_eeprom_width(struct dc_softc *sc)
348 {
349 	int i;
350 
351 	/* Force EEPROM to idle state. */
352 	dc_eeprom_idle(sc);
353 
354 	/* Enter EEPROM access mode. */
355 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
356 	dc_delay(sc);
357 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
358 	dc_delay(sc);
359 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 	dc_delay(sc);
361 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
362 	dc_delay(sc);
363 
364 	for (i = 3; i--;) {
365 		if (6 & (1 << i))
366 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
367 		else
368 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
369 		dc_delay(sc);
370 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
371 		dc_delay(sc);
372 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
373 		dc_delay(sc);
374 	}
375 
376 	for (i = 1; i <= 12; i++) {
377 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
378 		dc_delay(sc);
379 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
380 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
381 			dc_delay(sc);
382 			break;
383 		}
384 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
385 		dc_delay(sc);
386 	}
387 
388 	/* Turn off EEPROM access mode. */
389 	dc_eeprom_idle(sc);
390 
391 	if (i < 4 || i > 12)
392 		sc->dc_romwidth = 6;
393 	else
394 		sc->dc_romwidth = i;
395 
396 	/* Enter EEPROM access mode. */
397 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
398 	dc_delay(sc);
399 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
400 	dc_delay(sc);
401 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
402 	dc_delay(sc);
403 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
404 	dc_delay(sc);
405 
406 	/* Turn off EEPROM access mode. */
407 	dc_eeprom_idle(sc);
408 }
409 
410 static void
411 dc_eeprom_idle(struct dc_softc *sc)
412 {
413 	int		i;
414 
415 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
416 	dc_delay(sc);
417 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
418 	dc_delay(sc);
419 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
420 	dc_delay(sc);
421 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
422 	dc_delay(sc);
423 
424 	for (i = 0; i < 25; i++) {
425 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
426 		dc_delay(sc);
427 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
428 		dc_delay(sc);
429 	}
430 
431 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
432 	dc_delay(sc);
433 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
434 	dc_delay(sc);
435 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
436 
437 	return;
438 }
439 
440 /*
441  * Send a read command and address to the EEPROM, check for ACK.
442  */
443 static void
444 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
445 {
446 	int		d, i;
447 
448 	d = DC_EECMD_READ >> 6;
449 	for (i = 3; i--; ) {
450 		if (d & (1 << i))
451 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
452 		else
453 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
454 		dc_delay(sc);
455 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
456 		dc_delay(sc);
457 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
458 		dc_delay(sc);
459 	}
460 
461 	/*
462 	 * Feed in each bit and strobe the clock.
463 	 */
464 	for (i = sc->dc_romwidth; i--;) {
465 		if (addr & (1 << i)) {
466 			SIO_SET(DC_SIO_EE_DATAIN);
467 		} else {
468 			SIO_CLR(DC_SIO_EE_DATAIN);
469 		}
470 		dc_delay(sc);
471 		SIO_SET(DC_SIO_EE_CLK);
472 		dc_delay(sc);
473 		SIO_CLR(DC_SIO_EE_CLK);
474 		dc_delay(sc);
475 	}
476 
477 	return;
478 }
479 
480 /*
481  * Read a word of data stored in the EEPROM at address 'addr.'
482  * The PNIC 82c168/82c169 has its own non-standard way to read
483  * the EEPROM.
484  */
485 static void
486 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
487 {
488 	int		i;
489 	u_int32_t		r;
490 
491 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
492 
493 	for (i = 0; i < DC_TIMEOUT; i++) {
494 		DELAY(1);
495 		r = CSR_READ_4(sc, DC_SIO);
496 		if (!(r & DC_PN_SIOCTL_BUSY)) {
497 			*dest = (u_int16_t)(r & 0xFFFF);
498 			return;
499 		}
500 	}
501 
502 	return;
503 }
504 
505 /*
506  * Read a word of data stored in the EEPROM at address 'addr.'
507  * The Xircom X3201 has its own non-standard way to read
508  * the EEPROM, too.
509  */
510 static void
511 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
512 {
513 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
514 
515 	addr *= 2;
516 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
517 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
518 	addr += 1;
519 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
520 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
521 
522 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
523 }
524 
525 /*
526  * Read a word of data stored in the EEPROM at address 'addr.'
527  */
528 static void
529 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
530 {
531 	int		i;
532 	u_int16_t		word = 0;
533 
534 	/* Force EEPROM to idle state. */
535 	dc_eeprom_idle(sc);
536 
537 	/* Enter EEPROM access mode. */
538 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
539 	dc_delay(sc);
540 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
541 	dc_delay(sc);
542 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
543 	dc_delay(sc);
544 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
545 	dc_delay(sc);
546 
547 	/*
548 	 * Send address of word we want to read.
549 	 */
550 	dc_eeprom_putbyte(sc, addr);
551 
552 	/*
553 	 * Start reading bits from EEPROM.
554 	 */
555 	for (i = 0x8000; i; i >>= 1) {
556 		SIO_SET(DC_SIO_EE_CLK);
557 		dc_delay(sc);
558 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
559 			word |= i;
560 		dc_delay(sc);
561 		SIO_CLR(DC_SIO_EE_CLK);
562 		dc_delay(sc);
563 	}
564 
565 	/* Turn off EEPROM access mode. */
566 	dc_eeprom_idle(sc);
567 
568 	*dest = word;
569 
570 	return;
571 }
572 
573 /*
574  * Read a sequence of words from the EEPROM.
575  */
576 static void
577 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
578 {
579 	int			i;
580 	u_int16_t		word = 0, *ptr;
581 
582 	for (i = 0; i < cnt; i++) {
583 		if (DC_IS_PNIC(sc))
584 			dc_eeprom_getword_pnic(sc, off + i, &word);
585 		else if (DC_IS_XIRCOM(sc))
586 			dc_eeprom_getword_xircom(sc, off + i, &word);
587 		else
588 			dc_eeprom_getword(sc, off + i, &word);
589 		ptr = (u_int16_t *)(dest + (i * 2));
590 		if (swap)
591 			*ptr = ntohs(word);
592 		else
593 			*ptr = word;
594 	}
595 
596 	return;
597 }
598 
599 /*
600  * The following two routines are taken from the Macronix 98713
601  * Application Notes pp.19-21.
602  */
603 /*
604  * Write a bit to the MII bus.
605  */
606 static void
607 dc_mii_writebit(struct dc_softc *sc, int bit)
608 {
609 	if (bit)
610 		CSR_WRITE_4(sc, DC_SIO,
611 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
612 	else
613 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
614 
615 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
616 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
617 
618 	return;
619 }
620 
621 /*
622  * Read a bit from the MII bus.
623  */
624 static int
625 dc_mii_readbit(struct dc_softc *sc)
626 {
627 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
628 	CSR_READ_4(sc, DC_SIO);
629 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
630 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
631 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
632 		return(1);
633 
634 	return(0);
635 }
636 
637 /*
638  * Sync the PHYs by setting data bit and strobing the clock 32 times.
639  */
640 static void
641 dc_mii_sync(struct dc_softc *sc)
642 {
643 	int		i;
644 
645 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
646 
647 	for (i = 0; i < 32; i++)
648 		dc_mii_writebit(sc, 1);
649 
650 	return;
651 }
652 
653 /*
654  * Clock a series of bits through the MII.
655  */
656 static void
657 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
658 {
659 	int			i;
660 
661 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
662 		dc_mii_writebit(sc, bits & i);
663 }
664 
665 /*
666  * Read an PHY register through the MII.
667  */
668 static int
669 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
670 {
671 	int ack, i;
672 
673 	/*
674 	 * Set up frame for RX.
675 	 */
676 	frame->mii_stdelim = DC_MII_STARTDELIM;
677 	frame->mii_opcode = DC_MII_READOP;
678 	frame->mii_turnaround = 0;
679 	frame->mii_data = 0;
680 
681 	/*
682 	 * Sync the PHYs.
683 	 */
684 	dc_mii_sync(sc);
685 
686 	/*
687 	 * Send command/address info.
688 	 */
689 	dc_mii_send(sc, frame->mii_stdelim, 2);
690 	dc_mii_send(sc, frame->mii_opcode, 2);
691 	dc_mii_send(sc, frame->mii_phyaddr, 5);
692 	dc_mii_send(sc, frame->mii_regaddr, 5);
693 
694 #ifdef notdef
695 	/* Idle bit */
696 	dc_mii_writebit(sc, 1);
697 	dc_mii_writebit(sc, 0);
698 #endif
699 
700 	/* Check for ack */
701 	ack = dc_mii_readbit(sc);
702 
703 	/*
704 	 * Now try reading data bits. If the ack failed, we still
705 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
706 	 */
707 	if (ack) {
708 		for(i = 0; i < 16; i++) {
709 			dc_mii_readbit(sc);
710 		}
711 		goto fail;
712 	}
713 
714 	for (i = 0x8000; i; i >>= 1) {
715 		if (!ack) {
716 			if (dc_mii_readbit(sc))
717 				frame->mii_data |= i;
718 		}
719 	}
720 
721 fail:
722 
723 	dc_mii_writebit(sc, 0);
724 	dc_mii_writebit(sc, 0);
725 
726 	if (ack)
727 		return(1);
728 	return(0);
729 }
730 
731 /*
732  * Write to a PHY register through the MII.
733  */
734 static int
735 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
736 {
737 	/*
738 	 * Set up frame for TX.
739 	 */
740 
741 	frame->mii_stdelim = DC_MII_STARTDELIM;
742 	frame->mii_opcode = DC_MII_WRITEOP;
743 	frame->mii_turnaround = DC_MII_TURNAROUND;
744 
745 	/*
746 	 * Sync the PHYs.
747 	 */
748 	dc_mii_sync(sc);
749 
750 	dc_mii_send(sc, frame->mii_stdelim, 2);
751 	dc_mii_send(sc, frame->mii_opcode, 2);
752 	dc_mii_send(sc, frame->mii_phyaddr, 5);
753 	dc_mii_send(sc, frame->mii_regaddr, 5);
754 	dc_mii_send(sc, frame->mii_turnaround, 2);
755 	dc_mii_send(sc, frame->mii_data, 16);
756 
757 	/* Idle bit. */
758 	dc_mii_writebit(sc, 0);
759 	dc_mii_writebit(sc, 0);
760 
761 	return(0);
762 }
763 
764 static int
765 dc_miibus_readreg(device_t dev, int phy, int reg)
766 {
767 	struct dc_mii_frame	frame;
768 	struct dc_softc		*sc;
769 	int			i, rval, phy_reg = 0;
770 
771 	sc = device_get_softc(dev);
772 	bzero((char *)&frame, sizeof(frame));
773 
774 	/*
775 	 * Note: both the AL981 and AN985 have internal PHYs,
776 	 * however the AL981 provides direct access to the PHY
777 	 * registers while the AN985 uses a serial MII interface.
778 	 * The AN985's MII interface is also buggy in that you
779 	 * can read from any MII address (0 to 31), but only address 1
780 	 * behaves normally. To deal with both cases, we pretend
781 	 * that the PHY is at MII address 1.
782 	 */
783 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
784 		return(0);
785 
786 	/*
787 	 * Note: the ukphy probes of the RS7112 report a PHY at
788 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
789 	 * so we only respond to correct one.
790 	 */
791 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
792 		return(0);
793 
794 	if (sc->dc_pmode != DC_PMODE_MII) {
795 		if (phy == (MII_NPHY - 1)) {
796 			switch(reg) {
797 			case MII_BMSR:
798 			/*
799 			 * Fake something to make the probe
800 			 * code think there's a PHY here.
