xref: /dragonfly/sys/dev/netif/dc/if_dc.c (revision 509221ae)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.36 2005/07/16 17:11:39 dillon Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Conexant LANfinity (www.conexant.com)
50  *
51  * Datasheets for the 21143 are available at developer.intel.com.
52  * Datasheets for the clone parts can be found at their respective sites.
53  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
54  * The PNIC II is essentially a Macronix 98715A chip; the only difference
55  * worth noting is that its multicast hash table is only 128 bits wide
56  * instead of 512.
57  *
58  * Written by Bill Paul <wpaul@ee.columbia.edu>
59  * Electrical Engineering Department
60  * Columbia University, New York City
61  */
62 
63 /*
64  * The Intel 21143 is the successor to the DEC 21140. It is basically
65  * the same as the 21140 but with a few new features. The 21143 supports
66  * three kinds of media attachments:
67  *
68  * o MII port, for 10Mbps and 100Mbps support and NWAY
69  *   autonegotiation provided by an external PHY.
70  * o SYM port, for symbol mode 100Mbps support.
71  * o 10baseT port.
72  * o AUI/BNC port.
73  *
74  * The 100Mbps SYM port and 10baseT port can be used together in
75  * combination with the internal NWAY support to create a 10/100
76  * autosensing configuration.
77  *
78  * Note that not all tulip workalikes are handled in this driver: we only
79  * deal with those which are relatively well behaved. The Winbond is
80  * handled separately due to its different register offsets and the
81  * special handling needed for its various bugs. The PNIC is handled
82  * here, but I'm not thrilled about it.
83  *
84  * All of the workalike chips use some form of MII transceiver support
85  * with the exception of the Macronix chips, which also have a SYM port.
86  * The ASIX AX88140A is also documented to have a SYM port, but all
87  * the cards I've seen use an MII transceiver, probably because the
88  * AX88140A doesn't support internal NWAY.
89  */
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/socket.h>
98 #include <sys/sysctl.h>
99 #include <sys/thread2.h>
100 
101 #include <net/if.h>
102 #include <net/ifq_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/vlan/if_vlan_var.h>
109 
110 #include <net/bpf.h>
111 
112 #include <vm/vm.h>              /* for vtophys */
113 #include <vm/pmap.h>            /* for vtophys */
114 #include <machine/bus_pio.h>
115 #include <machine/bus_memio.h>
116 #include <machine/bus.h>
117 #include <machine/resource.h>
118 #include <sys/bus.h>
119 #include <sys/rman.h>
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 
129 #include "if_dcreg.h"
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 static struct dc_type dc_devs[] = {
138 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
139 		"Intel 21143 10/100BaseTX" },
140 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
141 		"Davicom DM9009 10/100BaseTX" },
142 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
143 		"Davicom DM9100 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
145 		"Davicom DM9102 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102A 10/100BaseTX" },
148 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
149 		"ADMtek AL981 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
151 		"ADMtek AN985 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
153 		"ADMtek ADM9511 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
155 		"ADMtek ADM9513 10/100BaseTX" },
156 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
157 		"ASIX AX88140A 10/100BaseTX" },
158 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
159 		"ASIX AX88141 10/100BaseTX" },
160 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
161 		"Macronix 98713 10/100BaseTX" },
162 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
163 		"Macronix 98713A 10/100BaseTX" },
164 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
165 		"Compex RL100-TX 10/100BaseTX" },
166 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
167 		"Compex RL100-TX 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
169 		"Macronix 98715/98715A 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
171 		"Macronix 98715AEC-C 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
173 		"Macronix 98725 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
175 		"Macronix 98727/98732 10/100BaseTX" },
176 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
177 		"LC82C115 PNIC II 10/100BaseTX" },
178 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
179 		"82c168 PNIC 10/100BaseTX" },
180 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
181 		"82c169 PNIC 10/100BaseTX" },
182 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
183 		"Accton EN1217 10/100BaseTX" },
184 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
185 		"Accton EN2242 MiniPCI 10/100BaseTX" },
186 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
187 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
188 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
189 		"3Com OfficeConnect 10/100B" },
190 	{ 0, 0, NULL }
191 };
192 
193 static int dc_probe		(device_t);
194 static int dc_attach		(device_t);
195 static int dc_detach		(device_t);
196 static int dc_suspend		(device_t);
197 static int dc_resume		(device_t);
198 static void dc_acpi		(device_t);
199 static struct dc_type *dc_devtype	(device_t);
200 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
201 static int dc_encap		(struct dc_softc *, struct mbuf *,
202 					u_int32_t *);
203 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
204 static int dc_rx_resync		(struct dc_softc *);
205 static void dc_rxeof		(struct dc_softc *);
206 static void dc_txeof		(struct dc_softc *);
207 static void dc_tick		(void *);
208 static void dc_tx_underrun	(struct dc_softc *);
209 static void dc_intr		(void *);
210 static void dc_start		(struct ifnet *);
211 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
212 					struct ucred *);
213 #ifdef DEVICE_POLLING
214 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
215 					int count);
216 #endif
217 static void dc_init		(void *);
218 static void dc_stop		(struct dc_softc *);
219 static void dc_watchdog		(struct ifnet *);
220 static void dc_shutdown		(device_t);
221 static int dc_ifmedia_upd	(struct ifnet *);
222 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
223 
224 static void dc_delay		(struct dc_softc *);
225 static void dc_eeprom_idle	(struct dc_softc *);
226 static void dc_eeprom_putbyte	(struct dc_softc *, int);
227 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
228 static void dc_eeprom_getword_pnic
229 				(struct dc_softc *, int, u_int16_t *);
230 static void dc_eeprom_width	(struct dc_softc *);
231 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
232 							int, int);
233 
234 static void dc_mii_writebit	(struct dc_softc *, int);
235 static int dc_mii_readbit	(struct dc_softc *);
236 static void dc_mii_sync		(struct dc_softc *);
237 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
238 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
239 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
240 static int dc_miibus_readreg	(device_t, int, int);
241 static int dc_miibus_writereg	(device_t, int, int, int);
242 static void dc_miibus_statchg	(device_t);
243 static void dc_miibus_mediainit	(device_t);
244 
245 static u_int32_t dc_crc_mask	(struct dc_softc *);
246 static void dc_setcfg		(struct dc_softc *, int);
247 static void dc_setfilt_21143	(struct dc_softc *);
248 static void dc_setfilt_asix	(struct dc_softc *);
249 static void dc_setfilt_admtek	(struct dc_softc *);
250 
251 static void dc_setfilt		(struct dc_softc *);
252 
253 static void dc_reset		(struct dc_softc *);
254 static int dc_list_rx_init	(struct dc_softc *);
255 static int dc_list_tx_init	(struct dc_softc *);
256 
257 static void dc_read_srom	(struct dc_softc *, int);
258 static void dc_parse_21143_srom	(struct dc_softc *);
259 static void dc_decode_leaf_sia	(struct dc_softc *,
260 				    struct dc_eblock_sia *);
261 static void dc_decode_leaf_mii	(struct dc_softc *,
262 				    struct dc_eblock_mii *);
263 static void dc_decode_leaf_sym	(struct dc_softc *,
264 				    struct dc_eblock_sym *);
265 static void dc_apply_fixup	(struct dc_softc *, int);
266 
267 #ifdef DC_USEIOSPACE
268 #define DC_RES			SYS_RES_IOPORT
269 #define DC_RID			DC_PCI_CFBIO
270 #else
271 #define DC_RES			SYS_RES_MEMORY
272 #define DC_RID			DC_PCI_CFBMA
273 #endif
274 
275 static device_method_t dc_methods[] = {
276 	/* Device interface */
277 	DEVMETHOD(device_probe,		dc_probe),
278 	DEVMETHOD(device_attach,	dc_attach),
279 	DEVMETHOD(device_detach,	dc_detach),
280 	DEVMETHOD(device_suspend,	dc_suspend),
281 	DEVMETHOD(device_resume,	dc_resume),
282 	DEVMETHOD(device_shutdown,	dc_shutdown),
283 
284 	/* bus interface */
285 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
286 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
287 
288 	/* MII interface */
289 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
290 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
291 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
292 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
293 
294 	{ 0, 0 }
295 };
296 
297 static driver_t dc_driver = {
298 	"dc",
299 	dc_methods,
300 	sizeof(struct dc_softc)
301 };
302 
303 static devclass_t dc_devclass;
304 
305 #ifdef __i386__
306 static int dc_quick=1;
307 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
308 	&dc_quick,0,"do not mdevget in dc driver");
309 #endif
310 
311 DECLARE_DUMMY_MODULE(if_dc);
312 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
313 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
314 
315 #define DC_SETBIT(sc, reg, x)				\
316 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
317 
318 #define DC_CLRBIT(sc, reg, x)				\
319 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
320 
321 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
322 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
323 
324 static void dc_delay(sc)
325 	struct dc_softc		*sc;
326 {
327 	int			idx;
328 
329 	for (idx = (300 / 33) + 1; idx > 0; idx--)
330 		CSR_READ_4(sc, DC_BUSCTL);
331 }
332 
333 static void dc_eeprom_width(sc)
334 	struct dc_softc		*sc;
335 {
336 	int i;
337 
338 	/* Force EEPROM to idle state. */
339 	dc_eeprom_idle(sc);
340 
341 	/* Enter EEPROM access mode. */
342 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
343 	dc_delay(sc);
344 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
345 	dc_delay(sc);
346 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
347 	dc_delay(sc);
348 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
349 	dc_delay(sc);
350 
351 	for (i = 3; i--;) {
352 		if (6 & (1 << i))
353 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
354 		else
355 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
356 		dc_delay(sc);
357 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
358 		dc_delay(sc);
359 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 		dc_delay(sc);
361 	}
362 
363 	for (i = 1; i <= 12; i++) {
364 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
365 		dc_delay(sc);
366 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
367 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
368 			dc_delay(sc);
369 			break;
370 		}
371 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
372 		dc_delay(sc);
373 	}
374 
375 	/* Turn off EEPROM access mode. */
376 	dc_eeprom_idle(sc);
377 
378 	if (i < 4 || i > 12)
379 		sc->dc_romwidth = 6;
380 	else
381 		sc->dc_romwidth = i;
382 
383 	/* Enter EEPROM access mode. */
384 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
385 	dc_delay(sc);
386 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
387 	dc_delay(sc);
388 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
389 	dc_delay(sc);
390 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
391 	dc_delay(sc);
392 
393 	/* Turn off EEPROM access mode. */
394 	dc_eeprom_idle(sc);
395 }
396 
397 static void dc_eeprom_idle(sc)
398 	struct dc_softc		*sc;
399 {
400 	int		i;
401 
402 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
403 	dc_delay(sc);
404 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
405 	dc_delay(sc);
406 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
407 	dc_delay(sc);
408 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
409 	dc_delay(sc);
410 
411 	for (i = 0; i < 25; i++) {
412 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
413 		dc_delay(sc);
414 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 		dc_delay(sc);
416 	}
417 
418 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
419 	dc_delay(sc);
420 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
421 	dc_delay(sc);
422 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
423 
424 	return;
425 }
426 
427 /*
428  * Send a read command and address to the EEPROM, check for ACK.
429  */
430 static void dc_eeprom_putbyte(sc, addr)
431 	struct dc_softc		*sc;
432 	int			addr;
433 {
434 	int		d, i;
435 
436 	d = DC_EECMD_READ >> 6;
437 	for (i = 3; i--; ) {
438 		if (d & (1 << i))
439 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
440 		else
441 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
442 		dc_delay(sc);
443 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
444 		dc_delay(sc);
445 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
446 		dc_delay(sc);
447 	}
448 
449 	/*
450 	 * Feed in each bit and strobe the clock.
451 	 */
452 	for (i = sc->dc_romwidth; i--;) {
453 		if (addr & (1 << i)) {
454 			SIO_SET(DC_SIO_EE_DATAIN);
455 		} else {
456 			SIO_CLR(DC_SIO_EE_DATAIN);
457 		}
458 		dc_delay(sc);
459 		SIO_SET(DC_SIO_EE_CLK);
460 		dc_delay(sc);
461 		SIO_CLR(DC_SIO_EE_CLK);
462 		dc_delay(sc);
463 	}
464 
465 	return;
466 }
467 
468 /*
469  * Read a word of data stored in the EEPROM at address 'addr.'
470  * The PNIC 82c168/82c169 has its own non-standard way to read
471  * the EEPROM.
472  */
473 static void dc_eeprom_getword_pnic(sc, addr, dest)
474 	struct dc_softc		*sc;
475 	int			addr;
476 	u_int16_t		*dest;
477 {
478 	int		i;
479 	u_int32_t		r;
480 
481 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
482 
483 	for (i = 0; i < DC_TIMEOUT; i++) {
484 		DELAY(1);
485 		r = CSR_READ_4(sc, DC_SIO);
486 		if (!(r & DC_PN_SIOCTL_BUSY)) {
487 			*dest = (u_int16_t)(r & 0xFFFF);
488 			return;
489 		}
490 	}
491 
492 	return;
493 }
494 
495 /*
496  * Read a word of data stored in the EEPROM at address 'addr.'
