xref: /dragonfly/sys/dev/netif/dc/if_dc.c (revision 9d626b29)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  */
34 
35 /*
36  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
37  * series chips and several workalikes including the following:
38  *
39  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
40  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
41  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
42  * ASIX Electronics AX88140A (www.asix.com.tw)
43  * ASIX Electronics AX88141 (www.asix.com.tw)
44  * ADMtek AL981 (www.admtek.com.tw)
45  * ADMtek AN985 (www.admtek.com.tw)
46  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
47  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
48  * Accton EN1217 (www.accton.com)
49  * Xircom X3201 (www.xircom.com)
50  * Abocom FE2500
51  * Conexant LANfinity (www.conexant.com)
52  *
53  * Datasheets for the 21143 are available at developer.intel.com.
54  * Datasheets for the clone parts can be found at their respective sites.
55  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
56  * The PNIC II is essentially a Macronix 98715A chip; the only difference
57  * worth noting is that its multicast hash table is only 128 bits wide
58  * instead of 512.
59  *
60  * Written by Bill Paul <wpaul@ee.columbia.edu>
61  * Electrical Engineering Department
62  * Columbia University, New York City
63  */
64 
65 /*
66  * The Intel 21143 is the successor to the DEC 21140. It is basically
67  * the same as the 21140 but with a few new features. The 21143 supports
68  * three kinds of media attachments:
69  *
70  * o MII port, for 10Mbps and 100Mbps support and NWAY
71  *   autonegotiation provided by an external PHY.
72  * o SYM port, for symbol mode 100Mbps support.
73  * o 10baseT port.
74  * o AUI/BNC port.
75  *
76  * The 100Mbps SYM port and 10baseT port can be used together in
77  * combination with the internal NWAY support to create a 10/100
78  * autosensing configuration.
79  *
80  * Note that not all tulip workalikes are handled in this driver: we only
81  * deal with those which are relatively well behaved. The Winbond is
82  * handled separately due to its different register offsets and the
83  * special handling needed for its various bugs. The PNIC is handled
84  * here, but I'm not thrilled about it.
85  *
86  * All of the workalike chips use some form of MII transceiver support
87  * with the exception of the Macronix chips, which also have a SYM port.
88  * The ASIX AX88140A is also documented to have a SYM port, but all
89  * the cards I've seen use an MII transceiver, probably because the
90  * AX88140A doesn't support internal NWAY.
91  */
92 
93 #include "opt_ifpoll.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/interrupt.h>
102 #include <sys/socket.h>
103 #include <sys/sysctl.h>
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106 #include <sys/thread2.h>
107 
108 #include <net/if.h>
109 #include <net/ifq_var.h>
110 #include <net/if_arp.h>
111 #include <net/ethernet.h>
112 #include <net/if_dl.h>
113 #include <net/if_media.h>
114 #include <net/if_poll.h>
115 #include <net/if_types.h>
116 #include <net/vlan/if_vlan_var.h>
117 
118 #include <net/bpf.h>
119 
120 #include <vm/vm.h>              /* for vtophys */
121 #include <vm/pmap.h>            /* for vtophys */
122 
123 #include "../mii_layer/mii.h"
124 #include "../mii_layer/miivar.h"
125 
126 #include <bus/pci/pcireg.h>
127 #include <bus/pci/pcivar.h>
128 
129 #define DC_USEIOSPACE
130 
131 #include "if_dcreg.h"
132 
133 /* "controller miibus0" required.  See GENERIC if you get errors here. */
134 #include "miibus_if.h"
135 
136 /*
137  * Various supported device vendors/types and their names.
138  */
139 static const struct dc_type dc_devs[] = {
140 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
141 		"Intel 21143 10/100BaseTX" },
142 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
143 		"Davicom DM9009 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
145 		"Davicom DM9100 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102 10/100BaseTX" },
148 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
149 		"Davicom DM9102A 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
151 		"ADMtek AL981 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
153 		"ADMtek AN985 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
155 		"Netgear FA511 10/100BaseTX" },
156 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
157 		"ADMtek ADM9511 10/100BaseTX" },
158 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
159 		"ADMtek ADM9513 10/100BaseTX" },
160 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
161 		"ASIX AX88140A 10/100BaseTX" },
162 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
163 		"ASIX AX88141 10/100BaseTX" },
164 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
165 		"Macronix 98713 10/100BaseTX" },
166 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
167 		"Macronix 98713A 10/100BaseTX" },
168 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
169 		"Compex RL100-TX 10/100BaseTX" },
170 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
171 		"Compex RL100-TX 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
173 		"Macronix 98715/98715A 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
175 		"Macronix 98715AEC-C 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
177 		"Macronix 98725 10/100BaseTX" },
178 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
179 		"Macronix 98727/98732 10/100BaseTX" },
180 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
181 		"LC82C115 PNIC II 10/100BaseTX" },
182 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
183 		"82c168 PNIC 10/100BaseTX" },
184 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
185 		"82c169 PNIC 10/100BaseTX" },
186 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
187 		"Accton EN1217 10/100BaseTX" },
188 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
189 		"Accton EN2242 MiniPCI 10/100BaseTX" },
190     	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
191 	  	"Xircom X3201 10/100BaseTX" },
192 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
193 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
194 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
195 		"3Com OfficeConnect 10/100B" },
196 	{ DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500,
197 		"Abocom FE2500 10/100BaseTX" },
198 	{ 0, 0, NULL }
199 };
200 
201 static int dc_probe		(device_t);
202 static int dc_attach		(device_t);
203 static int dc_detach		(device_t);
204 static int dc_suspend		(device_t);
205 static int dc_resume		(device_t);
206 static void dc_acpi		(device_t);
207 static const struct dc_type *dc_devtype	(device_t);
208 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
209 static int dc_encap		(struct dc_softc *, struct mbuf *,
210 					u_int32_t *);
211 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
212 static int dc_rx_resync		(struct dc_softc *);
213 static void dc_rxeof		(struct dc_softc *);
214 static void dc_txeof		(struct dc_softc *);
215 static void dc_tick		(void *);
216 static void dc_tx_underrun	(struct dc_softc *);
217 static void dc_intr		(void *);
218 static void dc_start		(struct ifnet *, struct ifaltq_subque *);
219 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
220 					struct ucred *);
221 #ifdef IFPOLL_ENABLE
222 static void dc_npoll		(struct ifnet *, struct ifpoll_info *);
223 static void dc_npoll_compat	(struct ifnet *, void *, int);
224 #endif
225 static void dc_init		(void *);
226 static void dc_stop		(struct dc_softc *);
227 static void dc_watchdog		(struct ifnet *);
228 static void dc_shutdown		(device_t);
229 static int dc_ifmedia_upd	(struct ifnet *);
230 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
231 
232 static void dc_delay		(struct dc_softc *);
233 static void dc_eeprom_idle	(struct dc_softc *);
234 static void dc_eeprom_putbyte	(struct dc_softc *, int);
235 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
236 static void dc_eeprom_getword_pnic
237 				(struct dc_softc *, int, u_int16_t *);
238 static void dc_eeprom_getword_xircom
239 				(struct dc_softc *, int, u_int16_t *);
240 static void dc_eeprom_width	(struct dc_softc *);
241 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
242 							int, int);
243 
244 static void dc_mii_writebit	(struct dc_softc *, int);
245 static int dc_mii_readbit	(struct dc_softc *);
246 static void dc_mii_sync		(struct dc_softc *);
247 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
248 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
249 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
250 static int dc_miibus_readreg	(device_t, int, int);
251 static int dc_miibus_writereg	(device_t, int, int, int);
252 static void dc_miibus_statchg	(device_t);
253 static void dc_miibus_mediainit	(device_t);
254 
255 static u_int32_t dc_crc_mask	(struct dc_softc *);
256 static void dc_setcfg		(struct dc_softc *, int);
257 static void dc_setfilt_21143	(struct dc_softc *);
258 static void dc_setfilt_asix	(struct dc_softc *);
259 static void dc_setfilt_admtek	(struct dc_softc *);
260 static void dc_setfilt_xircom	(struct dc_softc *);
261 
262 static void dc_setfilt		(struct dc_softc *);
263 
264 static void dc_reset		(struct dc_softc *);
265 static int dc_list_rx_init	(struct dc_softc *);
266 static int dc_list_tx_init	(struct dc_softc *);
267 
268 static void dc_read_srom	(struct dc_softc *, int);
269 static void dc_parse_21143_srom	(struct dc_softc *);
270 static void dc_decode_leaf_sia	(struct dc_softc *,
271 				    struct dc_eblock_sia *);
272 static void dc_decode_leaf_mii	(struct dc_softc *,
273 				    struct dc_eblock_mii *);
274 static void dc_decode_leaf_sym	(struct dc_softc *,
275 				    struct dc_eblock_sym *);
276 static void dc_apply_fixup	(struct dc_softc *, int);
277 static uint32_t dc_mchash_xircom(struct dc_softc *, const uint8_t *);
278 
279 #ifdef DC_USEIOSPACE
280 #define DC_RES			SYS_RES_IOPORT
281 #define DC_RID			DC_PCI_CFBIO
282 #else
283 #define DC_RES			SYS_RES_MEMORY
284 #define DC_RID			DC_PCI_CFBMA
285 #endif
286 
287 static device_method_t dc_methods[] = {
288 	/* Device interface */
289 	DEVMETHOD(device_probe,		dc_probe),
290 	DEVMETHOD(device_attach,	dc_attach),
291 	DEVMETHOD(device_detach,	dc_detach),
292 	DEVMETHOD(device_suspend,	dc_suspend),
293 	DEVMETHOD(device_resume,	dc_resume),
294 	DEVMETHOD(device_shutdown,	dc_shutdown),
295 
296 	/* bus interface */
297 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
298 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
299 
300 	/* MII interface */
301 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
302 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
303 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
304 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
305 
306 	DEVMETHOD_END
307 };
308 
309 static driver_t dc_driver = {
310 	"dc",
311 	dc_methods,
312 	sizeof(struct dc_softc)
313 };
314 
315 static devclass_t dc_devclass;
316 
317 #ifdef __i386__
318 static int dc_quick=1;
319 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
320 	&dc_quick,0,"do not mdevget in dc driver");
321 #endif
322 
323 DECLARE_DUMMY_MODULE(if_dc);
324 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, NULL, NULL);
325 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, NULL, NULL);
326 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, NULL, NULL);
327 
328 #define DC_SETBIT(sc, reg, x)				\
329 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
330 
331 #define DC_CLRBIT(sc, reg, x)				\
332 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
333 
334 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
335 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
336 
337 static void
338 dc_delay(struct dc_softc *sc)
339 {
340 	int			idx;
341 
342 	for (idx = (300 / 33) + 1; idx > 0; idx--)
343 		CSR_READ_4(sc, DC_BUSCTL);
344 }
345 
346 static void
347 dc_eeprom_width(struct dc_softc *sc)
348 {
349 	int i;
350 
351 	/* Force EEPROM to idle state. */
352 	dc_eeprom_idle(sc);
353 
354 	/* Enter EEPROM access mode. */
355 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
356 	dc_delay(sc);
357 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
358 	dc_delay(sc);
359 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
360 	dc_delay(sc);
361 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
362 	dc_delay(sc);
363 
364 	for (i = 3; i--;) {
365 		if (6 & (1 << i))
366 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
367 		else
368 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
369 		dc_delay(sc);
370 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
371 		dc_delay(sc);
372 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
373 		dc_delay(sc);
374 	}
375 
376 	for (i = 1; i <= 12; i++) {
377 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
378 		dc_delay(sc);
379 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
380 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
381 			dc_delay(sc);
382 			break;
383 		}
384 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
385 		dc_delay(sc);
386 	}
387 
388 	/* Turn off EEPROM access mode. */
389 	dc_eeprom_idle(sc);
390 
391 	if (i < 4 || i > 12)
392 		sc->dc_romwidth = 6;
393 	else
394 		sc->dc_romwidth = i;
395 
396 	/* Enter EEPROM access mode. */
397 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
398 	dc_delay(sc);
399 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
400 	dc_delay(sc);
401 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
402 	dc_delay(sc);
403 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
404 	dc_delay(sc);
405 
406 	/* Turn off EEPROM access mode. */
407 	dc_eeprom_idle(sc);
408 }
409 
410 static void
411 dc_eeprom_idle(struct dc_softc *sc)
412 {
413 	int		i;
414 
415 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
416 	dc_delay(sc);
417 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
418 	dc_delay(sc);
419 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
420 	dc_delay(sc);
421 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
422 	dc_delay(sc);
423 
424 	for (i = 0; i < 25; i++) {
425 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
426 		dc_delay(sc);
427 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
428 		dc_delay(sc);
429 	}
430 
431 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
432 	dc_delay(sc);
433 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
434 	dc_delay(sc);
435 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
436 
437 	return;
438 }
439 
440 /*
441  * Send a read command and address to the EEPROM, check for ACK.
442  */
443 static void
444 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
445 {
446 	int		d, i;
447 
448 	d = DC_EECMD_READ >> 6;
449 	for (i = 3; i--; ) {
450 		if (d & (1 << i))
451 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
452 		else
453 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
454 		dc_delay(sc);
455 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
456 		dc_delay(sc);
457 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
458 		dc_delay(sc);
459 	}
460 
461 	/*
462 	 * Feed in each bit and strobe the clock.
463 	 */
464 	for (i = sc->dc_romwidth; i--;) {
465 		if (addr & (1 << i)) {
466 			SIO_SET(DC_SIO_EE_DATAIN);
467 		} else {
468 			SIO_CLR(DC_SIO_EE_DATAIN);
469 		}
470 		dc_delay(sc);
471 		SIO_SET(DC_SIO_EE_CLK);
472 		dc_delay(sc);
473 		SIO_CLR(DC_SIO_EE_CLK);
474 		dc_delay(sc);
475 	}
476 
477 	return;
478 }
479 
480 /*
481  * Read a word of data stored in the EEPROM at address 'addr.'
