xref: /dragonfly/sys/dev/netif/dc/if_dc.c (revision 2b7dbe20)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  */
34 
35 /*
36  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
37  * series chips and several workalikes including the following:
38  *
39  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
40  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
41  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
42  * ASIX Electronics AX88140A (www.asix.com.tw)
43  * ASIX Electronics AX88141 (www.asix.com.tw)
44  * ADMtek AL981 (www.admtek.com.tw)
45  * ADMtek AN985 (www.admtek.com.tw)
46  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Xircom X3201 (www.xircom.com)
50  * Abocom FE2500
51  * Conexant LANfinity (www.conexant.com)
52  *
53  * Datasheets for the 21143 are available at developer.intel.com.
54  * Datasheets for the clone parts can be found at their respective sites.
55  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
56  * The PNIC II is essentially a Macronix 98715A chip; the only difference
57  * worth noting is that its multicast hash table is only 128 bits wide
58  * instead of 512.
59  *
60  * Written by Bill Paul <wpaul@ee.columbia.edu>
61  * Electrical Engineering Department
62  * Columbia University, New York City
63  */
64 
65 /*
66  * The Intel 21143 is the successor to the DEC 21140. It is basically
67  * the same as the 21140 but with a few new features. The 21143 supports
68  * three kinds of media attachments:
69  *
70  * o MII port, for 10Mbps and 100Mbps support and NWAY
71  *   autonegotiation provided by an external PHY.
72  * o SYM port, for symbol mode 100Mbps support.
73  * o 10baseT port.
74  * o AUI/BNC port.
75  *
76  * The 100Mbps SYM port and 10baseT port can be used together in
77  * combination with the internal NWAY support to create a 10/100
78  * autosensing configuration.
79  *
80  * Note that not all tulip workalikes are handled in this driver: we only
81  * deal with those which are relatively well behaved. The Winbond is
82  * handled separately due to its different register offsets and the
83  * special handling needed for its various bugs. The PNIC is handled
84  * here, but I'm not thrilled about it.
85  *
86  * All of the workalike chips use some form of MII transceiver support
87  * with the exception of the Macronix chips, which also have a SYM port.
88  * The ASIX AX88140A is also documented to have a SYM port, but all
89  * the cards I've seen use an MII transceiver, probably because the
90  * AX88140A doesn't support internal NWAY.
91  */
92 
93 #include "opt_ifpoll.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/interrupt.h>
102 #include <sys/socket.h>
103 #include <sys/sysctl.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 
107 #include <net/if.h>
108 #include <net/ifq_var.h>
109 #include <net/if_arp.h>
110 #include <net/ethernet.h>
111 #include <net/if_dl.h>
112 #include <net/if_media.h>
113 #include <net/if_poll.h>
114 #include <net/if_types.h>
115 #include <net/vlan/if_vlan_var.h>
116 
117 #include <net/bpf.h>
118 
119 #include <vm/vm.h>              /* for vtophys */
120 #include <vm/pmap.h>            /* for vtophys */
121 
122 #include "../mii_layer/mii.h"
123 #include "../mii_layer/miivar.h"
124 
125 #include <bus/pci/pcireg.h>
126 #include <bus/pci/pcivar.h>
127 
128 #define DC_USEIOSPACE
129 
130 #include "if_dcreg.h"
131 
132 /* "controller miibus0" required.  See GENERIC if you get errors here. */
133 #include "miibus_if.h"
134 
135 /*
136  * Various supported device vendors/types and their names.
137  */
138 static const struct dc_type dc_devs[] = {
139 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
140 		"Intel 21143 10/100BaseTX" },
141 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
142 		"Davicom DM9009 10/100BaseTX" },
143 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
144 		"Davicom DM9100 10/100BaseTX" },
145 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
146 		"Davicom DM9102 10/100BaseTX" },
147 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
148 		"Davicom DM9102A 10/100BaseTX" },
149 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
150 		"ADMtek AL981 10/100BaseTX" },
151 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
152 		"ADMtek AN985 10/100BaseTX" },
153 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
154 		"Netgear FA511 10/100BaseTX" },
155 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
156 		"ADMtek ADM9511 10/100BaseTX" },
157 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
158 		"ADMtek ADM9513 10/100BaseTX" },
159 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
160 		"ASIX AX88140A 10/100BaseTX" },
161 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
162 		"ASIX AX88141 10/100BaseTX" },
163 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
164 		"Macronix 98713 10/100BaseTX" },
165 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
166 		"Macronix 98713A 10/100BaseTX" },
167 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
168 		"Compex RL100-TX 10/100BaseTX" },
169 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
170 		"Compex RL100-TX 10/100BaseTX" },
171 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
172 		"Macronix 98715/98715A 10/100BaseTX" },
173 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
174 		"Macronix 98715AEC-C 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
176 		"Macronix 98725 10/100BaseTX" },
177 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
178 		"Macronix 98727/98732 10/100BaseTX" },
179 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
180 		"LC82C115 PNIC II 10/100BaseTX" },
181 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
182 		"82c168 PNIC 10/100BaseTX" },
183 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
184 		"82c169 PNIC 10/100BaseTX" },
185 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
186 		"Accton EN1217 10/100BaseTX" },
187 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
188 		"Accton EN2242 MiniPCI 10/100BaseTX" },
189     	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
190 	  	"Xircom X3201 10/100BaseTX" },
191 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
192 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
193 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
194 		"3Com OfficeConnect 10/100B" },
195 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
196 		"Abocom FE2500 10/100BaseTX" },
197 	{ 0, 0, NULL }
198 };
199 
200 static int dc_probe		(device_t);
201 static int dc_attach		(device_t);
202 static int dc_detach		(device_t);
203 static int dc_suspend		(device_t);
204 static int dc_resume		(device_t);
205 static void dc_acpi		(device_t);
206 static const struct dc_type *dc_devtype	(device_t);
207 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
208 static int dc_encap		(struct dc_softc *, struct mbuf *,
209 					u_int32_t *);
210 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
211 static int dc_rx_resync		(struct dc_softc *);
212 static void dc_rxeof		(struct dc_softc *);
213 static void dc_txeof		(struct dc_softc *);
214 static void dc_tick		(void *);
215 static void dc_tx_underrun	(struct dc_softc *);
216 static void dc_intr		(void *);
217 static void dc_start		(struct ifnet *, struct ifaltq_subque *);
218 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
219 					struct ucred *);
220 #ifdef IFPOLL_ENABLE
221 static void dc_npoll		(struct ifnet *, struct ifpoll_info *);
222 static void dc_npoll_compat	(struct ifnet *, void *, int);
223 #endif
224 static void dc_init		(void *);
225 static void dc_stop		(struct dc_softc *);
226 static void dc_watchdog		(struct ifnet *);
227 static void dc_shutdown		(device_t);
228 static int dc_ifmedia_upd	(struct ifnet *);
229 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
230 
231 static void dc_delay		(struct dc_softc *);
232 static void dc_eeprom_idle	(struct dc_softc *);
233 static void dc_eeprom_putbyte	(struct dc_softc *, int);
234 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
235 static void dc_eeprom_getword_pnic
236 				(struct dc_softc *, int, u_int16_t *);
237 static void dc_eeprom_getword_xircom
238 				(struct dc_softc *, int, u_int16_t *);
239 static void dc_eeprom_width	(struct dc_softc *);
240 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
241 							int, int);
242 
243 static void dc_mii_writebit	(struct dc_softc *, int);
244 static int dc_mii_readbit	(struct dc_softc *);
245 static void dc_mii_sync		(struct dc_softc *);
246 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
247 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
248 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
249 static int dc_miibus_readreg	(device_t, int, int);
250 static int dc_miibus_writereg	(device_t, int, int, int);
251 static void dc_miibus_statchg	(device_t);
252 static void dc_miibus_mediainit	(device_t);
253 
254 static u_int32_t dc_crc_mask	(struct dc_softc *);
255 static void dc_setcfg		(struct dc_softc *, int);
256 static void dc_setfilt_21143	(struct dc_softc *);
257 static void dc_setfilt_asix	(struct dc_softc *);
258 static void dc_setfilt_admtek	(struct dc_softc *);
259 static void dc_setfilt_xircom	(struct dc_softc *);
260 
261 static void dc_setfilt		(struct dc_softc *);
262 
263 static void dc_reset		(struct dc_softc *);
264 static int dc_list_rx_init	(struct dc_softc *);
265 static int dc_list_tx_init	(struct dc_softc *);
266 
267 static void dc_read_srom	(struct dc_softc *, int);
268 static void dc_parse_21143_srom	(struct dc_softc *);
269 static void dc_decode_leaf_sia	(struct dc_softc *,
270 				    struct dc_eblock_sia *);
271 static void dc_decode_leaf_mii	(struct dc_softc *,
272 				    struct dc_eblock_mii *);
273 static void dc_decode_leaf_sym	(struct dc_softc *,
274 				    struct dc_eblock_sym *);
275 static void dc_apply_fixup	(struct dc_softc *, int);
276 static uint32_t dc_mchash_xircom(struct dc_softc *, const uint8_t *);
277 
278 #ifdef DC_USEIOSPACE
279 #define DC_RES			SYS_RES_IOPORT
280 #define DC_RID			DC_PCI_CFBIO
281 #else
282 #define DC_RES			SYS_RES_MEMORY
283 #define DC_RID			DC_PCI_CFBMA
284 #endif
285 
286 static device_method_t dc_methods[] = {
287 	/* Device interface */
288 	DEVMETHOD(device_probe,		dc_probe),
289 	DEVMETHOD(device_attach,	dc_attach),
290 	DEVMETHOD(device_detach,	dc_detach),
291 	DEVMETHOD(device_suspend,	dc_suspend),
292 	DEVMETHOD(device_resume,	dc_resume),
293 	DEVMETHOD(device_shutdown,	dc_shutdown),
294 
295 	/* bus interface */
296 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
297 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
298 
299 	/* MII interface */
300 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
301 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
302 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
303 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
304 
305 	DEVMETHOD_END
306 };
307 
308 static driver_t dc_driver = {
309 	"dc",
310 	dc_methods,
311 	sizeof(struct dc_softc)
312 };
313 
314 static devclass_t dc_devclass;
315 
316 #ifdef __x86_64__
317 static int dc_quick=1;
318 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
319 	&dc_quick,0,"do not mdevget in dc driver");
320 #endif
321 
322 DECLARE_DUMMY_MODULE(if_dc);
323 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, NULL, NULL);
324 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, NULL, NULL);
325 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL);
326 
327 #define DC_SETBIT(sc, reg, x)				\
328 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
329 
330 #define DC_CLRBIT(sc, reg, x)				\
331 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
332 
333 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
334 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
335 
336 static void
337 dc_delay(struct dc_softc *sc)
338 {
339 	int			idx;
340 
341 	for (idx = (300 / 33) + 1; idx > 0; idx--)
342 		CSR_READ_4(sc, DC_BUSCTL);
343 }
344 
345 static void
346 dc_eeprom_width(struct dc_softc *sc)
347 {
348 	int i;
349 
350 	/* Force EEPROM to idle state. */
351 	dc_eeprom_idle(sc);
352 
353 	/* Enter EEPROM access mode. */
354 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
355 	dc_delay(sc);
356 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
357 	dc_delay(sc);
358 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
359 	dc_delay(sc);
360 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
361 	dc_delay(sc);
362 
363 	for (i = 3; i--;) {
364 		if (6 & (1 << i))
365 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
366 		else
367 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
368 		dc_delay(sc);
369 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 		dc_delay(sc);
371 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
372 		dc_delay(sc);
373 	}
374 
375 	for (i = 1; i <= 12; i++) {
376 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
377 		dc_delay(sc);
378 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
379 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
380 			dc_delay(sc);
381 			break;
382 		}
383 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
384 		dc_delay(sc);
385 	}
386 
387 	/* Turn off EEPROM access mode. */
388 	dc_eeprom_idle(sc);
389 
390 	if (i < 4 || i > 12)
391 		sc->dc_romwidth = 6;
392 	else
393 		sc->dc_romwidth = i;
394 
395 	/* Enter EEPROM access mode. */
396 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
397 	dc_delay(sc);
398 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
399 	dc_delay(sc);
400 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
401 	dc_delay(sc);
402 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
403 	dc_delay(sc);
404 
405 	/* Turn off EEPROM access mode. */
406 	dc_eeprom_idle(sc);
407 }
408 
409 static void
410 dc_eeprom_idle(struct dc_softc *sc)
411 {
412 	int		i;
413 
414 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
415 	dc_delay(sc);
416 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
417 	dc_delay(sc);
418 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419 	dc_delay(sc);
420 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
421 	dc_delay(sc);
422 
423 	for (i = 0; i < 25; i++) {
424 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
425 		dc_delay(sc);
426 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
427 		dc_delay(sc);
428 	}
429 
430 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
431 	dc_delay(sc);
432 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
433 	dc_delay(sc);
434 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
435 
436 	return;
437 }
438 
439 /*
440  * Send a read command and address to the EEPROM, check for ACK.
441  */
442 static void
443 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
444 {
445 	int		d, i;
446 
447 	d = DC_EECMD_READ >> 6;
448 	for (i = 3; i--; ) {
449 		if (d & (1 << i))
450 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
451 		else
452 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
453 		dc_delay(sc);
454 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
455 		dc_delay(sc);
456 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
457 		dc_delay(sc);
458 	}
459 
460 	/*
461 	 * Feed in each bit and strobe the clock.
