xref: /dragonfly/sys/dev/netif/dc/if_dc.c (revision 6e285212)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.2 2003/06/17 04:28:56 dillon Exp $
34  *
35  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
36  */
37 
38 /*
39  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
40  * series chips and several workalikes including the following:
41  *
42  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
43  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
44  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
45  * ASIX Electronics AX88140A (www.asix.com.tw)
46  * ASIX Electronics AX88141 (www.asix.com.tw)
47  * ADMtek AL981 (www.admtek.com.tw)
48  * ADMtek AN985 (www.admtek.com.tw)
49  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
50  * Accton EN1217 (www.accton.com)
51  * Conexant LANfinity (www.conexant.com)
52  *
53  * Datasheets for the 21143 are available at developer.intel.com.
54  * Datasheets for the clone parts can be found at their respective sites.
55  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
56  * The PNIC II is essentially a Macronix 98715A chip; the only difference
57  * worth noting is that its multicast hash table is only 128 bits wide
58  * instead of 512.
59  *
60  * Written by Bill Paul <wpaul@ee.columbia.edu>
61  * Electrical Engineering Department
62  * Columbia University, New York City
63  */
64 
65 /*
66  * The Intel 21143 is the successor to the DEC 21140. It is basically
67  * the same as the 21140 but with a few new features. The 21143 supports
68  * three kinds of media attachments:
69  *
70  * o MII port, for 10Mbps and 100Mbps support and NWAY
71  *   autonegotiation provided by an external PHY.
72  * o SYM port, for symbol mode 100Mbps support.
73  * o 10baseT port.
74  * o AUI/BNC port.
75  *
76  * The 100Mbps SYM port and 10baseT port can be used together in
77  * combination with the internal NWAY support to create a 10/100
78  * autosensing configuration.
79  *
80  * Note that not all tulip workalikes are handled in this driver: we only
81  * deal with those which are relatively well behaved. The Winbond is
82  * handled separately due to its different register offsets and the
83  * special handling needed for its various bugs. The PNIC is handled
84  * here, but I'm not thrilled about it.
85  *
86  * All of the workalike chips use some form of MII transceiver support
87  * with the exception of the Macronix chips, which also have a SYM port.
88  * The ASIX AX88140A is also documented to have a SYM port, but all
89  * the cards I've seen use an MII transceiver, probably because the
90  * AX88140A doesn't support internal NWAY.
91  */
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/sockio.h>
96 #include <sys/mbuf.h>
97 #include <sys/malloc.h>
98 #include <sys/kernel.h>
99 #include <sys/socket.h>
100 #include <sys/sysctl.h>
101 
102 #include <net/if.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 #include <net/if_vlan_var.h>
109 
110 #include <net/bpf.h>
111 
112 #include <vm/vm.h>              /* for vtophys */
113 #include <vm/pmap.h>            /* for vtophys */
114 #include <machine/clock.h>      /* for DELAY */
115 #include <machine/bus_pio.h>
116 #include <machine/bus_memio.h>
117 #include <machine/bus.h>
118 #include <machine/resource.h>
119 #include <sys/bus.h>
120 #include <sys/rman.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 
125 #include <pci/pcireg.h>
126 #include <pci/pcivar.h>
127 
128 #define DC_USEIOSPACE
129 #ifdef __alpha__
130 #define SRM_MEDIA
131 #endif
132 
133 #include <pci/if_dcreg.h>
134 
135 /* "controller miibus0" required.  See GENERIC if you get errors here. */
136 #include "miibus_if.h"
137 
138 /*
139  * Various supported device vendors/types and their names.
140  */
141 static struct dc_type dc_devs[] = {
142 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
143 		"Intel 21143 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
145 		"Davicom DM9009 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
147 		"Davicom DM9100 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
149 		"Davicom DM9102 10/100BaseTX" },
150 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
151 		"Davicom DM9102A 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
153 		"ADMtek AL981 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
155 		"ADMtek AN985 10/100BaseTX" },
156 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
157 		"ASIX AX88140A 10/100BaseTX" },
158 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
159 		"ASIX AX88141 10/100BaseTX" },
160 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
161 		"Macronix 98713 10/100BaseTX" },
162 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
163 		"Macronix 98713A 10/100BaseTX" },
164 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
165 		"Compex RL100-TX 10/100BaseTX" },
166 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
167 		"Compex RL100-TX 10/100BaseTX" },
168 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
169 		"Macronix 98715/98715A 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
171 		"Macronix 98715AEC-C 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
173 		"Macronix 98725 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
175 		"Macronix 98727/98732 10/100BaseTX" },
176 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
177 		"LC82C115 PNIC II 10/100BaseTX" },
178 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
179 		"82c168 PNIC 10/100BaseTX" },
180 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
181 		"82c169 PNIC 10/100BaseTX" },
182 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
183 		"Accton EN1217 10/100BaseTX" },
184 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
185 		"Accton EN2242 MiniPCI 10/100BaseTX" },
186 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
187 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
188 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
189 		"3Com OfficeConnect 10/100B" },
190 	{ 0, 0, NULL }
191 };
192 
193 static int dc_probe		__P((device_t));
194 static int dc_attach		__P((device_t));
195 static int dc_detach		__P((device_t));
196 static int dc_suspend		__P((device_t));
197 static int dc_resume		__P((device_t));
198 static void dc_acpi		__P((device_t));
199 static struct dc_type *dc_devtype	__P((device_t));
200 static int dc_newbuf		__P((struct dc_softc *, int, struct mbuf *));
201 static int dc_encap		__P((struct dc_softc *, struct mbuf *,
202 					u_int32_t *));
203 static int dc_coal		__P((struct dc_softc *, struct mbuf **));
204 static void dc_pnic_rx_bug_war	__P((struct dc_softc *, int));
205 static int dc_rx_resync		__P((struct dc_softc *));
206 static void dc_rxeof		__P((struct dc_softc *));
207 static void dc_txeof		__P((struct dc_softc *));
208 static void dc_tick		__P((void *));
209 static void dc_tx_underrun	__P((struct dc_softc *));
210 static void dc_intr		__P((void *));
211 static void dc_start		__P((struct ifnet *));
212 static int dc_ioctl		__P((struct ifnet *, u_long, caddr_t));
213 static void dc_init		__P((void *));
214 static void dc_stop		__P((struct dc_softc *));
215 static void dc_watchdog		__P((struct ifnet *));
216 static void dc_shutdown		__P((device_t));
217 static int dc_ifmedia_upd	__P((struct ifnet *));
218 static void dc_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
219 
220 static void dc_delay		__P((struct dc_softc *));
221 static void dc_eeprom_idle	__P((struct dc_softc *));
222 static void dc_eeprom_putbyte	__P((struct dc_softc *, int));
223 static void dc_eeprom_getword	__P((struct dc_softc *, int, u_int16_t *));
224 static void dc_eeprom_getword_pnic
225 				__P((struct dc_softc *, int, u_int16_t *));
226 static void dc_eeprom_width	__P((struct dc_softc *));
227 static void dc_read_eeprom	__P((struct dc_softc *, caddr_t, int,
228 							int, int));
229 
230 static void dc_mii_writebit	__P((struct dc_softc *, int));
231 static int dc_mii_readbit	__P((struct dc_softc *));
232 static void dc_mii_sync		__P((struct dc_softc *));
233 static void dc_mii_send		__P((struct dc_softc *, u_int32_t, int));
234 static int dc_mii_readreg	__P((struct dc_softc *, struct dc_mii_frame *));
235 static int dc_mii_writereg	__P((struct dc_softc *, struct dc_mii_frame *));
236 static int dc_miibus_readreg	__P((device_t, int, int));
237 static int dc_miibus_writereg	__P((device_t, int, int, int));
238 static void dc_miibus_statchg	__P((device_t));
239 static void dc_miibus_mediainit	__P((device_t));
240 
241 static void dc_setcfg		__P((struct dc_softc *, int));
242 static u_int32_t dc_crc_le	__P((struct dc_softc *, caddr_t));
243 static u_int32_t dc_crc_be	__P((caddr_t));
244 static void dc_setfilt_21143	__P((struct dc_softc *));
245 static void dc_setfilt_asix	__P((struct dc_softc *));
246 static void dc_setfilt_admtek	__P((struct dc_softc *));
247 
248 static void dc_setfilt		__P((struct dc_softc *));
249 
250 static void dc_reset		__P((struct dc_softc *));
251 static int dc_list_rx_init	__P((struct dc_softc *));
252 static int dc_list_tx_init	__P((struct dc_softc *));
253 
254 static void dc_read_srom	__P((struct dc_softc *, int));
255 static void dc_parse_21143_srom	__P((struct dc_softc *));
256 static void dc_decode_leaf_sia	__P((struct dc_softc *,
257 				    struct dc_eblock_sia *));
258 static void dc_decode_leaf_mii	__P((struct dc_softc *,
259 				    struct dc_eblock_mii *));
260 static void dc_decode_leaf_sym	__P((struct dc_softc *,
261 				    struct dc_eblock_sym *));
262 static void dc_apply_fixup	__P((struct dc_softc *, int));
263 
264 #ifdef DC_USEIOSPACE
265 #define DC_RES			SYS_RES_IOPORT
266 #define DC_RID			DC_PCI_CFBIO
267 #else
268 #define DC_RES			SYS_RES_MEMORY
269 #define DC_RID			DC_PCI_CFBMA
270 #endif
271 
272 static device_method_t dc_methods[] = {
273 	/* Device interface */
274 	DEVMETHOD(device_probe,		dc_probe),
275 	DEVMETHOD(device_attach,	dc_attach),
276 	DEVMETHOD(device_detach,	dc_detach),
277 	DEVMETHOD(device_suspend,	dc_suspend),
278 	DEVMETHOD(device_resume,	dc_resume),
279 	DEVMETHOD(device_shutdown,	dc_shutdown),
280 
281 	/* bus interface */
282 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
283 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
284 
285 	/* MII interface */
286 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
287 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
288 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
289 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
290 
291 	{ 0, 0 }
292 };
293 
294 static driver_t dc_driver = {
295 	"dc",
296 	dc_methods,
297 	sizeof(struct dc_softc)
298 };
299 
300 static devclass_t dc_devclass;
301 
302 #ifdef __i386__
303 static int dc_quick=1;
304 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
305 	&dc_quick,0,"do not mdevget in dc driver");
306 #endif
307 
308 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
309 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
310 
311 #define DC_SETBIT(sc, reg, x)				\
312 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
313 
314 #define DC_CLRBIT(sc, reg, x)				\
315 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
316 
317 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
318 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
319 
320 static void dc_delay(sc)
321 	struct dc_softc		*sc;
322 {
323 	int			idx;
324 
325 	for (idx = (300 / 33) + 1; idx > 0; idx--)
326 		CSR_READ_4(sc, DC_BUSCTL);
327 }
328 
329 static void dc_eeprom_width(sc)
330 	struct dc_softc		*sc;
331 {
332 	int i;
333 
334 	/* Force EEPROM to idle state. */
335 	dc_eeprom_idle(sc);
336 
337 	/* Enter EEPROM access mode. */
338 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
339 	dc_delay(sc);
340 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
341 	dc_delay(sc);
342 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
343 	dc_delay(sc);
344 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
345 	dc_delay(sc);
346 
347 	for (i = 3; i--;) {
348 		if (6 & (1 << i))
349 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
350 		else
351 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
352 		dc_delay(sc);
353 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
354 		dc_delay(sc);
355 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
356 		dc_delay(sc);
357 	}
358 
359 	for (i = 1; i <= 12; i++) {
360 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
361 		dc_delay(sc);
362 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
363 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
364 			dc_delay(sc);
365 			break;
366 		}
367 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
368 		dc_delay(sc);
369 	}
370 
371 	/* Turn off EEPROM access mode. */
372 	dc_eeprom_idle(sc);
373 
374 	if (i < 4 || i > 12)
375 		sc->dc_romwidth = 6;
376 	else
377 		sc->dc_romwidth = i;
378 
379 	/* Enter EEPROM access mode. */
380 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
381 	dc_delay(sc);
382 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
383 	dc_delay(sc);
384 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
385 	dc_delay(sc);
386 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
387 	dc_delay(sc);
388 
389 	/* Turn off EEPROM access mode. */
390 	dc_eeprom_idle(sc);
391 }
392 
393 static void dc_eeprom_idle(sc)
394 	struct dc_softc		*sc;
395 {
396 	register int		i;
397 
398 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
399 	dc_delay(sc);
400 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
401 	dc_delay(sc);
402 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
403 	dc_delay(sc);
404 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
405 	dc_delay(sc);
406 
407 	for (i = 0; i < 25; i++) {
408 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
409 		dc_delay(sc);
410 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
411 		dc_delay(sc);
412 	}
413 
414 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
415 	dc_delay(sc);
416 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
417 	dc_delay(sc);
418 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
419 
420 	return;
421 }
422 
423 /*
424  * Send a read command and address to the EEPROM, check for ACK.
425  */
426 static void dc_eeprom_putbyte(sc, addr)
427 	struct dc_softc		*sc;
428 	int			addr;
429 {
430 	register int		d, i;
431 
432 	d = DC_EECMD_READ >> 6;
433 	for (i = 3; i--; ) {
434 		if (d & (1 << i))
435 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
436 		else
437 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
438 		dc_delay(sc);
439 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
440 		dc_delay(sc);
441 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
442 		dc_delay(sc);
443 	}
444 
445 	/*
446 	 * Feed in each bit and strobe the clock.
447 	 */
448 	for (i = sc->dc_romwidth; i--;) {
449 		if (addr & (1 << i)) {
450 			SIO_SET(DC_SIO_EE_DATAIN);
451 		} else {
452 			SIO_CLR(DC_SIO_EE_DATAIN);
453 		}
454 		dc_delay(sc);
455 		SIO_SET(DC_SIO_EE_CLK);
456 		dc_delay(sc);
457 		SIO_CLR(DC_SIO_EE_CLK);
458 		dc_delay(sc);
459 	}
460 
461 	return;
462 }
463 
464 /*
465  * Read a word of data stored in the EEPROM at address 'addr.'
