xref: /dragonfly/sys/dev/netif/dc/if_dc.c (revision 2e3ed54d)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.46 2005/11/22 00:24:25 dillon Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Conexant LANfinity (www.conexant.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include "opt_polling.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/sysctl.h>
101 #include <sys/thread2.h>
102 
103 #include <net/if.h>
104 #include <net/ifq_var.h>
105 #include <net/if_arp.h>
106 #include <net/ethernet.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_types.h>
110 #include <net/vlan/if_vlan_var.h>
111 
112 #include <net/bpf.h>
113 
114 #include <vm/vm.h>              /* for vtophys */
115 #include <vm/pmap.h>            /* for vtophys */
116 #include <machine/bus_pio.h>
117 #include <machine/bus_memio.h>
118 #include <machine/bus.h>
119 #include <machine/resource.h>
120 #include <sys/bus.h>
121 #include <sys/rman.h>
122 
123 #include "../mii_layer/mii.h"
124 #include "../mii_layer/miivar.h"
125 
126 #include <bus/pci/pcireg.h>
127 #include <bus/pci/pcivar.h>
128 
129 #define DC_USEIOSPACE
130 
131 #include "if_dcreg.h"
132 
133 /* "controller miibus0" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 static const struct dc_type dc_devs[] = {
140 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
141 		"Intel 21143 10/100BaseTX" },
142 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
143 		"Davicom DM9009 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
145 		"Davicom DM9100 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
149 		"Davicom DM9102A 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
151 		"ADMtek AL981 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
153 		"ADMtek AN985 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
155 		"ADMtek ADM9511 10/100BaseTX" },
156 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
157 		"ADMtek ADM9513 10/100BaseTX" },
158 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
159 		"ASIX AX88140A 10/100BaseTX" },
160 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
161 		"ASIX AX88141 10/100BaseTX" },
162 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
163 		"Macronix 98713 10/100BaseTX" },
164 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
165 		"Macronix 98713A 10/100BaseTX" },
166 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
167 		"Compex RL100-TX 10/100BaseTX" },
168 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
169 		"Compex RL100-TX 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
171 		"Macronix 98715/98715A 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
173 		"Macronix 98715AEC-C 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
175 		"Macronix 98725 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
177 		"Macronix 98727/98732 10/100BaseTX" },
178 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
179 		"LC82C115 PNIC II 10/100BaseTX" },
180 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
181 		"82c168 PNIC 10/100BaseTX" },
182 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
183 		"82c169 PNIC 10/100BaseTX" },
184 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
185 		"Accton EN1217 10/100BaseTX" },
186 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
187 		"Accton EN2242 MiniPCI 10/100BaseTX" },
188 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
189 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
190 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
191 		"3Com OfficeConnect 10/100B" },
192 	{ 0, 0, NULL }
193 };
194 
195 static int dc_probe		(device_t);
196 static int dc_attach		(device_t);
197 static int dc_detach		(device_t);
198 static int dc_suspend		(device_t);
199 static int dc_resume		(device_t);
200 static void dc_acpi		(device_t);
201 static const struct dc_type *dc_devtype	(device_t);
202 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
203 static int dc_encap		(struct dc_softc *, struct mbuf *,
204 					u_int32_t *);
205 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
206 static int dc_rx_resync		(struct dc_softc *);
207 static void dc_rxeof		(struct dc_softc *);
208 static void dc_txeof		(struct dc_softc *);
209 static void dc_tick		(void *);
210 static void dc_tx_underrun	(struct dc_softc *);
211 static void dc_intr		(void *);
212 static void dc_start		(struct ifnet *);
213 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
214 					struct ucred *);
215 #ifdef DEVICE_POLLING
216 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
217 					int count);
218 #endif
219 static void dc_init		(void *);
220 static void dc_stop		(struct dc_softc *);
221 static void dc_watchdog		(struct ifnet *);
222 static void dc_shutdown		(device_t);
223 static int dc_ifmedia_upd	(struct ifnet *);
224 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
225 
226 static void dc_delay		(struct dc_softc *);
227 static void dc_eeprom_idle	(struct dc_softc *);
228 static void dc_eeprom_putbyte	(struct dc_softc *, int);
229 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
230 static void dc_eeprom_getword_pnic
231 				(struct dc_softc *, int, u_int16_t *);
232 static void dc_eeprom_width	(struct dc_softc *);
233 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
234 							int, int);
235 
236 static void dc_mii_writebit	(struct dc_softc *, int);
237 static int dc_mii_readbit	(struct dc_softc *);
238 static void dc_mii_sync		(struct dc_softc *);
239 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
240 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
241 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
242 static int dc_miibus_readreg	(device_t, int, int);
243 static int dc_miibus_writereg	(device_t, int, int, int);
244 static void dc_miibus_statchg	(device_t);
245 static void dc_miibus_mediainit	(device_t);
246 
247 static u_int32_t dc_crc_mask	(struct dc_softc *);
248 static void dc_setcfg		(struct dc_softc *, int);
249 static void dc_setfilt_21143	(struct dc_softc *);
250 static void dc_setfilt_asix	(struct dc_softc *);
251 static void dc_setfilt_admtek	(struct dc_softc *);
252 
253 static void dc_setfilt		(struct dc_softc *);
254 
255 static void dc_reset		(struct dc_softc *);
256 static int dc_list_rx_init	(struct dc_softc *);
257 static int dc_list_tx_init	(struct dc_softc *);
258 
259 static void dc_read_srom	(struct dc_softc *, int);
260 static void dc_parse_21143_srom	(struct dc_softc *);
261 static void dc_decode_leaf_sia	(struct dc_softc *,
262 				    struct dc_eblock_sia *);
263 static void dc_decode_leaf_mii	(struct dc_softc *,
264 				    struct dc_eblock_mii *);
265 static void dc_decode_leaf_sym	(struct dc_softc *,
266 				    struct dc_eblock_sym *);
267 static void dc_apply_fixup	(struct dc_softc *, int);
268 
269 #ifdef DC_USEIOSPACE
270 #define DC_RES			SYS_RES_IOPORT
271 #define DC_RID			DC_PCI_CFBIO
272 #else
273 #define DC_RES			SYS_RES_MEMORY
274 #define DC_RID			DC_PCI_CFBMA
275 #endif
276 
277 static device_method_t dc_methods[] = {
278 	/* Device interface */
279 	DEVMETHOD(device_probe,		dc_probe),
280 	DEVMETHOD(device_attach,	dc_attach),
281 	DEVMETHOD(device_detach,	dc_detach),
282 	DEVMETHOD(device_suspend,	dc_suspend),
283 	DEVMETHOD(device_resume,	dc_resume),
284 	DEVMETHOD(device_shutdown,	dc_shutdown),
285 
286 	/* bus interface */
287 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
288 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
289 
290 	/* MII interface */
291 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
292 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
293 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
294 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
295 
296 	{ 0, 0 }
297 };
298 
299 static driver_t dc_driver = {
300 	"dc",
301 	dc_methods,
302 	sizeof(struct dc_softc)
303 };
304 
305 static devclass_t dc_devclass;
306 
307 #ifdef __i386__
308 static int dc_quick=1;
309 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
310 	&dc_quick,0,"do not mdevget in dc driver");
311 #endif
312 
313 DECLARE_DUMMY_MODULE(if_dc);
314 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
315 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
316 
317 #define DC_SETBIT(sc, reg, x)				\
318 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
319 
320 #define DC_CLRBIT(sc, reg, x)				\
321 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
322 
323 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
324 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
325 
326 static void
327 dc_delay(struct dc_softc *sc)
328 {
329 	int			idx;
330 
331 	for (idx = (300 / 33) + 1; idx > 0; idx--)
332 		CSR_READ_4(sc, DC_BUSCTL);
333 }
334 
335 static void
336 dc_eeprom_width(struct dc_softc *sc)
337 {
338 	int i;
339 
340 	/* Force EEPROM to idle state. */
341 	dc_eeprom_idle(sc);
342 
343 	/* Enter EEPROM access mode. */
344 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
345 	dc_delay(sc);
346 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
347 	dc_delay(sc);
348 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
349 	dc_delay(sc);
350 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
351 	dc_delay(sc);
352 
353 	for (i = 3; i--;) {
354 		if (6 & (1 << i))
355 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
356 		else
357 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
358 		dc_delay(sc);
359 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 		dc_delay(sc);
361 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
362 		dc_delay(sc);
363 	}
364 
365 	for (i = 1; i <= 12; i++) {
366 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
367 		dc_delay(sc);
368 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
369 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 			dc_delay(sc);
371 			break;
372 		}
373 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
374 		dc_delay(sc);
375 	}
376 
377 	/* Turn off EEPROM access mode. */
378 	dc_eeprom_idle(sc);
379 
380 	if (i < 4 || i > 12)
381 		sc->dc_romwidth = 6;
382 	else
383 		sc->dc_romwidth = i;
384 
385 	/* Enter EEPROM access mode. */
386 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
387 	dc_delay(sc);
388 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
389 	dc_delay(sc);
390 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
391 	dc_delay(sc);
392 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
393 	dc_delay(sc);
394 
395 	/* Turn off EEPROM access mode. */
396 	dc_eeprom_idle(sc);
397 }
398 
399 static void
400 dc_eeprom_idle(struct dc_softc *sc)
401 {
402 	int		i;
403 
404 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
405 	dc_delay(sc);
406 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
407 	dc_delay(sc);
408 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
409 	dc_delay(sc);
410 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
411 	dc_delay(sc);
412 
413 	for (i = 0; i < 25; i++) {
414 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 		dc_delay(sc);
416 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
417 		dc_delay(sc);
418 	}
419 
420 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
421 	dc_delay(sc);
422 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
423 	dc_delay(sc);
424 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
425 
426 	return;
427 }
428 
429 /*
430  * Send a read command and address to the EEPROM, check for ACK.
431  */
432 static void
433 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
434 {
435 	int		d, i;
436 
437 	d = DC_EECMD_READ >> 6;
438 	for (i = 3; i--; ) {
439 		if (d & (1 << i))
440 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
441 		else
442 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
443 		dc_delay(sc);
444 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
445 		dc_delay(sc);
446 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
447 		dc_delay(sc);
448 	}
449 
450 	/*
451 	 * Feed in each bit and strobe the clock.
452 	 */
453 	for (i = sc->dc_romwidth; i--;) {
454 		if (addr & (1 << i)) {
455 			SIO_SET(DC_SIO_EE_DATAIN);
456 		} else {
457 			SIO_CLR(DC_SIO_EE_DATAIN);
458 		}
459 		dc_delay(sc);
460 		SIO_SET(DC_SIO_EE_CLK);
461 		dc_delay(sc);
462 		SIO_CLR(DC_SIO_EE_CLK);
463 		dc_delay(sc);
464 	}
465 
466 	return;
467 }
468 
469 /*
470  * Read a word of data stored in the EEPROM at address 'addr.'
471  * The PNIC 82c168/82c169 has its own non-standard way to read
472  * the EEPROM.
473  */
474 static void
475 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
476 {
477 	int		i;
478 	u_int32_t		r;
479 
480 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
481 
482 	for (i = 0; i < DC_TIMEOUT; i++) {
483 		DELAY(1);
484 		r = CSR_READ_4(sc, DC_SIO);
485 		if (!(r & DC_PN_SIOCTL_BUSY)) {
486 			*dest = (u_int16_t)(r & 0xFFFF);
487 			return;
488 		}
489 	}
490 
491 	return;
492 }
493 
494 /*
495  * Read a word of data stored in the EEPROM at address 'addr.'
496  */
497 static void
498 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
499 {
500 	int		i;
501 	u_int16_t		word = 0;
502 
503 	/* Force EEPROM to idle state. */
504 	dc_eeprom_idle(sc);
505 
506 	/* Enter EEPROM access mode. */
507 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
508 	dc_delay(sc);
509 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
510 	dc_delay(sc);
511 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
512 	dc_delay(sc);
513 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
514 	dc_delay(sc);
515 
516 	/*
517 	 * Send address of word we want to read.
518 	 */
519 	dc_eeprom_putbyte(sc, addr);
520 
521 	/*
522 	 * Start reading bits from EEPROM.