462 	 */
463 	for (i = sc->dc_romwidth; i--;) {
464 		if (addr & (1 << i)) {
465 			SIO_SET(DC_SIO_EE_DATAIN);
466 		} else {
467 			SIO_CLR(DC_SIO_EE_DATAIN);
468 		}
469 		dc_delay(sc);
470 		SIO_SET(DC_SIO_EE_CLK);
471 		dc_delay(sc);
472 		SIO_CLR(DC_SIO_EE_CLK);
473 		dc_delay(sc);
474 	}
475 
476 	return;
477 }
478 
479 /*
480  * Read a word of data stored in the EEPROM at address 'addr.'
481  * The PNIC 82c168/82c169 has its own non-standard way to read
482  * the EEPROM.
483  */
484 static void
485 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
486 {
487 	int		i;
488 	u_int32_t		r;
489 
490 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
491 
492 	for (i = 0; i < DC_TIMEOUT; i++) {
493 		DELAY(1);
494 		r = CSR_READ_4(sc, DC_SIO);
495 		if (!(r & DC_PN_SIOCTL_BUSY)) {
496 			*dest = (u_int16_t)(r & 0xFFFF);
497 			return;
498 		}
499 	}
500 
501 	return;
502 }
503 
504 /*
505  * Read a word of data stored in the EEPROM at address 'addr.'
506  * The Xircom X3201 has its own non-standard way to read
507  * the EEPROM, too.
508  */
509 static void
510 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
511 {
512 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
513 
514 	addr *= 2;
515 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
516 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
517 	addr += 1;
518 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
519 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
520 
521 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
522 }
523 
524 /*
525  * Read a word of data stored in the EEPROM at address 'addr.'
526  */
527 static void
528 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
529 {
530 	int		i;
531 	u_int16_t		word = 0;
532 
533 	/* Force EEPROM to idle state. */
534 	dc_eeprom_idle(sc);
535 
536 	/* Enter EEPROM access mode. */
537 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
538 	dc_delay(sc);
539 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
540 	dc_delay(sc);
541 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
542 	dc_delay(sc);
543 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
544 	dc_delay(sc);
545 
546 	/*
547 	 * Send address of word we want to read.
548 	 */
549 	dc_eeprom_putbyte(sc, addr);
550 
551 	/*
552 	 * Start reading bits from EEPROM.
553 	 */
554 	for (i = 0x8000; i; i >>= 1) {
555 		SIO_SET(DC_SIO_EE_CLK);
556 		dc_delay(sc);
557 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
558 			word |= i;
559 		dc_delay(sc);
560 		SIO_CLR(DC_SIO_EE_CLK);
561 		dc_delay(sc);
562 	}
563 
564 	/* Turn off EEPROM access mode. */
565 	dc_eeprom_idle(sc);
566 
567 	*dest = word;
568 
569 	return;
570 }
571 
572 /*
573  * Read a sequence of words from the EEPROM.
574  */
575 static void
576 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
577 {
578 	int			i;
579 	u_int16_t		word = 0, *ptr;
580 
581 	for (i = 0; i < cnt; i++) {
582 		if (DC_IS_PNIC(sc))
583 			dc_eeprom_getword_pnic(sc, off + i, &word);
584 		else if (DC_IS_XIRCOM(sc))
585 			dc_eeprom_getword_xircom(sc, off + i, &word);
586 		else
587 			dc_eeprom_getword(sc, off + i, &word);
588 		ptr = (u_int16_t *)(dest + (i * 2));
589 		if (swap)
590 			*ptr = ntohs(word);
591 		else
592 			*ptr = word;
593 	}
594 
595 	return;
596 }
597 
598 /*
599  * The following two routines are taken from the Macronix 98713
600  * Application Notes pp.19-21.
601  */
602 /*
603  * Write a bit to the MII bus.
604  */
605 static void
606 dc_mii_writebit(struct dc_softc *sc, int bit)
607 {
608 	if (bit)
609 		CSR_WRITE_4(sc, DC_SIO,
610 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
611 	else
612 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
613 
614 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
615 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
616 
617 	return;
618 }
619 
620 /*
621  * Read a bit from the MII bus.
622  */
623 static int
624 dc_mii_readbit(struct dc_softc *sc)
625 {
626 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
627 	CSR_READ_4(sc, DC_SIO);
628 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
629 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
630 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
631 		return(1);
632 
633 	return(0);
634 }
635 
636 /*
637  * Sync the PHYs by setting data bit and strobing the clock 32 times.
638  */
639 static void
640 dc_mii_sync(struct dc_softc *sc)
641 {
642 	int		i;
643 
644 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
645 
646 	for (i = 0; i < 32; i++)
647 		dc_mii_writebit(sc, 1);
648 
649 	return;
650 }
651 
652 /*
653  * Clock a series of bits through the MII.
654  */
655 static void
656 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
657 {
658 	int			i;
659 
660 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
661 		dc_mii_writebit(sc, bits & i);
662 }
663 
664 /*
665  * Read an PHY register through the MII.
666  */
667 static int
668 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
669 {
670 	int ack, i;
671 
672 	/*
673 	 * Set up frame for RX.
674 	 */
675 	frame->mii_stdelim = DC_MII_STARTDELIM;
676 	frame->mii_opcode = DC_MII_READOP;
677 	frame->mii_turnaround = 0;
678 	frame->mii_data = 0;
679 
680 	/*
681 	 * Sync the PHYs.
682 	 */
683 	dc_mii_sync(sc);
684 
685 	/*
686 	 * Send command/address info.
687 	 */
688 	dc_mii_send(sc, frame->mii_stdelim, 2);
689 	dc_mii_send(sc, frame->mii_opcode, 2);
690 	dc_mii_send(sc, frame->mii_phyaddr, 5);
691 	dc_mii_send(sc, frame->mii_regaddr, 5);
692 
693 #ifdef notdef
694 	/* Idle bit */
695 	dc_mii_writebit(sc, 1);
696 	dc_mii_writebit(sc, 0);
697 #endif
698 
699 	/* Check for ack */
700 	ack = dc_mii_readbit(sc);
701 
702 	/*
703 	 * Now try reading data bits. If the ack failed, we still
704 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
705 	 */
706 	if (ack) {
707 		for(i = 0; i < 16; i++) {
708 			dc_mii_readbit(sc);
709 		}
710 		goto fail;
711 	}
712 
713 	for (i = 0x8000; i; i >>= 1) {
714 		if (!ack) {
715 			if (dc_mii_readbit(sc))
716 				frame->mii_data |= i;
717 		}
718 	}
719 
720 fail:
721 
722 	dc_mii_writebit(sc, 0);
723 	dc_mii_writebit(sc, 0);
724 
725 	if (ack)
726 		return(1);
727 	return(0);
728 }
729 
730 /*
731  * Write to a PHY register through the MII.
732  */
733 static int
734 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
735 {
736 	/*
737 	 * Set up frame for TX.
738 	 */
739 
740 	frame->mii_stdelim = DC_MII_STARTDELIM;
741 	frame->mii_opcode = DC_MII_WRITEOP;
742 	frame->mii_turnaround = DC_MII_TURNAROUND;
743 
744 	/*
745 	 * Sync the PHYs.
746 	 */
747 	dc_mii_sync(sc);
748 
749 	dc_mii_send(sc, frame->mii_stdelim, 2);
750 	dc_mii_send(sc, frame->mii_opcode, 2);
751 	dc_mii_send(sc, frame->mii_phyaddr, 5);
752 	dc_mii_send(sc, frame->mii_regaddr, 5);
753 	dc_mii_send(sc, frame->mii_turnaround, 2);
754 	dc_mii_send(sc, frame->mii_data, 16);
755 
756 	/* Idle bit. */
757 	dc_mii_writebit(sc, 0);
758 	dc_mii_writebit(sc, 0);
759 
760 	return(0);
761 }
762 
763 static int
764 dc_miibus_readreg(device_t dev, int phy, int reg)
765 {
766 	struct dc_mii_frame	frame;
767 	struct dc_softc		*sc;
768 	int			i, rval, phy_reg = 0;
769 
770 	sc = device_get_softc(dev);
771 	bzero((char *)&frame, sizeof(frame));
772 
773 	/*
774 	 * Note: both the AL981 and AN985 have internal PHYs,
775 	 * however the AL981 provides direct access to the PHY
776 	 * registers while the AN985 uses a serial MII interface.
777 	 * The AN985's MII interface is also buggy in that you
778 	 * can read from any MII address (0 to 31), but only address 1
779 	 * behaves normally. To deal with both cases, we pretend
780 	 * that the PHY is at MII address 1.
781 	 */
782 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
783 		return(0);
784 
785 	/*
786 	 * Note: the ukphy probes of the RS7112 report a PHY at
787 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
788 	 * so we only respond to correct one.
789 	 */
790 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
791 		return(0);
792 
793 	if (sc->dc_pmode != DC_PMODE_MII) {
794 		if (phy == (MII_NPHY - 1)) {
795 			switch(reg) {
796 			case MII_BMSR:
797 			/*
798 			 * Fake something to make the probe
799 			 * code think there's a PHY here.
800 			 */
801 				return(BMSR_MEDIAMASK);
802 				break;
803 			case MII_PHYIDR1:
804 				if (DC_IS_PNIC(sc))
805 					return(DC_VENDORID_LO);
806 				return(DC_VENDORID_DEC);
807 				break;
808 			case MII_PHYIDR2:
809 				if (DC_IS_PNIC(sc))
810 					return(DC_DEVICEID_82C168);
811 				return(DC_DEVICEID_21143);
812 				break;
813 			default:
814 				return(0);
815 				break;
816 			}
817 		} else
818 			return(0);
819 	}
820 
821 	if (DC_IS_PNIC(sc)) {
822 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
823 		    (phy << 23) | (reg << 18));
824 		for (i = 0; i < DC_TIMEOUT; i++) {
825 			DELAY(1);
826 			rval = CSR_READ_4(sc, DC_PN_MII);
827 			if (!(rval & DC_PN_MII_BUSY)) {
828 				rval &= 0xFFFF;
829 				return(rval == 0xFFFF ? 0 : rval);
830 			}
831 		}
832 		return(0);
833 	}
834 
835 	if (DC_IS_COMET(sc)) {
836 		switch(reg) {
837 		case MII_BMCR:
838 			phy_reg = DC_AL_BMCR;
839 			break;
840 		case MII_BMSR:
841 			phy_reg = DC_AL_BMSR;
842 			break;
843 		case MII_PHYIDR1:
844 			phy_reg = DC_AL_VENID;
845 			break;
846 		case MII_PHYIDR2:
847 			phy_reg = DC_AL_DEVID;
848 			break;
849 		case MII_ANAR:
850 			phy_reg = DC_AL_ANAR;
851 			break;
852 		case MII_ANLPAR:
853 			phy_reg = DC_AL_LPAR;
854 			break;
855 		case MII_ANER:
856 			phy_reg = DC_AL_ANER;
857 			break;
858 		default:
859 			if_printf(&sc->arpcom.ac_if,
860 				  "phy_read: bad phy register %x\n", reg);
861 			return(0);
862 			break;
863 		}
864 
865 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
866 
867 		if (rval == 0xFFFF)
868 			return(0);
869 		return(rval);
870 	}
871 
872 	frame.mii_phyaddr = phy;
873 	frame.mii_regaddr = reg;
874 	if (sc->dc_type == DC_TYPE_98713) {
875 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
876 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
877 	}
878 	dc_mii_readreg(sc, &frame);
879 	if (sc->dc_type == DC_TYPE_98713)
880 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
881 
882 	return(frame.mii_data);
883 }
884 
885 static int
886 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
887 {
888 	struct dc_softc		*sc;
889 	struct dc_mii_frame	frame;
890 	int			i, phy_reg = 0;
891 
892 	sc = device_get_softc(dev);
893 	bzero((char *)&frame, sizeof(frame));
894 
895 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
896 		return(0);
897 
898 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
899 		return(0);
900 
901 	if (DC_IS_PNIC(sc)) {
902 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
903 		    (phy << 23) | (reg << 10) | data);
904 		for (i = 0; i < DC_TIMEOUT; i++) {
905 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
906 				break;
907 		}
908 		return(0);
909 	}
910 
911 	if (DC_IS_COMET(sc)) {
912 		switch(reg) {
913 		case MII_BMCR:
914 			phy_reg = DC_AL_BMCR;
915 			break;
916 		case MII_BMSR:
917 			phy_reg = DC_AL_BMSR;
918 			break;
919 		case MII_PHYIDR1:
920 			phy_reg = DC_AL_VENID;
921 			break;
922 		case MII_PHYIDR2:
923 			phy_reg = DC_AL_DEVID;
924 			break;
925 		case MII_ANAR:
926 			phy_reg = DC_AL_ANAR;
927 			break;
928 		case MII_ANLPAR:
929 			phy_reg = DC_AL_LPAR;
930 			break;
931 		case MII_ANER:
932 			phy_reg = DC_AL_ANER;
933 			break;
934 		default:
935 			if_printf(&sc->arpcom.ac_if,
936 				  "phy_write: bad phy register %x\n", reg);
937 			return(0);
938 			break;
939 		}
940 
941 		CSR_WRITE_4(sc, phy_reg, data);
942 		return(0);
943 	}
944 
945 	frame.mii_phyaddr = phy;
946 	frame.mii_regaddr = reg;
947 	frame.mii_data = data;
948 
949 	if (sc->dc_type == DC_TYPE_98713) {
950 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
951 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
952 	}
953 	dc_mii_writereg(sc, &frame);
954 	if (sc->dc_type == DC_TYPE_98713)
955 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
956 
957 	return(0);
958 }
959 
960 static void
961 dc_miibus_statchg(device_t dev)
962 {
963 	struct dc_softc		*sc;
964 	struct mii_data		*mii;
965 	struct ifmedia		*ifm;
966 
967 	sc = device_get_softc(dev);
968 	if (DC_IS_ADMTEK(sc))
969 		return;
970 
971 	mii = device_get_softc(sc->dc_miibus);
972 	ifm = &mii->mii_media;
973 	if (DC_IS_DAVICOM(sc) &&
974 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
975 		dc_setcfg(sc, ifm->ifm_media);
976 		sc->dc_if_media = ifm->ifm_media;
977 	} else {
978 		dc_setcfg(sc, mii->mii_media_active);
979 		sc->dc_if_media = mii->mii_media_active;
980 	}
981 
982 	return;
983 }
984 
985 /*
986  * Special support for DM9102A cards with HomePNA PHYs. Note:
987  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
988  * to be impossible to talk to the management interface of the DM9801
989  * PHY (its MDIO pin is not connected to anything). Consequently,
990  * the driver has to just 'know' about the additional mode and deal
991  * with it itself. *sigh*
992  */
993 static void
994 dc_miibus_mediainit(device_t dev)
995 {
996 	struct dc_softc		*sc;
997 	struct mii_data		*mii;
998 	struct ifmedia		*ifm;
999 	int			rev;
1000 
1001 	rev = pci_get_revid(dev);
1002 
1003 	sc = device_get_softc(dev);
1004 	mii = device_get_softc(sc->dc_miibus);
1005 	ifm = &mii->mii_media;
1006 
1007 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1008 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1009 
1010 	return;
1011 }
1012 
1013 #define DC_BITS_512	9
1014 #define DC_BITS_128	7
1015 #define DC_BITS_64	6
1016 
1017 static u_int32_t
1018 dc_crc_mask(struct dc_softc *sc)
1019 {
1020 	/*
1021 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1022 	 * chips is only 128 bits wide.