497  */
498 static void dc_eeprom_getword(sc, addr, dest)
499 	struct dc_softc		*sc;
500 	int			addr;
501 	u_int16_t		*dest;
502 {
503 	int		i;
504 	u_int16_t		word = 0;
505 
506 	/* Force EEPROM to idle state. */
507 	dc_eeprom_idle(sc);
508 
509 	/* Enter EEPROM access mode. */
510 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
511 	dc_delay(sc);
512 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
513 	dc_delay(sc);
514 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
515 	dc_delay(sc);
516 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
517 	dc_delay(sc);
518 
519 	/*
520 	 * Send address of word we want to read.
521 	 */
522 	dc_eeprom_putbyte(sc, addr);
523 
524 	/*
525 	 * Start reading bits from EEPROM.
526 	 */
527 	for (i = 0x8000; i; i >>= 1) {
528 		SIO_SET(DC_SIO_EE_CLK);
529 		dc_delay(sc);
530 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
531 			word |= i;
532 		dc_delay(sc);
533 		SIO_CLR(DC_SIO_EE_CLK);
534 		dc_delay(sc);
535 	}
536 
537 	/* Turn off EEPROM access mode. */
538 	dc_eeprom_idle(sc);
539 
540 	*dest = word;
541 
542 	return;
543 }
544 
545 /*
546  * Read a sequence of words from the EEPROM.
547  */
548 static void dc_read_eeprom(sc, dest, off, cnt, swap)
549 	struct dc_softc		*sc;
550 	caddr_t			dest;
551 	int			off;
552 	int			cnt;
553 	int			swap;
554 {
555 	int			i;
556 	u_int16_t		word = 0, *ptr;
557 
558 	for (i = 0; i < cnt; i++) {
559 		if (DC_IS_PNIC(sc))
560 			dc_eeprom_getword_pnic(sc, off + i, &word);
561 		else
562 			dc_eeprom_getword(sc, off + i, &word);
563 		ptr = (u_int16_t *)(dest + (i * 2));
564 		if (swap)
565 			*ptr = ntohs(word);
566 		else
567 			*ptr = word;
568 	}
569 
570 	return;
571 }
572 
573 /*
574  * The following two routines are taken from the Macronix 98713
575  * Application Notes pp.19-21.
576  */
577 /*
578  * Write a bit to the MII bus.
579  */
580 static void dc_mii_writebit(sc, bit)
581 	struct dc_softc		*sc;
582 	int			bit;
583 {
584 	if (bit)
585 		CSR_WRITE_4(sc, DC_SIO,
586 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
587 	else
588 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
589 
590 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
591 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
592 
593 	return;
594 }
595 
596 /*
597  * Read a bit from the MII bus.
598  */
599 static int dc_mii_readbit(sc)
600 	struct dc_softc		*sc;
601 {
602 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
603 	CSR_READ_4(sc, DC_SIO);
604 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
605 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
606 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
607 		return(1);
608 
609 	return(0);
610 }
611 
612 /*
613  * Sync the PHYs by setting data bit and strobing the clock 32 times.
614  */
615 static void dc_mii_sync(sc)
616 	struct dc_softc		*sc;
617 {
618 	int		i;
619 
620 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
621 
622 	for (i = 0; i < 32; i++)
623 		dc_mii_writebit(sc, 1);
624 
625 	return;
626 }
627 
628 /*
629  * Clock a series of bits through the MII.
630  */
631 static void dc_mii_send(sc, bits, cnt)
632 	struct dc_softc		*sc;
633 	u_int32_t		bits;
634 	int			cnt;
635 {
636 	int			i;
637 
638 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
639 		dc_mii_writebit(sc, bits & i);
640 }
641 
642 /*
643  * Read an PHY register through the MII.
644  */
645 static int dc_mii_readreg(sc, frame)
646 	struct dc_softc		*sc;
647 	struct dc_mii_frame	*frame;
648 
649 {
650 	int ack, i;
651 
652 	crit_enter();
653 
654 	/*
655 	 * Set up frame for RX.
656 	 */
657 	frame->mii_stdelim = DC_MII_STARTDELIM;
658 	frame->mii_opcode = DC_MII_READOP;
659 	frame->mii_turnaround = 0;
660 	frame->mii_data = 0;
661 
662 	/*
663 	 * Sync the PHYs.
664 	 */
665 	dc_mii_sync(sc);
666 
667 	/*
668 	 * Send command/address info.
669 	 */
670 	dc_mii_send(sc, frame->mii_stdelim, 2);
671 	dc_mii_send(sc, frame->mii_opcode, 2);
672 	dc_mii_send(sc, frame->mii_phyaddr, 5);
673 	dc_mii_send(sc, frame->mii_regaddr, 5);
674 
675 #ifdef notdef
676 	/* Idle bit */
677 	dc_mii_writebit(sc, 1);
678 	dc_mii_writebit(sc, 0);
679 #endif
680 
681 	/* Check for ack */
682 	ack = dc_mii_readbit(sc);
683 
684 	/*
685 	 * Now try reading data bits. If the ack failed, we still
686 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
687 	 */
688 	if (ack) {
689 		for(i = 0; i < 16; i++) {
690 			dc_mii_readbit(sc);
691 		}
692 		goto fail;
693 	}
694 
695 	for (i = 0x8000; i; i >>= 1) {
696 		if (!ack) {
697 			if (dc_mii_readbit(sc))
698 				frame->mii_data |= i;
699 		}
700 	}
701 
702 fail:
703 
704 	dc_mii_writebit(sc, 0);
705 	dc_mii_writebit(sc, 0);
706 
707 	crit_exit();
708 
709 	if (ack)
710 		return(1);
711 	return(0);
712 }
713 
714 /*
715  * Write to a PHY register through the MII.
716  */
717 static int dc_mii_writereg(sc, frame)
718 	struct dc_softc		*sc;
719 	struct dc_mii_frame	*frame;
720 
721 {
722 	crit_enter();
723 
724 	/*
725 	 * Set up frame for TX.
726 	 */
727 
728 	frame->mii_stdelim = DC_MII_STARTDELIM;
729 	frame->mii_opcode = DC_MII_WRITEOP;
730 	frame->mii_turnaround = DC_MII_TURNAROUND;
731 
732 	/*
733 	 * Sync the PHYs.
734 	 */
735 	dc_mii_sync(sc);
736 
737 	dc_mii_send(sc, frame->mii_stdelim, 2);
738 	dc_mii_send(sc, frame->mii_opcode, 2);
739 	dc_mii_send(sc, frame->mii_phyaddr, 5);
740 	dc_mii_send(sc, frame->mii_regaddr, 5);
741 	dc_mii_send(sc, frame->mii_turnaround, 2);
742 	dc_mii_send(sc, frame->mii_data, 16);
743 
744 	/* Idle bit. */
745 	dc_mii_writebit(sc, 0);
746 	dc_mii_writebit(sc, 0);
747 
748 	crit_exit();
749 
750 	return(0);
751 }
752 
753 static int dc_miibus_readreg(dev, phy, reg)
754 	device_t		dev;
755 	int			phy, reg;
756 {
757 	struct dc_mii_frame	frame;
758 	struct dc_softc		*sc;
759 	int			i, rval, phy_reg = 0;
760 
761 	sc = device_get_softc(dev);
762 	bzero((char *)&frame, sizeof(frame));
763 
764 	/*
765 	 * Note: both the AL981 and AN985 have internal PHYs,
766 	 * however the AL981 provides direct access to the PHY
767 	 * registers while the AN985 uses a serial MII interface.
768 	 * The AN985's MII interface is also buggy in that you
769 	 * can read from any MII address (0 to 31), but only address 1
770 	 * behaves normally. To deal with both cases, we pretend
771 	 * that the PHY is at MII address 1.
772 	 */
773 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
774 		return(0);
775 
776 	/*
777 	 * Note: the ukphy probes of the RS7112 report a PHY at
778 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
779 	 * so we only respond to correct one.
780 	 */
781 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
782 		return(0);
783 
784 	if (sc->dc_pmode != DC_PMODE_MII) {
785 		if (phy == (MII_NPHY - 1)) {
786 			switch(reg) {
787 			case MII_BMSR:
788 			/*
789 			 * Fake something to make the probe
790 			 * code think there's a PHY here.
791 			 */
792 				return(BMSR_MEDIAMASK);
793 				break;
794 			case MII_PHYIDR1:
795 				if (DC_IS_PNIC(sc))
796 					return(DC_VENDORID_LO);
797 				return(DC_VENDORID_DEC);
798 				break;
799 			case MII_PHYIDR2:
800 				if (DC_IS_PNIC(sc))
801 					return(DC_DEVICEID_82C168);
802 				return(DC_DEVICEID_21143);
803 				break;
804 			default:
805 				return(0);
806 				break;
807 			}
808 		} else
809 			return(0);
810 	}
811 
812 	if (DC_IS_PNIC(sc)) {
813 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
814 		    (phy << 23) | (reg << 18));
815 		for (i = 0; i < DC_TIMEOUT; i++) {
816 			DELAY(1);
817 			rval = CSR_READ_4(sc, DC_PN_MII);
818 			if (!(rval & DC_PN_MII_BUSY)) {
819 				rval &= 0xFFFF;
820 				return(rval == 0xFFFF ? 0 : rval);
821 			}
822 		}
823 		return(0);
824 	}
825 
826 	if (DC_IS_COMET(sc)) {
827 		switch(reg) {
828 		case MII_BMCR:
829 			phy_reg = DC_AL_BMCR;
830 			break;
831 		case MII_BMSR:
832 			phy_reg = DC_AL_BMSR;
833 			break;
834 		case MII_PHYIDR1:
835 			phy_reg = DC_AL_VENID;
836 			break;
837 		case MII_PHYIDR2:
838 			phy_reg = DC_AL_DEVID;
839 			break;
840 		case MII_ANAR:
841 			phy_reg = DC_AL_ANAR;
842 			break;
843 		case MII_ANLPAR:
844 			phy_reg = DC_AL_LPAR;
845 			break;
846 		case MII_ANER:
847 			phy_reg = DC_AL_ANER;
848 			break;
849 		default:
850 			if_printf(&sc->arpcom.ac_if,
851 				  "phy_read: bad phy register %x\n", reg);
852 			return(0);
853 			break;
854 		}
855 
856 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
857 
858 		if (rval == 0xFFFF)
859 			return(0);
860 		return(rval);
861 	}
862 
863 	frame.mii_phyaddr = phy;
864 	frame.mii_regaddr = reg;
865 	if (sc->dc_type == DC_TYPE_98713) {
866 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
867 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
868 	}
869 	dc_mii_readreg(sc, &frame);
870 	if (sc->dc_type == DC_TYPE_98713)
871 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
872 
873 	return(frame.mii_data);
874 }
875 
876 static int dc_miibus_writereg(dev, phy, reg, data)
877 	device_t		dev;
878 	int			phy, reg, data;
879 {
880 	struct dc_softc		*sc;
881 	struct dc_mii_frame	frame;
882 	int			i, phy_reg = 0;
883 
884 	sc = device_get_softc(dev);
885 	bzero((char *)&frame, sizeof(frame));
886 
887 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
888 		return(0);
889 
890 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
891 		return(0);
892 
893 	if (DC_IS_PNIC(sc)) {
894 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
895 		    (phy << 23) | (reg << 10) | data);
896 		for (i = 0; i < DC_TIMEOUT; i++) {
897 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
898 				break;
899 		}
900 		return(0);
901 	}
902 
903 	if (DC_IS_COMET(sc)) {
904 		switch(reg) {
905 		case MII_BMCR:
906 			phy_reg = DC_AL_BMCR;
907 			break;
908 		case MII_BMSR:
909 			phy_reg = DC_AL_BMSR;
910 			break;
911 		case MII_PHYIDR1:
912 			phy_reg = DC_AL_VENID;
913 			break;
914 		case MII_PHYIDR2:
915 			phy_reg = DC_AL_DEVID;
916 			break;
917 		case MII_ANAR:
918 			phy_reg = DC_AL_ANAR;
919 			break;
920 		case MII_ANLPAR:
921 			phy_reg = DC_AL_LPAR;
922 			break;
923 		case MII_ANER:
924 			phy_reg = DC_AL_ANER;
925 			break;
926 		default:
927 			if_printf(&sc->arpcom.ac_if,
928 				  "phy_write: bad phy register %x\n", reg);
929 			return(0);
930 			break;
931 		}
932 
933 		CSR_WRITE_4(sc, phy_reg, data);
934 		return(0);
935 	}
936 
937 	frame.mii_phyaddr = phy;
938 	frame.mii_regaddr = reg;
939 	frame.mii_data = data;
940 
941 	if (sc->dc_type == DC_TYPE_98713) {
942 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
943 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
944 	}
945 	dc_mii_writereg(sc, &frame);
946 	if (sc->dc_type == DC_TYPE_98713)
947 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
948 
949 	return(0);
950 }
951 
952 static void dc_miibus_statchg(dev)
953 	device_t		dev;
954 {
955 	struct dc_softc		*sc;
956 	struct mii_data		*mii;
957 	struct ifmedia		*ifm;
958 
959 	sc = device_get_softc(dev);
960 	if (DC_IS_ADMTEK(sc))
961 		return;
962 
963 	mii = device_get_softc(sc->dc_miibus);
964 	ifm = &mii->mii_media;
965 	if (DC_IS_DAVICOM(sc) &&
966 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
967 		dc_setcfg(sc, ifm->ifm_media);
968 		sc->dc_if_media = ifm->ifm_media;
969 	} else {
970 		dc_setcfg(sc, mii->mii_media_active);
971 		sc->dc_if_media = mii->mii_media_active;
972 	}
973 
974 	return;
975 }
976 
977 /*
978  * Special support for DM9102A cards with HomePNA PHYs. Note:
979  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
980  * to be impossible to talk to the management interface of the DM9801
981  * PHY (its MDIO pin is not connected to anything). Consequently,
982  * the driver has to just 'know' about the additional mode and deal
983  * with it itself. *sigh*
984  */
985 static void dc_miibus_mediainit(dev)
986 	device_t		dev;
987 {
988 	struct dc_softc		*sc;
989 	struct mii_data		*mii;
990 	struct ifmedia		*ifm;
991 	int			rev;
992 
993 	rev = pci_get_revid(dev);
994 
995 	sc = device_get_softc(dev);
996 	mii = device_get_softc(sc->dc_miibus);
997 	ifm = &mii->mii_media;
998 
999 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1000 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1001 
1002 	return;
1003 }
1004 
1005 #define DC_BITS_512	9
1006 #define DC_BITS_128	7
1007 #define DC_BITS_64	6
1008 
1009 static u_int32_t
1010 dc_crc_mask(struct dc_softc *sc)
1011 {
1012 	/*
1013 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1014 	 * chips is only 128 bits wide.