466  * The PNIC 82c168/82c169 has its own non-standard way to read
467  * the EEPROM.
468  */
469 static void dc_eeprom_getword_pnic(sc, addr, dest)
470 	struct dc_softc		*sc;
471 	int			addr;
472 	u_int16_t		*dest;
473 {
474 	register int		i;
475 	u_int32_t		r;
476 
477 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
478 
479 	for (i = 0; i < DC_TIMEOUT; i++) {
480 		DELAY(1);
481 		r = CSR_READ_4(sc, DC_SIO);
482 		if (!(r & DC_PN_SIOCTL_BUSY)) {
483 			*dest = (u_int16_t)(r & 0xFFFF);
484 			return;
485 		}
486 	}
487 
488 	return;
489 }
490 
491 /*
492  * Read a word of data stored in the EEPROM at address 'addr.'
493  */
494 static void dc_eeprom_getword(sc, addr, dest)
495 	struct dc_softc		*sc;
496 	int			addr;
497 	u_int16_t		*dest;
498 {
499 	register int		i;
500 	u_int16_t		word = 0;
501 
502 	/* Force EEPROM to idle state. */
503 	dc_eeprom_idle(sc);
504 
505 	/* Enter EEPROM access mode. */
506 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
507 	dc_delay(sc);
508 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
509 	dc_delay(sc);
510 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
511 	dc_delay(sc);
512 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
513 	dc_delay(sc);
514 
515 	/*
516 	 * Send address of word we want to read.
517 	 */
518 	dc_eeprom_putbyte(sc, addr);
519 
520 	/*
521 	 * Start reading bits from EEPROM.
522 	 */
523 	for (i = 0x8000; i; i >>= 1) {
524 		SIO_SET(DC_SIO_EE_CLK);
525 		dc_delay(sc);
526 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
527 			word |= i;
528 		dc_delay(sc);
529 		SIO_CLR(DC_SIO_EE_CLK);
530 		dc_delay(sc);
531 	}
532 
533 	/* Turn off EEPROM access mode. */
534 	dc_eeprom_idle(sc);
535 
536 	*dest = word;
537 
538 	return;
539 }
540 
541 /*
542  * Read a sequence of words from the EEPROM.
543  */
544 static void dc_read_eeprom(sc, dest, off, cnt, swap)
545 	struct dc_softc		*sc;
546 	caddr_t			dest;
547 	int			off;
548 	int			cnt;
549 	int			swap;
550 {
551 	int			i;
552 	u_int16_t		word = 0, *ptr;
553 
554 	for (i = 0; i < cnt; i++) {
555 		if (DC_IS_PNIC(sc))
556 			dc_eeprom_getword_pnic(sc, off + i, &word);
557 		else
558 			dc_eeprom_getword(sc, off + i, &word);
559 		ptr = (u_int16_t *)(dest + (i * 2));
560 		if (swap)
561 			*ptr = ntohs(word);
562 		else
563 			*ptr = word;
564 	}
565 
566 	return;
567 }
568 
569 /*
570  * The following two routines are taken from the Macronix 98713
571  * Application Notes pp.19-21.
572  */
573 /*
574  * Write a bit to the MII bus.
575  */
576 static void dc_mii_writebit(sc, bit)
577 	struct dc_softc		*sc;
578 	int			bit;
579 {
580 	if (bit)
581 		CSR_WRITE_4(sc, DC_SIO,
582 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
583 	else
584 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
585 
586 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
587 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
588 
589 	return;
590 }
591 
592 /*
593  * Read a bit from the MII bus.
594  */
595 static int dc_mii_readbit(sc)
596 	struct dc_softc		*sc;
597 {
598 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
599 	CSR_READ_4(sc, DC_SIO);
600 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
601 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
602 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
603 		return(1);
604 
605 	return(0);
606 }
607 
608 /*
609  * Sync the PHYs by setting data bit and strobing the clock 32 times.
610  */
611 static void dc_mii_sync(sc)
612 	struct dc_softc		*sc;
613 {
614 	register int		i;
615 
616 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
617 
618 	for (i = 0; i < 32; i++)
619 		dc_mii_writebit(sc, 1);
620 
621 	return;
622 }
623 
624 /*
625  * Clock a series of bits through the MII.
626  */
627 static void dc_mii_send(sc, bits, cnt)
628 	struct dc_softc		*sc;
629 	u_int32_t		bits;
630 	int			cnt;
631 {
632 	int			i;
633 
634 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
635 		dc_mii_writebit(sc, bits & i);
636 }
637 
638 /*
639  * Read an PHY register through the MII.
640  */
641 static int dc_mii_readreg(sc, frame)
642 	struct dc_softc		*sc;
643 	struct dc_mii_frame	*frame;
644 
645 {
646 	int			i, ack, s;
647 
648 	s = splimp();
649 
650 	/*
651 	 * Set up frame for RX.
652 	 */
653 	frame->mii_stdelim = DC_MII_STARTDELIM;
654 	frame->mii_opcode = DC_MII_READOP;
655 	frame->mii_turnaround = 0;
656 	frame->mii_data = 0;
657 
658 	/*
659 	 * Sync the PHYs.
660 	 */
661 	dc_mii_sync(sc);
662 
663 	/*
664 	 * Send command/address info.
665 	 */
666 	dc_mii_send(sc, frame->mii_stdelim, 2);
667 	dc_mii_send(sc, frame->mii_opcode, 2);
668 	dc_mii_send(sc, frame->mii_phyaddr, 5);
669 	dc_mii_send(sc, frame->mii_regaddr, 5);
670 
671 #ifdef notdef
672 	/* Idle bit */
673 	dc_mii_writebit(sc, 1);
674 	dc_mii_writebit(sc, 0);
675 #endif
676 
677 	/* Check for ack */
678 	ack = dc_mii_readbit(sc);
679 
680 	/*
681 	 * Now try reading data bits. If the ack failed, we still
682 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
683 	 */
684 	if (ack) {
685 		for(i = 0; i < 16; i++) {
686 			dc_mii_readbit(sc);
687 		}
688 		goto fail;
689 	}
690 
691 	for (i = 0x8000; i; i >>= 1) {
692 		if (!ack) {
693 			if (dc_mii_readbit(sc))
694 				frame->mii_data |= i;
695 		}
696 	}
697 
698 fail:
699 
700 	dc_mii_writebit(sc, 0);
701 	dc_mii_writebit(sc, 0);
702 
703 	splx(s);
704 
705 	if (ack)
706 		return(1);
707 	return(0);
708 }
709 
710 /*
711  * Write to a PHY register through the MII.
712  */
713 static int dc_mii_writereg(sc, frame)
714 	struct dc_softc		*sc;
715 	struct dc_mii_frame	*frame;
716 
717 {
718 	int			s;
719 
720 	s = splimp();
721 	/*
722 	 * Set up frame for TX.
723 	 */
724 
725 	frame->mii_stdelim = DC_MII_STARTDELIM;
726 	frame->mii_opcode = DC_MII_WRITEOP;
727 	frame->mii_turnaround = DC_MII_TURNAROUND;
728 
729 	/*
730 	 * Sync the PHYs.
731 	 */
732 	dc_mii_sync(sc);
733 
734 	dc_mii_send(sc, frame->mii_stdelim, 2);
735 	dc_mii_send(sc, frame->mii_opcode, 2);
736 	dc_mii_send(sc, frame->mii_phyaddr, 5);
737 	dc_mii_send(sc, frame->mii_regaddr, 5);
738 	dc_mii_send(sc, frame->mii_turnaround, 2);
739 	dc_mii_send(sc, frame->mii_data, 16);
740 
741 	/* Idle bit. */
742 	dc_mii_writebit(sc, 0);
743 	dc_mii_writebit(sc, 0);
744 
745 	splx(s);
746 
747 	return(0);
748 }
749 
750 static int dc_miibus_readreg(dev, phy, reg)
751 	device_t		dev;
752 	int			phy, reg;
753 {
754 	struct dc_mii_frame	frame;
755 	struct dc_softc		*sc;
756 	int			i, rval, phy_reg = 0;
757 
758 	sc = device_get_softc(dev);
759 	bzero((char *)&frame, sizeof(frame));
760 
761 	/*
762 	 * Note: both the AL981 and AN985 have internal PHYs,
763 	 * however the AL981 provides direct access to the PHY
764 	 * registers while the AN985 uses a serial MII interface.
765 	 * The AN985's MII interface is also buggy in that you
766 	 * can read from any MII address (0 to 31), but only address 1
767 	 * behaves normally. To deal with both cases, we pretend
768 	 * that the PHY is at MII address 1.
769 	 */
770 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
771 		return(0);
772 
773 	/*
774 	 * Note: the ukphy probes of the RS7112 report a PHY at
775 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
776 	 * so we only respond to correct one.
777 	 */
778 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
779 		return(0);
780 
781 	if (sc->dc_pmode != DC_PMODE_MII) {
782 		if (phy == (MII_NPHY - 1)) {
783 			switch(reg) {
784 			case MII_BMSR:
785 			/*
786 			 * Fake something to make the probe
787 			 * code think there's a PHY here.
788 			 */
789 				return(BMSR_MEDIAMASK);
790 				break;
791 			case MII_PHYIDR1:
792 				if (DC_IS_PNIC(sc))
793 					return(DC_VENDORID_LO);
794 				return(DC_VENDORID_DEC);
795 				break;
796 			case MII_PHYIDR2:
797 				if (DC_IS_PNIC(sc))
798 					return(DC_DEVICEID_82C168);
799 				return(DC_DEVICEID_21143);
800 				break;
801 			default:
802 				return(0);
803 				break;
804 			}
805 		} else
806 			return(0);
807 	}
808 
809 	if (DC_IS_PNIC(sc)) {
810 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
811 		    (phy << 23) | (reg << 18));
812 		for (i = 0; i < DC_TIMEOUT; i++) {
813 			DELAY(1);
814 			rval = CSR_READ_4(sc, DC_PN_MII);
815 			if (!(rval & DC_PN_MII_BUSY)) {
816 				rval &= 0xFFFF;
817 				return(rval == 0xFFFF ? 0 : rval);
818 			}
819 		}
820 		return(0);
821 	}
822 
823 	if (DC_IS_COMET(sc)) {
824 		switch(reg) {
825 		case MII_BMCR:
826 			phy_reg = DC_AL_BMCR;
827 			break;
828 		case MII_BMSR:
829 			phy_reg = DC_AL_BMSR;
830 			break;
831 		case MII_PHYIDR1:
832 			phy_reg = DC_AL_VENID;
833 			break;
834 		case MII_PHYIDR2:
835 			phy_reg = DC_AL_DEVID;
836 			break;
837 		case MII_ANAR:
838 			phy_reg = DC_AL_ANAR;
839 			break;
840 		case MII_ANLPAR:
841 			phy_reg = DC_AL_LPAR;
842 			break;
843 		case MII_ANER:
844 			phy_reg = DC_AL_ANER;
845 			break;
846 		default:
847 			printf("dc%d: phy_read: bad phy register %x\n",
848 			    sc->dc_unit, reg);
849 			return(0);
850 			break;
851 		}
852 
853 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
854 
855 		if (rval == 0xFFFF)
856 			return(0);
857 		return(rval);
858 	}
859 
860 	frame.mii_phyaddr = phy;
861 	frame.mii_regaddr = reg;
862 	if (sc->dc_type == DC_TYPE_98713) {
863 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
864 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
865 	}
866 	dc_mii_readreg(sc, &frame);
867 	if (sc->dc_type == DC_TYPE_98713)
868 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
869 
870 	return(frame.mii_data);
871 }
872 
873 static int dc_miibus_writereg(dev, phy, reg, data)
874 	device_t		dev;
875 	int			phy, reg, data;
876 {
877 	struct dc_softc		*sc;
878 	struct dc_mii_frame	frame;
879 	int			i, phy_reg = 0;
880 
881 	sc = device_get_softc(dev);
882 	bzero((char *)&frame, sizeof(frame));
883 
884 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
885 		return(0);
886 
887 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
888 		return(0);
889 
890 	if (DC_IS_PNIC(sc)) {
891 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
892 		    (phy << 23) | (reg << 10) | data);
893 		for (i = 0; i < DC_TIMEOUT; i++) {
894 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
895 				break;
896 		}
897 		return(0);
898 	}
899 
900 	if (DC_IS_COMET(sc)) {
901 		switch(reg) {
902 		case MII_BMCR:
903 			phy_reg = DC_AL_BMCR;
904 			break;
905 		case MII_BMSR:
906 			phy_reg = DC_AL_BMSR;
907 			break;
908 		case MII_PHYIDR1:
909 			phy_reg = DC_AL_VENID;
910 			break;
911 		case MII_PHYIDR2:
912 			phy_reg = DC_AL_DEVID;
913 			break;
914 		case MII_ANAR:
915 			phy_reg = DC_AL_ANAR;
916 			break;
917 		case MII_ANLPAR:
918 			phy_reg = DC_AL_LPAR;
919 			break;
920 		case MII_ANER:
921 			phy_reg = DC_AL_ANER;
922 			break;
923 		default:
924 			printf("dc%d: phy_write: bad phy register %x\n",
925 			    sc->dc_unit, reg);
926 			return(0);
927 			break;
928 		}
929 
930 		CSR_WRITE_4(sc, phy_reg, data);
931 		return(0);
932 	}
933 
934 	frame.mii_phyaddr = phy;
935 	frame.mii_regaddr = reg;
936 	frame.mii_data = data;
937 
938 	if (sc->dc_type == DC_TYPE_98713) {
939 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
940 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
941 	}
942 	dc_mii_writereg(sc, &frame);
943 	if (sc->dc_type == DC_TYPE_98713)
944 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
945 
946 	return(0);
947 }
948 
949 static void dc_miibus_statchg(dev)
950 	device_t		dev;
951 {
952 	struct dc_softc		*sc;
953 	struct mii_data		*mii;
954 	struct ifmedia		*ifm;
955 
956 	sc = device_get_softc(dev);
957 	if (DC_IS_ADMTEK(sc))
958 		return;
959 
960 	mii = device_get_softc(sc->dc_miibus);
961 	ifm = &mii->mii_media;
962 	if (DC_IS_DAVICOM(sc) &&
963 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
964 		dc_setcfg(sc, ifm->ifm_media);
965 		sc->dc_if_media = ifm->ifm_media;
966 	} else {
967 		dc_setcfg(sc, mii->mii_media_active);
968 		sc->dc_if_media = mii->mii_media_active;
969 	}
970 
971 	return;
972 }
973 
974 /*
975  * Special support for DM9102A cards with HomePNA PHYs. Note:
976  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
977  * to be impossible to talk to the management interface of the DM9801
978  * PHY (its MDIO pin is not connected to anything). Consequently,
979  * the driver has to just 'know' about the additional mode and deal
980  * with it itself. *sigh*
981  */
982 static void dc_miibus_mediainit(dev)
983 	device_t		dev;
984 {
985 	struct dc_softc		*sc;
986 	struct mii_data		*mii;
987 	struct ifmedia		*ifm;
988 	int			rev;
989 
990 	rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
991 
992 	sc = device_get_softc(dev);
993 	mii = device_get_softc(sc->dc_miibus);
994 	ifm = &mii->mii_media;
995 
996 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
997 		ifmedia_add(ifm, IFM_ETHER|IFM_homePNA, 0, NULL);
998 
999 	return;
1000 }
1001 
1002 #define DC_POLY		0xEDB88320
1003 #define DC_BITS_512	9
1004 #define DC_BITS_128	7
1005 #define DC_BITS_64	6
1006 
1007 static u_int32_t dc_crc_le(sc, addr)
1008 	struct dc_softc		*sc;
1009 	caddr_t			addr;
1010 {
1011 	u_int32_t		idx, bit, data, crc;
1012 
1013 	/* Compute CRC for the address value. */
1014 	crc = 0xFFFFFFFF; /* initial value */
1015 
1016 	for (idx = 0; idx < 6; idx++) {
1017 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1018 			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? DC_POLY : 0);
1019 	}
1020 
1021 	/*
1022 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1023 	 * chips is only 128 bits wide.