1023 	 */
1024 	if (sc->dc_flags & DC_128BIT_HASH)
1025 		return ((1 << DC_BITS_128) - 1);
1026 
1027 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1028 	if (sc->dc_flags & DC_64BIT_HASH)
1029 		return ((1 << DC_BITS_64) - 1);
1030 
1031 	return ((1 << DC_BITS_512) - 1);
1032 }
1033 
1034 /*
1035  * 21143-style RX filter setup routine. Filter programming is done by
1036  * downloading a special setup frame into the TX engine. 21143, Macronix,
1037  * PNIC, PNIC II and Davicom chips are programmed this way.
1038  *
1039  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1040  * address (our node address) and a 512-bit hash filter for multicast
1041  * frames. We also sneak the broadcast address into the hash filter since
1042  * we need that too.
1043  */
1044 static void
1045 dc_setfilt_21143(struct dc_softc *sc)
1046 {
1047 	struct dc_desc		*sframe;
1048 	u_int32_t		h, crc_mask, *sp;
1049 	struct ifmultiaddr	*ifma;
1050 	struct ifnet		*ifp;
1051 	int			i;
1052 
1053 	ifp = &sc->arpcom.ac_if;
1054 
1055 	i = sc->dc_cdata.dc_tx_prod;
1056 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1057 	sc->dc_cdata.dc_tx_cnt++;
1058 	sframe = &sc->dc_ldata->dc_tx_list[i];
1059 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1060 	bzero((char *)sp, DC_SFRAME_LEN);
1061 
1062 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1063 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1064 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1065 
1066 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1067 
1068 	/* If we want promiscuous mode, set the allframes bit. */
1069 	if (ifp->if_flags & IFF_PROMISC)
1070 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1071 	else
1072 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1073 
1074 	if (ifp->if_flags & IFF_ALLMULTI)
1075 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1076 	else
1077 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1078 
1079 	crc_mask = dc_crc_mask(sc);
1080 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1081 		if (ifma->ifma_addr->sa_family != AF_LINK)
1082 			continue;
1083 		h = ether_crc32_le(
1084 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1085 			ETHER_ADDR_LEN) & crc_mask;
1086 		sp[h >> 4] |= 1 << (h & 0xF);
1087 	}
1088 
1089 	if (ifp->if_flags & IFF_BROADCAST) {
1090 		h = ether_crc32_le(ifp->if_broadcastaddr,
1091 				   ETHER_ADDR_LEN) & crc_mask;
1092 		sp[h >> 4] |= 1 << (h & 0xF);
1093 	}
1094 
1095 	/* Set our MAC address */
1096 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1097 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1098 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1099 
1100 	sframe->dc_status = DC_TXSTAT_OWN;
1101 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1102 
1103 	/*
1104 	 * The PNIC takes an exceedingly long time to process its
1105 	 * setup frame; wait 10ms after posting the setup frame
1106 	 * before proceeding, just so it has time to swallow its
1107 	 * medicine.
1108 	 */
1109 	DELAY(10000);
1110 
1111 	ifp->if_timer = 5;
1112 
1113 	return;
1114 }
1115 
1116 static void
1117 dc_setfilt_admtek(struct dc_softc *sc)
1118 {
1119 	struct ifnet		*ifp;
1120 	int			h = 0;
1121 	u_int32_t		crc_mask;
1122 	u_int32_t		hashes[2] = { 0, 0 };
1123 	struct ifmultiaddr	*ifma;
1124 
1125 	ifp = &sc->arpcom.ac_if;
1126 
1127 	/* Init our MAC address */
1128 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1129 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1130 
1131 	/* If we want promiscuous mode, set the allframes bit. */
1132 	if (ifp->if_flags & IFF_PROMISC)
1133 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1134 	else
1135 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1136 
1137 	if (ifp->if_flags & IFF_ALLMULTI)
1138 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1139 	else
1140 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1141 
1142 	/* first, zot all the existing hash bits */
1143 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1144 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1145 
1146 	/*
1147 	 * If we're already in promisc or allmulti mode, we
1148 	 * don't have to bother programming the multicast filter.
1149 	 */
1150 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1151 		return;
1152 
1153 	/* now program new ones */
1154 	if (DC_IS_CENTAUR(sc))
1155 		crc_mask = dc_crc_mask(sc);
1156 	else
1157 		crc_mask = 0x3f;
1158 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1159 		if (ifma->ifma_addr->sa_family != AF_LINK)
1160 			continue;
1161 		if (DC_IS_CENTAUR(sc)) {
1162 			h = ether_crc32_le(
1163 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1164 				ETHER_ADDR_LEN) & crc_mask;
1165 		} else {
1166 			h = ether_crc32_be(
1167 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1168 				ETHER_ADDR_LEN);
1169 			h = (h >> 26) & crc_mask;
1170 		}
1171 		if (h < 32)
1172 			hashes[0] |= (1 << h);
1173 		else
1174 			hashes[1] |= (1 << (h - 32));
1175 	}
1176 
1177 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1178 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1179 
1180 	return;
1181 }
1182 
1183 static void
1184 dc_setfilt_asix(struct dc_softc *sc)
1185 {
1186 	struct ifnet		*ifp;
1187 	int			h = 0;
1188 	u_int32_t		hashes[2] = { 0, 0 };
1189 	struct ifmultiaddr	*ifma;
1190 
1191 	ifp = &sc->arpcom.ac_if;
1192 
1193         /* Init our MAC address */
1194         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1195         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1196 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1197         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1198         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1199 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1200 
1201 	/* If we want promiscuous mode, set the allframes bit. */
1202 	if (ifp->if_flags & IFF_PROMISC)
1203 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1204 	else
1205 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1206 
1207 	if (ifp->if_flags & IFF_ALLMULTI)
1208 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1209 	else
1210 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1211 
1212 	/*
1213 	 * The ASIX chip has a special bit to enable reception
1214 	 * of broadcast frames.
1215 	 */
1216 	if (ifp->if_flags & IFF_BROADCAST)
1217 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1218 	else
1219 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1220 
1221 	/* first, zot all the existing hash bits */
1222 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1223 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1224 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1225 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1226 
1227 	/*
1228 	 * If we're already in promisc or allmulti mode, we
1229 	 * don't have to bother programming the multicast filter.
1230 	 */
1231 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1232 		return;
1233 
1234 	/* now program new ones */
1235 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1236 		if (ifma->ifma_addr->sa_family != AF_LINK)
1237 			continue;
1238 		h = ether_crc32_be(
1239 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1240 			ETHER_ADDR_LEN);
1241 		h = (h >> 26) & 0x3f;
1242 		if (h < 32)
1243 			hashes[0] |= (1 << h);
1244 		else
1245 			hashes[1] |= (1 << (h - 32));
1246 	}
1247 
1248 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1249 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1250 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1251 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1252 
1253 	return;
1254 }
1255 
1256 static void
1257 dc_setfilt_xircom(struct dc_softc *sc)
1258 {
1259 	struct dc_desc		*sframe;
1260 	u_int32_t		h, *sp;
1261 	struct ifmultiaddr	*ifma;
1262 	struct ifnet		*ifp;
1263 	int			i;
1264 
1265 	ifp = &sc->arpcom.ac_if;
1266 	KASSERT(ifp->if_flags & IFF_RUNNING,
1267 		("%s is not running yet", ifp->if_xname));
1268 
1269 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1270 
1271 	i = sc->dc_cdata.dc_tx_prod;
1272 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1273 	sc->dc_cdata.dc_tx_cnt++;
1274 	sframe = &sc->dc_ldata->dc_tx_list[i];
1275 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1276 	bzero(sp, DC_SFRAME_LEN);
1277 
1278 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1279 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1280 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1281 
1282 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1283 
1284 	/* If we want promiscuous mode, set the allframes bit. */
1285 	if (ifp->if_flags & IFF_PROMISC)
1286 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1287 	else
1288 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1289 
1290 	if (ifp->if_flags & IFF_ALLMULTI)
1291  		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1292 	else
1293 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1294 
1295 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1296 		if (ifma->ifma_addr->sa_family != AF_LINK)
1297 			continue;
1298 		h = dc_mchash_xircom(sc,
1299 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1300 		sp[h >> 4] |= 1 << (h & 0xF);
1301 	}
1302 
1303 	if (ifp->if_flags & IFF_BROADCAST) {
1304 		h = dc_mchash_xircom(sc, __DECONST(caddr_t, &etherbroadcastaddr));
1305 		sp[h >> 4] |= 1 << (h & 0xF);
1306 	}
1307 
1308 	/* Set our MAC address */
1309 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1310 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1311 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1312 
1313 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1314 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1315 	sframe->dc_status = DC_TXSTAT_OWN;
1316 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1317 
1318 	/*
1319 	 * wait some time...
1320 	 */
1321 	DELAY(1000);
1322 
1323 	ifp->if_timer = 5;
1324 }
1325 
1326 static void
1327 dc_setfilt(struct dc_softc *sc)
1328 {
1329 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1330 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1331 		dc_setfilt_21143(sc);
1332 
1333 	if (DC_IS_ASIX(sc))
1334 		dc_setfilt_asix(sc);
1335 
1336 	if (DC_IS_ADMTEK(sc))
1337 		dc_setfilt_admtek(sc);
1338 
1339 	if (DC_IS_XIRCOM(sc))
1340 		dc_setfilt_xircom(sc);
1341 }
1342 
1343 /*
1344  * In order to fiddle with the
1345  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1346  * first have to put the transmit and/or receive logic in the idle state.
1347  */
1348 static void
1349 dc_setcfg(struct dc_softc *sc, int media)
1350 {
1351 	int			i, restart = 0;
1352 	u_int32_t		isr;
1353 
1354 	if (IFM_SUBTYPE(media) == IFM_NONE)
1355 		return;
1356 
1357 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1358 		restart = 1;
1359 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1360 
1361 		for (i = 0; i < DC_TIMEOUT; i++) {
1362 			isr = CSR_READ_4(sc, DC_ISR);
1363 			if ((isr & DC_ISR_TX_IDLE) &&
1364 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1365 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1366 				break;
1367 			DELAY(10);
1368 		}
1369 
1370 		if (i == DC_TIMEOUT) {
1371 			if_printf(&sc->arpcom.ac_if,
1372 			    "failed to force tx and rx to idle state\n");
1373 		}
1374 	}
1375 
1376 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1377 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1378 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1379 		if (sc->dc_pmode == DC_PMODE_MII) {
1380 			int	watchdogreg;
1381 
1382 			if (DC_IS_INTEL(sc)) {
1383 			/* there's a write enable bit here that reads as 1 */
1384 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1385 				watchdogreg &= ~DC_WDOG_CTLWREN;
1386 				watchdogreg |= DC_WDOG_JABBERDIS;
1387 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1388 			} else {
1389 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1390 			}
1391 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1392 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1393 			if (sc->dc_type == DC_TYPE_98713)
1394 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1395 				    DC_NETCFG_SCRAMBLER));
1396 			if (!DC_IS_DAVICOM(sc))
1397 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1398 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1399 			if (DC_IS_INTEL(sc))
1400 				dc_apply_fixup(sc, IFM_AUTO);
1401 		} else {
1402 			if (DC_IS_PNIC(sc)) {
1403 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1404 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1405 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1406 			}
1407 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1408 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1409 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1410 			if (DC_IS_INTEL(sc))
1411 				dc_apply_fixup(sc,
1412 				    (media & IFM_GMASK) == IFM_FDX ?