1015 	 */
1016 	if (sc->dc_flags & DC_128BIT_HASH)
1017 		return ((1 << DC_BITS_128) - 1);
1018 
1019 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1020 	if (sc->dc_flags & DC_64BIT_HASH)
1021 		return ((1 << DC_BITS_64) - 1);
1022 
1023 	return ((1 << DC_BITS_512) - 1);
1024 }
1025 
1026 /*
1027  * 21143-style RX filter setup routine. Filter programming is done by
1028  * downloading a special setup frame into the TX engine. 21143, Macronix,
1029  * PNIC, PNIC II and Davicom chips are programmed this way.
1030  *
1031  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1032  * address (our node address) and a 512-bit hash filter for multicast
1033  * frames. We also sneak the broadcast address into the hash filter since
1034  * we need that too.
1035  */
1036 void dc_setfilt_21143(sc)
1037 	struct dc_softc		*sc;
1038 {
1039 	struct dc_desc		*sframe;
1040 	u_int32_t		h, crc_mask, *sp;
1041 	struct ifmultiaddr	*ifma;
1042 	struct ifnet		*ifp;
1043 	int			i;
1044 
1045 	ifp = &sc->arpcom.ac_if;
1046 
1047 	i = sc->dc_cdata.dc_tx_prod;
1048 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1049 	sc->dc_cdata.dc_tx_cnt++;
1050 	sframe = &sc->dc_ldata->dc_tx_list[i];
1051 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1052 	bzero((char *)sp, DC_SFRAME_LEN);
1053 
1054 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1055 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1056 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1057 
1058 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1059 
1060 	/* If we want promiscuous mode, set the allframes bit. */
1061 	if (ifp->if_flags & IFF_PROMISC)
1062 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1063 	else
1064 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1065 
1066 	if (ifp->if_flags & IFF_ALLMULTI)
1067 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1068 	else
1069 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1070 
1071 	crc_mask = dc_crc_mask(sc);
1072 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1073 		if (ifma->ifma_addr->sa_family != AF_LINK)
1074 			continue;
1075 		h = ether_crc32_le(
1076 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1077 			ETHER_ADDR_LEN) & crc_mask;
1078 		sp[h >> 4] |= 1 << (h & 0xF);
1079 	}
1080 
1081 	if (ifp->if_flags & IFF_BROADCAST) {
1082 		h = ether_crc32_le(ifp->if_broadcastaddr,
1083 				   ETHER_ADDR_LEN) & crc_mask;
1084 		sp[h >> 4] |= 1 << (h & 0xF);
1085 	}
1086 
1087 	/* Set our MAC address */
1088 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1089 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1090 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1091 
1092 	sframe->dc_status = DC_TXSTAT_OWN;
1093 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1094 
1095 	/*
1096 	 * The PNIC takes an exceedingly long time to process its
1097 	 * setup frame; wait 10ms after posting the setup frame
1098 	 * before proceeding, just so it has time to swallow its
1099 	 * medicine.
1100 	 */
1101 	DELAY(10000);
1102 
1103 	ifp->if_timer = 5;
1104 
1105 	return;
1106 }
1107 
1108 void dc_setfilt_admtek(sc)
1109 	struct dc_softc		*sc;
1110 {
1111 	struct ifnet		*ifp;
1112 	int			h = 0;
1113 	u_int32_t		crc_mask;
1114 	u_int32_t		hashes[2] = { 0, 0 };
1115 	struct ifmultiaddr	*ifma;
1116 
1117 	ifp = &sc->arpcom.ac_if;
1118 
1119 	/* Init our MAC address */
1120 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1121 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1122 
1123 	/* If we want promiscuous mode, set the allframes bit. */
1124 	if (ifp->if_flags & IFF_PROMISC)
1125 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1126 	else
1127 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1128 
1129 	if (ifp->if_flags & IFF_ALLMULTI)
1130 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1131 	else
1132 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1133 
1134 	/* first, zot all the existing hash bits */
1135 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1136 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1137 
1138 	/*
1139 	 * If we're already in promisc or allmulti mode, we
1140 	 * don't have to bother programming the multicast filter.
1141 	 */
1142 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1143 		return;
1144 
1145 	/* now program new ones */
1146 	if (DC_IS_CENTAUR(sc))
1147 		crc_mask = dc_crc_mask(sc);
1148 	else
1149 		crc_mask = 0x3f;
1150 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1151 		if (ifma->ifma_addr->sa_family != AF_LINK)
1152 			continue;
1153 		if (DC_IS_CENTAUR(sc)) {
1154 			h = ether_crc32_le(
1155 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1156 				ETHER_ADDR_LEN) & crc_mask;
1157 		} else {
1158 			h = ether_crc32_be(
1159 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1160 				ETHER_ADDR_LEN);
1161 			h = (h >> 26) & crc_mask;
1162 		}
1163 		if (h < 32)
1164 			hashes[0] |= (1 << h);
1165 		else
1166 			hashes[1] |= (1 << (h - 32));
1167 	}
1168 
1169 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1170 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1171 
1172 	return;
1173 }
1174 
1175 void dc_setfilt_asix(sc)
1176 	struct dc_softc		*sc;
1177 {
1178 	struct ifnet		*ifp;
1179 	int			h = 0;
1180 	u_int32_t		hashes[2] = { 0, 0 };
1181 	struct ifmultiaddr	*ifma;
1182 
1183 	ifp = &sc->arpcom.ac_if;
1184 
1185         /* Init our MAC address */
1186         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1187         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1188 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1189         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1190         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1191 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1192 
1193 	/* If we want promiscuous mode, set the allframes bit. */
1194 	if (ifp->if_flags & IFF_PROMISC)
1195 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1196 	else
1197 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1198 
1199 	if (ifp->if_flags & IFF_ALLMULTI)
1200 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1201 	else
1202 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1203 
1204 	/*
1205 	 * The ASIX chip has a special bit to enable reception
1206 	 * of broadcast frames.
1207 	 */
1208 	if (ifp->if_flags & IFF_BROADCAST)
1209 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1210 	else
1211 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1212 
1213 	/* first, zot all the existing hash bits */
1214 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1215 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1216 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1217 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1218 
1219 	/*
1220 	 * If we're already in promisc or allmulti mode, we
1221 	 * don't have to bother programming the multicast filter.
1222 	 */
1223 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1224 		return;
1225 
1226 	/* now program new ones */
1227 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1228 		if (ifma->ifma_addr->sa_family != AF_LINK)
1229 			continue;
1230 		h = ether_crc32_be(
1231 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1232 			ETHER_ADDR_LEN);
1233 		h = (h >> 26) & 0x3f;
1234 		if (h < 32)
1235 			hashes[0] |= (1 << h);
1236 		else
1237 			hashes[1] |= (1 << (h - 32));
1238 	}
1239 
1240 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1241 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1242 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1243 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1244 
1245 	return;
1246 }
1247 
1248 static void dc_setfilt(sc)
1249 	struct dc_softc		*sc;
1250 {
1251 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1252 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1253 		dc_setfilt_21143(sc);
1254 
1255 	if (DC_IS_ASIX(sc))
1256 		dc_setfilt_asix(sc);
1257 
1258 	if (DC_IS_ADMTEK(sc))
1259 		dc_setfilt_admtek(sc);
1260 
1261 	return;
1262 }
1263 
1264 /*
1265  * In order to fiddle with the
1266  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1267  * first have to put the transmit and/or receive logic in the idle state.
1268  */
1269 static void dc_setcfg(sc, media)
1270 	struct dc_softc		*sc;
1271 	int			media;
1272 {
1273 	int			i, restart = 0;
1274 	u_int32_t		isr;
1275 
1276 	if (IFM_SUBTYPE(media) == IFM_NONE)
1277 		return;
1278 
1279 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1280 		restart = 1;
1281 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1282 
1283 		for (i = 0; i < DC_TIMEOUT; i++) {
1284 			isr = CSR_READ_4(sc, DC_ISR);
1285 			if (isr & DC_ISR_TX_IDLE ||
1286 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1287 				break;
1288 			DELAY(10);
1289 		}
1290 
1291 		if (i == DC_TIMEOUT) {
1292 			if_printf(&sc->arpcom.ac_if,
1293 			    "failed to force tx and rx to idle state\n");
1294 		}
1295 	}
1296 
1297 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1298 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1299 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1300 		if (sc->dc_pmode == DC_PMODE_MII) {
1301 			int	watchdogreg;
1302 
1303 			if (DC_IS_INTEL(sc)) {
1304 			/* there's a write enable bit here that reads as 1 */
1305 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1306 				watchdogreg &= ~DC_WDOG_CTLWREN;
1307 				watchdogreg |= DC_WDOG_JABBERDIS;
1308 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1309 			} else {
1310 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1311 			}
1312 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1313 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1314 			if (sc->dc_type == DC_TYPE_98713)
1315 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1316 				    DC_NETCFG_SCRAMBLER));
1317 			if (!DC_IS_DAVICOM(sc))
1318 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1319 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1320 			if (DC_IS_INTEL(sc))
1321 				dc_apply_fixup(sc, IFM_AUTO);
1322 		} else {
1323 			if (DC_IS_PNIC(sc)) {
1324 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1325 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1326 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1327 			}
1328 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1329 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1330 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1331 			if (DC_IS_INTEL(sc))
1332 				dc_apply_fixup(sc,
1333 				    (media & IFM_GMASK) == IFM_FDX ?
1334 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1335 		}
1336 	}
1337 
1338 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1339 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1340 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1341 		if (sc->dc_pmode == DC_PMODE_MII) {
1342 			int	watchdogreg;
1343 
1344 			/* there's a write enable bit here that reads as 1 */
1345 			if (DC_IS_INTEL(sc)) {
1346 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1347 				watchdogreg &= ~DC_WDOG_CTLWREN;
1348 				watchdogreg |= DC_WDOG_JABBERDIS;
1349 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1350 			} else {
1351 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1352 			}
1353 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1354 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1355 			if (sc->dc_type == DC_TYPE_98713)
1356 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1357 			if (!DC_IS_DAVICOM(sc))
1358 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1359 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1360 			if (DC_IS_INTEL(sc))
1361 				dc_apply_fixup(sc, IFM_AUTO);
1362 		} else {
1363 			if (DC_IS_PNIC(sc)) {
1364 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1365 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1366 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1367 			}
1368 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1369 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1370 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1371 			if (DC_IS_INTEL(sc)) {
1372 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1373 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1374 				if ((media & IFM_GMASK) == IFM_FDX)
1375 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1376 				else
1377 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1378 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1379 				DC_CLRBIT(sc, DC_10BTCTRL,
1380 				    DC_TCTL_AUTONEGENBL);
1381 				dc_apply_fixup(sc,
1382 				    (media & IFM_GMASK) == IFM_FDX ?