1024 	 */
1025 	if (sc->dc_flags & DC_128BIT_HASH)
1026 		return (crc & ((1 << DC_BITS_128) - 1));
1027 
1028 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1029 	if (sc->dc_flags & DC_64BIT_HASH)
1030 		return (crc & ((1 << DC_BITS_64) - 1));
1031 
1032 	return (crc & ((1 << DC_BITS_512) - 1));
1033 }
1034 
1035 /*
1036  * Calculate CRC of a multicast group address, return the lower 6 bits.
1037  */
1038 static u_int32_t dc_crc_be(addr)
1039 	caddr_t			addr;
1040 {
1041 	u_int32_t		crc, carry;
1042 	int			i, j;
1043 	u_int8_t		c;
1044 
1045 	/* Compute CRC for the address value. */
1046 	crc = 0xFFFFFFFF; /* initial value */
1047 
1048 	for (i = 0; i < 6; i++) {
1049 		c = *(addr + i);
1050 		for (j = 0; j < 8; j++) {
1051 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
1052 			crc <<= 1;
1053 			c >>= 1;
1054 			if (carry)
1055 				crc = (crc ^ 0x04c11db6) | carry;
1056 		}
1057 	}
1058 
1059 	/* return the filter bit position */
1060 	return((crc >> 26) & 0x0000003F);
1061 }
1062 
1063 /*
1064  * 21143-style RX filter setup routine. Filter programming is done by
1065  * downloading a special setup frame into the TX engine. 21143, Macronix,
1066  * PNIC, PNIC II and Davicom chips are programmed this way.
1067  *
1068  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1069  * address (our node address) and a 512-bit hash filter for multicast
1070  * frames. We also sneak the broadcast address into the hash filter since
1071  * we need that too.
1072  */
1073 void dc_setfilt_21143(sc)
1074 	struct dc_softc		*sc;
1075 {
1076 	struct dc_desc		*sframe;
1077 	u_int32_t		h, *sp;
1078 	struct ifmultiaddr	*ifma;
1079 	struct ifnet		*ifp;
1080 	int			i;
1081 
1082 	ifp = &sc->arpcom.ac_if;
1083 
1084 	i = sc->dc_cdata.dc_tx_prod;
1085 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1086 	sc->dc_cdata.dc_tx_cnt++;
1087 	sframe = &sc->dc_ldata->dc_tx_list[i];
1088 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1089 	bzero((char *)sp, DC_SFRAME_LEN);
1090 
1091 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1092 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1093 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1094 
1095 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1096 
1097 	/* If we want promiscuous mode, set the allframes bit. */
1098 	if (ifp->if_flags & IFF_PROMISC)
1099 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1100 	else
1101 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1102 
1103 	if (ifp->if_flags & IFF_ALLMULTI)
1104 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1105 	else
1106 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1107 
1108 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1109 	    ifma = ifma->ifma_link.le_next) {
1110 		if (ifma->ifma_addr->sa_family != AF_LINK)
1111 			continue;
1112 		h = dc_crc_le(sc,
1113 		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1114 		sp[h >> 4] |= 1 << (h & 0xF);
1115 	}
1116 
1117 	if (ifp->if_flags & IFF_BROADCAST) {
1118 		h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
1119 		sp[h >> 4] |= 1 << (h & 0xF);
1120 	}
1121 
1122 	/* Set our MAC address */
1123 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1124 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1125 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1126 
1127 	sframe->dc_status = DC_TXSTAT_OWN;
1128 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1129 
1130 	/*
1131 	 * The PNIC takes an exceedingly long time to process its
1132 	 * setup frame; wait 10ms after posting the setup frame
1133 	 * before proceeding, just so it has time to swallow its
1134 	 * medicine.
1135 	 */
1136 	DELAY(10000);
1137 
1138 	ifp->if_timer = 5;
1139 
1140 	return;
1141 }
1142 
1143 void dc_setfilt_admtek(sc)
1144 	struct dc_softc		*sc;
1145 {
1146 	struct ifnet		*ifp;
1147 	int			h = 0;
1148 	u_int32_t		hashes[2] = { 0, 0 };
1149 	struct ifmultiaddr	*ifma;
1150 
1151 	ifp = &sc->arpcom.ac_if;
1152 
1153 	/* Init our MAC address */
1154 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1155 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1156 
1157 	/* If we want promiscuous mode, set the allframes bit. */
1158 	if (ifp->if_flags & IFF_PROMISC)
1159 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1160 	else
1161 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1162 
1163 	if (ifp->if_flags & IFF_ALLMULTI)
1164 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1165 	else
1166 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1167 
1168 	/* first, zot all the existing hash bits */
1169 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1170 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1171 
1172 	/*
1173 	 * If we're already in promisc or allmulti mode, we
1174 	 * don't have to bother programming the multicast filter.
1175 	 */
1176 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1177 		return;
1178 
1179 	/* now program new ones */
1180 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1181 	    ifma = ifma->ifma_link.le_next) {
1182 		if (ifma->ifma_addr->sa_family != AF_LINK)
1183 			continue;
1184 		if (DC_IS_CENTAUR(sc))
1185 			h = dc_crc_le(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1186 		else
1187 			h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1188 		if (h < 32)
1189 			hashes[0] |= (1 << h);
1190 		else
1191 			hashes[1] |= (1 << (h - 32));
1192 	}
1193 
1194 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1195 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1196 
1197 	return;
1198 }
1199 
1200 void dc_setfilt_asix(sc)
1201 	struct dc_softc		*sc;
1202 {
1203 	struct ifnet		*ifp;
1204 	int			h = 0;
1205 	u_int32_t		hashes[2] = { 0, 0 };
1206 	struct ifmultiaddr	*ifma;
1207 
1208 	ifp = &sc->arpcom.ac_if;
1209 
1210         /* Init our MAC address */
1211         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1212         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1213 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1214         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1215         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1216 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1217 
1218 	/* If we want promiscuous mode, set the allframes bit. */
1219 	if (ifp->if_flags & IFF_PROMISC)
1220 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1221 	else
1222 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1223 
1224 	if (ifp->if_flags & IFF_ALLMULTI)
1225 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1226 	else
1227 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1228 
1229 	/*
1230 	 * The ASIX chip has a special bit to enable reception
1231 	 * of broadcast frames.
1232 	 */
1233 	if (ifp->if_flags & IFF_BROADCAST)
1234 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1235 	else
1236 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1237 
1238 	/* first, zot all the existing hash bits */
1239 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1240 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1241 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1242 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1243 
1244 	/*
1245 	 * If we're already in promisc or allmulti mode, we
1246 	 * don't have to bother programming the multicast filter.
1247 	 */
1248 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1249 		return;
1250 
1251 	/* now program new ones */
1252 	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
1253 	    ifma = ifma->ifma_link.le_next) {
1254 		if (ifma->ifma_addr->sa_family != AF_LINK)
1255 			continue;
1256 		h = dc_crc_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1257 		if (h < 32)
1258 			hashes[0] |= (1 << h);
1259 		else
1260 			hashes[1] |= (1 << (h - 32));
1261 	}
1262 
1263 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1264 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1265 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1266 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1267 
1268 	return;
1269 }
1270 
1271 static void dc_setfilt(sc)
1272 	struct dc_softc		*sc;
1273 {
1274 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1275 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1276 		dc_setfilt_21143(sc);
1277 
1278 	if (DC_IS_ASIX(sc))
1279 		dc_setfilt_asix(sc);
1280 
1281 	if (DC_IS_ADMTEK(sc))
1282 		dc_setfilt_admtek(sc);
1283 
1284 	return;
1285 }
1286 
1287 /*
1288  * In order to fiddle with the
1289  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1290  * first have to put the transmit and/or receive logic in the idle state.
1291  */
1292 static void dc_setcfg(sc, media)
1293 	struct dc_softc		*sc;
1294 	int			media;
1295 {
1296 	int			i, restart = 0;
1297 	u_int32_t		isr;
1298 
1299 	if (IFM_SUBTYPE(media) == IFM_NONE)
1300 		return;
1301 
1302 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1303 		restart = 1;
1304 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1305 
1306 		for (i = 0; i < DC_TIMEOUT; i++) {
1307 			isr = CSR_READ_4(sc, DC_ISR);
1308 			if (isr & DC_ISR_TX_IDLE ||
1309 			    (isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
1310 				break;
1311 			DELAY(10);
1312 		}
1313 
1314 		if (i == DC_TIMEOUT)
1315 			printf("dc%d: failed to force tx and "
1316 				"rx to idle state\n", sc->dc_unit);
1317 	}
1318 
1319 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1320 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1321 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1322 		if (sc->dc_pmode == DC_PMODE_MII) {
1323 			int	watchdogreg;
1324 
1325 			if (DC_IS_INTEL(sc)) {
1326 			/* there's a write enable bit here that reads as 1 */
1327 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1328 				watchdogreg &= ~DC_WDOG_CTLWREN;
1329 				watchdogreg |= DC_WDOG_JABBERDIS;
1330 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1331 			} else {
1332 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1333 			}
1334 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1335 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1336 			if (sc->dc_type == DC_TYPE_98713)
1337 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1338 				    DC_NETCFG_SCRAMBLER));
1339 			if (!DC_IS_DAVICOM(sc))
1340 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1341 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1342 			if (DC_IS_INTEL(sc))
1343 				dc_apply_fixup(sc, IFM_AUTO);
1344 		} else {
1345 			if (DC_IS_PNIC(sc)) {
1346 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1347 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1348 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1349 			}
1350 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1351 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1352 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1353 			if (DC_IS_INTEL(sc))
1354 				dc_apply_fixup(sc,
1355 				    (media & IFM_GMASK) == IFM_FDX ?
1356 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1357 		}
1358 	}
1359 
1360 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1361 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1362 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1363 		if (sc->dc_pmode == DC_PMODE_MII) {
1364 			int	watchdogreg;
1365 
1366 			/* there's a write enable bit here that reads as 1 */
1367 			if (DC_IS_INTEL(sc)) {
1368 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1369 				watchdogreg &= ~DC_WDOG_CTLWREN;
1370 				watchdogreg |= DC_WDOG_JABBERDIS;
1371 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1372 			} else {
1373 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1374 			}
1375 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1376 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1377 			if (sc->dc_type == DC_TYPE_98713)
1378 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1379 			if (!DC_IS_DAVICOM(sc))
1380 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1381 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1382 			if (DC_IS_INTEL(sc))
1383 				dc_apply_fixup(sc, IFM_AUTO);
1384 		} else {
1385 			if (DC_IS_PNIC(sc)) {
1386 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1387 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1388 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1389 			}
1390 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1391 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1392 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1393 			if (DC_IS_INTEL(sc)) {
1394 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1395 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1396 				if ((media & IFM_GMASK) == IFM_FDX)
1397 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1398 				else
1399 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1400 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1401 				DC_CLRBIT(sc, DC_10BTCTRL,
1402 				    DC_TCTL_AUTONEGENBL);
1403 				dc_apply_fixup(sc,
1404 				    (media & IFM_GMASK) == IFM_FDX ?
1405 				    IFM_10_T|IFM_FDX : IFM_10_T);
1406 				DELAY(20000);
1407 			}
1408 		}
1409 	}
1410 
1411 	/*
1412 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1413 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1414 	 * on the external MII port.