482  * The PNIC 82c168/82c169 has its own non-standard way to read
483  * the EEPROM.
484  */
485 static void
486 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
487 {
488 	int		i;
489 	u_int32_t		r;
490 
491 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
492 
493 	for (i = 0; i < DC_TIMEOUT; i++) {
494 		DELAY(1);
495 		r = CSR_READ_4(sc, DC_SIO);
496 		if (!(r & DC_PN_SIOCTL_BUSY)) {
497 			*dest = (u_int16_t)(r & 0xFFFF);
498 			return;
499 		}
500 	}
501 
502 	return;
503 }
504 
505 /*
506  * Read a word of data stored in the EEPROM at address 'addr.'
507  * The Xircom X3201 has its own non-standard way to read
508  * the EEPROM, too.
509  */
510 static void
511 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
512 {
513 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
514 
515 	addr *= 2;
516 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
517 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
518 	addr += 1;
519 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
520 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
521 
522 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
523 }
524 
525 /*
526  * Read a word of data stored in the EEPROM at address 'addr.'
527  */
528 static void
529 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
530 {
531 	int		i;
532 	u_int16_t		word = 0;
533 
534 	/* Force EEPROM to idle state. */
535 	dc_eeprom_idle(sc);
536 
537 	/* Enter EEPROM access mode. */
538 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
539 	dc_delay(sc);
540 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
541 	dc_delay(sc);
542 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
543 	dc_delay(sc);
544 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
545 	dc_delay(sc);
546 
547 	/*
548 	 * Send address of word we want to read.
549 	 */
550 	dc_eeprom_putbyte(sc, addr);
551 
552 	/*
553 	 * Start reading bits from EEPROM.
554 	 */
555 	for (i = 0x8000; i; i >>= 1) {
556 		SIO_SET(DC_SIO_EE_CLK);
557 		dc_delay(sc);
558 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
559 			word |= i;
560 		dc_delay(sc);
561 		SIO_CLR(DC_SIO_EE_CLK);
562 		dc_delay(sc);
563 	}
564 
565 	/* Turn off EEPROM access mode. */
566 	dc_eeprom_idle(sc);
567 
568 	*dest = word;
569 
570 	return;
571 }
572 
573 /*
574  * Read a sequence of words from the EEPROM.
575  */
576 static void
577 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
578 {
579 	int			i;
580 	u_int16_t		word = 0, *ptr;
581 
582 	for (i = 0; i < cnt; i++) {
583 		if (DC_IS_PNIC(sc))
584 			dc_eeprom_getword_pnic(sc, off + i, &word);
585 		else if (DC_IS_XIRCOM(sc))
586 			dc_eeprom_getword_xircom(sc, off + i, &word);
587 		else
588 			dc_eeprom_getword(sc, off + i, &word);
589 		ptr = (u_int16_t *)(dest + (i * 2));
590 		if (swap)
591 			*ptr = ntohs(word);
592 		else
593 			*ptr = word;
594 	}
595 
596 	return;
597 }
598 
599 /*
600  * The following two routines are taken from the Macronix 98713
601  * Application Notes pp.19-21.
602  */
603 /*
604  * Write a bit to the MII bus.
605  */
606 static void
607 dc_mii_writebit(struct dc_softc *sc, int bit)
608 {
609 	if (bit)
610 		CSR_WRITE_4(sc, DC_SIO,
611 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
612 	else
613 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
614 
615 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
616 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
617 
618 	return;
619 }
620 
621 /*
622  * Read a bit from the MII bus.
623  */
624 static int
625 dc_mii_readbit(struct dc_softc *sc)
626 {
627 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
628 	CSR_READ_4(sc, DC_SIO);
629 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
630 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
631 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
632 		return(1);
633 
634 	return(0);
635 }
636 
637 /*
638  * Sync the PHYs by setting data bit and strobing the clock 32 times.
639  */
640 static void
641 dc_mii_sync(struct dc_softc *sc)
642 {
643 	int		i;
644 
645 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
646 
647 	for (i = 0; i < 32; i++)
648 		dc_mii_writebit(sc, 1);
649 
650 	return;
651 }
652 
653 /*
654  * Clock a series of bits through the MII.
655  */
656 static void
657 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
658 {
659 	int			i;
660 
661 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
662 		dc_mii_writebit(sc, bits & i);
663 }
664 
665 /*
666  * Read an PHY register through the MII.
667  */
668 static int
669 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
670 {
671 	int ack, i;
672 
673 	/*
674 	 * Set up frame for RX.
675 	 */
676 	frame->mii_stdelim = DC_MII_STARTDELIM;
677 	frame->mii_opcode = DC_MII_READOP;
678 	frame->mii_turnaround = 0;
679 	frame->mii_data = 0;
680 
681 	/*
682 	 * Sync the PHYs.
683 	 */
684 	dc_mii_sync(sc);
685 
686 	/*
687 	 * Send command/address info.
688 	 */
689 	dc_mii_send(sc, frame->mii_stdelim, 2);
690 	dc_mii_send(sc, frame->mii_opcode, 2);
691 	dc_mii_send(sc, frame->mii_phyaddr, 5);
692 	dc_mii_send(sc, frame->mii_regaddr, 5);
693 
694 #ifdef notdef
695 	/* Idle bit */
696 	dc_mii_writebit(sc, 1);
697 	dc_mii_writebit(sc, 0);
698 #endif
699 
700 	/* Check for ack */
701 	ack = dc_mii_readbit(sc);
702 
703 	/*
704 	 * Now try reading data bits. If the ack failed, we still
705 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
706 	 */
707 	if (ack) {
708 		for(i = 0; i < 16; i++) {
709 			dc_mii_readbit(sc);
710 		}
711 		goto fail;
712 	}
713 
714 	for (i = 0x8000; i; i >>= 1) {
715 		if (!ack) {
716 			if (dc_mii_readbit(sc))
717 				frame->mii_data |= i;
718 		}
719 	}
720 
721 fail:
722 
723 	dc_mii_writebit(sc, 0);
724 	dc_mii_writebit(sc, 0);
725 
726 	if (ack)
727 		return(1);
728 	return(0);
729 }
730 
731 /*
732  * Write to a PHY register through the MII.
733  */
734 static int
735 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
736 {
737 	/*
738 	 * Set up frame for TX.
739 	 */
740 
741 	frame->mii_stdelim = DC_MII_STARTDELIM;
742 	frame->mii_opcode = DC_MII_WRITEOP;
743 	frame->mii_turnaround = DC_MII_TURNAROUND;
744 
745 	/*
746 	 * Sync the PHYs.
747 	 */
748 	dc_mii_sync(sc);
749 
750 	dc_mii_send(sc, frame->mii_stdelim, 2);
751 	dc_mii_send(sc, frame->mii_opcode, 2);
752 	dc_mii_send(sc, frame->mii_phyaddr, 5);
753 	dc_mii_send(sc, frame->mii_regaddr, 5);
754 	dc_mii_send(sc, frame->mii_turnaround, 2);
755 	dc_mii_send(sc, frame->mii_data, 16);
756 
757 	/* Idle bit. */
758 	dc_mii_writebit(sc, 0);
759 	dc_mii_writebit(sc, 0);
760 
761 	return(0);
762 }
763 
764 static int
765 dc_miibus_readreg(device_t dev, int phy, int reg)
766 {
767 	struct dc_mii_frame	frame;
768 	struct dc_softc		*sc;
769 	int			i, rval, phy_reg = 0;
770 
771 	sc = device_get_softc(dev);
772 	bzero((char *)&frame, sizeof(frame));
773 
774 	/*
775 	 * Note: both the AL981 and AN985 have internal PHYs,
776 	 * however the AL981 provides direct access to the PHY
777 	 * registers while the AN985 uses a serial MII interface.
778 	 * The AN985's MII interface is also buggy in that you
779 	 * can read from any MII address (0 to 31), but only address 1
780 	 * behaves normally. To deal with both cases, we pretend
781 	 * that the PHY is at MII address 1.
782 	 */
783 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
784 		return(0);
785 
786 	/*
787 	 * Note: the ukphy probes of the RS7112 report a PHY at
788 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
789 	 * so we only respond to correct one.
790 	 */
791 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
792 		return(0);
793 
794 	if (sc->dc_pmode != DC_PMODE_MII) {
795 		if (phy == (MII_NPHY - 1)) {
796 			switch(reg) {
797 			case MII_BMSR:
798 			/*
799 			 * Fake something to make the probe
800 			 * code think there's a PHY here.
801 			 */
802 				return(BMSR_MEDIAMASK);
803 				break;
804 			case MII_PHYIDR1:
805 				if (DC_IS_PNIC(sc))
806 					return(DC_VENDORID_LO);
807 				return(DC_VENDORID_DEC);
808 				break;
809 			case MII_PHYIDR2:
810 				if (DC_IS_PNIC(sc))
811 					return(DC_DEVICEID_82C168);
812 				return(DC_DEVICEID_21143);
813 				break;
814 			default:
815 				return(0);
816 				break;
817 			}
818 		} else
819 			return(0);
820 	}
821 
822 	if (DC_IS_PNIC(sc)) {
823 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
824 		    (phy << 23) | (reg << 18));
825 		for (i = 0; i < DC_TIMEOUT; i++) {
826 			DELAY(1);
827 			rval = CSR_READ_4(sc, DC_PN_MII);
828 			if (!(rval & DC_PN_MII_BUSY)) {
829 				rval &= 0xFFFF;
830 				return(rval == 0xFFFF ? 0 : rval);
831 			}
832 		}
833 		return(0);
834 	}
835 
836 	if (DC_IS_COMET(sc)) {
837 		switch(reg) {
838 		case MII_BMCR:
839 			phy_reg = DC_AL_BMCR;
840 			break;
841 		case MII_BMSR:
842 			phy_reg = DC_AL_BMSR;
843 			break;
844 		case MII_PHYIDR1:
845 			phy_reg = DC_AL_VENID;
846 			break;
847 		case MII_PHYIDR2:
848 			phy_reg = DC_AL_DEVID;
849 			break;
850 		case MII_ANAR:
851 			phy_reg = DC_AL_ANAR;
852 			break;
853 		case MII_ANLPAR:
854 			phy_reg = DC_AL_LPAR;
855 			break;
856 		case MII_ANER:
857 			phy_reg = DC_AL_ANER;
858 			break;
859 		default:
860 			if_printf(&sc->arpcom.ac_if,
861 				  "phy_read: bad phy register %x\n", reg);
862 			return(0);
863 			break;
864 		}
865 
866 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
867 
868 		if (rval == 0xFFFF)
869 			return(0);
870 		return(rval);
871 	}
872 
873 	frame.mii_phyaddr = phy;
874 	frame.mii_regaddr = reg;
875 	if (sc->dc_type == DC_TYPE_98713) {
876 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
877 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
878 	}
879 	dc_mii_readreg(sc, &frame);
880 	if (sc->dc_type == DC_TYPE_98713)
881 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
882 
883 	return(frame.mii_data);
884 }
885 
886 static int
887 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
888 {
889 	struct dc_softc		*sc;
890 	struct dc_mii_frame	frame;
891 	int			i, phy_reg = 0;
892 
893 	sc = device_get_softc(dev);
894 	bzero((char *)&frame, sizeof(frame));
895 
896 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
897 		return(0);
898 
899 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
900 		return(0);
901 
902 	if (DC_IS_PNIC(sc)) {
903 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
904 		    (phy << 23) | (reg << 10) | data);
905 		for (i = 0; i < DC_TIMEOUT; i++) {
906 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
907 				break;
908 		}
909 		return(0);
910 	}
911 
912 	if (DC_IS_COMET(sc)) {
913 		switch(reg) {
914 		case MII_BMCR:
915 			phy_reg = DC_AL_BMCR;
916 			break;
917 		case MII_BMSR:
918 			phy_reg = DC_AL_BMSR;
919 			break;
920 		case MII_PHYIDR1:
921 			phy_reg = DC_AL_VENID;
922 			break;
923 		case MII_PHYIDR2:
924 			phy_reg = DC_AL_DEVID;
925 			break;
926 		case MII_ANAR:
927 			phy_reg = DC_AL_ANAR;
928 			break;
929 		case MII_ANLPAR:
930 			phy_reg = DC_AL_LPAR;
931 			break;
932 		case MII_ANER:
933 			phy_reg = DC_AL_ANER;
934 			break;
935 		default:
936 			if_printf(&sc->arpcom.ac_if,
937 				  "phy_write: bad phy register %x\n", reg);
938 			return(0);
939 			break;
940 		}
941 
942 		CSR_WRITE_4(sc, phy_reg, data);
943 		return(0);
944 	}
945 
946 	frame.mii_phyaddr = phy;
947 	frame.mii_regaddr = reg;
948 	frame.mii_data = data;
949 
950 	if (sc->dc_type == DC_TYPE_98713) {
951 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
952 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
953 	}
954 	dc_mii_writereg(sc, &frame);
955 	if (sc->dc_type == DC_TYPE_98713)
956 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
957 
958 	return(0);
959 }
960 
961 static void
962 dc_miibus_statchg(device_t dev)
963 {
964 	struct dc_softc		*sc;
965 	struct mii_data		*mii;
966 	struct ifmedia		*ifm;
967 
968 	sc = device_get_softc(dev);
969 	if (DC_IS_ADMTEK(sc))
970 		return;
971 
972 	mii = device_get_softc(sc->dc_miibus);
973 	ifm = &mii->mii_media;
974 	if (DC_IS_DAVICOM(sc) &&
975 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
976 		dc_setcfg(sc, ifm->ifm_media);
977 		sc->dc_if_media = ifm->ifm_media;
978 	} else {
979 		dc_setcfg(sc, mii->mii_media_active);
980 		sc->dc_if_media = mii->mii_media_active;
981 	}
982 
983 	return;
984 }
985 
986 /*
987  * Special support for DM9102A cards with HomePNA PHYs. Note:
988  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
989  * to be impossible to talk to the management interface of the DM9801
990  * PHY (its MDIO pin is not connected to anything). Consequently,
991  * the driver has to just 'know' about the additional mode and deal
992  * with it itself. *sigh*
993  */
994 static void
995 dc_miibus_mediainit(device_t dev)
996 {
997 	struct dc_softc		*sc;
998 	struct mii_data		*mii;
999 	struct ifmedia		*ifm;
1000 	int			rev;
1001 
1002 	rev = pci_get_revid(dev);
1003 
1004 	sc = device_get_softc(dev);
1005 	mii = device_get_softc(sc->dc_miibus);
1006 	ifm = &mii->mii_media;
1007 
1008 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1009 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1010 
1011 	return;
1012 }
1013 
1014 #define DC_BITS_512	9
1015 #define DC_BITS_128	7
1016 #define DC_BITS_64	6
1017 
1018 static u_int32_t
1019 dc_crc_mask(struct dc_softc *sc)
1020 {
1021 	/*
1022 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1023 	 * chips is only 128 bits wide.