801 			 */
802 				return(BMSR_MEDIAMASK);
803 				break;
804 			case MII_PHYIDR1:
805 				if (DC_IS_PNIC(sc))
806 					return(DC_VENDORID_LO);
807 				return(DC_VENDORID_DEC);
808 				break;
809 			case MII_PHYIDR2:
810 				if (DC_IS_PNIC(sc))
811 					return(DC_DEVICEID_82C168);
812 				return(DC_DEVICEID_21143);
813 				break;
814 			default:
815 				return(0);
816 				break;
817 			}
818 		} else
819 			return(0);
820 	}
821 
822 	if (DC_IS_PNIC(sc)) {
823 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
824 		    (phy << 23) | (reg << 18));
825 		for (i = 0; i < DC_TIMEOUT; i++) {
826 			DELAY(1);
827 			rval = CSR_READ_4(sc, DC_PN_MII);
828 			if (!(rval & DC_PN_MII_BUSY)) {
829 				rval &= 0xFFFF;
830 				return(rval == 0xFFFF ? 0 : rval);
831 			}
832 		}
833 		return(0);
834 	}
835 
836 	if (DC_IS_COMET(sc)) {
837 		switch(reg) {
838 		case MII_BMCR:
839 			phy_reg = DC_AL_BMCR;
840 			break;
841 		case MII_BMSR:
842 			phy_reg = DC_AL_BMSR;
843 			break;
844 		case MII_PHYIDR1:
845 			phy_reg = DC_AL_VENID;
846 			break;
847 		case MII_PHYIDR2:
848 			phy_reg = DC_AL_DEVID;
849 			break;
850 		case MII_ANAR:
851 			phy_reg = DC_AL_ANAR;
852 			break;
853 		case MII_ANLPAR:
854 			phy_reg = DC_AL_LPAR;
855 			break;
856 		case MII_ANER:
857 			phy_reg = DC_AL_ANER;
858 			break;
859 		default:
860 			if_printf(&sc->arpcom.ac_if,
861 				  "phy_read: bad phy register %x\n", reg);
862 			return(0);
863 			break;
864 		}
865 
866 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
867 
868 		if (rval == 0xFFFF)
869 			return(0);
870 		return(rval);
871 	}
872 
873 	frame.mii_phyaddr = phy;
874 	frame.mii_regaddr = reg;
875 	if (sc->dc_type == DC_TYPE_98713) {
876 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
877 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
878 	}
879 	dc_mii_readreg(sc, &frame);
880 	if (sc->dc_type == DC_TYPE_98713)
881 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
882 
883 	return(frame.mii_data);
884 }
885 
886 static int
887 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
888 {
889 	struct dc_softc		*sc;
890 	struct dc_mii_frame	frame;
891 	int			i, phy_reg = 0;
892 
893 	sc = device_get_softc(dev);
894 	bzero((char *)&frame, sizeof(frame));
895 
896 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
897 		return(0);
898 
899 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
900 		return(0);
901 
902 	if (DC_IS_PNIC(sc)) {
903 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
904 		    (phy << 23) | (reg << 10) | data);
905 		for (i = 0; i < DC_TIMEOUT; i++) {
906 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
907 				break;
908 		}
909 		return(0);
910 	}
911 
912 	if (DC_IS_COMET(sc)) {
913 		switch(reg) {
914 		case MII_BMCR:
915 			phy_reg = DC_AL_BMCR;
916 			break;
917 		case MII_BMSR:
918 			phy_reg = DC_AL_BMSR;
919 			break;
920 		case MII_PHYIDR1:
921 			phy_reg = DC_AL_VENID;
922 			break;
923 		case MII_PHYIDR2:
924 			phy_reg = DC_AL_DEVID;
925 			break;
926 		case MII_ANAR:
927 			phy_reg = DC_AL_ANAR;
928 			break;
929 		case MII_ANLPAR:
930 			phy_reg = DC_AL_LPAR;
931 			break;
932 		case MII_ANER:
933 			phy_reg = DC_AL_ANER;
934 			break;
935 		default:
936 			if_printf(&sc->arpcom.ac_if,
937 				  "phy_write: bad phy register %x\n", reg);
938 			return(0);
939 			break;
940 		}
941 
942 		CSR_WRITE_4(sc, phy_reg, data);
943 		return(0);
944 	}
945 
946 	frame.mii_phyaddr = phy;
947 	frame.mii_regaddr = reg;
948 	frame.mii_data = data;
949 
950 	if (sc->dc_type == DC_TYPE_98713) {
951 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
952 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
953 	}
954 	dc_mii_writereg(sc, &frame);
955 	if (sc->dc_type == DC_TYPE_98713)
956 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
957 
958 	return(0);
959 }
960 
961 static void
962 dc_miibus_statchg(device_t dev)
963 {
964 	struct dc_softc		*sc;
965 	struct mii_data		*mii;
966 	struct ifmedia		*ifm;
967 
968 	sc = device_get_softc(dev);
969 	if (DC_IS_ADMTEK(sc))
970 		return;
971 
972 	mii = device_get_softc(sc->dc_miibus);
973 	ifm = &mii->mii_media;
974 	if (DC_IS_DAVICOM(sc) &&
975 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
976 		dc_setcfg(sc, ifm->ifm_media);
977 		sc->dc_if_media = ifm->ifm_media;
978 	} else {
979 		dc_setcfg(sc, mii->mii_media_active);
980 		sc->dc_if_media = mii->mii_media_active;
981 	}
982 
983 	return;
984 }
985 
986 /*
987  * Special support for DM9102A cards with HomePNA PHYs. Note:
988  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
989  * to be impossible to talk to the management interface of the DM9801
990  * PHY (its MDIO pin is not connected to anything). Consequently,
991  * the driver has to just 'know' about the additional mode and deal
992  * with it itself. *sigh*
993  */
994 static void
995 dc_miibus_mediainit(device_t dev)
996 {
997 	struct dc_softc		*sc;
998 	struct mii_data		*mii;
999 	struct ifmedia		*ifm;
1000 	int			rev;
1001 
1002 	rev = pci_get_revid(dev);
1003 
1004 	sc = device_get_softc(dev);
1005 	mii = device_get_softc(sc->dc_miibus);
1006 	ifm = &mii->mii_media;
1007 
1008 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1009 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1010 
1011 	return;
1012 }
1013 
1014 #define DC_BITS_512	9
1015 #define DC_BITS_128	7
1016 #define DC_BITS_64	6
1017 
1018 static u_int32_t
1019 dc_crc_mask(struct dc_softc *sc)
1020 {
1021 	/*
1022 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1023 	 * chips is only 128 bits wide.
1024 	 */
1025 	if (sc->dc_flags & DC_128BIT_HASH)
1026 		return ((1 << DC_BITS_128) - 1);
1027 
1028 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1029 	if (sc->dc_flags & DC_64BIT_HASH)
1030 		return ((1 << DC_BITS_64) - 1);
1031 
1032 	return ((1 << DC_BITS_512) - 1);
1033 }
1034 
1035 /*
1036  * 21143-style RX filter setup routine. Filter programming is done by
1037  * downloading a special setup frame into the TX engine. 21143, Macronix,
1038  * PNIC, PNIC II and Davicom chips are programmed this way.
1039  *
1040  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1041  * address (our node address) and a 512-bit hash filter for multicast
1042  * frames. We also sneak the broadcast address into the hash filter since
1043  * we need that too.
1044  */
1045 void
1046 dc_setfilt_21143(struct dc_softc *sc)
1047 {
1048 	struct dc_desc		*sframe;
1049 	u_int32_t		h, crc_mask, *sp;
1050 	struct ifmultiaddr	*ifma;
1051 	struct ifnet		*ifp;
1052 	int			i;
1053 
1054 	ifp = &sc->arpcom.ac_if;
1055 
1056 	i = sc->dc_cdata.dc_tx_prod;
1057 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1058 	sc->dc_cdata.dc_tx_cnt++;
1059 	sframe = &sc->dc_ldata->dc_tx_list[i];
1060 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1061 	bzero((char *)sp, DC_SFRAME_LEN);
1062 
1063 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1064 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1065 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1066 
1067 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1068 
1069 	/* If we want promiscuous mode, set the allframes bit. */
1070 	if (ifp->if_flags & IFF_PROMISC)
1071 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1072 	else
1073 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1074 
1075 	if (ifp->if_flags & IFF_ALLMULTI)
1076 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1077 	else
1078 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1079 
1080 	crc_mask = dc_crc_mask(sc);
1081 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1082 		if (ifma->ifma_addr->sa_family != AF_LINK)
1083 			continue;
1084 		h = ether_crc32_le(
1085 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1086 			ETHER_ADDR_LEN) & crc_mask;
1087 		sp[h >> 4] |= 1 << (h & 0xF);
1088 	}
1089 
1090 	if (ifp->if_flags & IFF_BROADCAST) {
1091 		h = ether_crc32_le(ifp->if_broadcastaddr,
1092 				   ETHER_ADDR_LEN) & crc_mask;
1093 		sp[h >> 4] |= 1 << (h & 0xF);
1094 	}
1095 
1096 	/* Set our MAC address */
1097 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1098 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1099 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1100 
1101 	sframe->dc_status = DC_TXSTAT_OWN;
1102 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1103 
1104 	/*
1105 	 * The PNIC takes an exceedingly long time to process its
1106 	 * setup frame; wait 10ms after posting the setup frame
1107 	 * before proceeding, just so it has time to swallow its
1108 	 * medicine.
1109 	 */
1110 	DELAY(10000);
1111 
1112 	ifp->if_timer = 5;
1113 
1114 	return;
1115 }
1116 
1117 void
1118 dc_setfilt_admtek(struct dc_softc *sc)
1119 {
1120 	struct ifnet		*ifp;
1121 	int			h = 0;
1122 	u_int32_t		crc_mask;
1123 	u_int32_t		hashes[2] = { 0, 0 };
1124 	struct ifmultiaddr	*ifma;
1125 
1126 	ifp = &sc->arpcom.ac_if;
1127 
1128 	/* Init our MAC address */
1129 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1130 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1131 
1132 	/* If we want promiscuous mode, set the allframes bit. */
1133 	if (ifp->if_flags & IFF_PROMISC)
1134 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1135 	else
1136 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1137 
1138 	if (ifp->if_flags & IFF_ALLMULTI)
1139 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1140 	else
1141 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1142 
1143 	/* first, zot all the existing hash bits */
1144 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1145 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1146 
1147 	/*
1148 	 * If we're already in promisc or allmulti mode, we
1149 	 * don't have to bother programming the multicast filter.
1150 	 */
1151 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1152 		return;
1153 
1154 	/* now program new ones */
1155 	if (DC_IS_CENTAUR(sc))
1156 		crc_mask = dc_crc_mask(sc);
1157 	else
1158 		crc_mask = 0x3f;
1159 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1160 		if (ifma->ifma_addr->sa_family != AF_LINK)
1161 			continue;
1162 		if (DC_IS_CENTAUR(sc)) {
1163 			h = ether_crc32_le(
1164 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1165 				ETHER_ADDR_LEN) & crc_mask;
1166 		} else {
1167 			h = ether_crc32_be(
1168 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1169 				ETHER_ADDR_LEN);
1170 			h = (h >> 26) & crc_mask;
1171 		}
1172 		if (h < 32)
1173 			hashes[0] |= (1 << h);
1174 		else
1175 			hashes[1] |= (1 << (h - 32));
1176 	}
1177 
1178 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1179 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1180 
1181 	return;
1182 }
1183 
1184 void
1185 dc_setfilt_asix(struct dc_softc *sc)
1186 {
1187 	struct ifnet		*ifp;
1188 	int			h = 0;
1189 	u_int32_t		hashes[2] = { 0, 0 };
1190 	struct ifmultiaddr	*ifma;
1191 
1192 	ifp = &sc->arpcom.ac_if;
1193 
1194         /* Init our MAC address */
1195         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1196         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1197 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1198         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1199         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1200 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1201 
1202 	/* If we want promiscuous mode, set the allframes bit. */
1203 	if (ifp->if_flags & IFF_PROMISC)
1204 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1205 	else
1206 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1207 
1208 	if (ifp->if_flags & IFF_ALLMULTI)
1209 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1210 	else
1211 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1212 
1213 	/*
1214 	 * The ASIX chip has a special bit to enable reception
1215 	 * of broadcast frames.