1413 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1414 		}
1415 	}
1416 
1417 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1418 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1419 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1420 		if (sc->dc_pmode == DC_PMODE_MII) {
1421 			int	watchdogreg;
1422 
1423 			/* there's a write enable bit here that reads as 1 */
1424 			if (DC_IS_INTEL(sc)) {
1425 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1426 				watchdogreg &= ~DC_WDOG_CTLWREN;
1427 				watchdogreg |= DC_WDOG_JABBERDIS;
1428 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1429 			} else {
1430 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1431 			}
1432 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1433 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1434 			if (sc->dc_type == DC_TYPE_98713)
1435 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1436 			if (!DC_IS_DAVICOM(sc))
1437 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1438 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1439 			if (DC_IS_INTEL(sc))
1440 				dc_apply_fixup(sc, IFM_AUTO);
1441 		} else {
1442 			if (DC_IS_PNIC(sc)) {
1443 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1444 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1445 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1446 			}
1447 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1448 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1449 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1450 			if (DC_IS_INTEL(sc)) {
1451 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1452 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1453 				if ((media & IFM_GMASK) == IFM_FDX)
1454 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1455 				else
1456 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1457 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1458 				DC_CLRBIT(sc, DC_10BTCTRL,
1459 				    DC_TCTL_AUTONEGENBL);
1460 				dc_apply_fixup(sc,
1461 				    (media & IFM_GMASK) == IFM_FDX ?
1462 				    IFM_10_T|IFM_FDX : IFM_10_T);
1463 				DELAY(20000);
1464 			}
1465 		}
1466 	}
1467 
1468 	/*
1469 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1470 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1471 	 * on the external MII port.
1472 	 */
1473 	if (DC_IS_DAVICOM(sc)) {
1474 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1475 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1476 			sc->dc_link = 1;
1477 		} else {
1478 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1479 		}
1480 	}
1481 
1482 	if ((media & IFM_GMASK) == IFM_FDX) {
1483 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1484 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1485 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1486 	} else {
1487 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1488 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1489 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1490 	}
1491 
1492 	if (restart)
1493 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1494 
1495 	return;
1496 }
1497 
1498 static void
1499 dc_reset(struct dc_softc *sc)
1500 {
1501 	int		i;
1502 
1503 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1504 
1505 	for (i = 0; i < DC_TIMEOUT; i++) {
1506 		DELAY(10);
1507 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1508 			break;
1509 	}
1510 
1511 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
1512 	    DC_IS_CONEXANT(sc)) {
1513 		DELAY(10000);
1514 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1515 		i = 0;
1516 	}
1517 
1518 	if (i == DC_TIMEOUT)
1519 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1520 
1521 	/* Wait a little while for the chip to get its brains in order. */
1522 	DELAY(1000);
1523 
1524 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1525 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1526 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1527 
1528 	/*
1529 	 * Bring the SIA out of reset. In some cases, it looks
1530 	 * like failing to unreset the SIA soon enough gets it
1531 	 * into a state where it will never come out of reset
1532 	 * until we reset the whole chip again.
1533 	 */
1534 	if (DC_IS_INTEL(sc)) {
1535 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1536 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1537 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1538 	}
1539 
1540         return;
1541 }
1542 
1543 static const struct dc_type *
1544 dc_devtype(device_t dev)
1545 {
1546 	const struct dc_type	*t;
1547 	u_int32_t		rev;
1548 
1549 	t = dc_devs;
1550 
1551 	while(t->dc_name != NULL) {
1552 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1553 		    (pci_get_device(dev) == t->dc_did)) {
1554 			/* Check the PCI revision */
1555 			rev = pci_get_revid(dev);
1556 			if (t->dc_did == DC_DEVICEID_98713 &&
1557 			    rev >= DC_REVISION_98713A)
1558 				t++;
1559 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1560 			    rev >= DC_REVISION_98713A)
1561 				t++;
1562 			if (t->dc_did == DC_DEVICEID_987x5 &&
1563 			    rev >= DC_REVISION_98715AEC_C)
1564 				t++;
1565 			if (t->dc_did == DC_DEVICEID_987x5 &&
1566 			    rev >= DC_REVISION_98725)
1567 				t++;
1568 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1569 			    rev >= DC_REVISION_88141)
1570 				t++;
1571 			if (t->dc_did == DC_DEVICEID_82C168 &&
1572 			    rev >= DC_REVISION_82C169)
1573 				t++;
1574 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1575 			    rev >= DC_REVISION_DM9102A)
1576 				t++;
1577 			return(t);
1578 		}
1579 		t++;
1580 	}
1581 
1582 	return(NULL);
1583 }
1584 
1585 /*
1586  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1587  * IDs against our list and return a device name if we find a match.
1588  * We do a little bit of extra work to identify the exact type of
1589  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1590  * but different revision IDs. The same is true for 98715/98715A
1591  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1592  * cases, the exact chip revision affects driver behavior.
1593  */
1594 static int
1595 dc_probe(device_t dev)
1596 {
1597 	const struct dc_type *t;
1598 
1599 	t = dc_devtype(dev);
1600 	if (t != NULL) {
1601 		struct dc_softc *sc = device_get_softc(dev);
1602 
1603 		/* Need this info to decide on a chip type. */
1604 		sc->dc_info = t;
1605 		device_set_desc(dev, t->dc_name);
1606 		return(0);
1607 	}
1608 
1609 	return(ENXIO);
1610 }
1611 
1612 static void
1613 dc_acpi(device_t dev)
1614 {
1615 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1616 		uint32_t iobase, membase, irq;
1617 		struct dc_softc *sc;
1618 
1619 		/* Save important PCI config data. */
1620 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1621 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1622 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1623 
1624 		sc = device_get_softc(dev);
1625 		/* Reset the power state. */
1626 		if_printf(&sc->arpcom.ac_if,
1627 			  "chip is in D%d power mode "
1628 			  "-- setting to D0\n", pci_get_powerstate(dev));
1629 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1630 
1631 		/* Restore PCI config data. */
1632 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1633 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1634 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1635 	}
1636 }
1637 
1638 static void
1639 dc_apply_fixup(struct dc_softc *sc, int media)
1640 {
1641 	struct dc_mediainfo	*m;
1642 	u_int8_t		*p;
1643 	int			i;
1644 	u_int32_t		reg;
1645 
1646 	m = sc->dc_mi;
1647 
1648 	while (m != NULL) {
1649 		if (m->dc_media == media)
1650 			break;
1651 		m = m->dc_next;
1652 	}
1653 
1654 	if (m == NULL)
1655 		return;
1656 
1657 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1658 		reg = (p[0] | (p[1] << 8)) << 16;
1659 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1660 	}
1661 
1662 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1663 		reg = (p[0] | (p[1] << 8)) << 16;
1664 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1665 	}
1666 
1667 	return;
1668 }
1669 
1670 static void
1671 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1672 {
1673 	struct dc_mediainfo	*m;
1674 
1675 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1676 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1677 	case DC_SIA_CODE_10BT:
1678 		m->dc_media = IFM_10_T;
1679 		break;
1680 
1681 	case DC_SIA_CODE_10BT_FDX:
1682 		m->dc_media = IFM_10_T|IFM_FDX;
1683 		break;
1684 
1685 	case DC_SIA_CODE_10B2:
1686 		m->dc_media = IFM_10_2;
1687 		break;
1688 
1689 	case DC_SIA_CODE_10B5:
1690 		m->dc_media = IFM_10_5;
1691 		break;
1692 	}
1693 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1694 		m->dc_gp_len = 2;
1695 		m->dc_gp_ptr =
1696 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1697 	} else {
1698 	m->dc_gp_len = 2;
1699 	m->dc_gp_ptr =
1700 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1701 	}
1702 
1703 	m->dc_next = sc->dc_mi;
1704 	sc->dc_mi = m;
1705 
1706 	sc->dc_pmode = DC_PMODE_SIA;
1707 
1708 	return;
1709 }
1710 
1711 static void
1712 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1713 {
1714 	struct dc_mediainfo	*m;
1715 
1716 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1717 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1718 		m->dc_media = IFM_100_TX;
1719 
1720 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1721 		m->dc_media = IFM_100_TX|IFM_FDX;
1722 
1723 	m->dc_gp_len = 2;
1724 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1725 
1726 	m->dc_next = sc->dc_mi;
1727 	sc->dc_mi = m;
1728 
1729 	sc->dc_pmode = DC_PMODE_SYM;
1730 
1731 	return;
1732 }
1733 
1734 static void
1735 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1736 {
1737 	u_int8_t		*p;
1738 	struct dc_mediainfo	*m;
1739 
1740 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1741 	/* We abuse IFM_AUTO to represent MII. */
1742 	m->dc_media = IFM_AUTO;
1743 	m->dc_gp_len = l->dc_gpr_len;
1744 
1745 	p = (u_int8_t *)l;
1746 	p += sizeof(struct dc_eblock_mii);
1747 	m->dc_gp_ptr = p;
1748 	p += 2 * l->dc_gpr_len;
1749 	m->dc_reset_len = *p;
1750 	p++;
1751 	m->dc_reset_ptr = p;
1752 
1753 	m->dc_next = sc->dc_mi;
1754 	sc->dc_mi = m;
1755 
1756 	return;
1757 }
1758 
1759 static void
1760 dc_read_srom(struct dc_softc *sc, int bits)
1761 {
1762 	int size;
1763 
1764 	size = 2 << bits;
1765 	sc->dc_srom = kmalloc(size, M_DEVBUF, M_INTWAIT);
1766 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1767 }
1768 
1769 static void
1770 dc_parse_21143_srom(struct dc_softc *sc)
1771 {
1772 	struct dc_leaf_hdr	*lhdr;
1773 	struct dc_eblock_hdr	*hdr;
1774 	int			i, loff;
1775 	char			*ptr;
1776 	int			have_mii;
1777 
1778 	have_mii = 0;
1779 	loff = sc->dc_srom[27];
1780 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1781 
1782 	ptr = (char *)lhdr;
1783 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1784 	/*
1785 	 * Look if we got a MII media block.
1786 	 */
1787 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1788 		hdr = (struct dc_eblock_hdr *)ptr;
1789 		if (hdr->dc_type == DC_EBLOCK_MII)
1790 		    have_mii++;
1791 
1792 		ptr += (hdr->dc_len & 0x7F);
1793 		ptr++;
1794 	}
1795 
1796 	/*
1797 	 * Do the same thing again. Only use SIA and SYM media
1798 	 * blocks if no MII media block is available.
1799 	 */
1800 	ptr = (char *)lhdr;
1801 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1802 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1803 		hdr = (struct dc_eblock_hdr *)ptr;
1804 		switch(hdr->dc_type) {
1805 		case DC_EBLOCK_MII:
1806 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1807 			break;
1808 		case DC_EBLOCK_SIA:
1809 			if (! have_mii)
1810 				dc_decode_leaf_sia(sc,
1811 				    (struct dc_eblock_sia *)hdr);
1812 			break;
1813 		case DC_EBLOCK_SYM:
1814 			if (! have_mii)
1815 				dc_decode_leaf_sym(sc,
1816 				    (struct dc_eblock_sym *)hdr);
1817 			break;
1818 		default:
1819 			/* Don't care. Yet. */
1820 			break;
1821 		}
1822 		ptr += (hdr->dc_len & 0x7F);
1823 		ptr++;
1824 	}
1825 
1826 	return;
1827 }
1828 
1829 /*
1830  * Attach the interface. Allocate softc structures, do ifmedia
1831  * setup and ethernet/BPF attach.
1832  */
1833 static int
1834 dc_attach(device_t dev)
1835 {
1836 	int			tmp = 0;
1837 	u_char			eaddr[ETHER_ADDR_LEN];
1838 	u_int32_t		command;
1839 	struct dc_softc		*sc;
1840 	struct ifnet		*ifp;
1841 	u_int32_t		revision;
1842 	int			error = 0, rid, mac_offset;
1843 	uint8_t			*mac;
1844 
1845 	sc = device_get_softc(dev);
1846 	callout_init(&sc->dc_stat_timer);
1847 
1848 	ifp = &sc->arpcom.ac_if;
1849 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1850 
1851 	/*
1852 	 * Handle power management nonsense.
1853 	 */
1854 	dc_acpi(dev);
1855 
1856 	/*
1857 	 * Map control/status registers.
1858 	 */
1859 	pci_enable_busmaster(dev);
1860 
1861 	rid = DC_RID;
1862 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1863 
1864 	if (sc->dc_res == NULL) {
1865 		device_printf(dev, "couldn't map ports/memory\n");
1866 		error = ENXIO;
1867 		goto fail;
1868 	}
1869 
1870 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1871 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1872 
1873 	/* Allocate interrupt */
1874 	rid = 0;
1875 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1876 	    RF_SHAREABLE | RF_ACTIVE);
1877 
1878 	if (sc->dc_irq == NULL) {
1879 		device_printf(dev, "couldn't map interrupt\n");
1880 		error = ENXIO;
1881 		goto fail;
1882 	}
1883 
1884 	revision = pci_get_revid(dev);
1885 
1886 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1887 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1888 	    sc->dc_info->dc_did != DC_DEVICEID_X3201)
1889 		dc_eeprom_width(sc);
1890 
1891 	switch(sc->dc_info->dc_did) {
1892 	case DC_DEVICEID_21143:
1893 		sc->dc_type = DC_TYPE_21143;
1894 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1895 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1896 		/* Save EEPROM contents so we can parse them later. */
1897 		dc_read_srom(sc, sc->dc_romwidth);
1898 		break;
1899 	case DC_DEVICEID_DM9009:
1900 	case DC_DEVICEID_DM9100:
1901 	case DC_DEVICEID_DM9102:
1902 		sc->dc_type = DC_TYPE_DM9102;
1903 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1904 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1905 		sc->dc_flags |= DC_TX_ALIGN;
1906 		sc->dc_pmode = DC_PMODE_MII;
1907 		/* Increase the latency timer value. */
1908 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1909 		command &= 0xFFFF00FF;
1910 		command |= 0x00008000;
1911 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1912 		break;
1913 	case DC_DEVICEID_AL981:
1914 		sc->dc_type = DC_TYPE_AL981;
1915 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1916 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1917 		sc->dc_pmode = DC_PMODE_MII;
1918 		dc_read_srom(sc, sc->dc_romwidth);
1919 		break;
1920 	case DC_DEVICEID_AN985:
1921 	case DC_DEVICEID_FE2500:
1922 	case DC_DEVICEID_ADM9511:
1923 	case DC_DEVICEID_ADM9513:
1924 	case DC_DEVICEID_FA511:
1925 	case DC_DEVICEID_EN2242:
1926 	case DC_DEVICEID_3CSOHOB:
1927 		sc->dc_type = DC_TYPE_AN985;
1928 		sc->dc_flags |= DC_64BIT_HASH;
1929 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1930 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1931 		sc->dc_pmode = DC_PMODE_MII;
1932 		break;
1933 	case DC_DEVICEID_98713:
1934 	case DC_DEVICEID_98713_CP:
1935 		if (revision < DC_REVISION_98713A) {
1936 			sc->dc_type = DC_TYPE_98713;
1937 		}
1938 		if (revision >= DC_REVISION_98713A) {
1939 			sc->dc_type = DC_TYPE_98713A;
1940 			sc->dc_flags |= DC_21143_NWAY;
1941 		}
1942 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1943 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1944 		break;
1945 	case DC_DEVICEID_987x5:
1946 	case DC_DEVICEID_EN1217:
1947 		/*
1948 		 * Macronix MX98715AEC-C/D/E parts have only a
1949 		 * 128-bit hash table. We need to deal with these
1950 		 * in the same manner as the PNIC II so that we
1951 		 * get the right number of bits out of the
1952 		 * CRC routine.