1024 	 */
1025 	if (sc->dc_flags & DC_128BIT_HASH)
1026 		return ((1 << DC_BITS_128) - 1);
1027 
1028 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1029 	if (sc->dc_flags & DC_64BIT_HASH)
1030 		return ((1 << DC_BITS_64) - 1);
1031 
1032 	return ((1 << DC_BITS_512) - 1);
1033 }
1034 
1035 /*
1036  * 21143-style RX filter setup routine. Filter programming is done by
1037  * downloading a special setup frame into the TX engine. 21143, Macronix,
1038  * PNIC, PNIC II and Davicom chips are programmed this way.
1039  *
1040  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1041  * address (our node address) and a 512-bit hash filter for multicast
1042  * frames. We also sneak the broadcast address into the hash filter since
1043  * we need that too.
1044  */
1045 static void
1046 dc_setfilt_21143(struct dc_softc *sc)
1047 {
1048 	struct dc_desc		*sframe;
1049 	u_int32_t		h, crc_mask, *sp;
1050 	struct ifmultiaddr	*ifma;
1051 	struct ifnet		*ifp;
1052 	int			i;
1053 
1054 	ifp = &sc->arpcom.ac_if;
1055 
1056 	i = sc->dc_cdata.dc_tx_prod;
1057 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1058 	sc->dc_cdata.dc_tx_cnt++;
1059 	sframe = &sc->dc_ldata->dc_tx_list[i];
1060 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1061 	bzero((char *)sp, DC_SFRAME_LEN);
1062 
1063 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1064 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1065 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1066 
1067 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1068 
1069 	/* If we want promiscuous mode, set the allframes bit. */
1070 	if (ifp->if_flags & IFF_PROMISC)
1071 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1072 	else
1073 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1074 
1075 	if (ifp->if_flags & IFF_ALLMULTI)
1076 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1077 	else
1078 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1079 
1080 	crc_mask = dc_crc_mask(sc);
1081 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1082 		if (ifma->ifma_addr->sa_family != AF_LINK)
1083 			continue;
1084 		h = ether_crc32_le(
1085 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1086 			ETHER_ADDR_LEN) & crc_mask;
1087 		sp[h >> 4] |= 1 << (h & 0xF);
1088 	}
1089 
1090 	if (ifp->if_flags & IFF_BROADCAST) {
1091 		h = ether_crc32_le(ifp->if_broadcastaddr,
1092 				   ETHER_ADDR_LEN) & crc_mask;
1093 		sp[h >> 4] |= 1 << (h & 0xF);
1094 	}
1095 
1096 	/* Set our MAC address */
1097 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1098 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1099 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1100 
1101 	sframe->dc_status = DC_TXSTAT_OWN;
1102 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1103 
1104 	/*
1105 	 * The PNIC takes an exceedingly long time to process its
1106 	 * setup frame; wait 10ms after posting the setup frame
1107 	 * before proceeding, just so it has time to swallow its
1108 	 * medicine.
1109 	 */
1110 	DELAY(10000);
1111 
1112 	ifp->if_timer = 5;
1113 
1114 	return;
1115 }
1116 
1117 static void
1118 dc_setfilt_admtek(struct dc_softc *sc)
1119 {
1120 	struct ifnet		*ifp;
1121 	int			h = 0;
1122 	u_int32_t		crc_mask;
1123 	u_int32_t		hashes[2] = { 0, 0 };
1124 	struct ifmultiaddr	*ifma;
1125 
1126 	ifp = &sc->arpcom.ac_if;
1127 
1128 	/* Init our MAC address */
1129 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1130 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1131 
1132 	/* If we want promiscuous mode, set the allframes bit. */
1133 	if (ifp->if_flags & IFF_PROMISC)
1134 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1135 	else
1136 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1137 
1138 	if (ifp->if_flags & IFF_ALLMULTI)
1139 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1140 	else
1141 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1142 
1143 	/* first, zot all the existing hash bits */
1144 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1145 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1146 
1147 	/*
1148 	 * If we're already in promisc or allmulti mode, we
1149 	 * don't have to bother programming the multicast filter.
1150 	 */
1151 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1152 		return;
1153 
1154 	/* now program new ones */
1155 	if (DC_IS_CENTAUR(sc))
1156 		crc_mask = dc_crc_mask(sc);
1157 	else
1158 		crc_mask = 0x3f;
1159 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1160 		if (ifma->ifma_addr->sa_family != AF_LINK)
1161 			continue;
1162 		if (DC_IS_CENTAUR(sc)) {
1163 			h = ether_crc32_le(
1164 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1165 				ETHER_ADDR_LEN) & crc_mask;
1166 		} else {
1167 			h = ether_crc32_be(
1168 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1169 				ETHER_ADDR_LEN);
1170 			h = (h >> 26) & crc_mask;
1171 		}
1172 		if (h < 32)
1173 			hashes[0] |= (1 << h);
1174 		else
1175 			hashes[1] |= (1 << (h - 32));
1176 	}
1177 
1178 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1179 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1180 
1181 	return;
1182 }
1183 
1184 static void
1185 dc_setfilt_asix(struct dc_softc *sc)
1186 {
1187 	struct ifnet		*ifp;
1188 	int			h = 0;
1189 	u_int32_t		hashes[2] = { 0, 0 };
1190 	struct ifmultiaddr	*ifma;
1191 
1192 	ifp = &sc->arpcom.ac_if;
1193 
1194         /* Init our MAC address */
1195         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1196         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1197 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1198         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1199         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1200 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1201 
1202 	/* If we want promiscuous mode, set the allframes bit. */
1203 	if (ifp->if_flags & IFF_PROMISC)
1204 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1205 	else
1206 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1207 
1208 	if (ifp->if_flags & IFF_ALLMULTI)
1209 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1210 	else
1211 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1212 
1213 	/*
1214 	 * The ASIX chip has a special bit to enable reception
1215 	 * of broadcast frames.
1216 	 */
1217 	if (ifp->if_flags & IFF_BROADCAST)
1218 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1219 	else
1220 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1221 
1222 	/* first, zot all the existing hash bits */
1223 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1224 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1225 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1226 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1227 
1228 	/*
1229 	 * If we're already in promisc or allmulti mode, we
1230 	 * don't have to bother programming the multicast filter.
1231 	 */
1232 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1233 		return;
1234 
1235 	/* now program new ones */
1236 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1237 		if (ifma->ifma_addr->sa_family != AF_LINK)
1238 			continue;
1239 		h = ether_crc32_be(
1240 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1241 			ETHER_ADDR_LEN);
1242 		h = (h >> 26) & 0x3f;
1243 		if (h < 32)
1244 			hashes[0] |= (1 << h);
1245 		else
1246 			hashes[1] |= (1 << (h - 32));
1247 	}
1248 
1249 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1250 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1251 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1252 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1253 
1254 	return;
1255 }
1256 
1257 static void
1258 dc_setfilt_xircom(struct dc_softc *sc)
1259 {
1260 	struct dc_desc		*sframe;
1261 	u_int32_t		h, *sp;
1262 	struct ifmultiaddr	*ifma;
1263 	struct ifnet		*ifp;
1264 	int			i;
1265 
1266 	ifp = &sc->arpcom.ac_if;
1267 	KASSERT(ifp->if_flags & IFF_RUNNING,
1268 		("%s is not running yet", ifp->if_xname));
1269 
1270 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1271 
1272 	i = sc->dc_cdata.dc_tx_prod;
1273 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1274 	sc->dc_cdata.dc_tx_cnt++;
1275 	sframe = &sc->dc_ldata->dc_tx_list[i];
1276 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1277 	bzero(sp, DC_SFRAME_LEN);
1278 
1279 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1280 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1281 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1282 
1283 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1284 
1285 	/* If we want promiscuous mode, set the allframes bit. */
1286 	if (ifp->if_flags & IFF_PROMISC)
1287 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1288 	else
1289 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1290 
1291 	if (ifp->if_flags & IFF_ALLMULTI)
1292  		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1293 	else
1294 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1295 
1296 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1297 		if (ifma->ifma_addr->sa_family != AF_LINK)
1298 			continue;
1299 		h = dc_mchash_xircom(sc,
1300 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1301 		sp[h >> 4] |= 1 << (h & 0xF);
1302 	}
1303 
1304 	if (ifp->if_flags & IFF_BROADCAST) {
1305 		h = dc_mchash_xircom(sc, (caddr_t)&etherbroadcastaddr);
1306 		sp[h >> 4] |= 1 << (h & 0xF);
1307 	}
1308 
1309 	/* Set our MAC address */
1310 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1311 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1312 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1313 
1314 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1315 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1316 	sframe->dc_status = DC_TXSTAT_OWN;
1317 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1318 
1319 	/*
1320 	 * wait some time...
1321 	 */
1322 	DELAY(1000);
1323 
1324 	ifp->if_timer = 5;
1325 }
1326 
1327 static void
1328 dc_setfilt(struct dc_softc *sc)
1329 {
1330 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1331 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1332 		dc_setfilt_21143(sc);
1333 
1334 	if (DC_IS_ASIX(sc))
1335 		dc_setfilt_asix(sc);
1336 
1337 	if (DC_IS_ADMTEK(sc))
1338 		dc_setfilt_admtek(sc);
1339 
1340 	if (DC_IS_XIRCOM(sc))
1341 		dc_setfilt_xircom(sc);
1342 }
1343 
1344 /*
1345  * In order to fiddle with the
1346  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1347  * first have to put the transmit and/or receive logic in the idle state.
1348  */
1349 static void
1350 dc_setcfg(struct dc_softc *sc, int media)
1351 {
1352 	int			i, restart = 0;
1353 	u_int32_t		isr;
1354 
1355 	if (IFM_SUBTYPE(media) == IFM_NONE)
1356 		return;
1357 
1358 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1359 		restart = 1;
1360 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1361 
1362 		for (i = 0; i < DC_TIMEOUT; i++) {
1363 			isr = CSR_READ_4(sc, DC_ISR);
1364 			if ((isr & DC_ISR_TX_IDLE) &&
1365 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1366 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1367 				break;
1368 			DELAY(10);
1369 		}
1370 
1371 		if (i == DC_TIMEOUT) {
1372 			if_printf(&sc->arpcom.ac_if,
1373 			    "failed to force tx and rx to idle state\n");
1374 		}
1375 	}
1376 
1377 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1378 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1379 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1380 		if (sc->dc_pmode == DC_PMODE_MII) {
1381 			int	watchdogreg;
1382 
1383 			if (DC_IS_INTEL(sc)) {
1384 			/* there's a write enable bit here that reads as 1 */
1385 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1386 				watchdogreg &= ~DC_WDOG_CTLWREN;
1387 				watchdogreg |= DC_WDOG_JABBERDIS;
1388 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1389 			} else {
1390 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1391 			}
1392 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1393 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1394 			if (sc->dc_type == DC_TYPE_98713)
1395 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1396 				    DC_NETCFG_SCRAMBLER));
1397 			if (!DC_IS_DAVICOM(sc))
1398 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1399 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1400 			if (DC_IS_INTEL(sc))
1401 				dc_apply_fixup(sc, IFM_AUTO);
1402 		} else {
1403 			if (DC_IS_PNIC(sc)) {
1404 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1405 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1406 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1407 			}
1408 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1409 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1410 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1411 			if (DC_IS_INTEL(sc))
1412 				dc_apply_fixup(sc,
1413 				    (media & IFM_GMASK) == IFM_FDX ?
1414 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1415 		}
1416 	}
1417 
1418 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1419 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1420 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1421 		if (sc->dc_pmode == DC_PMODE_MII) {
1422 			int	watchdogreg;
1423 
1424 			/* there's a write enable bit here that reads as 1 */
1425 			if (DC_IS_INTEL(sc)) {
1426 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1427 				watchdogreg &= ~DC_WDOG_CTLWREN;
1428 				watchdogreg |= DC_WDOG_JABBERDIS;
1429 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1430 			} else {
1431 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1432 			}
1433 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1434 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1435 			if (sc->dc_type == DC_TYPE_98713)
1436 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1437 			if (!DC_IS_DAVICOM(sc))
1438 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1439 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1440 			if (DC_IS_INTEL(sc))
1441 				dc_apply_fixup(sc, IFM_AUTO);
1442 		} else {
1443 			if (DC_IS_PNIC(sc)) {
1444 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1445 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1446 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1447 			}
1448 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1449 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1450 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1451 			if (DC_IS_INTEL(sc)) {
1452 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1453 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1454 				if ((media & IFM_GMASK) == IFM_FDX)
1455 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1456 				else
1457 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1458 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1459 				DC_CLRBIT(sc, DC_10BTCTRL,
1460 				    DC_TCTL_AUTONEGENBL);
1461 				dc_apply_fixup(sc,
1462 				    (media & IFM_GMASK) == IFM_FDX ?