523 	 */
524 	for (i = 0x8000; i; i >>= 1) {
525 		SIO_SET(DC_SIO_EE_CLK);
526 		dc_delay(sc);
527 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
528 			word |= i;
529 		dc_delay(sc);
530 		SIO_CLR(DC_SIO_EE_CLK);
531 		dc_delay(sc);
532 	}
533 
534 	/* Turn off EEPROM access mode. */
535 	dc_eeprom_idle(sc);
536 
537 	*dest = word;
538 
539 	return;
540 }
541 
542 /*
543  * Read a sequence of words from the EEPROM.
544  */
545 static void
546 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
547 {
548 	int			i;
549 	u_int16_t		word = 0, *ptr;
550 
551 	for (i = 0; i < cnt; i++) {
552 		if (DC_IS_PNIC(sc))
553 			dc_eeprom_getword_pnic(sc, off + i, &word);
554 		else
555 			dc_eeprom_getword(sc, off + i, &word);
556 		ptr = (u_int16_t *)(dest + (i * 2));
557 		if (swap)
558 			*ptr = ntohs(word);
559 		else
560 			*ptr = word;
561 	}
562 
563 	return;
564 }
565 
566 /*
567  * The following two routines are taken from the Macronix 98713
568  * Application Notes pp.19-21.
569  */
570 /*
571  * Write a bit to the MII bus.
572  */
573 static void
574 dc_mii_writebit(struct dc_softc *sc, int bit)
575 {
576 	if (bit)
577 		CSR_WRITE_4(sc, DC_SIO,
578 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
579 	else
580 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
581 
582 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
583 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
584 
585 	return;
586 }
587 
588 /*
589  * Read a bit from the MII bus.
590  */
591 static int
592 dc_mii_readbit(struct dc_softc *sc)
593 {
594 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
595 	CSR_READ_4(sc, DC_SIO);
596 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
597 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
598 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
599 		return(1);
600 
601 	return(0);
602 }
603 
604 /*
605  * Sync the PHYs by setting data bit and strobing the clock 32 times.
606  */
607 static void
608 dc_mii_sync(struct dc_softc *sc)
609 {
610 	int		i;
611 
612 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
613 
614 	for (i = 0; i < 32; i++)
615 		dc_mii_writebit(sc, 1);
616 
617 	return;
618 }
619 
620 /*
621  * Clock a series of bits through the MII.
622  */
623 static void
624 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
625 {
626 	int			i;
627 
628 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
629 		dc_mii_writebit(sc, bits & i);
630 }
631 
632 /*
633  * Read an PHY register through the MII.
634  */
635 static int
636 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
637 {
638 	int ack, i;
639 
640 	crit_enter();
641 
642 	/*
643 	 * Set up frame for RX.
644 	 */
645 	frame->mii_stdelim = DC_MII_STARTDELIM;
646 	frame->mii_opcode = DC_MII_READOP;
647 	frame->mii_turnaround = 0;
648 	frame->mii_data = 0;
649 
650 	/*
651 	 * Sync the PHYs.
652 	 */
653 	dc_mii_sync(sc);
654 
655 	/*
656 	 * Send command/address info.
657 	 */
658 	dc_mii_send(sc, frame->mii_stdelim, 2);
659 	dc_mii_send(sc, frame->mii_opcode, 2);
660 	dc_mii_send(sc, frame->mii_phyaddr, 5);
661 	dc_mii_send(sc, frame->mii_regaddr, 5);
662 
663 #ifdef notdef
664 	/* Idle bit */
665 	dc_mii_writebit(sc, 1);
666 	dc_mii_writebit(sc, 0);
667 #endif
668 
669 	/* Check for ack */
670 	ack = dc_mii_readbit(sc);
671 
672 	/*
673 	 * Now try reading data bits. If the ack failed, we still
674 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
675 	 */
676 	if (ack) {
677 		for(i = 0; i < 16; i++) {
678 			dc_mii_readbit(sc);
679 		}
680 		goto fail;
681 	}
682 
683 	for (i = 0x8000; i; i >>= 1) {
684 		if (!ack) {
685 			if (dc_mii_readbit(sc))
686 				frame->mii_data |= i;
687 		}
688 	}
689 
690 fail:
691 
692 	dc_mii_writebit(sc, 0);
693 	dc_mii_writebit(sc, 0);
694 
695 	crit_exit();
696 
697 	if (ack)
698 		return(1);
699 	return(0);
700 }
701 
702 /*
703  * Write to a PHY register through the MII.
704  */
705 static int
706 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
707 {
708 	crit_enter();
709 
710 	/*
711 	 * Set up frame for TX.
712 	 */
713 
714 	frame->mii_stdelim = DC_MII_STARTDELIM;
715 	frame->mii_opcode = DC_MII_WRITEOP;
716 	frame->mii_turnaround = DC_MII_TURNAROUND;
717 
718 	/*
719 	 * Sync the PHYs.
720 	 */
721 	dc_mii_sync(sc);
722 
723 	dc_mii_send(sc, frame->mii_stdelim, 2);
724 	dc_mii_send(sc, frame->mii_opcode, 2);
725 	dc_mii_send(sc, frame->mii_phyaddr, 5);
726 	dc_mii_send(sc, frame->mii_regaddr, 5);
727 	dc_mii_send(sc, frame->mii_turnaround, 2);
728 	dc_mii_send(sc, frame->mii_data, 16);
729 
730 	/* Idle bit. */
731 	dc_mii_writebit(sc, 0);
732 	dc_mii_writebit(sc, 0);
733 
734 	crit_exit();
735 
736 	return(0);
737 }
738 
739 static int
740 dc_miibus_readreg(device_t dev, int phy, int reg)
741 {
742 	struct dc_mii_frame	frame;
743 	struct dc_softc		*sc;
744 	int			i, rval, phy_reg = 0;
745 
746 	sc = device_get_softc(dev);
747 	bzero((char *)&frame, sizeof(frame));
748 
749 	/*
750 	 * Note: both the AL981 and AN985 have internal PHYs,
751 	 * however the AL981 provides direct access to the PHY
752 	 * registers while the AN985 uses a serial MII interface.
753 	 * The AN985's MII interface is also buggy in that you
754 	 * can read from any MII address (0 to 31), but only address 1
755 	 * behaves normally. To deal with both cases, we pretend
756 	 * that the PHY is at MII address 1.
757 	 */
758 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
759 		return(0);
760 
761 	/*
762 	 * Note: the ukphy probes of the RS7112 report a PHY at
763 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
764 	 * so we only respond to correct one.
765 	 */
766 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
767 		return(0);
768 
769 	if (sc->dc_pmode != DC_PMODE_MII) {
770 		if (phy == (MII_NPHY - 1)) {
771 			switch(reg) {
772 			case MII_BMSR:
773 			/*
774 			 * Fake something to make the probe
775 			 * code think there's a PHY here.
776 			 */
777 				return(BMSR_MEDIAMASK);
778 				break;
779 			case MII_PHYIDR1:
780 				if (DC_IS_PNIC(sc))
781 					return(DC_VENDORID_LO);
782 				return(DC_VENDORID_DEC);
783 				break;
784 			case MII_PHYIDR2:
785 				if (DC_IS_PNIC(sc))
786 					return(DC_DEVICEID_82C168);
787 				return(DC_DEVICEID_21143);
788 				break;
789 			default:
790 				return(0);
791 				break;
792 			}
793 		} else
794 			return(0);
795 	}
796 
797 	if (DC_IS_PNIC(sc)) {
798 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
799 		    (phy << 23) | (reg << 18));
800 		for (i = 0; i < DC_TIMEOUT; i++) {
801 			DELAY(1);
802 			rval = CSR_READ_4(sc, DC_PN_MII);
803 			if (!(rval & DC_PN_MII_BUSY)) {
804 				rval &= 0xFFFF;
805 				return(rval == 0xFFFF ? 0 : rval);
806 			}
807 		}
808 		return(0);
809 	}
810 
811 	if (DC_IS_COMET(sc)) {
812 		switch(reg) {
813 		case MII_BMCR:
814 			phy_reg = DC_AL_BMCR;
815 			break;
816 		case MII_BMSR:
817 			phy_reg = DC_AL_BMSR;
818 			break;
819 		case MII_PHYIDR1:
820 			phy_reg = DC_AL_VENID;
821 			break;
822 		case MII_PHYIDR2:
823 			phy_reg = DC_AL_DEVID;
824 			break;
825 		case MII_ANAR:
826 			phy_reg = DC_AL_ANAR;
827 			break;
828 		case MII_ANLPAR:
829 			phy_reg = DC_AL_LPAR;
830 			break;
831 		case MII_ANER:
832 			phy_reg = DC_AL_ANER;
833 			break;
834 		default:
835 			if_printf(&sc->arpcom.ac_if,
836 				  "phy_read: bad phy register %x\n", reg);
837 			return(0);
838 			break;
839 		}
840 
841 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
842 
843 		if (rval == 0xFFFF)
844 			return(0);
845 		return(rval);
846 	}
847 
848 	frame.mii_phyaddr = phy;
849 	frame.mii_regaddr = reg;
850 	if (sc->dc_type == DC_TYPE_98713) {
851 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
852 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
853 	}
854 	dc_mii_readreg(sc, &frame);
855 	if (sc->dc_type == DC_TYPE_98713)
856 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
857 
858 	return(frame.mii_data);
859 }
860 
861 static int
862 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
863 {
864 	struct dc_softc		*sc;
865 	struct dc_mii_frame	frame;
866 	int			i, phy_reg = 0;
867 
868 	sc = device_get_softc(dev);
869 	bzero((char *)&frame, sizeof(frame));
870 
871 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
872 		return(0);
873 
874 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
875 		return(0);
876 
877 	if (DC_IS_PNIC(sc)) {
878 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
879 		    (phy << 23) | (reg << 10) | data);
880 		for (i = 0; i < DC_TIMEOUT; i++) {
881 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
882 				break;
883 		}
884 		return(0);
885 	}
886 
887 	if (DC_IS_COMET(sc)) {
888 		switch(reg) {
889 		case MII_BMCR:
890 			phy_reg = DC_AL_BMCR;
891 			break;
892 		case MII_BMSR:
893 			phy_reg = DC_AL_BMSR;
894 			break;
895 		case MII_PHYIDR1:
896 			phy_reg = DC_AL_VENID;
897 			break;
898 		case MII_PHYIDR2:
899 			phy_reg = DC_AL_DEVID;
900 			break;
901 		case MII_ANAR:
902 			phy_reg = DC_AL_ANAR;
903 			break;
904 		case MII_ANLPAR:
905 			phy_reg = DC_AL_LPAR;
906 			break;
907 		case MII_ANER:
908 			phy_reg = DC_AL_ANER;
909 			break;
910 		default:
911 			if_printf(&sc->arpcom.ac_if,
912 				  "phy_write: bad phy register %x\n", reg);
913 			return(0);
914 			break;
915 		}
916 
917 		CSR_WRITE_4(sc, phy_reg, data);
918 		return(0);
919 	}
920 
921 	frame.mii_phyaddr = phy;
922 	frame.mii_regaddr = reg;
923 	frame.mii_data = data;
924 
925 	if (sc->dc_type == DC_TYPE_98713) {
926 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
927 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
928 	}
929 	dc_mii_writereg(sc, &frame);
930 	if (sc->dc_type == DC_TYPE_98713)
931 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
932 
933 	return(0);
934 }
935 
936 static void
937 dc_miibus_statchg(device_t dev)
938 {
939 	struct dc_softc		*sc;
940 	struct mii_data		*mii;
941 	struct ifmedia		*ifm;
942 
943 	sc = device_get_softc(dev);
944 	if (DC_IS_ADMTEK(sc))
945 		return;
946 
947 	mii = device_get_softc(sc->dc_miibus);
948 	ifm = &mii->mii_media;
949 	if (DC_IS_DAVICOM(sc) &&
950 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
951 		dc_setcfg(sc, ifm->ifm_media);
952 		sc->dc_if_media = ifm->ifm_media;
953 	} else {
954 		dc_setcfg(sc, mii->mii_media_active);
955 		sc->dc_if_media = mii->mii_media_active;
956 	}
957 
958 	return;
959 }
960 
961 /*
962  * Special support for DM9102A cards with HomePNA PHYs. Note:
963  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
964  * to be impossible to talk to the management interface of the DM9801
965  * PHY (its MDIO pin is not connected to anything). Consequently,
966  * the driver has to just 'know' about the additional mode and deal
967  * with it itself. *sigh*
968  */
969 static void
970 dc_miibus_mediainit(device_t dev)
971 {
972 	struct dc_softc		*sc;
973 	struct mii_data		*mii;
974 	struct ifmedia		*ifm;
975 	int			rev;
976 
977 	rev = pci_get_revid(dev);
978 
979 	sc = device_get_softc(dev);
980 	mii = device_get_softc(sc->dc_miibus);
981 	ifm = &mii->mii_media;
982 
983 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
984 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
985 
986 	return;
987 }
988 
989 #define DC_BITS_512	9
990 #define DC_BITS_128	7
991 #define DC_BITS_64	6
992 
993 static u_int32_t
994 dc_crc_mask(struct dc_softc *sc)
995 {
996 	/*
997 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
998 	 * chips is only 128 bits wide.