1216 	 */
1217 	if (ifp->if_flags & IFF_BROADCAST)
1218 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1219 	else
1220 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1221 
1222 	/* first, zot all the existing hash bits */
1223 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1224 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1225 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1226 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1227 
1228 	/*
1229 	 * If we're already in promisc or allmulti mode, we
1230 	 * don't have to bother programming the multicast filter.
1231 	 */
1232 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1233 		return;
1234 
1235 	/* now program new ones */
1236 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1237 		if (ifma->ifma_addr->sa_family != AF_LINK)
1238 			continue;
1239 		h = ether_crc32_be(
1240 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1241 			ETHER_ADDR_LEN);
1242 		h = (h >> 26) & 0x3f;
1243 		if (h < 32)
1244 			hashes[0] |= (1 << h);
1245 		else
1246 			hashes[1] |= (1 << (h - 32));
1247 	}
1248 
1249 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1250 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1251 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1252 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1253 
1254 	return;
1255 }
1256 
1257 void
1258 dc_setfilt_xircom(struct dc_softc *sc)
1259 {
1260 	struct dc_desc		*sframe;
1261 	u_int32_t		h, *sp;
1262 	struct ifmultiaddr	*ifma;
1263 	struct ifnet		*ifp;
1264 	int			i;
1265 
1266 	ifp = &sc->arpcom.ac_if;
1267 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1268 
1269 	i = sc->dc_cdata.dc_tx_prod;
1270 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1271 	sc->dc_cdata.dc_tx_cnt++;
1272 	sframe = &sc->dc_ldata->dc_tx_list[i];
1273 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1274 	bzero(sp, DC_SFRAME_LEN);
1275 
1276 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1277 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1278 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1279 
1280 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1281 
1282 	/* If we want promiscuous mode, set the allframes bit. */
1283 	if (ifp->if_flags & IFF_PROMISC)
1284 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1285 	else
1286 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1287 
1288 	if (ifp->if_flags & IFF_ALLMULTI)
1289  		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1290 	else
1291 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1292 
1293 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1294 		if (ifma->ifma_addr->sa_family != AF_LINK)
1295 			continue;
1296 		h = dc_mchash_xircom(sc,
1297 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1298 		sp[h >> 4] |= 1 << (h & 0xF);
1299 	}
1300 
1301 	if (ifp->if_flags & IFF_BROADCAST) {
1302 		h = dc_mchash_xircom(sc, (caddr_t)&etherbroadcastaddr);
1303 		sp[h >> 4] |= 1 << (h & 0xF);
1304 	}
1305 
1306 	/* Set our MAC address */
1307 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1308 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1309 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1310 
1311 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1312 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1313 	ifp->if_flags |= IFF_RUNNING;
1314 	sframe->dc_status = DC_TXSTAT_OWN;
1315 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1316 
1317 	/*
1318 	 * wait some time...
1319 	 */
1320 	DELAY(1000);
1321 
1322 	ifp->if_timer = 5;
1323 }
1324 
1325 static void
1326 dc_setfilt(struct dc_softc *sc)
1327 {
1328 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1329 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1330 		dc_setfilt_21143(sc);
1331 
1332 	if (DC_IS_ASIX(sc))
1333 		dc_setfilt_asix(sc);
1334 
1335 	if (DC_IS_ADMTEK(sc))
1336 		dc_setfilt_admtek(sc);
1337 
1338 	if (DC_IS_XIRCOM(sc))
1339 		dc_setfilt_xircom(sc);
1340 }
1341 
1342 /*
1343  * In order to fiddle with the
1344  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1345  * first have to put the transmit and/or receive logic in the idle state.
1346  */
1347 static void
1348 dc_setcfg(struct dc_softc *sc, int media)
1349 {
1350 	int			i, restart = 0;
1351 	u_int32_t		isr;
1352 
1353 	if (IFM_SUBTYPE(media) == IFM_NONE)
1354 		return;
1355 
1356 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1357 		restart = 1;
1358 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1359 
1360 		for (i = 0; i < DC_TIMEOUT; i++) {
1361 			isr = CSR_READ_4(sc, DC_ISR);
1362 			if ((isr & DC_ISR_TX_IDLE) &&
1363 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1364 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1365 				break;
1366 			DELAY(10);
1367 		}
1368 
1369 		if (i == DC_TIMEOUT) {
1370 			if_printf(&sc->arpcom.ac_if,
1371 			    "failed to force tx and rx to idle state\n");
1372 		}
1373 	}
1374 
1375 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1376 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1377 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1378 		if (sc->dc_pmode == DC_PMODE_MII) {
1379 			int	watchdogreg;
1380 
1381 			if (DC_IS_INTEL(sc)) {
1382 			/* there's a write enable bit here that reads as 1 */
1383 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1384 				watchdogreg &= ~DC_WDOG_CTLWREN;
1385 				watchdogreg |= DC_WDOG_JABBERDIS;
1386 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1387 			} else {
1388 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1389 			}
1390 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1391 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1392 			if (sc->dc_type == DC_TYPE_98713)
1393 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1394 				    DC_NETCFG_SCRAMBLER));
1395 			if (!DC_IS_DAVICOM(sc))
1396 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1397 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1398 			if (DC_IS_INTEL(sc))
1399 				dc_apply_fixup(sc, IFM_AUTO);
1400 		} else {
1401 			if (DC_IS_PNIC(sc)) {
1402 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1403 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1404 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1405 			}
1406 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1407 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1408 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1409 			if (DC_IS_INTEL(sc))
1410 				dc_apply_fixup(sc,
1411 				    (media & IFM_GMASK) == IFM_FDX ?
1412 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1413 		}
1414 	}
1415 
1416 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1417 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1418 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1419 		if (sc->dc_pmode == DC_PMODE_MII) {
1420 			int	watchdogreg;
1421 
1422 			/* there's a write enable bit here that reads as 1 */
1423 			if (DC_IS_INTEL(sc)) {
1424 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1425 				watchdogreg &= ~DC_WDOG_CTLWREN;
1426 				watchdogreg |= DC_WDOG_JABBERDIS;
1427 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1428 			} else {
1429 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1430 			}
1431 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1432 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1433 			if (sc->dc_type == DC_TYPE_98713)
1434 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1435 			if (!DC_IS_DAVICOM(sc))
1436 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1437 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1438 			if (DC_IS_INTEL(sc))
1439 				dc_apply_fixup(sc, IFM_AUTO);
1440 		} else {
1441 			if (DC_IS_PNIC(sc)) {
1442 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1443 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1444 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1445 			}
1446 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1447 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1448 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1449 			if (DC_IS_INTEL(sc)) {
1450 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1451 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1452 				if ((media & IFM_GMASK) == IFM_FDX)
1453 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1454 				else
1455 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1456 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1457 				DC_CLRBIT(sc, DC_10BTCTRL,
1458 				    DC_TCTL_AUTONEGENBL);
1459 				dc_apply_fixup(sc,
1460 				    (media & IFM_GMASK) == IFM_FDX ?
1461 				    IFM_10_T|IFM_FDX : IFM_10_T);
1462 				DELAY(20000);
1463 			}
1464 		}
1465 	}
1466 
1467 	/*
1468 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1469 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1470 	 * on the external MII port.
1471 	 */
1472 	if (DC_IS_DAVICOM(sc)) {
1473 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1474 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1475 			sc->dc_link = 1;
1476 		} else {
1477 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1478 		}
1479 	}
1480 
1481 	if ((media & IFM_GMASK) == IFM_FDX) {
1482 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1483 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1484 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1485 	} else {
1486 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1487 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1488 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1489 	}
1490 
1491 	if (restart)
1492 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1493 
1494 	return;
1495 }
1496 
1497 static void
1498 dc_reset(struct dc_softc *sc)
1499 {
1500 	int		i;
1501 
1502 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1503 
1504 	for (i = 0; i < DC_TIMEOUT; i++) {
1505 		DELAY(10);
1506 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1507 			break;
1508 	}
1509 
1510 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
1511 	    DC_IS_CONEXANT(sc)) {
1512 		DELAY(10000);
1513 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1514 		i = 0;
1515 	}
1516 
1517 	if (i == DC_TIMEOUT)
1518 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1519 
1520 	/* Wait a little while for the chip to get its brains in order. */
1521 	DELAY(1000);
1522 
1523 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1524 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1525 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1526 
1527 	/*
1528 	 * Bring the SIA out of reset. In some cases, it looks
1529 	 * like failing to unreset the SIA soon enough gets it
1530 	 * into a state where it will never come out of reset
1531 	 * until we reset the whole chip again.
1532 	 */
1533 	if (DC_IS_INTEL(sc)) {
1534 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1535 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1536 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1537 	}
1538 
1539         return;
1540 }
1541 
1542 static const struct dc_type *
1543 dc_devtype(device_t dev)
1544 {
1545 	const struct dc_type	*t;
1546 	u_int32_t		rev;
1547 
1548 	t = dc_devs;
1549 
1550 	while(t->dc_name != NULL) {
1551 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1552 		    (pci_get_device(dev) == t->dc_did)) {
1553 			/* Check the PCI revision */
1554 			rev = pci_get_revid(dev);
1555 			if (t->dc_did == DC_DEVICEID_98713 &&
1556 			    rev >= DC_REVISION_98713A)
1557 				t++;
1558 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1559 			    rev >= DC_REVISION_98713A)
1560 				t++;
1561 			if (t->dc_did == DC_DEVICEID_987x5 &&
1562 			    rev >= DC_REVISION_98715AEC_C)
1563 				t++;
1564 			if (t->dc_did == DC_DEVICEID_987x5 &&
1565 			    rev >= DC_REVISION_98725)
1566 				t++;
1567 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1568 			    rev >= DC_REVISION_88141)
1569 				t++;
1570 			if (t->dc_did == DC_DEVICEID_82C168 &&
1571 			    rev >= DC_REVISION_82C169)
1572 				t++;
1573 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1574 			    rev >= DC_REVISION_DM9102A)
1575 				t++;
1576 			return(t);
1577 		}
1578 		t++;
1579 	}
1580 
1581 	return(NULL);
1582 }
1583 
1584 /*
1585  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1586  * IDs against our list and return a device name if we find a match.
1587  * We do a little bit of extra work to identify the exact type of
1588  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1589  * but different revision IDs. The same is true for 98715/98715A
1590  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1591  * cases, the exact chip revision affects driver behavior.