1463 				    IFM_10_T|IFM_FDX : IFM_10_T);
1464 				DELAY(20000);
1465 			}
1466 		}
1467 	}
1468 
1469 	/*
1470 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1471 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1472 	 * on the external MII port.
1473 	 */
1474 	if (DC_IS_DAVICOM(sc)) {
1475 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1476 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1477 			sc->dc_link = 1;
1478 		} else {
1479 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1480 		}
1481 	}
1482 
1483 	if ((media & IFM_GMASK) == IFM_FDX) {
1484 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1485 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1486 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1487 	} else {
1488 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1489 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1490 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1491 	}
1492 
1493 	if (restart)
1494 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1495 
1496 	return;
1497 }
1498 
1499 static void
1500 dc_reset(struct dc_softc *sc)
1501 {
1502 	int		i;
1503 
1504 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1505 
1506 	for (i = 0; i < DC_TIMEOUT; i++) {
1507 		DELAY(10);
1508 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1509 			break;
1510 	}
1511 
1512 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
1513 	    DC_IS_CONEXANT(sc)) {
1514 		DELAY(10000);
1515 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1516 		i = 0;
1517 	}
1518 
1519 	if (i == DC_TIMEOUT)
1520 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1521 
1522 	/* Wait a little while for the chip to get its brains in order. */
1523 	DELAY(1000);
1524 
1525 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1526 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1527 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1528 
1529 	/*
1530 	 * Bring the SIA out of reset. In some cases, it looks
1531 	 * like failing to unreset the SIA soon enough gets it
1532 	 * into a state where it will never come out of reset
1533 	 * until we reset the whole chip again.
1534 	 */
1535 	if (DC_IS_INTEL(sc)) {
1536 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1537 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1538 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1539 	}
1540 
1541         return;
1542 }
1543 
1544 static const struct dc_type *
1545 dc_devtype(device_t dev)
1546 {
1547 	const struct dc_type	*t;
1548 	u_int32_t		rev;
1549 
1550 	t = dc_devs;
1551 
1552 	while(t->dc_name != NULL) {
1553 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1554 		    (pci_get_device(dev) == t->dc_did)) {
1555 			/* Check the PCI revision */
1556 			rev = pci_get_revid(dev);
1557 			if (t->dc_did == DC_DEVICEID_98713 &&
1558 			    rev >= DC_REVISION_98713A)
1559 				t++;
1560 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1561 			    rev >= DC_REVISION_98713A)
1562 				t++;
1563 			if (t->dc_did == DC_DEVICEID_987x5 &&
1564 			    rev >= DC_REVISION_98715AEC_C)
1565 				t++;
1566 			if (t->dc_did == DC_DEVICEID_987x5 &&
1567 			    rev >= DC_REVISION_98725)
1568 				t++;
1569 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1570 			    rev >= DC_REVISION_88141)
1571 				t++;
1572 			if (t->dc_did == DC_DEVICEID_82C168 &&
1573 			    rev >= DC_REVISION_82C169)
1574 				t++;
1575 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1576 			    rev >= DC_REVISION_DM9102A)
1577 				t++;
1578 			return(t);
1579 		}
1580 		t++;
1581 	}
1582 
1583 	return(NULL);
1584 }
1585 
1586 /*
1587  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1588  * IDs against our list and return a device name if we find a match.
1589  * We do a little bit of extra work to identify the exact type of
1590  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1591  * but different revision IDs. The same is true for 98715/98715A
1592  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1593  * cases, the exact chip revision affects driver behavior.
1594  */
1595 static int
1596 dc_probe(device_t dev)
1597 {
1598 	const struct dc_type *t;
1599 
1600 	t = dc_devtype(dev);
1601 	if (t != NULL) {
1602 		struct dc_softc *sc = device_get_softc(dev);
1603 
1604 		/* Need this info to decide on a chip type. */
1605 		sc->dc_info = t;
1606 		device_set_desc(dev, t->dc_name);
1607 		return(0);
1608 	}
1609 
1610 	return(ENXIO);
1611 }
1612 
1613 static void
1614 dc_acpi(device_t dev)
1615 {
1616 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1617 		uint32_t iobase, membase, irq;
1618 		struct dc_softc *sc;
1619 
1620 		/* Save important PCI config data. */
1621 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1622 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1623 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1624 
1625 		sc = device_get_softc(dev);
1626 		/* Reset the power state. */
1627 		if_printf(&sc->arpcom.ac_if,
1628 			  "chip is in D%d power mode "
1629 			  "-- setting to D0\n", pci_get_powerstate(dev));
1630 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1631 
1632 		/* Restore PCI config data. */
1633 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1634 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1635 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1636 	}
1637 }
1638 
1639 static void
1640 dc_apply_fixup(struct dc_softc *sc, int media)
1641 {
1642 	struct dc_mediainfo	*m;
1643 	u_int8_t		*p;
1644 	int			i;
1645 	u_int32_t		reg;
1646 
1647 	m = sc->dc_mi;
1648 
1649 	while (m != NULL) {
1650 		if (m->dc_media == media)
1651 			break;
1652 		m = m->dc_next;
1653 	}
1654 
1655 	if (m == NULL)
1656 		return;
1657 
1658 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1659 		reg = (p[0] | (p[1] << 8)) << 16;
1660 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1661 	}
1662 
1663 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1664 		reg = (p[0] | (p[1] << 8)) << 16;
1665 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1666 	}
1667 
1668 	return;
1669 }
1670 
1671 static void
1672 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1673 {
1674 	struct dc_mediainfo	*m;
1675 
1676 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1677 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1678 	case DC_SIA_CODE_10BT:
1679 		m->dc_media = IFM_10_T;
1680 		break;
1681 
1682 	case DC_SIA_CODE_10BT_FDX:
1683 		m->dc_media = IFM_10_T|IFM_FDX;
1684 		break;
1685 
1686 	case DC_SIA_CODE_10B2:
1687 		m->dc_media = IFM_10_2;
1688 		break;
1689 
1690 	case DC_SIA_CODE_10B5:
1691 		m->dc_media = IFM_10_5;
1692 		break;
1693 	}
1694 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1695 		m->dc_gp_len = 2;
1696 		m->dc_gp_ptr =
1697 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1698 	} else {
1699 	m->dc_gp_len = 2;
1700 	m->dc_gp_ptr =
1701 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1702 	}
1703 
1704 	m->dc_next = sc->dc_mi;
1705 	sc->dc_mi = m;
1706 
1707 	sc->dc_pmode = DC_PMODE_SIA;
1708 
1709 	return;
1710 }
1711 
1712 static void
1713 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1714 {
1715 	struct dc_mediainfo	*m;
1716 
1717 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1718 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1719 		m->dc_media = IFM_100_TX;
1720 
1721 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1722 		m->dc_media = IFM_100_TX|IFM_FDX;
1723 
1724 	m->dc_gp_len = 2;
1725 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1726 
1727 	m->dc_next = sc->dc_mi;
1728 	sc->dc_mi = m;
1729 
1730 	sc->dc_pmode = DC_PMODE_SYM;
1731 
1732 	return;
1733 }
1734 
1735 static void
1736 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1737 {
1738 	u_int8_t		*p;
1739 	struct dc_mediainfo	*m;
1740 
1741 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1742 	/* We abuse IFM_AUTO to represent MII. */
1743 	m->dc_media = IFM_AUTO;
1744 	m->dc_gp_len = l->dc_gpr_len;
1745 
1746 	p = (u_int8_t *)l;
1747 	p += sizeof(struct dc_eblock_mii);
1748 	m->dc_gp_ptr = p;
1749 	p += 2 * l->dc_gpr_len;
1750 	m->dc_reset_len = *p;
1751 	p++;
1752 	m->dc_reset_ptr = p;
1753 
1754 	m->dc_next = sc->dc_mi;
1755 	sc->dc_mi = m;
1756 
1757 	return;
1758 }
1759 
1760 static void
1761 dc_read_srom(struct dc_softc *sc, int bits)
1762 {
1763 	int size;
1764 
1765 	size = 2 << bits;
1766 	sc->dc_srom = kmalloc(size, M_DEVBUF, M_INTWAIT);
1767 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1768 }
1769 
1770 static void
1771 dc_parse_21143_srom(struct dc_softc *sc)
1772 {
1773 	struct dc_leaf_hdr	*lhdr;
1774 	struct dc_eblock_hdr	*hdr;
1775 	int			i, loff;
1776 	char			*ptr;
1777 	int			have_mii;
1778 
1779 	have_mii = 0;
1780 	loff = sc->dc_srom[27];
1781 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1782 
1783 	ptr = (char *)lhdr;
1784 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1785 	/*
1786 	 * Look if we got a MII media block.
1787 	 */
1788 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1789 		hdr = (struct dc_eblock_hdr *)ptr;
1790 		if (hdr->dc_type == DC_EBLOCK_MII)
1791 		    have_mii++;
1792 
1793 		ptr += (hdr->dc_len & 0x7F);
1794 		ptr++;
1795 	}
1796 
1797 	/*
1798 	 * Do the same thing again. Only use SIA and SYM media
1799 	 * blocks if no MII media block is available.
1800 	 */
1801 	ptr = (char *)lhdr;
1802 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1803 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1804 		hdr = (struct dc_eblock_hdr *)ptr;
1805 		switch(hdr->dc_type) {
1806 		case DC_EBLOCK_MII:
1807 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1808 			break;
1809 		case DC_EBLOCK_SIA:
1810 			if (! have_mii)
1811 				dc_decode_leaf_sia(sc,
1812 				    (struct dc_eblock_sia *)hdr);
1813 			break;
1814 		case DC_EBLOCK_SYM:
1815 			if (! have_mii)
1816 				dc_decode_leaf_sym(sc,
1817 				    (struct dc_eblock_sym *)hdr);
1818 			break;
1819 		default:
1820 			/* Don't care. Yet. */
1821 			break;
1822 		}
1823 		ptr += (hdr->dc_len & 0x7F);
1824 		ptr++;
1825 	}
1826 
1827 	return;
1828 }
1829 
1830 /*
1831  * Attach the interface. Allocate softc structures, do ifmedia
1832  * setup and ethernet/BPF attach.
1833  */
1834 static int
1835 dc_attach(device_t dev)
1836 {
1837 	int			tmp = 0;
1838 	u_char			eaddr[ETHER_ADDR_LEN];
1839 	u_int32_t		command;
1840 	struct dc_softc		*sc;
1841 	struct ifnet		*ifp;
1842 	u_int32_t		revision;
1843 	int			error = 0, rid, mac_offset;
1844 	uint8_t			*mac;
1845 
1846 	sc = device_get_softc(dev);
1847 	callout_init(&sc->dc_stat_timer);
1848 
1849 	ifp = &sc->arpcom.ac_if;
1850 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1851 
1852 	/*
1853 	 * Handle power management nonsense.
1854 	 */
1855 	dc_acpi(dev);
1856 
1857 	/*
1858 	 * Map control/status registers.
1859 	 */
1860 	pci_enable_busmaster(dev);
1861 
1862 	rid = DC_RID;
1863 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1864 
1865 	if (sc->dc_res == NULL) {
1866 		device_printf(dev, "couldn't map ports/memory\n");
1867 		error = ENXIO;
1868 		goto fail;
1869 	}
1870 
1871 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1872 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1873 
1874 	/* Allocate interrupt */
1875 	rid = 0;
1876 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1877 	    RF_SHAREABLE | RF_ACTIVE);
1878 
1879 	if (sc->dc_irq == NULL) {
1880 		device_printf(dev, "couldn't map interrupt\n");
1881 		error = ENXIO;
1882 		goto fail;
1883 	}
1884 
1885 	revision = pci_get_revid(dev);
1886 
1887 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1888 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1889 	    sc->dc_info->dc_did != DC_DEVICEID_X3201)
1890 		dc_eeprom_width(sc);
1891 
1892 	switch(sc->dc_info->dc_did) {
1893 	case DC_DEVICEID_21143:
1894 		sc->dc_type = DC_TYPE_21143;
1895 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1896 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1897 		/* Save EEPROM contents so we can parse them later. */
1898 		dc_read_srom(sc, sc->dc_romwidth);
1899 		break;
1900 	case DC_DEVICEID_DM9009:
1901 	case DC_DEVICEID_DM9100:
1902 	case DC_DEVICEID_DM9102:
1903 		sc->dc_type = DC_TYPE_DM9102;
1904 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1905 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1906 		sc->dc_flags |= DC_TX_ALIGN;
1907 		sc->dc_pmode = DC_PMODE_MII;
1908 		/* Increase the latency timer value. */
1909 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1910 		command &= 0xFFFF00FF;
1911 		command |= 0x00008000;
1912 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1913 		break;
1914 	case DC_DEVICEID_AL981:
1915 		sc->dc_type = DC_TYPE_AL981;
1916 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1917 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1918 		sc->dc_pmode = DC_PMODE_MII;
1919 		dc_read_srom(sc, sc->dc_romwidth);
1920 		break;
1921 	case DC_DEVICEID_AN985:
1922 	case DC_DEVICEID_FE2500:
1923 	case DC_DEVICEID_ADM9511:
1924 	case DC_DEVICEID_ADM9513:
1925 	case DC_DEVICEID_FA511:
1926 	case DC_DEVICEID_EN2242:
1927 	case DC_DEVICEID_3CSOHOB:
1928 		sc->dc_type = DC_TYPE_AN985;
1929 		sc->dc_flags |= DC_64BIT_HASH;
1930 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1931 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1932 		sc->dc_pmode = DC_PMODE_MII;
1933 		break;
1934 	case DC_DEVICEID_98713:
1935 	case DC_DEVICEID_98713_CP:
1936 		if (revision < DC_REVISION_98713A) {
1937 			sc->dc_type = DC_TYPE_98713;
1938 		}
1939 		if (revision >= DC_REVISION_98713A) {
1940 			sc->dc_type = DC_TYPE_98713A;
1941 			sc->dc_flags |= DC_21143_NWAY;
1942 		}
1943 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1944 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1945 		break;
1946 	case DC_DEVICEID_987x5:
1947 	case DC_DEVICEID_EN1217:
1948 		/*
1949 		 * Macronix MX98715AEC-C/D/E parts have only a
1950 		 * 128-bit hash table. We need to deal with these
1951 		 * in the same manner as the PNIC II so that we
1952 		 * get the right number of bits out of the
1953 		 * CRC routine.