999 	 */
1000 	if (sc->dc_flags & DC_128BIT_HASH)
1001 		return ((1 << DC_BITS_128) - 1);
1002 
1003 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1004 	if (sc->dc_flags & DC_64BIT_HASH)
1005 		return ((1 << DC_BITS_64) - 1);
1006 
1007 	return ((1 << DC_BITS_512) - 1);
1008 }
1009 
1010 /*
1011  * 21143-style RX filter setup routine. Filter programming is done by
1012  * downloading a special setup frame into the TX engine. 21143, Macronix,
1013  * PNIC, PNIC II and Davicom chips are programmed this way.
1014  *
1015  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1016  * address (our node address) and a 512-bit hash filter for multicast
1017  * frames. We also sneak the broadcast address into the hash filter since
1018  * we need that too.
1019  */
1020 void
1021 dc_setfilt_21143(struct dc_softc *sc)
1022 {
1023 	struct dc_desc		*sframe;
1024 	u_int32_t		h, crc_mask, *sp;
1025 	struct ifmultiaddr	*ifma;
1026 	struct ifnet		*ifp;
1027 	int			i;
1028 
1029 	ifp = &sc->arpcom.ac_if;
1030 
1031 	i = sc->dc_cdata.dc_tx_prod;
1032 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1033 	sc->dc_cdata.dc_tx_cnt++;
1034 	sframe = &sc->dc_ldata->dc_tx_list[i];
1035 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1036 	bzero((char *)sp, DC_SFRAME_LEN);
1037 
1038 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1039 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1040 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1041 
1042 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1043 
1044 	/* If we want promiscuous mode, set the allframes bit. */
1045 	if (ifp->if_flags & IFF_PROMISC)
1046 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1047 	else
1048 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1049 
1050 	if (ifp->if_flags & IFF_ALLMULTI)
1051 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1052 	else
1053 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1054 
1055 	crc_mask = dc_crc_mask(sc);
1056 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1057 		if (ifma->ifma_addr->sa_family != AF_LINK)
1058 			continue;
1059 		h = ether_crc32_le(
1060 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1061 			ETHER_ADDR_LEN) & crc_mask;
1062 		sp[h >> 4] |= 1 << (h & 0xF);
1063 	}
1064 
1065 	if (ifp->if_flags & IFF_BROADCAST) {
1066 		h = ether_crc32_le(ifp->if_broadcastaddr,
1067 				   ETHER_ADDR_LEN) & crc_mask;
1068 		sp[h >> 4] |= 1 << (h & 0xF);
1069 	}
1070 
1071 	/* Set our MAC address */
1072 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1073 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1074 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1075 
1076 	sframe->dc_status = DC_TXSTAT_OWN;
1077 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1078 
1079 	/*
1080 	 * The PNIC takes an exceedingly long time to process its
1081 	 * setup frame; wait 10ms after posting the setup frame
1082 	 * before proceeding, just so it has time to swallow its
1083 	 * medicine.
1084 	 */
1085 	DELAY(10000);
1086 
1087 	ifp->if_timer = 5;
1088 
1089 	return;
1090 }
1091 
1092 void
1093 dc_setfilt_admtek(struct dc_softc *sc)
1094 {
1095 	struct ifnet		*ifp;
1096 	int			h = 0;
1097 	u_int32_t		crc_mask;
1098 	u_int32_t		hashes[2] = { 0, 0 };
1099 	struct ifmultiaddr	*ifma;
1100 
1101 	ifp = &sc->arpcom.ac_if;
1102 
1103 	/* Init our MAC address */
1104 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1105 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1106 
1107 	/* If we want promiscuous mode, set the allframes bit. */
1108 	if (ifp->if_flags & IFF_PROMISC)
1109 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1110 	else
1111 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1112 
1113 	if (ifp->if_flags & IFF_ALLMULTI)
1114 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1115 	else
1116 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1117 
1118 	/* first, zot all the existing hash bits */
1119 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1120 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1121 
1122 	/*
1123 	 * If we're already in promisc or allmulti mode, we
1124 	 * don't have to bother programming the multicast filter.
1125 	 */
1126 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1127 		return;
1128 
1129 	/* now program new ones */
1130 	if (DC_IS_CENTAUR(sc))
1131 		crc_mask = dc_crc_mask(sc);
1132 	else
1133 		crc_mask = 0x3f;
1134 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1135 		if (ifma->ifma_addr->sa_family != AF_LINK)
1136 			continue;
1137 		if (DC_IS_CENTAUR(sc)) {
1138 			h = ether_crc32_le(
1139 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1140 				ETHER_ADDR_LEN) & crc_mask;
1141 		} else {
1142 			h = ether_crc32_be(
1143 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1144 				ETHER_ADDR_LEN);
1145 			h = (h >> 26) & crc_mask;
1146 		}
1147 		if (h < 32)
1148 			hashes[0] |= (1 << h);
1149 		else
1150 			hashes[1] |= (1 << (h - 32));
1151 	}
1152 
1153 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1154 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1155 
1156 	return;
1157 }
1158 
1159 void
1160 dc_setfilt_asix(struct dc_softc *sc)
1161 {
1162 	struct ifnet		*ifp;
1163 	int			h = 0;
1164 	u_int32_t		hashes[2] = { 0, 0 };
1165 	struct ifmultiaddr	*ifma;
1166 
1167 	ifp = &sc->arpcom.ac_if;
1168 
1169         /* Init our MAC address */
1170         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1171         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1172 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1173         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1174         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1175 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1176 
1177 	/* If we want promiscuous mode, set the allframes bit. */
1178 	if (ifp->if_flags & IFF_PROMISC)
1179 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1180 	else
1181 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1182 
1183 	if (ifp->if_flags & IFF_ALLMULTI)
1184 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1185 	else
1186 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1187 
1188 	/*
1189 	 * The ASIX chip has a special bit to enable reception
1190 	 * of broadcast frames.
1191 	 */
1192 	if (ifp->if_flags & IFF_BROADCAST)
1193 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1194 	else
1195 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1196 
1197 	/* first, zot all the existing hash bits */
1198 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1199 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1200 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1201 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1202 
1203 	/*
1204 	 * If we're already in promisc or allmulti mode, we
1205 	 * don't have to bother programming the multicast filter.
1206 	 */
1207 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1208 		return;
1209 
1210 	/* now program new ones */
1211 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1212 		if (ifma->ifma_addr->sa_family != AF_LINK)
1213 			continue;
1214 		h = ether_crc32_be(
1215 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1216 			ETHER_ADDR_LEN);
1217 		h = (h >> 26) & 0x3f;
1218 		if (h < 32)
1219 			hashes[0] |= (1 << h);
1220 		else
1221 			hashes[1] |= (1 << (h - 32));
1222 	}
1223 
1224 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1225 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1226 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1227 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1228 
1229 	return;
1230 }
1231 
1232 static void
1233 dc_setfilt(struct dc_softc *sc)
1234 {
1235 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1236 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1237 		dc_setfilt_21143(sc);
1238 
1239 	if (DC_IS_ASIX(sc))
1240 		dc_setfilt_asix(sc);
1241 
1242 	if (DC_IS_ADMTEK(sc))
1243 		dc_setfilt_admtek(sc);
1244 
1245 	return;
1246 }
1247 
1248 /*
1249  * In order to fiddle with the
1250  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1251  * first have to put the transmit and/or receive logic in the idle state.
1252  */
1253 static void
1254 dc_setcfg(struct dc_softc *sc, int media)
1255 {
1256 	int			i, restart = 0;
1257 	u_int32_t		isr;
1258 
1259 	if (IFM_SUBTYPE(media) == IFM_NONE)
1260 		return;
1261 
1262 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1263 		restart = 1;
1264 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1265 
1266 		for (i = 0; i < DC_TIMEOUT; i++) {
1267 			isr = CSR_READ_4(sc, DC_ISR);
1268 			if ((isr & DC_ISR_TX_IDLE) &&
1269 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1270 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1271 				break;
1272 			DELAY(10);
1273 		}
1274 
1275 		if (i == DC_TIMEOUT) {
1276 			if_printf(&sc->arpcom.ac_if,
1277 			    "failed to force tx and rx to idle state\n");
1278 		}
1279 	}
1280 
1281 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1282 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1283 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1284 		if (sc->dc_pmode == DC_PMODE_MII) {
1285 			int	watchdogreg;
1286 
1287 			if (DC_IS_INTEL(sc)) {
1288 			/* there's a write enable bit here that reads as 1 */
1289 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1290 				watchdogreg &= ~DC_WDOG_CTLWREN;
1291 				watchdogreg |= DC_WDOG_JABBERDIS;
1292 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1293 			} else {
1294 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1295 			}
1296 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1297 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1298 			if (sc->dc_type == DC_TYPE_98713)
1299 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1300 				    DC_NETCFG_SCRAMBLER));
1301 			if (!DC_IS_DAVICOM(sc))
1302 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1303 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1304 			if (DC_IS_INTEL(sc))
1305 				dc_apply_fixup(sc, IFM_AUTO);
1306 		} else {
1307 			if (DC_IS_PNIC(sc)) {
1308 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1309 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1310 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1311 			}
1312 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1313 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1314 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1315 			if (DC_IS_INTEL(sc))
1316 				dc_apply_fixup(sc,
1317 				    (media & IFM_GMASK) == IFM_FDX ?
1318 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1319 		}
1320 	}
1321 
1322 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1323 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1324 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1325 		if (sc->dc_pmode == DC_PMODE_MII) {
1326 			int	watchdogreg;
1327 
1328 			/* there's a write enable bit here that reads as 1 */
1329 			if (DC_IS_INTEL(sc)) {
1330 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1331 				watchdogreg &= ~DC_WDOG_CTLWREN;
1332 				watchdogreg |= DC_WDOG_JABBERDIS;
1333 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1334 			} else {
1335 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1336 			}
1337 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1338 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1339 			if (sc->dc_type == DC_TYPE_98713)
1340 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1341 			if (!DC_IS_DAVICOM(sc))
1342 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1343 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1344 			if (DC_IS_INTEL(sc))
1345 				dc_apply_fixup(sc, IFM_AUTO);
1346 		} else {
1347 			if (DC_IS_PNIC(sc)) {
1348 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1349 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1350 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1351 			}
1352 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1353 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1354 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1355 			if (DC_IS_INTEL(sc)) {
1356 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1357 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1358 				if ((media & IFM_GMASK) == IFM_FDX)
1359 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1360 				else
1361 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1362 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1363 				DC_CLRBIT(sc, DC_10BTCTRL,
1364 				    DC_TCTL_AUTONEGENBL);
1365 				dc_apply_fixup(sc,
1366 				    (media & IFM_GMASK) == IFM_FDX ?
1367 				    IFM_10_T|IFM_FDX : IFM_10_T);
1368 				DELAY(20000);
1369 			}
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1375 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1376 	 * on the external MII port.
1377 	 */
1378 	if (DC_IS_DAVICOM(sc)) {
1379 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1380 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1381 			sc->dc_link = 1;
1382 		} else {
1383 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1384 		}
1385 	}
1386 
1387 	if ((media & IFM_GMASK) == IFM_FDX) {
1388 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1389 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1390 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1391 	} else {
1392 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1393 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1394 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1395 	}
1396 
1397 	if (restart)
1398 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1399 
1400 	return;
1401 }
1402 
1403 static void
1404 dc_reset(struct dc_softc *sc)
1405 {
1406 	int		i;
1407 
1408 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1409 
1410 	for (i = 0; i < DC_TIMEOUT; i++) {
1411 		DELAY(10);
1412 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1413 			break;
1414 	}
1415 
1416 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1417 		DELAY(10000);
1418 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1419 		i = 0;
1420 	}
1421 
1422 	if (i == DC_TIMEOUT)
1423 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1424 
1425 	/* Wait a little while for the chip to get its brains in order. */
1426 	DELAY(1000);
1427 
1428 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1429 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1430 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1431 
1432 	/*
1433 	 * Bring the SIA out of reset. In some cases, it looks
1434 	 * like failing to unreset the SIA soon enough gets it
1435 	 * into a state where it will never come out of reset
1436 	 * until we reset the whole chip again.