1592  */
1593 static int
1594 dc_probe(device_t dev)
1595 {
1596 	const struct dc_type *t;
1597 
1598 	t = dc_devtype(dev);
1599 	if (t != NULL) {
1600 		struct dc_softc *sc = device_get_softc(dev);
1601 
1602 		/* Need this info to decide on a chip type. */
1603 		sc->dc_info = t;
1604 		device_set_desc(dev, t->dc_name);
1605 		return(0);
1606 	}
1607 
1608 	return(ENXIO);
1609 }
1610 
1611 static void
1612 dc_acpi(device_t dev)
1613 {
1614 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1615 		uint32_t iobase, membase, irq;
1616 		struct dc_softc *sc;
1617 
1618 		/* Save important PCI config data. */
1619 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1620 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1621 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1622 
1623 		sc = device_get_softc(dev);
1624 		/* Reset the power state. */
1625 		if_printf(&sc->arpcom.ac_if,
1626 			  "chip is in D%d power mode "
1627 			  "-- setting to D0\n", pci_get_powerstate(dev));
1628 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1629 
1630 		/* Restore PCI config data. */
1631 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1632 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1633 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1634 	}
1635 }
1636 
1637 static void
1638 dc_apply_fixup(struct dc_softc *sc, int media)
1639 {
1640 	struct dc_mediainfo	*m;
1641 	u_int8_t		*p;
1642 	int			i;
1643 	u_int32_t		reg;
1644 
1645 	m = sc->dc_mi;
1646 
1647 	while (m != NULL) {
1648 		if (m->dc_media == media)
1649 			break;
1650 		m = m->dc_next;
1651 	}
1652 
1653 	if (m == NULL)
1654 		return;
1655 
1656 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1657 		reg = (p[0] | (p[1] << 8)) << 16;
1658 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1659 	}
1660 
1661 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1662 		reg = (p[0] | (p[1] << 8)) << 16;
1663 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1664 	}
1665 
1666 	return;
1667 }
1668 
1669 static void
1670 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1671 {
1672 	struct dc_mediainfo	*m;
1673 
1674 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1675 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1676 	case DC_SIA_CODE_10BT:
1677 		m->dc_media = IFM_10_T;
1678 		break;
1679 
1680 	case DC_SIA_CODE_10BT_FDX:
1681 		m->dc_media = IFM_10_T|IFM_FDX;
1682 		break;
1683 
1684 	case DC_SIA_CODE_10B2:
1685 		m->dc_media = IFM_10_2;
1686 		break;
1687 
1688 	case DC_SIA_CODE_10B5:
1689 		m->dc_media = IFM_10_5;
1690 		break;
1691 	}
1692 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1693 		m->dc_gp_len = 2;
1694 		m->dc_gp_ptr =
1695 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1696 	} else {
1697 	m->dc_gp_len = 2;
1698 	m->dc_gp_ptr =
1699 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1700 	}
1701 
1702 	m->dc_next = sc->dc_mi;
1703 	sc->dc_mi = m;
1704 
1705 	sc->dc_pmode = DC_PMODE_SIA;
1706 
1707 	return;
1708 }
1709 
1710 static void
1711 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1712 {
1713 	struct dc_mediainfo	*m;
1714 
1715 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1716 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1717 		m->dc_media = IFM_100_TX;
1718 
1719 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1720 		m->dc_media = IFM_100_TX|IFM_FDX;
1721 
1722 	m->dc_gp_len = 2;
1723 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1724 
1725 	m->dc_next = sc->dc_mi;
1726 	sc->dc_mi = m;
1727 
1728 	sc->dc_pmode = DC_PMODE_SYM;
1729 
1730 	return;
1731 }
1732 
1733 static void
1734 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1735 {
1736 	u_int8_t		*p;
1737 	struct dc_mediainfo	*m;
1738 
1739 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1740 	/* We abuse IFM_AUTO to represent MII. */
1741 	m->dc_media = IFM_AUTO;
1742 	m->dc_gp_len = l->dc_gpr_len;
1743 
1744 	p = (u_int8_t *)l;
1745 	p += sizeof(struct dc_eblock_mii);
1746 	m->dc_gp_ptr = p;
1747 	p += 2 * l->dc_gpr_len;
1748 	m->dc_reset_len = *p;
1749 	p++;
1750 	m->dc_reset_ptr = p;
1751 
1752 	m->dc_next = sc->dc_mi;
1753 	sc->dc_mi = m;
1754 
1755 	return;
1756 }
1757 
1758 static void
1759 dc_read_srom(struct dc_softc *sc, int bits)
1760 {
1761 	int size;
1762 
1763 	size = 2 << bits;
1764 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1765 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1766 }
1767 
1768 static void
1769 dc_parse_21143_srom(struct dc_softc *sc)
1770 {
1771 	struct dc_leaf_hdr	*lhdr;
1772 	struct dc_eblock_hdr	*hdr;
1773 	int			i, loff;
1774 	char			*ptr;
1775 	int			have_mii;
1776 
1777 	have_mii = 0;
1778 	loff = sc->dc_srom[27];
1779 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1780 
1781 	ptr = (char *)lhdr;
1782 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1783 	/*
1784 	 * Look if we got a MII media block.
1785 	 */
1786 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1787 		hdr = (struct dc_eblock_hdr *)ptr;
1788 		if (hdr->dc_type == DC_EBLOCK_MII)
1789 		    have_mii++;
1790 
1791 		ptr += (hdr->dc_len & 0x7F);
1792 		ptr++;
1793 	}
1794 
1795 	/*
1796 	 * Do the same thing again. Only use SIA and SYM media
1797 	 * blocks if no MII media block is available.
1798 	 */
1799 	ptr = (char *)lhdr;
1800 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1801 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1802 		hdr = (struct dc_eblock_hdr *)ptr;
1803 		switch(hdr->dc_type) {
1804 		case DC_EBLOCK_MII:
1805 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1806 			break;
1807 		case DC_EBLOCK_SIA:
1808 			if (! have_mii)
1809 				dc_decode_leaf_sia(sc,
1810 				    (struct dc_eblock_sia *)hdr);
1811 			break;
1812 		case DC_EBLOCK_SYM:
1813 			if (! have_mii)
1814 				dc_decode_leaf_sym(sc,
1815 				    (struct dc_eblock_sym *)hdr);
1816 			break;
1817 		default:
1818 			/* Don't care. Yet. */
1819 			break;
1820 		}
1821 		ptr += (hdr->dc_len & 0x7F);
1822 		ptr++;
1823 	}
1824 
1825 	return;
1826 }
1827 
1828 /*
1829  * Attach the interface. Allocate softc structures, do ifmedia
1830  * setup and ethernet/BPF attach.
1831  */
1832 static int
1833 dc_attach(device_t dev)
1834 {
1835 	int			tmp = 0;
1836 	u_char			eaddr[ETHER_ADDR_LEN];
1837 	u_int32_t		command;
1838 	struct dc_softc		*sc;
1839 	struct ifnet		*ifp;
1840 	u_int32_t		revision;
1841 	int			error = 0, rid, mac_offset;
1842 	uint8_t			*mac;
1843 
1844 	sc = device_get_softc(dev);
1845 	callout_init(&sc->dc_stat_timer);
1846 
1847 	ifp = &sc->arpcom.ac_if;
1848 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1849 
1850 	/*
1851 	 * Handle power management nonsense.
1852 	 */
1853 	dc_acpi(dev);
1854 
1855 	/*
1856 	 * Map control/status registers.
1857 	 */
1858 	pci_enable_busmaster(dev);
1859 
1860 	rid = DC_RID;
1861 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1862 
1863 	if (sc->dc_res == NULL) {
1864 		device_printf(dev, "couldn't map ports/memory\n");
1865 		error = ENXIO;
1866 		goto fail;
1867 	}
1868 
1869 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1870 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1871 
1872 	/* Allocate interrupt */
1873 	rid = 0;
1874 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1875 	    RF_SHAREABLE | RF_ACTIVE);
1876 
1877 	if (sc->dc_irq == NULL) {
1878 		device_printf(dev, "couldn't map interrupt\n");
1879 		error = ENXIO;
1880 		goto fail;
1881 	}
1882 
1883 	revision = pci_get_revid(dev);
1884 
1885 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1886 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1887 	    sc->dc_info->dc_did != DC_DEVICEID_X3201)
1888 		dc_eeprom_width(sc);
1889 
1890 	switch(sc->dc_info->dc_did) {
1891 	case DC_DEVICEID_21143:
1892 		sc->dc_type = DC_TYPE_21143;
1893 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1894 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1895 		/* Save EEPROM contents so we can parse them later. */
1896 		dc_read_srom(sc, sc->dc_romwidth);
1897 		break;
1898 	case DC_DEVICEID_DM9009:
1899 	case DC_DEVICEID_DM9100:
1900 	case DC_DEVICEID_DM9102:
1901 		sc->dc_type = DC_TYPE_DM9102;
1902 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1903 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1904 		sc->dc_flags |= DC_TX_ALIGN;
1905 		sc->dc_pmode = DC_PMODE_MII;
1906 		/* Increase the latency timer value. */
1907 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1908 		command &= 0xFFFF00FF;
1909 		command |= 0x00008000;
1910 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1911 		break;
1912 	case DC_DEVICEID_AL981:
1913 		sc->dc_type = DC_TYPE_AL981;
1914 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1915 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1916 		sc->dc_pmode = DC_PMODE_MII;
1917 		dc_read_srom(sc, sc->dc_romwidth);
1918 		break;
1919 	case DC_DEVICEID_AN985:
1920 	case DC_DEVICEID_ADM9511:
1921 	case DC_DEVICEID_ADM9513:
1922 	case DC_DEVICEID_FA511:
1923 	case DC_DEVICEID_EN2242:
1924 	case DC_DEVICEID_3CSOHOB:
1925 		sc->dc_type = DC_TYPE_AN985;
1926 		sc->dc_flags |= DC_64BIT_HASH;
1927 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1928 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1929 		sc->dc_pmode = DC_PMODE_MII;
1930 		break;
1931 	case DC_DEVICEID_98713:
1932 	case DC_DEVICEID_98713_CP:
1933 		if (revision < DC_REVISION_98713A) {
1934 			sc->dc_type = DC_TYPE_98713;
1935 		}
1936 		if (revision >= DC_REVISION_98713A) {
1937 			sc->dc_type = DC_TYPE_98713A;
1938 			sc->dc_flags |= DC_21143_NWAY;
1939 		}
1940 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1941 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1942 		break;
1943 	case DC_DEVICEID_987x5:
1944 	case DC_DEVICEID_EN1217:
1945 		/*
1946 		 * Macronix MX98715AEC-C/D/E parts have only a
1947 		 * 128-bit hash table. We need to deal with these
1948 		 * in the same manner as the PNIC II so that we
1949 		 * get the right number of bits out of the
1950 		 * CRC routine.
1951 		 */
1952 		if (revision >= DC_REVISION_98715AEC_C &&
1953 		    revision < DC_REVISION_98725)
1954 			sc->dc_flags |= DC_128BIT_HASH;
1955 		sc->dc_type = DC_TYPE_987x5;
1956 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1957 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1958 		break;
1959 	case DC_DEVICEID_98727:
1960 		sc->dc_type = DC_TYPE_987x5;
1961 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1962 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1963 		break;
1964 	case DC_DEVICEID_82C115:
1965 		sc->dc_type = DC_TYPE_PNICII;
1966 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1967 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1968 		break;
1969 	case DC_DEVICEID_82C168:
1970 		sc->dc_type = DC_TYPE_PNIC;
1971 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1972 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1973 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1974 		if (revision < DC_REVISION_82C169)
1975 			sc->dc_pmode = DC_PMODE_SYM;
1976 		break;
1977 	case DC_DEVICEID_AX88140A:
1978 		sc->dc_type = DC_TYPE_ASIX;
1979 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1980 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1981 		sc->dc_pmode = DC_PMODE_MII;
1982 		break;
1983 	case DC_DEVICEID_RS7112:
1984 		sc->dc_type = DC_TYPE_CONEXANT;
1985 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1986 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1987 		sc->dc_pmode = DC_PMODE_MII;
1988 		dc_read_srom(sc, sc->dc_romwidth);
1989 		break;
1990 	case DC_DEVICEID_X3201:
1991 		sc->dc_type = DC_TYPE_XIRCOM;
1992 		sc->dc_flags |= (DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1993 				 DC_TX_ALIGN);
1994 		/*
1995 		 * We don't actually need to coalesce, but we're doing
1996 		 * it to obtain a double word aligned buffer.
1997 		 * The DC_TX_COALESCE flag is required.
1998 		 */
1999 		sc->dc_pmode = DC_PMODE_MII;
2000 		break;
2001 	default:
2002 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
2003 		break;
2004 	}
2005 
2006 	/* Save the cache line size. */
2007 	if (DC_IS_DAVICOM(sc))
2008 		sc->dc_cachesize = 0;
2009 	else
2010 		sc->dc_cachesize = pci_read_config(dev,
2011 		    DC_PCI_CFLT, 4) & 0xFF;
2012 
2013 	/* Reset the adapter. */
2014 	dc_reset(sc);
2015 
2016 	/* Take 21143 out of snooze mode */
2017 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2018 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2019 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2020 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2021 	}
2022 
2023 	/*
2024 	 * Try to learn something about the supported media.
2025 	 * We know that ASIX and ADMtek and Davicom devices
2026 	 * will *always* be using MII media, so that's a no-brainer.
2027 	 * The tricky ones are the Macronix/PNIC II and the
2028 	 * Intel 21143.
2029 	 */
2030 	if (DC_IS_INTEL(sc))
2031 		dc_parse_21143_srom(sc);
2032 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2033 		if (sc->dc_type == DC_TYPE_98713)
2034 			sc->dc_pmode = DC_PMODE_MII;
2035 		else
2036 			sc->dc_pmode = DC_PMODE_SYM;
2037 	} else if (!sc->dc_pmode)
2038 		sc->dc_pmode = DC_PMODE_MII;
2039 
2040 	/*
2041 	 * Get station address from the EEPROM.