1953 		 */
1954 		if (revision >= DC_REVISION_98715AEC_C &&
1955 		    revision < DC_REVISION_98725)
1956 			sc->dc_flags |= DC_128BIT_HASH;
1957 		sc->dc_type = DC_TYPE_987x5;
1958 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1959 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1960 		break;
1961 	case DC_DEVICEID_98727:
1962 		sc->dc_type = DC_TYPE_987x5;
1963 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1964 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1965 		break;
1966 	case DC_DEVICEID_82C115:
1967 		sc->dc_type = DC_TYPE_PNICII;
1968 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1969 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1970 		break;
1971 	case DC_DEVICEID_82C168:
1972 		sc->dc_type = DC_TYPE_PNIC;
1973 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1974 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1975 		sc->dc_pnic_rx_buf = kmalloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1976 		if (revision < DC_REVISION_82C169)
1977 			sc->dc_pmode = DC_PMODE_SYM;
1978 		break;
1979 	case DC_DEVICEID_AX88140A:
1980 		sc->dc_type = DC_TYPE_ASIX;
1981 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1982 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1983 		sc->dc_pmode = DC_PMODE_MII;
1984 		break;
1985 	case DC_DEVICEID_RS7112:
1986 		sc->dc_type = DC_TYPE_CONEXANT;
1987 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1988 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1989 		sc->dc_pmode = DC_PMODE_MII;
1990 		dc_read_srom(sc, sc->dc_romwidth);
1991 		break;
1992 	case DC_DEVICEID_X3201:
1993 		sc->dc_type = DC_TYPE_XIRCOM;
1994 		sc->dc_flags |= (DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1995 				 DC_TX_ALIGN);
1996 		/*
1997 		 * We don't actually need to coalesce, but we're doing
1998 		 * it to obtain a double word aligned buffer.
1999 		 * The DC_TX_COALESCE flag is required.
2000 		 */
2001 		sc->dc_pmode = DC_PMODE_MII;
2002 		break;
2003 	default:
2004 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
2005 		break;
2006 	}
2007 
2008 	/* Save the cache line size. */
2009 	if (DC_IS_DAVICOM(sc))
2010 		sc->dc_cachesize = 0;
2011 	else
2012 		sc->dc_cachesize = pci_read_config(dev,
2013 		    DC_PCI_CFLT, 4) & 0xFF;
2014 
2015 	/* Reset the adapter. */
2016 	dc_reset(sc);
2017 
2018 	/* Take 21143 out of snooze mode */
2019 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2020 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2021 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2022 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2023 	}
2024 
2025 	/*
2026 	 * Try to learn something about the supported media.
2027 	 * We know that ASIX and ADMtek and Davicom devices
2028 	 * will *always* be using MII media, so that's a no-brainer.
2029 	 * The tricky ones are the Macronix/PNIC II and the
2030 	 * Intel 21143.
2031 	 */
2032 	if (DC_IS_INTEL(sc))
2033 		dc_parse_21143_srom(sc);
2034 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2035 		if (sc->dc_type == DC_TYPE_98713)
2036 			sc->dc_pmode = DC_PMODE_MII;
2037 		else
2038 			sc->dc_pmode = DC_PMODE_SYM;
2039 	} else if (!sc->dc_pmode)
2040 		sc->dc_pmode = DC_PMODE_MII;
2041 
2042 	/*
2043 	 * Get station address from the EEPROM.
2044 	 */
2045 	switch(sc->dc_type) {
2046 	case DC_TYPE_98713:
2047 	case DC_TYPE_98713A:
2048 	case DC_TYPE_987x5:
2049 	case DC_TYPE_PNICII:
2050 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2051 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2052 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2053 		break;
2054 	case DC_TYPE_PNIC:
2055 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2056 		break;
2057 	case DC_TYPE_DM9102:
2058 	case DC_TYPE_21143:
2059 	case DC_TYPE_ASIX:
2060 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2061 		break;
2062 	case DC_TYPE_AL981:
2063 	case DC_TYPE_AN985:
2064 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
2065 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
2066 		break;
2067 	case DC_TYPE_CONEXANT:
2068 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2069 		break;
2070 	case DC_TYPE_XIRCOM:
2071 		/* The MAC comes from the CIS */
2072 		mac = pci_get_ether(dev);
2073 		if (!mac) {
2074 			device_printf(dev, "No station address in CIS!\n");
2075 			error = ENXIO;
2076 			goto fail;
2077 		}
2078 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2079 	 	break;
2080 	default:
2081 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2082 		break;
2083 	}
2084 
2085 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2086 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
2087 
2088 	if (sc->dc_ldata == NULL) {
2089 		device_printf(dev, "no memory for list buffers!\n");
2090 		error = ENXIO;
2091 		goto fail;
2092 	}
2093 
2094 	ifp->if_softc = sc;
2095 	ifp->if_mtu = ETHERMTU;
2096 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2097 	ifp->if_ioctl = dc_ioctl;
2098 	ifp->if_start = dc_start;
2099 #ifdef IFPOLL_ENABLE
2100 	ifp->if_npoll = dc_npoll;
2101 #endif
2102 	ifp->if_watchdog = dc_watchdog;
2103 	ifp->if_init = dc_init;
2104 	ifp->if_baudrate = 10000000;
2105 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2106 	ifq_set_ready(&ifp->if_snd);
2107 
2108 	/*
2109 	 * Do MII setup. If this is a 21143, check for a PHY on the
2110 	 * MII bus after applying any necessary fixups to twiddle the
2111 	 * GPIO bits. If we don't end up finding a PHY, restore the
2112 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2113 	 * driver instead.
2114 	 */
2115 	if (DC_IS_INTEL(sc)) {
2116 		dc_apply_fixup(sc, IFM_AUTO);
2117 		tmp = sc->dc_pmode;
2118 		sc->dc_pmode = DC_PMODE_MII;
2119 	}
2120 
2121 	/*
2122 	 * Setup General Purpose port mode and data so the tulip can talk
2123 	 * to the MII.  This needs to be done before mii_phy_probe so that
2124 	 * we can actually see them.
2125 	 */
2126 	if (DC_IS_XIRCOM(sc)) {
2127 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2128 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2129 		DELAY(10);
2130 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2131 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2132 		DELAY(10);
2133 	}
2134 
2135 	error = mii_phy_probe(dev, &sc->dc_miibus,
2136 	    dc_ifmedia_upd, dc_ifmedia_sts);
2137 
2138 	if (error && DC_IS_INTEL(sc)) {
2139 		sc->dc_pmode = tmp;
2140 		if (sc->dc_pmode != DC_PMODE_SIA)
2141 			sc->dc_pmode = DC_PMODE_SYM;
2142 		sc->dc_flags |= DC_21143_NWAY;
2143 		mii_phy_probe(dev, &sc->dc_miibus,
2144 		    dc_ifmedia_upd, dc_ifmedia_sts);
2145 		/*
2146 		 * For non-MII cards, we need to have the 21143
2147 		 * drive the LEDs. Except there are some systems
2148 		 * like the NEC VersaPro NoteBook PC which have no
2149 		 * LEDs, and twiddling these bits has adverse effects
2150 		 * on them. (I.e. you suddenly can't get a link.)
2151 		 */
2152 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2153 			sc->dc_flags |= DC_TULIP_LEDS;
2154 		error = 0;
2155 	}
2156 
2157 	if (error) {
2158 		device_printf(dev, "MII without any PHY!\n");
2159 		error = ENXIO;
2160 		goto fail;
2161 	}
2162 
2163 	/*
2164 	 * Call MI attach routine.
2165 	 */
2166 	ether_ifattach(ifp, eaddr, NULL);
2167 
2168 #ifdef IFPOLL_ENABLE
2169 	ifpoll_compat_setup(&sc->dc_npoll, NULL, NULL, device_get_unit(dev),
2170 	    ifp->if_serializer);
2171 #endif
2172 
2173 	if (DC_IS_ADMTEK(sc)) {
2174 		/*
2175 		 * Set automatic TX underrun recovery for the ADMtek chips
2176 		 */
2177 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2178 	}
2179 
2180 	/*
2181 	 * Tell the upper layer(s) we support long frames.
2182 	 */
2183 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2184 
2185 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->dc_irq));
2186 
2187 	error = bus_setup_intr(dev, sc->dc_irq, INTR_MPSAFE,
2188 			       dc_intr, sc, &sc->dc_intrhand,
2189 			       ifp->if_serializer);
2190 	if (error) {
2191 		ether_ifdetach(ifp);
2192 		device_printf(dev, "couldn't set up irq\n");
2193 		goto fail;
2194 	}
2195 
2196 	return(0);
2197 
2198 fail:
2199 	dc_detach(dev);
2200 	return(error);
2201 }
2202 
2203 static int
2204 dc_detach(device_t dev)
2205 {
2206 	struct dc_softc *sc = device_get_softc(dev);
2207 	struct ifnet *ifp = &sc->arpcom.ac_if;
2208 	struct dc_mediainfo *m;
2209 
2210 	if (device_is_attached(dev)) {
2211 		lwkt_serialize_enter(ifp->if_serializer);
2212 		dc_stop(sc);
2213 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2214 		lwkt_serialize_exit(ifp->if_serializer);
2215 
2216 		ether_ifdetach(ifp);
2217 	}
2218 
2219 	if (sc->dc_miibus)
2220 		device_delete_child(dev, sc->dc_miibus);
2221 	bus_generic_detach(dev);
2222 
2223 	if (sc->dc_irq)
2224 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2225 	if (sc->dc_res)
2226 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2227 
2228 	if (sc->dc_ldata)
2229 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2230 	if (sc->dc_pnic_rx_buf != NULL)
2231 		kfree(sc->dc_pnic_rx_buf, M_DEVBUF);
2232 
2233 	while (sc->dc_mi != NULL) {
2234 		m = sc->dc_mi->dc_next;
2235 		kfree(sc->dc_mi, M_DEVBUF);
2236 		sc->dc_mi = m;
2237 	}
2238 
2239 	if (sc->dc_srom)
2240 		kfree(sc->dc_srom, M_DEVBUF);
2241 
2242 	return(0);
2243 }
2244 
2245 /*
2246  * Initialize the transmit descriptors.
2247  */
2248 static int
2249 dc_list_tx_init(struct dc_softc *sc)
2250 {
2251 	struct dc_chain_data	*cd;
2252 	struct dc_list_data	*ld;
2253 	int			i;
2254 
2255 	cd = &sc->dc_cdata;
2256 	ld = sc->dc_ldata;
2257 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2258 		if (i == (DC_TX_LIST_CNT - 1)) {
2259 			ld->dc_tx_list[i].dc_next =
2260 			    vtophys(&ld->dc_tx_list[0]);
2261 		} else {
2262 			ld->dc_tx_list[i].dc_next =
2263 			    vtophys(&ld->dc_tx_list[i + 1]);
2264 		}
2265 		cd->dc_tx_chain[i] = NULL;
2266 		ld->dc_tx_list[i].dc_data = 0;
2267 		ld->dc_tx_list[i].dc_ctl = 0;
2268 	}
2269 
2270 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2271 
2272 	return(0);
2273 }
2274 
2275 
2276 /*
2277  * Initialize the RX descriptors and allocate mbufs for them. Note that
2278  * we arrange the descriptors in a closed ring, so that the last descriptor
2279  * points back to the first.
2280  */
2281 static int
2282 dc_list_rx_init(struct dc_softc *sc)
2283 {
2284 	struct dc_chain_data	*cd;
2285 	struct dc_list_data	*ld;
2286 	int			i;
2287 
2288 	cd = &sc->dc_cdata;
2289 	ld = sc->dc_ldata;
2290 
2291 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2292 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2293 			return(ENOBUFS);
2294 		if (i == (DC_RX_LIST_CNT - 1)) {
2295 			ld->dc_rx_list[i].dc_next =
2296 			    vtophys(&ld->dc_rx_list[0]);
2297 		} else {
2298 			ld->dc_rx_list[i].dc_next =
2299 			    vtophys(&ld->dc_rx_list[i + 1]);
2300 		}
2301 	}
2302 
2303 	cd->dc_rx_prod = 0;
2304 
2305 	return(0);
2306 }
2307 
2308 /*
2309  * Initialize an RX descriptor and attach an MBUF cluster.