1437 	 */
1438 	if (DC_IS_INTEL(sc)) {
1439 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1440 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1441 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1442 	}
1443 
1444         return;
1445 }
1446 
1447 static const struct dc_type *
1448 dc_devtype(device_t dev)
1449 {
1450 	const struct dc_type	*t;
1451 	u_int32_t		rev;
1452 
1453 	t = dc_devs;
1454 
1455 	while(t->dc_name != NULL) {
1456 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1457 		    (pci_get_device(dev) == t->dc_did)) {
1458 			/* Check the PCI revision */
1459 			rev = pci_get_revid(dev);
1460 			if (t->dc_did == DC_DEVICEID_98713 &&
1461 			    rev >= DC_REVISION_98713A)
1462 				t++;
1463 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1464 			    rev >= DC_REVISION_98713A)
1465 				t++;
1466 			if (t->dc_did == DC_DEVICEID_987x5 &&
1467 			    rev >= DC_REVISION_98715AEC_C)
1468 				t++;
1469 			if (t->dc_did == DC_DEVICEID_987x5 &&
1470 			    rev >= DC_REVISION_98725)
1471 				t++;
1472 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1473 			    rev >= DC_REVISION_88141)
1474 				t++;
1475 			if (t->dc_did == DC_DEVICEID_82C168 &&
1476 			    rev >= DC_REVISION_82C169)
1477 				t++;
1478 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1479 			    rev >= DC_REVISION_DM9102A)
1480 				t++;
1481 			return(t);
1482 		}
1483 		t++;
1484 	}
1485 
1486 	return(NULL);
1487 }
1488 
1489 /*
1490  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1491  * IDs against our list and return a device name if we find a match.
1492  * We do a little bit of extra work to identify the exact type of
1493  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1494  * but different revision IDs. The same is true for 98715/98715A
1495  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1496  * cases, the exact chip revision affects driver behavior.
1497  */
1498 static int
1499 dc_probe(device_t dev)
1500 {
1501 	const struct dc_type *t;
1502 
1503 	t = dc_devtype(dev);
1504 	if (t != NULL) {
1505 		struct dc_softc *sc = device_get_softc(dev);
1506 
1507 		/* Need this info to decide on a chip type. */
1508 		sc->dc_info = t;
1509 		device_set_desc(dev, t->dc_name);
1510 		return(0);
1511 	}
1512 
1513 	return(ENXIO);
1514 }
1515 
1516 static void
1517 dc_acpi(device_t dev)
1518 {
1519 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1520 		uint32_t iobase, membase, irq;
1521 		struct dc_softc *sc;
1522 
1523 		/* Save important PCI config data. */
1524 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1525 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1526 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1527 
1528 		sc = device_get_softc(dev);
1529 		/* Reset the power state. */
1530 		if_printf(&sc->arpcom.ac_if,
1531 			  "chip is in D%d power mode "
1532 			  "-- setting to D0\n", pci_get_powerstate(dev));
1533 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1534 
1535 		/* Restore PCI config data. */
1536 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1537 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1538 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1539 	}
1540 }
1541 
1542 static void
1543 dc_apply_fixup(struct dc_softc *sc, int media)
1544 {
1545 	struct dc_mediainfo	*m;
1546 	u_int8_t		*p;
1547 	int			i;
1548 	u_int32_t		reg;
1549 
1550 	m = sc->dc_mi;
1551 
1552 	while (m != NULL) {
1553 		if (m->dc_media == media)
1554 			break;
1555 		m = m->dc_next;
1556 	}
1557 
1558 	if (m == NULL)
1559 		return;
1560 
1561 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1562 		reg = (p[0] | (p[1] << 8)) << 16;
1563 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1564 	}
1565 
1566 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1567 		reg = (p[0] | (p[1] << 8)) << 16;
1568 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1569 	}
1570 
1571 	return;
1572 }
1573 
1574 static void
1575 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1576 {
1577 	struct dc_mediainfo	*m;
1578 
1579 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1580 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1581 	case DC_SIA_CODE_10BT:
1582 		m->dc_media = IFM_10_T;
1583 		break;
1584 
1585 	case DC_SIA_CODE_10BT_FDX:
1586 		m->dc_media = IFM_10_T|IFM_FDX;
1587 		break;
1588 
1589 	case DC_SIA_CODE_10B2:
1590 		m->dc_media = IFM_10_2;
1591 		break;
1592 
1593 	case DC_SIA_CODE_10B5:
1594 		m->dc_media = IFM_10_5;
1595 		break;
1596 	}
1597 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1598 		m->dc_gp_len = 2;
1599 		m->dc_gp_ptr =
1600 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1601 	} else {
1602 	m->dc_gp_len = 2;
1603 	m->dc_gp_ptr =
1604 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1605 	}
1606 
1607 	m->dc_next = sc->dc_mi;
1608 	sc->dc_mi = m;
1609 
1610 	sc->dc_pmode = DC_PMODE_SIA;
1611 
1612 	return;
1613 }
1614 
1615 static void
1616 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1617 {
1618 	struct dc_mediainfo	*m;
1619 
1620 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1621 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1622 		m->dc_media = IFM_100_TX;
1623 
1624 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1625 		m->dc_media = IFM_100_TX|IFM_FDX;
1626 
1627 	m->dc_gp_len = 2;
1628 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1629 
1630 	m->dc_next = sc->dc_mi;
1631 	sc->dc_mi = m;
1632 
1633 	sc->dc_pmode = DC_PMODE_SYM;
1634 
1635 	return;
1636 }
1637 
1638 static void
1639 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1640 {
1641 	u_int8_t		*p;
1642 	struct dc_mediainfo	*m;
1643 
1644 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1645 	/* We abuse IFM_AUTO to represent MII. */
1646 	m->dc_media = IFM_AUTO;
1647 	m->dc_gp_len = l->dc_gpr_len;
1648 
1649 	p = (u_int8_t *)l;
1650 	p += sizeof(struct dc_eblock_mii);
1651 	m->dc_gp_ptr = p;
1652 	p += 2 * l->dc_gpr_len;
1653 	m->dc_reset_len = *p;
1654 	p++;
1655 	m->dc_reset_ptr = p;
1656 
1657 	m->dc_next = sc->dc_mi;
1658 	sc->dc_mi = m;
1659 
1660 	return;
1661 }
1662 
1663 static void
1664 dc_read_srom(struct dc_softc *sc, int bits)
1665 {
1666 	int size;
1667 
1668 	size = 2 << bits;
1669 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1670 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1671 }
1672 
1673 static void
1674 dc_parse_21143_srom(struct dc_softc *sc)
1675 {
1676 	struct dc_leaf_hdr	*lhdr;
1677 	struct dc_eblock_hdr	*hdr;
1678 	int			i, loff;
1679 	char			*ptr;
1680 	int			have_mii;
1681 
1682 	have_mii = 0;
1683 	loff = sc->dc_srom[27];
1684 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1685 
1686 	ptr = (char *)lhdr;
1687 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1688 	/*
1689 	 * Look if we got a MII media block.
1690 	 */
1691 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1692 		hdr = (struct dc_eblock_hdr *)ptr;
1693 		if (hdr->dc_type == DC_EBLOCK_MII)
1694 		    have_mii++;
1695 
1696 		ptr += (hdr->dc_len & 0x7F);
1697 		ptr++;
1698 	}
1699 
1700 	/*
1701 	 * Do the same thing again. Only use SIA and SYM media
1702 	 * blocks if no MII media block is available.
1703 	 */
1704 	ptr = (char *)lhdr;
1705 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1706 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1707 		hdr = (struct dc_eblock_hdr *)ptr;
1708 		switch(hdr->dc_type) {
1709 		case DC_EBLOCK_MII:
1710 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1711 			break;
1712 		case DC_EBLOCK_SIA:
1713 			if (! have_mii)
1714 				dc_decode_leaf_sia(sc,
1715 				    (struct dc_eblock_sia *)hdr);
1716 			break;
1717 		case DC_EBLOCK_SYM:
1718 			if (! have_mii)
1719 				dc_decode_leaf_sym(sc,
1720 				    (struct dc_eblock_sym *)hdr);
1721 			break;
1722 		default:
1723 			/* Don't care. Yet. */
1724 			break;
1725 		}
1726 		ptr += (hdr->dc_len & 0x7F);
1727 		ptr++;
1728 	}
1729 
1730 	return;
1731 }
1732 
1733 /*
1734  * Attach the interface. Allocate softc structures, do ifmedia
1735  * setup and ethernet/BPF attach.
1736  */
1737 static int
1738 dc_attach(device_t dev)
1739 {
1740 	int			tmp = 0;
1741 	u_char			eaddr[ETHER_ADDR_LEN];
1742 	u_int32_t		command;
1743 	struct dc_softc		*sc;
1744 	struct ifnet		*ifp;
1745 	u_int32_t		revision;
1746 	int			error = 0, rid, mac_offset;
1747 
1748 	sc = device_get_softc(dev);
1749 	callout_init(&sc->dc_stat_timer);
1750 
1751 	ifp = &sc->arpcom.ac_if;
1752 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1753 
1754 	/*
1755 	 * Handle power management nonsense.
1756 	 */
1757 	dc_acpi(dev);
1758 
1759 	/*
1760 	 * Map control/status registers.
1761 	 */
1762 	pci_enable_busmaster(dev);
1763 
1764 	rid = DC_RID;
1765 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1766 
1767 	if (sc->dc_res == NULL) {
1768 		device_printf(dev, "couldn't map ports/memory\n");
1769 		error = ENXIO;
1770 		goto fail;
1771 	}
1772 
1773 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1774 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1775 
1776 	/* Allocate interrupt */
1777 	rid = 0;
1778 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1779 	    RF_SHAREABLE | RF_ACTIVE);
1780 
1781 	if (sc->dc_irq == NULL) {
1782 		device_printf(dev, "couldn't map interrupt\n");
1783 		error = ENXIO;
1784 		goto fail;
1785 	}
1786 
1787 	revision = pci_get_revid(dev);
1788 
1789 	/* Get the eeprom width, but PNIC has diff eeprom */
1790 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1791 		dc_eeprom_width(sc);
1792 
1793 	switch(sc->dc_info->dc_did) {
1794 	case DC_DEVICEID_21143:
1795 		sc->dc_type = DC_TYPE_21143;
1796 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1797 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1798 		/* Save EEPROM contents so we can parse them later. */
1799 		dc_read_srom(sc, sc->dc_romwidth);
1800 		break;
1801 	case DC_DEVICEID_DM9009:
1802 	case DC_DEVICEID_DM9100:
1803 	case DC_DEVICEID_DM9102:
1804 		sc->dc_type = DC_TYPE_DM9102;
1805 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1806 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1807 		sc->dc_flags |= DC_TX_ALIGN;
1808 		sc->dc_pmode = DC_PMODE_MII;
1809 		/* Increase the latency timer value. */
1810 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1811 		command &= 0xFFFF00FF;
1812 		command |= 0x00008000;
1813 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1814 		break;
1815 	case DC_DEVICEID_AL981:
1816 		sc->dc_type = DC_TYPE_AL981;
1817 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1818 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1819 		sc->dc_pmode = DC_PMODE_MII;
1820 		dc_read_srom(sc, sc->dc_romwidth);
1821 		break;
1822 	case DC_DEVICEID_AN985:
1823 	case DC_DEVICEID_ADM9511:
1824 	case DC_DEVICEID_ADM9513:
1825 	case DC_DEVICEID_EN2242:
1826 	case DC_DEVICEID_3CSOHOB:
1827 		sc->dc_type = DC_TYPE_AN985;
1828 		sc->dc_flags |= DC_64BIT_HASH;
1829 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1830 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1831 		sc->dc_pmode = DC_PMODE_MII;
1832 		break;
1833 	case DC_DEVICEID_98713:
1834 	case DC_DEVICEID_98713_CP:
1835 		if (revision < DC_REVISION_98713A) {
1836 			sc->dc_type = DC_TYPE_98713;
1837 		}
1838 		if (revision >= DC_REVISION_98713A) {
1839 			sc->dc_type = DC_TYPE_98713A;
1840 			sc->dc_flags |= DC_21143_NWAY;
1841 		}
1842 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1843 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1844 		break;
1845 	case DC_DEVICEID_987x5:
1846 	case DC_DEVICEID_EN1217:
1847 		/*
1848 		 * Macronix MX98715AEC-C/D/E parts have only a
1849 		 * 128-bit hash table. We need to deal with these
1850 		 * in the same manner as the PNIC II so that we
1851 		 * get the right number of bits out of the
1852 		 * CRC routine.