1415 	 */
1416 	if (DC_IS_DAVICOM(sc)) {
1417 		if (IFM_SUBTYPE(media) == IFM_homePNA) {
1418 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1419 			sc->dc_link = 1;
1420 		} else {
1421 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1422 		}
1423 	}
1424 
1425 	if ((media & IFM_GMASK) == IFM_FDX) {
1426 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1427 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1428 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1429 	} else {
1430 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1431 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1432 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1433 	}
1434 
1435 	if (restart)
1436 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1437 
1438 	return;
1439 }
1440 
1441 static void dc_reset(sc)
1442 	struct dc_softc		*sc;
1443 {
1444 	register int		i;
1445 
1446 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1447 
1448 	for (i = 0; i < DC_TIMEOUT; i++) {
1449 		DELAY(10);
1450 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1451 			break;
1452 	}
1453 
1454 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc)) {
1455 		DELAY(10000);
1456 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1457 		i = 0;
1458 	}
1459 
1460 	if (i == DC_TIMEOUT)
1461 		printf("dc%d: reset never completed!\n", sc->dc_unit);
1462 
1463 	/* Wait a little while for the chip to get its brains in order. */
1464 	DELAY(1000);
1465 
1466 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1467 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1468 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1469 
1470 	/*
1471 	 * Bring the SIA out of reset. In some cases, it looks
1472 	 * like failing to unreset the SIA soon enough gets it
1473 	 * into a state where it will never come out of reset
1474 	 * until we reset the whole chip again.
1475 	 */
1476 	if (DC_IS_INTEL(sc)) {
1477 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1478 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1479 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1480 	}
1481 
1482         return;
1483 }
1484 
1485 static struct dc_type *dc_devtype(dev)
1486 	device_t		dev;
1487 {
1488 	struct dc_type		*t;
1489 	u_int32_t		rev;
1490 
1491 	t = dc_devs;
1492 
1493 	while(t->dc_name != NULL) {
1494 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1495 		    (pci_get_device(dev) == t->dc_did)) {
1496 			/* Check the PCI revision */
1497 			rev = pci_read_config(dev, DC_PCI_CFRV, 4) & 0xFF;
1498 			if (t->dc_did == DC_DEVICEID_98713 &&
1499 			    rev >= DC_REVISION_98713A)
1500 				t++;
1501 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1502 			    rev >= DC_REVISION_98713A)
1503 				t++;
1504 			if (t->dc_did == DC_DEVICEID_987x5 &&
1505 			    rev >= DC_REVISION_98715AEC_C)
1506 				t++;
1507 			if (t->dc_did == DC_DEVICEID_987x5 &&
1508 			    rev >= DC_REVISION_98725)
1509 				t++;
1510 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1511 			    rev >= DC_REVISION_88141)
1512 				t++;
1513 			if (t->dc_did == DC_DEVICEID_82C168 &&
1514 			    rev >= DC_REVISION_82C169)
1515 				t++;
1516 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1517 			    rev >= DC_REVISION_DM9102A)
1518 				t++;
1519 			return(t);
1520 		}
1521 		t++;
1522 	}
1523 
1524 	return(NULL);
1525 }
1526 
1527 /*
1528  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1529  * IDs against our list and return a device name if we find a match.
1530  * We do a little bit of extra work to identify the exact type of
1531  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1532  * but different revision IDs. The same is true for 98715/98715A
1533  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1534  * cases, the exact chip revision affects driver behavior.
1535  */
1536 static int dc_probe(dev)
1537 	device_t		dev;
1538 {
1539 	struct dc_type		*t;
1540 
1541 	t = dc_devtype(dev);
1542 
1543 	if (t != NULL) {
1544 		device_set_desc(dev, t->dc_name);
1545 		return(0);
1546 	}
1547 
1548 	return(ENXIO);
1549 }
1550 
1551 static void dc_acpi(dev)
1552 	device_t		dev;
1553 {
1554 	u_int32_t		r, cptr;
1555 	int			unit;
1556 
1557 	unit = device_get_unit(dev);
1558 
1559 	/* Find the location of the capabilities block */
1560 	cptr = pci_read_config(dev, DC_PCI_CCAP, 4) & 0xFF;
1561 
1562 	r = pci_read_config(dev, cptr, 4) & 0xFF;
1563 	if (r == 0x01) {
1564 
1565 		r = pci_read_config(dev, cptr + 4, 4);
1566 		if (r & DC_PSTATE_D3) {
1567 			u_int32_t		iobase, membase, irq;
1568 
1569 			/* Save important PCI config data. */
1570 			iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1571 			membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1572 			irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1573 
1574 			/* Reset the power state. */
1575 			printf("dc%d: chip is in D%d power mode "
1576 			    "-- setting to D0\n", unit, r & DC_PSTATE_D3);
1577 			r &= 0xFFFFFFFC;
1578 			pci_write_config(dev, cptr + 4, r, 4);
1579 
1580 			/* Restore PCI config data. */
1581 			pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1582 			pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1583 			pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1584 		}
1585 	}
1586 	return;
1587 }
1588 
1589 static void dc_apply_fixup(sc, media)
1590 	struct dc_softc		*sc;
1591 	int			media;
1592 {
1593 	struct dc_mediainfo	*m;
1594 	u_int8_t		*p;
1595 	int			i;
1596 	u_int32_t		reg;
1597 
1598 	m = sc->dc_mi;
1599 
1600 	while (m != NULL) {
1601 		if (m->dc_media == media)
1602 			break;
1603 		m = m->dc_next;
1604 	}
1605 
1606 	if (m == NULL)
1607 		return;
1608 
1609 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1610 		reg = (p[0] | (p[1] << 8)) << 16;
1611 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1612 	}
1613 
1614 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1615 		reg = (p[0] | (p[1] << 8)) << 16;
1616 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1617 	}
1618 
1619 	return;
1620 }
1621 
1622 static void dc_decode_leaf_sia(sc, l)
1623 	struct dc_softc		*sc;
1624 	struct dc_eblock_sia	*l;
1625 {
1626 	struct dc_mediainfo	*m;
1627 
1628 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1629 	bzero(m, sizeof(struct dc_mediainfo));
1630 	if (l->dc_sia_code == DC_SIA_CODE_10BT)
1631 		m->dc_media = IFM_10_T;
1632 
1633 	if (l->dc_sia_code == DC_SIA_CODE_10BT_FDX)
1634 		m->dc_media = IFM_10_T|IFM_FDX;
1635 
1636 	if (l->dc_sia_code == DC_SIA_CODE_10B2)
1637 		m->dc_media = IFM_10_2;
1638 
1639 	if (l->dc_sia_code == DC_SIA_CODE_10B5)
1640 		m->dc_media = IFM_10_5;
1641 
1642 	m->dc_gp_len = 2;
1643 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sia_gpio_ctl;
1644 
1645 	m->dc_next = sc->dc_mi;
1646 	sc->dc_mi = m;
1647 
1648 	sc->dc_pmode = DC_PMODE_SIA;
1649 
1650 	return;
1651 }
1652 
1653 static void dc_decode_leaf_sym(sc, l)
1654 	struct dc_softc		*sc;
1655 	struct dc_eblock_sym	*l;
1656 {
1657 	struct dc_mediainfo	*m;
1658 
1659 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1660 	bzero(m, sizeof(struct dc_mediainfo));
1661 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1662 		m->dc_media = IFM_100_TX;
1663 
1664 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1665 		m->dc_media = IFM_100_TX|IFM_FDX;
1666 
1667 	m->dc_gp_len = 2;
1668 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1669 
1670 	m->dc_next = sc->dc_mi;
1671 	sc->dc_mi = m;
1672 
1673 	sc->dc_pmode = DC_PMODE_SYM;
1674 
1675 	return;
1676 }
1677 
1678 static void dc_decode_leaf_mii(sc, l)
1679 	struct dc_softc		*sc;
1680 	struct dc_eblock_mii	*l;
1681 {
1682 	u_int8_t		*p;
1683 	struct dc_mediainfo	*m;
1684 
1685 	m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT);
1686 	bzero(m, sizeof(struct dc_mediainfo));
1687 	/* We abuse IFM_AUTO to represent MII. */
1688 	m->dc_media = IFM_AUTO;
1689 	m->dc_gp_len = l->dc_gpr_len;
1690 
1691 	p = (u_int8_t *)l;
1692 	p += sizeof(struct dc_eblock_mii);
1693 	m->dc_gp_ptr = p;
1694 	p += 2 * l->dc_gpr_len;
1695 	m->dc_reset_len = *p;
1696 	p++;
1697 	m->dc_reset_ptr = p;
1698 
1699 	m->dc_next = sc->dc_mi;
1700 	sc->dc_mi = m;
1701 
1702 	return;
1703 }
1704 
1705 static void dc_read_srom(sc, bits)
1706 	struct dc_softc		*sc;
1707 	int			bits;
1708 {
1709 	int size;
1710 
1711 	size = 2 << bits;
1712 	sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
1713 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1714 }
1715 
1716 static void dc_parse_21143_srom(sc)
1717 	struct dc_softc		*sc;
1718 {
1719 	struct dc_leaf_hdr	*lhdr;
1720 	struct dc_eblock_hdr	*hdr;
1721 	int			i, loff;
1722 	char			*ptr;
1723 	int			have_mii;
1724 
1725 	have_mii = 0;
1726 	loff = sc->dc_srom[27];
1727 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1728 
1729 	ptr = (char *)lhdr;
1730 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1731 	/*
1732 	 * Look if we got a MII media block.
1733 	 */
1734 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1735 		hdr = (struct dc_eblock_hdr *)ptr;
1736 		if (hdr->dc_type == DC_EBLOCK_MII)
1737 		    have_mii++;
1738 
1739 		ptr += (hdr->dc_len & 0x7F);
1740 		ptr++;
1741 	}
1742 
1743 	/*
1744 	 * Do the same thing again. Only use SIA and SYM media
1745 	 * blocks if no MII media block is available.
1746 	 */
1747 	ptr = (char *)lhdr;
1748 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1749 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1750 		hdr = (struct dc_eblock_hdr *)ptr;
1751 		switch(hdr->dc_type) {
1752 		case DC_EBLOCK_MII:
1753 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1754 			break;
1755 		case DC_EBLOCK_SIA:
1756 			if (! have_mii)
1757 				dc_decode_leaf_sia(sc,
1758 				    (struct dc_eblock_sia *)hdr);
1759 			break;
1760 		case DC_EBLOCK_SYM:
1761 			if (! have_mii)
1762 				dc_decode_leaf_sym(sc,
1763 				    (struct dc_eblock_sym *)hdr);
1764 			break;
1765 		default:
1766 			/* Don't care. Yet. */
1767 			break;
1768 		}
1769 		ptr += (hdr->dc_len & 0x7F);
1770 		ptr++;
1771 	}
1772 
1773 	return;
1774 }
1775 
1776 /*
1777  * Attach the interface. Allocate softc structures, do ifmedia
1778  * setup and ethernet/BPF attach.
1779  */
1780 static int dc_attach(dev)
1781 	device_t		dev;
1782 {
1783 	int			s, tmp = 0;
1784 	u_char			eaddr[ETHER_ADDR_LEN];
1785 	u_int32_t		command;
1786 	struct dc_softc		*sc;
1787 	struct ifnet		*ifp;
1788 	u_int32_t		revision;
1789 	int			unit, error = 0, rid, mac_offset;
1790 
1791 	s = splimp();
1792 
1793 	sc = device_get_softc(dev);
1794 	unit = device_get_unit(dev);
1795 	bzero(sc, sizeof(struct dc_softc));
1796 
1797 	/*
1798 	 * Handle power management nonsense.
1799 	 */
1800 	dc_acpi(dev);
1801 
1802 	/*
1803 	 * Map control/status registers.
