xref: /dragonfly/sys/dev/netif/dc/if_dc.c (revision 49781055)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.49 2005/12/31 14:07:59 sephe Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Xircom X3201 (www.xircom.com)
50  * Conexant LANfinity (www.conexant.com)
51  *
52  * Datasheets for the 21143 are available at developer.intel.com.
53  * Datasheets for the clone parts can be found at their respective sites.
54  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
55  * The PNIC II is essentially a Macronix 98715A chip; the only difference
56  * worth noting is that its multicast hash table is only 128 bits wide
57  * instead of 512.
58  *
59  * Written by Bill Paul <wpaul@ee.columbia.edu>
60  * Electrical Engineering Department
61  * Columbia University, New York City
62  */
63 
64 /*
65  * The Intel 21143 is the successor to the DEC 21140. It is basically
66  * the same as the 21140 but with a few new features. The 21143 supports
67  * three kinds of media attachments:
68  *
69  * o MII port, for 10Mbps and 100Mbps support and NWAY
70  *   autonegotiation provided by an external PHY.
71  * o SYM port, for symbol mode 100Mbps support.
72  * o 10baseT port.
73  * o AUI/BNC port.
74  *
75  * The 100Mbps SYM port and 10baseT port can be used together in
76  * combination with the internal NWAY support to create a 10/100
77  * autosensing configuration.
78  *
79  * Note that not all tulip workalikes are handled in this driver: we only
80  * deal with those which are relatively well behaved. The Winbond is
81  * handled separately due to its different register offsets and the
82  * special handling needed for its various bugs. The PNIC is handled
83  * here, but I'm not thrilled about it.
84  *
85  * All of the workalike chips use some form of MII transceiver support
86  * with the exception of the Macronix chips, which also have a SYM port.
87  * The ASIX AX88140A is also documented to have a SYM port, but all
88  * the cards I've seen use an MII transceiver, probably because the
89  * AX88140A doesn't support internal NWAY.
90  */
91 
92 #include "opt_polling.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/sockio.h>
97 #include <sys/mbuf.h>
98 #include <sys/malloc.h>
99 #include <sys/kernel.h>
100 #include <sys/socket.h>
101 #include <sys/sysctl.h>
102 #include <sys/thread2.h>
103 
104 #include <net/if.h>
105 #include <net/ifq_var.h>
106 #include <net/if_arp.h>
107 #include <net/ethernet.h>
108 #include <net/if_dl.h>
109 #include <net/if_media.h>
110 #include <net/if_types.h>
111 #include <net/vlan/if_vlan_var.h>
112 
113 #include <net/bpf.h>
114 
115 #include <vm/vm.h>              /* for vtophys */
116 #include <vm/pmap.h>            /* for vtophys */
117 #include <machine/bus_pio.h>
118 #include <machine/bus_memio.h>
119 #include <machine/bus.h>
120 #include <machine/resource.h>
121 #include <sys/bus.h>
122 #include <sys/rman.h>
123 
124 #include "../mii_layer/mii.h"
125 #include "../mii_layer/miivar.h"
126 
127 #include <bus/pci/pcireg.h>
128 #include <bus/pci/pcivar.h>
129 
130 #define DC_USEIOSPACE
131 
132 #include "if_dcreg.h"
133 
134 /* "controller miibus0" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136 
137 /*
138  * Various supported device vendors/types and their names.
139  */
140 static const struct dc_type dc_devs[] = {
141 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
142 		"Intel 21143 10/100BaseTX" },
143 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
144 		"Davicom DM9009 10/100BaseTX" },
145 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
146 		"Davicom DM9100 10/100BaseTX" },
147 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
148 		"Davicom DM9102 10/100BaseTX" },
149 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
150 		"Davicom DM9102A 10/100BaseTX" },
151 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
152 		"ADMtek AL981 10/100BaseTX" },
153 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
154 		"ADMtek AN985 10/100BaseTX" },
155 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
156 		"ADMtek ADM9511 10/100BaseTX" },
157 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
158 		"ADMtek ADM9513 10/100BaseTX" },
159 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
160 		"ASIX AX88140A 10/100BaseTX" },
161 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
162 		"ASIX AX88141 10/100BaseTX" },
163 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
164 		"Macronix 98713 10/100BaseTX" },
165 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
166 		"Macronix 98713A 10/100BaseTX" },
167 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
168 		"Compex RL100-TX 10/100BaseTX" },
169 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
170 		"Compex RL100-TX 10/100BaseTX" },
171 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
172 		"Macronix 98715/98715A 10/100BaseTX" },
173 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
174 		"Macronix 98715AEC-C 10/100BaseTX" },
175 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
176 		"Macronix 98725 10/100BaseTX" },
177 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
178 		"Macronix 98727/98732 10/100BaseTX" },
179 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
180 		"LC82C115 PNIC II 10/100BaseTX" },
181 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
182 		"82c168 PNIC 10/100BaseTX" },
183 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
184 		"82c169 PNIC 10/100BaseTX" },
185 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
186 		"Accton EN1217 10/100BaseTX" },
187 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
188 		"Accton EN2242 MiniPCI 10/100BaseTX" },
189     	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
190 	  	"Xircom X3201 10/100BaseTX" },
191 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
192 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
193 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
194 		"3Com OfficeConnect 10/100B" },
195 	{ 0, 0, NULL }
196 };
197 
198 static int dc_probe		(device_t);
199 static int dc_attach		(device_t);
200 static int dc_detach		(device_t);
201 static int dc_suspend		(device_t);
202 static int dc_resume		(device_t);
203 static void dc_acpi		(device_t);
204 static const struct dc_type *dc_devtype	(device_t);
205 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
206 static int dc_encap		(struct dc_softc *, struct mbuf *,
207 					u_int32_t *);
208 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
209 static int dc_rx_resync		(struct dc_softc *);
210 static void dc_rxeof		(struct dc_softc *);
211 static void dc_txeof		(struct dc_softc *);
212 static void dc_tick		(void *);
213 static void dc_tx_underrun	(struct dc_softc *);
214 static void dc_intr		(void *);
215 static void dc_start		(struct ifnet *);
216 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
217 					struct ucred *);
218 #ifdef DEVICE_POLLING
219 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
220 					int count);
221 #endif
222 static void dc_init		(void *);
223 static void dc_stop		(struct dc_softc *);
224 static void dc_watchdog		(struct ifnet *);
225 static void dc_shutdown		(device_t);
226 static int dc_ifmedia_upd	(struct ifnet *);
227 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
228 
229 static void dc_delay		(struct dc_softc *);
230 static void dc_eeprom_idle	(struct dc_softc *);
231 static void dc_eeprom_putbyte	(struct dc_softc *, int);
232 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
233 static void dc_eeprom_getword_pnic
234 				(struct dc_softc *, int, u_int16_t *);
235 static void dc_eeprom_getword_xircom
236 				(struct dc_softc *, int, u_int16_t *);
237 static void dc_eeprom_width	(struct dc_softc *);
238 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
239 							int, int);
240 
241 static void dc_mii_writebit	(struct dc_softc *, int);
242 static int dc_mii_readbit	(struct dc_softc *);
243 static void dc_mii_sync		(struct dc_softc *);
244 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
245 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
246 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
247 static int dc_miibus_readreg	(device_t, int, int);
248 static int dc_miibus_writereg	(device_t, int, int, int);
249 static void dc_miibus_statchg	(device_t);
250 static void dc_miibus_mediainit	(device_t);
251 
252 static u_int32_t dc_crc_mask	(struct dc_softc *);
253 static void dc_setcfg		(struct dc_softc *, int);
254 static void dc_setfilt_21143	(struct dc_softc *);
255 static void dc_setfilt_asix	(struct dc_softc *);
256 static void dc_setfilt_admtek	(struct dc_softc *);
257 static void dc_setfilt_xircom	(struct dc_softc *);
258 
259 static void dc_setfilt		(struct dc_softc *);
260 
261 static void dc_reset		(struct dc_softc *);
262 static int dc_list_rx_init	(struct dc_softc *);
263 static int dc_list_tx_init	(struct dc_softc *);
264 
265 static void dc_read_srom	(struct dc_softc *, int);
266 static void dc_parse_21143_srom	(struct dc_softc *);
267 static void dc_decode_leaf_sia	(struct dc_softc *,
268 				    struct dc_eblock_sia *);
269 static void dc_decode_leaf_mii	(struct dc_softc *,
270 				    struct dc_eblock_mii *);
271 static void dc_decode_leaf_sym	(struct dc_softc *,
272 				    struct dc_eblock_sym *);
273 static void dc_apply_fixup	(struct dc_softc *, int);
274 static uint32_t dc_mchash_xircom(struct dc_softc *, const uint8_t *);
275 
276 #ifdef DC_USEIOSPACE
277 #define DC_RES			SYS_RES_IOPORT
278 #define DC_RID			DC_PCI_CFBIO
279 #else
280 #define DC_RES			SYS_RES_MEMORY
281 #define DC_RID			DC_PCI_CFBMA
282 #endif
283 
284 static device_method_t dc_methods[] = {
285 	/* Device interface */
286 	DEVMETHOD(device_probe,		dc_probe),
287 	DEVMETHOD(device_attach,	dc_attach),
288 	DEVMETHOD(device_detach,	dc_detach),
289 	DEVMETHOD(device_suspend,	dc_suspend),
290 	DEVMETHOD(device_resume,	dc_resume),
291 	DEVMETHOD(device_shutdown,	dc_shutdown),
292 
293 	/* bus interface */
294 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
295 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
296 
297 	/* MII interface */
298 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
299 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
300 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
301 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
302 
303 	{ 0, 0 }
304 };
305 
306 static driver_t dc_driver = {
307 	"dc",
308 	dc_methods,
309 	sizeof(struct dc_softc)
310 };
311 
312 static devclass_t dc_devclass;
313 
314 #ifdef __i386__
315 static int dc_quick=1;
316 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
317 	&dc_quick,0,"do not mdevget in dc driver");
318 #endif
319 
320 DECLARE_DUMMY_MODULE(if_dc);
321 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0);
322 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
323 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
324 
325 #define DC_SETBIT(sc, reg, x)				\
326 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
327 
328 #define DC_CLRBIT(sc, reg, x)				\
329 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
330 
331 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
332 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
333 
334 static void
335 dc_delay(struct dc_softc *sc)
336 {
337 	int			idx;
338 
339 	for (idx = (300 / 33) + 1; idx > 0; idx--)
340 		CSR_READ_4(sc, DC_BUSCTL);
341 }
342 
343 static void
344 dc_eeprom_width(struct dc_softc *sc)
345 {
346 	int i;
347 
348 	/* Force EEPROM to idle state. */
349 	dc_eeprom_idle(sc);
350 
351 	/* Enter EEPROM access mode. */
352 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
353 	dc_delay(sc);
354 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
355 	dc_delay(sc);
356 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
357 	dc_delay(sc);
358 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
359 	dc_delay(sc);
360 
361 	for (i = 3; i--;) {
362 		if (6 & (1 << i))
363 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
364 		else
365 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
366 		dc_delay(sc);
367 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
368 		dc_delay(sc);
369 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
370 		dc_delay(sc);
371 	}
372 
373 	for (i = 1; i <= 12; i++) {
374 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
375 		dc_delay(sc);
376 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
377 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
378 			dc_delay(sc);
379 			break;
380 		}
381 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
382 		dc_delay(sc);
383 	}
384 
385 	/* Turn off EEPROM access mode. */
386 	dc_eeprom_idle(sc);
387 
388 	if (i < 4 || i > 12)
389 		sc->dc_romwidth = 6;
390 	else
391 		sc->dc_romwidth = i;
392 
393 	/* Enter EEPROM access mode. */
394 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
395 	dc_delay(sc);
396 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
397 	dc_delay(sc);
398 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
399 	dc_delay(sc);
400 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
401 	dc_delay(sc);
402 
403 	/* Turn off EEPROM access mode. */
404 	dc_eeprom_idle(sc);
405 }
406 
407 static void
408 dc_eeprom_idle(struct dc_softc *sc)
409 {
410 	int		i;
411 
412 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
413 	dc_delay(sc);
414 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
415 	dc_delay(sc);
416 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
417 	dc_delay(sc);
418 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
419 	dc_delay(sc);
420 
421 	for (i = 0; i < 25; i++) {
422 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
423 		dc_delay(sc);
424 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
425 		dc_delay(sc);
426 	}
427 
428 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
429 	dc_delay(sc);
430 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
431 	dc_delay(sc);
432 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
433 
434 	return;
435 }
436 
437 /*
438  * Send a read command and address to the EEPROM, check for ACK.
439  */
440 static void
441 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
442 {
443 	int		d, i;
444 
445 	d = DC_EECMD_READ >> 6;
446 	for (i = 3; i--; ) {
447 		if (d & (1 << i))
448 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
449 		else
450 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
451 		dc_delay(sc);
452 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
453 		dc_delay(sc);
454 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
455 		dc_delay(sc);
456 	}
457 
458 	/*
459 	 * Feed in each bit and strobe the clock.