1383 				    IFM_10_T|IFM_FDX : IFM_10_T);
1384 				DELAY(20000);
1385 			}
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1391 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1392 	 * on the external MII port.
1393 	 */
1394 	if (DC_IS_DAVICOM(sc)) {
1395 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1396 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1397 			sc->dc_link = 1;
1398 		} else {
1399 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1400 		}
1401 	}
1402 
1403 	if ((media & IFM_GMASK) == IFM_FDX) {
1404 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1405 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1406 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1407 	} else {
1408 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1409 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1410 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1411 	}
1412 
1413 	if (restart)
1414 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1415 
1416 	return;
1417 }
1418 
1419 static void dc_reset(sc)
1420 	struct dc_softc		*sc;
1421 {
1422 	int		i;
1423 
1424 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1425 
1426 	for (i = 0; i < DC_TIMEOUT; i++) {
1427 		DELAY(10);
1428 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1429 			break;
1430 	}
1431 
1432 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1433 		DELAY(10000);
1434 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1435 		i = 0;
1436 	}
1437 
1438 	if (i == DC_TIMEOUT)
1439 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1440 
1441 	/* Wait a little while for the chip to get its brains in order. */
1442 	DELAY(1000);
1443 
1444 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1445 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1446 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1447 
1448 	/*
1449 	 * Bring the SIA out of reset. In some cases, it looks
1450 	 * like failing to unreset the SIA soon enough gets it
1451 	 * into a state where it will never come out of reset
1452 	 * until we reset the whole chip again.
1453 	 */
1454 	if (DC_IS_INTEL(sc)) {
1455 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1456 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1457 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1458 	}
1459 
1460         return;
1461 }
1462 
1463 static struct dc_type *dc_devtype(dev)
1464 	device_t		dev;
1465 {
1466 	struct dc_type		*t;
1467 	u_int32_t		rev;
1468 
1469 	t = dc_devs;
1470 
1471 	while(t->dc_name != NULL) {
1472 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1473 		    (pci_get_device(dev) == t->dc_did)) {
1474 			/* Check the PCI revision */
1475 			rev = pci_get_revid(dev);
1476 			if (t->dc_did == DC_DEVICEID_98713 &&
1477 			    rev >= DC_REVISION_98713A)
1478 				t++;
1479 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1480 			    rev >= DC_REVISION_98713A)
1481 				t++;
1482 			if (t->dc_did == DC_DEVICEID_987x5 &&
1483 			    rev >= DC_REVISION_98715AEC_C)
1484 				t++;
1485 			if (t->dc_did == DC_DEVICEID_987x5 &&
1486 			    rev >= DC_REVISION_98725)
1487 				t++;
1488 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1489 			    rev >= DC_REVISION_88141)
1490 				t++;
1491 			if (t->dc_did == DC_DEVICEID_82C168 &&
1492 			    rev >= DC_REVISION_82C169)
1493 				t++;
1494 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1495 			    rev >= DC_REVISION_DM9102A)
1496 				t++;
1497 			return(t);
1498 		}
1499 		t++;
1500 	}
1501 
1502 	return(NULL);
1503 }
1504 
1505 /*
1506  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1507  * IDs against our list and return a device name if we find a match.
1508  * We do a little bit of extra work to identify the exact type of
1509  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1510  * but different revision IDs. The same is true for 98715/98715A
1511  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1512  * cases, the exact chip revision affects driver behavior.
1513  */
1514 static int dc_probe(dev)
1515 	device_t		dev;
1516 {
1517 	struct dc_type		*t;
1518 
1519 	t = dc_devtype(dev);
1520 
1521 	if (t != NULL) {
1522 		device_set_desc(dev, t->dc_name);
1523 		return(0);
1524 	}
1525 
1526 	return(ENXIO);
1527 }
1528 
1529 static void dc_acpi(dev)
1530 	device_t		dev;
1531 {
1532 	u_int32_t		r, cptr;
1533 
1534 	/* Find the location of the capabilities block */
1535 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1536 
1537 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1538 	if (r == 0x01) {
1539 
1540 		r = pci_read_config(dev, cptr + 4, 4);
1541 		if (r & DC_PSTATE_D3) {
1542 			u_int32_t		iobase, membase, irq;
1543 			struct dc_softc		*sc;
1544 
1545 			/* Save important PCI config data. */
1546 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1547 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1548 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1549 
1550 			sc = device_get_softc(dev);
1551 			/* Reset the power state. */
1552 			if_printf(&sc->arpcom.ac_if,
1553 				  "chip is in D%d power mode "
1554 				  "-- setting to D0\n", r & DC_PSTATE_D3);
1555 			r &= 0xFFFFFFFC;
1556 			pci_write_config(dev, cptr + 4, r, 4);
1557 
1558 			/* Restore PCI config data. */
1559 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1560 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1561 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1562 		}
1563 	}
1564 }
1565 
1566 static void dc_apply_fixup(sc, media)
1567 	struct dc_softc		*sc;
1568 	int			media;
1569 {
1570 	struct dc_mediainfo	*m;
1571 	u_int8_t		*p;
1572 	int			i;
1573 	u_int32_t		reg;
1574 
1575 	m = sc->dc_mi;
1576 
1577 	while (m != NULL) {
1578 		if (m->dc_media == media)
1579 			break;
1580 		m = m->dc_next;
1581 	}
1582 
1583 	if (m == NULL)
1584 		return;
1585 
1586 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1587 		reg = (p[0] | (p[1] << 8)) << 16;
1588 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1589 	}
1590 
1591 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1592 		reg = (p[0] | (p[1] << 8)) << 16;
1593 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1594 	}
1595 
1596 	return;
1597 }
1598 
1599 static void dc_decode_leaf_sia(sc, l)
1600 	struct dc_softc		*sc;
1601 	struct dc_eblock_sia	*l;
1602 {
1603 	struct dc_mediainfo	*m;
1604 
1605 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1606 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1607 	case DC_SIA_CODE_10BT:
1608 		m->dc_media = IFM_10_T;
1609 		break;
1610 
1611 	case DC_SIA_CODE_10BT_FDX:
1612 		m->dc_media = IFM_10_T|IFM_FDX;
1613 		break;
1614 
1615 	case DC_SIA_CODE_10B2:
1616 		m->dc_media = IFM_10_2;
1617 		break;
1618 
1619 	case DC_SIA_CODE_10B5:
1620 		m->dc_media = IFM_10_5;
1621 		break;
1622 	}
1623 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1624 		m->dc_gp_len = 2;
1625 		m->dc_gp_ptr =
1626 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1627 	} else {
1628 	m->dc_gp_len = 2;
1629 	m->dc_gp_ptr =
1630 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1631 	}
1632 
1633 	m->dc_next = sc->dc_mi;
1634 	sc->dc_mi = m;
1635 
1636 	sc->dc_pmode = DC_PMODE_SIA;
1637 
1638 	return;
1639 }
1640 
1641 static void dc_decode_leaf_sym(sc, l)
1642 	struct dc_softc		*sc;
1643 	struct dc_eblock_sym	*l;
1644 {
1645 	struct dc_mediainfo	*m;
1646 
1647 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1648 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1649 		m->dc_media = IFM_100_TX;
1650 
1651 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1652 		m->dc_media = IFM_100_TX|IFM_FDX;
1653 
1654 	m->dc_gp_len = 2;
1655 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1656 
1657 	m->dc_next = sc->dc_mi;
1658 	sc->dc_mi = m;
1659 
1660 	sc->dc_pmode = DC_PMODE_SYM;
1661 
1662 	return;
1663 }
1664 
1665 static void dc_decode_leaf_mii(sc, l)
1666 	struct dc_softc		*sc;
1667 	struct dc_eblock_mii	*l;
1668 {
1669 	u_int8_t		*p;
1670 	struct dc_mediainfo	*m;
1671 
1672 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1673 	/* We abuse IFM_AUTO to represent MII. */
1674 	m->dc_media = IFM_AUTO;
1675 	m->dc_gp_len = l->dc_gpr_len;
1676 
1677 	p = (u_int8_t *)l;
1678 	p += sizeof(struct dc_eblock_mii);
1679 	m->dc_gp_ptr = p;
1680 	p += 2 * l->dc_gpr_len;
1681 	m->dc_reset_len = *p;
1682 	p++;
1683 	m->dc_reset_ptr = p;
1684 
1685 	m->dc_next = sc->dc_mi;
1686 	sc->dc_mi = m;
1687 
1688 	return;
1689 }
1690 
1691 static void dc_read_srom(sc, bits)
1692 	struct dc_softc		*sc;
1693 	int			bits;
1694 {
1695 	int size;
1696 
1697 	size = 2 << bits;
1698 	sc->dc_srom = malloc(size, M_DEVBUF, M_INTWAIT);
1699 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1700 }
1701 
1702 static void dc_parse_21143_srom(sc)
1703 	struct dc_softc		*sc;
1704 {
1705 	struct dc_leaf_hdr	*lhdr;
1706 	struct dc_eblock_hdr	*hdr;
1707 	int			i, loff;
1708 	char			*ptr;
1709 	int			have_mii;
1710 
1711 	have_mii = 0;
1712 	loff = sc->dc_srom[27];
1713 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1714 
1715 	ptr = (char *)lhdr;
1716 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1717 	/*
1718 	 * Look if we got a MII media block.
1719 	 */
1720 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1721 		hdr = (struct dc_eblock_hdr *)ptr;
1722 		if (hdr->dc_type == DC_EBLOCK_MII)
1723 		    have_mii++;
1724 
1725 		ptr += (hdr->dc_len & 0x7F);
1726 		ptr++;
1727 	}
1728 
1729 	/*
1730 	 * Do the same thing again. Only use SIA and SYM media
1731 	 * blocks if no MII media block is available.
1732 	 */
1733 	ptr = (char *)lhdr;
1734 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1735 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1736 		hdr = (struct dc_eblock_hdr *)ptr;
1737 		switch(hdr->dc_type) {
1738 		case DC_EBLOCK_MII:
1739 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1740 			break;
1741 		case DC_EBLOCK_SIA:
1742 			if (! have_mii)
1743 				dc_decode_leaf_sia(sc,
1744 				    (struct dc_eblock_sia *)hdr);
1745 			break;
1746 		case DC_EBLOCK_SYM:
1747 			if (! have_mii)
1748 				dc_decode_leaf_sym(sc,
1749 				    (struct dc_eblock_sym *)hdr);
1750 			break;
1751 		default:
1752 			/* Don't care. Yet. */
1753 			break;
1754 		}
1755 		ptr += (hdr->dc_len & 0x7F);
1756 		ptr++;
1757 	}
1758 
1759 	return;
1760 }
1761 
1762 /*
1763  * Attach the interface. Allocate softc structures, do ifmedia
1764  * setup and ethernet/BPF attach.
1765  */
1766 static int dc_attach(dev)
1767 	device_t		dev;
1768 {
1769 	int			tmp = 0;
1770 	u_char			eaddr[ETHER_ADDR_LEN];
1771 	u_int32_t		command;
1772 	struct dc_softc		*sc;
1773 	struct ifnet		*ifp;
1774 	u_int32_t		revision;
1775 	int			error = 0, rid, mac_offset;
1776 
1777 	sc = device_get_softc(dev);
1778 	callout_init(&sc->dc_stat_timer);
1779 
1780 	ifp = &sc->arpcom.ac_if;
1781 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1782 
1783 	/*
1784 	 * Handle power management nonsense.
1785 	 */
1786 	dc_acpi(dev);
1787 
1788 	/*
1789 	 * Map control/status registers.