1804 	 */
1805 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1806 	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1807 	pci_write_config(dev, PCIR_COMMAND, command, 4);
1808 	command = pci_read_config(dev, PCIR_COMMAND, 4);
1809 
1810 #ifdef DC_USEIOSPACE
1811 	if (!(command & PCIM_CMD_PORTEN)) {
1812 		printf("dc%d: failed to enable I/O ports!\n", unit);
1813 		error = ENXIO;
1814 		goto fail;
1815 	}
1816 #else
1817 	if (!(command & PCIM_CMD_MEMEN)) {
1818 		printf("dc%d: failed to enable memory mapping!\n", unit);
1819 		error = ENXIO;
1820 		goto fail;
1821 	}
1822 #endif
1823 
1824 	rid = DC_RID;
1825 	sc->dc_res = bus_alloc_resource(dev, DC_RES, &rid,
1826 	    0, ~0, 1, RF_ACTIVE);
1827 
1828 	if (sc->dc_res == NULL) {
1829 		printf("dc%d: couldn't map ports/memory\n", unit);
1830 		error = ENXIO;
1831 		goto fail;
1832 	}
1833 
1834 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1835 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1836 
1837 	/* Allocate interrupt */
1838 	rid = 0;
1839 	sc->dc_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1840 	    RF_SHAREABLE | RF_ACTIVE);
1841 
1842 	if (sc->dc_irq == NULL) {
1843 		printf("dc%d: couldn't map interrupt\n", unit);
1844 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1845 		error = ENXIO;
1846 		goto fail;
1847 	}
1848 
1849 	error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET,
1850 	    dc_intr, sc, &sc->dc_intrhand);
1851 
1852 	if (error) {
1853 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
1854 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
1855 		printf("dc%d: couldn't set up irq\n", unit);
1856 		goto fail;
1857 	}
1858 
1859 	/* Need this info to decide on a chip type. */
1860 	sc->dc_info = dc_devtype(dev);
1861 	revision = pci_read_config(dev, DC_PCI_CFRV, 4) & 0x000000FF;
1862 
1863 	/* Get the eeprom width, but PNIC has diff eeprom */
1864 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168)
1865 		dc_eeprom_width(sc);
1866 
1867 	switch(sc->dc_info->dc_did) {
1868 	case DC_DEVICEID_21143:
1869 		sc->dc_type = DC_TYPE_21143;
1870 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1871 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1872 		/* Save EEPROM contents so we can parse them later. */
1873 		dc_read_srom(sc, sc->dc_romwidth);
1874 		break;
1875 	case DC_DEVICEID_DM9009:
1876 	case DC_DEVICEID_DM9100:
1877 	case DC_DEVICEID_DM9102:
1878 		sc->dc_type = DC_TYPE_DM9102;
1879 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1880 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1881 		sc->dc_pmode = DC_PMODE_MII;
1882 		/* Increase the latency timer value. */
1883 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1884 		command &= 0xFFFF00FF;
1885 		command |= 0x00008000;
1886 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1887 		break;
1888 	case DC_DEVICEID_AL981:
1889 		sc->dc_type = DC_TYPE_AL981;
1890 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1891 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1892 		sc->dc_pmode = DC_PMODE_MII;
1893 		dc_read_srom(sc, sc->dc_romwidth);
1894 		break;
1895 	case DC_DEVICEID_AN985:
1896 	case DC_DEVICEID_EN2242:
1897 	case DC_DEVICEID_3CSOHOB:
1898 		sc->dc_type = DC_TYPE_AN985;
1899 		sc->dc_flags |= DC_64BIT_HASH;
1900 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1901 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1902 		sc->dc_pmode = DC_PMODE_MII;
1903 		dc_read_srom(sc, sc->dc_romwidth);
1904 		break;
1905 	case DC_DEVICEID_98713:
1906 	case DC_DEVICEID_98713_CP:
1907 		if (revision < DC_REVISION_98713A) {
1908 			sc->dc_type = DC_TYPE_98713;
1909 		}
1910 		if (revision >= DC_REVISION_98713A) {
1911 			sc->dc_type = DC_TYPE_98713A;
1912 			sc->dc_flags |= DC_21143_NWAY;
1913 		}
1914 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1915 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1916 		break;
1917 	case DC_DEVICEID_987x5:
1918 	case DC_DEVICEID_EN1217:
1919 		/*
1920 		 * Macronix MX98715AEC-C/D/E parts have only a
1921 		 * 128-bit hash table. We need to deal with these
1922 		 * in the same manner as the PNIC II so that we
1923 		 * get the right number of bits out of the
1924 		 * CRC routine.
1925 		 */
1926 		if (revision >= DC_REVISION_98715AEC_C &&
1927 		    revision < DC_REVISION_98725)
1928 			sc->dc_flags |= DC_128BIT_HASH;
1929 		sc->dc_type = DC_TYPE_987x5;
1930 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1931 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1932 		break;
1933 	case DC_DEVICEID_98727:
1934 		sc->dc_type = DC_TYPE_987x5;
1935 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1936 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1937 		break;
1938 	case DC_DEVICEID_82C115:
1939 		sc->dc_type = DC_TYPE_PNICII;
1940 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1941 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1942 		break;
1943 	case DC_DEVICEID_82C168:
1944 		sc->dc_type = DC_TYPE_PNIC;
1945 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1946 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1947 		sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
1948 		if (revision < DC_REVISION_82C169)
1949 			sc->dc_pmode = DC_PMODE_SYM;
1950 		break;
1951 	case DC_DEVICEID_AX88140A:
1952 		sc->dc_type = DC_TYPE_ASIX;
1953 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1954 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1955 		sc->dc_pmode = DC_PMODE_MII;
1956 		break;
1957 	case DC_DEVICEID_RS7112:
1958 		sc->dc_type = DC_TYPE_CONEXANT;
1959 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1960 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1961 		sc->dc_pmode = DC_PMODE_MII;
1962 		dc_read_srom(sc, sc->dc_romwidth);
1963 		break;
1964 	default:
1965 		printf("dc%d: unknown device: %x\n", sc->dc_unit,
1966 		    sc->dc_info->dc_did);
1967 		break;
1968 	}
1969 
1970 	/* Save the cache line size. */
1971 	if (DC_IS_DAVICOM(sc))
1972 		sc->dc_cachesize = 0;
1973 	else
1974 		sc->dc_cachesize = pci_read_config(dev,
1975 		    DC_PCI_CFLT, 4) & 0xFF;
1976 
1977 	/* Reset the adapter. */
1978 	dc_reset(sc);
1979 
1980 	/* Take 21143 out of snooze mode */
1981 	if (DC_IS_INTEL(sc)) {
1982 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
1983 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
1984 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
1985 	}
1986 
1987 	/*
1988 	 * Try to learn something about the supported media.
1989 	 * We know that ASIX and ADMtek and Davicom devices
1990 	 * will *always* be using MII media, so that's a no-brainer.
1991 	 * The tricky ones are the Macronix/PNIC II and the
1992 	 * Intel 21143.
1993 	 */
1994 	if (DC_IS_INTEL(sc))
1995 		dc_parse_21143_srom(sc);
1996 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
1997 		if (sc->dc_type == DC_TYPE_98713)
1998 			sc->dc_pmode = DC_PMODE_MII;
1999 		else
2000 			sc->dc_pmode = DC_PMODE_SYM;
2001 	} else if (!sc->dc_pmode)
2002 		sc->dc_pmode = DC_PMODE_MII;
2003 
2004 	/*
2005 	 * Get station address from the EEPROM.
2006 	 */
2007 	switch(sc->dc_type) {
2008 	case DC_TYPE_98713:
2009 	case DC_TYPE_98713A:
2010 	case DC_TYPE_987x5:
2011 	case DC_TYPE_PNICII:
2012 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2013 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2014 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2015 		break;
2016 	case DC_TYPE_PNIC:
2017 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2018 		break;
2019 	case DC_TYPE_DM9102:
2020 	case DC_TYPE_21143:
2021 	case DC_TYPE_ASIX:
2022 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2023 		break;
2024 	case DC_TYPE_AL981:
2025 	case DC_TYPE_AN985:
2026 		bcopy(&sc->dc_srom[DC_AL_EE_NODEADDR], (caddr_t)&eaddr,
2027 		    ETHER_ADDR_LEN);
2028 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_AL_EE_NODEADDR, 3, 0);
2029 		break;
2030 	case DC_TYPE_CONEXANT:
2031 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2032 		break;
2033 	default:
2034 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2035 		break;
2036 	}
2037 
2038 	/*
2039 	 * A 21143 or clone chip was detected. Inform the world.
2040 	 */
2041 	printf("dc%d: Ethernet address: %6D\n", unit, eaddr, ":");
2042 
2043 	sc->dc_unit = unit;
2044 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
2045 
2046 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2047 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
2048 
2049 	if (sc->dc_ldata == NULL) {
2050 		printf("dc%d: no memory for list buffers!\n", unit);
2051 		if (sc->dc_pnic_rx_buf != NULL)
2052 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2053 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2054 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2055 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2056 		error = ENXIO;
2057 		goto fail;
2058 	}
2059 
2060 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2061 
2062 	ifp = &sc->arpcom.ac_if;
2063 	ifp->if_softc = sc;
2064 	ifp->if_unit = unit;
2065 	ifp->if_name = "dc";
2066 	ifp->if_mtu = ETHERMTU;
2067 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2068 	ifp->if_ioctl = dc_ioctl;
2069 	ifp->if_output = ether_output;
2070 	ifp->if_start = dc_start;
2071 	ifp->if_watchdog = dc_watchdog;
2072 	ifp->if_init = dc_init;
2073 	ifp->if_baudrate = 10000000;
2074 	ifp->if_snd.ifq_maxlen = DC_TX_LIST_CNT - 1;
2075 
2076 	/*
2077 	 * Do MII setup. If this is a 21143, check for a PHY on the
2078 	 * MII bus after applying any necessary fixups to twiddle the
2079 	 * GPIO bits. If we don't end up finding a PHY, restore the
2080 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2081 	 * driver instead.
2082 	 */
2083 	if (DC_IS_INTEL(sc)) {
2084 		dc_apply_fixup(sc, IFM_AUTO);
2085 		tmp = sc->dc_pmode;
2086 		sc->dc_pmode = DC_PMODE_MII;
2087 	}
2088 
2089 	error = mii_phy_probe(dev, &sc->dc_miibus,
2090 	    dc_ifmedia_upd, dc_ifmedia_sts);
2091 
2092 	if (error && DC_IS_INTEL(sc)) {
2093 		sc->dc_pmode = tmp;
2094 		if (sc->dc_pmode != DC_PMODE_SIA)
2095 			sc->dc_pmode = DC_PMODE_SYM;
2096 		sc->dc_flags |= DC_21143_NWAY;
2097 		mii_phy_probe(dev, &sc->dc_miibus,
2098 		    dc_ifmedia_upd, dc_ifmedia_sts);
2099 		/*
2100 		 * For non-MII cards, we need to have the 21143
2101 		 * drive the LEDs. Except there are some systems
2102 		 * like the NEC VersaPro NoteBook PC which have no
2103 		 * LEDs, and twiddling these bits has adverse effects
2104 		 * on them. (I.e. you suddenly can't get a link.)
2105 		 */
2106 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2107 			sc->dc_flags |= DC_TULIP_LEDS;
2108 		error = 0;
2109 	}
2110 
2111 	if (error) {
2112 		printf("dc%d: MII without any PHY!\n", sc->dc_unit);
2113 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data),
2114 		    M_DEVBUF);
2115 		if (sc->dc_pnic_rx_buf != NULL)
2116 			free(sc->dc_pnic_rx_buf, M_DEVBUF);
2117 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2118 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2119 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2120 		error = ENXIO;
2121 		goto fail;
2122 	}
2123 
2124 	/*
2125 	 * Call MI attach routine.
2126 	 */
2127 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
2128 	callout_handle_init(&sc->dc_stat_ch);
2129 
2130 	if (DC_IS_ADMTEK(sc)) {
2131 		/*
2132 		 * Set automatic TX underrun recovery for the ADMtek chips
2133 		 */
2134 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2135 	}
2136 
2137 	/*
2138 	 * Tell the upper layer(s) we support long frames.
2139 	 */
2140 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2141 
2142 #ifdef SRM_MEDIA
2143         sc->dc_srm_media = 0;
2144 
2145 	/* Remember the SRM console media setting */
2146 	if (DC_IS_INTEL(sc)) {
2147 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2148 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2149 		switch ((command >> 8) & 0xff) {
2150 		case 3:
2151 			sc->dc_srm_media = IFM_10_T;
2152 			break;
2153 		case 4:
2154 			sc->dc_srm_media = IFM_10_T | IFM_FDX;
2155 			break;
2156 		case 5:
2157 			sc->dc_srm_media = IFM_100_TX;
2158 			break;
2159 		case 6:
2160 			sc->dc_srm_media = IFM_100_TX | IFM_FDX;
2161 			break;
2162 		}
2163 		if (sc->dc_srm_media)
2164 			sc->dc_srm_media |= IFM_ACTIVE | IFM_ETHER;
2165 	}
2166 #endif
2167 
2168 
2169 fail:
2170 	splx(s);
2171 
2172 	return(error);
2173 }
2174 
2175 static int dc_detach(dev)
2176 	device_t		dev;
2177 {
2178 	struct dc_softc		*sc;
2179 	struct ifnet		*ifp;
2180 	int			s;
2181 	struct dc_mediainfo	*m;
2182 
2183 	s = splimp();
2184 
2185 	sc = device_get_softc(dev);
2186 	ifp = &sc->arpcom.ac_if;
2187 
2188 	dc_stop(sc);
2189 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
2190 
2191 	bus_generic_detach(dev);
2192 	device_delete_child(dev, sc->dc_miibus);
2193 
2194 	bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2195 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2196 	bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2197 
2198 	contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2199 	if (sc->dc_pnic_rx_buf != NULL)
2200 		free(sc->dc_pnic_rx_buf, M_DEVBUF);
2201 
2202 	while(sc->dc_mi != NULL) {
2203 		m = sc->dc_mi->dc_next;
2204 		free(sc->dc_mi, M_DEVBUF);
2205 		sc->dc_mi = m;
2206 	}
2207 	free(sc->dc_srom, M_DEVBUF);
2208 
2209 	splx(s);
2210 
2211 	return(0);
2212 }
2213 
2214 /*
2215  * Initialize the transmit descriptors.
2216  */
2217 static int dc_list_tx_init(sc)
2218 	struct dc_softc		*sc;
2219 {
2220 	struct dc_chain_data	*cd;
2221 	struct dc_list_data	*ld;
2222 	int			i;
2223 
2224 	cd = &sc->dc_cdata;
2225 	ld = sc->dc_ldata;
2226 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2227 		if (i == (DC_TX_LIST_CNT - 1)) {
2228 			ld->dc_tx_list[i].dc_next =
2229 			    vtophys(&ld->dc_tx_list[0]);
2230 		} else {
2231 			ld->dc_tx_list[i].dc_next =
2232 			    vtophys(&ld->dc_tx_list[i + 1]);
2233 		}
2234 		cd->dc_tx_chain[i] = NULL;
2235 		ld->dc_tx_list[i].dc_data = 0;
2236 		ld->dc_tx_list[i].dc_ctl = 0;
2237 	}
2238 
2239 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2240 
2241 	return(0);
2242 }
2243 
2244 
2245 /*
2246  * Initialize the RX descriptors and allocate mbufs for them. Note that
2247  * we arrange the descriptors in a closed ring, so that the last descriptor
2248  * points back to the first.