1954 		 */
1955 		if (revision >= DC_REVISION_98715AEC_C &&
1956 		    revision < DC_REVISION_98725)
1957 			sc->dc_flags |= DC_128BIT_HASH;
1958 		sc->dc_type = DC_TYPE_987x5;
1959 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1960 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1961 		break;
1962 	case DC_DEVICEID_98727:
1963 		sc->dc_type = DC_TYPE_987x5;
1964 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1965 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1966 		break;
1967 	case DC_DEVICEID_82C115:
1968 		sc->dc_type = DC_TYPE_PNICII;
1969 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1970 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1971 		break;
1972 	case DC_DEVICEID_82C168:
1973 		sc->dc_type = DC_TYPE_PNIC;
1974 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1975 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1976 		sc->dc_pnic_rx_buf = kmalloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1977 		if (revision < DC_REVISION_82C169)
1978 			sc->dc_pmode = DC_PMODE_SYM;
1979 		break;
1980 	case DC_DEVICEID_AX88140A:
1981 		sc->dc_type = DC_TYPE_ASIX;
1982 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1983 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1984 		sc->dc_pmode = DC_PMODE_MII;
1985 		break;
1986 	case DC_DEVICEID_RS7112:
1987 		sc->dc_type = DC_TYPE_CONEXANT;
1988 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1989 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1990 		sc->dc_pmode = DC_PMODE_MII;
1991 		dc_read_srom(sc, sc->dc_romwidth);
1992 		break;
1993 	case DC_DEVICEID_X3201:
1994 		sc->dc_type = DC_TYPE_XIRCOM;
1995 		sc->dc_flags |= (DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1996 				 DC_TX_ALIGN);
1997 		/*
1998 		 * We don't actually need to coalesce, but we're doing
1999 		 * it to obtain a double word aligned buffer.
2000 		 * The DC_TX_COALESCE flag is required.
2001 		 */
2002 		sc->dc_pmode = DC_PMODE_MII;
2003 		break;
2004 	default:
2005 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
2006 		break;
2007 	}
2008 
2009 	/* Save the cache line size. */
2010 	if (DC_IS_DAVICOM(sc))
2011 		sc->dc_cachesize = 0;
2012 	else
2013 		sc->dc_cachesize = pci_read_config(dev,
2014 		    DC_PCI_CFLT, 4) & 0xFF;
2015 
2016 	/* Reset the adapter. */
2017 	dc_reset(sc);
2018 
2019 	/* Take 21143 out of snooze mode */
2020 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2021 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2022 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2023 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2024 	}
2025 
2026 	/*
2027 	 * Try to learn something about the supported media.
2028 	 * We know that ASIX and ADMtek and Davicom devices
2029 	 * will *always* be using MII media, so that's a no-brainer.
2030 	 * The tricky ones are the Macronix/PNIC II and the
2031 	 * Intel 21143.
2032 	 */
2033 	if (DC_IS_INTEL(sc))
2034 		dc_parse_21143_srom(sc);
2035 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2036 		if (sc->dc_type == DC_TYPE_98713)
2037 			sc->dc_pmode = DC_PMODE_MII;
2038 		else
2039 			sc->dc_pmode = DC_PMODE_SYM;
2040 	} else if (!sc->dc_pmode)
2041 		sc->dc_pmode = DC_PMODE_MII;
2042 
2043 	/*
2044 	 * Get station address from the EEPROM.
2045 	 */
2046 	switch(sc->dc_type) {
2047 	case DC_TYPE_98713:
2048 	case DC_TYPE_98713A:
2049 	case DC_TYPE_987x5:
2050 	case DC_TYPE_PNICII:
2051 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2052 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2053 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2054 		break;
2055 	case DC_TYPE_PNIC:
2056 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2057 		break;
2058 	case DC_TYPE_DM9102:
2059 	case DC_TYPE_21143:
2060 	case DC_TYPE_ASIX:
2061 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2062 		break;
2063 	case DC_TYPE_AL981:
2064 	case DC_TYPE_AN985:
2065 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
2066 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
2067 		break;
2068 	case DC_TYPE_CONEXANT:
2069 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2070 		break;
2071 	case DC_TYPE_XIRCOM:
2072 		/* The MAC comes from the CIS */
2073 		mac = pci_get_ether(dev);
2074 		if (!mac) {
2075 			device_printf(dev, "No station address in CIS!\n");
2076 			error = ENXIO;
2077 			goto fail;
2078 		}
2079 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2080 	 	break;
2081 	default:
2082 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2083 		break;
2084 	}
2085 
2086 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2087 	    M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
2088 
2089 	if (sc->dc_ldata == NULL) {
2090 		device_printf(dev, "no memory for list buffers!\n");
2091 		error = ENXIO;
2092 		goto fail;
2093 	}
2094 
2095 	ifp->if_softc = sc;
2096 	ifp->if_mtu = ETHERMTU;
2097 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2098 	ifp->if_ioctl = dc_ioctl;
2099 	ifp->if_start = dc_start;
2100 #ifdef IFPOLL_ENABLE
2101 	ifp->if_npoll = dc_npoll;
2102 #endif
2103 	ifp->if_watchdog = dc_watchdog;
2104 	ifp->if_init = dc_init;
2105 	ifp->if_baudrate = 10000000;
2106 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2107 	ifq_set_ready(&ifp->if_snd);
2108 
2109 	/*
2110 	 * Do MII setup. If this is a 21143, check for a PHY on the
2111 	 * MII bus after applying any necessary fixups to twiddle the
2112 	 * GPIO bits. If we don't end up finding a PHY, restore the
2113 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2114 	 * driver instead.
2115 	 */
2116 	if (DC_IS_INTEL(sc)) {
2117 		dc_apply_fixup(sc, IFM_AUTO);
2118 		tmp = sc->dc_pmode;
2119 		sc->dc_pmode = DC_PMODE_MII;
2120 	}
2121 
2122 	/*
2123 	 * Setup General Purpose port mode and data so the tulip can talk
2124 	 * to the MII.  This needs to be done before mii_phy_probe so that
2125 	 * we can actually see them.
2126 	 */
2127 	if (DC_IS_XIRCOM(sc)) {
2128 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2129 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2130 		DELAY(10);
2131 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2132 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2133 		DELAY(10);
2134 	}
2135 
2136 	error = mii_phy_probe(dev, &sc->dc_miibus,
2137 	    dc_ifmedia_upd, dc_ifmedia_sts);
2138 
2139 	if (error && DC_IS_INTEL(sc)) {
2140 		sc->dc_pmode = tmp;
2141 		if (sc->dc_pmode != DC_PMODE_SIA)
2142 			sc->dc_pmode = DC_PMODE_SYM;
2143 		sc->dc_flags |= DC_21143_NWAY;
2144 		mii_phy_probe(dev, &sc->dc_miibus,
2145 		    dc_ifmedia_upd, dc_ifmedia_sts);
2146 		/*
2147 		 * For non-MII cards, we need to have the 21143
2148 		 * drive the LEDs. Except there are some systems
2149 		 * like the NEC VersaPro NoteBook PC which have no
2150 		 * LEDs, and twiddling these bits has adverse effects
2151 		 * on them. (I.e. you suddenly can't get a link.)
2152 		 */
2153 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2154 			sc->dc_flags |= DC_TULIP_LEDS;
2155 		error = 0;
2156 	}
2157 
2158 	if (error) {
2159 		device_printf(dev, "MII without any PHY!\n");
2160 		error = ENXIO;
2161 		goto fail;
2162 	}
2163 
2164 	/*
2165 	 * Call MI attach routine.
2166 	 */
2167 	ether_ifattach(ifp, eaddr, NULL);
2168 
2169 #ifdef IFPOLL_ENABLE
2170 	ifpoll_compat_setup(&sc->dc_npoll, NULL, NULL, device_get_unit(dev),
2171 	    ifp->if_serializer);
2172 #endif
2173 
2174 	if (DC_IS_ADMTEK(sc)) {
2175 		/*
2176 		 * Set automatic TX underrun recovery for the ADMtek chips
2177 		 */
2178 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2179 	}
2180 
2181 	/*
2182 	 * Tell the upper layer(s) we support long frames.
2183 	 */
2184 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2185 
2186 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->dc_irq));
2187 
2188 	error = bus_setup_intr(dev, sc->dc_irq, INTR_MPSAFE,
2189 			       dc_intr, sc, &sc->dc_intrhand,
2190 			       ifp->if_serializer);
2191 	if (error) {
2192 		ether_ifdetach(ifp);
2193 		device_printf(dev, "couldn't set up irq\n");
2194 		goto fail;
2195 	}
2196 
2197 	return(0);
2198 
2199 fail:
2200 	dc_detach(dev);
2201 	return(error);
2202 }
2203 
2204 static int
2205 dc_detach(device_t dev)
2206 {
2207 	struct dc_softc *sc = device_get_softc(dev);
2208 	struct ifnet *ifp = &sc->arpcom.ac_if;
2209 	struct dc_mediainfo *m;
2210 
2211 	if (device_is_attached(dev)) {
2212 		lwkt_serialize_enter(ifp->if_serializer);
2213 		dc_stop(sc);
2214 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2215 		lwkt_serialize_exit(ifp->if_serializer);
2216 
2217 		ether_ifdetach(ifp);
2218 	}
2219 
2220 	if (sc->dc_miibus)
2221 		device_delete_child(dev, sc->dc_miibus);
2222 	bus_generic_detach(dev);
2223 
2224 	if (sc->dc_irq)
2225 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2226 	if (sc->dc_res)
2227 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2228 
2229 	if (sc->dc_ldata)
2230 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2231 	if (sc->dc_pnic_rx_buf != NULL)
2232 		kfree(sc->dc_pnic_rx_buf, M_DEVBUF);
2233 
2234 	while (sc->dc_mi != NULL) {
2235 		m = sc->dc_mi->dc_next;
2236 		kfree(sc->dc_mi, M_DEVBUF);
2237 		sc->dc_mi = m;
2238 	}
2239 
2240 	if (sc->dc_srom)
2241 		kfree(sc->dc_srom, M_DEVBUF);
2242 
2243 	return(0);
2244 }
2245 
2246 /*
2247  * Initialize the transmit descriptors.
2248  */
2249 static int
2250 dc_list_tx_init(struct dc_softc *sc)
2251 {
2252 	struct dc_chain_data	*cd;
2253 	struct dc_list_data	*ld;
2254 	int			i;
2255 
2256 	cd = &sc->dc_cdata;
2257 	ld = sc->dc_ldata;
2258 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2259 		if (i == (DC_TX_LIST_CNT - 1)) {
2260 			ld->dc_tx_list[i].dc_next =
2261 			    vtophys(&ld->dc_tx_list[0]);
2262 		} else {
2263 			ld->dc_tx_list[i].dc_next =
2264 			    vtophys(&ld->dc_tx_list[i + 1]);
2265 		}
2266 		cd->dc_tx_chain[i] = NULL;
2267 		ld->dc_tx_list[i].dc_data = 0;
2268 		ld->dc_tx_list[i].dc_ctl = 0;
2269 	}
2270 
2271 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2272 
2273 	return(0);
2274 }
2275 
2276 
2277 /*
2278  * Initialize the RX descriptors and allocate mbufs for them. Note that
2279  * we arrange the descriptors in a closed ring, so that the last descriptor
2280  * points back to the first.
2281  */
2282 static int
2283 dc_list_rx_init(struct dc_softc *sc)
2284 {
2285 	struct dc_chain_data	*cd;
2286 	struct dc_list_data	*ld;
2287 	int			i;
2288 
2289 	cd = &sc->dc_cdata;
2290 	ld = sc->dc_ldata;
2291 
2292 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2293 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2294 			return(ENOBUFS);
2295 		if (i == (DC_RX_LIST_CNT - 1)) {
2296 			ld->dc_rx_list[i].dc_next =
2297 			    vtophys(&ld->dc_rx_list[0]);
2298 		} else {
2299 			ld->dc_rx_list[i].dc_next =
2300 			    vtophys(&ld->dc_rx_list[i + 1]);
2301 		}
2302 	}
2303 
2304 	cd->dc_rx_prod = 0;
2305 
2306 	return(0);
2307 }
2308 
2309 /*
2310  * Initialize an RX descriptor and attach an MBUF cluster.