460 	 */
461 	for (i = sc->dc_romwidth; i--;) {
462 		if (addr & (1 << i)) {
463 			SIO_SET(DC_SIO_EE_DATAIN);
464 		} else {
465 			SIO_CLR(DC_SIO_EE_DATAIN);
466 		}
467 		dc_delay(sc);
468 		SIO_SET(DC_SIO_EE_CLK);
469 		dc_delay(sc);
470 		SIO_CLR(DC_SIO_EE_CLK);
471 		dc_delay(sc);
472 	}
473 
474 	return;
475 }
476 
477 /*
478  * Read a word of data stored in the EEPROM at address 'addr.'
479  * The PNIC 82c168/82c169 has its own non-standard way to read
480  * the EEPROM.
481  */
482 static void
483 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
484 {
485 	int		i;
486 	u_int32_t		r;
487 
488 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
489 
490 	for (i = 0; i < DC_TIMEOUT; i++) {
491 		DELAY(1);
492 		r = CSR_READ_4(sc, DC_SIO);
493 		if (!(r & DC_PN_SIOCTL_BUSY)) {
494 			*dest = (u_int16_t)(r & 0xFFFF);
495 			return;
496 		}
497 	}
498 
499 	return;
500 }
501 
502 /*
503  * Read a word of data stored in the EEPROM at address 'addr.'
504  * The Xircom X3201 has its own non-standard way to read
505  * the EEPROM, too.
506  */
507 static void
508 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
509 {
510 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
511 
512 	addr *= 2;
513 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
514 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
515 	addr += 1;
516 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
517 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
518 
519 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
520 }
521 
522 /*
523  * Read a word of data stored in the EEPROM at address 'addr.'
524  */
525 static void
526 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
527 {
528 	int		i;
529 	u_int16_t		word = 0;
530 
531 	/* Force EEPROM to idle state. */
532 	dc_eeprom_idle(sc);
533 
534 	/* Enter EEPROM access mode. */
535 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
536 	dc_delay(sc);
537 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
538 	dc_delay(sc);
539 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
540 	dc_delay(sc);
541 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
542 	dc_delay(sc);
543 
544 	/*
545 	 * Send address of word we want to read.
546 	 */
547 	dc_eeprom_putbyte(sc, addr);
548 
549 	/*
550 	 * Start reading bits from EEPROM.
551 	 */
552 	for (i = 0x8000; i; i >>= 1) {
553 		SIO_SET(DC_SIO_EE_CLK);
554 		dc_delay(sc);
555 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
556 			word |= i;
557 		dc_delay(sc);
558 		SIO_CLR(DC_SIO_EE_CLK);
559 		dc_delay(sc);
560 	}
561 
562 	/* Turn off EEPROM access mode. */
563 	dc_eeprom_idle(sc);
564 
565 	*dest = word;
566 
567 	return;
568 }
569 
570 /*
571  * Read a sequence of words from the EEPROM.
572  */
573 static void
574 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
575 {
576 	int			i;
577 	u_int16_t		word = 0, *ptr;
578 
579 	for (i = 0; i < cnt; i++) {
580 		if (DC_IS_PNIC(sc))
581 			dc_eeprom_getword_pnic(sc, off + i, &word);
582 		else if (DC_IS_XIRCOM(sc))
583 			dc_eeprom_getword_xircom(sc, off + i, &word);
584 		else
585 			dc_eeprom_getword(sc, off + i, &word);
586 		ptr = (u_int16_t *)(dest + (i * 2));
587 		if (swap)
588 			*ptr = ntohs(word);
589 		else
590 			*ptr = word;
591 	}
592 
593 	return;
594 }
595 
596 /*
597  * The following two routines are taken from the Macronix 98713
598  * Application Notes pp.19-21.
599  */
600 /*
601  * Write a bit to the MII bus.
602  */
603 static void
604 dc_mii_writebit(struct dc_softc *sc, int bit)
605 {
606 	if (bit)
607 		CSR_WRITE_4(sc, DC_SIO,
608 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
609 	else
610 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
611 
612 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
613 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
614 
615 	return;
616 }
617 
618 /*
619  * Read a bit from the MII bus.
620  */
621 static int
622 dc_mii_readbit(struct dc_softc *sc)
623 {
624 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
625 	CSR_READ_4(sc, DC_SIO);
626 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
627 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
628 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
629 		return(1);
630 
631 	return(0);
632 }
633 
634 /*
635  * Sync the PHYs by setting data bit and strobing the clock 32 times.
636  */
637 static void
638 dc_mii_sync(struct dc_softc *sc)
639 {
640 	int		i;
641 
642 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
643 
644 	for (i = 0; i < 32; i++)
645 		dc_mii_writebit(sc, 1);
646 
647 	return;
648 }
649 
650 /*
651  * Clock a series of bits through the MII.
652  */
653 static void
654 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
655 {
656 	int			i;
657 
658 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
659 		dc_mii_writebit(sc, bits & i);
660 }
661 
662 /*
663  * Read an PHY register through the MII.
664  */
665 static int
666 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
667 {
668 	int ack, i;
669 
670 	/*
671 	 * Set up frame for RX.
672 	 */
673 	frame->mii_stdelim = DC_MII_STARTDELIM;
674 	frame->mii_opcode = DC_MII_READOP;
675 	frame->mii_turnaround = 0;
676 	frame->mii_data = 0;
677 
678 	/*
679 	 * Sync the PHYs.
680 	 */
681 	dc_mii_sync(sc);
682 
683 	/*
684 	 * Send command/address info.
685 	 */
686 	dc_mii_send(sc, frame->mii_stdelim, 2);
687 	dc_mii_send(sc, frame->mii_opcode, 2);
688 	dc_mii_send(sc, frame->mii_phyaddr, 5);
689 	dc_mii_send(sc, frame->mii_regaddr, 5);
690 
691 #ifdef notdef
692 	/* Idle bit */
693 	dc_mii_writebit(sc, 1);
694 	dc_mii_writebit(sc, 0);
695 #endif
696 
697 	/* Check for ack */
698 	ack = dc_mii_readbit(sc);
699 
700 	/*
701 	 * Now try reading data bits. If the ack failed, we still
702 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
703 	 */
704 	if (ack) {
705 		for(i = 0; i < 16; i++) {
706 			dc_mii_readbit(sc);
707 		}
708 		goto fail;
709 	}
710 
711 	for (i = 0x8000; i; i >>= 1) {
712 		if (!ack) {
713 			if (dc_mii_readbit(sc))
714 				frame->mii_data |= i;
715 		}
716 	}
717 
718 fail:
719 
720 	dc_mii_writebit(sc, 0);
721 	dc_mii_writebit(sc, 0);
722 
723 	if (ack)
724 		return(1);
725 	return(0);
726 }
727 
728 /*
729  * Write to a PHY register through the MII.
730  */
731 static int
732 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
733 {
734 	/*
735 	 * Set up frame for TX.
736 	 */
737 
738 	frame->mii_stdelim = DC_MII_STARTDELIM;
739 	frame->mii_opcode = DC_MII_WRITEOP;
740 	frame->mii_turnaround = DC_MII_TURNAROUND;
741 
742 	/*
743 	 * Sync the PHYs.
744 	 */
745 	dc_mii_sync(sc);
746 
747 	dc_mii_send(sc, frame->mii_stdelim, 2);
748 	dc_mii_send(sc, frame->mii_opcode, 2);
749 	dc_mii_send(sc, frame->mii_phyaddr, 5);
750 	dc_mii_send(sc, frame->mii_regaddr, 5);
751 	dc_mii_send(sc, frame->mii_turnaround, 2);
752 	dc_mii_send(sc, frame->mii_data, 16);
753 
754 	/* Idle bit. */
755 	dc_mii_writebit(sc, 0);
756 	dc_mii_writebit(sc, 0);
757 
758 	return(0);
759 }
760 
761 static int
762 dc_miibus_readreg(device_t dev, int phy, int reg)
763 {
764 	struct dc_mii_frame	frame;
765 	struct dc_softc		*sc;
766 	int			i, rval, phy_reg = 0;
767 
768 	sc = device_get_softc(dev);
769 	bzero((char *)&frame, sizeof(frame));
770 
771 	/*
772 	 * Note: both the AL981 and AN985 have internal PHYs,
773 	 * however the AL981 provides direct access to the PHY
774 	 * registers while the AN985 uses a serial MII interface.
775 	 * The AN985's MII interface is also buggy in that you
776 	 * can read from any MII address (0 to 31), but only address 1
777 	 * behaves normally. To deal with both cases, we pretend
778 	 * that the PHY is at MII address 1.
779 	 */
780 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
781 		return(0);
782 
783 	/*
784 	 * Note: the ukphy probes of the RS7112 report a PHY at
785 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
786 	 * so we only respond to correct one.
787 	 */
788 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
789 		return(0);
790 
791 	if (sc->dc_pmode != DC_PMODE_MII) {
792 		if (phy == (MII_NPHY - 1)) {
793 			switch(reg) {
794 			case MII_BMSR:
795 			/*
796 			 * Fake something to make the probe
797 			 * code think there's a PHY here.
798 			 */
799 				return(BMSR_MEDIAMASK);
800 				break;
801 			case MII_PHYIDR1:
802 				if (DC_IS_PNIC(sc))
803 					return(DC_VENDORID_LO);
804 				return(DC_VENDORID_DEC);
805 				break;
806 			case MII_PHYIDR2:
807 				if (DC_IS_PNIC(sc))
808 					return(DC_DEVICEID_82C168);
809 				return(DC_DEVICEID_21143);
810 				break;
811 			default:
812 				return(0);
813 				break;
814 			}
815 		} else
816 			return(0);
817 	}
818 
819 	if (DC_IS_PNIC(sc)) {
820 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
821 		    (phy << 23) | (reg << 18));
822 		for (i = 0; i < DC_TIMEOUT; i++) {
823 			DELAY(1);
824 			rval = CSR_READ_4(sc, DC_PN_MII);
825 			if (!(rval & DC_PN_MII_BUSY)) {
826 				rval &= 0xFFFF;
827 				return(rval == 0xFFFF ? 0 : rval);
828 			}
829 		}
830 		return(0);
831 	}
832 
833 	if (DC_IS_COMET(sc)) {
834 		switch(reg) {
835 		case MII_BMCR:
836 			phy_reg = DC_AL_BMCR;
837 			break;
838 		case MII_BMSR:
839 			phy_reg = DC_AL_BMSR;
840 			break;
841 		case MII_PHYIDR1:
842 			phy_reg = DC_AL_VENID;
843 			break;
844 		case MII_PHYIDR2:
845 			phy_reg = DC_AL_DEVID;
846 			break;
847 		case MII_ANAR:
848 			phy_reg = DC_AL_ANAR;
849 			break;
850 		case MII_ANLPAR:
851 			phy_reg = DC_AL_LPAR;
852 			break;
853 		case MII_ANER:
854 			phy_reg = DC_AL_ANER;
855 			break;
856 		default:
857 			if_printf(&sc->arpcom.ac_if,
858 				  "phy_read: bad phy register %x\n", reg);
859 			return(0);
860 			break;
861 		}
862 
863 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
864 
865 		if (rval == 0xFFFF)
866 			return(0);
867 		return(rval);
868 	}
869 
870 	frame.mii_phyaddr = phy;
871 	frame.mii_regaddr = reg;
872 	if (sc->dc_type == DC_TYPE_98713) {
873 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
874 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
875 	}
876 	dc_mii_readreg(sc, &frame);
877 	if (sc->dc_type == DC_TYPE_98713)
878 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
879 
880 	return(frame.mii_data);
881 }
882 
883 static int
884 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
885 {
886 	struct dc_softc		*sc;
887 	struct dc_mii_frame	frame;
888 	int			i, phy_reg = 0;
889 
890 	sc = device_get_softc(dev);
891 	bzero((char *)&frame, sizeof(frame));
892 
893 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
894 		return(0);
895 
896 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
897 		return(0);
898 
899 	if (DC_IS_PNIC(sc)) {
900 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
901 		    (phy << 23) | (reg << 10) | data);
902 		for (i = 0; i < DC_TIMEOUT; i++) {
903 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
904 				break;
905 		}
906 		return(0);
907 	}
908 
909 	if (DC_IS_COMET(sc)) {
910 		switch(reg) {
911 		case MII_BMCR:
912 			phy_reg = DC_AL_BMCR;
913 			break;
914 		case MII_BMSR:
915 			phy_reg = DC_AL_BMSR;
916 			break;
917 		case MII_PHYIDR1:
918 			phy_reg = DC_AL_VENID;
919 			break;
920 		case MII_PHYIDR2:
921 			phy_reg = DC_AL_DEVID;
922 			break;
923 		case MII_ANAR:
924 			phy_reg = DC_AL_ANAR;
925 			break;
926 		case MII_ANLPAR:
927 			phy_reg = DC_AL_LPAR;
928 			break;
929 		case MII_ANER:
930 			phy_reg = DC_AL_ANER;
931 			break;
932 		default:
933 			if_printf(&sc->arpcom.ac_if,
934 				  "phy_write: bad phy register %x\n", reg);
935 			return(0);
936 			break;
937 		}
938 
939 		CSR_WRITE_4(sc, phy_reg, data);
940 		return(0);
941 	}
942 
943 	frame.mii_phyaddr = phy;
944 	frame.mii_regaddr = reg;
945 	frame.mii_data = data;
946 
947 	if (sc->dc_type == DC_TYPE_98713) {
948 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
949 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
950 	}
951 	dc_mii_writereg(sc, &frame);
952 	if (sc->dc_type == DC_TYPE_98713)
953 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
954 
955 	return(0);
956 }
957 
958 static void
959 dc_miibus_statchg(device_t dev)
960 {
961 	struct dc_softc		*sc;
962 	struct mii_data		*mii;
963 	struct ifmedia		*ifm;
964 
965 	sc = device_get_softc(dev);
966 	if (DC_IS_ADMTEK(sc))
967 		return;
968 
969 	mii = device_get_softc(sc->dc_miibus);
970 	ifm = &mii->mii_media;
971 	if (DC_IS_DAVICOM(sc) &&
972 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
973 		dc_setcfg(sc, ifm->ifm_media);
974 		sc->dc_if_media = ifm->ifm_media;
975 	} else {
976 		dc_setcfg(sc, mii->mii_media_active);
977 		sc->dc_if_media = mii->mii_media_active;
978 	}
979 
980 	return;
981 }
982 
983 /*
984  * Special support for DM9102A cards with HomePNA PHYs. Note:
985  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
986  * to be impossible to talk to the management interface of the DM9801
987  * PHY (its MDIO pin is not connected to anything). Consequently,
988  * the driver has to just 'know' about the additional mode and deal
989  * with it itself. *sigh*
990  */
991 static void
992 dc_miibus_mediainit(device_t dev)
993 {
994 	struct dc_softc		*sc;
995 	struct mii_data		*mii;
996 	struct ifmedia		*ifm;
997 	int			rev;
998 
999 	rev = pci_get_revid(dev);
1000 
1001 	sc = device_get_softc(dev);
1002 	mii = device_get_softc(sc->dc_miibus);
1003 	ifm = &mii->mii_media;
1004 
1005 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1006 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1007 
1008 	return;
1009 }
1010 
1011 #define DC_BITS_512	9
1012 #define DC_BITS_128	7
1013 #define DC_BITS_64	6
1014 
1015 static u_int32_t
1016 dc_crc_mask(struct dc_softc *sc)
1017 {
1018 	/*
1019 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1020 	 * chips is only 128 bits wide.