1853 		 */
1854 		if (revision >= DC_REVISION_98715AEC_C &&
1855 		    revision < DC_REVISION_98725)
1856 			sc->dc_flags |= DC_128BIT_HASH;
1857 		sc->dc_type = DC_TYPE_987x5;
1858 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1859 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1860 		break;
1861 	case DC_DEVICEID_98727:
1862 		sc->dc_type = DC_TYPE_987x5;
1863 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1864 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1865 		break;
1866 	case DC_DEVICEID_82C115:
1867 		sc->dc_type = DC_TYPE_PNICII;
1868 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1869 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1870 		break;
1871 	case DC_DEVICEID_82C168:
1872 		sc->dc_type = DC_TYPE_PNIC;
1873 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1874 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1875 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1876 		if (revision < DC_REVISION_82C169)
1877 			sc->dc_pmode = DC_PMODE_SYM;
1878 		break;
1879 	case DC_DEVICEID_AX88140A:
1880 		sc->dc_type = DC_TYPE_ASIX;
1881 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1882 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1883 		sc->dc_pmode = DC_PMODE_MII;
1884 		break;
1885 	case DC_DEVICEID_RS7112:
1886 		sc->dc_type = DC_TYPE_CONEXANT;
1887 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1888 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1889 		sc->dc_pmode = DC_PMODE_MII;
1890 		dc_read_srom(sc, sc->dc_romwidth);
1891 		break;
1892 	default:
1893 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1894 		break;
1895 	}
1896 
1897 	/* Save the cache line size. */
1898 	if (DC_IS_DAVICOM(sc))
1899 		sc->dc_cachesize = 0;
1900 	else
1901 		sc->dc_cachesize = pci_read_config(dev,
1902 		    DC_PCI_CFLT, 4) & 0xFF;
1903 
1904 	/* Reset the adapter. */
1905 	dc_reset(sc);
1906 
1907 	/* Take 21143 out of snooze mode */
1908 	if (DC_IS_INTEL(sc)) {
1909 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1910 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1911 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1912 	}
1913 
1914 	/*
1915 	 * Try to learn something about the supported media.
1916 	 * We know that ASIX and ADMtek and Davicom devices
1917 	 * will *always* be using MII media, so that's a no-brainer.
1918 	 * The tricky ones are the Macronix/PNIC II and the
1919 	 * Intel 21143.
1920 	 */
1921 	if (DC_IS_INTEL(sc))
1922 		dc_parse_21143_srom(sc);
1923 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1924 		if (sc->dc_type == DC_TYPE_98713)
1925 			sc->dc_pmode = DC_PMODE_MII;
1926 		else
1927 			sc->dc_pmode = DC_PMODE_SYM;
1928 	} else if (!sc->dc_pmode)
1929 		sc->dc_pmode = DC_PMODE_MII;
1930 
1931 	/*
1932 	 * Get station address from the EEPROM.
1933 	 */
1934 	switch(sc->dc_type) {
1935 	case DC_TYPE_98713:
1936 	case DC_TYPE_98713A:
1937 	case DC_TYPE_987x5:
1938 	case DC_TYPE_PNICII:
1939 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1940 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1941 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1942 		break;
1943 	case DC_TYPE_PNIC:
1944 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1945 		break;
1946 	case DC_TYPE_DM9102:
1947 	case DC_TYPE_21143:
1948 	case DC_TYPE_ASIX:
1949 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1950 		break;
1951 	case DC_TYPE_AL981:
1952 	case DC_TYPE_AN985:
1953 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
1954 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
1955 		break;
1956 	case DC_TYPE_CONEXANT:
1957 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
1958 		break;
1959 	default:
1960 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1961 		break;
1962 	}
1963 
1964 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1965 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1966 
1967 	if (sc->dc_ldata == NULL) {
1968 		device_printf(dev, "no memory for list buffers!\n");
1969 		error = ENXIO;
1970 		goto fail;
1971 	}
1972 
1973 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
1974 
1975 	ifp->if_softc = sc;
1976 	ifp->if_mtu = ETHERMTU;
1977 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1978 	ifp->if_ioctl = dc_ioctl;
1979 	ifp->if_start = dc_start;
1980 #ifdef DEVICE_POLLING
1981 	ifp->if_poll = dc_poll;
1982 #endif
1983 	ifp->if_watchdog = dc_watchdog;
1984 	ifp->if_init = dc_init;
1985 	ifp->if_baudrate = 10000000;
1986 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
1987 	ifq_set_ready(&ifp->if_snd);
1988 
1989 	/*
1990 	 * Do MII setup. If this is a 21143, check for a PHY on the
1991 	 * MII bus after applying any necessary fixups to twiddle the
1992 	 * GPIO bits. If we don't end up finding a PHY, restore the
1993 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
1994 	 * driver instead.
1995 	 */
1996 	if (DC_IS_INTEL(sc)) {
1997 		dc_apply_fixup(sc, IFM_AUTO);
1998 		tmp = sc->dc_pmode;
1999 		sc->dc_pmode = DC_PMODE_MII;
2000 	}
2001 
2002 	error = mii_phy_probe(dev, &sc->dc_miibus,
2003 	    dc_ifmedia_upd, dc_ifmedia_sts);
2004 
2005 	if (error && DC_IS_INTEL(sc)) {
2006 		sc->dc_pmode = tmp;
2007 		if (sc->dc_pmode != DC_PMODE_SIA)
2008 			sc->dc_pmode = DC_PMODE_SYM;
2009 		sc->dc_flags |= DC_21143_NWAY;
2010 		mii_phy_probe(dev, &sc->dc_miibus,
2011 		    dc_ifmedia_upd, dc_ifmedia_sts);
2012 		/*
2013 		 * For non-MII cards, we need to have the 21143
2014 		 * drive the LEDs. Except there are some systems
2015 		 * like the NEC VersaPro NoteBook PC which have no
2016 		 * LEDs, and twiddling these bits has adverse effects
2017 		 * on them. (I.e. you suddenly can't get a link.)
2018 		 */
2019 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2020 			sc->dc_flags |= DC_TULIP_LEDS;
2021 		error = 0;
2022 	}
2023 
2024 	if (error) {
2025 		device_printf(dev, "MII without any PHY!\n");
2026 		error = ENXIO;
2027 		goto fail;
2028 	}
2029 
2030 	/*
2031 	 * Call MI attach routine.
2032 	 */
2033 	ether_ifattach(ifp, eaddr);
2034 
2035 	if (DC_IS_ADMTEK(sc)) {
2036 		/*
2037 		 * Set automatic TX underrun recovery for the ADMtek chips
2038 		 */
2039 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2040 	}
2041 
2042 	/*
2043 	 * Tell the upper layer(s) we support long frames.
2044 	 */
2045 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2046 
2047 	error = bus_setup_intr(dev, sc->dc_irq, 0,
2048 			       dc_intr, sc, &sc->dc_intrhand, NULL);
2049 	if (error) {
2050 		ether_ifdetach(ifp);
2051 		device_printf(dev, "couldn't set up irq\n");
2052 		goto fail;
2053 	}
2054 
2055 	return(0);
2056 
2057 fail:
2058 	dc_detach(dev);
2059 	return(error);
2060 }
2061 
2062 static int
2063 dc_detach(device_t dev)
2064 {
2065 	struct dc_softc *sc = device_get_softc(dev);
2066 	struct ifnet *ifp = &sc->arpcom.ac_if;
2067 	struct dc_mediainfo *m;
2068 
2069 	crit_enter();
2070 
2071 	if (device_is_attached(dev)) {
2072 		dc_stop(sc);
2073 		ether_ifdetach(ifp);
2074 	}
2075 
2076 	if (sc->dc_miibus)
2077 		device_delete_child(dev, sc->dc_miibus);
2078 	bus_generic_detach(dev);
2079 
2080 	if (sc->dc_intrhand)
2081 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2082 
2083 	crit_exit();
2084 
2085 	if (sc->dc_irq)
2086 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2087 	if (sc->dc_res)
2088 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2089 
2090 	if (sc->dc_ldata)
2091 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2092 	if (sc->dc_pnic_rx_buf != NULL)
2093 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2094 
2095 	while(sc->dc_mi != NULL) {
2096 		m = sc->dc_mi->dc_next;
2097 		free(sc->dc_mi, M_DEVBUF);
2098 		sc->dc_mi = m;
2099 	}
2100 
2101 	if (sc->dc_srom)
2102 		free(sc->dc_srom, M_DEVBUF);
2103 
2104 	return(0);
2105 }
2106 
2107 /*
2108  * Initialize the transmit descriptors.
2109  */
2110 static int
2111 dc_list_tx_init(struct dc_softc *sc)
2112 {
2113 	struct dc_chain_data	*cd;
2114 	struct dc_list_data	*ld;
2115 	int			i;
2116 
2117 	cd = &sc->dc_cdata;
2118 	ld = sc->dc_ldata;
2119 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2120 		if (i == (DC_TX_LIST_CNT - 1)) {
2121 			ld->dc_tx_list[i].dc_next =
2122 			    vtophys(&ld->dc_tx_list[0]);
2123 		} else {
2124 			ld->dc_tx_list[i].dc_next =
2125 			    vtophys(&ld->dc_tx_list[i + 1]);
2126 		}
2127 		cd->dc_tx_chain[i] = NULL;
2128 		ld->dc_tx_list[i].dc_data = 0;
2129 		ld->dc_tx_list[i].dc_ctl = 0;
2130 	}
2131 
2132 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2133 
2134 	return(0);
2135 }
2136 
2137 
2138 /*
2139  * Initialize the RX descriptors and allocate mbufs for them. Note that
2140  * we arrange the descriptors in a closed ring, so that the last descriptor
2141  * points back to the first.
2142  */
2143 static int
2144 dc_list_rx_init(struct dc_softc *sc)
2145 {
2146 	struct dc_chain_data	*cd;
2147 	struct dc_list_data	*ld;
2148 	int			i;
2149 
2150 	cd = &sc->dc_cdata;
2151 	ld = sc->dc_ldata;
2152 
2153 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2154 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2155 			return(ENOBUFS);
2156 		if (i == (DC_RX_LIST_CNT - 1)) {
2157 			ld->dc_rx_list[i].dc_next =
2158 			    vtophys(&ld->dc_rx_list[0]);
2159 		} else {
2160 			ld->dc_rx_list[i].dc_next =
2161 			    vtophys(&ld->dc_rx_list[i + 1]);
2162 		}
2163 	}
2164 
2165 	cd->dc_rx_prod = 0;
2166 
2167 	return(0);
2168 }
2169 
2170 /*
2171  * Initialize an RX descriptor and attach an MBUF cluster.
2172  */
2173 static int
2174 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2175 {
2176 	struct mbuf		*m_new = NULL;
2177 	struct dc_desc		*c;
2178 
2179 	c = &sc->dc_ldata->dc_rx_list[i];
2180 
2181 	if (m == NULL) {
2182 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2183 		if (m_new == NULL)
2184 			return (ENOBUFS);
2185 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2186 	} else {
2187 		m_new = m;
2188 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2189 		m_new->m_data = m_new->m_ext.ext_buf;
2190 	}
2191 
2192 	m_adj(m_new, sizeof(u_int64_t));
2193 
2194 	/*
2195 	 * If this is a PNIC chip, zero the buffer. This is part
2196 	 * of the workaround for the receive bug in the 82c168 and
2197 	 * 82c169 chips.
2198 	 */
2199 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2200 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2201 
2202 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2203 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2204 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2205 	c->dc_status = DC_RXSTAT_OWN;
2206 
2207 	return(0);
2208 }
2209 
2210 /*
2211  * Grrrrr.