2310  */
2311 static int
2312 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2313 {
2314 	struct mbuf		*m_new = NULL;
2315 	struct dc_desc		*c;
2316 
2317 	c = &sc->dc_ldata->dc_rx_list[i];
2318 
2319 	if (m == NULL) {
2320 		m_new = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2321 		if (m_new == NULL)
2322 			return (ENOBUFS);
2323 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2324 	} else {
2325 		m_new = m;
2326 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2327 		m_new->m_data = m_new->m_ext.ext_buf;
2328 	}
2329 
2330 	m_adj(m_new, sizeof(u_int64_t));
2331 
2332 	/*
2333 	 * If this is a PNIC chip, zero the buffer. This is part
2334 	 * of the workaround for the receive bug in the 82c168 and
2335 	 * 82c169 chips.
2336 	 */
2337 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2338 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2339 
2340 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2341 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2342 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2343 	c->dc_status = DC_RXSTAT_OWN;
2344 
2345 	return(0);
2346 }
2347 
2348 /*
2349  * Grrrrr.
2350  * The PNIC chip has a terrible bug in it that manifests itself during
2351  * periods of heavy activity. The exact mode of failure if difficult to
2352  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2353  * will happen on slow machines. The bug is that sometimes instead of
2354  * uploading one complete frame during reception, it uploads what looks
2355  * like the entire contents of its FIFO memory. The frame we want is at
2356  * the end of the whole mess, but we never know exactly how much data has
2357  * been uploaded, so salvaging the frame is hard.
2358  *
2359  * There is only one way to do it reliably, and it's disgusting.
2360  * Here's what we know:
2361  *
2362  * - We know there will always be somewhere between one and three extra
2363  *   descriptors uploaded.
2364  *
2365  * - We know the desired received frame will always be at the end of the
2366  *   total data upload.
2367  *
2368  * - We know the size of the desired received frame because it will be
2369  *   provided in the length field of the status word in the last descriptor.
2370  *
2371  * Here's what we do:
2372  *
2373  * - When we allocate buffers for the receive ring, we bzero() them.
2374  *   This means that we know that the buffer contents should be all
2375  *   zeros, except for data uploaded by the chip.
2376  *
2377  * - We also force the PNIC chip to upload frames that include the
2378  *   ethernet CRC at the end.
2379  *
2380  * - We gather all of the bogus frame data into a single buffer.
2381  *
2382  * - We then position a pointer at the end of this buffer and scan
2383  *   backwards until we encounter the first non-zero byte of data.
2384  *   This is the end of the received frame. We know we will encounter
2385  *   some data at the end of the frame because the CRC will always be
2386  *   there, so even if the sender transmits a packet of all zeros,
2387  *   we won't be fooled.
2388  *
2389  * - We know the size of the actual received frame, so we subtract
2390  *   that value from the current pointer location. This brings us
2391  *   to the start of the actual received packet.
2392  *
2393  * - We copy this into an mbuf and pass it on, along with the actual
2394  *   frame length.
2395  *
2396  * The performance hit is tremendous, but it beats dropping frames all
2397  * the time.
2398  */
2399 
2400 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2401 static void
2402 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2403 {
2404 	struct dc_desc		*cur_rx;
2405 	struct dc_desc		*c = NULL;
2406 	struct mbuf		*m = NULL;
2407 	unsigned char		*ptr;
2408 	int			i, total_len;
2409 	u_int32_t		rxstat = 0;
2410 
2411 	i = sc->dc_pnic_rx_bug_save;
2412 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2413 	ptr = sc->dc_pnic_rx_buf;
2414 	bzero(ptr, DC_RXLEN * 5);
2415 
2416 	/* Copy all the bytes from the bogus buffers. */
2417 	while (1) {
2418 		c = &sc->dc_ldata->dc_rx_list[i];
2419 		rxstat = c->dc_status;
2420 		m = sc->dc_cdata.dc_rx_chain[i];
2421 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2422 		ptr += DC_RXLEN;
2423 		/* If this is the last buffer, break out. */
2424 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2425 			break;
2426 		dc_newbuf(sc, i, m);
2427 		DC_INC(i, DC_RX_LIST_CNT);
2428 	}
2429 
2430 	/* Find the length of the actual receive frame. */
2431 	total_len = DC_RXBYTES(rxstat);
2432 
2433 	/* Scan backwards until we hit a non-zero byte. */
2434 	while(*ptr == 0x00)
2435 		ptr--;
2436 
2437 	/* Round off. */
2438 	if ((uintptr_t)(ptr) & 0x3)
2439 		ptr -= 1;
2440 
2441 	/* Now find the start of the frame. */
2442 	ptr -= total_len;
2443 	if (ptr < sc->dc_pnic_rx_buf)
2444 		ptr = sc->dc_pnic_rx_buf;
2445 
2446 	/*
2447 	 * Now copy the salvaged frame to the last mbuf and fake up
2448 	 * the status word to make it look like a successful
2449  	 * frame reception.
2450 	 */
2451 	dc_newbuf(sc, i, m);
2452 	bcopy(ptr, mtod(m, char *), total_len);
2453 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2454 
2455 	return;
2456 }
2457 
2458 /*
2459  * This routine searches the RX ring for dirty descriptors in the
2460  * event that the rxeof routine falls out of sync with the chip's
2461  * current descriptor pointer. This may happen sometimes as a result
2462  * of a "no RX buffer available" condition that happens when the chip
2463  * consumes all of the RX buffers before the driver has a chance to
2464  * process the RX ring. This routine may need to be called more than
2465  * once to bring the driver back in sync with the chip, however we
2466  * should still be getting RX DONE interrupts to drive the search
2467  * for new packets in the RX ring, so we should catch up eventually.
2468  */
2469 static int
2470 dc_rx_resync(struct dc_softc *sc)
2471 {
2472 	int			i, pos;
2473 	struct dc_desc		*cur_rx;
2474 
2475 	pos = sc->dc_cdata.dc_rx_prod;
2476 
2477 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2478 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2479 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2480 			break;
2481 		DC_INC(pos, DC_RX_LIST_CNT);
2482 	}
2483 
2484 	/* If the ring really is empty, then just return. */
2485 	if (i == DC_RX_LIST_CNT)
2486 		return(0);
2487 
2488 	/* We've fallen behing the chip: catch it. */
2489 	sc->dc_cdata.dc_rx_prod = pos;
2490 
2491 	return(EAGAIN);
2492 }
2493 
2494 /*
2495  * A frame has been uploaded: pass the resulting mbuf chain up to
2496  * the higher level protocols.
2497  */
2498 static void
2499 dc_rxeof(struct dc_softc *sc)
2500 {
2501         struct mbuf		*m;
2502         struct ifnet		*ifp;
2503 	struct dc_desc		*cur_rx;
2504 	int			i, total_len = 0;
2505 	u_int32_t		rxstat;
2506 
2507 	ifp = &sc->arpcom.ac_if;
2508 	i = sc->dc_cdata.dc_rx_prod;
2509 
2510 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2511 
2512 #ifdef IFPOLL_ENABLE
2513 		if (ifp->if_flags & IFF_NPOLLING) {
2514 			if (sc->rxcycles <= 0)
2515 				break;
2516 			sc->rxcycles--;
2517 		}
2518 #endif /* IFPOLL_ENABLE */
2519 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2520 		rxstat = cur_rx->dc_status;
2521 		m = sc->dc_cdata.dc_rx_chain[i];
2522 		total_len = DC_RXBYTES(rxstat);
2523 
2524 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2525 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2526 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2527 					sc->dc_pnic_rx_bug_save = i;
2528 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2529 					DC_INC(i, DC_RX_LIST_CNT);
2530 					continue;
2531 				}
2532 				dc_pnic_rx_bug_war(sc, i);
2533 				rxstat = cur_rx->dc_status;
2534 				total_len = DC_RXBYTES(rxstat);
2535 			}
2536 		}
2537 
2538 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2539 
2540 		/*
2541 		 * If an error occurs, update stats, clear the
2542 		 * status word and leave the mbuf cluster in place:
2543 		 * it should simply get re-used next time this descriptor
2544 		 * comes up in the ring.  However, don't report long
2545 		 * frames as errors since they could be vlans
2546 		 */
2547 		if ((rxstat & DC_RXSTAT_RXERR)){
2548 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2549 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2550 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2551 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2552 				IFNET_STAT_INC(ifp, ierrors, 1);
2553 				if (rxstat & DC_RXSTAT_COLLSEEN)
2554 					IFNET_STAT_INC(ifp, collisions, 1);
2555 				dc_newbuf(sc, i, m);
2556 				if (rxstat & DC_RXSTAT_CRCERR) {
2557 					DC_INC(i, DC_RX_LIST_CNT);
2558 					continue;
2559 				} else {
2560 					dc_init(sc);
2561 					return;
2562 				}
2563 			}
2564 		}
2565 
2566 		/* No errors; receive the packet. */
2567 		total_len -= ETHER_CRC_LEN;
2568 
2569 #ifdef __x86_64__
2570 		/*
2571 		 * On the x86 we do not have alignment problems, so try to
2572 		 * allocate a new buffer for the receive ring, and pass up
2573 		 * the one where the packet is already, saving the expensive
2574 		 * copy done in m_devget().
2575 		 *
2576 		 * If we are on an architecture with alignment problems, or
2577 		 * if the allocation fails, then use m_devget and leave the
2578 		 * existing buffer in the receive ring.
2579 		 */
2580 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2581 			m->m_pkthdr.rcvif = ifp;
2582 			m->m_pkthdr.len = m->m_len = total_len;
2583 			DC_INC(i, DC_RX_LIST_CNT);
2584 		} else
2585 #endif
2586 		{
2587 			struct mbuf *m0;
2588 
2589 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2590 				      total_len + ETHER_ALIGN, 0, ifp);
2591 			dc_newbuf(sc, i, m);
2592 			DC_INC(i, DC_RX_LIST_CNT);
2593 			if (m0 == NULL) {
2594 				IFNET_STAT_INC(ifp, ierrors, 1);
2595 				continue;
2596 			}
2597 			m_adj(m0, ETHER_ALIGN);
2598 			m = m0;
2599 		}
2600 
2601 		IFNET_STAT_INC(ifp, ipackets, 1);
2602 		ifp->if_input(ifp, m, NULL, -1);
2603 	}
2604 
2605 	sc->dc_cdata.dc_rx_prod = i;
2606 }
2607 
2608 /*
2609  * A frame was downloaded to the chip. It's safe for us to clean up
2610  * the list buffers.
2611  */
2612 
2613 static void
2614 dc_txeof(struct dc_softc *sc)
2615 {
2616 	struct dc_desc		*cur_tx = NULL;
2617 	struct ifnet		*ifp;
2618 	int			idx;
2619 
2620 	ifp = &sc->arpcom.ac_if;
2621 
2622 	/*
2623 	 * Go through our tx list and free mbufs for those
2624 	 * frames that have been transmitted.
2625 	 */
2626 	idx = sc->dc_cdata.dc_tx_cons;
2627 	while(idx != sc->dc_cdata.dc_tx_prod) {
2628 		u_int32_t		txstat;
2629 
2630 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2631 		txstat = cur_tx->dc_status;
2632 
2633 		if (txstat & DC_TXSTAT_OWN)
2634 			break;
2635 
2636 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2637 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2638 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2639 				/*
2640 				 * Yes, the PNIC is so brain damaged
2641 				 * that it will sometimes generate a TX
2642 				 * underrun error while DMAing the RX
2643 				 * filter setup frame. If we detect this,
2644 				 * we have to send the setup frame again,
2645 				 * or else the filter won't be programmed
2646 				 * correctly.
2647 				 */
2648 				if (DC_IS_PNIC(sc)) {
2649 					if (txstat & DC_TXSTAT_ERRSUM)
2650 						dc_setfilt(sc);
2651 				}
2652 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2653 			}
2654 			sc->dc_cdata.dc_tx_cnt--;
2655 			DC_INC(idx, DC_TX_LIST_CNT);
2656 			continue;
2657 		}
2658 
2659 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2660 			/*
2661 			 * XXX: Why does my Xircom taunt me so?
2662 			 * For some reason Conexant chips like
2663 			 * setting the CARRLOST flag even when
2664 			 * the carrier is there. In CURRENT we
2665 			 * have the same problem for Xircom
2666 			 * cards !