1021 	 */
1022 	if (sc->dc_flags & DC_128BIT_HASH)
1023 		return ((1 << DC_BITS_128) - 1);
1024 
1025 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1026 	if (sc->dc_flags & DC_64BIT_HASH)
1027 		return ((1 << DC_BITS_64) - 1);
1028 
1029 	return ((1 << DC_BITS_512) - 1);
1030 }
1031 
1032 /*
1033  * 21143-style RX filter setup routine. Filter programming is done by
1034  * downloading a special setup frame into the TX engine. 21143, Macronix,
1035  * PNIC, PNIC II and Davicom chips are programmed this way.
1036  *
1037  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1038  * address (our node address) and a 512-bit hash filter for multicast
1039  * frames. We also sneak the broadcast address into the hash filter since
1040  * we need that too.
1041  */
1042 void
1043 dc_setfilt_21143(struct dc_softc *sc)
1044 {
1045 	struct dc_desc		*sframe;
1046 	u_int32_t		h, crc_mask, *sp;
1047 	struct ifmultiaddr	*ifma;
1048 	struct ifnet		*ifp;
1049 	int			i;
1050 
1051 	ifp = &sc->arpcom.ac_if;
1052 
1053 	i = sc->dc_cdata.dc_tx_prod;
1054 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1055 	sc->dc_cdata.dc_tx_cnt++;
1056 	sframe = &sc->dc_ldata->dc_tx_list[i];
1057 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1058 	bzero((char *)sp, DC_SFRAME_LEN);
1059 
1060 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1061 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1062 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1063 
1064 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1065 
1066 	/* If we want promiscuous mode, set the allframes bit. */
1067 	if (ifp->if_flags & IFF_PROMISC)
1068 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1069 	else
1070 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1071 
1072 	if (ifp->if_flags & IFF_ALLMULTI)
1073 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1074 	else
1075 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1076 
1077 	crc_mask = dc_crc_mask(sc);
1078 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1079 		if (ifma->ifma_addr->sa_family != AF_LINK)
1080 			continue;
1081 		h = ether_crc32_le(
1082 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1083 			ETHER_ADDR_LEN) & crc_mask;
1084 		sp[h >> 4] |= 1 << (h & 0xF);
1085 	}
1086 
1087 	if (ifp->if_flags & IFF_BROADCAST) {
1088 		h = ether_crc32_le(ifp->if_broadcastaddr,
1089 				   ETHER_ADDR_LEN) & crc_mask;
1090 		sp[h >> 4] |= 1 << (h & 0xF);
1091 	}
1092 
1093 	/* Set our MAC address */
1094 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1095 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1096 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1097 
1098 	sframe->dc_status = DC_TXSTAT_OWN;
1099 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1100 
1101 	/*
1102 	 * The PNIC takes an exceedingly long time to process its
1103 	 * setup frame; wait 10ms after posting the setup frame
1104 	 * before proceeding, just so it has time to swallow its
1105 	 * medicine.
1106 	 */
1107 	DELAY(10000);
1108 
1109 	ifp->if_timer = 5;
1110 
1111 	return;
1112 }
1113 
1114 void
1115 dc_setfilt_admtek(struct dc_softc *sc)
1116 {
1117 	struct ifnet		*ifp;
1118 	int			h = 0;
1119 	u_int32_t		crc_mask;
1120 	u_int32_t		hashes[2] = { 0, 0 };
1121 	struct ifmultiaddr	*ifma;
1122 
1123 	ifp = &sc->arpcom.ac_if;
1124 
1125 	/* Init our MAC address */
1126 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1127 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1128 
1129 	/* If we want promiscuous mode, set the allframes bit. */
1130 	if (ifp->if_flags & IFF_PROMISC)
1131 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1132 	else
1133 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1134 
1135 	if (ifp->if_flags & IFF_ALLMULTI)
1136 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1137 	else
1138 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1139 
1140 	/* first, zot all the existing hash bits */
1141 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1142 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1143 
1144 	/*
1145 	 * If we're already in promisc or allmulti mode, we
1146 	 * don't have to bother programming the multicast filter.
1147 	 */
1148 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1149 		return;
1150 
1151 	/* now program new ones */
1152 	if (DC_IS_CENTAUR(sc))
1153 		crc_mask = dc_crc_mask(sc);
1154 	else
1155 		crc_mask = 0x3f;
1156 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1157 		if (ifma->ifma_addr->sa_family != AF_LINK)
1158 			continue;
1159 		if (DC_IS_CENTAUR(sc)) {
1160 			h = ether_crc32_le(
1161 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1162 				ETHER_ADDR_LEN) & crc_mask;
1163 		} else {
1164 			h = ether_crc32_be(
1165 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1166 				ETHER_ADDR_LEN);
1167 			h = (h >> 26) & crc_mask;
1168 		}
1169 		if (h < 32)
1170 			hashes[0] |= (1 << h);
1171 		else
1172 			hashes[1] |= (1 << (h - 32));
1173 	}
1174 
1175 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1176 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1177 
1178 	return;
1179 }
1180 
1181 void
1182 dc_setfilt_asix(struct dc_softc *sc)
1183 {
1184 	struct ifnet		*ifp;
1185 	int			h = 0;
1186 	u_int32_t		hashes[2] = { 0, 0 };
1187 	struct ifmultiaddr	*ifma;
1188 
1189 	ifp = &sc->arpcom.ac_if;
1190 
1191         /* Init our MAC address */
1192         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1193         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1194 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1195         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1196         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1197 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1198 
1199 	/* If we want promiscuous mode, set the allframes bit. */
1200 	if (ifp->if_flags & IFF_PROMISC)
1201 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1202 	else
1203 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1204 
1205 	if (ifp->if_flags & IFF_ALLMULTI)
1206 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1207 	else
1208 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1209 
1210 	/*
1211 	 * The ASIX chip has a special bit to enable reception
1212 	 * of broadcast frames.
1213 	 */
1214 	if (ifp->if_flags & IFF_BROADCAST)
1215 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1216 	else
1217 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1218 
1219 	/* first, zot all the existing hash bits */
1220 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1221 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1222 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1223 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1224 
1225 	/*
1226 	 * If we're already in promisc or allmulti mode, we
1227 	 * don't have to bother programming the multicast filter.
1228 	 */
1229 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1230 		return;
1231 
1232 	/* now program new ones */
1233 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1234 		if (ifma->ifma_addr->sa_family != AF_LINK)
1235 			continue;
1236 		h = ether_crc32_be(
1237 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1238 			ETHER_ADDR_LEN);
1239 		h = (h >> 26) & 0x3f;
1240 		if (h < 32)
1241 			hashes[0] |= (1 << h);
1242 		else
1243 			hashes[1] |= (1 << (h - 32));
1244 	}
1245 
1246 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1247 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1248 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1249 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1250 
1251 	return;
1252 }
1253 
1254 void
1255 dc_setfilt_xircom(struct dc_softc *sc)
1256 {
1257 	struct dc_desc		*sframe;
1258 	u_int32_t		h, *sp;
1259 	struct ifmultiaddr	*ifma;
1260 	struct ifnet		*ifp;
1261 	int			i;
1262 
1263 	ifp = &sc->arpcom.ac_if;
1264 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1265 
1266 	i = sc->dc_cdata.dc_tx_prod;
1267 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1268 	sc->dc_cdata.dc_tx_cnt++;
1269 	sframe = &sc->dc_ldata->dc_tx_list[i];
1270 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1271 	bzero(sp, DC_SFRAME_LEN);
1272 
1273 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1274 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1275 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1276 
1277 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1278 
1279 	/* If we want promiscuous mode, set the allframes bit. */
1280 	if (ifp->if_flags & IFF_PROMISC)
1281 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1282 	else
1283 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1284 
1285 	if (ifp->if_flags & IFF_ALLMULTI)
1286  		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1287 	else
1288 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1289 
1290 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1291 		if (ifma->ifma_addr->sa_family != AF_LINK)
1292 			continue;
1293 		h = dc_mchash_xircom(sc,
1294 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1295 		sp[h >> 4] |= 1 << (h & 0xF);
1296 	}
1297 
1298 	if (ifp->if_flags & IFF_BROADCAST) {
1299 		h = dc_mchash_xircom(sc, (caddr_t)&etherbroadcastaddr);
1300 		sp[h >> 4] |= 1 << (h & 0xF);
1301 	}
1302 
1303 	/* Set our MAC address */
1304 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1305 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1306 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1307 
1308 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1309 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1310 	ifp->if_flags |= IFF_RUNNING;
1311 	sframe->dc_status = DC_TXSTAT_OWN;
1312 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1313 
1314 	/*
1315 	 * wait some time...
1316 	 */
1317 	DELAY(1000);
1318 
1319 	ifp->if_timer = 5;
1320 }
1321 
1322 static void
1323 dc_setfilt(struct dc_softc *sc)
1324 {
1325 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1326 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1327 		dc_setfilt_21143(sc);
1328 
1329 	if (DC_IS_ASIX(sc))
1330 		dc_setfilt_asix(sc);
1331 
1332 	if (DC_IS_ADMTEK(sc))
1333 		dc_setfilt_admtek(sc);
1334 
1335 	if (DC_IS_XIRCOM(sc))
1336 		dc_setfilt_xircom(sc);
1337 }
1338 
1339 /*
1340  * In order to fiddle with the
1341  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1342  * first have to put the transmit and/or receive logic in the idle state.
1343  */
1344 static void
1345 dc_setcfg(struct dc_softc *sc, int media)
1346 {
1347 	int			i, restart = 0;
1348 	u_int32_t		isr;
1349 
1350 	if (IFM_SUBTYPE(media) == IFM_NONE)
1351 		return;
1352 
1353 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1354 		restart = 1;
1355 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1356 
1357 		for (i = 0; i < DC_TIMEOUT; i++) {
1358 			isr = CSR_READ_4(sc, DC_ISR);
1359 			if ((isr & DC_ISR_TX_IDLE) &&
1360 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1361 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1362 				break;
1363 			DELAY(10);
1364 		}
1365 
1366 		if (i == DC_TIMEOUT) {
1367 			if_printf(&sc->arpcom.ac_if,
1368 			    "failed to force tx and rx to idle state\n");
1369 		}
1370 	}
1371 
1372 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1373 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1374 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1375 		if (sc->dc_pmode == DC_PMODE_MII) {
1376 			int	watchdogreg;
1377 
1378 			if (DC_IS_INTEL(sc)) {
1379 			/* there's a write enable bit here that reads as 1 */
1380 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1381 				watchdogreg &= ~DC_WDOG_CTLWREN;
1382 				watchdogreg |= DC_WDOG_JABBERDIS;
1383 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1384 			} else {
1385 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1386 			}
1387 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1388 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1389 			if (sc->dc_type == DC_TYPE_98713)
1390 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1391 				    DC_NETCFG_SCRAMBLER));
1392 			if (!DC_IS_DAVICOM(sc))
1393 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1394 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1395 			if (DC_IS_INTEL(sc))
1396 				dc_apply_fixup(sc, IFM_AUTO);
1397 		} else {
1398 			if (DC_IS_PNIC(sc)) {
1399 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1400 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1401 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1402 			}
1403 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1404 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1405 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1406 			if (DC_IS_INTEL(sc))
1407 				dc_apply_fixup(sc,
1408 				    (media & IFM_GMASK) == IFM_FDX ?
