xref: /dragonfly/sys/dev/netif/dc/if_dc.c (revision f02303f9)
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *	Bill Paul <wpaul@ee.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/pci/if_dc.c,v 1.9.2.45 2003/06/08 14:31:53 mux Exp $
33  * $DragonFly: src/sys/dev/netif/dc/if_dc.c,v 1.54 2006/12/22 23:26:19 swildner Exp $
34  */
35 
36 /*
37  * DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
38  * series chips and several workalikes including the following:
39  *
40  * Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
41  * Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
42  * Lite-On 82c168/82c169 PNIC (www.litecom.com)
43  * ASIX Electronics AX88140A (www.asix.com.tw)
44  * ASIX Electronics AX88141 (www.asix.com.tw)
45  * ADMtek AL981 (www.admtek.com.tw)
46  * ADMtek AN985 (www.admtek.com.tw)
47  * Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek AN985
48  * Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
49  * Accton EN1217 (www.accton.com)
50  * Xircom X3201 (www.xircom.com)
51  * Conexant LANfinity (www.conexant.com)
52  *
53  * Datasheets for the 21143 are available at developer.intel.com.
54  * Datasheets for the clone parts can be found at their respective sites.
55  * (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
56  * The PNIC II is essentially a Macronix 98715A chip; the only difference
57  * worth noting is that its multicast hash table is only 128 bits wide
58  * instead of 512.
59  *
60  * Written by Bill Paul <wpaul@ee.columbia.edu>
61  * Electrical Engineering Department
62  * Columbia University, New York City
63  */
64 
65 /*
66  * The Intel 21143 is the successor to the DEC 21140. It is basically
67  * the same as the 21140 but with a few new features. The 21143 supports
68  * three kinds of media attachments:
69  *
70  * o MII port, for 10Mbps and 100Mbps support and NWAY
71  *   autonegotiation provided by an external PHY.
72  * o SYM port, for symbol mode 100Mbps support.
73  * o 10baseT port.
74  * o AUI/BNC port.
75  *
76  * The 100Mbps SYM port and 10baseT port can be used together in
77  * combination with the internal NWAY support to create a 10/100
78  * autosensing configuration.
79  *
80  * Note that not all tulip workalikes are handled in this driver: we only
81  * deal with those which are relatively well behaved. The Winbond is
82  * handled separately due to its different register offsets and the
83  * special handling needed for its various bugs. The PNIC is handled
84  * here, but I'm not thrilled about it.
85  *
86  * All of the workalike chips use some form of MII transceiver support
87  * with the exception of the Macronix chips, which also have a SYM port.
88  * The ASIX AX88140A is also documented to have a SYM port, but all
89  * the cards I've seen use an MII transceiver, probably because the
90  * AX88140A doesn't support internal NWAY.
91  */
92 
93 #include "opt_polling.h"
94 
95 #include <sys/param.h>
96 #include <sys/systm.h>
97 #include <sys/sockio.h>
98 #include <sys/mbuf.h>
99 #include <sys/malloc.h>
100 #include <sys/kernel.h>
101 #include <sys/socket.h>
102 #include <sys/sysctl.h>
103 #include <sys/bus.h>
104 #include <sys/rman.h>
105 #include <sys/thread2.h>
106 
107 #include <net/if.h>
108 #include <net/ifq_var.h>
109 #include <net/if_arp.h>
110 #include <net/ethernet.h>
111 #include <net/if_dl.h>
112 #include <net/if_media.h>
113 #include <net/if_types.h>
114 #include <net/vlan/if_vlan_var.h>
115 
116 #include <net/bpf.h>
117 
118 #include <vm/vm.h>              /* for vtophys */
119 #include <vm/pmap.h>            /* for vtophys */
120 
121 #include "../mii_layer/mii.h"
122 #include "../mii_layer/miivar.h"
123 
124 #include <bus/pci/pcireg.h>
125 #include <bus/pci/pcivar.h>
126 
127 #define DC_USEIOSPACE
128 
129 #include "if_dcreg.h"
130 
131 /* "controller miibus0" required.  See GENERIC if you get errors here. */
132 #include "miibus_if.h"
133 
134 /*
135  * Various supported device vendors/types and their names.