2249  */
2250 static int dc_list_rx_init(sc)
2251 	struct dc_softc		*sc;
2252 {
2253 	struct dc_chain_data	*cd;
2254 	struct dc_list_data	*ld;
2255 	int			i;
2256 
2257 	cd = &sc->dc_cdata;
2258 	ld = sc->dc_ldata;
2259 
2260 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2261 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2262 			return(ENOBUFS);
2263 		if (i == (DC_RX_LIST_CNT - 1)) {
2264 			ld->dc_rx_list[i].dc_next =
2265 			    vtophys(&ld->dc_rx_list[0]);
2266 		} else {
2267 			ld->dc_rx_list[i].dc_next =
2268 			    vtophys(&ld->dc_rx_list[i + 1]);
2269 		}
2270 	}
2271 
2272 	cd->dc_rx_prod = 0;
2273 
2274 	return(0);
2275 }
2276 
2277 /*
2278  * Initialize an RX descriptor and attach an MBUF cluster.
2279  */
2280 static int dc_newbuf(sc, i, m)
2281 	struct dc_softc		*sc;
2282 	int			i;
2283 	struct mbuf		*m;
2284 {
2285 	struct mbuf		*m_new = NULL;
2286 	struct dc_desc		*c;
2287 
2288 	c = &sc->dc_ldata->dc_rx_list[i];
2289 
2290 	if (m == NULL) {
2291 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
2292 		if (m_new == NULL)
2293 			return(ENOBUFS);
2294 
2295 		MCLGET(m_new, M_DONTWAIT);
2296 		if (!(m_new->m_flags & M_EXT)) {
2297 			m_freem(m_new);
2298 			return(ENOBUFS);
2299 		}
2300 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2301 	} else {
2302 		m_new = m;
2303 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2304 		m_new->m_data = m_new->m_ext.ext_buf;
2305 	}
2306 
2307 	m_adj(m_new, sizeof(u_int64_t));
2308 
2309 	/*
2310 	 * If this is a PNIC chip, zero the buffer. This is part
2311 	 * of the workaround for the receive bug in the 82c168 and
2312 	 * 82c169 chips.
2313 	 */
2314 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2315 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2316 
2317 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2318 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2319 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2320 	c->dc_status = DC_RXSTAT_OWN;
2321 
2322 	return(0);
2323 }
2324 
2325 /*
2326  * Grrrrr.
2327  * The PNIC chip has a terrible bug in it that manifests itself during
2328  * periods of heavy activity. The exact mode of failure if difficult to
2329  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2330  * will happen on slow machines. The bug is that sometimes instead of
2331  * uploading one complete frame during reception, it uploads what looks
2332  * like the entire contents of its FIFO memory. The frame we want is at
2333  * the end of the whole mess, but we never know exactly how much data has
2334  * been uploaded, so salvaging the frame is hard.
2335  *
2336  * There is only one way to do it reliably, and it's disgusting.
2337  * Here's what we know:
2338  *
2339  * - We know there will always be somewhere between one and three extra
2340  *   descriptors uploaded.
2341  *
2342  * - We know the desired received frame will always be at the end of the
2343  *   total data upload.
2344  *
2345  * - We know the size of the desired received frame because it will be
2346  *   provided in the length field of the status word in the last descriptor.
2347  *
2348  * Here's what we do:
2349  *
2350  * - When we allocate buffers for the receive ring, we bzero() them.
2351  *   This means that we know that the buffer contents should be all
2352  *   zeros, except for data uploaded by the chip.
2353  *
2354  * - We also force the PNIC chip to upload frames that include the
2355  *   ethernet CRC at the end.
2356  *
2357  * - We gather all of the bogus frame data into a single buffer.
2358  *
2359  * - We then position a pointer at the end of this buffer and scan
2360  *   backwards until we encounter the first non-zero byte of data.
2361  *   This is the end of the received frame. We know we will encounter
2362  *   some data at the end of the frame because the CRC will always be
2363  *   there, so even if the sender transmits a packet of all zeros,
2364  *   we won't be fooled.
2365  *
2366  * - We know the size of the actual received frame, so we subtract
2367  *   that value from the current pointer location. This brings us
2368  *   to the start of the actual received packet.
2369  *
2370  * - We copy this into an mbuf and pass it on, along with the actual
2371  *   frame length.
2372  *
2373  * The performance hit is tremendous, but it beats dropping frames all
2374  * the time.
2375  */
2376 
2377 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2378 static void dc_pnic_rx_bug_war(sc, idx)
2379 	struct dc_softc		*sc;
2380 	int			idx;
2381 {
2382 	struct dc_desc		*cur_rx;
2383 	struct dc_desc		*c = NULL;
2384 	struct mbuf		*m = NULL;
2385 	unsigned char		*ptr;
2386 	int			i, total_len;
2387 	u_int32_t		rxstat = 0;
2388 
2389 	i = sc->dc_pnic_rx_bug_save;
2390 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2391 	ptr = sc->dc_pnic_rx_buf;
2392 	bzero(ptr, DC_RXLEN * 5);
2393 
2394 	/* Copy all the bytes from the bogus buffers. */
2395 	while (1) {
2396 		c = &sc->dc_ldata->dc_rx_list[i];
2397 		rxstat = c->dc_status;
2398 		m = sc->dc_cdata.dc_rx_chain[i];
2399 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2400 		ptr += DC_RXLEN;
2401 		/* If this is the last buffer, break out. */
2402 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2403 			break;
2404 		dc_newbuf(sc, i, m);
2405 		DC_INC(i, DC_RX_LIST_CNT);
2406 	}
2407 
2408 	/* Find the length of the actual receive frame. */
2409 	total_len = DC_RXBYTES(rxstat);
2410 
2411 	/* Scan backwards until we hit a non-zero byte. */
2412 	while(*ptr == 0x00)
2413 		ptr--;
2414 
2415 	/* Round off. */
2416 	if ((uintptr_t)(ptr) & 0x3)
2417 		ptr -= 1;
2418 
2419 	/* Now find the start of the frame. */
2420 	ptr -= total_len;
2421 	if (ptr < sc->dc_pnic_rx_buf)
2422 		ptr = sc->dc_pnic_rx_buf;
2423 
2424 	/*
2425 	 * Now copy the salvaged frame to the last mbuf and fake up
2426 	 * the status word to make it look like a successful
2427  	 * frame reception.
2428 	 */
2429 	dc_newbuf(sc, i, m);
2430 	bcopy(ptr, mtod(m, char *), total_len);
2431 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2432 
2433 	return;
2434 }
2435 
2436 /*
2437  * This routine searches the RX ring for dirty descriptors in the
2438  * event that the rxeof routine falls out of sync with the chip's
2439  * current descriptor pointer. This may happen sometimes as a result
2440  * of a "no RX buffer available" condition that happens when the chip
2441  * consumes all of the RX buffers before the driver has a chance to
2442  * process the RX ring. This routine may need to be called more than
2443  * once to bring the driver back in sync with the chip, however we
2444  * should still be getting RX DONE interrupts to drive the search
2445  * for new packets in the RX ring, so we should catch up eventually.
2446  */
2447 static int dc_rx_resync(sc)
2448 	struct dc_softc		*sc;
2449 {
2450 	int			i, pos;
2451 	struct dc_desc		*cur_rx;
2452 
2453 	pos = sc->dc_cdata.dc_rx_prod;
2454 
2455 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2456 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2457 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2458 			break;
2459 		DC_INC(pos, DC_RX_LIST_CNT);
2460 	}
2461 
2462 	/* If the ring really is empty, then just return. */
2463 	if (i == DC_RX_LIST_CNT)
2464 		return(0);
2465 
2466 	/* We've fallen behing the chip: catch it. */
2467 	sc->dc_cdata.dc_rx_prod = pos;
2468 
2469 	return(EAGAIN);
2470 }
2471 
2472 /*
2473  * A frame has been uploaded: pass the resulting mbuf chain up to
2474  * the higher level protocols.
2475  */
2476 static void dc_rxeof(sc)
2477 	struct dc_softc		*sc;
2478 {
2479         struct ether_header	*eh;
2480         struct mbuf		*m;
2481         struct ifnet		*ifp;
2482 	struct dc_desc		*cur_rx;
2483 	int			i, total_len = 0;
2484 	u_int32_t		rxstat;
2485 
2486 	ifp = &sc->arpcom.ac_if;
2487 	i = sc->dc_cdata.dc_rx_prod;
2488 
2489 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2490 
2491 #ifdef DEVICE_POLLING
2492 		if (ifp->if_ipending & IFF_POLLING) {
2493 			if (sc->rxcycles <= 0)
2494 				break;
2495 			sc->rxcycles--;
2496 		}
2497 #endif /* DEVICE_POLLING */
2498 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2499 		rxstat = cur_rx->dc_status;
2500 		m = sc->dc_cdata.dc_rx_chain[i];
2501 		total_len = DC_RXBYTES(rxstat);
2502 
2503 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2504 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2505 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2506 					sc->dc_pnic_rx_bug_save = i;
2507 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2508 					DC_INC(i, DC_RX_LIST_CNT);
2509 					continue;
2510 				}
2511 				dc_pnic_rx_bug_war(sc, i);
2512 				rxstat = cur_rx->dc_status;
2513 				total_len = DC_RXBYTES(rxstat);
2514 			}
2515 		}
2516 
2517 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2518 
2519 		/*
2520 		 * If an error occurs, update stats, clear the
2521 		 * status word and leave the mbuf cluster in place:
2522 		 * it should simply get re-used next time this descriptor
2523 		 * comes up in the ring.  However, don't report long
2524 		 * frames as errors since they could be vlans
2525 		 */
2526 		if ((rxstat & DC_RXSTAT_RXERR)){
2527 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2528 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2529 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2530 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2531 				ifp->if_ierrors++;
2532 				if (rxstat & DC_RXSTAT_COLLSEEN)
2533 					ifp->if_collisions++;
2534 				dc_newbuf(sc, i, m);
2535 				if (rxstat & DC_RXSTAT_CRCERR) {
2536 					DC_INC(i, DC_RX_LIST_CNT);
2537 					continue;
2538 				} else {
2539 					dc_init(sc);
2540 					return;
2541 				}
2542 			}
2543 		}
2544 
2545 		/* No errors; receive the packet. */
2546 		total_len -= ETHER_CRC_LEN;
2547 
2548 #ifdef __i386__
2549 		/*
2550 		 * On the x86 we do not have alignment problems, so try to
2551 		 * allocate a new buffer for the receive ring, and pass up
2552 		 * the one where the packet is already, saving the expensive
2553 		 * copy done in m_devget().
2554 		 * If we are on an architecture with alignment problems, or
2555 		 * if the allocation fails, then use m_devget and leave the
2556 		 * existing buffer in the receive ring.
2557 		 */
2558 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2559 			m->m_pkthdr.rcvif = ifp;
2560 			m->m_pkthdr.len = m->m_len = total_len;
2561 			DC_INC(i, DC_RX_LIST_CNT);
2562 		} else
2563 #endif
2564 		{
2565 			struct mbuf *m0;
2566 
2567 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2568 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2569 			dc_newbuf(sc, i, m);
2570 			DC_INC(i, DC_RX_LIST_CNT);
2571 			if (m0 == NULL) {
2572 				ifp->if_ierrors++;
2573 				continue;
2574 			}
2575 			m_adj(m0, ETHER_ALIGN);
2576 			m = m0;
2577 		}
2578 
2579 		ifp->if_ipackets++;
2580 		eh = mtod(m, struct ether_header *);
2581 
2582 		/* Remove header from mbuf and pass it on. */
2583 		m_adj(m, sizeof(struct ether_header));
2584 		ether_input(ifp, eh, m);
2585 	}
2586 
2587 	sc->dc_cdata.dc_rx_prod = i;
2588 }
2589 
2590 /*
2591  * A frame was downloaded to the chip. It's safe for us to clean up
2592  * the list buffers.
2593  */
2594 
2595 static void
2596 dc_txeof(sc)
2597 	struct dc_softc		*sc;
2598 {
2599 	struct dc_desc		*cur_tx = NULL;
2600 	struct ifnet		*ifp;
2601 	int			idx;
2602 
2603 	ifp = &sc->arpcom.ac_if;
2604 
2605 	/*
2606 	 * Go through our tx list and free mbufs for those
2607 	 * frames that have been transmitted.
2608 	 */
2609 	idx = sc->dc_cdata.dc_tx_cons;
2610 	while(idx != sc->dc_cdata.dc_tx_prod) {
2611 		u_int32_t		txstat;
2612 
2613 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2614 		txstat = cur_tx->dc_status;
2615 
2616 		if (txstat & DC_TXSTAT_OWN)
2617 			break;
2618 
2619 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2620 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2621 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2622 				/*
2623 				 * Yes, the PNIC is so brain damaged
2624 				 * that it will sometimes generate a TX
2625 				 * underrun error while DMAing the RX
2626 				 * filter setup frame. If we detect this,
2627 				 * we have to send the setup frame again,
2628 				 * or else the filter won't be programmed
2629 				 * correctly.
2630 				 */
2631 				if (DC_IS_PNIC(sc)) {
2632 					if (txstat & DC_TXSTAT_ERRSUM)
2633 						dc_setfilt(sc);
2634 				}
2635 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2636 			}
2637 			sc->dc_cdata.dc_tx_cnt--;
2638 			DC_INC(idx, DC_TX_LIST_CNT);
2639 			continue;
2640 		}
2641 
2642 		if (DC_IS_CONEXANT(sc)) {
2643 			/*
2644 			 * For some reason Conexant chips like
2645 			 * setting the CARRLOST flag even when
2646 			 * the carrier is there. In CURRENT we
2647 			 * have the same problem for Xircom
2648 			 * cards !