2042 	 */
2043 	switch(sc->dc_type) {
2044 	case DC_TYPE_98713:
2045 	case DC_TYPE_98713A:
2046 	case DC_TYPE_987x5:
2047 	case DC_TYPE_PNICII:
2048 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2049 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2050 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2051 		break;
2052 	case DC_TYPE_PNIC:
2053 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2054 		break;
2055 	case DC_TYPE_DM9102:
2056 	case DC_TYPE_21143:
2057 	case DC_TYPE_ASIX:
2058 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2059 		break;
2060 	case DC_TYPE_AL981:
2061 	case DC_TYPE_AN985:
2062 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
2063 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
2064 		break;
2065 	case DC_TYPE_CONEXANT:
2066 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2067 		break;
2068 	case DC_TYPE_XIRCOM:
2069 		/* The MAC comes from the CIS */
2070 		mac = pci_get_ether(dev);
2071 		if (!mac) {
2072 			device_printf(dev, "No station address in CIS!\n");
2073 			goto fail;
2074 		}
2075 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2076 	 	break;
2077 	default:
2078 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2079 		break;
2080 	}
2081 
2082 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2083 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
2084 
2085 	if (sc->dc_ldata == NULL) {
2086 		device_printf(dev, "no memory for list buffers!\n");
2087 		error = ENXIO;
2088 		goto fail;
2089 	}
2090 
2091 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2092 
2093 	ifp->if_softc = sc;
2094 	ifp->if_mtu = ETHERMTU;
2095 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2096 	ifp->if_ioctl = dc_ioctl;
2097 	ifp->if_start = dc_start;
2098 #ifdef DEVICE_POLLING
2099 	ifp->if_poll = dc_poll;
2100 #endif
2101 	ifp->if_watchdog = dc_watchdog;
2102 	ifp->if_init = dc_init;
2103 	ifp->if_baudrate = 10000000;
2104 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2105 	ifq_set_ready(&ifp->if_snd);
2106 
2107 	/*
2108 	 * Do MII setup. If this is a 21143, check for a PHY on the
2109 	 * MII bus after applying any necessary fixups to twiddle the
2110 	 * GPIO bits. If we don't end up finding a PHY, restore the
2111 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2112 	 * driver instead.
2113 	 */
2114 	if (DC_IS_INTEL(sc)) {
2115 		dc_apply_fixup(sc, IFM_AUTO);
2116 		tmp = sc->dc_pmode;
2117 		sc->dc_pmode = DC_PMODE_MII;
2118 	}
2119 
2120 	/*
2121 	 * Setup General Purpose port mode and data so the tulip can talk
2122 	 * to the MII.  This needs to be done before mii_phy_probe so that
2123 	 * we can actually see them.
2124 	 */
2125 	if (DC_IS_XIRCOM(sc)) {
2126 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2127 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2128 		DELAY(10);
2129 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2130 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2131 		DELAY(10);
2132 	}
2133 
2134 	error = mii_phy_probe(dev, &sc->dc_miibus,
2135 	    dc_ifmedia_upd, dc_ifmedia_sts);
2136 
2137 	if (error && DC_IS_INTEL(sc)) {
2138 		sc->dc_pmode = tmp;
2139 		if (sc->dc_pmode != DC_PMODE_SIA)
2140 			sc->dc_pmode = DC_PMODE_SYM;
2141 		sc->dc_flags |= DC_21143_NWAY;
2142 		mii_phy_probe(dev, &sc->dc_miibus,
2143 		    dc_ifmedia_upd, dc_ifmedia_sts);
2144 		/*
2145 		 * For non-MII cards, we need to have the 21143
2146 		 * drive the LEDs. Except there are some systems
2147 		 * like the NEC VersaPro NoteBook PC which have no
2148 		 * LEDs, and twiddling these bits has adverse effects
2149 		 * on them. (I.e. you suddenly can't get a link.)
2150 		 */
2151 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2152 			sc->dc_flags |= DC_TULIP_LEDS;
2153 		error = 0;
2154 	}
2155 
2156 	if (error) {
2157 		device_printf(dev, "MII without any PHY!\n");
2158 		error = ENXIO;
2159 		goto fail;
2160 	}
2161 
2162 	/*
2163 	 * Call MI attach routine.
2164 	 */
2165 	ether_ifattach(ifp, eaddr, NULL);
2166 
2167 	if (DC_IS_ADMTEK(sc)) {
2168 		/*
2169 		 * Set automatic TX underrun recovery for the ADMtek chips
2170 		 */
2171 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2172 	}
2173 
2174 	/*
2175 	 * Tell the upper layer(s) we support long frames.
2176 	 */
2177 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2178 
2179 	error = bus_setup_intr(dev, sc->dc_irq, INTR_NETSAFE,
2180 			       dc_intr, sc, &sc->dc_intrhand,
2181 			       ifp->if_serializer);
2182 	if (error) {
2183 		ether_ifdetach(ifp);
2184 		device_printf(dev, "couldn't set up irq\n");
2185 		goto fail;
2186 	}
2187 
2188 	return(0);
2189 
2190 fail:
2191 	dc_detach(dev);
2192 	return(error);
2193 }
2194 
2195 static int
2196 dc_detach(device_t dev)
2197 {
2198 	struct dc_softc *sc = device_get_softc(dev);
2199 	struct ifnet *ifp = &sc->arpcom.ac_if;
2200 	struct dc_mediainfo *m;
2201 
2202 	if (device_is_attached(dev)) {
2203 		lwkt_serialize_enter(ifp->if_serializer);
2204 		dc_stop(sc);
2205 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2206 		lwkt_serialize_exit(ifp->if_serializer);
2207 
2208 		ether_ifdetach(ifp);
2209 	}
2210 
2211 	if (sc->dc_miibus)
2212 		device_delete_child(dev, sc->dc_miibus);
2213 	bus_generic_detach(dev);
2214 
2215 	if (sc->dc_irq)
2216 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2217 	if (sc->dc_res)
2218 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2219 
2220 	if (sc->dc_ldata)
2221 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2222 	if (sc->dc_pnic_rx_buf != NULL)
2223 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2224 
2225 	while (sc->dc_mi != NULL) {
2226 		m = sc->dc_mi->dc_next;
2227 		free(sc->dc_mi, M_DEVBUF);
2228 		sc->dc_mi = m;
2229 	}
2230 
2231 	if (sc->dc_srom)
2232 		free(sc->dc_srom, M_DEVBUF);
2233 
2234 	return(0);
2235 }
2236 
2237 /*
2238  * Initialize the transmit descriptors.
2239  */
2240 static int
2241 dc_list_tx_init(struct dc_softc *sc)
2242 {
2243 	struct dc_chain_data	*cd;
2244 	struct dc_list_data	*ld;
2245 	int			i;
2246 
2247 	cd = &sc->dc_cdata;
2248 	ld = sc->dc_ldata;
2249 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2250 		if (i == (DC_TX_LIST_CNT - 1)) {
2251 			ld->dc_tx_list[i].dc_next =
2252 			    vtophys(&ld->dc_tx_list[0]);
2253 		} else {
2254 			ld->dc_tx_list[i].dc_next =
2255 			    vtophys(&ld->dc_tx_list[i + 1]);
2256 		}
2257 		cd->dc_tx_chain[i] = NULL;
2258 		ld->dc_tx_list[i].dc_data = 0;
2259 		ld->dc_tx_list[i].dc_ctl = 0;
2260 	}
2261 
2262 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2263 
2264 	return(0);
2265 }
2266 
2267 
2268 /*
2269  * Initialize the RX descriptors and allocate mbufs for them. Note that
2270  * we arrange the descriptors in a closed ring, so that the last descriptor
2271  * points back to the first.
2272  */
2273 static int
2274 dc_list_rx_init(struct dc_softc *sc)
2275 {
2276 	struct dc_chain_data	*cd;
2277 	struct dc_list_data	*ld;
2278 	int			i;
2279 
2280 	cd = &sc->dc_cdata;
2281 	ld = sc->dc_ldata;
2282 
2283 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2284 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2285 			return(ENOBUFS);
2286 		if (i == (DC_RX_LIST_CNT - 1)) {
2287 			ld->dc_rx_list[i].dc_next =
2288 			    vtophys(&ld->dc_rx_list[0]);
2289 		} else {
2290 			ld->dc_rx_list[i].dc_next =
2291 			    vtophys(&ld->dc_rx_list[i + 1]);
2292 		}
2293 	}
2294 
2295 	cd->dc_rx_prod = 0;
2296 
2297 	return(0);
2298 }
2299 
2300 /*
2301  * Initialize an RX descriptor and attach an MBUF cluster.
2302  */
2303 static int
2304 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2305 {
2306 	struct mbuf		*m_new = NULL;
2307 	struct dc_desc		*c;
2308 
2309 	c = &sc->dc_ldata->dc_rx_list[i];
2310 
2311 	if (m == NULL) {
2312 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2313 		if (m_new == NULL)
2314 			return (ENOBUFS);
2315 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2316 	} else {
2317 		m_new = m;
2318 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2319 		m_new->m_data = m_new->m_ext.ext_buf;
2320 	}
2321 
2322 	m_adj(m_new, sizeof(u_int64_t));
2323 
2324 	/*
2325 	 * If this is a PNIC chip, zero the buffer. This is part
2326 	 * of the workaround for the receive bug in the 82c168 and
2327 	 * 82c169 chips.
2328 	 */
2329 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2330 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2331 
2332 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2333 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2334 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2335 	c->dc_status = DC_RXSTAT_OWN;
2336 
2337 	return(0);
2338 }
2339 
2340 /*
2341  * Grrrrr.
2342  * The PNIC chip has a terrible bug in it that manifests itself during
2343  * periods of heavy activity. The exact mode of failure if difficult to
2344  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2345  * will happen on slow machines. The bug is that sometimes instead of
2346  * uploading one complete frame during reception, it uploads what looks
2347  * like the entire contents of its FIFO memory. The frame we want is at
2348  * the end of the whole mess, but we never know exactly how much data has
2349  * been uploaded, so salvaging the frame is hard.
2350  *
2351  * There is only one way to do it reliably, and it's disgusting.
2352  * Here's what we know:
2353  *
2354  * - We know there will always be somewhere between one and three extra
2355  *   descriptors uploaded.
2356  *
2357  * - We know the desired received frame will always be at the end of the
2358  *   total data upload.
2359  *
2360  * - We know the size of the desired received frame because it will be
2361  *   provided in the length field of the status word in the last descriptor.
2362  *
2363  * Here's what we do:
2364  *
2365  * - When we allocate buffers for the receive ring, we bzero() them.
2366  *   This means that we know that the buffer contents should be all
2367  *   zeros, except for data uploaded by the chip.
2368  *
2369  * - We also force the PNIC chip to upload frames that include the
2370  *   ethernet CRC at the end.
2371  *
2372  * - We gather all of the bogus frame data into a single buffer.
2373  *
2374  * - We then position a pointer at the end of this buffer and scan
2375  *   backwards until we encounter the first non-zero byte of data.
2376  *   This is the end of the received frame. We know we will encounter
2377  *   some data at the end of the frame because the CRC will always be
2378  *   there, so even if the sender transmits a packet of all zeros,
2379  *   we won't be fooled.
2380  *
2381  * - We know the size of the actual received frame, so we subtract
2382  *   that value from the current pointer location. This brings us
2383  *   to the start of the actual received packet.
2384  *
2385  * - We copy this into an mbuf and pass it on, along with the actual
2386  *   frame length.
2387  *
2388  * The performance hit is tremendous, but it beats dropping frames all
2389  * the time.