136  */
137 static const struct dc_type dc_devs[] = {
138 	{ DC_VENDORID_DEC, DC_DEVICEID_21143,
139 		"Intel 21143 10/100BaseTX" },
140 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009,
141 		"Davicom DM9009 10/100BaseTX" },
142 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100,
143 		"Davicom DM9100 10/100BaseTX" },
144 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
145 		"Davicom DM9102 10/100BaseTX" },
146 	{ DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102,
147 		"Davicom DM9102A 10/100BaseTX" },
148 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AL981,
149 		"ADMtek AL981 10/100BaseTX" },
150 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_AN985,
151 		"ADMtek AN985 10/100BaseTX" },
152 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_FA511,
153 		"Netgear FA511 10/100BaseTX" },
154 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511,
155 		"ADMtek ADM9511 10/100BaseTX" },
156 	{ DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513,
157 		"ADMtek ADM9513 10/100BaseTX" },
158 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
159 		"ASIX AX88140A 10/100BaseTX" },
160 	{ DC_VENDORID_ASIX, DC_DEVICEID_AX88140A,
161 		"ASIX AX88141 10/100BaseTX" },
162 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
163 		"Macronix 98713 10/100BaseTX" },
164 	{ DC_VENDORID_MX, DC_DEVICEID_98713,
165 		"Macronix 98713A 10/100BaseTX" },
166 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
167 		"Compex RL100-TX 10/100BaseTX" },
168 	{ DC_VENDORID_CP, DC_DEVICEID_98713_CP,
169 		"Compex RL100-TX 10/100BaseTX" },
170 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
171 		"Macronix 98715/98715A 10/100BaseTX" },
172 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
173 		"Macronix 98715AEC-C 10/100BaseTX" },
174 	{ DC_VENDORID_MX, DC_DEVICEID_987x5,
175 		"Macronix 98725 10/100BaseTX" },
176 	{ DC_VENDORID_MX, DC_DEVICEID_98727,
177 		"Macronix 98727/98732 10/100BaseTX" },
178 	{ DC_VENDORID_LO, DC_DEVICEID_82C115,
179 		"LC82C115 PNIC II 10/100BaseTX" },
180 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
181 		"82c168 PNIC 10/100BaseTX" },
182 	{ DC_VENDORID_LO, DC_DEVICEID_82C168,
183 		"82c169 PNIC 10/100BaseTX" },
184 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN1217,
185 		"Accton EN1217 10/100BaseTX" },
186 	{ DC_VENDORID_ACCTON, DC_DEVICEID_EN2242,
187 		"Accton EN2242 MiniPCI 10/100BaseTX" },
188     	{ DC_VENDORID_XIRCOM, DC_DEVICEID_X3201,
189 	  	"Xircom X3201 10/100BaseTX" },
190 	{ DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112,
191 		"Conexant LANfinity MiniPCI 10/100BaseTX" },
192 	{ DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB,
193 		"3Com OfficeConnect 10/100B" },
194 	{ 0, 0, NULL }
195 };
196 
197 static int dc_probe		(device_t);
198 static int dc_attach		(device_t);
199 static int dc_detach		(device_t);
200 static int dc_suspend		(device_t);
201 static int dc_resume		(device_t);
202 static void dc_acpi		(device_t);
203 static const struct dc_type *dc_devtype	(device_t);
204 static int dc_newbuf		(struct dc_softc *, int, struct mbuf *);
205 static int dc_encap		(struct dc_softc *, struct mbuf *,
206 					u_int32_t *);
207 static void dc_pnic_rx_bug_war	(struct dc_softc *, int);
208 static int dc_rx_resync		(struct dc_softc *);
209 static void dc_rxeof		(struct dc_softc *);
210 static void dc_txeof		(struct dc_softc *);
211 static void dc_tick		(void *);
212 static void dc_tx_underrun	(struct dc_softc *);
213 static void dc_intr		(void *);
214 static void dc_start		(struct ifnet *);
215 static int dc_ioctl		(struct ifnet *, u_long, caddr_t,
216 					struct ucred *);
217 #ifdef DEVICE_POLLING
218 static void dc_poll		(struct ifnet *ifp, enum poll_cmd cmd,
219 					int count);
220 #endif
221 static void dc_init		(void *);
222 static void dc_stop		(struct dc_softc *);
223 static void dc_watchdog		(struct ifnet *);
224 static void dc_shutdown		(device_t);
225 static int dc_ifmedia_upd	(struct ifnet *);