1790 	 */
1791 	pci_enable_busmaster(dev);
1792 
1793 	rid = DC_RID;
1794 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1795 
1796 	if (sc->dc_res == NULL) {
1797 		device_printf(dev, "couldn't map ports/memory\n");
1798 		error = ENXIO;
1799 		goto fail;
1800 	}
1801 
1802 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1803 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1804 
1805 	/* Allocate interrupt */
1806 	rid = 0;
1807 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1808 	    RF_SHAREABLE | RF_ACTIVE);
1809 
1810 	if (sc->dc_irq == NULL) {
1811 		device_printf(dev, "couldn't map interrupt\n");
1812 		error = ENXIO;
1813 		goto fail;
1814 	}
1815 
1816 	/* Need this info to decide on a chip type. */
1817 	sc->dc_info = dc_devtype(dev);
1818 	revision = pci_get_revid(dev);
1819 
1820 	/* Get the eeprom width, but PNIC has diff eeprom */
1821 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1822 		dc_eeprom_width(sc);
1823 
1824 	switch(sc->dc_info->dc_did) {
1825 	case DC_DEVICEID_21143:
1826 		sc->dc_type = DC_TYPE_21143;
1827 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1828 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1829 		/* Save EEPROM contents so we can parse them later. */
1830 		dc_read_srom(sc, sc->dc_romwidth);
1831 		break;
1832 	case DC_DEVICEID_DM9009:
1833 	case DC_DEVICEID_DM9100:
1834 	case DC_DEVICEID_DM9102:
1835 		sc->dc_type = DC_TYPE_DM9102;
1836 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1837 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1838 		sc->dc_flags |= DC_TX_ALIGN;
1839 		sc->dc_pmode = DC_PMODE_MII;
1840 		/* Increase the latency timer value. */
1841 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1842 		command &= 0xFFFF00FF;
1843 		command |= 0x00008000;
1844 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1845 		break;
1846 	case DC_DEVICEID_AL981:
1847 		sc->dc_type = DC_TYPE_AL981;
1848 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1849 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1850 		sc->dc_pmode = DC_PMODE_MII;
1851 		dc_read_srom(sc, sc->dc_romwidth);
1852 		break;
1853 	case DC_DEVICEID_AN985:
1854 	case DC_DEVICEID_EN2242:
1855 	case DC_DEVICEID_3CSOHOB:
1856 		sc->dc_type = DC_TYPE_AN985;
1857 		sc->dc_flags |= DC_64BIT_HASH;
1858 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1859 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1860 		sc->dc_pmode = DC_PMODE_MII;
1861 
1862 		break;
1863 	case DC_DEVICEID_98713:
1864 	case DC_DEVICEID_98713_CP:
1865 		if (revision < DC_REVISION_98713A) {
1866 			sc->dc_type = DC_TYPE_98713;
1867 		}
1868 		if (revision >= DC_REVISION_98713A) {
1869 			sc->dc_type = DC_TYPE_98713A;
1870 			sc->dc_flags |= DC_21143_NWAY;
1871 		}
1872 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1873 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1874 		break;
1875 	case DC_DEVICEID_987x5:
1876 	case DC_DEVICEID_EN1217:
1877 		/*
1878 		 * Macronix MX98715AEC-C/D/E parts have only a
1879 		 * 128-bit hash table. We need to deal with these
1880 		 * in the same manner as the PNIC II so that we
1881 		 * get the right number of bits out of the
1882 		 * CRC routine.
1883 		 */
1884 		if (revision >= DC_REVISION_98715AEC_C &&
1885 		    revision < DC_REVISION_98725)
1886 			sc->dc_flags |= DC_128BIT_HASH;
1887 		sc->dc_type = DC_TYPE_987x5;
1888 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1889 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1890 		break;
1891 	case DC_DEVICEID_98727:
1892 		sc->dc_type = DC_TYPE_987x5;
1893 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1894 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1895 		break;
1896 	case DC_DEVICEID_82C115:
1897 		sc->dc_type = DC_TYPE_PNICII;
1898 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1899 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1900 		break;
1901 	case DC_DEVICEID_82C168:
1902 		sc->dc_type = DC_TYPE_PNIC;
1903 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1904 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1905 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1906 		if (revision < DC_REVISION_82C169)
1907 			sc->dc_pmode = DC_PMODE_SYM;
1908 		break;
1909 	case DC_DEVICEID_AX88140A:
1910 		sc->dc_type = DC_TYPE_ASIX;
1911 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1912 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1913 		sc->dc_pmode = DC_PMODE_MII;
1914 		break;
1915 	case DC_DEVICEID_RS7112:
1916 		sc->dc_type = DC_TYPE_CONEXANT;
1917 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1918 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1919 		sc->dc_pmode = DC_PMODE_MII;
1920 		dc_read_srom(sc, sc->dc_romwidth);
1921 		break;
1922 	default:
1923 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1924 		break;
1925 	}
1926 
1927 	/* Save the cache line size. */
1928 	if (DC_IS_DAVICOM(sc))
1929 		sc->dc_cachesize = 0;
1930 	else
1931 		sc->dc_cachesize = pci_read_config(dev,
1932 		    DC_PCI_CFLT, 4) & 0xFF;
1933 
1934 	/* Reset the adapter. */
1935 	dc_reset(sc);
1936 
1937 	/* Take 21143 out of snooze mode */
1938 	if (DC_IS_INTEL(sc)) {
1939 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1940 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1941 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1942 	}
1943 
1944 	/*
1945 	 * Try to learn something about the supported media.
1946 	 * We know that ASIX and ADMtek and Davicom devices
1947 	 * will *always* be using MII media, so that's a no-brainer.
1948 	 * The tricky ones are the Macronix/PNIC II and the
1949 	 * Intel 21143.
1950 	 */
1951 	if (DC_IS_INTEL(sc))
1952 		dc_parse_21143_srom(sc);
1953 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1954 		if (sc->dc_type == DC_TYPE_98713)
1955 			sc->dc_pmode = DC_PMODE_MII;
1956 		else
1957 			sc->dc_pmode = DC_PMODE_SYM;
1958 	} else if (!sc->dc_pmode)
1959 		sc->dc_pmode = DC_PMODE_MII;
1960 
1961 	/*
1962 	 * Get station address from the EEPROM.
1963 	 */
1964 	switch(sc->dc_type) {
1965 	case DC_TYPE_98713:
1966 	case DC_TYPE_98713A:
1967 	case DC_TYPE_987x5:
1968 	case DC_TYPE_PNICII:
1969 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
1970 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
1971 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
1972 		break;
1973 	case DC_TYPE_PNIC:
1974 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
1975 		break;
1976 	case DC_TYPE_DM9102:
1977 	case DC_TYPE_21143:
1978 	case DC_TYPE_ASIX:
1979 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1980 		break;
1981 	case DC_TYPE_AL981:
1982 	case DC_TYPE_AN985:
1983 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
1984 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
1985 		break;
1986 	case DC_TYPE_CONEXANT:
1987 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
1988 		break;
1989 	default:
1990 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
1991 		break;
1992 	}
1993 
1994 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
1995 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1996 
1997 	if (sc->dc_ldata == NULL) {
1998 		device_printf(dev, "no memory for list buffers!\n");
1999 		error = ENXIO;
2000 		goto fail;
2001 	}
2002 
2003 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2004 
2005 	ifp->if_softc = sc;
2006 	ifp->if_mtu = ETHERMTU;
2007 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2008 	ifp->if_ioctl = dc_ioctl;
2009 	ifp->if_start = dc_start;
2010 #ifdef DEVICE_POLLING
2011 	ifp->if_poll = dc_poll;
2012 #endif
2013 	ifp->if_watchdog = dc_watchdog;
2014 	ifp->if_init = dc_init;
2015 	ifp->if_baudrate = 10000000;
2016 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2017 	ifq_set_ready(&ifp->if_snd);
2018 
2019 	/*
2020 	 * Do MII setup. If this is a 21143, check for a PHY on the
2021 	 * MII bus after applying any necessary fixups to twiddle the
2022 	 * GPIO bits. If we don't end up finding a PHY, restore the
2023 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2024 	 * driver instead.
2025 	 */
2026 	if (DC_IS_INTEL(sc)) {
2027 		dc_apply_fixup(sc, IFM_AUTO);
2028 		tmp = sc->dc_pmode;
2029 		sc->dc_pmode = DC_PMODE_MII;
2030 	}
2031 
2032 	error = mii_phy_probe(dev, &sc->dc_miibus,
2033 	    dc_ifmedia_upd, dc_ifmedia_sts);
2034 
2035 	if (error && DC_IS_INTEL(sc)) {
2036 		sc->dc_pmode = tmp;
2037 		if (sc->dc_pmode != DC_PMODE_SIA)
2038 			sc->dc_pmode = DC_PMODE_SYM;
2039 		sc->dc_flags |= DC_21143_NWAY;
2040 		mii_phy_probe(dev, &sc->dc_miibus,
2041 		    dc_ifmedia_upd, dc_ifmedia_sts);
2042 		/*
2043 		 * For non-MII cards, we need to have the 21143
2044 		 * drive the LEDs. Except there are some systems
2045 		 * like the NEC VersaPro NoteBook PC which have no
2046 		 * LEDs, and twiddling these bits has adverse effects
2047 		 * on them. (I.e. you suddenly can't get a link.)
2048 		 */
2049 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2050 			sc->dc_flags |= DC_TULIP_LEDS;
2051 		error = 0;
2052 	}
2053 
2054 	if (error) {
2055 		device_printf(dev, "MII without any PHY!\n");
2056 		error = ENXIO;
2057 		goto fail;
2058 	}
2059 
2060 	/*
2061 	 * Call MI attach routine.
2062 	 */
2063 	ether_ifattach(ifp, eaddr);
2064 
2065 	if (DC_IS_ADMTEK(sc)) {
2066 		/*
2067 		 * Set automatic TX underrun recovery for the ADMtek chips
2068 		 */
2069 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2070 	}
2071 
2072 	/*
2073 	 * Tell the upper layer(s) we support long frames.
2074 	 */
2075 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2076 
2077 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
2078 			       dc_intr, sc, &sc->dc_intrhand, NULL);
2079 	if (error) {
2080 		ether_ifdetach(ifp);
2081 		device_printf(dev, "couldn't set up irq\n");
2082 		goto fail;
2083 	}
2084 
2085 	return(0);
2086 
2087 fail:
2088 	dc_detach(dev);
2089 	return(error);
2090 }
2091 
2092 static int dc_detach(dev)
2093 	device_t		dev;
2094 {
2095 	struct dc_softc *sc = device_get_softc(dev);
2096 	struct ifnet *ifp = &sc->arpcom.ac_if;
2097 	struct dc_mediainfo *m;
2098 
2099 	crit_enter();
2100 
2101 	if (device_is_attached(dev)) {
2102 		dc_stop(sc);
2103 		ether_ifdetach(ifp);
2104 	}
2105 
2106 	if (sc->dc_miibus)
2107 		device_delete_child(dev, sc->dc_miibus);
2108 	bus_generic_detach(dev);
2109 
2110 	if (sc->dc_intrhand)
2111 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2112 
2113 	crit_exit();
2114 
2115 	if (sc->dc_irq)
2116 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2117 	if (sc->dc_res)
2118 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2119 
2120 	if (sc->dc_ldata)
2121 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2122 	if (sc->dc_pnic_rx_buf != NULL)
2123 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2124 
2125 	while(sc->dc_mi != NULL) {
2126 		m = sc->dc_mi->dc_next;
2127 		free(sc->dc_mi, M_DEVBUF);
2128 		sc->dc_mi = m;
2129 	}
2130 
2131 	if (sc->dc_srom)
2132 		free(sc->dc_srom, M_DEVBUF);
2133 
2134 	return(0);
2135 }
2136 
2137 /*
2138  * Initialize the transmit descriptors.
2139  */
2140 static int dc_list_tx_init(sc)
2141 	struct dc_softc		*sc;
2142 {
2143 	struct dc_chain_data	*cd;
2144 	struct dc_list_data	*ld;
2145 	int			i;
2146 
2147 	cd = &sc->dc_cdata;
2148 	ld = sc->dc_ldata;
2149 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2150 		if (i == (DC_TX_LIST_CNT - 1)) {
2151 			ld->dc_tx_list[i].dc_next =
2152 			    vtophys(&ld->dc_tx_list[0]);
2153 		} else {
2154 			ld->dc_tx_list[i].dc_next =
2155 			    vtophys(&ld->dc_tx_list[i + 1]);
2156 		}
2157 		cd->dc_tx_chain[i] = NULL;
2158 		ld->dc_tx_list[i].dc_data = 0;
2159 		ld->dc_tx_list[i].dc_ctl = 0;
2160 	}
2161 
2162 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2163 
2164 	return(0);
2165 }
2166 
2167 
2168 /*
2169  * Initialize the RX descriptors and allocate mbufs for them. Note that
2170  * we arrange the descriptors in a closed ring, so that the last descriptor
2171  * points back to the first.
2172  */
2173 static int dc_list_rx_init(sc)
2174 	struct dc_softc		*sc;
2175 {
2176 	struct dc_chain_data	*cd;
2177 	struct dc_list_data	*ld;
2178 	int			i;
2179 
2180 	cd = &sc->dc_cdata;
2181 	ld = sc->dc_ldata;
2182 
2183 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2184 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2185 			return(ENOBUFS);
2186 		if (i == (DC_RX_LIST_CNT - 1)) {
2187 			ld->dc_rx_list[i].dc_next =
2188 			    vtophys(&ld->dc_rx_list[0]);
2189 		} else {
2190 			ld->dc_rx_list[i].dc_next =
2191 			    vtophys(&ld->dc_rx_list[i + 1]);
2192 		}
2193 	}
2194 
2195 	cd->dc_rx_prod = 0;
2196 
2197 	return(0);
2198 }
2199 
2200 /*
2201  * Initialize an RX descriptor and attach an MBUF cluster.