1409 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1410 		}
1411 	}
1412 
1413 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1414 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1415 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1416 		if (sc->dc_pmode == DC_PMODE_MII) {
1417 			int	watchdogreg;
1418 
1419 			/* there's a write enable bit here that reads as 1 */
1420 			if (DC_IS_INTEL(sc)) {
1421 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1422 				watchdogreg &= ~DC_WDOG_CTLWREN;
1423 				watchdogreg |= DC_WDOG_JABBERDIS;
1424 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1425 			} else {
1426 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1427 			}
1428 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1429 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1430 			if (sc->dc_type == DC_TYPE_98713)
1431 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1432 			if (!DC_IS_DAVICOM(sc))
1433 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1434 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1435 			if (DC_IS_INTEL(sc))
1436 				dc_apply_fixup(sc, IFM_AUTO);
1437 		} else {
1438 			if (DC_IS_PNIC(sc)) {
1439 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1440 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1441 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1442 			}
1443 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1444 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1445 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1446 			if (DC_IS_INTEL(sc)) {
1447 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1448 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1449 				if ((media & IFM_GMASK) == IFM_FDX)
1450 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1451 				else
1452 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1453 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1454 				DC_CLRBIT(sc, DC_10BTCTRL,
1455 				    DC_TCTL_AUTONEGENBL);
1456 				dc_apply_fixup(sc,
1457 				    (media & IFM_GMASK) == IFM_FDX ?
1458 				    IFM_10_T|IFM_FDX : IFM_10_T);
1459 				DELAY(20000);
1460 			}
1461 		}
1462 	}
1463 
1464 	/*
1465 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1466 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1467 	 * on the external MII port.
1468 	 */
1469 	if (DC_IS_DAVICOM(sc)) {
1470 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1471 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1472 			sc->dc_link = 1;
1473 		} else {
1474 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1475 		}
1476 	}
1477 
1478 	if ((media & IFM_GMASK) == IFM_FDX) {
1479 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1480 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1481 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1482 	} else {
1483 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1484 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1485 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1486 	}
1487 
1488 	if (restart)
1489 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1490 
1491 	return;
1492 }
1493 
1494 static void
1495 dc_reset(struct dc_softc *sc)
1496 {
1497 	int		i;
1498 
1499 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1500 
1501 	for (i = 0; i < DC_TIMEOUT; i++) {
1502 		DELAY(10);
1503 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1504 			break;
1505 	}
1506 
1507 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
1508 	    DC_IS_CONEXANT(sc)) {
1509 		DELAY(10000);
1510 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1511 		i = 0;
1512 	}
1513 
1514 	if (i == DC_TIMEOUT)
1515 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1516 
1517 	/* Wait a little while for the chip to get its brains in order. */
1518 	DELAY(1000);
1519 
1520 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1521 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1522 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1523 
1524 	/*
1525 	 * Bring the SIA out of reset. In some cases, it looks
1526 	 * like failing to unreset the SIA soon enough gets it
1527 	 * into a state where it will never come out of reset
1528 	 * until we reset the whole chip again.
1529 	 */
1530 	if (DC_IS_INTEL(sc)) {
1531 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1532 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1533 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1534 	}
1535 
1536         return;
1537 }
1538 
1539 static const struct dc_type *
1540 dc_devtype(device_t dev)
1541 {
1542 	const struct dc_type	*t;
1543 	u_int32_t		rev;
1544 
1545 	t = dc_devs;
1546 
1547 	while(t->dc_name != NULL) {
1548 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1549 		    (pci_get_device(dev) == t->dc_did)) {
1550 			/* Check the PCI revision */
1551 			rev = pci_get_revid(dev);
1552 			if (t->dc_did == DC_DEVICEID_98713 &&
1553 			    rev >= DC_REVISION_98713A)
1554 				t++;
1555 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1556 			    rev >= DC_REVISION_98713A)
1557 				t++;
1558 			if (t->dc_did == DC_DEVICEID_987x5 &&
1559 			    rev >= DC_REVISION_98715AEC_C)
1560 				t++;
1561 			if (t->dc_did == DC_DEVICEID_987x5 &&
1562 			    rev >= DC_REVISION_98725)
1563 				t++;
1564 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1565 			    rev >= DC_REVISION_88141)
1566 				t++;
1567 			if (t->dc_did == DC_DEVICEID_82C168 &&
1568 			    rev >= DC_REVISION_82C169)
1569 				t++;
1570 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1571 			    rev >= DC_REVISION_DM9102A)
1572 				t++;
1573 			return(t);
1574 		}
1575 		t++;
1576 	}
1577 
1578 	return(NULL);
1579 }
1580 
1581 /*
1582  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1583  * IDs against our list and return a device name if we find a match.
1584  * We do a little bit of extra work to identify the exact type of
1585  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1586  * but different revision IDs. The same is true for 98715/98715A
1587  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1588  * cases, the exact chip revision affects driver behavior.
1589  */
1590 static int
1591 dc_probe(device_t dev)
1592 {
1593 	const struct dc_type *t;
1594 
1595 	t = dc_devtype(dev);
1596 	if (t != NULL) {
1597 		struct dc_softc *sc = device_get_softc(dev);
1598 
1599 		/* Need this info to decide on a chip type. */
1600 		sc->dc_info = t;
1601 		device_set_desc(dev, t->dc_name);
1602 		return(0);
1603 	}
1604 
1605 	return(ENXIO);
1606 }
1607 
1608 static void
1609 dc_acpi(device_t dev)
1610 {
1611 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1612 		uint32_t iobase, membase, irq;
1613 		struct dc_softc *sc;
1614 
1615 		/* Save important PCI config data. */
1616 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1617 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1618 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1619 
1620 		sc = device_get_softc(dev);
1621 		/* Reset the power state. */
1622 		if_printf(&sc->arpcom.ac_if,
1623 			  "chip is in D%d power mode "
1624 			  "-- setting to D0\n", pci_get_powerstate(dev));
1625 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1626 
1627 		/* Restore PCI config data. */
1628 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1629 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1630 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1631 	}
1632 }
1633 
1634 static void
1635 dc_apply_fixup(struct dc_softc *sc, int media)
1636 {
1637 	struct dc_mediainfo	*m;
1638 	u_int8_t		*p;
1639 	int			i;
1640 	u_int32_t		reg;
1641 
1642 	m = sc->dc_mi;
1643 
1644 	while (m != NULL) {
1645 		if (m->dc_media == media)
1646 			break;
1647 		m = m->dc_next;
1648 	}
1649 
1650 	if (m == NULL)
1651 		return;
1652 
1653 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1654 		reg = (p[0] | (p[1] << 8)) << 16;
1655 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1656 	}
1657 
1658 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1659 		reg = (p[0] | (p[1] << 8)) << 16;
1660 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1661 	}
1662 
1663 	return;
1664 }
1665 
1666 static void
1667 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1668 {
1669 	struct dc_mediainfo	*m;
1670 
1671 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1672 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1673 	case DC_SIA_CODE_10BT:
1674 		m->dc_media = IFM_10_T;
1675 		break;
1676 
1677 	case DC_SIA_CODE_10BT_FDX:
1678 		m->dc_media = IFM_10_T|IFM_FDX;
1679 		break;
1680 
1681 	case DC_SIA_CODE_10B2:
1682 		m->dc_media = IFM_10_2;
1683 		break;
1684 
1685 	case DC_SIA_CODE_10B5:
1686 		m->dc_media = IFM_10_5;
1687 		break;
1688 	}
1689 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1690 		m->dc_gp_len = 2;
1691 		m->dc_gp_ptr =
1692 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1693 	} else {
1694 	m->dc_gp_len = 2;
1695 	m->dc_gp_ptr =
1696 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1697 	}
1698 
1699 	m->dc_next = sc->dc_mi;
1700 	sc->dc_mi = m;
1701 
1702 	sc->dc_pmode = DC_PMODE_SIA;
1703 
1704 	return;
1705 }
1706 
1707 static void
1708 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1709 {
1710 	struct dc_mediainfo	*m;
1711 
1712 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1713 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1714 		m->dc_media = IFM_100_TX;
1715 
1716 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1717 		m->dc_media = IFM_100_TX|IFM_FDX;
1718 
1719 	m->dc_gp_len = 2;
1720 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1721 
1722 	m->dc_next = sc->dc_mi;
1723 	sc->dc_mi = m;
1724 
1725 	sc->dc_pmode = DC_PMODE_SYM;
1726 
1727 	return;
1728 }
1729 
1730 static void
1731 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1732 {
1733 	u_int8_t		*p;
1734 	struct dc_mediainfo	*m;
1735 
1736 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1737 	/* We abuse IFM_AUTO to represent MII. */
1738 	m->dc_media = IFM_AUTO;
1739 	m->dc_gp_len = l->dc_gpr_len;
1740 
1741 	p = (u_int8_t *)l;
1742 	p += sizeof(struct dc_eblock_mii);
1743 	m->dc_gp_ptr = p;
1744 	p += 2 * l->dc_gpr_len;
1745 	m->dc_reset_len = *p;
1746 	p++;
1747 	m->dc_reset_ptr = p;
1748 
1749 	m->dc_next = sc->dc_mi;
1750 	sc->dc_mi = m;
1751 
1752 	return;
1753 }
1754 
1755 static void
1756 dc_read_srom(struct dc_softc *sc, int bits)
1757 {
1758 	int size;
1759 
1760 	size = 2 << bits;
1761 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1762 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1763 }
1764 
1765 static void
1766 dc_parse_21143_srom(struct dc_softc *sc)
1767 {
1768 	struct dc_leaf_hdr	*lhdr;
1769 	struct dc_eblock_hdr	*hdr;
1770 	int			i, loff;
1771 	char			*ptr;
1772 	int			have_mii;
1773 
1774 	have_mii = 0;
1775 	loff = sc->dc_srom[27];
1776 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1777 
1778 	ptr = (char *)lhdr;
1779 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1780 	/*
1781 	 * Look if we got a MII media block.
1782 	 */
1783 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1784 		hdr = (struct dc_eblock_hdr *)ptr;
1785 		if (hdr->dc_type == DC_EBLOCK_MII)
1786 		    have_mii++;
1787 
1788 		ptr += (hdr->dc_len & 0x7F);
1789 		ptr++;
1790 	}
1791 
1792 	/*
1793 	 * Do the same thing again. Only use SIA and SYM media
1794 	 * blocks if no MII media block is available.
1795 	 */
1796 	ptr = (char *)lhdr;
1797 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1798 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1799 		hdr = (struct dc_eblock_hdr *)ptr;
1800 		switch(hdr->dc_type) {
1801 		case DC_EBLOCK_MII:
1802 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1803 			break;
1804 		case DC_EBLOCK_SIA:
1805 			if (! have_mii)
1806 				dc_decode_leaf_sia(sc,
1807 				    (struct dc_eblock_sia *)hdr);
1808 			break;
1809 		case DC_EBLOCK_SYM:
1810 			if (! have_mii)
1811 				dc_decode_leaf_sym(sc,
1812 				    (struct dc_eblock_sym *)hdr);
1813 			break;
1814 		default:
1815 			/* Don't care. Yet. */
1816 			break;
1817 		}
1818 		ptr += (hdr->dc_len & 0x7F);
1819 		ptr++;
1820 	}
1821 
1822 	return;
1823 }
1824 
1825 /*
1826  * Attach the interface. Allocate softc structures, do ifmedia
1827  * setup and ethernet/BPF attach.
1828  */
1829 static int
1830 dc_attach(device_t dev)
1831 {
1832 	int			tmp = 0;
1833 	u_char			eaddr[ETHER_ADDR_LEN];
1834 	u_int32_t		command;
1835 	struct dc_softc		*sc;
1836 	struct ifnet		*ifp;
1837 	u_int32_t		revision;
1838 	int			error = 0, rid, mac_offset;
1839 	uint8_t			*mac;
1840 
1841 	sc = device_get_softc(dev);
1842 	callout_init(&sc->dc_stat_timer);
1843 
1844 	ifp = &sc->arpcom.ac_if;
1845 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1846 
1847 	/*
1848 	 * Handle power management nonsense.
1849 	 */
1850 	dc_acpi(dev);
1851 
1852 	/*
1853 	 * Map control/status registers.