2311  */
2312 static int
2313 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2314 {
2315 	struct mbuf		*m_new = NULL;
2316 	struct dc_desc		*c;
2317 
2318 	c = &sc->dc_ldata->dc_rx_list[i];
2319 
2320 	if (m == NULL) {
2321 		m_new = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2322 		if (m_new == NULL)
2323 			return (ENOBUFS);
2324 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2325 	} else {
2326 		m_new = m;
2327 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2328 		m_new->m_data = m_new->m_ext.ext_buf;
2329 	}
2330 
2331 	m_adj(m_new, sizeof(u_int64_t));
2332 
2333 	/*
2334 	 * If this is a PNIC chip, zero the buffer. This is part
2335 	 * of the workaround for the receive bug in the 82c168 and
2336 	 * 82c169 chips.
2337 	 */
2338 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2339 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2340 
2341 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2342 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2343 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2344 	c->dc_status = DC_RXSTAT_OWN;
2345 
2346 	return(0);
2347 }
2348 
2349 /*
2350  * Grrrrr.
2351  * The PNIC chip has a terrible bug in it that manifests itself during
2352  * periods of heavy activity. The exact mode of failure if difficult to
2353  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2354  * will happen on slow machines. The bug is that sometimes instead of
2355  * uploading one complete frame during reception, it uploads what looks
2356  * like the entire contents of its FIFO memory. The frame we want is at
2357  * the end of the whole mess, but we never know exactly how much data has
2358  * been uploaded, so salvaging the frame is hard.
2359  *
2360  * There is only one way to do it reliably, and it's disgusting.
2361  * Here's what we know:
2362  *
2363  * - We know there will always be somewhere between one and three extra
2364  *   descriptors uploaded.
2365  *
2366  * - We know the desired received frame will always be at the end of the
2367  *   total data upload.
2368  *
2369  * - We know the size of the desired received frame because it will be
2370  *   provided in the length field of the status word in the last descriptor.
2371  *
2372  * Here's what we do:
2373  *
2374  * - When we allocate buffers for the receive ring, we bzero() them.
2375  *   This means that we know that the buffer contents should be all
2376  *   zeros, except for data uploaded by the chip.
2377  *
2378  * - We also force the PNIC chip to upload frames that include the
2379  *   ethernet CRC at the end.
2380  *
2381  * - We gather all of the bogus frame data into a single buffer.
2382  *
2383  * - We then position a pointer at the end of this buffer and scan
2384  *   backwards until we encounter the first non-zero byte of data.
2385  *   This is the end of the received frame. We know we will encounter
2386  *   some data at the end of the frame because the CRC will always be
2387  *   there, so even if the sender transmits a packet of all zeros,
2388  *   we won't be fooled.
2389  *
2390  * - We know the size of the actual received frame, so we subtract
2391  *   that value from the current pointer location. This brings us
2392  *   to the start of the actual received packet.
2393  *
2394  * - We copy this into an mbuf and pass it on, along with the actual
2395  *   frame length.
2396  *
2397  * The performance hit is tremendous, but it beats dropping frames all
2398  * the time.
2399  */
2400 
2401 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2402 static void
2403 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2404 {
2405 	struct dc_desc		*cur_rx;
2406 	struct dc_desc		*c = NULL;
2407 	struct mbuf		*m = NULL;
2408 	unsigned char		*ptr;
2409 	int			i, total_len;
2410 	u_int32_t		rxstat = 0;
2411 
2412 	i = sc->dc_pnic_rx_bug_save;
2413 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2414 	ptr = sc->dc_pnic_rx_buf;
2415 	bzero(ptr, DC_RXLEN * 5);
2416 
2417 	/* Copy all the bytes from the bogus buffers. */
2418 	while (1) {
2419 		c = &sc->dc_ldata->dc_rx_list[i];
2420 		rxstat = c->dc_status;
2421 		m = sc->dc_cdata.dc_rx_chain[i];
2422 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2423 		ptr += DC_RXLEN;
2424 		/* If this is the last buffer, break out. */
2425 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2426 			break;
2427 		dc_newbuf(sc, i, m);
2428 		DC_INC(i, DC_RX_LIST_CNT);
2429 	}
2430 
2431 	/* Find the length of the actual receive frame. */
2432 	total_len = DC_RXBYTES(rxstat);
2433 
2434 	/* Scan backwards until we hit a non-zero byte. */
2435 	while(*ptr == 0x00)
2436 		ptr--;
2437 
2438 	/* Round off. */
2439 	if ((uintptr_t)(ptr) & 0x3)
2440 		ptr -= 1;
2441 
2442 	/* Now find the start of the frame. */
2443 	ptr -= total_len;
2444 	if (ptr < sc->dc_pnic_rx_buf)
2445 		ptr = sc->dc_pnic_rx_buf;
2446 
2447 	/*
2448 	 * Now copy the salvaged frame to the last mbuf and fake up
2449 	 * the status word to make it look like a successful
2450  	 * frame reception.
2451 	 */
2452 	dc_newbuf(sc, i, m);
2453 	bcopy(ptr, mtod(m, char *), total_len);
2454 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2455 
2456 	return;
2457 }
2458 
2459 /*
2460  * This routine searches the RX ring for dirty descriptors in the
2461  * event that the rxeof routine falls out of sync with the chip's
2462  * current descriptor pointer. This may happen sometimes as a result
2463  * of a "no RX buffer available" condition that happens when the chip
2464  * consumes all of the RX buffers before the driver has a chance to
2465  * process the RX ring. This routine may need to be called more than
2466  * once to bring the driver back in sync with the chip, however we
2467  * should still be getting RX DONE interrupts to drive the search
2468  * for new packets in the RX ring, so we should catch up eventually.
2469  */
2470 static int
2471 dc_rx_resync(struct dc_softc *sc)
2472 {
2473 	int			i, pos;
2474 	struct dc_desc		*cur_rx;
2475 
2476 	pos = sc->dc_cdata.dc_rx_prod;
2477 
2478 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2479 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2480 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2481 			break;
2482 		DC_INC(pos, DC_RX_LIST_CNT);
2483 	}
2484 
2485 	/* If the ring really is empty, then just return. */
2486 	if (i == DC_RX_LIST_CNT)
2487 		return(0);
2488 
2489 	/* We've fallen behing the chip: catch it. */
2490 	sc->dc_cdata.dc_rx_prod = pos;
2491 
2492 	return(EAGAIN);
2493 }
2494 
2495 /*
2496  * A frame has been uploaded: pass the resulting mbuf chain up to
2497  * the higher level protocols.
2498  */
2499 static void
2500 dc_rxeof(struct dc_softc *sc)
2501 {
2502         struct mbuf		*m;
2503         struct ifnet		*ifp;
2504 	struct dc_desc		*cur_rx;
2505 	int			i, total_len = 0;
2506 	u_int32_t		rxstat;
2507 
2508 	ifp = &sc->arpcom.ac_if;
2509 	i = sc->dc_cdata.dc_rx_prod;
2510 
2511 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2512 
2513 #ifdef IFPOLL_ENABLE
2514 		if (ifp->if_flags & IFF_NPOLLING) {
2515 			if (sc->rxcycles <= 0)
2516 				break;
2517 			sc->rxcycles--;
2518 		}
2519 #endif /* IFPOLL_ENABLE */
2520 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2521 		rxstat = cur_rx->dc_status;
2522 		m = sc->dc_cdata.dc_rx_chain[i];
2523 		total_len = DC_RXBYTES(rxstat);
2524 
2525 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2526 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2527 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2528 					sc->dc_pnic_rx_bug_save = i;
2529 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2530 					DC_INC(i, DC_RX_LIST_CNT);
2531 					continue;
2532 				}
2533 				dc_pnic_rx_bug_war(sc, i);
2534 				rxstat = cur_rx->dc_status;
2535 				total_len = DC_RXBYTES(rxstat);
2536 			}
2537 		}
2538 
2539 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2540 
2541 		/*
2542 		 * If an error occurs, update stats, clear the
2543 		 * status word and leave the mbuf cluster in place:
2544 		 * it should simply get re-used next time this descriptor
2545 		 * comes up in the ring.  However, don't report long
2546 		 * frames as errors since they could be vlans
2547 		 */
2548 		if ((rxstat & DC_RXSTAT_RXERR)){
2549 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2550 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2551 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2552 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2553 				IFNET_STAT_INC(ifp, ierrors, 1);
2554 				if (rxstat & DC_RXSTAT_COLLSEEN)
2555 					IFNET_STAT_INC(ifp, collisions, 1);
2556 				dc_newbuf(sc, i, m);
2557 				if (rxstat & DC_RXSTAT_CRCERR) {
2558 					DC_INC(i, DC_RX_LIST_CNT);
2559 					continue;
2560 				} else {
2561 					dc_init(sc);
2562 					return;
2563 				}
2564 			}
2565 		}
2566 
2567 		/* No errors; receive the packet. */
2568 		total_len -= ETHER_CRC_LEN;
2569 
2570 #ifdef __i386__
2571 		/*
2572 		 * On the x86 we do not have alignment problems, so try to
2573 		 * allocate a new buffer for the receive ring, and pass up
2574 		 * the one where the packet is already, saving the expensive
2575 		 * copy done in m_devget().
2576 		 *
2577 		 * If we are on an architecture with alignment problems, or
2578 		 * if the allocation fails, then use m_devget and leave the
2579 		 * existing buffer in the receive ring.
2580 		 */
2581 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2582 			m->m_pkthdr.rcvif = ifp;
2583 			m->m_pkthdr.len = m->m_len = total_len;
2584 			DC_INC(i, DC_RX_LIST_CNT);
2585 		} else
2586 #endif
2587 		{
2588 			struct mbuf *m0;
2589 
2590 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2591 				      total_len + ETHER_ALIGN, 0, ifp);
2592 			dc_newbuf(sc, i, m);
2593 			DC_INC(i, DC_RX_LIST_CNT);
2594 			if (m0 == NULL) {
2595 				IFNET_STAT_INC(ifp, ierrors, 1);
2596 				continue;
2597 			}
2598 			m_adj(m0, ETHER_ALIGN);
2599 			m = m0;
2600 		}
2601 
2602 		IFNET_STAT_INC(ifp, ipackets, 1);
2603 		ifp->if_input(ifp, m, NULL, -1);
2604 	}
2605 
2606 	sc->dc_cdata.dc_rx_prod = i;
2607 }
2608 
2609 /*
2610  * A frame was downloaded to the chip. It's safe for us to clean up
2611  * the list buffers.
2612  */
2613 
2614 static void
2615 dc_txeof(struct dc_softc *sc)
2616 {
2617 	struct dc_desc		*cur_tx = NULL;
2618 	struct ifnet		*ifp;
2619 	int			idx;
2620 
2621 	ifp = &sc->arpcom.ac_if;
2622 
2623 	/*
2624 	 * Go through our tx list and free mbufs for those
2625 	 * frames that have been transmitted.
2626 	 */
2627 	idx = sc->dc_cdata.dc_tx_cons;
2628 	while(idx != sc->dc_cdata.dc_tx_prod) {
2629 		u_int32_t		txstat;
2630 
2631 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2632 		txstat = cur_tx->dc_status;
2633 
2634 		if (txstat & DC_TXSTAT_OWN)
2635 			break;
2636 
2637 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2638 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2639 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2640 				/*
2641 				 * Yes, the PNIC is so brain damaged
2642 				 * that it will sometimes generate a TX
2643 				 * underrun error while DMAing the RX
2644 				 * filter setup frame. If we detect this,
2645 				 * we have to send the setup frame again,
2646 				 * or else the filter won't be programmed
2647 				 * correctly.
2648 				 */
2649 				if (DC_IS_PNIC(sc)) {
2650 					if (txstat & DC_TXSTAT_ERRSUM)
2651 						dc_setfilt(sc);
2652 				}
2653 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2654 			}
2655 			sc->dc_cdata.dc_tx_cnt--;
2656 			DC_INC(idx, DC_TX_LIST_CNT);
2657 			continue;
2658 		}
2659 
2660 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2661 			/*
2662 			 * XXX: Why does my Xircom taunt me so?
2663 			 * For some reason Conexant chips like
2664 			 * setting the CARRLOST flag even when
2665 			 * the carrier is there. In CURRENT we
2666 			 * have the same problem for Xircom
2667 			 * cards !