2202  */
2203 static int dc_newbuf(sc, i, m)
2204 	struct dc_softc		*sc;
2205 	int			i;
2206 	struct mbuf		*m;
2207 {
2208 	struct mbuf		*m_new = NULL;
2209 	struct dc_desc		*c;
2210 
2211 	c = &sc->dc_ldata->dc_rx_list[i];
2212 
2213 	if (m == NULL) {
2214 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2215 		if (m_new == NULL)
2216 			return (ENOBUFS);
2217 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2218 	} else {
2219 		m_new = m;
2220 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2221 		m_new->m_data = m_new->m_ext.ext_buf;
2222 	}
2223 
2224 	m_adj(m_new, sizeof(u_int64_t));
2225 
2226 	/*
2227 	 * If this is a PNIC chip, zero the buffer. This is part
2228 	 * of the workaround for the receive bug in the 82c168 and
2229 	 * 82c169 chips.
2230 	 */
2231 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2232 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2233 
2234 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2235 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2236 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2237 	c->dc_status = DC_RXSTAT_OWN;
2238 
2239 	return(0);
2240 }
2241 
2242 /*
2243  * Grrrrr.
2244  * The PNIC chip has a terrible bug in it that manifests itself during
2245  * periods of heavy activity. The exact mode of failure if difficult to
2246  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2247  * will happen on slow machines. The bug is that sometimes instead of
2248  * uploading one complete frame during reception, it uploads what looks
2249  * like the entire contents of its FIFO memory. The frame we want is at
2250  * the end of the whole mess, but we never know exactly how much data has
2251  * been uploaded, so salvaging the frame is hard.
2252  *
2253  * There is only one way to do it reliably, and it's disgusting.
2254  * Here's what we know:
2255  *
2256  * - We know there will always be somewhere between one and three extra
2257  *   descriptors uploaded.
2258  *
2259  * - We know the desired received frame will always be at the end of the
2260  *   total data upload.
2261  *
2262  * - We know the size of the desired received frame because it will be
2263  *   provided in the length field of the status word in the last descriptor.
2264  *
2265  * Here's what we do:
2266  *
2267  * - When we allocate buffers for the receive ring, we bzero() them.
2268  *   This means that we know that the buffer contents should be all
2269  *   zeros, except for data uploaded by the chip.
2270  *
2271  * - We also force the PNIC chip to upload frames that include the
2272  *   ethernet CRC at the end.
2273  *
2274  * - We gather all of the bogus frame data into a single buffer.
2275  *
2276  * - We then position a pointer at the end of this buffer and scan
2277  *   backwards until we encounter the first non-zero byte of data.
2278  *   This is the end of the received frame. We know we will encounter
2279  *   some data at the end of the frame because the CRC will always be
2280  *   there, so even if the sender transmits a packet of all zeros,
2281  *   we won't be fooled.
2282  *
2283  * - We know the size of the actual received frame, so we subtract
2284  *   that value from the current pointer location. This brings us
2285  *   to the start of the actual received packet.
2286  *
2287  * - We copy this into an mbuf and pass it on, along with the actual
2288  *   frame length.
2289  *
2290  * The performance hit is tremendous, but it beats dropping frames all
2291  * the time.
2292  */
2293 
2294 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2295 static void dc_pnic_rx_bug_war(sc, idx)
2296 	struct dc_softc		*sc;
2297 	int			idx;
2298 {
2299 	struct dc_desc		*cur_rx;
2300 	struct dc_desc		*c = NULL;
2301 	struct mbuf		*m = NULL;
2302 	unsigned char		*ptr;
2303 	int			i, total_len;
2304 	u_int32_t		rxstat = 0;
2305 
2306 	i = sc->dc_pnic_rx_bug_save;
2307 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2308 	ptr = sc->dc_pnic_rx_buf;
2309 	bzero(ptr, DC_RXLEN * 5);
2310 
2311 	/* Copy all the bytes from the bogus buffers. */
2312 	while (1) {
2313 		c = &sc->dc_ldata->dc_rx_list[i];
2314 		rxstat = c->dc_status;
2315 		m = sc->dc_cdata.dc_rx_chain[i];
2316 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2317 		ptr += DC_RXLEN;
2318 		/* If this is the last buffer, break out. */
2319 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2320 			break;
2321 		dc_newbuf(sc, i, m);
2322 		DC_INC(i, DC_RX_LIST_CNT);
2323 	}
2324 
2325 	/* Find the length of the actual receive frame. */
2326 	total_len = DC_RXBYTES(rxstat);
2327 
2328 	/* Scan backwards until we hit a non-zero byte. */
2329 	while(*ptr == 0x00)
2330 		ptr--;
2331 
2332 	/* Round off. */
2333 	if ((uintptr_t)(ptr) & 0x3)
2334 		ptr -= 1;
2335 
2336 	/* Now find the start of the frame. */
2337 	ptr -= total_len;
2338 	if (ptr < sc->dc_pnic_rx_buf)
2339 		ptr = sc->dc_pnic_rx_buf;
2340 
2341 	/*
2342 	 * Now copy the salvaged frame to the last mbuf and fake up
2343 	 * the status word to make it look like a successful
2344  	 * frame reception.
2345 	 */
2346 	dc_newbuf(sc, i, m);
2347 	bcopy(ptr, mtod(m, char *), total_len);
2348 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2349 
2350 	return;
2351 }
2352 
2353 /*
2354  * This routine searches the RX ring for dirty descriptors in the
2355  * event that the rxeof routine falls out of sync with the chip's
2356  * current descriptor pointer. This may happen sometimes as a result
2357  * of a "no RX buffer available" condition that happens when the chip
2358  * consumes all of the RX buffers before the driver has a chance to
2359  * process the RX ring. This routine may need to be called more than
2360  * once to bring the driver back in sync with the chip, however we
2361  * should still be getting RX DONE interrupts to drive the search
2362  * for new packets in the RX ring, so we should catch up eventually.
2363  */
2364 static int dc_rx_resync(sc)
2365 	struct dc_softc		*sc;
2366 {
2367 	int			i, pos;
2368 	struct dc_desc		*cur_rx;
2369 
2370 	pos = sc->dc_cdata.dc_rx_prod;
2371 
2372 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2373 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2374 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2375 			break;
2376 		DC_INC(pos, DC_RX_LIST_CNT);
2377 	}
2378 
2379 	/* If the ring really is empty, then just return. */
2380 	if (i == DC_RX_LIST_CNT)
2381 		return(0);
2382 
2383 	/* We've fallen behing the chip: catch it. */
2384 	sc->dc_cdata.dc_rx_prod = pos;
2385 
2386 	return(EAGAIN);
2387 }
2388 
2389 /*
2390  * A frame has been uploaded: pass the resulting mbuf chain up to
2391  * the higher level protocols.
2392  */
2393 static void dc_rxeof(sc)
2394 	struct dc_softc		*sc;
2395 {
2396         struct mbuf		*m;
2397         struct ifnet		*ifp;
2398 	struct dc_desc		*cur_rx;
2399 	int			i, total_len = 0;
2400 	u_int32_t		rxstat;
2401 
2402 	ifp = &sc->arpcom.ac_if;
2403 	i = sc->dc_cdata.dc_rx_prod;
2404 
2405 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2406 
2407 #ifdef DEVICE_POLLING
2408 		if (ifp->if_flags & IFF_POLLING) {
2409 			if (sc->rxcycles <= 0)
2410 				break;
2411 			sc->rxcycles--;
2412 		}
2413 #endif /* DEVICE_POLLING */
2414 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2415 		rxstat = cur_rx->dc_status;
2416 		m = sc->dc_cdata.dc_rx_chain[i];
2417 		total_len = DC_RXBYTES(rxstat);
2418 
2419 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2420 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2421 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2422 					sc->dc_pnic_rx_bug_save = i;
2423 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2424 					DC_INC(i, DC_RX_LIST_CNT);
2425 					continue;
2426 				}
2427 				dc_pnic_rx_bug_war(sc, i);
2428 				rxstat = cur_rx->dc_status;
2429 				total_len = DC_RXBYTES(rxstat);
2430 			}
2431 		}
2432 
2433 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2434 
2435 		/*
2436 		 * If an error occurs, update stats, clear the
2437 		 * status word and leave the mbuf cluster in place:
2438 		 * it should simply get re-used next time this descriptor
2439 		 * comes up in the ring.  However, don't report long
2440 		 * frames as errors since they could be vlans
2441 		 */
2442 		if ((rxstat & DC_RXSTAT_RXERR)){
2443 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2444 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2445 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2446 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2447 				ifp->if_ierrors++;
2448 				if (rxstat & DC_RXSTAT_COLLSEEN)
2449 					ifp->if_collisions++;
2450 				dc_newbuf(sc, i, m);
2451 				if (rxstat & DC_RXSTAT_CRCERR) {
2452 					DC_INC(i, DC_RX_LIST_CNT);
2453 					continue;
2454 				} else {
2455 					dc_init(sc);
2456 					return;
2457 				}
2458 			}
2459 		}
2460 
2461 		/* No errors; receive the packet. */
2462 		total_len -= ETHER_CRC_LEN;
2463 
2464 #ifdef __i386__
2465 		/*
2466 		 * On the x86 we do not have alignment problems, so try to
2467 		 * allocate a new buffer for the receive ring, and pass up
2468 		 * the one where the packet is already, saving the expensive
2469 		 * copy done in m_devget().
2470 		 * If we are on an architecture with alignment problems, or
2471 		 * if the allocation fails, then use m_devget and leave the
2472 		 * existing buffer in the receive ring.
2473 		 */
2474 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2475 			m->m_pkthdr.rcvif = ifp;
2476 			m->m_pkthdr.len = m->m_len = total_len;
2477 			DC_INC(i, DC_RX_LIST_CNT);
2478 		} else
2479 #endif
2480 		{
2481 			struct mbuf *m0;
2482 
2483 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2484 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2485 			dc_newbuf(sc, i, m);
2486 			DC_INC(i, DC_RX_LIST_CNT);
2487 			if (m0 == NULL) {
2488 				ifp->if_ierrors++;
2489 				continue;
2490 			}
2491 			m_adj(m0, ETHER_ALIGN);
2492 			m = m0;
2493 		}
2494 
2495 		ifp->if_ipackets++;
2496 		(*ifp->if_input)(ifp, m);
2497 	}
2498 
2499 	sc->dc_cdata.dc_rx_prod = i;
2500 }
2501 
2502 /*
2503  * A frame was downloaded to the chip. It's safe for us to clean up
2504  * the list buffers.
2505  */
2506 
2507 static void
2508 dc_txeof(sc)
2509 	struct dc_softc		*sc;
2510 {
2511 	struct dc_desc		*cur_tx = NULL;
2512 	struct ifnet		*ifp;
2513 	int			idx;
2514 
2515 	ifp = &sc->arpcom.ac_if;
2516 
2517 	/*
2518 	 * Go through our tx list and free mbufs for those
2519 	 * frames that have been transmitted.
2520 	 */
2521 	idx = sc->dc_cdata.dc_tx_cons;
2522 	while(idx != sc->dc_cdata.dc_tx_prod) {
2523 		u_int32_t		txstat;
2524 
2525 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2526 		txstat = cur_tx->dc_status;
2527 
2528 		if (txstat & DC_TXSTAT_OWN)
2529 			break;
2530 
2531 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2532 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2533 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2534 				/*
2535 				 * Yes, the PNIC is so brain damaged
2536 				 * that it will sometimes generate a TX
2537 				 * underrun error while DMAing the RX
2538 				 * filter setup frame. If we detect this,
2539 				 * we have to send the setup frame again,
2540 				 * or else the filter won't be programmed
2541 				 * correctly.
2542 				 */
2543 				if (DC_IS_PNIC(sc)) {
2544 					if (txstat & DC_TXSTAT_ERRSUM)
2545 						dc_setfilt(sc);
2546 				}
2547 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2548 			}
2549 			sc->dc_cdata.dc_tx_cnt--;
2550 			DC_INC(idx, DC_TX_LIST_CNT);
2551 			continue;
2552 		}
2553 
2554 		if (DC_IS_CONEXANT(sc)) {
2555 			/*
2556 			 * For some reason Conexant chips like
2557 			 * setting the CARRLOST flag even when
2558 			 * the carrier is there. In CURRENT we
2559 			 * have the same problem for Xircom
2560 			 * cards !