1854 	 */
1855 	pci_enable_busmaster(dev);
1856 
1857 	rid = DC_RID;
1858 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1859 
1860 	if (sc->dc_res == NULL) {
1861 		device_printf(dev, "couldn't map ports/memory\n");
1862 		error = ENXIO;
1863 		goto fail;
1864 	}
1865 
1866 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1867 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1868 
1869 	/* Allocate interrupt */
1870 	rid = 0;
1871 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1872 	    RF_SHAREABLE | RF_ACTIVE);
1873 
1874 	if (sc->dc_irq == NULL) {
1875 		device_printf(dev, "couldn't map interrupt\n");
1876 		error = ENXIO;
1877 		goto fail;
1878 	}
1879 
1880 	revision = pci_get_revid(dev);
1881 
1882 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1883 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1884 	    sc->dc_info->dc_did != DC_DEVICEID_X3201)
1885 		dc_eeprom_width(sc);
1886 
1887 	switch(sc->dc_info->dc_did) {
1888 	case DC_DEVICEID_21143:
1889 		sc->dc_type = DC_TYPE_21143;
1890 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1891 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1892 		/* Save EEPROM contents so we can parse them later. */
1893 		dc_read_srom(sc, sc->dc_romwidth);
1894 		break;
1895 	case DC_DEVICEID_DM9009:
1896 	case DC_DEVICEID_DM9100:
1897 	case DC_DEVICEID_DM9102:
1898 		sc->dc_type = DC_TYPE_DM9102;
1899 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1900 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1901 		sc->dc_flags |= DC_TX_ALIGN;
1902 		sc->dc_pmode = DC_PMODE_MII;
1903 		/* Increase the latency timer value. */
1904 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1905 		command &= 0xFFFF00FF;
1906 		command |= 0x00008000;
1907 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1908 		break;
1909 	case DC_DEVICEID_AL981:
1910 		sc->dc_type = DC_TYPE_AL981;
1911 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1912 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1913 		sc->dc_pmode = DC_PMODE_MII;
1914 		dc_read_srom(sc, sc->dc_romwidth);
1915 		break;
1916 	case DC_DEVICEID_AN985:
1917 	case DC_DEVICEID_ADM9511:
1918 	case DC_DEVICEID_ADM9513:
1919 	case DC_DEVICEID_EN2242:
1920 	case DC_DEVICEID_3CSOHOB:
1921 		sc->dc_type = DC_TYPE_AN985;
1922 		sc->dc_flags |= DC_64BIT_HASH;
1923 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1924 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1925 		sc->dc_pmode = DC_PMODE_MII;
1926 		break;
1927 	case DC_DEVICEID_98713:
1928 	case DC_DEVICEID_98713_CP:
1929 		if (revision < DC_REVISION_98713A) {
1930 			sc->dc_type = DC_TYPE_98713;
1931 		}
1932 		if (revision >= DC_REVISION_98713A) {
1933 			sc->dc_type = DC_TYPE_98713A;
1934 			sc->dc_flags |= DC_21143_NWAY;
1935 		}
1936 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1937 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1938 		break;
1939 	case DC_DEVICEID_987x5:
1940 	case DC_DEVICEID_EN1217:
1941 		/*
1942 		 * Macronix MX98715AEC-C/D/E parts have only a
1943 		 * 128-bit hash table. We need to deal with these
1944 		 * in the same manner as the PNIC II so that we
1945 		 * get the right number of bits out of the
1946 		 * CRC routine.
1947 		 */
1948 		if (revision >= DC_REVISION_98715AEC_C &&
1949 		    revision < DC_REVISION_98725)
1950 			sc->dc_flags |= DC_128BIT_HASH;
1951 		sc->dc_type = DC_TYPE_987x5;
1952 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1953 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1954 		break;
1955 	case DC_DEVICEID_98727:
1956 		sc->dc_type = DC_TYPE_987x5;
1957 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1958 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1959 		break;
1960 	case DC_DEVICEID_82C115:
1961 		sc->dc_type = DC_TYPE_PNICII;
1962 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1963 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1964 		break;
1965 	case DC_DEVICEID_82C168:
1966 		sc->dc_type = DC_TYPE_PNIC;
1967 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1968 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1969 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1970 		if (revision < DC_REVISION_82C169)
1971 			sc->dc_pmode = DC_PMODE_SYM;
1972 		break;
1973 	case DC_DEVICEID_AX88140A:
1974 		sc->dc_type = DC_TYPE_ASIX;
1975 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1976 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1977 		sc->dc_pmode = DC_PMODE_MII;
1978 		break;
1979 	case DC_DEVICEID_RS7112:
1980 		sc->dc_type = DC_TYPE_CONEXANT;
1981 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1982 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1983 		sc->dc_pmode = DC_PMODE_MII;
1984 		dc_read_srom(sc, sc->dc_romwidth);
1985 		break;
1986 	case DC_DEVICEID_X3201:
1987 		sc->dc_type = DC_TYPE_XIRCOM;
1988 		sc->dc_flags |= (DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1989 				 DC_TX_ALIGN);
1990 		/*
1991 		 * We don't actually need to coalesce, but we're doing
1992 		 * it to obtain a double word aligned buffer.
1993 		 * The DC_TX_COALESCE flag is required.
1994 		 */
1995 		sc->dc_pmode = DC_PMODE_MII;
1996 		break;
1997 	default:
1998 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1999 		break;
2000 	}
2001 
2002 	/* Save the cache line size. */
2003 	if (DC_IS_DAVICOM(sc))
2004 		sc->dc_cachesize = 0;
2005 	else
2006 		sc->dc_cachesize = pci_read_config(dev,
2007 		    DC_PCI_CFLT, 4) & 0xFF;
2008 
2009 	/* Reset the adapter. */
2010 	dc_reset(sc);
2011 
2012 	/* Take 21143 out of snooze mode */
2013 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2014 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2015 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2016 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2017 	}
2018 
2019 	/*
2020 	 * Try to learn something about the supported media.
2021 	 * We know that ASIX and ADMtek and Davicom devices
2022 	 * will *always* be using MII media, so that's a no-brainer.
2023 	 * The tricky ones are the Macronix/PNIC II and the
2024 	 * Intel 21143.
2025 	 */
2026 	if (DC_IS_INTEL(sc))
2027 		dc_parse_21143_srom(sc);
2028 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2029 		if (sc->dc_type == DC_TYPE_98713)
2030 			sc->dc_pmode = DC_PMODE_MII;
2031 		else
2032 			sc->dc_pmode = DC_PMODE_SYM;
2033 	} else if (!sc->dc_pmode)
2034 		sc->dc_pmode = DC_PMODE_MII;
2035 
2036 	/*
2037 	 * Get station address from the EEPROM.
2038 	 */
2039 	switch(sc->dc_type) {
2040 	case DC_TYPE_98713:
2041 	case DC_TYPE_98713A:
2042 	case DC_TYPE_987x5:
2043 	case DC_TYPE_PNICII:
2044 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2045 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2046 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2047 		break;
2048 	case DC_TYPE_PNIC:
2049 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2050 		break;
2051 	case DC_TYPE_DM9102:
2052 	case DC_TYPE_21143:
2053 	case DC_TYPE_ASIX:
2054 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2055 		break;
2056 	case DC_TYPE_AL981:
2057 	case DC_TYPE_AN985:
2058 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
2059 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
2060 		break;
2061 	case DC_TYPE_CONEXANT:
2062 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2063 		break;
2064 	case DC_TYPE_XIRCOM:
2065 		/* The MAC comes from the CIS */
2066 		mac = pci_get_ether(dev);
2067 		if (!mac) {
2068 			device_printf(dev, "No station address in CIS!\n");
2069 			goto fail;
2070 		}
2071 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2072 	 	break;
2073 	default:
2074 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2075 		break;
2076 	}
2077 
2078 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2079 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
2080 
2081 	if (sc->dc_ldata == NULL) {
2082 		device_printf(dev, "no memory for list buffers!\n");
2083 		error = ENXIO;
2084 		goto fail;
2085 	}
2086 
2087 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2088 
2089 	ifp->if_softc = sc;
2090 	ifp->if_mtu = ETHERMTU;
2091 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2092 	ifp->if_ioctl = dc_ioctl;
2093 	ifp->if_start = dc_start;
2094 #ifdef DEVICE_POLLING
2095 	ifp->if_poll = dc_poll;
2096 #endif
2097 	ifp->if_watchdog = dc_watchdog;
2098 	ifp->if_init = dc_init;
2099 	ifp->if_baudrate = 10000000;
2100 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2101 	ifq_set_ready(&ifp->if_snd);
2102 
2103 	/*
2104 	 * Do MII setup. If this is a 21143, check for a PHY on the
2105 	 * MII bus after applying any necessary fixups to twiddle the
2106 	 * GPIO bits. If we don't end up finding a PHY, restore the
2107 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2108 	 * driver instead.
2109 	 */
2110 	if (DC_IS_INTEL(sc)) {
2111 		dc_apply_fixup(sc, IFM_AUTO);
2112 		tmp = sc->dc_pmode;
2113 		sc->dc_pmode = DC_PMODE_MII;
2114 	}
2115 
2116 	/*
2117 	 * Setup General Purpose port mode and data so the tulip can talk
2118 	 * to the MII.  This needs to be done before mii_phy_probe so that
2119 	 * we can actually see them.
2120 	 */
2121 	if (DC_IS_XIRCOM(sc)) {
2122 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2123 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2124 		DELAY(10);
2125 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2126 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2127 		DELAY(10);
2128 	}
2129 
2130 	error = mii_phy_probe(dev, &sc->dc_miibus,
2131 	    dc_ifmedia_upd, dc_ifmedia_sts);
2132 
2133 	if (error && DC_IS_INTEL(sc)) {
2134 		sc->dc_pmode = tmp;
2135 		if (sc->dc_pmode != DC_PMODE_SIA)
2136 			sc->dc_pmode = DC_PMODE_SYM;
2137 		sc->dc_flags |= DC_21143_NWAY;
2138 		mii_phy_probe(dev, &sc->dc_miibus,
2139 		    dc_ifmedia_upd, dc_ifmedia_sts);
2140 		/*
2141 		 * For non-MII cards, we need to have the 21143
2142 		 * drive the LEDs. Except there are some systems
2143 		 * like the NEC VersaPro NoteBook PC which have no
2144 		 * LEDs, and twiddling these bits has adverse effects
2145 		 * on them. (I.e. you suddenly can't get a link.)
2146 		 */
2147 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2148 			sc->dc_flags |= DC_TULIP_LEDS;
2149 		error = 0;
2150 	}
2151 
2152 	if (error) {
2153 		device_printf(dev, "MII without any PHY!\n");
2154 		error = ENXIO;
2155 		goto fail;
2156 	}
2157 
2158 	/*
2159 	 * Call MI attach routine.
2160 	 */
2161 	ether_ifattach(ifp, eaddr, NULL);
2162 
2163 	if (DC_IS_ADMTEK(sc)) {
2164 		/*
2165 		 * Set automatic TX underrun recovery for the ADMtek chips
2166 		 */
2167 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2168 	}
2169 
2170 	/*
2171 	 * Tell the upper layer(s) we support long frames.
2172 	 */
2173 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2174 
2175 	error = bus_setup_intr(dev, sc->dc_irq, INTR_NETSAFE,
2176 			       dc_intr, sc, &sc->dc_intrhand,
2177 			       ifp->if_serializer);
2178 	if (error) {
2179 		ether_ifdetach(ifp);
2180 		device_printf(dev, "couldn't set up irq\n");
2181 		goto fail;
2182 	}
2183 
2184 	return(0);
2185 
2186 fail:
2187 	dc_detach(dev);
2188 	return(error);
2189 }
2190 
2191 static int
2192 dc_detach(device_t dev)
2193 {
2194 	struct dc_softc *sc = device_get_softc(dev);
2195 	struct ifnet *ifp = &sc->arpcom.ac_if;
2196 	struct dc_mediainfo *m;
2197 
2198 	if (device_is_attached(dev)) {
2199 		lwkt_serialize_enter(ifp->if_serializer);
2200 		dc_stop(sc);
2201 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2202 		lwkt_serialize_exit(ifp->if_serializer);
2203 
2204 		ether_ifdetach(ifp);
2205 	}
2206 
2207 	if (sc->dc_miibus)
2208 		device_delete_child(dev, sc->dc_miibus);
2209 	bus_generic_detach(dev);
2210 
2211 	if (sc->dc_irq)
2212 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2213 	if (sc->dc_res)
2214 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2215 
2216 	if (sc->dc_ldata)
2217 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2218 	if (sc->dc_pnic_rx_buf != NULL)
2219 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2220 
2221 	while (sc->dc_mi != NULL) {
2222 		m = sc->dc_mi->dc_next;
2223 		free(sc->dc_mi, M_DEVBUF);
2224 		sc->dc_mi = m;
2225 	}
2226 
2227 	if (sc->dc_srom)
2228 		free(sc->dc_srom, M_DEVBUF);
2229 
2230 	return(0);
2231 }
2232 
2233 /*
2234  * Initialize the transmit descriptors.
2235  */
2236 static int
2237 dc_list_tx_init(struct dc_softc *sc)
2238 {
2239 	struct dc_chain_data	*cd;
2240 	struct dc_list_data	*ld;
2241 	int			i;
2242 
2243 	cd = &sc->dc_cdata;
2244 	ld = sc->dc_ldata;
2245 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2246 		if (i == (DC_TX_LIST_CNT - 1)) {
2247 			ld->dc_tx_list[i].dc_next =
2248 			    vtophys(&ld->dc_tx_list[0]);
2249 		} else {
2250 			ld->dc_tx_list[i].dc_next =
2251 			    vtophys(&ld->dc_tx_list[i + 1]);
2252 		}
2253 		cd->dc_tx_chain[i] = NULL;
2254 		ld->dc_tx_list[i].dc_data = 0;
2255 		ld->dc_tx_list[i].dc_ctl = 0;
2256 	}
2257 
2258 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2259 
2260 	return(0);
2261 }
2262 
2263 
2264 /*
2265  * Initialize the RX descriptors and allocate mbufs for them. Note that
2266  * we arrange the descriptors in a closed ring, so that the last descriptor
2267  * points back to the first.