2668 			 */
2669 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2670 			    sc->dc_pmode == DC_PMODE_MII &&
2671 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2672 			    DC_TXSTAT_NOCARRIER)))
2673 				txstat &= ~DC_TXSTAT_ERRSUM;
2674 		} else {
2675 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2676 			    sc->dc_pmode == DC_PMODE_MII &&
2677 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2678 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2679 				txstat &= ~DC_TXSTAT_ERRSUM;
2680 		}
2681 
2682 		if (txstat & DC_TXSTAT_ERRSUM) {
2683 			IFNET_STAT_INC(ifp, oerrors, 1);
2684 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2685 				IFNET_STAT_INC(ifp, collisions, 1);
2686 			if (txstat & DC_TXSTAT_LATECOLL)
2687 				IFNET_STAT_INC(ifp, collisions, 1);
2688 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2689 				dc_init(sc);
2690 				return;
2691 			}
2692 		}
2693 
2694 		IFNET_STAT_INC(ifp, collisions,
2695 		    (txstat & DC_TXSTAT_COLLCNT) >> 3);
2696 
2697 		IFNET_STAT_INC(ifp, opackets, 1);
2698 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2699 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2700 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2701 		}
2702 
2703 		sc->dc_cdata.dc_tx_cnt--;
2704 		DC_INC(idx, DC_TX_LIST_CNT);
2705 	}
2706 
2707 	if (idx != sc->dc_cdata.dc_tx_cons) {
2708 	    	/* some buffers have been freed */
2709 		sc->dc_cdata.dc_tx_cons = idx;
2710 		ifq_clr_oactive(&ifp->if_snd);
2711 	}
2712 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2713 
2714 	return;
2715 }
2716 
2717 static void
2718 dc_tick(void *xsc)
2719 {
2720 	struct dc_softc *sc = xsc;
2721 	struct ifnet *ifp = &sc->arpcom.ac_if;
2722 	struct mii_data *mii;
2723 	u_int32_t r;
2724 
2725 	lwkt_serialize_enter(ifp->if_serializer);
2726 
2727 	mii = device_get_softc(sc->dc_miibus);
2728 
2729 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2730 		if (sc->dc_flags & DC_21143_NWAY) {
2731 			r = CSR_READ_4(sc, DC_10BTSTAT);
2732 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2733 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2734 				sc->dc_link = 0;
2735 				mii_mediachg(mii);
2736 			}
2737 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2738 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2739 				sc->dc_link = 0;
2740 				mii_mediachg(mii);
2741 			}
2742 			if (sc->dc_link == 0)
2743 				mii_tick(mii);
2744 		} else {
2745 			r = CSR_READ_4(sc, DC_ISR);
2746 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2747 			    sc->dc_cdata.dc_tx_cnt == 0) {
2748 				mii_tick(mii);
2749 				if (!(mii->mii_media_status & IFM_ACTIVE))
2750 					sc->dc_link = 0;
2751 			}
2752 		}
2753 	} else {
2754 		mii_tick(mii);
2755 	}
2756 
2757 	/*
2758 	 * When the init routine completes, we expect to be able to send
2759 	 * packets right away, and in fact the network code will send a
2760 	 * gratuitous ARP the moment the init routine marks the interface
2761 	 * as running. However, even though the MAC may have been initialized,
2762 	 * there may be a delay of a few seconds before the PHY completes
2763 	 * autonegotiation and the link is brought up. Any transmissions
2764 	 * made during that delay will be lost. Dealing with this is tricky:
2765 	 * we can't just pause in the init routine while waiting for the
2766 	 * PHY to come ready since that would bring the whole system to
2767 	 * a screeching halt for several seconds.
2768 	 *
2769 	 * What we do here is prevent the TX start routine from sending
2770 	 * any packets until a link has been established. After the
2771 	 * interface has been initialized, the tick routine will poll
2772 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2773 	 * that time, packets will stay in the send queue, and once the
2774 	 * link comes up, they will be flushed out to the wire.
2775 	 */
2776 	if (!sc->dc_link) {
2777 		mii_pollstat(mii);
2778 		if (mii->mii_media_status & IFM_ACTIVE &&
2779 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2780 			sc->dc_link++;
2781 			if (!ifq_is_empty(&ifp->if_snd))
2782 				if_devstart(ifp);
2783 		}
2784 	}
2785 
2786 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2787 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2788 	else
2789 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2790 
2791 	lwkt_serialize_exit(ifp->if_serializer);
2792 }
2793 
2794 /*
2795  * A transmit underrun has occurred.  Back off the transmit threshold,
2796  * or switch to store and forward mode if we have to.
2797  */
2798 static void
2799 dc_tx_underrun(struct dc_softc *sc)
2800 {
2801 	u_int32_t		isr;
2802 	int			i;
2803 
2804 	if (DC_IS_DAVICOM(sc))
2805 		dc_init(sc);
2806 
2807 	if (DC_IS_INTEL(sc)) {
2808 		/*
2809 		 * The real 21143 requires that the transmitter be idle
2810 		 * in order to change the transmit threshold or store
2811 		 * and forward state.
2812 		 */
2813 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2814 
2815 		for (i = 0; i < DC_TIMEOUT; i++) {
2816 			isr = CSR_READ_4(sc, DC_ISR);
2817 			if (isr & DC_ISR_TX_IDLE)
2818 				break;
2819 			DELAY(10);
2820 		}
2821 		if (i == DC_TIMEOUT) {
2822 			if_printf(&sc->arpcom.ac_if,
2823 				  "failed to force tx to idle state\n");
2824 			dc_init(sc);
2825 		}
2826 	}
2827 
2828 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2829 	sc->dc_txthresh += DC_TXTHRESH_INC;
2830 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2831 		kprintf("using store and forward mode\n");
2832 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2833 	} else {
2834 		kprintf("increasing TX threshold\n");
2835 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2836 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2837 	}
2838 
2839 	if (DC_IS_INTEL(sc))
2840 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2841 
2842 	return;
2843 }
2844 
2845 #ifdef IFPOLL_ENABLE
2846 
2847 static void
2848 dc_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
2849 {
2850 	struct dc_softc *sc = ifp->if_softc;
2851 
2852 	ASSERT_SERIALIZED(ifp->if_serializer);
2853 
2854 	sc->rxcycles = count;
2855 	dc_rxeof(sc);
2856 	dc_txeof(sc);
2857 	if (!ifq_is_empty(&ifp->if_snd))
2858 		if_devstart(ifp);
2859 
2860 	if (sc->dc_npoll.ifpc_stcount-- == 0) {
2861 		uint32_t status;
2862 
2863 		sc->dc_npoll.ifpc_stcount = sc->dc_npoll.ifpc_stfrac;
2864 
2865 		status = CSR_READ_4(sc, DC_ISR);
2866 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2867 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2868 			DC_ISR_BUS_ERR);
2869 		if (!status)
2870 			return;
2871 		/* ack what we have */
2872 		CSR_WRITE_4(sc, DC_ISR, status);
2873 
2874 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2875 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2876 			IFNET_STAT_INC(ifp, ierrors,
2877 			    (r & 0xffff) + ((r >> 17) & 0x7ff));
2878 
2879 			if (dc_rx_resync(sc))
2880 				dc_rxeof(sc);
2881 		}
2882 		/* restart transmit unit if necessary */
2883 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2884 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2885 
2886 		if (status & DC_ISR_TX_UNDERRUN)
2887 			dc_tx_underrun(sc);
2888 
2889 		if (status & DC_ISR_BUS_ERR) {
2890 			if_printf(ifp, "dc_poll: bus error\n");
2891 			dc_reset(sc);
2892 			dc_init(sc);
2893 		}
2894 	}
2895 }
2896 
2897 static void
2898 dc_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2899 {
2900 	struct dc_softc *sc = ifp->if_softc;
2901 
2902 	ASSERT_SERIALIZED(ifp->if_serializer);
2903 
2904 	if (info != NULL) {
2905 		int cpuid = sc->dc_npoll.ifpc_cpuid;
2906 
2907 		info->ifpi_rx[cpuid].poll_func = dc_npoll_compat;
2908 		info->ifpi_rx[cpuid].arg = NULL;
2909 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2910 
2911 		if (ifp->if_flags & IFF_RUNNING) {
2912 			/* Disable interrupts */
2913 			CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2914 			sc->dc_npoll.ifpc_stcount = 0;
2915 		}
2916 		ifq_set_cpuid(&ifp->if_snd, cpuid);
2917 	} else {
2918 		if (ifp->if_flags & IFF_RUNNING) {
2919 			/* Re-enable interrupts. */
2920 			CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2921 		}
2922 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->dc_irq));
2923 	}
2924 }
2925 
2926 #endif /* IFPOLL_ENABLE */
2927 
2928 static void
2929 dc_intr(void *arg)
2930 {
2931 	struct dc_softc		*sc;
2932 	struct ifnet		*ifp;
2933 	u_int32_t		status;
2934 
2935 	sc = arg;
2936 
2937 	if (sc->suspended) {
2938 		return;
2939 	}
2940 
2941 	ifp = &sc->arpcom.ac_if;
2942 
2943 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2944 		return ;
2945 
2946 	/* Suppress unwanted interrupts */
2947 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2948 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2949 			dc_stop(sc);
2950 		return;
2951 	}
2952 
2953 	/* Disable interrupts. */
2954 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2955 
2956 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
2957 	      status != 0xFFFFFFFF) {
2958 
2959 		CSR_WRITE_4(sc, DC_ISR, status);
2960 
2961 		if (status & DC_ISR_RX_OK) {
2962 			u_long curpkts, ncurpkts;
2963 
2964 			IFNET_STAT_GET(ifp, ipackets, curpkts);
2965 			dc_rxeof(sc);
2966 			IFNET_STAT_GET(ifp, ipackets, ncurpkts);
2967 
2968 			if (curpkts == ncurpkts) {
2969 				while(dc_rx_resync(sc))
2970 					dc_rxeof(sc);
2971 			}
2972 		}
2973 
2974 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2975 			dc_txeof(sc);
2976 
2977 		if (status & DC_ISR_TX_IDLE) {
2978 			dc_txeof(sc);
2979 			if (sc->dc_cdata.dc_tx_cnt) {
2980 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2981 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2982 			}
2983 		}
2984 
2985 		if (status & DC_ISR_TX_UNDERRUN)
2986 			dc_tx_underrun(sc);
2987 
2988 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2989 		    || (status & DC_ISR_RX_NOBUF)) {
2990 			u_long curpkts, ncurpkts;
2991 
2992 			IFNET_STAT_GET(ifp, ipackets, curpkts);
2993 			dc_rxeof(sc);
2994 			IFNET_STAT_GET(ifp, ipackets, ncurpkts);
2995 
2996 			if (curpkts == ncurpkts) {
2997 				while(dc_rx_resync(sc))
2998 					dc_rxeof(sc);
2999 			}
3000 		}
3001 
3002 		if (status & DC_ISR_BUS_ERR) {
3003 			dc_reset(sc);
3004 			dc_init(sc);
3005 		}
3006 	}
3007 
3008 	/* Re-enable interrupts. */
3009 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3010 
3011 	if (!ifq_is_empty(&ifp->if_snd))
3012 		if_devstart(ifp);
3013 }
3014 
3015 /*
3016  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
3017  * pointers to the fragment pointers.
3018  */
3019 static int
3020 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3021 {
3022 	struct dc_desc		*f = NULL;
3023 	struct mbuf		*m;
3024 	int			frag, cur, cnt = 0;
3025 
3026 	/*
3027  	 * Start packing the mbufs in this chain into
3028 	 * the fragment pointers. Stop when we run out
3029  	 * of fragments or hit the end of the mbuf chain.
3030 	 */
3031 	m = m_head;
3032 	cur = frag = *txidx;
3033 
3034 	for (m = m_head; m != NULL; m = m->m_next) {
3035 		if (m->m_len != 0) {
3036 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
3037 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
3038 				    frag == (DC_TX_LIST_CNT - 1))
3039 					return(ENOBUFS);
3040 			}
3041 			if ((DC_TX_LIST_CNT -
3042 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3043 				return(ENOBUFS);
3044 
3045 			f = &sc->dc_ldata->dc_tx_list[frag];
3046 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3047 			if (cnt == 0) {
3048 				f->dc_status = 0;
3049 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3050 			} else
3051 				f->dc_status = DC_TXSTAT_OWN;
3052 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3053 			cur = frag;
3054 			DC_INC(frag, DC_TX_LIST_CNT);
3055 			cnt++;
3056 		}
3057 	}
3058 
3059 	if (m != NULL)
3060 		return(ENOBUFS);
3061 
3062 	sc->dc_cdata.dc_tx_cnt += cnt;
3063 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3064 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3065 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3066 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3067 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3068 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3069 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3070 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3071 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3072 	*txidx = frag;
3073 
3074 	return(0);
3075 }
3076 
3077 /*
3078  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3079  * to the mbuf data regions directly in the transmit lists. We also save a
3080  * copy of the pointers since the transmit list fragment pointers are
3081  * physical addresses.
3082  */
3083 
3084 static void
3085 dc_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3086 {
3087 	struct dc_softc	*sc;
3088 	struct mbuf *m_head, *m_defragged;
3089 	int idx, need_trans;
3090 
3091 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
3092 	sc = ifp->if_softc;
3093 
3094 	if (!sc->dc_link) {
3095 		ifq_purge(&ifp->if_snd);
3096 		return;
3097 	}
3098 
3099 	if (ifq_is_oactive(&ifp->if_snd))
3100 		return;
3101 
3102 	idx = sc->dc_cdata.dc_tx_prod;
3103 
3104 	need_trans = 0;
3105 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3106 		m_defragged = NULL;
3107 		m_head = ifq_dequeue(&ifp->if_snd);
3108 		if (m_head == NULL)
3109 			break;
3110 
3111 		if ((sc->dc_flags & DC_TX_COALESCE) &&
3112 		    (m_head->m_next != NULL || (sc->dc_flags & DC_TX_ALIGN))) {
3113 			/*
3114 			 * Check first if coalescing allows us to queue
3115 			 * the packet. We don't want to loose it if
3116 			 * the TX queue is full.
3117 			 */
3118 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3119 			    idx != sc->dc_cdata.dc_tx_prod &&
3120 			    idx == (DC_TX_LIST_CNT - 1)) {
3121 				ifq_set_oactive(&ifp->if_snd);
3122 				ifq_prepend(&ifp->if_snd, m_head);
3123 				break;
3124 			}
3125 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3126 				ifq_set_oactive(&ifp->if_snd);
3127 				ifq_prepend(&ifp->if_snd, m_head);
3128 				break;
3129 			}
3130 
3131 			/* only coalesce if have >1 mbufs */
3132 			m_defragged = m_defrag(m_head, M_NOWAIT);
3133 			if (m_defragged == NULL) {
3134 				ifq_set_oactive(&ifp->if_snd);
3135 				ifq_prepend(&ifp->if_snd, m_head);
3136 				break;
3137 			}
3138 			m_head = m_defragged;
3139 		}
3140 
3141 		if (dc_encap(sc, m_head, &idx)) {
3142 			if (m_defragged) {
3143 				/*
3144 				 * Throw away the original packet if the
3145 				 * defragged packet could not be encapsulated,
3146 				 * as well as the defragged packet.