2561 			 */
2562 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2563 			    sc->dc_pmode == DC_PMODE_MII &&
2564 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2565 			    DC_TXSTAT_NOCARRIER)))
2566 				txstat &= ~DC_TXSTAT_ERRSUM;
2567 		} else {
2568 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2569 			    sc->dc_pmode == DC_PMODE_MII &&
2570 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2571 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2572 				txstat &= ~DC_TXSTAT_ERRSUM;
2573 		}
2574 
2575 		if (txstat & DC_TXSTAT_ERRSUM) {
2576 			ifp->if_oerrors++;
2577 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2578 				ifp->if_collisions++;
2579 			if (txstat & DC_TXSTAT_LATECOLL)
2580 				ifp->if_collisions++;
2581 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2582 				dc_init(sc);
2583 				return;
2584 			}
2585 		}
2586 
2587 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2588 
2589 		ifp->if_opackets++;
2590 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2591 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2592 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2593 		}
2594 
2595 		sc->dc_cdata.dc_tx_cnt--;
2596 		DC_INC(idx, DC_TX_LIST_CNT);
2597 	}
2598 
2599 	if (idx != sc->dc_cdata.dc_tx_cons) {
2600 	    	/* some buffers have been freed */
2601 		sc->dc_cdata.dc_tx_cons = idx;
2602 		ifp->if_flags &= ~IFF_OACTIVE;
2603 	}
2604 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2605 
2606 	return;
2607 }
2608 
2609 static void dc_tick(xsc)
2610 	void			*xsc;
2611 {
2612 	struct dc_softc *sc = xsc;
2613 	struct ifnet *ifp = &sc->arpcom.ac_if;
2614 	struct mii_data *mii;
2615 	u_int32_t r;
2616 
2617 	crit_enter();
2618 
2619 	mii = device_get_softc(sc->dc_miibus);
2620 
2621 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2622 		if (sc->dc_flags & DC_21143_NWAY) {
2623 			r = CSR_READ_4(sc, DC_10BTSTAT);
2624 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2625 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2626 				sc->dc_link = 0;
2627 				mii_mediachg(mii);
2628 			}
2629 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2630 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2631 				sc->dc_link = 0;
2632 				mii_mediachg(mii);
2633 			}
2634 			if (sc->dc_link == 0)
2635 				mii_tick(mii);
2636 		} else {
2637 			r = CSR_READ_4(sc, DC_ISR);
2638 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2639 			    sc->dc_cdata.dc_tx_cnt == 0)
2640 				mii_tick(mii);
2641 				if (!(mii->mii_media_status & IFM_ACTIVE))
2642 					sc->dc_link = 0;
2643 		}
2644 	} else
2645 		mii_tick(mii);
2646 
2647 	/*
2648 	 * When the init routine completes, we expect to be able to send
2649 	 * packets right away, and in fact the network code will send a
2650 	 * gratuitous ARP the moment the init routine marks the interface
2651 	 * as running. However, even though the MAC may have been initialized,
2652 	 * there may be a delay of a few seconds before the PHY completes
2653 	 * autonegotiation and the link is brought up. Any transmissions
2654 	 * made during that delay will be lost. Dealing with this is tricky:
2655 	 * we can't just pause in the init routine while waiting for the
2656 	 * PHY to come ready since that would bring the whole system to
2657 	 * a screeching halt for several seconds.
2658 	 *
2659 	 * What we do here is prevent the TX start routine from sending
2660 	 * any packets until a link has been established. After the
2661 	 * interface has been initialized, the tick routine will poll
2662 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2663 	 * that time, packets will stay in the send queue, and once the
2664 	 * link comes up, they will be flushed out to the wire.
2665 	 */
2666 	if (!sc->dc_link) {
2667 		mii_pollstat(mii);
2668 		if (mii->mii_media_status & IFM_ACTIVE &&
2669 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2670 			sc->dc_link++;
2671 			if (!ifq_is_empty(&ifp->if_snd))
2672 				dc_start(ifp);
2673 		}
2674 	}
2675 
2676 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2677 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2678 	else
2679 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2680 
2681 	crit_exit();
2682 }
2683 
2684 /*
2685  * A transmit underrun has occurred.  Back off the transmit threshold,
2686  * or switch to store and forward mode if we have to.
2687  */
2688 static void dc_tx_underrun(sc)
2689 	struct dc_softc		*sc;
2690 {
2691 	u_int32_t		isr;
2692 	int			i;
2693 
2694 	if (DC_IS_DAVICOM(sc))
2695 		dc_init(sc);
2696 
2697 	if (DC_IS_INTEL(sc)) {
2698 		/*
2699 		 * The real 21143 requires that the transmitter be idle
2700 		 * in order to change the transmit threshold or store
2701 		 * and forward state.
2702 		 */
2703 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2704 
2705 		for (i = 0; i < DC_TIMEOUT; i++) {
2706 			isr = CSR_READ_4(sc, DC_ISR);
2707 			if (isr & DC_ISR_TX_IDLE)
2708 				break;
2709 			DELAY(10);
2710 		}
2711 		if (i == DC_TIMEOUT) {
2712 			if_printf(&sc->arpcom.ac_if,
2713 				  "failed to force tx to idle state\n");
2714 			dc_init(sc);
2715 		}
2716 	}
2717 
2718 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2719 	sc->dc_txthresh += DC_TXTHRESH_INC;
2720 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2721 		printf("using store and forward mode\n");
2722 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2723 	} else {
2724 		printf("increasing TX threshold\n");
2725 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2726 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2727 	}
2728 
2729 	if (DC_IS_INTEL(sc))
2730 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2731 
2732 	return;
2733 }
2734 
2735 #ifdef DEVICE_POLLING
2736 
2737 static void
2738 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2739 {
2740 	struct	dc_softc *sc = ifp->if_softc;
2741 	u_int32_t status;
2742 
2743 	switch(cmd) {
2744 	case POLL_REGISTER:
2745 		/* Disable interrupts */
2746 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2747 		break;
2748 	case POLL_DEREGISTER:
2749 		/* Re-enable interrupts. */
2750 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2751 		break;
2752 	case POLL_ONLY:
2753 		sc->rxcycles = count;
2754 		dc_rxeof(sc);
2755 		dc_txeof(sc);
2756 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2757 			dc_start(ifp);
2758 		break;
2759 	case POLL_AND_CHECK_STATUS:
2760 		sc->rxcycles = count;
2761 		dc_rxeof(sc);
2762 		dc_txeof(sc);
2763 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2764 			dc_start(ifp);
2765 		status = CSR_READ_4(sc, DC_ISR);
2766 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2767 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2768 			DC_ISR_BUS_ERR);
2769 		if (!status)
2770 			break;
2771 		/* ack what we have */
2772 		CSR_WRITE_4(sc, DC_ISR, status);
2773 
2774 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2775 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2776 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2777 
2778 			if (dc_rx_resync(sc))
2779 				dc_rxeof(sc);
2780 		}
2781 		/* restart transmit unit if necessary */
2782 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2783 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2784 
2785 		if (status & DC_ISR_TX_UNDERRUN)
2786 			dc_tx_underrun(sc);
2787 
2788 		if (status & DC_ISR_BUS_ERR) {
2789 			if_printf(ifp, "dc_poll: bus error\n");
2790 			dc_reset(sc);
2791 			dc_init(sc);
2792 		}
2793 		break;
2794 	}
2795 }
2796 #endif /* DEVICE_POLLING */
2797 
2798 static void dc_intr(arg)
2799 	void			*arg;
2800 {
2801 	struct dc_softc		*sc;
2802 	struct ifnet		*ifp;
2803 	u_int32_t		status;
2804 
2805 	sc = arg;
2806 
2807 	if (sc->suspended) {
2808 		return;
2809 	}
2810 
2811 	ifp = &sc->arpcom.ac_if;
2812 
2813 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2814 		return ;
2815 
2816 	/* Suppress unwanted interrupts */
2817 	if (!(ifp->if_flags & IFF_UP)) {
2818 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2819 			dc_stop(sc);
2820 		return;
2821 	}
2822 
2823 	/* Disable interrupts. */
2824 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2825 
2826 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2827 
2828 		CSR_WRITE_4(sc, DC_ISR, status);
2829 
2830 		if (status & DC_ISR_RX_OK) {
2831 			int		curpkts;
2832 			curpkts = ifp->if_ipackets;
2833 			dc_rxeof(sc);
2834 			if (curpkts == ifp->if_ipackets) {
2835 				while(dc_rx_resync(sc))
2836 					dc_rxeof(sc);
2837 			}
2838 		}
2839 
2840 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2841 			dc_txeof(sc);
2842 
2843 		if (status & DC_ISR_TX_IDLE) {
2844 			dc_txeof(sc);
2845 			if (sc->dc_cdata.dc_tx_cnt) {
2846 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2847 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2848 			}
2849 		}
2850 
2851 		if (status & DC_ISR_TX_UNDERRUN)
2852 			dc_tx_underrun(sc);
2853 
2854 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2855 		    || (status & DC_ISR_RX_NOBUF)) {
2856 			int		curpkts;
2857 			curpkts = ifp->if_ipackets;
2858 			dc_rxeof(sc);
2859 			if (curpkts == ifp->if_ipackets) {
2860 				while(dc_rx_resync(sc))
2861 					dc_rxeof(sc);
2862 			}
2863 		}
2864 
2865 		if (status & DC_ISR_BUS_ERR) {
2866 			dc_reset(sc);
2867 			dc_init(sc);
2868 		}
2869 	}
2870 
2871 	/* Re-enable interrupts. */
2872 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2873 
2874 	if (!ifq_is_empty(&ifp->if_snd))
2875 		dc_start(ifp);
2876 
2877 	return;
2878 }
2879 
2880 /*
2881  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2882  * pointers to the fragment pointers.
2883  */
2884 static int dc_encap(sc, m_head, txidx)
2885 	struct dc_softc		*sc;
2886 	struct mbuf		*m_head;
2887 	u_int32_t		*txidx;
2888 {
2889 	struct dc_desc		*f = NULL;
2890 	struct mbuf		*m;
2891 	int			frag, cur, cnt = 0;
2892 
2893 	/*
2894  	 * Start packing the mbufs in this chain into
2895 	 * the fragment pointers. Stop when we run out
2896  	 * of fragments or hit the end of the mbuf chain.
2897 	 */
2898 	m = m_head;
2899 	cur = frag = *txidx;
2900 
2901 	for (m = m_head; m != NULL; m = m->m_next) {
2902 		if (m->m_len != 0) {
2903 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2904 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2905 				    frag == (DC_TX_LIST_CNT - 1))
2906 					return(ENOBUFS);
2907 			}
2908 			if ((DC_TX_LIST_CNT -
2909 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
2910 				return(ENOBUFS);
2911 
2912 			f = &sc->dc_ldata->dc_tx_list[frag];
2913 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
2914 			if (cnt == 0) {
2915 				f->dc_status = 0;
2916 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
2917 			} else
2918 				f->dc_status = DC_TXSTAT_OWN;
2919 			f->dc_data = vtophys(mtod(m, vm_offset_t));
2920 			cur = frag;
2921 			DC_INC(frag, DC_TX_LIST_CNT);
2922 			cnt++;
2923 		}
2924 	}
2925 
2926 	if (m != NULL)
2927 		return(ENOBUFS);
2928 
2929 	sc->dc_cdata.dc_tx_cnt += cnt;
2930 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
2931 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
2932 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
2933 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
2934 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
2935 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2936 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
2937 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
2938 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
2939 	*txidx = frag;
2940 
2941 	return(0);
2942 }
2943 
2944 /*
2945  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2946  * to the mbuf data regions directly in the transmit lists. We also save a
2947  * copy of the pointers since the transmit list fragment pointers are
2948  * physical addresses.
2949  */
2950 
2951 static void dc_start(ifp)
2952 	struct ifnet		*ifp;
2953 {
2954 	struct dc_softc		*sc;
2955 	struct mbuf *m_head = NULL, *m_new;
2956 	int did_defrag, idx;
2957 
2958 	sc = ifp->if_softc;
2959 
2960 	if (!sc->dc_link)
2961 		return;
2962 
2963 	if (ifp->if_flags & IFF_OACTIVE)
2964 		return;
2965 
2966 	idx = sc->dc_cdata.dc_tx_prod;
2967 
2968 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
2969 		did_defrag = 0;
2970 		m_head = ifq_poll(&ifp->if_snd);
2971 		if (m_head == NULL)
2972 			break;
2973 
2974 		if (sc->dc_flags & DC_TX_COALESCE &&
2975 		    (m_head->m_next != NULL ||
2976 			sc->dc_flags & DC_TX_ALIGN)){
2977 			/*
2978 			 * Check first if coalescing allows us to queue
2979 			 * the packet. We don't want to loose it if
2980 			 * the TX queue is full.
2981 			 */
2982 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
2983 			    idx != sc->dc_cdata.dc_tx_prod &&
2984 			    idx == (DC_TX_LIST_CNT - 1)) {
2985 				ifp->if_flags |= IFF_OACTIVE;
2986 				break;
2987 			}
2988 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
2989 				ifp->if_flags |= IFF_OACTIVE;
2990 				break;
2991 			}
2992 
2993 			/* only coalesce if have >1 mbufs */
2994 			m_new = m_defrag_nofree(m_head, MB_DONTWAIT);
2995 			if (m_new == NULL) {
2996 				ifp->if_flags |= IFF_OACTIVE;
2997 				break;
2998 			}
2999 			m_freem(m_head);
3000 			m_head = m_new;
3001 			did_defrag = 1;
3002 		}
3003 
3004 		if (dc_encap(sc, m_head, &idx)) {
3005 			if (did_defrag) {
3006 				m_freem(m_head);
3007 				m_new = ifq_dequeue(&ifp->if_snd);
3008 				m_freem(m_new);
3009 			}
3010 			ifp->if_flags |= IFF_OACTIVE;
3011 			break;
3012 		}
3013 
3014 		m_new = ifq_dequeue(&ifp->if_snd);
3015 		if (did_defrag)
3016 			m_freem(m_new);
3017 
3018 		/*
3019 		 * If there's a BPF listener, bounce a copy of this frame
3020 		 * to him.