2268  */
2269 static int
2270 dc_list_rx_init(struct dc_softc *sc)
2271 {
2272 	struct dc_chain_data	*cd;
2273 	struct dc_list_data	*ld;
2274 	int			i;
2275 
2276 	cd = &sc->dc_cdata;
2277 	ld = sc->dc_ldata;
2278 
2279 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2280 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2281 			return(ENOBUFS);
2282 		if (i == (DC_RX_LIST_CNT - 1)) {
2283 			ld->dc_rx_list[i].dc_next =
2284 			    vtophys(&ld->dc_rx_list[0]);
2285 		} else {
2286 			ld->dc_rx_list[i].dc_next =
2287 			    vtophys(&ld->dc_rx_list[i + 1]);
2288 		}
2289 	}
2290 
2291 	cd->dc_rx_prod = 0;
2292 
2293 	return(0);
2294 }
2295 
2296 /*
2297  * Initialize an RX descriptor and attach an MBUF cluster.
2298  */
2299 static int
2300 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2301 {
2302 	struct mbuf		*m_new = NULL;
2303 	struct dc_desc		*c;
2304 
2305 	c = &sc->dc_ldata->dc_rx_list[i];
2306 
2307 	if (m == NULL) {
2308 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2309 		if (m_new == NULL)
2310 			return (ENOBUFS);
2311 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2312 	} else {
2313 		m_new = m;
2314 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2315 		m_new->m_data = m_new->m_ext.ext_buf;
2316 	}
2317 
2318 	m_adj(m_new, sizeof(u_int64_t));
2319 
2320 	/*
2321 	 * If this is a PNIC chip, zero the buffer. This is part
2322 	 * of the workaround for the receive bug in the 82c168 and
2323 	 * 82c169 chips.
2324 	 */
2325 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2326 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2327 
2328 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2329 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2330 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2331 	c->dc_status = DC_RXSTAT_OWN;
2332 
2333 	return(0);
2334 }
2335 
2336 /*
2337  * Grrrrr.
2338  * The PNIC chip has a terrible bug in it that manifests itself during
2339  * periods of heavy activity. The exact mode of failure if difficult to
2340  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2341  * will happen on slow machines. The bug is that sometimes instead of
2342  * uploading one complete frame during reception, it uploads what looks
2343  * like the entire contents of its FIFO memory. The frame we want is at
2344  * the end of the whole mess, but we never know exactly how much data has
2345  * been uploaded, so salvaging the frame is hard.
2346  *
2347  * There is only one way to do it reliably, and it's disgusting.
2348  * Here's what we know:
2349  *
2350  * - We know there will always be somewhere between one and three extra
2351  *   descriptors uploaded.
2352  *
2353  * - We know the desired received frame will always be at the end of the
2354  *   total data upload.
2355  *
2356  * - We know the size of the desired received frame because it will be
2357  *   provided in the length field of the status word in the last descriptor.
2358  *
2359  * Here's what we do:
2360  *
2361  * - When we allocate buffers for the receive ring, we bzero() them.
2362  *   This means that we know that the buffer contents should be all
2363  *   zeros, except for data uploaded by the chip.
2364  *
2365  * - We also force the PNIC chip to upload frames that include the
2366  *   ethernet CRC at the end.
2367  *
2368  * - We gather all of the bogus frame data into a single buffer.
2369  *
2370  * - We then position a pointer at the end of this buffer and scan
2371  *   backwards until we encounter the first non-zero byte of data.
2372  *   This is the end of the received frame. We know we will encounter
2373  *   some data at the end of the frame because the CRC will always be
2374  *   there, so even if the sender transmits a packet of all zeros,
2375  *   we won't be fooled.
2376  *
2377  * - We know the size of the actual received frame, so we subtract
2378  *   that value from the current pointer location. This brings us
2379  *   to the start of the actual received packet.
2380  *
2381  * - We copy this into an mbuf and pass it on, along with the actual
2382  *   frame length.
2383  *
2384  * The performance hit is tremendous, but it beats dropping frames all
2385  * the time.
2386  */
2387 
2388 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2389 static void
2390 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2391 {
2392 	struct dc_desc		*cur_rx;
2393 	struct dc_desc		*c = NULL;
2394 	struct mbuf		*m = NULL;
2395 	unsigned char		*ptr;
2396 	int			i, total_len;
2397 	u_int32_t		rxstat = 0;
2398 
2399 	i = sc->dc_pnic_rx_bug_save;
2400 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2401 	ptr = sc->dc_pnic_rx_buf;
2402 	bzero(ptr, DC_RXLEN * 5);
2403 
2404 	/* Copy all the bytes from the bogus buffers. */
2405 	while (1) {
2406 		c = &sc->dc_ldata->dc_rx_list[i];
2407 		rxstat = c->dc_status;
2408 		m = sc->dc_cdata.dc_rx_chain[i];
2409 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2410 		ptr += DC_RXLEN;
2411 		/* If this is the last buffer, break out. */
2412 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2413 			break;
2414 		dc_newbuf(sc, i, m);
2415 		DC_INC(i, DC_RX_LIST_CNT);
2416 	}
2417 
2418 	/* Find the length of the actual receive frame. */
2419 	total_len = DC_RXBYTES(rxstat);
2420 
2421 	/* Scan backwards until we hit a non-zero byte. */
2422 	while(*ptr == 0x00)
2423 		ptr--;
2424 
2425 	/* Round off. */
2426 	if ((uintptr_t)(ptr) & 0x3)
2427 		ptr -= 1;
2428 
2429 	/* Now find the start of the frame. */
2430 	ptr -= total_len;
2431 	if (ptr < sc->dc_pnic_rx_buf)
2432 		ptr = sc->dc_pnic_rx_buf;
2433 
2434 	/*
2435 	 * Now copy the salvaged frame to the last mbuf and fake up
2436 	 * the status word to make it look like a successful
2437  	 * frame reception.
2438 	 */
2439 	dc_newbuf(sc, i, m);
2440 	bcopy(ptr, mtod(m, char *), total_len);
2441 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2442 
2443 	return;
2444 }
2445 
2446 /*
2447  * This routine searches the RX ring for dirty descriptors in the
2448  * event that the rxeof routine falls out of sync with the chip's
2449  * current descriptor pointer. This may happen sometimes as a result
2450  * of a "no RX buffer available" condition that happens when the chip
2451  * consumes all of the RX buffers before the driver has a chance to
2452  * process the RX ring. This routine may need to be called more than
2453  * once to bring the driver back in sync with the chip, however we
2454  * should still be getting RX DONE interrupts to drive the search
2455  * for new packets in the RX ring, so we should catch up eventually.
2456  */
2457 static int
2458 dc_rx_resync(struct dc_softc *sc)
2459 {
2460 	int			i, pos;
2461 	struct dc_desc		*cur_rx;
2462 
2463 	pos = sc->dc_cdata.dc_rx_prod;
2464 
2465 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2466 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2467 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2468 			break;
2469 		DC_INC(pos, DC_RX_LIST_CNT);
2470 	}
2471 
2472 	/* If the ring really is empty, then just return. */
2473 	if (i == DC_RX_LIST_CNT)
2474 		return(0);
2475 
2476 	/* We've fallen behing the chip: catch it. */
2477 	sc->dc_cdata.dc_rx_prod = pos;
2478 
2479 	return(EAGAIN);
2480 }
2481 
2482 /*
2483  * A frame has been uploaded: pass the resulting mbuf chain up to
2484  * the higher level protocols.
2485  */
2486 static void
2487 dc_rxeof(struct dc_softc *sc)
2488 {
2489         struct mbuf		*m;
2490         struct ifnet		*ifp;
2491 	struct dc_desc		*cur_rx;
2492 	int			i, total_len = 0;
2493 	u_int32_t		rxstat;
2494 
2495 	ifp = &sc->arpcom.ac_if;
2496 	i = sc->dc_cdata.dc_rx_prod;
2497 
2498 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2499 
2500 #ifdef DEVICE_POLLING
2501 		if (ifp->if_flags & IFF_POLLING) {
2502 			if (sc->rxcycles <= 0)
2503 				break;
2504 			sc->rxcycles--;
2505 		}
2506 #endif /* DEVICE_POLLING */
2507 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2508 		rxstat = cur_rx->dc_status;
2509 		m = sc->dc_cdata.dc_rx_chain[i];
2510 		total_len = DC_RXBYTES(rxstat);
2511 
2512 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2513 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2514 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2515 					sc->dc_pnic_rx_bug_save = i;
2516 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2517 					DC_INC(i, DC_RX_LIST_CNT);
2518 					continue;
2519 				}
2520 				dc_pnic_rx_bug_war(sc, i);
2521 				rxstat = cur_rx->dc_status;
2522 				total_len = DC_RXBYTES(rxstat);
2523 			}
2524 		}
2525 
2526 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2527 
2528 		/*
2529 		 * If an error occurs, update stats, clear the
2530 		 * status word and leave the mbuf cluster in place:
2531 		 * it should simply get re-used next time this descriptor
2532 		 * comes up in the ring.  However, don't report long
2533 		 * frames as errors since they could be vlans
2534 		 */
2535 		if ((rxstat & DC_RXSTAT_RXERR)){
2536 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2537 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2538 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2539 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2540 				ifp->if_ierrors++;
2541 				if (rxstat & DC_RXSTAT_COLLSEEN)
2542 					ifp->if_collisions++;
2543 				dc_newbuf(sc, i, m);
2544 				if (rxstat & DC_RXSTAT_CRCERR) {
2545 					DC_INC(i, DC_RX_LIST_CNT);
2546 					continue;
2547 				} else {
2548 					dc_init(sc);
2549 					return;
2550 				}
2551 			}
2552 		}
2553 
2554 		/* No errors; receive the packet. */
2555 		total_len -= ETHER_CRC_LEN;
2556 
2557 #ifdef __i386__
2558 		/*
2559 		 * On the x86 we do not have alignment problems, so try to
2560 		 * allocate a new buffer for the receive ring, and pass up
2561 		 * the one where the packet is already, saving the expensive
2562 		 * copy done in m_devget().
2563 		 * If we are on an architecture with alignment problems, or
2564 		 * if the allocation fails, then use m_devget and leave the
2565 		 * existing buffer in the receive ring.
2566 		 */
2567 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2568 			m->m_pkthdr.rcvif = ifp;
2569 			m->m_pkthdr.len = m->m_len = total_len;
2570 			DC_INC(i, DC_RX_LIST_CNT);
2571 		} else
2572 #endif
2573 		{
2574 			struct mbuf *m0;
2575 
2576 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2577 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2578 			dc_newbuf(sc, i, m);
2579 			DC_INC(i, DC_RX_LIST_CNT);
2580 			if (m0 == NULL) {
2581 				ifp->if_ierrors++;
2582 				continue;
2583 			}
2584 			m_adj(m0, ETHER_ALIGN);
2585 			m = m0;
2586 		}
2587 
2588 		ifp->if_ipackets++;
2589 		ifp->if_input(ifp, m);
2590 	}
2591 
2592 	sc->dc_cdata.dc_rx_prod = i;
2593 }
2594 
2595 /*
2596  * A frame was downloaded to the chip. It's safe for us to clean up
2597  * the list buffers.
2598  */
2599 
2600 static void
2601 dc_txeof(struct dc_softc *sc)
2602 {
2603 	struct dc_desc		*cur_tx = NULL;
2604 	struct ifnet		*ifp;
2605 	int			idx;
2606 
2607 	ifp = &sc->arpcom.ac_if;
2608 
2609 	/*
2610 	 * Go through our tx list and free mbufs for those
2611 	 * frames that have been transmitted.
2612 	 */
2613 	idx = sc->dc_cdata.dc_tx_cons;
2614 	while(idx != sc->dc_cdata.dc_tx_prod) {
2615 		u_int32_t		txstat;
2616 
2617 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2618 		txstat = cur_tx->dc_status;
2619 
2620 		if (txstat & DC_TXSTAT_OWN)
2621 			break;
2622 
2623 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2624 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2625 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2626 				/*
2627 				 * Yes, the PNIC is so brain damaged
2628 				 * that it will sometimes generate a TX
2629 				 * underrun error while DMAing the RX
2630 				 * filter setup frame. If we detect this,
2631 				 * we have to send the setup frame again,
2632 				 * or else the filter won't be programmed
2633 				 * correctly.
2634 				 */
2635 				if (DC_IS_PNIC(sc)) {
2636 					if (txstat & DC_TXSTAT_ERRSUM)
2637 						dc_setfilt(sc);
2638 				}
2639 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2640 			}
2641 			sc->dc_cdata.dc_tx_cnt--;
2642 			DC_INC(idx, DC_TX_LIST_CNT);
2643 			continue;
2644 		}
2645 
2646 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2647 			/*
2648 			 * XXX: Why does my Xircom taunt me so?
2649 			 * For some reason Conexant chips like
2650 			 * setting the CARRLOST flag even when
2651 			 * the carrier is there. In CURRENT we
2652 			 * have the same problem for Xircom
2653 			 * cards !