2390  */
2391 
2392 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2393 static void
2394 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2395 {
2396 	struct dc_desc		*cur_rx;
2397 	struct dc_desc		*c = NULL;
2398 	struct mbuf		*m = NULL;
2399 	unsigned char		*ptr;
2400 	int			i, total_len;
2401 	u_int32_t		rxstat = 0;
2402 
2403 	i = sc->dc_pnic_rx_bug_save;
2404 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2405 	ptr = sc->dc_pnic_rx_buf;
2406 	bzero(ptr, DC_RXLEN * 5);
2407 
2408 	/* Copy all the bytes from the bogus buffers. */
2409 	while (1) {
2410 		c = &sc->dc_ldata->dc_rx_list[i];
2411 		rxstat = c->dc_status;
2412 		m = sc->dc_cdata.dc_rx_chain[i];
2413 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2414 		ptr += DC_RXLEN;
2415 		/* If this is the last buffer, break out. */
2416 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2417 			break;
2418 		dc_newbuf(sc, i, m);
2419 		DC_INC(i, DC_RX_LIST_CNT);
2420 	}
2421 
2422 	/* Find the length of the actual receive frame. */
2423 	total_len = DC_RXBYTES(rxstat);
2424 
2425 	/* Scan backwards until we hit a non-zero byte. */
2426 	while(*ptr == 0x00)
2427 		ptr--;
2428 
2429 	/* Round off. */
2430 	if ((uintptr_t)(ptr) & 0x3)
2431 		ptr -= 1;
2432 
2433 	/* Now find the start of the frame. */
2434 	ptr -= total_len;
2435 	if (ptr < sc->dc_pnic_rx_buf)
2436 		ptr = sc->dc_pnic_rx_buf;
2437 
2438 	/*
2439 	 * Now copy the salvaged frame to the last mbuf and fake up
2440 	 * the status word to make it look like a successful
2441  	 * frame reception.
2442 	 */
2443 	dc_newbuf(sc, i, m);
2444 	bcopy(ptr, mtod(m, char *), total_len);
2445 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2446 
2447 	return;
2448 }
2449 
2450 /*
2451  * This routine searches the RX ring for dirty descriptors in the
2452  * event that the rxeof routine falls out of sync with the chip's
2453  * current descriptor pointer. This may happen sometimes as a result
2454  * of a "no RX buffer available" condition that happens when the chip
2455  * consumes all of the RX buffers before the driver has a chance to
2456  * process the RX ring. This routine may need to be called more than
2457  * once to bring the driver back in sync with the chip, however we
2458  * should still be getting RX DONE interrupts to drive the search
2459  * for new packets in the RX ring, so we should catch up eventually.
2460  */
2461 static int
2462 dc_rx_resync(struct dc_softc *sc)
2463 {
2464 	int			i, pos;
2465 	struct dc_desc		*cur_rx;
2466 
2467 	pos = sc->dc_cdata.dc_rx_prod;
2468 
2469 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2470 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2471 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2472 			break;
2473 		DC_INC(pos, DC_RX_LIST_CNT);
2474 	}
2475 
2476 	/* If the ring really is empty, then just return. */
2477 	if (i == DC_RX_LIST_CNT)
2478 		return(0);
2479 
2480 	/* We've fallen behing the chip: catch it. */
2481 	sc->dc_cdata.dc_rx_prod = pos;
2482 
2483 	return(EAGAIN);
2484 }
2485 
2486 /*
2487  * A frame has been uploaded: pass the resulting mbuf chain up to
2488  * the higher level protocols.
2489  */
2490 static void
2491 dc_rxeof(struct dc_softc *sc)
2492 {
2493         struct mbuf		*m;
2494         struct ifnet		*ifp;
2495 	struct dc_desc		*cur_rx;
2496 	int			i, total_len = 0;
2497 	u_int32_t		rxstat;
2498 
2499 	ifp = &sc->arpcom.ac_if;
2500 	i = sc->dc_cdata.dc_rx_prod;
2501 
2502 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2503 
2504 #ifdef DEVICE_POLLING
2505 		if (ifp->if_flags & IFF_POLLING) {
2506 			if (sc->rxcycles <= 0)
2507 				break;
2508 			sc->rxcycles--;
2509 		}
2510 #endif /* DEVICE_POLLING */
2511 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2512 		rxstat = cur_rx->dc_status;
2513 		m = sc->dc_cdata.dc_rx_chain[i];
2514 		total_len = DC_RXBYTES(rxstat);
2515 
2516 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2517 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2518 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2519 					sc->dc_pnic_rx_bug_save = i;
2520 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2521 					DC_INC(i, DC_RX_LIST_CNT);
2522 					continue;
2523 				}
2524 				dc_pnic_rx_bug_war(sc, i);
2525 				rxstat = cur_rx->dc_status;
2526 				total_len = DC_RXBYTES(rxstat);
2527 			}
2528 		}
2529 
2530 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2531 
2532 		/*
2533 		 * If an error occurs, update stats, clear the
2534 		 * status word and leave the mbuf cluster in place:
2535 		 * it should simply get re-used next time this descriptor
2536 		 * comes up in the ring.  However, don't report long
2537 		 * frames as errors since they could be vlans
2538 		 */
2539 		if ((rxstat & DC_RXSTAT_RXERR)){
2540 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2541 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2542 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2543 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2544 				ifp->if_ierrors++;
2545 				if (rxstat & DC_RXSTAT_COLLSEEN)
2546 					ifp->if_collisions++;
2547 				dc_newbuf(sc, i, m);
2548 				if (rxstat & DC_RXSTAT_CRCERR) {
2549 					DC_INC(i, DC_RX_LIST_CNT);
2550 					continue;
2551 				} else {
2552 					dc_init(sc);
2553 					return;
2554 				}
2555 			}
2556 		}
2557 
2558 		/* No errors; receive the packet. */
2559 		total_len -= ETHER_CRC_LEN;
2560 
2561 #ifdef __i386__
2562 		/*
2563 		 * On the x86 we do not have alignment problems, so try to
2564 		 * allocate a new buffer for the receive ring, and pass up
2565 		 * the one where the packet is already, saving the expensive
2566 		 * copy done in m_devget().
2567 		 * If we are on an architecture with alignment problems, or
2568 		 * if the allocation fails, then use m_devget and leave the
2569 		 * existing buffer in the receive ring.
2570 		 */
2571 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2572 			m->m_pkthdr.rcvif = ifp;
2573 			m->m_pkthdr.len = m->m_len = total_len;
2574 			DC_INC(i, DC_RX_LIST_CNT);
2575 		} else
2576 #endif
2577 		{
2578 			struct mbuf *m0;
2579 
2580 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2581 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2582 			dc_newbuf(sc, i, m);
2583 			DC_INC(i, DC_RX_LIST_CNT);
2584 			if (m0 == NULL) {
2585 				ifp->if_ierrors++;
2586 				continue;
2587 			}
2588 			m_adj(m0, ETHER_ALIGN);
2589 			m = m0;
2590 		}
2591 
2592 		ifp->if_ipackets++;
2593 		ifp->if_input(ifp, m);
2594 	}
2595 
2596 	sc->dc_cdata.dc_rx_prod = i;
2597 }
2598 
2599 /*
2600  * A frame was downloaded to the chip. It's safe for us to clean up
2601  * the list buffers.
2602  */
2603 
2604 static void
2605 dc_txeof(struct dc_softc *sc)
2606 {
2607 	struct dc_desc		*cur_tx = NULL;
2608 	struct ifnet		*ifp;
2609 	int			idx;
2610 
2611 	ifp = &sc->arpcom.ac_if;
2612 
2613 	/*
2614 	 * Go through our tx list and free mbufs for those
2615 	 * frames that have been transmitted.
2616 	 */
2617 	idx = sc->dc_cdata.dc_tx_cons;
2618 	while(idx != sc->dc_cdata.dc_tx_prod) {
2619 		u_int32_t		txstat;
2620 
2621 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2622 		txstat = cur_tx->dc_status;
2623 
2624 		if (txstat & DC_TXSTAT_OWN)
2625 			break;
2626 
2627 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2628 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2629 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2630 				/*
2631 				 * Yes, the PNIC is so brain damaged
2632 				 * that it will sometimes generate a TX
2633 				 * underrun error while DMAing the RX
2634 				 * filter setup frame. If we detect this,
2635 				 * we have to send the setup frame again,
2636 				 * or else the filter won't be programmed
2637 				 * correctly.
2638 				 */
2639 				if (DC_IS_PNIC(sc)) {
2640 					if (txstat & DC_TXSTAT_ERRSUM)
2641 						dc_setfilt(sc);
2642 				}
2643 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2644 			}
2645 			sc->dc_cdata.dc_tx_cnt--;
2646 			DC_INC(idx, DC_TX_LIST_CNT);
2647 			continue;
2648 		}
2649 
2650 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2651 			/*
2652 			 * XXX: Why does my Xircom taunt me so?
2653 			 * For some reason Conexant chips like
2654 			 * setting the CARRLOST flag even when
2655 			 * the carrier is there. In CURRENT we
2656 			 * have the same problem for Xircom
2657 			 * cards !
2658 			 */
2659 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2660 			    sc->dc_pmode == DC_PMODE_MII &&
2661 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2662 			    DC_TXSTAT_NOCARRIER)))
2663 				txstat &= ~DC_TXSTAT_ERRSUM;
2664 		} else {
2665 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2666 			    sc->dc_pmode == DC_PMODE_MII &&
2667 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2668 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2669 				txstat &= ~DC_TXSTAT_ERRSUM;
2670 		}
2671 
2672 		if (txstat & DC_TXSTAT_ERRSUM) {
2673 			ifp->if_oerrors++;
2674 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2675 				ifp->if_collisions++;
2676 			if (txstat & DC_TXSTAT_LATECOLL)
2677 				ifp->if_collisions++;
2678 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2679 				dc_init(sc);
2680 				return;
2681 			}
2682 		}
2683 
2684 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2685 
2686 		ifp->if_opackets++;
2687 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2688 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2689 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2690 		}
2691 
2692 		sc->dc_cdata.dc_tx_cnt--;
2693 		DC_INC(idx, DC_TX_LIST_CNT);
2694 	}
2695 
2696 	if (idx != sc->dc_cdata.dc_tx_cons) {
2697 	    	/* some buffers have been freed */
2698 		sc->dc_cdata.dc_tx_cons = idx;
2699 		ifp->if_flags &= ~IFF_OACTIVE;
2700 	}
2701 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2702 
2703 	return;
2704 }
2705 
2706 static void
2707 dc_tick(void *xsc)
2708 {
2709 	struct dc_softc *sc = xsc;
2710 	struct ifnet *ifp = &sc->arpcom.ac_if;
2711 	struct mii_data *mii;
2712 	u_int32_t r;
2713 
2714 	lwkt_serialize_enter(ifp->if_serializer);
2715 
2716 	mii = device_get_softc(sc->dc_miibus);
2717 
2718 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2719 		if (sc->dc_flags & DC_21143_NWAY) {
2720 			r = CSR_READ_4(sc, DC_10BTSTAT);
2721 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2722 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2723 				sc->dc_link = 0;
2724 				mii_mediachg(mii);
2725 			}
2726 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2727 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2728 				sc->dc_link = 0;
2729 				mii_mediachg(mii);
2730 			}
2731 			if (sc->dc_link == 0)
2732 				mii_tick(mii);
2733 		} else {
2734 			r = CSR_READ_4(sc, DC_ISR);
2735 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2736 			    sc->dc_cdata.dc_tx_cnt == 0) {
2737 				mii_tick(mii);
2738 				if (!(mii->mii_media_status & IFM_ACTIVE))
2739 					sc->dc_link = 0;
2740 			}
2741 		}
2742 	} else {
2743 		mii_tick(mii);
2744 	}
2745 
2746 	/*
2747 	 * When the init routine completes, we expect to be able to send
2748 	 * packets right away, and in fact the network code will send a
2749 	 * gratuitous ARP the moment the init routine marks the interface
2750 	 * as running. However, even though the MAC may have been initialized,
2751 	 * there may be a delay of a few seconds before the PHY completes
2752 	 * autonegotiation and the link is brought up. Any transmissions
2753 	 * made during that delay will be lost. Dealing with this is tricky:
2754 	 * we can't just pause in the init routine while waiting for the
2755 	 * PHY to come ready since that would bring the whole system to
2756 	 * a screeching halt for several seconds.