2667 			 */
2668 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2669 			    sc->dc_pmode == DC_PMODE_MII &&
2670 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2671 			    DC_TXSTAT_NOCARRIER)))
2672 				txstat &= ~DC_TXSTAT_ERRSUM;
2673 		} else {
2674 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2675 			    sc->dc_pmode == DC_PMODE_MII &&
2676 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2677 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2678 				txstat &= ~DC_TXSTAT_ERRSUM;
2679 		}
2680 
2681 		if (txstat & DC_TXSTAT_ERRSUM) {
2682 			IFNET_STAT_INC(ifp, oerrors, 1);
2683 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2684 				IFNET_STAT_INC(ifp, collisions, 1);
2685 			if (txstat & DC_TXSTAT_LATECOLL)
2686 				IFNET_STAT_INC(ifp, collisions, 1);
2687 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2688 				dc_init(sc);
2689 				return;
2690 			}
2691 		}
2692 
2693 		IFNET_STAT_INC(ifp, collisions,
2694 		    (txstat & DC_TXSTAT_COLLCNT) >> 3);
2695 
2696 		IFNET_STAT_INC(ifp, opackets, 1);
2697 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2698 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2699 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2700 		}
2701 
2702 		sc->dc_cdata.dc_tx_cnt--;
2703 		DC_INC(idx, DC_TX_LIST_CNT);
2704 	}
2705 
2706 	if (idx != sc->dc_cdata.dc_tx_cons) {
2707 	    	/* some buffers have been freed */
2708 		sc->dc_cdata.dc_tx_cons = idx;
2709 		ifq_clr_oactive(&ifp->if_snd);
2710 	}
2711 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2712 
2713 	return;
2714 }
2715 
2716 static void
2717 dc_tick(void *xsc)
2718 {
2719 	struct dc_softc *sc = xsc;
2720 	struct ifnet *ifp = &sc->arpcom.ac_if;
2721 	struct mii_data *mii;
2722 	u_int32_t r;
2723 
2724 	lwkt_serialize_enter(ifp->if_serializer);
2725 
2726 	mii = device_get_softc(sc->dc_miibus);
2727 
2728 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2729 		if (sc->dc_flags & DC_21143_NWAY) {
2730 			r = CSR_READ_4(sc, DC_10BTSTAT);
2731 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2732 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2733 				sc->dc_link = 0;
2734 				mii_mediachg(mii);
2735 			}
2736 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2737 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2738 				sc->dc_link = 0;
2739 				mii_mediachg(mii);
2740 			}
2741 			if (sc->dc_link == 0)
2742 				mii_tick(mii);
2743 		} else {
2744 			r = CSR_READ_4(sc, DC_ISR);
2745 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2746 			    sc->dc_cdata.dc_tx_cnt == 0) {
2747 				mii_tick(mii);
2748 				if (!(mii->mii_media_status & IFM_ACTIVE))
2749 					sc->dc_link = 0;
2750 			}
2751 		}
2752 	} else {
2753 		mii_tick(mii);
2754 	}
2755 
2756 	/*
2757 	 * When the init routine completes, we expect to be able to send
2758 	 * packets right away, and in fact the network code will send a
2759 	 * gratuitous ARP the moment the init routine marks the interface
2760 	 * as running. However, even though the MAC may have been initialized,
2761 	 * there may be a delay of a few seconds before the PHY completes
2762 	 * autonegotiation and the link is brought up. Any transmissions
2763 	 * made during that delay will be lost. Dealing with this is tricky:
2764 	 * we can't just pause in the init routine while waiting for the
2765 	 * PHY to come ready since that would bring the whole system to
2766 	 * a screeching halt for several seconds.
2767 	 *
2768 	 * What we do here is prevent the TX start routine from sending
2769 	 * any packets until a link has been established. After the
2770 	 * interface has been initialized, the tick routine will poll
2771 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2772 	 * that time, packets will stay in the send queue, and once the
2773 	 * link comes up, they will be flushed out to the wire.
2774 	 */
2775 	if (!sc->dc_link) {
2776 		mii_pollstat(mii);
2777 		if (mii->mii_media_status & IFM_ACTIVE &&
2778 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2779 			sc->dc_link++;
2780 			if (!ifq_is_empty(&ifp->if_snd))
2781 				if_devstart(ifp);
2782 		}
2783 	}
2784 
2785 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2786 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2787 	else
2788 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2789 
2790 	lwkt_serialize_exit(ifp->if_serializer);
2791 }
2792 
2793 /*
2794  * A transmit underrun has occurred.  Back off the transmit threshold,
2795  * or switch to store and forward mode if we have to.
2796  */
2797 static void
2798 dc_tx_underrun(struct dc_softc *sc)
2799 {
2800 	u_int32_t		isr;
2801 	int			i;
2802 
2803 	if (DC_IS_DAVICOM(sc))
2804 		dc_init(sc);
2805 
2806 	if (DC_IS_INTEL(sc)) {
2807 		/*
2808 		 * The real 21143 requires that the transmitter be idle
2809 		 * in order to change the transmit threshold or store
2810 		 * and forward state.
2811 		 */
2812 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2813 
2814 		for (i = 0; i < DC_TIMEOUT; i++) {
2815 			isr = CSR_READ_4(sc, DC_ISR);
2816 			if (isr & DC_ISR_TX_IDLE)
2817 				break;
2818 			DELAY(10);
2819 		}
2820 		if (i == DC_TIMEOUT) {
2821 			if_printf(&sc->arpcom.ac_if,
2822 				  "failed to force tx to idle state\n");
2823 			dc_init(sc);
2824 		}
2825 	}
2826 
2827 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2828 	sc->dc_txthresh += DC_TXTHRESH_INC;
2829 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2830 		kprintf("using store and forward mode\n");
2831 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2832 	} else {
2833 		kprintf("increasing TX threshold\n");
2834 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2835 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2836 	}
2837 
2838 	if (DC_IS_INTEL(sc))
2839 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2840 
2841 	return;
2842 }
2843 
2844 #ifdef IFPOLL_ENABLE
2845 
2846 static void
2847 dc_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2848 {
2849 	struct dc_softc *sc = ifp->if_softc;
2850 
2851 	ASSERT_SERIALIZED(ifp->if_serializer);
2852 
2853 	sc->rxcycles = count;
2854 	dc_rxeof(sc);
2855 	dc_txeof(sc);
2856 	if (!ifq_is_empty(&ifp->if_snd))
2857 		if_devstart(ifp);
2858 
2859 	if (sc->dc_npoll.ifpc_stcount-- == 0) {
2860 		uint32_t status;
2861 
2862 		sc->dc_npoll.ifpc_stcount = sc->dc_npoll.ifpc_stfrac;
2863 
2864 		status = CSR_READ_4(sc, DC_ISR);
2865 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2866 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2867 			DC_ISR_BUS_ERR);
2868 		if (!status)
2869 			return;
2870 		/* ack what we have */
2871 		CSR_WRITE_4(sc, DC_ISR, status);
2872 
2873 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2874 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2875 			IFNET_STAT_INC(ifp, ierrors,
2876 			    (r & 0xffff) + ((r >> 17) & 0x7ff));
2877 
2878 			if (dc_rx_resync(sc))
2879 				dc_rxeof(sc);
2880 		}
2881 		/* restart transmit unit if necessary */
2882 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2883 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2884 
2885 		if (status & DC_ISR_TX_UNDERRUN)
2886 			dc_tx_underrun(sc);
2887 
2888 		if (status & DC_ISR_BUS_ERR) {
2889 			if_printf(ifp, "dc_poll: bus error\n");
2890 			dc_reset(sc);
2891 			dc_init(sc);
2892 		}
2893 	}
2894 }
2895 
2896 static void
2897 dc_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2898 {
2899 	struct dc_softc *sc = ifp->if_softc;
2900 
2901 	ASSERT_SERIALIZED(ifp->if_serializer);
2902 
2903 	if (info != NULL) {
2904 		int cpuid = sc->dc_npoll.ifpc_cpuid;
2905 
2906 		info->ifpi_rx[cpuid].poll_func = dc_npoll_compat;
2907 		info->ifpi_rx[cpuid].arg = NULL;
2908 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2909 
2910 		if (ifp->if_flags & IFF_RUNNING) {
2911 			/* Disable interrupts */
2912 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2913 			sc->dc_npoll.ifpc_stcount = 0;
2914 		}
2915 		ifq_set_cpuid(&ifp->if_snd, cpuid);
2916 	} else {
2917 		if (ifp->if_flags & IFF_RUNNING) {
2918 			/* Re-enable interrupts. */
2919 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2920 		}
2921 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->dc_irq));
2922 	}
2923 }
2924 
2925 #endif /* IFPOLL_ENABLE */
2926 
2927 static void
2928 dc_intr(void *arg)
2929 {
2930 	struct dc_softc		*sc;
2931 	struct ifnet		*ifp;
2932 	u_int32_t		status;
2933 
2934 	sc = arg;
2935 
2936 	if (sc->suspended) {
2937 		return;
2938 	}
2939 
2940 	ifp = &sc->arpcom.ac_if;
2941 
2942 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2943 		return ;
2944 
2945 	/* Suppress unwanted interrupts */
2946 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2947 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2948 			dc_stop(sc);
2949 		return;
2950 	}
2951 
2952 	/* Disable interrupts. */
2953 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2954 
2955 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
2956 	      status != 0xFFFFFFFF) {
2957 
2958 		CSR_WRITE_4(sc, DC_ISR, status);
2959 
2960 		if (status & DC_ISR_RX_OK) {
2961 			u_long curpkts, ncurpkts;
2962 
2963 			IFNET_STAT_GET(ifp, ipackets, curpkts);
2964 			dc_rxeof(sc);
2965 			IFNET_STAT_GET(ifp, ipackets, ncurpkts);
2966 
2967 			if (curpkts == ncurpkts) {
2968 				while(dc_rx_resync(sc))
2969 					dc_rxeof(sc);
2970 			}
2971 		}
2972 
2973 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2974 			dc_txeof(sc);
2975 
2976 		if (status & DC_ISR_TX_IDLE) {
2977 			dc_txeof(sc);
2978 			if (sc->dc_cdata.dc_tx_cnt) {
2979 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2980 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2981 			}
2982 		}
2983 
2984 		if (status & DC_ISR_TX_UNDERRUN)
2985 			dc_tx_underrun(sc);
2986 
2987 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2988 		    || (status & DC_ISR_RX_NOBUF)) {
2989 			u_long curpkts, ncurpkts;
2990 
2991 			IFNET_STAT_GET(ifp, ipackets, curpkts);
2992 			dc_rxeof(sc);
2993 			IFNET_STAT_GET(ifp, ipackets, ncurpkts);
2994 
2995 			if (curpkts == ncurpkts) {
2996 				while(dc_rx_resync(sc))
2997 					dc_rxeof(sc);
2998 			}
2999 		}
3000 
3001 		if (status & DC_ISR_BUS_ERR) {
3002 			dc_reset(sc);
3003 			dc_init(sc);
3004 		}
3005 	}
3006 
3007 	/* Re-enable interrupts. */
3008 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3009 
3010 	if (!ifq_is_empty(&ifp->if_snd))
3011 		if_devstart(ifp);
3012 }
3013 
3014 /*
3015  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3016  * pointers to the fragment pointers.
3017  */
3018 static int
3019 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3020 {
3021 	struct dc_desc		*f = NULL;
3022 	struct mbuf		*m;
3023 	int			frag, cur, cnt = 0;
3024 
3025 	/*
3026  	 * Start packing the mbufs in this chain into
3027 	 * the fragment pointers. Stop when we run out
3028  	 * of fragments or hit the end of the mbuf chain.
3029 	 */
3030 	m = m_head;
3031 	cur = frag = *txidx;
3032 
3033 	for (m = m_head; m != NULL; m = m->m_next) {
3034 		if (m->m_len != 0) {
3035 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
3036 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
3037 				    frag == (DC_TX_LIST_CNT - 1))
3038 					return(ENOBUFS);
3039 			}
3040 			if ((DC_TX_LIST_CNT -
3041 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3042 				return(ENOBUFS);
3043 
3044 			f = &sc->dc_ldata->dc_tx_list[frag];
3045 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3046 			if (cnt == 0) {
3047 				f->dc_status = 0;
3048 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3049 			} else
3050 				f->dc_status = DC_TXSTAT_OWN;
3051 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3052 			cur = frag;
3053 			DC_INC(frag, DC_TX_LIST_CNT);
3054 			cnt++;
3055 		}
3056 	}
3057 
3058 	if (m != NULL)
3059 		return(ENOBUFS);
3060 
3061 	sc->dc_cdata.dc_tx_cnt += cnt;
3062 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3063 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3064 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3065 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3066 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3067 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3068 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3069 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3070 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3071 	*txidx = frag;
3072 
3073 	return(0);
3074 }
3075 
3076 /*
3077  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3078  * to the mbuf data regions directly in the transmit lists. We also save a
3079  * copy of the pointers since the transmit list fragment pointers are
3080  * physical addresses.
3081  */
3082 
3083 static void
3084 dc_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3085 {
3086 	struct dc_softc	*sc;
3087 	struct mbuf *m_head, *m_defragged;
3088 	int idx, need_trans;
3089 
3090 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3091 	sc = ifp->if_softc;
3092 
3093 	if (!sc->dc_link) {
3094 		ifq_purge(&ifp->if_snd);
3095 		return;
3096 	}
3097 
3098 	if (ifq_is_oactive(&ifp->if_snd))
3099 		return;
3100 
3101 	idx = sc->dc_cdata.dc_tx_prod;
3102 
3103 	need_trans = 0;
3104 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3105 		m_defragged = NULL;
3106 		m_head = ifq_dequeue(&ifp->if_snd);
3107 		if (m_head == NULL)
3108 			break;
3109 
3110 		if ((sc->dc_flags & DC_TX_COALESCE) &&
3111 		    (m_head->m_next != NULL || (sc->dc_flags & DC_TX_ALIGN))) {
3112 			/*
3113 			 * Check first if coalescing allows us to queue
3114 			 * the packet. We don't want to loose it if
3115 			 * the TX queue is full.
3116 			 */
3117 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3118 			    idx != sc->dc_cdata.dc_tx_prod &&
3119 			    idx == (DC_TX_LIST_CNT - 1)) {
3120 				ifq_set_oactive(&ifp->if_snd);
3121 				ifq_prepend(&ifp->if_snd, m_head);
3122 				break;
3123 			}
3124 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3125 				ifq_set_oactive(&ifp->if_snd);
3126 				ifq_prepend(&ifp->if_snd, m_head);
3127 				break;
3128 			}
3129 
3130 			/* only coalesce if have >1 mbufs */
3131 			m_defragged = m_defrag(m_head, M_NOWAIT);
3132 			if (m_defragged == NULL) {
3133 				ifq_set_oactive(&ifp->if_snd);
3134 				ifq_prepend(&ifp->if_snd, m_head);
3135 				break;
3136 			}
3137 			m_head = m_defragged;
3138 		}
3139 
3140 		if (dc_encap(sc, m_head, &idx)) {
3141 			if (m_defragged) {
3142 				/*
3143 				 * Throw away the original packet if the
3144 				 * defragged packet could not be encapsulated,
3145 				 * as well as the defragged packet.