2212  * The PNIC chip has a terrible bug in it that manifests itself during
2213  * periods of heavy activity. The exact mode of failure if difficult to
2214  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2215  * will happen on slow machines. The bug is that sometimes instead of
2216  * uploading one complete frame during reception, it uploads what looks
2217  * like the entire contents of its FIFO memory. The frame we want is at
2218  * the end of the whole mess, but we never know exactly how much data has
2219  * been uploaded, so salvaging the frame is hard.
2220  *
2221  * There is only one way to do it reliably, and it's disgusting.
2222  * Here's what we know:
2223  *
2224  * - We know there will always be somewhere between one and three extra
2225  *   descriptors uploaded.
2226  *
2227  * - We know the desired received frame will always be at the end of the
2228  *   total data upload.
2229  *
2230  * - We know the size of the desired received frame because it will be
2231  *   provided in the length field of the status word in the last descriptor.
2232  *
2233  * Here's what we do:
2234  *
2235  * - When we allocate buffers for the receive ring, we bzero() them.
2236  *   This means that we know that the buffer contents should be all
2237  *   zeros, except for data uploaded by the chip.
2238  *
2239  * - We also force the PNIC chip to upload frames that include the
2240  *   ethernet CRC at the end.
2241  *
2242  * - We gather all of the bogus frame data into a single buffer.
2243  *
2244  * - We then position a pointer at the end of this buffer and scan
2245  *   backwards until we encounter the first non-zero byte of data.
2246  *   This is the end of the received frame. We know we will encounter
2247  *   some data at the end of the frame because the CRC will always be
2248  *   there, so even if the sender transmits a packet of all zeros,
2249  *   we won't be fooled.
2250  *
2251  * - We know the size of the actual received frame, so we subtract
2252  *   that value from the current pointer location. This brings us
2253  *   to the start of the actual received packet.
2254  *
2255  * - We copy this into an mbuf and pass it on, along with the actual
2256  *   frame length.
2257  *
2258  * The performance hit is tremendous, but it beats dropping frames all
2259  * the time.
2260  */
2261 
2262 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2263 static void
2264 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2265 {
2266 	struct dc_desc		*cur_rx;
2267 	struct dc_desc		*c = NULL;
2268 	struct mbuf		*m = NULL;
2269 	unsigned char		*ptr;
2270 	int			i, total_len;
2271 	u_int32_t		rxstat = 0;
2272 
2273 	i = sc->dc_pnic_rx_bug_save;
2274 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2275 	ptr = sc->dc_pnic_rx_buf;
2276 	bzero(ptr, DC_RXLEN * 5);
2277 
2278 	/* Copy all the bytes from the bogus buffers. */
2279 	while (1) {
2280 		c = &sc->dc_ldata->dc_rx_list[i];
2281 		rxstat = c->dc_status;
2282 		m = sc->dc_cdata.dc_rx_chain[i];
2283 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2284 		ptr += DC_RXLEN;
2285 		/* If this is the last buffer, break out. */
2286 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2287 			break;
2288 		dc_newbuf(sc, i, m);
2289 		DC_INC(i, DC_RX_LIST_CNT);
2290 	}
2291 
2292 	/* Find the length of the actual receive frame. */
2293 	total_len = DC_RXBYTES(rxstat);
2294 
2295 	/* Scan backwards until we hit a non-zero byte. */
2296 	while(*ptr == 0x00)
2297 		ptr--;
2298 
2299 	/* Round off. */
2300 	if ((uintptr_t)(ptr) & 0x3)
2301 		ptr -= 1;
2302 
2303 	/* Now find the start of the frame. */
2304 	ptr -= total_len;
2305 	if (ptr < sc->dc_pnic_rx_buf)
2306 		ptr = sc->dc_pnic_rx_buf;
2307 
2308 	/*
2309 	 * Now copy the salvaged frame to the last mbuf and fake up
2310 	 * the status word to make it look like a successful
2311  	 * frame reception.
2312 	 */
2313 	dc_newbuf(sc, i, m);
2314 	bcopy(ptr, mtod(m, char *), total_len);
2315 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2316 
2317 	return;
2318 }
2319 
2320 /*
2321  * This routine searches the RX ring for dirty descriptors in the
2322  * event that the rxeof routine falls out of sync with the chip's
2323  * current descriptor pointer. This may happen sometimes as a result
2324  * of a "no RX buffer available" condition that happens when the chip
2325  * consumes all of the RX buffers before the driver has a chance to
2326  * process the RX ring. This routine may need to be called more than
2327  * once to bring the driver back in sync with the chip, however we
2328  * should still be getting RX DONE interrupts to drive the search
2329  * for new packets in the RX ring, so we should catch up eventually.
2330  */
2331 static int
2332 dc_rx_resync(struct dc_softc *sc)
2333 {
2334 	int			i, pos;
2335 	struct dc_desc		*cur_rx;
2336 
2337 	pos = sc->dc_cdata.dc_rx_prod;
2338 
2339 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2340 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2341 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2342 			break;
2343 		DC_INC(pos, DC_RX_LIST_CNT);
2344 	}
2345 
2346 	/* If the ring really is empty, then just return. */
2347 	if (i == DC_RX_LIST_CNT)
2348 		return(0);
2349 
2350 	/* We've fallen behing the chip: catch it. */
2351 	sc->dc_cdata.dc_rx_prod = pos;
2352 
2353 	return(EAGAIN);
2354 }
2355 
2356 /*
2357  * A frame has been uploaded: pass the resulting mbuf chain up to
2358  * the higher level protocols.
2359  */
2360 static void
2361 dc_rxeof(struct dc_softc *sc)
2362 {
2363         struct mbuf		*m;
2364         struct ifnet		*ifp;
2365 	struct dc_desc		*cur_rx;
2366 	int			i, total_len = 0;
2367 	u_int32_t		rxstat;
2368 
2369 	ifp = &sc->arpcom.ac_if;
2370 	i = sc->dc_cdata.dc_rx_prod;
2371 
2372 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2373 
2374 #ifdef DEVICE_POLLING
2375 		if (ifp->if_flags & IFF_POLLING) {
2376 			if (sc->rxcycles <= 0)
2377 				break;
2378 			sc->rxcycles--;
2379 		}
2380 #endif /* DEVICE_POLLING */
2381 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2382 		rxstat = cur_rx->dc_status;
2383 		m = sc->dc_cdata.dc_rx_chain[i];
2384 		total_len = DC_RXBYTES(rxstat);
2385 
2386 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2387 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2388 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2389 					sc->dc_pnic_rx_bug_save = i;
2390 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2391 					DC_INC(i, DC_RX_LIST_CNT);
2392 					continue;
2393 				}
2394 				dc_pnic_rx_bug_war(sc, i);
2395 				rxstat = cur_rx->dc_status;
2396 				total_len = DC_RXBYTES(rxstat);
2397 			}
2398 		}
2399 
2400 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2401 
2402 		/*
2403 		 * If an error occurs, update stats, clear the
2404 		 * status word and leave the mbuf cluster in place:
2405 		 * it should simply get re-used next time this descriptor
2406 		 * comes up in the ring.  However, don't report long
2407 		 * frames as errors since they could be vlans
2408 		 */
2409 		if ((rxstat & DC_RXSTAT_RXERR)){
2410 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2411 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2412 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2413 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2414 				ifp->if_ierrors++;
2415 				if (rxstat & DC_RXSTAT_COLLSEEN)
2416 					ifp->if_collisions++;
2417 				dc_newbuf(sc, i, m);
2418 				if (rxstat & DC_RXSTAT_CRCERR) {
2419 					DC_INC(i, DC_RX_LIST_CNT);
2420 					continue;
2421 				} else {
2422 					dc_init(sc);
2423 					return;
2424 				}
2425 			}
2426 		}
2427 
2428 		/* No errors; receive the packet. */
2429 		total_len -= ETHER_CRC_LEN;
2430 
2431 #ifdef __i386__
2432 		/*
2433 		 * On the x86 we do not have alignment problems, so try to
2434 		 * allocate a new buffer for the receive ring, and pass up
2435 		 * the one where the packet is already, saving the expensive
2436 		 * copy done in m_devget().
2437 		 * If we are on an architecture with alignment problems, or
2438 		 * if the allocation fails, then use m_devget and leave the
2439 		 * existing buffer in the receive ring.
2440 		 */
2441 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2442 			m->m_pkthdr.rcvif = ifp;
2443 			m->m_pkthdr.len = m->m_len = total_len;
2444 			DC_INC(i, DC_RX_LIST_CNT);
2445 		} else
2446 #endif
2447 		{
2448 			struct mbuf *m0;
2449 
2450 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2451 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2452 			dc_newbuf(sc, i, m);
2453 			DC_INC(i, DC_RX_LIST_CNT);
2454 			if (m0 == NULL) {
2455 				ifp->if_ierrors++;
2456 				continue;
2457 			}
2458 			m_adj(m0, ETHER_ALIGN);
2459 			m = m0;
2460 		}
2461 
2462 		ifp->if_ipackets++;
2463 		(*ifp->if_input)(ifp, m);
2464 	}
2465 
2466 	sc->dc_cdata.dc_rx_prod = i;
2467 }
2468 
2469 /*
2470  * A frame was downloaded to the chip. It's safe for us to clean up
2471  * the list buffers.
2472  */
2473 
2474 static void
2475 dc_txeof(struct dc_softc *sc)
2476 {
2477 	struct dc_desc		*cur_tx = NULL;
2478 	struct ifnet		*ifp;
2479 	int			idx;
2480 
2481 	ifp = &sc->arpcom.ac_if;
2482 
2483 	/*
2484 	 * Go through our tx list and free mbufs for those
2485 	 * frames that have been transmitted.
2486 	 */
2487 	idx = sc->dc_cdata.dc_tx_cons;
2488 	while(idx != sc->dc_cdata.dc_tx_prod) {
2489 		u_int32_t		txstat;
2490 
2491 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2492 		txstat = cur_tx->dc_status;
2493 
2494 		if (txstat & DC_TXSTAT_OWN)
2495 			break;
2496 
2497 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2498 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2499 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2500 				/*
2501 				 * Yes, the PNIC is so brain damaged
2502 				 * that it will sometimes generate a TX
2503 				 * underrun error while DMAing the RX
2504 				 * filter setup frame. If we detect this,
2505 				 * we have to send the setup frame again,
2506 				 * or else the filter won't be programmed
2507 				 * correctly.
2508 				 */
2509 				if (DC_IS_PNIC(sc)) {
2510 					if (txstat & DC_TXSTAT_ERRSUM)
2511 						dc_setfilt(sc);
2512 				}
2513 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2514 			}
2515 			sc->dc_cdata.dc_tx_cnt--;
2516 			DC_INC(idx, DC_TX_LIST_CNT);
2517 			continue;
2518 		}
2519 
2520 		if (DC_IS_CONEXANT(sc)) {
2521 			/*
2522 			 * For some reason Conexant chips like
2523 			 * setting the CARRLOST flag even when
2524 			 * the carrier is there. In CURRENT we
2525 			 * have the same problem for Xircom
2526 			 * cards !