2654 			 */
2655 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2656 			    sc->dc_pmode == DC_PMODE_MII &&
2657 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2658 			    DC_TXSTAT_NOCARRIER)))
2659 				txstat &= ~DC_TXSTAT_ERRSUM;
2660 		} else {
2661 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2662 			    sc->dc_pmode == DC_PMODE_MII &&
2663 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2664 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2665 				txstat &= ~DC_TXSTAT_ERRSUM;
2666 		}
2667 
2668 		if (txstat & DC_TXSTAT_ERRSUM) {
2669 			ifp->if_oerrors++;
2670 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2671 				ifp->if_collisions++;
2672 			if (txstat & DC_TXSTAT_LATECOLL)
2673 				ifp->if_collisions++;
2674 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2675 				dc_init(sc);
2676 				return;
2677 			}
2678 		}
2679 
2680 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2681 
2682 		ifp->if_opackets++;
2683 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2684 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2685 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2686 		}
2687 
2688 		sc->dc_cdata.dc_tx_cnt--;
2689 		DC_INC(idx, DC_TX_LIST_CNT);
2690 	}
2691 
2692 	if (idx != sc->dc_cdata.dc_tx_cons) {
2693 	    	/* some buffers have been freed */
2694 		sc->dc_cdata.dc_tx_cons = idx;
2695 		ifp->if_flags &= ~IFF_OACTIVE;
2696 	}
2697 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2698 
2699 	return;
2700 }
2701 
2702 static void
2703 dc_tick(void *xsc)
2704 {
2705 	struct dc_softc *sc = xsc;
2706 	struct ifnet *ifp = &sc->arpcom.ac_if;
2707 	struct mii_data *mii;
2708 	u_int32_t r;
2709 
2710 	lwkt_serialize_enter(ifp->if_serializer);
2711 
2712 	mii = device_get_softc(sc->dc_miibus);
2713 
2714 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2715 		if (sc->dc_flags & DC_21143_NWAY) {
2716 			r = CSR_READ_4(sc, DC_10BTSTAT);
2717 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2718 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2719 				sc->dc_link = 0;
2720 				mii_mediachg(mii);
2721 			}
2722 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2723 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2724 				sc->dc_link = 0;
2725 				mii_mediachg(mii);
2726 			}
2727 			if (sc->dc_link == 0)
2728 				mii_tick(mii);
2729 		} else {
2730 			r = CSR_READ_4(sc, DC_ISR);
2731 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2732 			    sc->dc_cdata.dc_tx_cnt == 0) {
2733 				mii_tick(mii);
2734 				if (!(mii->mii_media_status & IFM_ACTIVE))
2735 					sc->dc_link = 0;
2736 			}
2737 		}
2738 	} else {
2739 		mii_tick(mii);
2740 	}
2741 
2742 	/*
2743 	 * When the init routine completes, we expect to be able to send
2744 	 * packets right away, and in fact the network code will send a
2745 	 * gratuitous ARP the moment the init routine marks the interface
2746 	 * as running. However, even though the MAC may have been initialized,
2747 	 * there may be a delay of a few seconds before the PHY completes
2748 	 * autonegotiation and the link is brought up. Any transmissions
2749 	 * made during that delay will be lost. Dealing with this is tricky:
2750 	 * we can't just pause in the init routine while waiting for the
2751 	 * PHY to come ready since that would bring the whole system to
2752 	 * a screeching halt for several seconds.
2753 	 *
2754 	 * What we do here is prevent the TX start routine from sending
2755 	 * any packets until a link has been established. After the
2756 	 * interface has been initialized, the tick routine will poll
2757 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2758 	 * that time, packets will stay in the send queue, and once the
2759 	 * link comes up, they will be flushed out to the wire.
2760 	 */
2761 	if (!sc->dc_link) {
2762 		mii_pollstat(mii);
2763 		if (mii->mii_media_status & IFM_ACTIVE &&
2764 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2765 			sc->dc_link++;
2766 			if (!ifq_is_empty(&ifp->if_snd))
2767 				dc_start(ifp);
2768 		}
2769 	}
2770 
2771 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2772 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2773 	else
2774 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2775 
2776 	lwkt_serialize_exit(ifp->if_serializer);
2777 }
2778 
2779 /*
2780  * A transmit underrun has occurred.  Back off the transmit threshold,
2781  * or switch to store and forward mode if we have to.
2782  */
2783 static void
2784 dc_tx_underrun(struct dc_softc *sc)
2785 {
2786 	u_int32_t		isr;
2787 	int			i;
2788 
2789 	if (DC_IS_DAVICOM(sc))
2790 		dc_init(sc);
2791 
2792 	if (DC_IS_INTEL(sc)) {
2793 		/*
2794 		 * The real 21143 requires that the transmitter be idle
2795 		 * in order to change the transmit threshold or store
2796 		 * and forward state.
2797 		 */
2798 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2799 
2800 		for (i = 0; i < DC_TIMEOUT; i++) {
2801 			isr = CSR_READ_4(sc, DC_ISR);
2802 			if (isr & DC_ISR_TX_IDLE)
2803 				break;
2804 			DELAY(10);
2805 		}
2806 		if (i == DC_TIMEOUT) {
2807 			if_printf(&sc->arpcom.ac_if,
2808 				  "failed to force tx to idle state\n");
2809 			dc_init(sc);
2810 		}
2811 	}
2812 
2813 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2814 	sc->dc_txthresh += DC_TXTHRESH_INC;
2815 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2816 		printf("using store and forward mode\n");
2817 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2818 	} else {
2819 		printf("increasing TX threshold\n");
2820 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2821 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2822 	}
2823 
2824 	if (DC_IS_INTEL(sc))
2825 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2826 
2827 	return;
2828 }
2829 
2830 #ifdef DEVICE_POLLING
2831 
2832 static void
2833 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2834 {
2835 	struct	dc_softc *sc = ifp->if_softc;
2836 	u_int32_t status;
2837 
2838 	switch(cmd) {
2839 	case POLL_REGISTER:
2840 		/* Disable interrupts */
2841 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2842 		break;
2843 	case POLL_DEREGISTER:
2844 		/* Re-enable interrupts. */
2845 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2846 		break;
2847 	case POLL_ONLY:
2848 		sc->rxcycles = count;
2849 		dc_rxeof(sc);
2850 		dc_txeof(sc);
2851 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2852 			dc_start(ifp);
2853 		break;
2854 	case POLL_AND_CHECK_STATUS:
2855 		sc->rxcycles = count;
2856 		dc_rxeof(sc);
2857 		dc_txeof(sc);
2858 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2859 			dc_start(ifp);
2860 		status = CSR_READ_4(sc, DC_ISR);
2861 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2862 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2863 			DC_ISR_BUS_ERR);
2864 		if (!status)
2865 			break;
2866 		/* ack what we have */
2867 		CSR_WRITE_4(sc, DC_ISR, status);
2868 
2869 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2870 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2871 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2872 
2873 			if (dc_rx_resync(sc))
2874 				dc_rxeof(sc);
2875 		}
2876 		/* restart transmit unit if necessary */
2877 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2878 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2879 
2880 		if (status & DC_ISR_TX_UNDERRUN)
2881 			dc_tx_underrun(sc);
2882 
2883 		if (status & DC_ISR_BUS_ERR) {
2884 			if_printf(ifp, "dc_poll: bus error\n");
2885 			dc_reset(sc);
2886 			dc_init(sc);
2887 		}
2888 		break;
2889 	}
2890 }
2891 #endif /* DEVICE_POLLING */
2892 
2893 static void
2894 dc_intr(void *arg)
2895 {
2896 	struct dc_softc		*sc;
2897 	struct ifnet		*ifp;
2898 	u_int32_t		status;
2899 
2900 	sc = arg;
2901 
2902 	if (sc->suspended) {
2903 		return;
2904 	}
2905 
2906 	ifp = &sc->arpcom.ac_if;
2907 
2908 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2909 		return ;
2910 
2911 	/* Suppress unwanted interrupts */
2912 	if (!(ifp->if_flags & IFF_UP)) {
2913 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2914 			dc_stop(sc);
2915 		return;
2916 	}
2917 
2918 	/* Disable interrupts. */
2919 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2920 
2921 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
2922 	      status != 0xFFFFFFFF) {
2923 
2924 		CSR_WRITE_4(sc, DC_ISR, status);
2925 
2926 		if (status & DC_ISR_RX_OK) {
2927 			int		curpkts;
2928 			curpkts = ifp->if_ipackets;
2929 			dc_rxeof(sc);
2930 			if (curpkts == ifp->if_ipackets) {
2931 				while(dc_rx_resync(sc))
2932 					dc_rxeof(sc);
2933 			}
2934 		}
2935 
2936 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2937 			dc_txeof(sc);
2938 
2939 		if (status & DC_ISR_TX_IDLE) {
2940 			dc_txeof(sc);
2941 			if (sc->dc_cdata.dc_tx_cnt) {
2942 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2943 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2944 			}
2945 		}
2946 
2947 		if (status & DC_ISR_TX_UNDERRUN)
2948 			dc_tx_underrun(sc);
2949 
2950 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2951 		    || (status & DC_ISR_RX_NOBUF)) {
2952 			int		curpkts;
2953 			curpkts = ifp->if_ipackets;
2954 			dc_rxeof(sc);
2955 			if (curpkts == ifp->if_ipackets) {
2956 				while(dc_rx_resync(sc))
2957 					dc_rxeof(sc);
2958 			}
2959 		}
2960 
2961 		if (status & DC_ISR_BUS_ERR) {
2962 			dc_reset(sc);
2963 			dc_init(sc);
2964 		}
2965 	}
2966 
2967 	/* Re-enable interrupts. */
2968 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2969 
2970 	if (!ifq_is_empty(&ifp->if_snd))
2971 		dc_start(ifp);
2972 
2973 	return;
2974 }
2975 
2976 /*
2977  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2978  * pointers to the fragment pointers.
2979  */
2980 static int
2981 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2982 {
2983 	struct dc_desc		*f = NULL;
2984 	struct mbuf		*m;
2985 	int			frag, cur, cnt = 0;
2986 
2987 	/*
2988  	 * Start packing the mbufs in this chain into
2989 	 * the fragment pointers. Stop when we run out
2990  	 * of fragments or hit the end of the mbuf chain.
2991 	 */
2992 	m = m_head;
2993 	cur = frag = *txidx;
2994 
2995 	for (m = m_head; m != NULL; m = m->m_next) {
2996 		if (m->m_len != 0) {
2997 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2998 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2999 				    frag == (DC_TX_LIST_CNT - 1))
3000 					return(ENOBUFS);
3001 			}
3002 			if ((DC_TX_LIST_CNT -
3003 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3004 				return(ENOBUFS);
3005 
3006 			f = &sc->dc_ldata->dc_tx_list[frag];
3007 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3008 			if (cnt == 0) {
3009 				f->dc_status = 0;
3010 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3011 			} else
3012 				f->dc_status = DC_TXSTAT_OWN;
3013 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3014 			cur = frag;
3015 			DC_INC(frag, DC_TX_LIST_CNT);
3016 			cnt++;
3017 		}
3018 	}
3019 
3020 	if (m != NULL)
3021 		return(ENOBUFS);
3022 
3023 	sc->dc_cdata.dc_tx_cnt += cnt;
3024 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3025 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3026 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3027 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3028 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3029 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3030 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3031 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3032 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3033 	*txidx = frag;
3034 
3035 	return(0);
3036 }
3037 
3038 /*
3039  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3040  * to the mbuf data regions directly in the transmit lists. We also save a
3041  * copy of the pointers since the transmit list fragment pointers are
3042  * physical addresses.
3043  */
3044 
3045 static void
3046 dc_start(struct ifnet *ifp)
3047 {
3048 	struct dc_softc	*sc;
3049 	struct mbuf *m_head;
3050 	struct mbuf *m_defragged;
3051 	int idx, need_trans;
3052 
3053 	sc = ifp->if_softc;
3054 
3055 	if (!sc->dc_link)
3056 		return;
3057 
3058 	if (ifp->if_flags & IFF_OACTIVE)
3059 		return;
3060 
3061 	idx = sc->dc_cdata.dc_tx_prod;
3062 
3063 	need_trans = 0;
3064 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3065 		m_defragged = NULL;
3066 		m_head = ifq_poll(&ifp->if_snd);
3067 		if (m_head == NULL)
3068 			break;
3069 
3070 		if (sc->dc_flags & DC_TX_COALESCE &&
3071 		    (m_head->m_next != NULL ||
3072 			sc->dc_flags & DC_TX_ALIGN)){
3073 			/*
3074 			 * Check first if coalescing allows us to queue
3075 			 * the packet. We don't want to loose it if
3076 			 * the TX queue is full.
3077 			 */
3078 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3079 			    idx != sc->dc_cdata.dc_tx_prod &&
3080 			    idx == (DC_TX_LIST_CNT - 1)) {
3081 				ifp->if_flags |= IFF_OACTIVE;
3082 				break;
3083 			}
3084 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3085 				ifp->if_flags |= IFF_OACTIVE;
3086 				break;
3087 			}
3088 
3089 			/* only coalesce if have >1 mbufs */
3090 			m_defragged = m_defrag_nofree(m_head, MB_DONTWAIT);
3091 			if (m_defragged == NULL) {
3092 				ifp->if_flags |= IFF_OACTIVE;
3093 				break;
3094 			}
3095 		}
3096 
3097 		if (dc_encap(sc, (m_defragged ? m_defragged : m_head), &idx)) {
3098 			if (m_defragged) {
3099 				/*
3100 				 * Throw away the original packet if the
3101 				 * defragged packet could not be encapsulated,
3102 				 * as well as the defragged packet.
3103 				 */
3104 				ifq_dequeue(&ifp->if_snd, m_head);
3105 				m_freem(m_head);
3106 				m_freem(m_defragged);
3107 			}
3108 			ifp->if_flags |= IFF_OACTIVE;
3109 			break;
3110 		}
3111 
3112 		ifq_dequeue(&ifp->if_snd, m_head);
3113 
3114 		need_trans = 1;
3115 
3116 		/*
3117 		 * If there's a BPF listener, bounce a copy of this frame
3118 		 * to him.