2649 			 */
2650 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2651 			    sc->dc_pmode == DC_PMODE_MII &&
2652 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2653 			    DC_TXSTAT_NOCARRIER)))
2654 				txstat &= ~DC_TXSTAT_ERRSUM;
2655 		} else {
2656 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2657 			    sc->dc_pmode == DC_PMODE_MII &&
2658 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2659 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2660 				txstat &= ~DC_TXSTAT_ERRSUM;
2661 		}
2662 
2663 		if (txstat & DC_TXSTAT_ERRSUM) {
2664 			ifp->if_oerrors++;
2665 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2666 				ifp->if_collisions++;
2667 			if (txstat & DC_TXSTAT_LATECOLL)
2668 				ifp->if_collisions++;
2669 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2670 				dc_init(sc);
2671 				return;
2672 			}
2673 		}
2674 
2675 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2676 
2677 		ifp->if_opackets++;
2678 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2679 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2680 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2681 		}
2682 
2683 		sc->dc_cdata.dc_tx_cnt--;
2684 		DC_INC(idx, DC_TX_LIST_CNT);
2685 	}
2686 
2687 	if (idx != sc->dc_cdata.dc_tx_cons) {
2688 	    	/* some buffers have been freed */
2689 		sc->dc_cdata.dc_tx_cons = idx;
2690 		ifp->if_flags &= ~IFF_OACTIVE;
2691 	}
2692 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2693 
2694 	return;
2695 }
2696 
2697 static void dc_tick(xsc)
2698 	void			*xsc;
2699 {
2700 	struct dc_softc		*sc;
2701 	struct mii_data		*mii;
2702 	struct ifnet		*ifp;
2703 	int			s;
2704 	u_int32_t		r;
2705 
2706 	s = splimp();
2707 
2708 	sc = xsc;
2709 	ifp = &sc->arpcom.ac_if;
2710 	mii = device_get_softc(sc->dc_miibus);
2711 
2712 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2713 		if (sc->dc_flags & DC_21143_NWAY) {
2714 			r = CSR_READ_4(sc, DC_10BTSTAT);
2715 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2716 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2717 				sc->dc_link = 0;
2718 				mii_mediachg(mii);
2719 			}
2720 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2721 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2722 				sc->dc_link = 0;
2723 				mii_mediachg(mii);
2724 			}
2725 			if (sc->dc_link == 0)
2726 				mii_tick(mii);
2727 		} else {
2728 			r = CSR_READ_4(sc, DC_ISR);
2729 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2730 			    sc->dc_cdata.dc_tx_cnt == 0)
2731 				mii_tick(mii);
2732 				if (!(mii->mii_media_status & IFM_ACTIVE))
2733 					sc->dc_link = 0;
2734 		}
2735 	} else
2736 		mii_tick(mii);
2737 
2738 	/*
2739 	 * When the init routine completes, we expect to be able to send
2740 	 * packets right away, and in fact the network code will send a
2741 	 * gratuitous ARP the moment the init routine marks the interface
2742 	 * as running. However, even though the MAC may have been initialized,
2743 	 * there may be a delay of a few seconds before the PHY completes
2744 	 * autonegotiation and the link is brought up. Any transmissions
2745 	 * made during that delay will be lost. Dealing with this is tricky:
2746 	 * we can't just pause in the init routine while waiting for the
2747 	 * PHY to come ready since that would bring the whole system to
2748 	 * a screeching halt for several seconds.
2749 	 *
2750 	 * What we do here is prevent the TX start routine from sending
2751 	 * any packets until a link has been established. After the
2752 	 * interface has been initialized, the tick routine will poll
2753 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2754 	 * that time, packets will stay in the send queue, and once the
2755 	 * link comes up, they will be flushed out to the wire.
2756 	 */
2757 	if (!sc->dc_link) {
2758 		mii_pollstat(mii);
2759 		if (mii->mii_media_status & IFM_ACTIVE &&
2760 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2761 			sc->dc_link++;
2762 			if (ifp->if_snd.ifq_head != NULL)
2763 				dc_start(ifp);
2764 		}
2765 	}
2766 
2767 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2768 		sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
2769 	else
2770 		sc->dc_stat_ch = timeout(dc_tick, sc, hz);
2771 
2772 	splx(s);
2773 
2774 	return;
2775 }
2776 
2777 /*
2778  * A transmit underrun has occurred.  Back off the transmit threshold,
2779  * or switch to store and forward mode if we have to.
2780  */
2781 static void dc_tx_underrun(sc)
2782 	struct dc_softc		*sc;
2783 {
2784 	u_int32_t		isr;
2785 	int			i;
2786 
2787 	if (DC_IS_DAVICOM(sc))
2788 		dc_init(sc);
2789 
2790 	if (DC_IS_INTEL(sc)) {
2791 		/*
2792 		 * The real 21143 requires that the transmitter be idle
2793 		 * in order to change the transmit threshold or store
2794 		 * and forward state.
2795 		 */
2796 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2797 
2798 		for (i = 0; i < DC_TIMEOUT; i++) {
2799 			isr = CSR_READ_4(sc, DC_ISR);
2800 			if (isr & DC_ISR_TX_IDLE)
2801 				break;
2802 			DELAY(10);
2803 		}
2804 		if (i == DC_TIMEOUT) {
2805 			printf("dc%d: failed to force tx to idle state\n",
2806 			    sc->dc_unit);
2807 			dc_init(sc);
2808 		}
2809 	}
2810 
2811 	printf("dc%d: TX underrun -- ", sc->dc_unit);
2812 	sc->dc_txthresh += DC_TXTHRESH_INC;
2813 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2814 		printf("using store and forward mode\n");
2815 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2816 	} else {
2817 		printf("increasing TX threshold\n");
2818 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2819 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2820 	}
2821 
2822 	if (DC_IS_INTEL(sc))
2823 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2824 
2825 	return;
2826 }
2827 
2828 #ifdef DEVICE_POLLING
2829 static poll_handler_t dc_poll;
2830 
2831 static void
2832 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2833 {
2834 	struct	dc_softc *sc = ifp->if_softc;
2835 
2836 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
2837 		/* Re-enable interrupts. */
2838 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2839 		return;
2840 	}
2841 	sc->rxcycles = count;
2842 	dc_rxeof(sc);
2843 	dc_txeof(sc);
2844 	if (ifp->if_snd.ifq_head != NULL && !(ifp->if_flags & IFF_OACTIVE))
2845 		dc_start(ifp);
2846 
2847 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2848 		u_int32_t          status;
2849 
2850 		status = CSR_READ_4(sc, DC_ISR);
2851 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2852 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2853 			DC_ISR_BUS_ERR);
2854 		if (!status)
2855 			return ;
2856 		/* ack what we have */
2857 		CSR_WRITE_4(sc, DC_ISR, status);
2858 
2859 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2860 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2861 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2862 
2863 			if (dc_rx_resync(sc))
2864 				dc_rxeof(sc);
2865 		}
2866 		/* restart transmit unit if necessary */
2867 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2868 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2869 
2870 		if (status & DC_ISR_TX_UNDERRUN)
2871 			dc_tx_underrun(sc);
2872 
2873 		if (status & DC_ISR_BUS_ERR) {
2874 			printf("dc_poll: dc%d bus error\n", sc->dc_unit);
2875 			dc_reset(sc);
2876 			dc_init(sc);
2877 		}
2878 	}
2879 }
2880 #endif /* DEVICE_POLLING */
2881 
2882 static void dc_intr(arg)
2883 	void			*arg;
2884 {
2885 	struct dc_softc		*sc;
2886 	struct ifnet		*ifp;
2887 	u_int32_t		status;
2888 
2889 	sc = arg;
2890 
2891 	if (sc->suspended) {
2892 		return;
2893 	}
2894 
2895 	ifp = &sc->arpcom.ac_if;
2896 
2897 #ifdef DEVICE_POLLING
2898 	if (ifp->if_ipending & IFF_POLLING)
2899 		return;
2900 	if (ether_poll_register(dc_poll, ifp)) { /* ok, disable interrupts */
2901 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2902 		return;
2903 	}
2904 #endif /* DEVICE_POLLING */
2905 
2906 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2907 		return ;
2908 
2909 	/* Suppress unwanted interrupts */
2910 	if (!(ifp->if_flags & IFF_UP)) {
2911 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2912 			dc_stop(sc);
2913 		return;
2914 	}
2915 
2916 	/* Disable interrupts. */
2917 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2918 
2919 	while((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) {
2920 
2921 		CSR_WRITE_4(sc, DC_ISR, status);
2922 
2923 		if (status & DC_ISR_RX_OK) {
2924 			int		curpkts;
2925 			curpkts = ifp->if_ipackets;
2926 			dc_rxeof(sc);
2927 			if (curpkts == ifp->if_ipackets) {
2928 				while(dc_rx_resync(sc))
2929 					dc_rxeof(sc);
2930 			}
2931 		}
2932 
2933 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2934 			dc_txeof(sc);
2935 
2936 		if (status & DC_ISR_TX_IDLE) {
2937 			dc_txeof(sc);
2938 			if (sc->dc_cdata.dc_tx_cnt) {
2939 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2940 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2941 			}
2942 		}
2943 
2944 		if (status & DC_ISR_TX_UNDERRUN)
2945 			dc_tx_underrun(sc);
2946 
2947 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2948 		    || (status & DC_ISR_RX_NOBUF)) {
2949 			int		curpkts;
2950 			curpkts = ifp->if_ipackets;
2951 			dc_rxeof(sc);
2952 			if (curpkts == ifp->if_ipackets) {
2953 				while(dc_rx_resync(sc))
2954 					dc_rxeof(sc);
2955 			}
2956 		}
2957 
2958 		if (status & DC_ISR_BUS_ERR) {
2959 			dc_reset(sc);
2960 			dc_init(sc);
2961 		}
2962 	}
2963 
2964 	/* Re-enable interrupts. */
2965 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2966 
2967 	if (ifp->if_snd.ifq_head != NULL)
2968 		dc_start(ifp);
2969 
2970 	return;
2971 }
2972 
2973 /*
2974  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2975  * pointers to the fragment pointers.
2976  */
2977 static int dc_encap(sc, m_head, txidx)
2978 	struct dc_softc		*sc;
2979 	struct mbuf		*m_head;
2980 	u_int32_t		*txidx;
2981 {
2982 	struct dc_desc		*f = NULL;
2983 	struct mbuf		*m;
2984 	int			frag, cur, cnt = 0;
2985 
2986 	/*
2987  	 * Start packing the mbufs in this chain into
2988 	 * the fragment pointers. Stop when we run out
2989  	 * of fragments or hit the end of the mbuf chain.
2990 	 */
2991 	m = m_head;
2992 	cur = frag = *txidx;
2993 
2994 	for (m = m_head; m != NULL; m = m->m_next) {
2995 		if (m->m_len != 0) {
2996 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2997 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
2998 				    frag == (DC_TX_LIST_CNT - 1))
2999 					return(ENOBUFS);
3000 			}
3001 			if ((DC_TX_LIST_CNT -
3002 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3003 				return(ENOBUFS);
3004 
3005 			f = &sc->dc_ldata->dc_tx_list[frag];
3006 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3007 			if (cnt == 0) {
3008 				f->dc_status = 0;
3009 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3010 			} else
3011 				f->dc_status = DC_TXSTAT_OWN;
3012 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3013 			cur = frag;
3014 			DC_INC(frag, DC_TX_LIST_CNT);
3015 			cnt++;
3016 		}
3017 	}
3018 
3019 	if (m != NULL)
3020 		return(ENOBUFS);
3021 
3022 	sc->dc_cdata.dc_tx_cnt += cnt;
3023 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3024 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3025 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3026 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3027 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3028 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3029 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3030 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3031 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3032 	*txidx = frag;
3033 
3034 	return(0);
3035 }
3036 
3037 /*
3038  * Coalesce an mbuf chain into a single mbuf cluster buffer.
3039  * Needed for some really badly behaved chips that just can't
3040  * do scatter/gather correctly.
3041  */
3042 static int dc_coal(sc, m_head)
3043 	struct dc_softc		*sc;
3044 	struct mbuf		**m_head;
3045 {
3046         struct mbuf		*m_new, *m;
3047 
3048 	m = *m_head;
3049 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3050 	if (m_new == NULL)
3051 		return(ENOBUFS);
3052 	if (m->m_pkthdr.len > MHLEN) {
3053 		MCLGET(m_new, M_DONTWAIT);
3054 		if (!(m_new->m_flags & M_EXT)) {
3055 			m_freem(m_new);
3056 			return(ENOBUFS);
3057 		}
3058 	}
3059 	m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, caddr_t));
3060 	m_new->m_pkthdr.len = m_new->m_len = m->m_pkthdr.len;
3061 	m_freem(m);
3062 	*m_head = m_new;
3063 
3064 	return(0);
3065 }
3066 
3067 /*
3068  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3069  * to the mbuf data regions directly in the transmit lists. We also save a
3070  * copy of the pointers since the transmit list fragment pointers are
3071  * physical addresses.
3072  */
3073 
3074 static void dc_start(ifp)
3075 	struct ifnet		*ifp;
3076 {
3077 	struct dc_softc		*sc;
3078 	struct mbuf		*m_head = NULL;
3079 	int			idx;
3080 
3081 	sc = ifp->if_softc;
3082 
3083 	if (!sc->dc_link && ifp->if_snd.ifq_len < 10)
3084 		return;
3085 
3086 	if (ifp->if_flags & IFF_OACTIVE)
3087 		return;
3088 
3089 	idx = sc->dc_cdata.dc_tx_prod;
3090 
3091 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3092 		IF_DEQUEUE(&ifp->if_snd, m_head);
3093 		if (m_head == NULL)
3094 			break;
3095 
3096 		if (sc->dc_flags & DC_TX_COALESCE &&
3097 		    m_head->m_next != NULL) {
3098 			/* only coalesce if have >1 mbufs */
3099 			if (dc_coal(sc, &m_head)) {
3100 				IF_PREPEND(&ifp->if_snd, m_head);
3101 				ifp->if_flags |= IFF_OACTIVE;
3102 				break;
3103 			}
3104 		}
3105 
3106 		if (dc_encap(sc, m_head, &idx)) {
3107 			IF_PREPEND(&ifp->if_snd, m_head);
3108 			ifp->if_flags |= IFF_OACTIVE;
3109 			break;
3110 		}
3111 
3112 		/*
3113 		 * If there's a BPF listener, bounce a copy of this frame
3114 		 * to him.