2527 			 */
2528 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2529 			    sc->dc_pmode == DC_PMODE_MII &&
2530 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2531 			    DC_TXSTAT_NOCARRIER)))
2532 				txstat &= ~DC_TXSTAT_ERRSUM;
2533 		} else {
2534 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2535 			    sc->dc_pmode == DC_PMODE_MII &&
2536 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2537 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2538 				txstat &= ~DC_TXSTAT_ERRSUM;
2539 		}
2540 
2541 		if (txstat & DC_TXSTAT_ERRSUM) {
2542 			ifp->if_oerrors++;
2543 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2544 				ifp->if_collisions++;
2545 			if (txstat & DC_TXSTAT_LATECOLL)
2546 				ifp->if_collisions++;
2547 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2548 				dc_init(sc);
2549 				return;
2550 			}
2551 		}
2552 
2553 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2554 
2555 		ifp->if_opackets++;
2556 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2557 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2558 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2559 		}
2560 
2561 		sc->dc_cdata.dc_tx_cnt--;
2562 		DC_INC(idx, DC_TX_LIST_CNT);
2563 	}
2564 
2565 	if (idx != sc->dc_cdata.dc_tx_cons) {
2566 	    	/* some buffers have been freed */
2567 		sc->dc_cdata.dc_tx_cons = idx;
2568 		ifp->if_flags &= ~IFF_OACTIVE;
2569 	}
2570 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2571 
2572 	return;
2573 }
2574 
2575 static void
2576 dc_tick(void *xsc)
2577 {
2578 	struct dc_softc *sc = xsc;
2579 	struct ifnet *ifp = &sc->arpcom.ac_if;
2580 	struct mii_data *mii;
2581 	u_int32_t r;
2582 
2583 	crit_enter();
2584 
2585 	mii = device_get_softc(sc->dc_miibus);
2586 
2587 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2588 		if (sc->dc_flags & DC_21143_NWAY) {
2589 			r = CSR_READ_4(sc, DC_10BTSTAT);
2590 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2591 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2592 				sc->dc_link = 0;
2593 				mii_mediachg(mii);
2594 			}
2595 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2596 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2597 				sc->dc_link = 0;
2598 				mii_mediachg(mii);
2599 			}
2600 			if (sc->dc_link == 0)
2601 				mii_tick(mii);
2602 		} else {
2603 			r = CSR_READ_4(sc, DC_ISR);
2604 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2605 			    sc->dc_cdata.dc_tx_cnt == 0) {
2606 				mii_tick(mii);
2607 				if (!(mii->mii_media_status & IFM_ACTIVE))
2608 					sc->dc_link = 0;
2609 			}
2610 		}
2611 	} else
2612 		mii_tick(mii);
2613 
2614 	/*
2615 	 * When the init routine completes, we expect to be able to send
2616 	 * packets right away, and in fact the network code will send a
2617 	 * gratuitous ARP the moment the init routine marks the interface
2618 	 * as running. However, even though the MAC may have been initialized,
2619 	 * there may be a delay of a few seconds before the PHY completes
2620 	 * autonegotiation and the link is brought up. Any transmissions
2621 	 * made during that delay will be lost. Dealing with this is tricky:
2622 	 * we can't just pause in the init routine while waiting for the
2623 	 * PHY to come ready since that would bring the whole system to
2624 	 * a screeching halt for several seconds.
2625 	 *
2626 	 * What we do here is prevent the TX start routine from sending
2627 	 * any packets until a link has been established. After the
2628 	 * interface has been initialized, the tick routine will poll
2629 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2630 	 * that time, packets will stay in the send queue, and once the
2631 	 * link comes up, they will be flushed out to the wire.
2632 	 */
2633 	if (!sc->dc_link) {
2634 		mii_pollstat(mii);
2635 		if (mii->mii_media_status & IFM_ACTIVE &&
2636 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2637 			sc->dc_link++;
2638 			if (!ifq_is_empty(&ifp->if_snd))
2639 				dc_start(ifp);
2640 		}
2641 	}
2642 
2643 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2644 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2645 	else
2646 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2647 
2648 	crit_exit();
2649 }
2650 
2651 /*
2652  * A transmit underrun has occurred.  Back off the transmit threshold,
2653  * or switch to store and forward mode if we have to.
2654  */
2655 static void
2656 dc_tx_underrun(struct dc_softc *sc)
2657 {
2658 	u_int32_t		isr;
2659 	int			i;
2660 
2661 	if (DC_IS_DAVICOM(sc))
2662 		dc_init(sc);
2663 
2664 	if (DC_IS_INTEL(sc)) {
2665 		/*
2666 		 * The real 21143 requires that the transmitter be idle
2667 		 * in order to change the transmit threshold or store
2668 		 * and forward state.
2669 		 */
2670 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2671 
2672 		for (i = 0; i < DC_TIMEOUT; i++) {
2673 			isr = CSR_READ_4(sc, DC_ISR);
2674 			if (isr & DC_ISR_TX_IDLE)
2675 				break;
2676 			DELAY(10);
2677 		}
2678 		if (i == DC_TIMEOUT) {
2679 			if_printf(&sc->arpcom.ac_if,
2680 				  "failed to force tx to idle state\n");
2681 			dc_init(sc);
2682 		}
2683 	}
2684 
2685 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2686 	sc->dc_txthresh += DC_TXTHRESH_INC;
2687 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2688 		printf("using store and forward mode\n");
2689 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2690 	} else {
2691 		printf("increasing TX threshold\n");
2692 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2693 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2694 	}
2695 
2696 	if (DC_IS_INTEL(sc))
2697 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2698 
2699 	return;
2700 }
2701 
2702 #ifdef DEVICE_POLLING
2703 
2704 static void
2705 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2706 {
2707 	struct	dc_softc *sc = ifp->if_softc;
2708 	u_int32_t status;
2709 
2710 	switch(cmd) {
2711 	case POLL_REGISTER:
2712 		/* Disable interrupts */
2713 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2714 		break;
2715 	case POLL_DEREGISTER:
2716 		/* Re-enable interrupts. */
2717 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2718 		break;
2719 	case POLL_ONLY:
2720 		sc->rxcycles = count;
2721 		dc_rxeof(sc);
2722 		dc_txeof(sc);
2723 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2724 			dc_start(ifp);
2725 		break;
2726 	case POLL_AND_CHECK_STATUS:
2727 		sc->rxcycles = count;
2728 		dc_rxeof(sc);
2729 		dc_txeof(sc);
2730 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2731 			dc_start(ifp);
2732 		status = CSR_READ_4(sc, DC_ISR);
2733 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2734 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2735 			DC_ISR_BUS_ERR);
2736 		if (!status)
2737 			break;
2738 		/* ack what we have */
2739 		CSR_WRITE_4(sc, DC_ISR, status);
2740 
2741 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2742 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2743 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2744 
2745 			if (dc_rx_resync(sc))
2746 				dc_rxeof(sc);
2747 		}
2748 		/* restart transmit unit if necessary */
2749 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2750 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2751 
2752 		if (status & DC_ISR_TX_UNDERRUN)
2753 			dc_tx_underrun(sc);
2754 
2755 		if (status & DC_ISR_BUS_ERR) {
2756 			if_printf(ifp, "dc_poll: bus error\n");
2757 			dc_reset(sc);
2758 			dc_init(sc);
2759 		}
2760 		break;
2761 	}
2762 }
2763 #endif /* DEVICE_POLLING */
2764 
2765 static void
2766 dc_intr(void *arg)
2767 {
2768 	struct dc_softc		*sc;
2769 	struct ifnet		*ifp;
2770 	u_int32_t		status;
2771 
2772 	sc = arg;
2773 
2774 	if (sc->suspended) {
2775 		return;
2776 	}
2777 
2778 	ifp = &sc->arpcom.ac_if;
2779 
2780 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2781 		return ;
2782 
2783 	/* Suppress unwanted interrupts */
2784 	if (!(ifp->if_flags & IFF_UP)) {
2785 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2786 			dc_stop(sc);
2787 		return;
2788 	}
2789 
2790 	/* Disable interrupts. */
2791 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2792 
2793 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2794 
2795 		CSR_WRITE_4(sc, DC_ISR, status);
2796 
2797 		if (status & DC_ISR_RX_OK) {
2798 			int		curpkts;
2799 			curpkts = ifp->if_ipackets;
2800 			dc_rxeof(sc);
2801 			if (curpkts == ifp->if_ipackets) {
2802 				while(dc_rx_resync(sc))
2803 					dc_rxeof(sc);
2804 			}
2805 		}
2806 
2807 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2808 			dc_txeof(sc);
2809 
2810 		if (status & DC_ISR_TX_IDLE) {
2811 			dc_txeof(sc);
2812 			if (sc->dc_cdata.dc_tx_cnt) {
2813 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2814 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2815 			}
2816 		}
2817 
2818 		if (status & DC_ISR_TX_UNDERRUN)
2819 			dc_tx_underrun(sc);
2820 
2821 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2822 		    || (status & DC_ISR_RX_NOBUF)) {
2823 			int		curpkts;
2824 			curpkts = ifp->if_ipackets;
2825 			dc_rxeof(sc);
2826 			if (curpkts == ifp->if_ipackets) {
2827 				while(dc_rx_resync(sc))
2828 					dc_rxeof(sc);
2829 			}
2830 		}
2831 
2832 		if (status & DC_ISR_BUS_ERR) {
2833 			dc_reset(sc);
2834 			dc_init(sc);
2835 		}
2836 	}
2837 
2838 	/* Re-enable interrupts. */
2839 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2840 
2841 	if (!ifq_is_empty(&ifp->if_snd))
2842 		dc_start(ifp);
2843 
2844 	return;
2845 }
2846 
2847 /*
2848  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2849  * pointers to the fragment pointers.
2850  */
2851 static int
2852 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2853 {
2854 	struct dc_desc		*f = NULL;
2855 	struct mbuf		*m;
2856 	int			frag, cur, cnt = 0;
2857 
2858 	/*
2859  	 * Start packing the mbufs in this chain into
2860 	 * the fragment pointers. Stop when we run out
2861  	 * of fragments or hit the end of the mbuf chain.
2862 	 */
2863 	m = m_head;
2864 	cur = frag = *txidx;
2865 
2866 	for (m = m_head; m != NULL; m = m->m_next) {
2867 		if (m->m_len != 0) {
2868 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2869 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2870 				    frag == (DC_TX_LIST_CNT - 1))
2871 					return(ENOBUFS);
2872 			}
2873 			if ((DC_TX_LIST_CNT -
2874 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2875 				return(ENOBUFS);
2876 
2877 			f = &sc->dc_ldata->dc_tx_list[frag];
2878 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2879 			if (cnt == 0) {
2880 				f->dc_status = 0;
2881 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2882 			} else
2883 				f->dc_status = DC_TXSTAT_OWN;
2884 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2885 			cur = frag;
2886 			DC_INC(frag, DC_TX_LIST_CNT);
2887 			cnt++;
2888 		}
2889 	}
2890 
2891 	if (m != NULL)
2892 		return(ENOBUFS);
2893 
2894 	sc->dc_cdata.dc_tx_cnt += cnt;
2895 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2896 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2897 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2898 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2899 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2900 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2901 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2902 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2903 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2904 	*txidx = frag;
2905 
2906 	return(0);
2907 }
2908 
2909 /*
2910  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2911  * to the mbuf data regions directly in the transmit lists. We also save a
2912  * copy of the pointers since the transmit list fragment pointers are
2913  * physical addresses.
2914  */
2915 
2916 static void
2917 dc_start(struct ifnet *ifp)
2918 {
2919 	struct dc_softc	*sc;
2920 	struct mbuf *m_head;
2921 	struct mbuf *m_defragged;
2922 	int idx, need_trans;
2923 
2924 	sc = ifp->if_softc;
2925 
2926 	if (!sc->dc_link)
2927 		return;
2928 
2929 	if (ifp->if_flags & IFF_OACTIVE)
2930 		return;
2931 
2932 	idx = sc->dc_cdata.dc_tx_prod;
2933 
2934 	need_trans = 0;
2935 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2936 		m_defragged = NULL;
2937 		m_head = ifq_poll(&ifp->if_snd);
2938 		if (m_head == NULL)
2939 			break;
2940 
2941 		if (sc->dc_flags & DC_TX_COALESCE &&
2942 		    (m_head->m_next != NULL ||
2943 			sc->dc_flags & DC_TX_ALIGN)){
2944 			/*
2945 			 * Check first if coalescing allows us to queue
2946 			 * the packet. We don't want to loose it if
2947 			 * the TX queue is full.
2948 			 */
2949 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
2950 			    idx != sc->dc_cdata.dc_tx_prod &&
2951 			    idx == (DC_TX_LIST_CNT - 1)) {
2952 				ifp->if_flags |= IFF_OACTIVE;
2953 				break;
2954 			}
2955 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
2956 				ifp->if_flags |= IFF_OACTIVE;
2957 				break;
2958 			}
2959 
2960 			/* only coalesce if have >1 mbufs */
2961 			m_defragged = m_defrag_nofree(m_head, MB_DONTWAIT);
2962 			if (m_defragged == NULL) {
2963 				ifp->if_flags |= IFF_OACTIVE;
2964 				break;
2965 			}
2966 		}
2967 
2968 		if (dc_encap(sc, (m_defragged ? m_defragged : m_head), &idx)) {
2969 			if (m_defragged) {
2970 				/*
2971 				 * Throw away the original packet if the
2972 				 * defragged packet could not be encapsulated,
2973 				 * as well as the defragged packet.
2974 				 */
2975 				ifq_dequeue(&ifp->if_snd, m_head);
2976 				m_freem(m_head);
2977 				m_freem(m_defragged);
2978 			}
2979 			ifp->if_flags |= IFF_OACTIVE;
2980 			break;
2981 		}
2982 
2983 		ifq_dequeue(&ifp->if_snd, m_head);
2984 
2985 		need_trans = 1;
2986 
2987 		/*
2988 		 * If there's a BPF listener, bounce a copy of this frame
2989 		 * to him.