2757 	 *
2758 	 * What we do here is prevent the TX start routine from sending
2759 	 * any packets until a link has been established. After the
2760 	 * interface has been initialized, the tick routine will poll
2761 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2762 	 * that time, packets will stay in the send queue, and once the
2763 	 * link comes up, they will be flushed out to the wire.
2764 	 */
2765 	if (!sc->dc_link) {
2766 		mii_pollstat(mii);
2767 		if (mii->mii_media_status & IFM_ACTIVE &&
2768 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2769 			sc->dc_link++;
2770 			if (!ifq_is_empty(&ifp->if_snd))
2771 				dc_start(ifp);
2772 		}
2773 	}
2774 
2775 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2776 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2777 	else
2778 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2779 
2780 	lwkt_serialize_exit(ifp->if_serializer);
2781 }
2782 
2783 /*
2784  * A transmit underrun has occurred.  Back off the transmit threshold,
2785  * or switch to store and forward mode if we have to.
2786  */
2787 static void
2788 dc_tx_underrun(struct dc_softc *sc)
2789 {
2790 	u_int32_t		isr;
2791 	int			i;
2792 
2793 	if (DC_IS_DAVICOM(sc))
2794 		dc_init(sc);
2795 
2796 	if (DC_IS_INTEL(sc)) {
2797 		/*
2798 		 * The real 21143 requires that the transmitter be idle
2799 		 * in order to change the transmit threshold or store
2800 		 * and forward state.
2801 		 */
2802 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2803 
2804 		for (i = 0; i < DC_TIMEOUT; i++) {
2805 			isr = CSR_READ_4(sc, DC_ISR);
2806 			if (isr & DC_ISR_TX_IDLE)
2807 				break;
2808 			DELAY(10);
2809 		}
2810 		if (i == DC_TIMEOUT) {
2811 			if_printf(&sc->arpcom.ac_if,
2812 				  "failed to force tx to idle state\n");
2813 			dc_init(sc);
2814 		}
2815 	}
2816 
2817 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2818 	sc->dc_txthresh += DC_TXTHRESH_INC;
2819 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2820 		printf("using store and forward mode\n");
2821 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2822 	} else {
2823 		printf("increasing TX threshold\n");
2824 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2825 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2826 	}
2827 
2828 	if (DC_IS_INTEL(sc))
2829 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2830 
2831 	return;
2832 }
2833 
2834 #ifdef DEVICE_POLLING
2835 
2836 static void
2837 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2838 {
2839 	struct	dc_softc *sc = ifp->if_softc;
2840 	u_int32_t status;
2841 
2842 	switch(cmd) {
2843 	case POLL_REGISTER:
2844 		/* Disable interrupts */
2845 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2846 		break;
2847 	case POLL_DEREGISTER:
2848 		/* Re-enable interrupts. */
2849 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2850 		break;
2851 	case POLL_ONLY:
2852 		sc->rxcycles = count;
2853 		dc_rxeof(sc);
2854 		dc_txeof(sc);
2855 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2856 			dc_start(ifp);
2857 		break;
2858 	case POLL_AND_CHECK_STATUS:
2859 		sc->rxcycles = count;
2860 		dc_rxeof(sc);
2861 		dc_txeof(sc);
2862 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2863 			dc_start(ifp);
2864 		status = CSR_READ_4(sc, DC_ISR);
2865 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2866 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2867 			DC_ISR_BUS_ERR);
2868 		if (!status)
2869 			break;
2870 		/* ack what we have */
2871 		CSR_WRITE_4(sc, DC_ISR, status);
2872 
2873 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2874 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2875 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2876 
2877 			if (dc_rx_resync(sc))
2878 				dc_rxeof(sc);
2879 		}
2880 		/* restart transmit unit if necessary */
2881 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2882 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2883 
2884 		if (status & DC_ISR_TX_UNDERRUN)
2885 			dc_tx_underrun(sc);
2886 
2887 		if (status & DC_ISR_BUS_ERR) {
2888 			if_printf(ifp, "dc_poll: bus error\n");
2889 			dc_reset(sc);
2890 			dc_init(sc);
2891 		}
2892 		break;
2893 	}
2894 }
2895 #endif /* DEVICE_POLLING */
2896 
2897 static void
2898 dc_intr(void *arg)
2899 {
2900 	struct dc_softc		*sc;
2901 	struct ifnet		*ifp;
2902 	u_int32_t		status;
2903 
2904 	sc = arg;
2905 
2906 	if (sc->suspended) {
2907 		return;
2908 	}
2909 
2910 	ifp = &sc->arpcom.ac_if;
2911 
2912 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2913 		return ;
2914 
2915 	/* Suppress unwanted interrupts */
2916 	if (!(ifp->if_flags & IFF_UP)) {
2917 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2918 			dc_stop(sc);
2919 		return;
2920 	}
2921 
2922 	/* Disable interrupts. */
2923 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2924 
2925 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
2926 	      status != 0xFFFFFFFF) {
2927 
2928 		CSR_WRITE_4(sc, DC_ISR, status);
2929 
2930 		if (status & DC_ISR_RX_OK) {
2931 			int		curpkts;
2932 			curpkts = ifp->if_ipackets;
2933 			dc_rxeof(sc);
2934 			if (curpkts == ifp->if_ipackets) {
2935 				while(dc_rx_resync(sc))
2936 					dc_rxeof(sc);
2937 			}
2938 		}
2939 
2940 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2941 			dc_txeof(sc);
2942 
2943 		if (status & DC_ISR_TX_IDLE) {
2944 			dc_txeof(sc);
2945 			if (sc->dc_cdata.dc_tx_cnt) {
2946 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2947 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2948 			}
2949 		}
2950 
2951 		if (status & DC_ISR_TX_UNDERRUN)
2952 			dc_tx_underrun(sc);
2953 
2954 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2955 		    || (status & DC_ISR_RX_NOBUF)) {
2956 			int		curpkts;
2957 			curpkts = ifp->if_ipackets;
2958 			dc_rxeof(sc);
2959 			if (curpkts == ifp->if_ipackets) {
2960 				while(dc_rx_resync(sc))
2961 					dc_rxeof(sc);
2962 			}
2963 		}
2964 
2965 		if (status & DC_ISR_BUS_ERR) {
2966 			dc_reset(sc);
2967 			dc_init(sc);
2968 		}
2969 	}
2970 
2971 	/* Re-enable interrupts. */
2972 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2973 
2974 	if (!ifq_is_empty(&ifp->if_snd))
2975 		dc_start(ifp);
2976 
2977 	return;
2978 }
2979 
2980 /*
2981  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2982  * pointers to the fragment pointers.
2983  */
2984 static int
2985 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2986 {
2987 	struct dc_desc		*f = NULL;
2988 	struct mbuf		*m;
2989 	int			frag, cur, cnt = 0;
2990 
2991 	/*
2992  	 * Start packing the mbufs in this chain into
2993 	 * the fragment pointers. Stop when we run out
2994  	 * of fragments or hit the end of the mbuf chain.
2995 	 */
2996 	m = m_head;
2997 	cur = frag = *txidx;
2998 
2999 	for (m = m_head; m != NULL; m = m->m_next) {
3000 		if (m->m_len != 0) {
3001 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
3002 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
3003 				    frag == (DC_TX_LIST_CNT - 1))
3004 					return(ENOBUFS);
3005 			}
3006 			if ((DC_TX_LIST_CNT -
3007 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3008 				return(ENOBUFS);
3009 
3010 			f = &sc->dc_ldata->dc_tx_list[frag];
3011 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3012 			if (cnt == 0) {
3013 				f->dc_status = 0;
3014 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3015 			} else
3016 				f->dc_status = DC_TXSTAT_OWN;
3017 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3018 			cur = frag;
3019 			DC_INC(frag, DC_TX_LIST_CNT);
3020 			cnt++;
3021 		}
3022 	}
3023 
3024 	if (m != NULL)
3025 		return(ENOBUFS);
3026 
3027 	sc->dc_cdata.dc_tx_cnt += cnt;
3028 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3029 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3030 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3031 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3032 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3033 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3034 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3035 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3036 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3037 	*txidx = frag;
3038 
3039 	return(0);
3040 }
3041 
3042 /*
3043  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3044  * to the mbuf data regions directly in the transmit lists. We also save a
3045  * copy of the pointers since the transmit list fragment pointers are
3046  * physical addresses.
3047  */
3048 
3049 static void
3050 dc_start(struct ifnet *ifp)
3051 {
3052 	struct dc_softc	*sc;
3053 	struct mbuf *m_head;
3054 	struct mbuf *m_defragged;
3055 	int idx, need_trans;
3056 
3057 	sc = ifp->if_softc;
3058 
3059 	if (!sc->dc_link)
3060 		return;
3061 
3062 	if (ifp->if_flags & IFF_OACTIVE)
3063 		return;
3064 
3065 	idx = sc->dc_cdata.dc_tx_prod;
3066 
3067 	need_trans = 0;
3068 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3069 		m_defragged = NULL;
3070 		m_head = ifq_poll(&ifp->if_snd);
3071 		if (m_head == NULL)
3072 			break;
3073 
3074 		if (sc->dc_flags & DC_TX_COALESCE &&
3075 		    (m_head->m_next != NULL ||
3076 			sc->dc_flags & DC_TX_ALIGN)){
3077 			/*
3078 			 * Check first if coalescing allows us to queue
3079 			 * the packet. We don't want to loose it if
3080 			 * the TX queue is full.
3081 			 */
3082 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3083 			    idx != sc->dc_cdata.dc_tx_prod &&
3084 			    idx == (DC_TX_LIST_CNT - 1)) {
3085 				ifp->if_flags |= IFF_OACTIVE;
3086 				break;
3087 			}
3088 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3089 				ifp->if_flags |= IFF_OACTIVE;
3090 				break;
3091 			}
3092 
3093 			/* only coalesce if have >1 mbufs */
3094 			m_defragged = m_defrag_nofree(m_head, MB_DONTWAIT);
3095 			if (m_defragged == NULL) {
3096 				ifp->if_flags |= IFF_OACTIVE;
3097 				break;
3098 			}
3099 		}
3100 
3101 		if (dc_encap(sc, (m_defragged ? m_defragged : m_head), &idx)) {
3102 			if (m_defragged) {
3103 				/*
3104 				 * Throw away the original packet if the
3105 				 * defragged packet could not be encapsulated,
3106 				 * as well as the defragged packet.
3107 				 */
3108 				ifq_dequeue(&ifp->if_snd, m_head);
3109 				m_freem(m_head);
3110 				m_freem(m_defragged);
3111 			}
3112 			ifp->if_flags |= IFF_OACTIVE;
3113 			break;
3114 		}
3115 
3116 		ifq_dequeue(&ifp->if_snd, m_head);
3117 
3118 		need_trans = 1;
3119 
3120 		/*
3121 		 * If there's a BPF listener, bounce a copy of this frame
3122 		 * to him.
3123 		 */
3124 		BPF_MTAP(ifp, (m_defragged ? m_defragged : m_head));
3125 
3126 		/*
3127 		 * If we defragged the packet, m_head is not the one we
3128 		 * encapsulated so we can throw it away.
3129 		 */
3130 		if (m_defragged)
3131 			m_freem(m_head);
3132 
3133 		if (sc->dc_flags & DC_TX_ONE) {
3134 			ifp->if_flags |= IFF_OACTIVE;
3135 			break;
3136 		}
3137 	}
3138 
3139 	if (!need_trans)
3140 		return;
3141 
3142 	/* Transmit */
3143 	sc->dc_cdata.dc_tx_prod = idx;
3144 	if (!(sc->dc_flags & DC_TX_POLL))
3145 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3146 
3147 	/*
3148 	 * Set a timeout in case the chip goes out to lunch.
3149 	 */
3150 	ifp->if_timer = 5;
3151 }
3152 
3153 static void
3154 dc_init(void *xsc)
3155 {
3156 	struct dc_softc		*sc = xsc;
3157 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3158 	struct mii_data		*mii;
3159 
3160 	mii = device_get_softc(sc->dc_miibus);
3161 
3162 	/*
3163 	 * Cancel pending I/O and free all RX/TX buffers.