3119 		 */
3120 		BPF_MTAP(ifp, (m_defragged ? m_defragged : m_head));
3121 
3122 		/*
3123 		 * If we defragged the packet, m_head is not the one we
3124 		 * encapsulated so we can throw it away.
3125 		 */
3126 		if (m_defragged)
3127 			m_freem(m_head);
3128 
3129 		if (sc->dc_flags & DC_TX_ONE) {
3130 			ifp->if_flags |= IFF_OACTIVE;
3131 			break;
3132 		}
3133 	}
3134 
3135 	if (!need_trans)
3136 		return;
3137 
3138 	/* Transmit */
3139 	sc->dc_cdata.dc_tx_prod = idx;
3140 	if (!(sc->dc_flags & DC_TX_POLL))
3141 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3142 
3143 	/*
3144 	 * Set a timeout in case the chip goes out to lunch.
3145 	 */
3146 	ifp->if_timer = 5;
3147 }
3148 
3149 static void
3150 dc_init(void *xsc)
3151 {
3152 	struct dc_softc		*sc = xsc;
3153 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3154 	struct mii_data		*mii;
3155 
3156 	mii = device_get_softc(sc->dc_miibus);
3157 
3158 	/*
3159 	 * Cancel pending I/O and free all RX/TX buffers.
3160 	 */
3161 	dc_stop(sc);
3162 	dc_reset(sc);
3163 
3164 	/*
3165 	 * Set cache alignment and burst length.
3166 	 */
3167 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3168 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3169 	else
3170 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3171 	/*
3172 	 * Evenly share the bus between receive and transmit process.
3173 	 */
3174 	if (DC_IS_INTEL(sc))
3175 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3176 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3177 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3178 	} else {
3179 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3180 	}
3181 	if (sc->dc_flags & DC_TX_POLL)
3182 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3183 	switch(sc->dc_cachesize) {
3184 	case 32:
3185 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3186 		break;
3187 	case 16:
3188 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3189 		break;
3190 	case 8:
3191 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3192 		break;
3193 	case 0:
3194 	default:
3195 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3196 		break;
3197 	}
3198 
3199 	if (sc->dc_flags & DC_TX_STORENFWD)
3200 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3201 	else {
3202 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3203 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3204 		} else {
3205 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3206 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3207 		}
3208 	}
3209 
3210 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3211 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3212 
3213 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3214 		/*
3215 		 * The app notes for the 98713 and 98715A say that
3216 		 * in order to have the chips operate properly, a magic
3217 		 * number must be written to CSR16. Macronix does not
3218 		 * document the meaning of these bits so there's no way
3219 		 * to know exactly what they do. The 98713 has a magic
3220 		 * number all its own; the rest all use a different one.
3221 		 */
3222 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3223 		if (sc->dc_type == DC_TYPE_98713)
3224 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3225 		else
3226 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3227 	}
3228 
3229 	if (DC_IS_XIRCOM(sc)) {
3230 		/*
3231 		 * Setup General Purpose Port mode and data so the tulip
3232 		 * can talk to the MII.
3233 		 */
3234 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3235 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3236 		DELAY(10);
3237 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3238 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3239 		DELAY(10);
3240  	}
3241 
3242 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3243 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3244 
3245 	/* Init circular RX list. */
3246 	if (dc_list_rx_init(sc) == ENOBUFS) {
3247 		if_printf(ifp, "initialization failed: no "
3248 			  "memory for rx buffers\n");
3249 		dc_stop(sc);
3250 		return;
3251 	}
3252 
3253 	/*
3254 	 * Init tx descriptors.
3255 	 */
3256 	dc_list_tx_init(sc);
3257 
3258 	/*
3259 	 * Load the address of the RX list.
3260 	 */
3261 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3262 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3263 
3264 	/*
3265 	 * Enable interrupts.
3266 	 */
3267 #ifdef DEVICE_POLLING
3268 	/*
3269 	 * ... but only if we are not polling, and make sure they are off in
3270 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3271 	 * after a reset.
3272 	 */
3273 	if (ifp->if_flags & IFF_POLLING)
3274 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3275 	else
3276 #endif
3277 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3278 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3279 
3280 	/* Enable transmitter. */
3281 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3282 
3283 	/*
3284 	 * If this is an Intel 21143 and we're not using the
3285 	 * MII port, program the LED control pins so we get
3286 	 * link and activity indications.
3287 	 */
3288 	if (sc->dc_flags & DC_TULIP_LEDS) {
3289 		CSR_WRITE_4(sc, DC_WATCHDOG,
3290 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3291 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3292 	}
3293 
3294 	/*
3295 	 * Load the RX/multicast filter. We do this sort of late
3296 	 * because the filter programming scheme on the 21143 and
3297 	 * some clones requires DMAing a setup frame via the TX
3298 	 * engine, and we need the transmitter enabled for that.
3299 	 */
3300 	dc_setfilt(sc);
3301 
3302 	/* Enable receiver. */
3303 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3304 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3305 
3306 	mii_mediachg(mii);
3307 	dc_setcfg(sc, sc->dc_if_media);
3308 
3309 	ifp->if_flags |= IFF_RUNNING;
3310 	ifp->if_flags &= ~IFF_OACTIVE;
3311 
3312 	/* Don't start the ticker if this is a homePNA link. */
3313 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3314 		sc->dc_link = 1;
3315 	else {
3316 		if (sc->dc_flags & DC_21143_NWAY)
3317 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3318 		else
3319 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3320 	}
3321 
3322 	return;
3323 }
3324 
3325 /*
3326  * Set media options.
3327  */
3328 static int
3329 dc_ifmedia_upd(struct ifnet *ifp)
3330 {
3331 	struct dc_softc		*sc;
3332 	struct mii_data		*mii;
3333 	struct ifmedia		*ifm;
3334 
3335 	sc = ifp->if_softc;
3336 	mii = device_get_softc(sc->dc_miibus);
3337 	mii_mediachg(mii);
3338 	ifm = &mii->mii_media;
3339 
3340 	if (DC_IS_DAVICOM(sc) &&
3341 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3342 		dc_setcfg(sc, ifm->ifm_media);
3343 	else
3344 		sc->dc_link = 0;
3345 
3346 	return(0);
3347 }
3348 
3349 /*
3350  * Report current media status.
3351  */
3352 static void
3353 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3354 {
3355 	struct dc_softc		*sc;
3356 	struct mii_data		*mii;
3357 	struct ifmedia		*ifm;
3358 
3359 	sc = ifp->if_softc;
3360 	mii = device_get_softc(sc->dc_miibus);
3361 	mii_pollstat(mii);
3362 	ifm = &mii->mii_media;
3363 	if (DC_IS_DAVICOM(sc)) {
3364 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3365 			ifmr->ifm_active = ifm->ifm_media;
3366 			ifmr->ifm_status = 0;
3367 			return;
3368 		}
3369 	}
3370 	ifmr->ifm_active = mii->mii_media_active;
3371 	ifmr->ifm_status = mii->mii_media_status;
3372 
3373 	return;
3374 }
3375 
3376 static int
3377 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3378 {
3379 	struct dc_softc		*sc = ifp->if_softc;
3380 	struct ifreq		*ifr = (struct ifreq *) data;
3381 	struct mii_data		*mii;
3382 	int			error = 0;
3383 
3384 	switch(command) {
3385 	case SIOCSIFFLAGS:
3386 		if (ifp->if_flags & IFF_UP) {
3387 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3388 				(IFF_PROMISC | IFF_ALLMULTI);
3389 			if (ifp->if_flags & IFF_RUNNING) {
3390 				if (need_setfilt)
3391 					dc_setfilt(sc);
3392 			} else {
3393 				sc->dc_txthresh = 0;
3394 				dc_init(sc);
3395 			}
3396 		} else {
3397 			if (ifp->if_flags & IFF_RUNNING)
3398 				dc_stop(sc);
3399 		}
3400 		sc->dc_if_flags = ifp->if_flags;
3401 		error = 0;
3402 		break;
3403 	case SIOCADDMULTI:
3404 	case SIOCDELMULTI:
3405 		dc_setfilt(sc);
3406 		error = 0;
3407 		break;
3408 	case SIOCGIFMEDIA:
3409 	case SIOCSIFMEDIA:
3410 		mii = device_get_softc(sc->dc_miibus);
3411 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3412 		break;
3413 	default:
3414 		error = ether_ioctl(ifp, command, data);
3415 		break;
3416 	}
3417 
3418 	return(error);
3419 }
3420 
3421 static void
3422 dc_watchdog(struct ifnet *ifp)
3423 {
3424 	struct dc_softc		*sc;
3425 
3426 	sc = ifp->if_softc;
3427 
3428 	ifp->if_oerrors++;
3429 	if_printf(ifp, "watchdog timeout\n");
3430 
3431 	dc_stop(sc);
3432 	dc_reset(sc);
3433 	dc_init(sc);
3434 
3435 	if (!ifq_is_empty(&ifp->if_snd))
3436 		dc_start(ifp);
3437 
3438 	return;
3439 }
3440 
3441 /*
3442  * Stop the adapter and free any mbufs allocated to the
3443  * RX and TX lists.
3444  */
3445 static void
3446 dc_stop(struct dc_softc *sc)
3447 {
3448 	int		i;
3449 	struct ifnet		*ifp;
3450 
3451 	ifp = &sc->arpcom.ac_if;
3452 	ifp->if_timer = 0;
3453 
3454 	callout_stop(&sc->dc_stat_timer);
3455 
3456 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3457 
3458 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3459 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3460 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3461 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3462 	sc->dc_link = 0;
3463 
3464 	/*
3465 	 * Free data in the RX lists.
3466 	 */
3467 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3468 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3469 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3470 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3471 		}
3472 	}
3473 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3474 		sizeof(sc->dc_ldata->dc_rx_list));
3475 
3476 	/*
3477 	 * Free the TX list buffers.
3478 	 */
3479 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3480 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3481 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3482 			    DC_TXCTL_SETUP) ||
3483 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3484 			    DC_TXCTL_LASTFRAG)) {
3485 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3486 				continue;
3487 			}
3488 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3489 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3490 		}
3491 	}
3492 
3493 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3494 		sizeof(sc->dc_ldata->dc_tx_list));
3495 
3496 	return;
3497 }
3498 
3499 /*
3500  * Stop all chip I/O so that the kernel's probe routines don't
3501  * get confused by errant DMAs when rebooting.
3502  */
3503 static void
3504 dc_shutdown(device_t dev)
3505 {
3506 	struct dc_softc	*sc;
3507 	struct ifnet *ifp;
3508 
3509 	sc = device_get_softc(dev);
3510 	ifp = &sc->arpcom.ac_if;
3511 	lwkt_serialize_enter(ifp->if_serializer);
3512 
3513 	dc_stop(sc);
3514 
3515 	lwkt_serialize_exit(ifp->if_serializer);
3516 }
3517 
3518 /*
3519  * Device suspend routine.  Stop the interface and save some PCI
3520  * settings in case the BIOS doesn't restore them properly on
3521  * resume.
3522  */
3523 static int
3524 dc_suspend(device_t dev)
3525 {
3526 	struct dc_softc	*sc = device_get_softc(dev);
3527 	struct ifnet *ifp = &sc->arpcom.ac_if;
3528 	int i;
3529 	lwkt_serialize_enter(ifp->if_serializer);
3530 
3531 	dc_stop(sc);
3532 	for (i = 0; i < 5; i++)
3533 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3534 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3535 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3536 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3537 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3538 
3539 	sc->suspended = 1;
3540 
3541 	lwkt_serialize_exit(ifp->if_serializer);
3542 	return (0);
3543 }
3544 
3545 /*
3546  * Device resume routine.  Restore some PCI settings in case the BIOS
3547  * doesn't, re-enable busmastering, and restart the interface if
3548  * appropriate.
3549  */
3550 static int
3551 dc_resume(device_t dev)
3552 {
3553 	struct dc_softc *sc = device_get_softc(dev);
3554 	struct ifnet *ifp = &sc->arpcom.ac_if;
3555 	int i;
3556 
3557 	lwkt_serialize_enter(ifp->if_serializer);
3558 	dc_acpi(dev);
3559 
3560 	/* better way to do this? */
3561 	for (i = 0; i < 5; i++)
3562 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3563 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3564 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3565 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3566 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3567 
3568 	/* reenable busmastering */
3569 	pci_enable_busmaster(dev);
3570 	pci_enable_io(dev, DC_RES);
3571 
3572         /* reinitialize interface if necessary */
3573         if (ifp->if_flags & IFF_UP)
3574                 dc_init(sc);
3575 
3576 	sc->suspended = 0;
3577 	lwkt_serialize_exit(ifp->if_serializer);
3578 
3579 	return (0);
3580 }
3581 
3582 static uint32_t
3583 dc_mchash_xircom(struct dc_softc *sc, const uint8_t *addr)
3584 {
3585 	uint32_t crc;
3586 
3587 	/* Compute CRC for the address value. */
3588 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
3589 
3590 	if ((crc & 0x180) == 0x180)
3591 		return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
3592 	else
3593 		return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + (12 << 4));
3594 }
3595