2990 		 */
2991 		BPF_MTAP(ifp, (m_defragged ? m_defragged : m_head));
2992 
2993 		/*
2994 		 * If we defragged the packet, m_head is not the one we
2995 		 * encapsulated so we can throw it away.
2996 		 */
2997 		if (m_defragged)
2998 			m_freem(m_head);
2999 
3000 		if (sc->dc_flags & DC_TX_ONE) {
3001 			ifp->if_flags |= IFF_OACTIVE;
3002 			break;
3003 		}
3004 	}
3005 
3006 	if (!need_trans)
3007 		return;
3008 
3009 	/* Transmit */
3010 	sc->dc_cdata.dc_tx_prod = idx;
3011 	if (!(sc->dc_flags & DC_TX_POLL))
3012 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3013 
3014 	/*
3015 	 * Set a timeout in case the chip goes out to lunch.
3016 	 */
3017 	ifp->if_timer = 5;
3018 }
3019 
3020 static void
3021 dc_init(void *xsc)
3022 {
3023 	struct dc_softc		*sc = xsc;
3024 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3025 	struct mii_data		*mii;
3026 
3027 	crit_enter();
3028 
3029 	mii = device_get_softc(sc->dc_miibus);
3030 
3031 	/*
3032 	 * Cancel pending I/O and free all RX/TX buffers.
3033 	 */
3034 	dc_stop(sc);
3035 	dc_reset(sc);
3036 
3037 	/*
3038 	 * Set cache alignment and burst length.
3039 	 */
3040 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3041 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3042 	else
3043 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3044 	/*
3045 	 * Evenly share the bus between receive and transmit process.
3046 	 */
3047 	if (DC_IS_INTEL(sc))
3048 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3049 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3050 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3051 	} else {
3052 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3053 	}
3054 	if (sc->dc_flags & DC_TX_POLL)
3055 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3056 	switch(sc->dc_cachesize) {
3057 	case 32:
3058 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3059 		break;
3060 	case 16:
3061 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3062 		break;
3063 	case 8:
3064 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3065 		break;
3066 	case 0:
3067 	default:
3068 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3069 		break;
3070 	}
3071 
3072 	if (sc->dc_flags & DC_TX_STORENFWD)
3073 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3074 	else {
3075 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3076 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3077 		} else {
3078 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3079 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3080 		}
3081 	}
3082 
3083 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3084 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3085 
3086 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3087 		/*
3088 		 * The app notes for the 98713 and 98715A say that
3089 		 * in order to have the chips operate properly, a magic
3090 		 * number must be written to CSR16. Macronix does not
3091 		 * document the meaning of these bits so there's no way
3092 		 * to know exactly what they do. The 98713 has a magic
3093 		 * number all its own; the rest all use a different one.
3094 		 */
3095 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3096 		if (sc->dc_type == DC_TYPE_98713)
3097 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3098 		else
3099 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3100 	}
3101 
3102 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3103 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3104 
3105 	/* Init circular RX list. */
3106 	if (dc_list_rx_init(sc) == ENOBUFS) {
3107 		if_printf(ifp, "initialization failed: no "
3108 			  "memory for rx buffers\n");
3109 		dc_stop(sc);
3110 		crit_exit();
3111 		return;
3112 	}
3113 
3114 	/*
3115 	 * Init tx descriptors.
3116 	 */
3117 	dc_list_tx_init(sc);
3118 
3119 	/*
3120 	 * Load the address of the RX list.
3121 	 */
3122 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3123 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3124 
3125 	/*
3126 	 * Enable interrupts.
3127 	 */
3128 #ifdef DEVICE_POLLING
3129 	/*
3130 	 * ... but only if we are not polling, and make sure they are off in
3131 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3132 	 * after a reset.
3133 	 */
3134 	if (ifp->if_flags & IFF_POLLING)
3135 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3136 	else
3137 #endif
3138 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3139 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3140 
3141 	/* Enable transmitter. */
3142 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3143 
3144 	/*
3145 	 * If this is an Intel 21143 and we're not using the
3146 	 * MII port, program the LED control pins so we get
3147 	 * link and activity indications.
3148 	 */
3149 	if (sc->dc_flags & DC_TULIP_LEDS) {
3150 		CSR_WRITE_4(sc, DC_WATCHDOG,
3151 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3152 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3153 	}
3154 
3155 	/*
3156 	 * Load the RX/multicast filter. We do this sort of late
3157 	 * because the filter programming scheme on the 21143 and
3158 	 * some clones requires DMAing a setup frame via the TX
3159 	 * engine, and we need the transmitter enabled for that.
3160 	 */
3161 	dc_setfilt(sc);
3162 
3163 	/* Enable receiver. */
3164 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3165 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3166 
3167 	mii_mediachg(mii);
3168 	dc_setcfg(sc, sc->dc_if_media);
3169 
3170 	ifp->if_flags |= IFF_RUNNING;
3171 	ifp->if_flags &= ~IFF_OACTIVE;
3172 
3173 	crit_exit();
3174 
3175 	/* Don't start the ticker if this is a homePNA link. */
3176 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3177 		sc->dc_link = 1;
3178 	else {
3179 		if (sc->dc_flags & DC_21143_NWAY)
3180 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3181 		else
3182 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3183 	}
3184 
3185 	return;
3186 }
3187 
3188 /*
3189  * Set media options.
3190  */
3191 static int
3192 dc_ifmedia_upd(struct ifnet *ifp)
3193 {
3194 	struct dc_softc		*sc;
3195 	struct mii_data		*mii;
3196 	struct ifmedia		*ifm;
3197 
3198 	sc = ifp->if_softc;
3199 	mii = device_get_softc(sc->dc_miibus);
3200 	mii_mediachg(mii);
3201 	ifm = &mii->mii_media;
3202 
3203 	if (DC_IS_DAVICOM(sc) &&
3204 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3205 		dc_setcfg(sc, ifm->ifm_media);
3206 	else
3207 		sc->dc_link = 0;
3208 
3209 	return(0);
3210 }
3211 
3212 /*
3213  * Report current media status.
3214  */
3215 static void
3216 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3217 {
3218 	struct dc_softc		*sc;
3219 	struct mii_data		*mii;
3220 	struct ifmedia		*ifm;
3221 
3222 	sc = ifp->if_softc;
3223 	mii = device_get_softc(sc->dc_miibus);
3224 	mii_pollstat(mii);
3225 	ifm = &mii->mii_media;
3226 	if (DC_IS_DAVICOM(sc)) {
3227 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3228 			ifmr->ifm_active = ifm->ifm_media;
3229 			ifmr->ifm_status = 0;
3230 			return;
3231 		}
3232 	}
3233 	ifmr->ifm_active = mii->mii_media_active;
3234 	ifmr->ifm_status = mii->mii_media_status;
3235 
3236 	return;
3237 }
3238 
3239 static int
3240 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3241 {
3242 	struct dc_softc		*sc = ifp->if_softc;
3243 	struct ifreq		*ifr = (struct ifreq *) data;
3244 	struct mii_data		*mii;
3245 	int			error = 0;
3246 
3247 	crit_enter();
3248 
3249 	switch(command) {
3250 	case SIOCSIFFLAGS:
3251 		if (ifp->if_flags & IFF_UP) {
3252 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3253 				(IFF_PROMISC | IFF_ALLMULTI);
3254 			if (ifp->if_flags & IFF_RUNNING) {
3255 				if (need_setfilt)
3256 					dc_setfilt(sc);
3257 			} else {
3258 				sc->dc_txthresh = 0;
3259 				dc_init(sc);
3260 			}
3261 		} else {
3262 			if (ifp->if_flags & IFF_RUNNING)
3263 				dc_stop(sc);
3264 		}
3265 		sc->dc_if_flags = ifp->if_flags;
3266 		error = 0;
3267 		break;
3268 	case SIOCADDMULTI:
3269 	case SIOCDELMULTI:
3270 		dc_setfilt(sc);
3271 		error = 0;
3272 		break;
3273 	case SIOCGIFMEDIA:
3274 	case SIOCSIFMEDIA:
3275 		mii = device_get_softc(sc->dc_miibus);
3276 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3277 		break;
3278 	default:
3279 		error = ether_ioctl(ifp, command, data);
3280 		break;
3281 	}
3282 
3283 	crit_exit();
3284 
3285 	return(error);
3286 }
3287 
3288 static void
3289 dc_watchdog(struct ifnet *ifp)
3290 {
3291 	struct dc_softc		*sc;
3292 
3293 	sc = ifp->if_softc;
3294 
3295 	ifp->if_oerrors++;
3296 	if_printf(ifp, "watchdog timeout\n");
3297 
3298 	dc_stop(sc);
3299 	dc_reset(sc);
3300 	dc_init(sc);
3301 
3302 	if (!ifq_is_empty(&ifp->if_snd))
3303 		dc_start(ifp);
3304 
3305 	return;
3306 }
3307 
3308 /*
3309  * Stop the adapter and free any mbufs allocated to the
3310  * RX and TX lists.
3311  */
3312 static void
3313 dc_stop(struct dc_softc *sc)
3314 {
3315 	int		i;
3316 	struct ifnet		*ifp;
3317 
3318 	ifp = &sc->arpcom.ac_if;
3319 	ifp->if_timer = 0;
3320 
3321 	callout_stop(&sc->dc_stat_timer);
3322 
3323 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3324 
3325 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3326 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3327 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3328 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3329 	sc->dc_link = 0;
3330 
3331 	/*
3332 	 * Free data in the RX lists.
3333 	 */
3334 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3335 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3336 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3337 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3338 		}
3339 	}
3340 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3341 		sizeof(sc->dc_ldata->dc_rx_list));
3342 
3343 	/*
3344 	 * Free the TX list buffers.
3345 	 */
3346 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3347 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3348 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3349 			    DC_TXCTL_SETUP) ||
3350 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3351 			    DC_TXCTL_LASTFRAG)) {
3352 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3353 				continue;
3354 			}
3355 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3356 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3357 		}
3358 	}
3359 
3360 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3361 		sizeof(sc->dc_ldata->dc_tx_list));
3362 
3363 	return;
3364 }
3365 
3366 /*
3367  * Stop all chip I/O so that the kernel's probe routines don't
3368  * get confused by errant DMAs when rebooting.
3369  */
3370 static void
3371 dc_shutdown(device_t dev)
3372 {
3373 	struct dc_softc		*sc;
3374 
3375 	sc = device_get_softc(dev);
3376 
3377 	dc_stop(sc);
3378 
3379 	return;
3380 }
3381 
3382 /*
3383  * Device suspend routine.  Stop the interface and save some PCI
3384  * settings in case the BIOS doesn't restore them properly on
3385  * resume.
3386  */
3387 static int
3388 dc_suspend(device_t dev)
3389 {
3390 	struct dc_softc	*sc = device_get_softc(dev);
3391 	int i;
3392 
3393 	crit_enter();
3394 
3395 	dc_stop(sc);
3396 
3397 	for (i = 0; i < 5; i++)
3398 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3399 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3400 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3401 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3402 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3403 
3404 	sc->suspended = 1;
3405 
3406 	crit_exit();
3407 	return (0);
3408 }
3409 
3410 /*
3411  * Device resume routine.  Restore some PCI settings in case the BIOS
3412  * doesn't, re-enable busmastering, and restart the interface if
3413  * appropriate.
3414  */
3415 static int
3416 dc_resume(device_t dev)
3417 {
3418 	struct dc_softc *sc = device_get_softc(dev);
3419 	struct ifnet *ifp = &sc->arpcom.ac_if;
3420 	int i;
3421 
3422 	crit_enter();
3423 
3424 	dc_acpi(dev);
3425 
3426 	/* better way to do this? */
3427 	for (i = 0; i < 5; i++)
3428 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3429 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3430 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3431 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3432 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3433 
3434 	/* reenable busmastering */
3435 	pci_enable_busmaster(dev);
3436 	pci_enable_io(dev, DC_RES);
3437 
3438         /* reinitialize interface if necessary */
3439         if (ifp->if_flags & IFF_UP)
3440                 dc_init(sc);
3441 
3442 	sc->suspended = 0;
3443 
3444 	crit_exit();
3445 	return (0);
3446 }
3447