3164 	 */
3165 	dc_stop(sc);
3166 	dc_reset(sc);
3167 
3168 	/*
3169 	 * Set cache alignment and burst length.
3170 	 */
3171 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3172 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3173 	else
3174 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3175 	/*
3176 	 * Evenly share the bus between receive and transmit process.
3177 	 */
3178 	if (DC_IS_INTEL(sc))
3179 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3180 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3181 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3182 	} else {
3183 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3184 	}
3185 	if (sc->dc_flags & DC_TX_POLL)
3186 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3187 	switch(sc->dc_cachesize) {
3188 	case 32:
3189 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3190 		break;
3191 	case 16:
3192 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3193 		break;
3194 	case 8:
3195 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3196 		break;
3197 	case 0:
3198 	default:
3199 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3200 		break;
3201 	}
3202 
3203 	if (sc->dc_flags & DC_TX_STORENFWD)
3204 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3205 	else {
3206 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3207 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3208 		} else {
3209 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3210 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3211 		}
3212 	}
3213 
3214 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3215 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3216 
3217 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3218 		/*
3219 		 * The app notes for the 98713 and 98715A say that
3220 		 * in order to have the chips operate properly, a magic
3221 		 * number must be written to CSR16. Macronix does not
3222 		 * document the meaning of these bits so there's no way
3223 		 * to know exactly what they do. The 98713 has a magic
3224 		 * number all its own; the rest all use a different one.
3225 		 */
3226 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3227 		if (sc->dc_type == DC_TYPE_98713)
3228 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3229 		else
3230 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3231 	}
3232 
3233 	if (DC_IS_XIRCOM(sc)) {
3234 		/*
3235 		 * Setup General Purpose Port mode and data so the tulip
3236 		 * can talk to the MII.
3237 		 */
3238 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3239 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3240 		DELAY(10);
3241 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3242 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3243 		DELAY(10);
3244  	}
3245 
3246 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3247 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3248 
3249 	/* Init circular RX list. */
3250 	if (dc_list_rx_init(sc) == ENOBUFS) {
3251 		if_printf(ifp, "initialization failed: no "
3252 			  "memory for rx buffers\n");
3253 		dc_stop(sc);
3254 		return;
3255 	}
3256 
3257 	/*
3258 	 * Init tx descriptors.
3259 	 */
3260 	dc_list_tx_init(sc);
3261 
3262 	/*
3263 	 * Load the address of the RX list.
3264 	 */
3265 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3266 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3267 
3268 	/*
3269 	 * Enable interrupts.
3270 	 */
3271 #ifdef DEVICE_POLLING
3272 	/*
3273 	 * ... but only if we are not polling, and make sure they are off in
3274 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3275 	 * after a reset.
3276 	 */
3277 	if (ifp->if_flags & IFF_POLLING)
3278 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3279 	else
3280 #endif
3281 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3282 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3283 
3284 	/* Enable transmitter. */
3285 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3286 
3287 	/*
3288 	 * If this is an Intel 21143 and we're not using the
3289 	 * MII port, program the LED control pins so we get
3290 	 * link and activity indications.
3291 	 */
3292 	if (sc->dc_flags & DC_TULIP_LEDS) {
3293 		CSR_WRITE_4(sc, DC_WATCHDOG,
3294 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3295 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3296 	}
3297 
3298 	/*
3299 	 * Load the RX/multicast filter. We do this sort of late
3300 	 * because the filter programming scheme on the 21143 and
3301 	 * some clones requires DMAing a setup frame via the TX
3302 	 * engine, and we need the transmitter enabled for that.
3303 	 */
3304 	dc_setfilt(sc);
3305 
3306 	/* Enable receiver. */
3307 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3308 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3309 
3310 	mii_mediachg(mii);
3311 	dc_setcfg(sc, sc->dc_if_media);
3312 
3313 	ifp->if_flags |= IFF_RUNNING;
3314 	ifp->if_flags &= ~IFF_OACTIVE;
3315 
3316 	/* Don't start the ticker if this is a homePNA link. */
3317 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3318 		sc->dc_link = 1;
3319 	else {
3320 		if (sc->dc_flags & DC_21143_NWAY)
3321 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3322 		else
3323 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3324 	}
3325 
3326 	return;
3327 }
3328 
3329 /*
3330  * Set media options.
3331  */
3332 static int
3333 dc_ifmedia_upd(struct ifnet *ifp)
3334 {
3335 	struct dc_softc		*sc;
3336 	struct mii_data		*mii;
3337 	struct ifmedia		*ifm;
3338 
3339 	sc = ifp->if_softc;
3340 	mii = device_get_softc(sc->dc_miibus);
3341 	mii_mediachg(mii);
3342 	ifm = &mii->mii_media;
3343 
3344 	if (DC_IS_DAVICOM(sc) &&
3345 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3346 		dc_setcfg(sc, ifm->ifm_media);
3347 	else
3348 		sc->dc_link = 0;
3349 
3350 	return(0);
3351 }
3352 
3353 /*
3354  * Report current media status.
3355  */
3356 static void
3357 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3358 {
3359 	struct dc_softc		*sc;
3360 	struct mii_data		*mii;
3361 	struct ifmedia		*ifm;
3362 
3363 	sc = ifp->if_softc;
3364 	mii = device_get_softc(sc->dc_miibus);
3365 	mii_pollstat(mii);
3366 	ifm = &mii->mii_media;
3367 	if (DC_IS_DAVICOM(sc)) {
3368 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3369 			ifmr->ifm_active = ifm->ifm_media;
3370 			ifmr->ifm_status = 0;
3371 			return;
3372 		}
3373 	}
3374 	ifmr->ifm_active = mii->mii_media_active;
3375 	ifmr->ifm_status = mii->mii_media_status;
3376 
3377 	return;
3378 }
3379 
3380 static int
3381 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3382 {
3383 	struct dc_softc		*sc = ifp->if_softc;
3384 	struct ifreq		*ifr = (struct ifreq *) data;
3385 	struct mii_data		*mii;
3386 	int			error = 0;
3387 
3388 	switch(command) {
3389 	case SIOCSIFFLAGS:
3390 		if (ifp->if_flags & IFF_UP) {
3391 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3392 				(IFF_PROMISC | IFF_ALLMULTI);
3393 			if (ifp->if_flags & IFF_RUNNING) {
3394 				if (need_setfilt)
3395 					dc_setfilt(sc);
3396 			} else {
3397 				sc->dc_txthresh = 0;
3398 				dc_init(sc);
3399 			}
3400 		} else {
3401 			if (ifp->if_flags & IFF_RUNNING)
3402 				dc_stop(sc);
3403 		}
3404 		sc->dc_if_flags = ifp->if_flags;
3405 		error = 0;
3406 		break;
3407 	case SIOCADDMULTI:
3408 	case SIOCDELMULTI:
3409 		dc_setfilt(sc);
3410 		error = 0;
3411 		break;
3412 	case SIOCGIFMEDIA:
3413 	case SIOCSIFMEDIA:
3414 		mii = device_get_softc(sc->dc_miibus);
3415 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3416 		break;
3417 	default:
3418 		error = ether_ioctl(ifp, command, data);
3419 		break;
3420 	}
3421 
3422 	return(error);
3423 }
3424 
3425 static void
3426 dc_watchdog(struct ifnet *ifp)
3427 {
3428 	struct dc_softc		*sc;
3429 
3430 	sc = ifp->if_softc;
3431 
3432 	ifp->if_oerrors++;
3433 	if_printf(ifp, "watchdog timeout\n");
3434 
3435 	dc_stop(sc);
3436 	dc_reset(sc);
3437 	dc_init(sc);
3438 
3439 	if (!ifq_is_empty(&ifp->if_snd))
3440 		dc_start(ifp);
3441 
3442 	return;
3443 }
3444 
3445 /*
3446  * Stop the adapter and free any mbufs allocated to the
3447  * RX and TX lists.
3448  */
3449 static void
3450 dc_stop(struct dc_softc *sc)
3451 {
3452 	int		i;
3453 	struct ifnet		*ifp;
3454 
3455 	ifp = &sc->arpcom.ac_if;
3456 	ifp->if_timer = 0;
3457 
3458 	callout_stop(&sc->dc_stat_timer);
3459 
3460 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3461 
3462 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3463 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3464 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3465 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3466 	sc->dc_link = 0;
3467 
3468 	/*
3469 	 * Free data in the RX lists.
3470 	 */
3471 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3472 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3473 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3474 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3475 		}
3476 	}
3477 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3478 		sizeof(sc->dc_ldata->dc_rx_list));
3479 
3480 	/*
3481 	 * Free the TX list buffers.
3482 	 */
3483 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3484 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3485 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3486 			    DC_TXCTL_SETUP) ||
3487 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3488 			    DC_TXCTL_LASTFRAG)) {
3489 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3490 				continue;
3491 			}
3492 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3493 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3494 		}
3495 	}
3496 
3497 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3498 		sizeof(sc->dc_ldata->dc_tx_list));
3499 
3500 	return;
3501 }
3502 
3503 /*
3504  * Stop all chip I/O so that the kernel's probe routines don't
3505  * get confused by errant DMAs when rebooting.
3506  */
3507 static void
3508 dc_shutdown(device_t dev)
3509 {
3510 	struct dc_softc	*sc;
3511 	struct ifnet *ifp;
3512 
3513 	sc = device_get_softc(dev);
3514 	ifp = &sc->arpcom.ac_if;
3515 	lwkt_serialize_enter(ifp->if_serializer);
3516 
3517 	dc_stop(sc);
3518 
3519 	lwkt_serialize_exit(ifp->if_serializer);
3520 }
3521 
3522 /*
3523  * Device suspend routine.  Stop the interface and save some PCI
3524  * settings in case the BIOS doesn't restore them properly on
3525  * resume.
3526  */
3527 static int
3528 dc_suspend(device_t dev)
3529 {
3530 	struct dc_softc	*sc = device_get_softc(dev);
3531 	struct ifnet *ifp = &sc->arpcom.ac_if;
3532 	int i;
3533 	lwkt_serialize_enter(ifp->if_serializer);
3534 
3535 	dc_stop(sc);
3536 	for (i = 0; i < 5; i++)
3537 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3538 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3539 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3540 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3541 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3542 
3543 	sc->suspended = 1;
3544 
3545 	lwkt_serialize_exit(ifp->if_serializer);
3546 	return (0);
3547 }
3548 
3549 /*
3550  * Device resume routine.  Restore some PCI settings in case the BIOS
3551  * doesn't, re-enable busmastering, and restart the interface if
3552  * appropriate.
3553  */
3554 static int
3555 dc_resume(device_t dev)
3556 {
3557 	struct dc_softc *sc = device_get_softc(dev);
3558 	struct ifnet *ifp = &sc->arpcom.ac_if;
3559 	int i;
3560 
3561 	lwkt_serialize_enter(ifp->if_serializer);
3562 	dc_acpi(dev);
3563 
3564 	/* better way to do this? */
3565 	for (i = 0; i < 5; i++)
3566 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3567 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3568 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3569 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3570 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3571 
3572 	/* reenable busmastering */
3573 	pci_enable_busmaster(dev);
3574 	pci_enable_io(dev, DC_RES);
3575 
3576         /* reinitialize interface if necessary */
3577         if (ifp->if_flags & IFF_UP)
3578                 dc_init(sc);
3579 
3580 	sc->suspended = 0;
3581 	lwkt_serialize_exit(ifp->if_serializer);
3582 
3583 	return (0);
3584 }
3585 
3586 static uint32_t
3587 dc_mchash_xircom(struct dc_softc *sc, const uint8_t *addr)
3588 {
3589 	uint32_t crc;
3590 
3591 	/* Compute CRC for the address value. */
3592 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
3593 
3594 	if ((crc & 0x180) == 0x180)
3595 		return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
3596 	else
3597 		return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + (12 << 4));
3598 }
3599