3115 		 */
3116 		if (ifp->if_bpf)
3117 			bpf_mtap(ifp, m_head);
3118 
3119 		if (sc->dc_flags & DC_TX_ONE) {
3120 			ifp->if_flags |= IFF_OACTIVE;
3121 			break;
3122 		}
3123 	}
3124 
3125 	/* Transmit */
3126 	sc->dc_cdata.dc_tx_prod = idx;
3127 	if (!(sc->dc_flags & DC_TX_POLL))
3128 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3129 
3130 	/*
3131 	 * Set a timeout in case the chip goes out to lunch.
3132 	 */
3133 	ifp->if_timer = 5;
3134 
3135 	return;
3136 }
3137 
3138 static void dc_init(xsc)
3139 	void			*xsc;
3140 {
3141 	struct dc_softc		*sc = xsc;
3142 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3143 	struct mii_data		*mii;
3144 	int			s;
3145 
3146 	s = splimp();
3147 
3148 	mii = device_get_softc(sc->dc_miibus);
3149 
3150 	/*
3151 	 * Cancel pending I/O and free all RX/TX buffers.
3152 	 */
3153 	dc_stop(sc);
3154 	dc_reset(sc);
3155 
3156 	/*
3157 	 * Set cache alignment and burst length.
3158 	 */
3159 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3160 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3161 	else
3162 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3163 	/*
3164 	 * Evenly share the bus between receive and transmit process.
3165 	 */
3166 	if (DC_IS_INTEL(sc))
3167 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3168 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3169 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3170 	} else {
3171 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3172 	}
3173 	if (sc->dc_flags & DC_TX_POLL)
3174 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3175 	switch(sc->dc_cachesize) {
3176 	case 32:
3177 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3178 		break;
3179 	case 16:
3180 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3181 		break;
3182 	case 8:
3183 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3184 		break;
3185 	case 0:
3186 	default:
3187 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3188 		break;
3189 	}
3190 
3191 	if (sc->dc_flags & DC_TX_STORENFWD)
3192 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3193 	else {
3194 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3195 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3196 		} else {
3197 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3198 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3199 		}
3200 	}
3201 
3202 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3203 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3204 
3205 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3206 		/*
3207 		 * The app notes for the 98713 and 98715A say that
3208 		 * in order to have the chips operate properly, a magic
3209 		 * number must be written to CSR16. Macronix does not
3210 		 * document the meaning of these bits so there's no way
3211 		 * to know exactly what they do. The 98713 has a magic
3212 		 * number all its own; the rest all use a different one.
3213 		 */
3214 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3215 		if (sc->dc_type == DC_TYPE_98713)
3216 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3217 		else
3218 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3219 	}
3220 
3221 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3222 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3223 
3224 	/* Init circular RX list. */
3225 	if (dc_list_rx_init(sc) == ENOBUFS) {
3226 		printf("dc%d: initialization failed: no "
3227 		    "memory for rx buffers\n", sc->dc_unit);
3228 		dc_stop(sc);
3229 		(void)splx(s);
3230 		return;
3231 	}
3232 
3233 	/*
3234 	 * Init tx descriptors.
3235 	 */
3236 	dc_list_tx_init(sc);
3237 
3238 	/*
3239 	 * Load the address of the RX list.
3240 	 */
3241 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3242 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3243 
3244 	/*
3245 	 * Enable interrupts.
3246 	 */
3247 #ifdef DEVICE_POLLING
3248 	/*
3249 	 * ... but only if we are not polling, and make sure they are off in
3250 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3251 	 * after a reset.
3252 	 */
3253 	if (ifp->if_ipending & IFF_POLLING)
3254 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3255 	else
3256 #endif
3257 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3258 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3259 
3260 	/* Enable transmitter. */
3261 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3262 
3263 	/*
3264 	 * If this is an Intel 21143 and we're not using the
3265 	 * MII port, program the LED control pins so we get
3266 	 * link and activity indications.
3267 	 */
3268 	if (sc->dc_flags & DC_TULIP_LEDS) {
3269 		CSR_WRITE_4(sc, DC_WATCHDOG,
3270 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3271 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3272 	}
3273 
3274 	/*
3275 	 * Load the RX/multicast filter. We do this sort of late
3276 	 * because the filter programming scheme on the 21143 and
3277 	 * some clones requires DMAing a setup frame via the TX
3278 	 * engine, and we need the transmitter enabled for that.
3279 	 */
3280 	dc_setfilt(sc);
3281 
3282 	/* Enable receiver. */
3283 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3284 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3285 
3286 	mii_mediachg(mii);
3287 	dc_setcfg(sc, sc->dc_if_media);
3288 
3289 	ifp->if_flags |= IFF_RUNNING;
3290 	ifp->if_flags &= ~IFF_OACTIVE;
3291 
3292 	(void)splx(s);
3293 
3294 	/* Don't start the ticker if this is a homePNA link. */
3295 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_homePNA)
3296 		sc->dc_link = 1;
3297 	else {
3298 		if (sc->dc_flags & DC_21143_NWAY)
3299 			sc->dc_stat_ch = timeout(dc_tick, sc, hz/10);
3300 		else
3301 			sc->dc_stat_ch = timeout(dc_tick, sc, hz);
3302 	}
3303 
3304 #ifdef SRM_MEDIA
3305         if(sc->dc_srm_media) {
3306 		struct ifreq ifr;
3307 
3308 		ifr.ifr_media = sc->dc_srm_media;
3309 		ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
3310 		sc->dc_srm_media = 0;
3311 	}
3312 #endif
3313 	return;
3314 }
3315 
3316 /*
3317  * Set media options.
3318  */
3319 static int dc_ifmedia_upd(ifp)
3320 	struct ifnet		*ifp;
3321 {
3322 	struct dc_softc		*sc;
3323 	struct mii_data		*mii;
3324 	struct ifmedia		*ifm;
3325 
3326 	sc = ifp->if_softc;
3327 	mii = device_get_softc(sc->dc_miibus);
3328 	mii_mediachg(mii);
3329 	ifm = &mii->mii_media;
3330 
3331 	if (DC_IS_DAVICOM(sc) &&
3332 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA)
3333 		dc_setcfg(sc, ifm->ifm_media);
3334 	else
3335 		sc->dc_link = 0;
3336 
3337 	return(0);
3338 }
3339 
3340 /*
3341  * Report current media status.
3342  */
3343 static void dc_ifmedia_sts(ifp, ifmr)
3344 	struct ifnet		*ifp;
3345 	struct ifmediareq	*ifmr;
3346 {
3347 	struct dc_softc		*sc;
3348 	struct mii_data		*mii;
3349 	struct ifmedia		*ifm;
3350 
3351 	sc = ifp->if_softc;
3352 	mii = device_get_softc(sc->dc_miibus);
3353 	mii_pollstat(mii);
3354 	ifm = &mii->mii_media;
3355 	if (DC_IS_DAVICOM(sc)) {
3356 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_homePNA) {
3357 			ifmr->ifm_active = ifm->ifm_media;
3358 			ifmr->ifm_status = 0;
3359 			return;
3360 		}
3361 	}
3362 	ifmr->ifm_active = mii->mii_media_active;
3363 	ifmr->ifm_status = mii->mii_media_status;
3364 
3365 	return;
3366 }
3367 
3368 static int dc_ioctl(ifp, command, data)
3369 	struct ifnet		*ifp;
3370 	u_long			command;
3371 	caddr_t			data;
3372 {
3373 	struct dc_softc		*sc = ifp->if_softc;
3374 	struct ifreq		*ifr = (struct ifreq *) data;
3375 	struct mii_data		*mii;
3376 	int			s, error = 0;
3377 
3378 	s = splimp();
3379 
3380 	switch(command) {
3381 	case SIOCSIFADDR:
3382 	case SIOCGIFADDR:
3383 	case SIOCSIFMTU:
3384 		error = ether_ioctl(ifp, command, data);
3385 		break;
3386 	case SIOCSIFFLAGS:
3387 		if (ifp->if_flags & IFF_UP) {
3388 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3389 				(IFF_PROMISC | IFF_ALLMULTI);
3390 			if (ifp->if_flags & IFF_RUNNING) {
3391 				if (need_setfilt)
3392 					dc_setfilt(sc);
3393 			} else {
3394 				sc->dc_txthresh = 0;
3395 				dc_init(sc);
3396 			}
3397 		} else {
3398 			if (ifp->if_flags & IFF_RUNNING)
3399 				dc_stop(sc);
3400 		}
3401 		sc->dc_if_flags = ifp->if_flags;
3402 		error = 0;
3403 		break;
3404 	case SIOCADDMULTI:
3405 	case SIOCDELMULTI:
3406 		dc_setfilt(sc);
3407 		error = 0;
3408 		break;
3409 	case SIOCGIFMEDIA:
3410 	case SIOCSIFMEDIA:
3411 		mii = device_get_softc(sc->dc_miibus);
3412 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3413 #ifdef SRM_MEDIA
3414 		if (sc->dc_srm_media)
3415 			sc->dc_srm_media = 0;
3416 #endif
3417 		break;
3418 	default:
3419 		error = EINVAL;
3420 		break;
3421 	}
3422 
3423 	(void)splx(s);
3424 
3425 	return(error);
3426 }
3427 
3428 static void dc_watchdog(ifp)
3429 	struct ifnet		*ifp;
3430 {
3431 	struct dc_softc		*sc;
3432 
3433 	sc = ifp->if_softc;
3434 
3435 	ifp->if_oerrors++;
3436 	printf("dc%d: watchdog timeout\n", sc->dc_unit);
3437 
3438 	dc_stop(sc);
3439 	dc_reset(sc);
3440 	dc_init(sc);
3441 
3442 	if (ifp->if_snd.ifq_head != NULL)
3443 		dc_start(ifp);
3444 
3445 	return;
3446 }
3447 
3448 /*
3449  * Stop the adapter and free any mbufs allocated to the
3450  * RX and TX lists.
3451  */
3452 static void dc_stop(sc)
3453 	struct dc_softc		*sc;
3454 {
3455 	register int		i;
3456 	struct ifnet		*ifp;
3457 
3458 	ifp = &sc->arpcom.ac_if;
3459 	ifp->if_timer = 0;
3460 
3461 	untimeout(dc_tick, sc, sc->dc_stat_ch);
3462 
3463 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3464 #ifdef DEVICE_POLLING
3465 	ether_poll_deregister(ifp);
3466 #endif
3467 
3468 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3469 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3470 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3471 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3472 	sc->dc_link = 0;
3473 
3474 	/*
3475 	 * Free data in the RX lists.
3476 	 */
3477 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3478 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3479 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3480 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3481 		}
3482 	}
3483 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3484 		sizeof(sc->dc_ldata->dc_rx_list));
3485 
3486 	/*
3487 	 * Free the TX list buffers.
3488 	 */
3489 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3490 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3491 			if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
3492 			    DC_TXCTL_SETUP) {
3493 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3494 				continue;
3495 			}
3496 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3497 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3498 		}
3499 	}
3500 
3501 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3502 		sizeof(sc->dc_ldata->dc_tx_list));
3503 
3504 	return;
3505 }
3506 
3507 /*
3508  * Stop all chip I/O so that the kernel's probe routines don't
3509  * get confused by errant DMAs when rebooting.
3510  */
3511 static void dc_shutdown(dev)
3512 	device_t		dev;
3513 {
3514 	struct dc_softc		*sc;
3515 
3516 	sc = device_get_softc(dev);
3517 
3518 	dc_stop(sc);
3519 
3520 	return;
3521 }
3522 
3523 /*
3524  * Device suspend routine.  Stop the interface and save some PCI
3525  * settings in case the BIOS doesn't restore them properly on
3526  * resume.
3527  */
3528 static int dc_suspend(dev)
3529 	device_t		dev;
3530 {
3531 	register int		i;
3532 	int			s;
3533 	struct dc_softc		*sc;
3534 
3535 	s = splimp();
3536 
3537 	sc = device_get_softc(dev);
3538 
3539 	dc_stop(sc);
3540 
3541 	for (i = 0; i < 5; i++)
3542 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3543 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3544 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3545 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3546 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3547 
3548 	sc->suspended = 1;
3549 
3550 	splx(s);
3551 	return (0);
3552 }
3553 
3554 /*
3555  * Device resume routine.  Restore some PCI settings in case the BIOS
3556  * doesn't, re-enable busmastering, and restart the interface if
3557  * appropriate.
3558  */
3559 static int dc_resume(dev)
3560 	device_t		dev;
3561 {
3562 	register int		i;
3563 	int			s;
3564 	struct dc_softc		*sc;
3565 	struct ifnet		*ifp;
3566 
3567 	s = splimp();
3568 
3569 	sc = device_get_softc(dev);
3570 	ifp = &sc->arpcom.ac_if;
3571 
3572 	dc_acpi(dev);
3573 
3574 	/* better way to do this? */
3575 	for (i = 0; i < 5; i++)
3576 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3577 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3578 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3579 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3580 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3581 
3582 	/* reenable busmastering */
3583 	pci_enable_busmaster(dev);
3584 	pci_enable_io(dev, DC_RES);
3585 
3586         /* reinitialize interface if necessary */
3587         if (ifp->if_flags & IFF_UP)
3588                 dc_init(sc);
3589 
3590 	sc->suspended = 0;
3591 
3592 	splx(s);
3593 	return (0);
3594 }
3595