3021 		 */
3022 		BPF_MTAP(ifp, m_head);
3023 
3024 		if (sc->dc_flags & DC_TX_ONE) {
3025 			ifp->if_flags |= IFF_OACTIVE;
3026 			break;
3027 		}
3028 	}
3029 
3030 	/* Transmit */
3031 	sc->dc_cdata.dc_tx_prod = idx;
3032 	if (!(sc->dc_flags & DC_TX_POLL))
3033 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3034 
3035 	/*
3036 	 * Set a timeout in case the chip goes out to lunch.
3037 	 */
3038 	ifp->if_timer = 5;
3039 
3040 	return;
3041 }
3042 
3043 static void dc_init(xsc)
3044 	void			*xsc;
3045 {
3046 	struct dc_softc		*sc = xsc;
3047 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3048 	struct mii_data		*mii;
3049 
3050 	crit_enter();
3051 
3052 	mii = device_get_softc(sc->dc_miibus);
3053 
3054 	/*
3055 	 * Cancel pending I/O and free all RX/TX buffers.
3056 	 */
3057 	dc_stop(sc);
3058 	dc_reset(sc);
3059 
3060 	/*
3061 	 * Set cache alignment and burst length.
3062 	 */
3063 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3064 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3065 	else
3066 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3067 	/*
3068 	 * Evenly share the bus between receive and transmit process.
3069 	 */
3070 	if (DC_IS_INTEL(sc))
3071 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3072 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3073 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3074 	} else {
3075 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3076 	}
3077 	if (sc->dc_flags & DC_TX_POLL)
3078 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3079 	switch(sc->dc_cachesize) {
3080 	case 32:
3081 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3082 		break;
3083 	case 16:
3084 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3085 		break;
3086 	case 8:
3087 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3088 		break;
3089 	case 0:
3090 	default:
3091 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3092 		break;
3093 	}
3094 
3095 	if (sc->dc_flags & DC_TX_STORENFWD)
3096 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3097 	else {
3098 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3099 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3100 		} else {
3101 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3102 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3103 		}
3104 	}
3105 
3106 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3107 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3108 
3109 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3110 		/*
3111 		 * The app notes for the 98713 and 98715A say that
3112 		 * in order to have the chips operate properly, a magic
3113 		 * number must be written to CSR16. Macronix does not
3114 		 * document the meaning of these bits so there's no way
3115 		 * to know exactly what they do. The 98713 has a magic
3116 		 * number all its own; the rest all use a different one.
3117 		 */
3118 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3119 		if (sc->dc_type == DC_TYPE_98713)
3120 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3121 		else
3122 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3123 	}
3124 
3125 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3126 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3127 
3128 	/* Init circular RX list. */
3129 	if (dc_list_rx_init(sc) == ENOBUFS) {
3130 		if_printf(ifp, "initialization failed: no "
3131 			  "memory for rx buffers\n");
3132 		dc_stop(sc);
3133 		crit_exit();
3134 		return;
3135 	}
3136 
3137 	/*
3138 	 * Init tx descriptors.
3139 	 */
3140 	dc_list_tx_init(sc);
3141 
3142 	/*
3143 	 * Load the address of the RX list.
3144 	 */
3145 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3146 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3147 
3148 	/*
3149 	 * Enable interrupts.
3150 	 */
3151 #ifdef DEVICE_POLLING
3152 	/*
3153 	 * ... but only if we are not polling, and make sure they are off in
3154 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3155 	 * after a reset.
3156 	 */
3157 	if (ifp->if_flags & IFF_POLLING)
3158 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3159 	else
3160 #endif
3161 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3162 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3163 
3164 	/* Enable transmitter. */
3165 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3166 
3167 	/*
3168 	 * If this is an Intel 21143 and we're not using the
3169 	 * MII port, program the LED control pins so we get
3170 	 * link and activity indications.
3171 	 */
3172 	if (sc->dc_flags & DC_TULIP_LEDS) {
3173 		CSR_WRITE_4(sc, DC_WATCHDOG,
3174 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3175 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3176 	}
3177 
3178 	/*
3179 	 * Load the RX/multicast filter. We do this sort of late
3180 	 * because the filter programming scheme on the 21143 and
3181 	 * some clones requires DMAing a setup frame via the TX
3182 	 * engine, and we need the transmitter enabled for that.
3183 	 */
3184 	dc_setfilt(sc);
3185 
3186 	/* Enable receiver. */
3187 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3188 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3189 
3190 	mii_mediachg(mii);
3191 	dc_setcfg(sc, sc->dc_if_media);
3192 
3193 	ifp->if_flags |= IFF_RUNNING;
3194 	ifp->if_flags &= ~IFF_OACTIVE;
3195 
3196 	crit_exit();
3197 
3198 	/* Don't start the ticker if this is a homePNA link. */
3199 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3200 		sc->dc_link = 1;
3201 	else {
3202 		if (sc->dc_flags & DC_21143_NWAY)
3203 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3204 		else
3205 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3206 	}
3207 
3208 	return;
3209 }
3210 
3211 /*
3212  * Set media options.
3213  */
3214 static int dc_ifmedia_upd(ifp)
3215 	struct ifnet		*ifp;
3216 {
3217 	struct dc_softc		*sc;
3218 	struct mii_data		*mii;
3219 	struct ifmedia		*ifm;
3220 
3221 	sc = ifp->if_softc;
3222 	mii = device_get_softc(sc->dc_miibus);
3223 	mii_mediachg(mii);
3224 	ifm = &mii->mii_media;
3225 
3226 	if (DC_IS_DAVICOM(sc) &&
3227 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3228 		dc_setcfg(sc, ifm->ifm_media);
3229 	else
3230 		sc->dc_link = 0;
3231 
3232 	return(0);
3233 }
3234 
3235 /*
3236  * Report current media status.
3237  */
3238 static void dc_ifmedia_sts(ifp, ifmr)
3239 	struct ifnet		*ifp;
3240 	struct ifmediareq	*ifmr;
3241 {
3242 	struct dc_softc		*sc;
3243 	struct mii_data		*mii;
3244 	struct ifmedia		*ifm;
3245 
3246 	sc = ifp->if_softc;
3247 	mii = device_get_softc(sc->dc_miibus);
3248 	mii_pollstat(mii);
3249 	ifm = &mii->mii_media;
3250 	if (DC_IS_DAVICOM(sc)) {
3251 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3252 			ifmr->ifm_active = ifm->ifm_media;
3253 			ifmr->ifm_status = 0;
3254 			return;
3255 		}
3256 	}
3257 	ifmr->ifm_active = mii->mii_media_active;
3258 	ifmr->ifm_status = mii->mii_media_status;
3259 
3260 	return;
3261 }
3262 
3263 static int dc_ioctl(ifp, command, data, cr)
3264 	struct ifnet		*ifp;
3265 	u_long			command;
3266 	caddr_t			data;
3267 	struct ucred		*cr;
3268 {
3269 	struct dc_softc		*sc = ifp->if_softc;
3270 	struct ifreq		*ifr = (struct ifreq *) data;
3271 	struct mii_data		*mii;
3272 	int			error = 0;
3273 
3274 	crit_enter();
3275 
3276 	switch(command) {
3277 	case SIOCSIFFLAGS:
3278 		if (ifp->if_flags & IFF_UP) {
3279 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3280 				(IFF_PROMISC | IFF_ALLMULTI);
3281 			if (ifp->if_flags & IFF_RUNNING) {
3282 				if (need_setfilt)
3283 					dc_setfilt(sc);
3284 			} else {
3285 				sc->dc_txthresh = 0;
3286 				dc_init(sc);
3287 			}
3288 		} else {
3289 			if (ifp->if_flags & IFF_RUNNING)
3290 				dc_stop(sc);
3291 		}
3292 		sc->dc_if_flags = ifp->if_flags;
3293 		error = 0;
3294 		break;
3295 	case SIOCADDMULTI:
3296 	case SIOCDELMULTI:
3297 		dc_setfilt(sc);
3298 		error = 0;
3299 		break;
3300 	case SIOCGIFMEDIA:
3301 	case SIOCSIFMEDIA:
3302 		mii = device_get_softc(sc->dc_miibus);
3303 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3304 		break;
3305 	default:
3306 		error = ether_ioctl(ifp, command, data);
3307 		break;
3308 	}
3309 
3310 	crit_exit();
3311 
3312 	return(error);
3313 }
3314 
3315 static void dc_watchdog(ifp)
3316 	struct ifnet		*ifp;
3317 {
3318 	struct dc_softc		*sc;
3319 
3320 	sc = ifp->if_softc;
3321 
3322 	ifp->if_oerrors++;
3323 	if_printf(ifp, "watchdog timeout\n");
3324 
3325 	dc_stop(sc);
3326 	dc_reset(sc);
3327 	dc_init(sc);
3328 
3329 	if (!ifq_is_empty(&ifp->if_snd))
3330 		dc_start(ifp);
3331 
3332 	return;
3333 }
3334 
3335 /*
3336  * Stop the adapter and free any mbufs allocated to the
3337  * RX and TX lists.
3338  */
3339 static void dc_stop(sc)
3340 	struct dc_softc		*sc;
3341 {
3342 	int		i;
3343 	struct ifnet		*ifp;
3344 
3345 	ifp = &sc->arpcom.ac_if;
3346 	ifp->if_timer = 0;
3347 
3348 	callout_stop(&sc->dc_stat_timer);
3349 
3350 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3351 
3352 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3353 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3354 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3355 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3356 	sc->dc_link = 0;
3357 
3358 	/*
3359 	 * Free data in the RX lists.
3360 	 */
3361 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3362 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3363 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3364 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3365 		}
3366 	}
3367 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3368 		sizeof(sc->dc_ldata->dc_rx_list));
3369 
3370 	/*
3371 	 * Free the TX list buffers.
3372 	 */
3373 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3374 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3375 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3376 			    DC_TXCTL_SETUP) ||
3377 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3378 			    DC_TXCTL_LASTFRAG)) {
3379 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3380 				continue;
3381 			}
3382 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3383 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3384 		}
3385 	}
3386 
3387 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3388 		sizeof(sc->dc_ldata->dc_tx_list));
3389 
3390 	return;
3391 }
3392 
3393 /*
3394  * Stop all chip I/O so that the kernel's probe routines don't
3395  * get confused by errant DMAs when rebooting.
3396  */
3397 static void dc_shutdown(dev)
3398 	device_t		dev;
3399 {
3400 	struct dc_softc		*sc;
3401 
3402 	sc = device_get_softc(dev);
3403 
3404 	dc_stop(sc);
3405 
3406 	return;
3407 }
3408 
3409 /*
3410  * Device suspend routine.  Stop the interface and save some PCI
3411  * settings in case the BIOS doesn't restore them properly on
3412  * resume.
3413  */
3414 static int dc_suspend(dev)
3415 	device_t		dev;
3416 {
3417 	struct dc_softc	*sc = device_get_softc(dev);
3418 	int i;
3419 
3420 	crit_enter();
3421 
3422 	dc_stop(sc);
3423 
3424 	for (i = 0; i < 5; i++)
3425 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3426 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3427 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3428 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3429 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3430 
3431 	sc->suspended = 1;
3432 
3433 	crit_exit();
3434 	return (0);
3435 }
3436 
3437 /*
3438  * Device resume routine.  Restore some PCI settings in case the BIOS
3439  * doesn't, re-enable busmastering, and restart the interface if
3440  * appropriate.
3441  */
3442 static int dc_resume(dev)
3443 	device_t		dev;
3444 {
3445 	struct dc_softc *sc = device_get_softc(dev);
3446 	struct ifnet *ifp = &sc->arpcom.ac_if;
3447 	int i;
3448 
3449 	crit_enter();
3450 
3451 	dc_acpi(dev);
3452 
3453 	/* better way to do this? */
3454 	for (i = 0; i < 5; i++)
3455 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3456 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3457 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3458 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3459 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3460 
3461 	/* reenable busmastering */
3462 	pci_enable_busmaster(dev);
3463 	pci_enable_io(dev, DC_RES);
3464 
3465         /* reinitialize interface if necessary */
3466         if (ifp->if_flags & IFF_UP)
3467                 dc_init(sc);
3468 
3469 	sc->suspended = 0;
3470 
3471 	crit_exit();
3472 	return (0);
3473 }
3474