3146 				 */
3147 				m_freem(m_head);
3148 			} else {
3149 				ifq_prepend(&ifp->if_snd, m_head);
3150 			}
3151 			ifq_set_oactive(&ifp->if_snd);
3152 			break;
3153 		}
3154 
3155 		need_trans = 1;
3156 
3157 		/*
3158 		 * If there's a BPF listener, bounce a copy of this frame
3159 		 * to him.
3160 		 */
3161 		BPF_MTAP(ifp, m_head);
3162 
3163 		if (sc->dc_flags & DC_TX_ONE) {
3164 			ifq_set_oactive(&ifp->if_snd);
3165 			break;
3166 		}
3167 	}
3168 
3169 	if (!need_trans)
3170 		return;
3171 
3172 	/* Transmit */
3173 	sc->dc_cdata.dc_tx_prod = idx;
3174 	if (!(sc->dc_flags & DC_TX_POLL))
3175 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3176 
3177 	/*
3178 	 * Set a timeout in case the chip goes out to lunch.
3179 	 */
3180 	ifp->if_timer = 5;
3181 }
3182 
3183 static void
3184 dc_init(void *xsc)
3185 {
3186 	struct dc_softc		*sc = xsc;
3187 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3188 	struct mii_data		*mii;
3189 
3190 	mii = device_get_softc(sc->dc_miibus);
3191 
3192 	/*
3193 	 * Cancel pending I/O and free all RX/TX buffers.
3194 	 */
3195 	dc_stop(sc);
3196 	dc_reset(sc);
3197 
3198 	/*
3199 	 * Set cache alignment and burst length.
3200 	 */
3201 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3202 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3203 	else
3204 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3205 	/*
3206 	 * Evenly share the bus between receive and transmit process.
3207 	 */
3208 	if (DC_IS_INTEL(sc))
3209 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3210 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3211 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3212 	} else {
3213 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3214 	}
3215 	if (sc->dc_flags & DC_TX_POLL)
3216 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3217 	switch(sc->dc_cachesize) {
3218 	case 32:
3219 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3220 		break;
3221 	case 16:
3222 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3223 		break;
3224 	case 8:
3225 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3226 		break;
3227 	case 0:
3228 	default:
3229 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3230 		break;
3231 	}
3232 
3233 	if (sc->dc_flags & DC_TX_STORENFWD)
3234 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3235 	else {
3236 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3237 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3238 		} else {
3239 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3240 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3241 		}
3242 	}
3243 
3244 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3245 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3246 
3247 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3248 		/*
3249 		 * The app notes for the 98713 and 98715A say that
3250 		 * in order to have the chips operate properly, a magic
3251 		 * number must be written to CSR16. Macronix does not
3252 		 * document the meaning of these bits so there's no way
3253 		 * to know exactly what they do. The 98713 has a magic
3254 		 * number all its own; the rest all use a different one.
3255 		 */
3256 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3257 		if (sc->dc_type == DC_TYPE_98713)
3258 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3259 		else
3260 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3261 	}
3262 
3263 	if (DC_IS_XIRCOM(sc)) {
3264 		/*
3265 		 * Setup General Purpose Port mode and data so the tulip
3266 		 * can talk to the MII.
3267 		 */
3268 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3269 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3270 		DELAY(10);
3271 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3272 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3273 		DELAY(10);
3274  	}
3275 
3276 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3277 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3278 
3279 	/* Init circular RX list. */
3280 	if (dc_list_rx_init(sc) == ENOBUFS) {
3281 		if_printf(ifp, "initialization failed: no "
3282 			  "memory for rx buffers\n");
3283 		dc_stop(sc);
3284 		return;
3285 	}
3286 
3287 	/*
3288 	 * Init tx descriptors.
3289 	 */
3290 	dc_list_tx_init(sc);
3291 
3292 	/*
3293 	 * Load the address of the RX list.
3294 	 */
3295 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3296 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3297 
3298 	/*
3299 	 * Enable interrupts.
3300 	 */
3301 #ifdef IFPOLL_ENABLE
3302 	/*
3303 	 * ... but only if we are not polling, and make sure they are off in
3304 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3305 	 * after a reset.
3306 	 */
3307 	if (ifp->if_flags & IFF_NPOLLING) {
3308 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3309 		sc->dc_npoll.ifpc_stcount = 0;
3310 	} else
3311 #endif
3312 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3313 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3314 
3315 	/* Enable transmitter. */
3316 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3317 
3318 	/*
3319 	 * If this is an Intel 21143 and we're not using the
3320 	 * MII port, program the LED control pins so we get
3321 	 * link and activity indications.
3322 	 */
3323 	if (sc->dc_flags & DC_TULIP_LEDS) {
3324 		CSR_WRITE_4(sc, DC_WATCHDOG,
3325 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3326 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3327 	}
3328 
3329 	/*
3330 	 * Set IFF_RUNNING here to keep the assertion in dc_setfilt()
3331 	 * working.
3332 	 */
3333 	ifp->if_flags |= IFF_RUNNING;
3334 	ifq_clr_oactive(&ifp->if_snd);
3335 
3336 	/*
3337 	 * Load the RX/multicast filter. We do this sort of late
3338 	 * because the filter programming scheme on the 21143 and
3339 	 * some clones requires DMAing a setup frame via the TX
3340 	 * engine, and we need the transmitter enabled for that.
3341 	 */
3342 	dc_setfilt(sc);
3343 
3344 	/* Enable receiver. */
3345 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3346 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3347 
3348 	mii_mediachg(mii);
3349 	dc_setcfg(sc, sc->dc_if_media);
3350 
3351 	/* Don't start the ticker if this is a homePNA link. */
3352 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3353 		sc->dc_link = 1;
3354 	else {
3355 		if (sc->dc_flags & DC_21143_NWAY)
3356 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3357 		else
3358 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3359 	}
3360 }
3361 
3362 /*
3363  * Set media options.
3364  */
3365 static int
3366 dc_ifmedia_upd(struct ifnet *ifp)
3367 {
3368 	struct dc_softc		*sc;
3369 	struct mii_data		*mii;
3370 	struct ifmedia		*ifm;
3371 
3372 	sc = ifp->if_softc;
3373 	mii = device_get_softc(sc->dc_miibus);
3374 	mii_mediachg(mii);
3375 	ifm = &mii->mii_media;
3376 
3377 	if (DC_IS_DAVICOM(sc) &&
3378 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3379 		dc_setcfg(sc, ifm->ifm_media);
3380 	else
3381 		sc->dc_link = 0;
3382 
3383 	return(0);
3384 }
3385 
3386 /*
3387  * Report current media status.
3388  */
3389 static void
3390 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3391 {
3392 	struct dc_softc		*sc;
3393 	struct mii_data		*mii;
3394 	struct ifmedia		*ifm;
3395 
3396 	sc = ifp->if_softc;
3397 	mii = device_get_softc(sc->dc_miibus);
3398 	mii_pollstat(mii);
3399 	ifm = &mii->mii_media;
3400 	if (DC_IS_DAVICOM(sc)) {
3401 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3402 			ifmr->ifm_active = ifm->ifm_media;
3403 			ifmr->ifm_status = 0;
3404 			return;
3405 		}
3406 	}
3407 	ifmr->ifm_active = mii->mii_media_active;
3408 	ifmr->ifm_status = mii->mii_media_status;
3409 
3410 	return;
3411 }
3412 
3413 static int
3414 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3415 {
3416 	struct dc_softc		*sc = ifp->if_softc;
3417 	struct ifreq		*ifr = (struct ifreq *) data;
3418 	struct mii_data		*mii;
3419 	int			error = 0;
3420 
3421 	switch(command) {
3422 	case SIOCSIFFLAGS:
3423 		if (ifp->if_flags & IFF_UP) {
3424 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3425 				(IFF_PROMISC | IFF_ALLMULTI);
3426 			if (ifp->if_flags & IFF_RUNNING) {
3427 				if (need_setfilt)
3428 					dc_setfilt(sc);
3429 			} else {
3430 				sc->dc_txthresh = 0;
3431 				dc_init(sc);
3432 			}
3433 		} else {
3434 			if (ifp->if_flags & IFF_RUNNING)
3435 				dc_stop(sc);
3436 		}
3437 		sc->dc_if_flags = ifp->if_flags;
3438 		break;
3439 	case SIOCADDMULTI:
3440 	case SIOCDELMULTI:
3441 		if (ifp->if_flags & IFF_RUNNING)
3442 			dc_setfilt(sc);
3443 		break;
3444 	case SIOCGIFMEDIA:
3445 	case SIOCSIFMEDIA:
3446 		mii = device_get_softc(sc->dc_miibus);
3447 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3448 		break;
3449 	default:
3450 		error = ether_ioctl(ifp, command, data);
3451 		break;
3452 	}
3453 
3454 	return(error);
3455 }
3456 
3457 static void
3458 dc_watchdog(struct ifnet *ifp)
3459 {
3460 	struct dc_softc		*sc;
3461 
3462 	sc = ifp->if_softc;
3463 
3464 	IFNET_STAT_INC(ifp, oerrors, 1);
3465 	if_printf(ifp, "watchdog timeout\n");
3466 
3467 	dc_stop(sc);
3468 	dc_reset(sc);
3469 	dc_init(sc);
3470 
3471 	if (!ifq_is_empty(&ifp->if_snd))
3472 		if_devstart(ifp);
3473 }
3474 
3475 /*
3476  * Stop the adapter and free any mbufs allocated to the
3477  * RX and TX lists.
3478  */
3479 static void
3480 dc_stop(struct dc_softc *sc)
3481 {
3482 	int		i;
3483 	struct ifnet		*ifp;
3484 
3485 	ifp = &sc->arpcom.ac_if;
3486 	ifp->if_timer = 0;
3487 
3488 	callout_stop(&sc->dc_stat_timer);
3489 
3490 	ifp->if_flags &= ~IFF_RUNNING;
3491 	ifq_clr_oactive(&ifp->if_snd);
3492 
3493 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3494 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3495 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3496 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3497 	sc->dc_link = 0;
3498 
3499 	/*
3500 	 * Free data in the RX lists.
3501 	 */
3502 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3503 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3504 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3505 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3506 		}
3507 	}
3508 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3509 		sizeof(sc->dc_ldata->dc_rx_list));
3510 
3511 	/*
3512 	 * Free the TX list buffers.
3513 	 */
3514 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3515 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3516 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3517 			    DC_TXCTL_SETUP) ||
3518 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3519 			    DC_TXCTL_LASTFRAG)) {
3520 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3521 				continue;
3522 			}
3523 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3524 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3525 		}
3526 	}
3527 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3528 		sizeof(sc->dc_ldata->dc_tx_list));
3529 }
3530 
3531 /*
3532  * Stop all chip I/O so that the kernel's probe routines don't
3533  * get confused by errant DMAs when rebooting.
3534  */
3535 static void
3536 dc_shutdown(device_t dev)
3537 {
3538 	struct dc_softc	*sc;
3539 	struct ifnet *ifp;
3540 
3541 	sc = device_get_softc(dev);
3542 	ifp = &sc->arpcom.ac_if;
3543 	lwkt_serialize_enter(ifp->if_serializer);
3544 
3545 	dc_stop(sc);
3546 
3547 	lwkt_serialize_exit(ifp->if_serializer);
3548 }
3549 
3550 /*
3551  * Device suspend routine.  Stop the interface and save some PCI
3552  * settings in case the BIOS doesn't restore them properly on
3553  * resume.
3554  */
3555 static int
3556 dc_suspend(device_t dev)
3557 {
3558 	struct dc_softc	*sc = device_get_softc(dev);
3559 	struct ifnet *ifp = &sc->arpcom.ac_if;
3560 	int i;
3561 	lwkt_serialize_enter(ifp->if_serializer);
3562 
3563 	dc_stop(sc);
3564 	for (i = 0; i < 5; i++)
3565 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3566 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3567 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3568 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3569 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3570 
3571 	sc->suspended = 1;
3572 
3573 	lwkt_serialize_exit(ifp->if_serializer);
3574 	return (0);
3575 }
3576 
3577 /*
3578  * Device resume routine.  Restore some PCI settings in case the BIOS
3579  * doesn't, re-enable busmastering, and restart the interface if
3580  * appropriate.
3581  */
3582 static int
3583 dc_resume(device_t dev)
3584 {
3585 	struct dc_softc *sc = device_get_softc(dev);
3586 	struct ifnet *ifp = &sc->arpcom.ac_if;
3587 	int i;
3588 
3589 	lwkt_serialize_enter(ifp->if_serializer);
3590 	dc_acpi(dev);
3591 
3592 	/* better way to do this? */
3593 	for (i = 0; i < 5; i++)
3594 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3595 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3596 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3597 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3598 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3599 
3600 	/* reenable busmastering */
3601 	pci_enable_busmaster(dev);
3602 	pci_enable_io(dev, DC_RES);
3603 
3604         /* reinitialize interface if necessary */
3605         if (ifp->if_flags & IFF_UP)
3606                 dc_init(sc);
3607 
3608 	sc->suspended = 0;
3609 	lwkt_serialize_exit(ifp->if_serializer);
3610 
3611 	return (0);
3612 }
3613 
3614 static uint32_t
3615 dc_mchash_xircom(struct dc_softc *sc, const uint8_t *addr)
3616 {
3617 	uint32_t crc;
3618 
3619 	/* Compute CRC for the address value. */
3620 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
3621 
3622 	if ((crc & 0x180) == 0x180)
3623 		return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
3624 	else
3625 		return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + (12 << 4));
3626 }
3627