3147 				 */
3148 				m_freem(m_head);
3149 			} else {
3150 				ifq_prepend(&ifp->if_snd, m_head);
3151 			}
3152 			ifq_set_oactive(&ifp->if_snd);
3153 			break;
3154 		}
3155 
3156 		need_trans = 1;
3157 
3158 		/*
3159 		 * If there's a BPF listener, bounce a copy of this frame
3160 		 * to him.
3161 		 */
3162 		BPF_MTAP(ifp, m_head);
3163 
3164 		if (sc->dc_flags & DC_TX_ONE) {
3165 			ifq_set_oactive(&ifp->if_snd);
3166 			break;
3167 		}
3168 	}
3169 
3170 	if (!need_trans)
3171 		return;
3172 
3173 	/* Transmit */
3174 	sc->dc_cdata.dc_tx_prod = idx;
3175 	if (!(sc->dc_flags & DC_TX_POLL))
3176 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3177 
3178 	/*
3179 	 * Set a timeout in case the chip goes out to lunch.
3180 	 */
3181 	ifp->if_timer = 5;
3182 }
3183 
3184 static void
3185 dc_init(void *xsc)
3186 {
3187 	struct dc_softc		*sc = xsc;
3188 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3189 	struct mii_data		*mii;
3190 
3191 	mii = device_get_softc(sc->dc_miibus);
3192 
3193 	/*
3194 	 * Cancel pending I/O and free all RX/TX buffers.
3195 	 */
3196 	dc_stop(sc);
3197 	dc_reset(sc);
3198 
3199 	/*
3200 	 * Set cache alignment and burst length.
3201 	 */
3202 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3203 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3204 	else
3205 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3206 	/*
3207 	 * Evenly share the bus between receive and transmit process.
3208 	 */
3209 	if (DC_IS_INTEL(sc))
3210 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3211 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3212 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3213 	} else {
3214 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3215 	}
3216 	if (sc->dc_flags & DC_TX_POLL)
3217 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3218 	switch(sc->dc_cachesize) {
3219 	case 32:
3220 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3221 		break;
3222 	case 16:
3223 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3224 		break;
3225 	case 8:
3226 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3227 		break;
3228 	case 0:
3229 	default:
3230 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3231 		break;
3232 	}
3233 
3234 	if (sc->dc_flags & DC_TX_STORENFWD)
3235 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3236 	else {
3237 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3238 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3239 		} else {
3240 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3241 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3242 		}
3243 	}
3244 
3245 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3246 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3247 
3248 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3249 		/*
3250 		 * The app notes for the 98713 and 98715A say that
3251 		 * in order to have the chips operate properly, a magic
3252 		 * number must be written to CSR16. Macronix does not
3253 		 * document the meaning of these bits so there's no way
3254 		 * to know exactly what they do. The 98713 has a magic
3255 		 * number all its own; the rest all use a different one.
3256 		 */
3257 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3258 		if (sc->dc_type == DC_TYPE_98713)
3259 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3260 		else
3261 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3262 	}
3263 
3264 	if (DC_IS_XIRCOM(sc)) {
3265 		/*
3266 		 * Setup General Purpose Port mode and data so the tulip
3267 		 * can talk to the MII.
3268 		 */
3269 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3270 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3271 		DELAY(10);
3272 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3273 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3274 		DELAY(10);
3275  	}
3276 
3277 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3278 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3279 
3280 	/* Init circular RX list. */
3281 	if (dc_list_rx_init(sc) == ENOBUFS) {
3282 		if_printf(ifp, "initialization failed: no "
3283 			  "memory for rx buffers\n");
3284 		dc_stop(sc);
3285 		return;
3286 	}
3287 
3288 	/*
3289 	 * Init tx descriptors.
3290 	 */
3291 	dc_list_tx_init(sc);
3292 
3293 	/*
3294 	 * Load the address of the RX list.
3295 	 */
3296 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3297 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3298 
3299 	/*
3300 	 * Enable interrupts.
3301 	 */
3302 #ifdef IFPOLL_ENABLE
3303 	/*
3304 	 * ... but only if we are not polling, and make sure they are off in
3305 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3306 	 * after a reset.
3307 	 */
3308 	if (ifp->if_flags & IFF_NPOLLING) {
3309 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3310 		sc->dc_npoll.ifpc_stcount = 0;
3311 	} else
3312 #endif
3313 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3314 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3315 
3316 	/* Enable transmitter. */
3317 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3318 
3319 	/*
3320 	 * If this is an Intel 21143 and we're not using the
3321 	 * MII port, program the LED control pins so we get
3322 	 * link and activity indications.
3323 	 */
3324 	if (sc->dc_flags & DC_TULIP_LEDS) {
3325 		CSR_WRITE_4(sc, DC_WATCHDOG,
3326 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3327 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3328 	}
3329 
3330 	/*
3331 	 * Set IFF_RUNNING here to keep the assertion in dc_setfilt()
3332 	 * working.
3333 	 */
3334 	ifp->if_flags |= IFF_RUNNING;
3335 	ifq_clr_oactive(&ifp->if_snd);
3336 
3337 	/*
3338 	 * Load the RX/multicast filter. We do this sort of late
3339 	 * because the filter programming scheme on the 21143 and
3340 	 * some clones requires DMAing a setup frame via the TX
3341 	 * engine, and we need the transmitter enabled for that.
3342 	 */
3343 	dc_setfilt(sc);
3344 
3345 	/* Enable receiver. */
3346 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3347 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3348 
3349 	mii_mediachg(mii);
3350 	dc_setcfg(sc, sc->dc_if_media);
3351 
3352 	/* Don't start the ticker if this is a homePNA link. */
3353 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3354 		sc->dc_link = 1;
3355 	else {
3356 		if (sc->dc_flags & DC_21143_NWAY)
3357 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3358 		else
3359 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3360 	}
3361 }
3362 
3363 /*
3364  * Set media options.
3365  */
3366 static int
3367 dc_ifmedia_upd(struct ifnet *ifp)
3368 {
3369 	struct dc_softc		*sc;
3370 	struct mii_data		*mii;
3371 	struct ifmedia		*ifm;
3372 
3373 	sc = ifp->if_softc;
3374 	mii = device_get_softc(sc->dc_miibus);
3375 	mii_mediachg(mii);
3376 	ifm = &mii->mii_media;
3377 
3378 	if (DC_IS_DAVICOM(sc) &&
3379 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3380 		dc_setcfg(sc, ifm->ifm_media);
3381 	else
3382 		sc->dc_link = 0;
3383 
3384 	return(0);
3385 }
3386 
3387 /*
3388  * Report current media status.
3389  */
3390 static void
3391 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3392 {
3393 	struct dc_softc		*sc;
3394 	struct mii_data		*mii;
3395 	struct ifmedia		*ifm;
3396 
3397 	sc = ifp->if_softc;
3398 	mii = device_get_softc(sc->dc_miibus);
3399 	mii_pollstat(mii);
3400 	ifm = &mii->mii_media;
3401 	if (DC_IS_DAVICOM(sc)) {
3402 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3403 			ifmr->ifm_active = ifm->ifm_media;
3404 			ifmr->ifm_status = 0;
3405 			return;
3406 		}
3407 	}
3408 	ifmr->ifm_active = mii->mii_media_active;
3409 	ifmr->ifm_status = mii->mii_media_status;
3410 
3411 	return;
3412 }
3413 
3414 static int
3415 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3416 {
3417 	struct dc_softc		*sc = ifp->if_softc;
3418 	struct ifreq		*ifr = (struct ifreq *) data;
3419 	struct mii_data		*mii;
3420 	int			error = 0;
3421 
3422 	switch(command) {
3423 	case SIOCSIFFLAGS:
3424 		if (ifp->if_flags & IFF_UP) {
3425 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3426 				(IFF_PROMISC | IFF_ALLMULTI);
3427 			if (ifp->if_flags & IFF_RUNNING) {
3428 				if (need_setfilt)
3429 					dc_setfilt(sc);
3430 			} else {
3431 				sc->dc_txthresh = 0;
3432 				dc_init(sc);
3433 			}
3434 		} else {
3435 			if (ifp->if_flags & IFF_RUNNING)
3436 				dc_stop(sc);
3437 		}
3438 		sc->dc_if_flags = ifp->if_flags;
3439 		break;
3440 	case SIOCADDMULTI:
3441 	case SIOCDELMULTI:
3442 		if (ifp->if_flags & IFF_RUNNING)
3443 			dc_setfilt(sc);
3444 		break;
3445 	case SIOCGIFMEDIA:
3446 	case SIOCSIFMEDIA:
3447 		mii = device_get_softc(sc->dc_miibus);
3448 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3449 		break;
3450 	default:
3451 		error = ether_ioctl(ifp, command, data);
3452 		break;
3453 	}
3454 
3455 	return(error);
3456 }
3457 
3458 static void
3459 dc_watchdog(struct ifnet *ifp)
3460 {
3461 	struct dc_softc		*sc;
3462 
3463 	sc = ifp->if_softc;
3464 
3465 	IFNET_STAT_INC(ifp, oerrors, 1);
3466 	if_printf(ifp, "watchdog timeout\n");
3467 
3468 	dc_stop(sc);
3469 	dc_reset(sc);
3470 	dc_init(sc);
3471 
3472 	if (!ifq_is_empty(&ifp->if_snd))
3473 		if_devstart(ifp);
3474 }
3475 
3476 /*
3477  * Stop the adapter and free any mbufs allocated to the
3478  * RX and TX lists.
3479  */
3480 static void
3481 dc_stop(struct dc_softc *sc)
3482 {
3483 	int		i;
3484 	struct ifnet		*ifp;
3485 
3486 	ifp = &sc->arpcom.ac_if;
3487 	ifp->if_timer = 0;
3488 
3489 	callout_stop(&sc->dc_stat_timer);
3490 
3491 	ifp->if_flags &= ~IFF_RUNNING;
3492 	ifq_clr_oactive(&ifp->if_snd);
3493 
3494 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3495 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3496 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3497 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3498 	sc->dc_link = 0;
3499 
3500 	/*
3501 	 * Free data in the RX lists.
3502 	 */
3503 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3504 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3505 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3506 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3507 		}
3508 	}
3509 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3510 		sizeof(sc->dc_ldata->dc_rx_list));
3511 
3512 	/*
3513 	 * Free the TX list buffers.
3514 	 */
3515 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3516 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3517 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3518 			    DC_TXCTL_SETUP) ||
3519 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3520 			    DC_TXCTL_LASTFRAG)) {
3521 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3522 				continue;
3523 			}
3524 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3525 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3526 		}
3527 	}
3528 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3529 		sizeof(sc->dc_ldata->dc_tx_list));
3530 }
3531 
3532 /*
3533  * Stop all chip I/O so that the kernel's probe routines don't
3534  * get confused by errant DMAs when rebooting.
3535  */
3536 static void
3537 dc_shutdown(device_t dev)
3538 {
3539 	struct dc_softc	*sc;
3540 	struct ifnet *ifp;
3541 
3542 	sc = device_get_softc(dev);
3543 	ifp = &sc->arpcom.ac_if;
3544 	lwkt_serialize_enter(ifp->if_serializer);
3545 
3546 	dc_stop(sc);
3547 
3548 	lwkt_serialize_exit(ifp->if_serializer);
3549 }
3550 
3551 /*
3552  * Device suspend routine.  Stop the interface and save some PCI
3553  * settings in case the BIOS doesn't restore them properly on
3554  * resume.
3555  */
3556 static int
3557 dc_suspend(device_t dev)
3558 {
3559 	struct dc_softc	*sc = device_get_softc(dev);
3560 	struct ifnet *ifp = &sc->arpcom.ac_if;
3561 	int i;
3562 	lwkt_serialize_enter(ifp->if_serializer);
3563 
3564 	dc_stop(sc);
3565 	for (i = 0; i < 5; i++)
3566 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3567 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3568 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3569 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3570 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3571 
3572 	sc->suspended = 1;
3573 
3574 	lwkt_serialize_exit(ifp->if_serializer);
3575 	return (0);
3576 }
3577 
3578 /*
3579  * Device resume routine.  Restore some PCI settings in case the BIOS
3580  * doesn't, re-enable busmastering, and restart the interface if
3581  * appropriate.
3582  */
3583 static int
3584 dc_resume(device_t dev)
3585 {
3586 	struct dc_softc *sc = device_get_softc(dev);
3587 	struct ifnet *ifp = &sc->arpcom.ac_if;
3588 	int i;
3589 
3590 	lwkt_serialize_enter(ifp->if_serializer);
3591 	dc_acpi(dev);
3592 
3593 	/* better way to do this? */
3594 	for (i = 0; i < 5; i++)
3595 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3596 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3597 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3598 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3599 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3600 
3601 	/* reenable busmastering */
3602 	pci_enable_busmaster(dev);
3603 	pci_enable_io(dev, DC_RES);
3604 
3605         /* reinitialize interface if necessary */
3606         if (ifp->if_flags & IFF_UP)
3607                 dc_init(sc);
3608 
3609 	sc->suspended = 0;
3610 	lwkt_serialize_exit(ifp->if_serializer);
3611 
3612 	return (0);
3613 }
3614 
3615 static uint32_t
3616 dc_mchash_xircom(struct dc_softc *sc, const uint8_t *addr)
3617 {
3618 	uint32_t crc;
3619 
3620 	/* Compute CRC for the address value. */
3621 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
3622 
3623 	if ((crc & 0x180) == 0x180)
3624 		return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
3625 	else
3626 		return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + (12 << 4));
3627 }
3628