226 static void dc_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
227 
228 static void dc_delay		(struct dc_softc *);
229 static void dc_eeprom_idle	(struct dc_softc *);
230 static void dc_eeprom_putbyte	(struct dc_softc *, int);
231 static void dc_eeprom_getword	(struct dc_softc *, int, u_int16_t *);
232 static void dc_eeprom_getword_pnic
233 				(struct dc_softc *, int, u_int16_t *);
234 static void dc_eeprom_getword_xircom
235 				(struct dc_softc *, int, u_int16_t *);
236 static void dc_eeprom_width	(struct dc_softc *);
237 static void dc_read_eeprom	(struct dc_softc *, caddr_t, int,
238 							int, int);
239 
240 static void dc_mii_writebit	(struct dc_softc *, int);
241 static int dc_mii_readbit	(struct dc_softc *);
242 static void dc_mii_sync		(struct dc_softc *);
243 static void dc_mii_send		(struct dc_softc *, u_int32_t, int);
244 static int dc_mii_readreg	(struct dc_softc *, struct dc_mii_frame *);
245 static int dc_mii_writereg	(struct dc_softc *, struct dc_mii_frame *);
246 static int dc_miibus_readreg	(device_t, int, int);
247 static int dc_miibus_writereg	(device_t, int, int, int);
248 static void dc_miibus_statchg	(device_t);
249 static void dc_miibus_mediainit	(device_t);
250 
251 static u_int32_t dc_crc_mask	(struct dc_softc *);
252 static void dc_setcfg		(struct dc_softc *, int);
253 static void dc_setfilt_21143	(struct dc_softc *);
254 static void dc_setfilt_asix	(struct dc_softc *);
255 static void dc_setfilt_admtek	(struct dc_softc *);
256 static void dc_setfilt_xircom	(struct dc_softc *);
257 
258 static void dc_setfilt		(struct dc_softc *);
259 
260 static void dc_reset		(struct dc_softc *);
261 static int dc_list_rx_init	(struct dc_softc *);
262 static int dc_list_tx_init	(struct dc_softc *);
263 
264 static void dc_read_srom	(struct dc_softc *, int);
265 static void dc_parse_21143_srom	(struct dc_softc *);
266 static void dc_decode_leaf_sia	(struct dc_softc *,
267 				    struct dc_eblock_sia *);
268 static void dc_decode_leaf_mii	(struct dc_softc *,
269 				    struct dc_eblock_mii *);
270 static void dc_decode_leaf_sym	(struct dc_softc *,
271 				    struct dc_eblock_sym *);
272 static void dc_apply_fixup	(struct dc_softc *, int);
273 static uint32_t dc_mchash_xircom(struct dc_softc *, const uint8_t *);
274 
275 #ifdef DC_USEIOSPACE
276 #define DC_RES			SYS_RES_IOPORT
277 #define DC_RID			DC_PCI_CFBIO
278 #else
279 #define DC_RES			SYS_RES_MEMORY
280 #define DC_RID			DC_PCI_CFBMA
281 #endif
282 
283 static device_method_t dc_methods[] = {
284 	/* Device interface */
285 	DEVMETHOD(device_probe,		dc_probe),
286 	DEVMETHOD(device_attach,	dc_attach),
287 	DEVMETHOD(device_detach,	dc_detach),
288 	DEVMETHOD(device_suspend,	dc_suspend),
289 	DEVMETHOD(device_resume,	dc_resume),
290 	DEVMETHOD(device_shutdown,	dc_shutdown),
291 
292 	/* bus interface */
293 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
294 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
295 
296 	/* MII interface */
297 	DEVMETHOD(miibus_readreg,	dc_miibus_readreg),
298 	DEVMETHOD(miibus_writereg,	dc_miibus_writereg),
299 	DEVMETHOD(miibus_statchg,	dc_miibus_statchg),
300 	DEVMETHOD(miibus_mediainit,	dc_miibus_mediainit),
301 
302 	{ 0, 0 }
303 };
304 
305 static driver_t dc_driver = {
306 	"dc",
307 	dc_methods,
308 	sizeof(struct dc_softc)
309 };
310 
311 static devclass_t dc_devclass;
312 
313 #ifdef __i386__
314 static int dc_quick=1;
315 SYSCTL_INT(_hw, OID_AUTO, dc_quick, CTLFLAG_RW,
316 	&dc_quick,0,"do not mdevget in dc driver");
317 #endif
318 
319 DECLARE_DUMMY_MODULE(if_dc);
320 DRIVER_MODULE(if_dc, cardbus, dc_driver, dc_devclass, 0, 0);
321 DRIVER_MODULE(if_dc, pci, dc_driver, dc_devclass, 0, 0);
322 DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
323 
324 #define DC_SETBIT(sc, reg, x)				\
325 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
326 
327 #define DC_CLRBIT(sc, reg, x)				\
328 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
329 
330 #define SIO_SET(x)	DC_SETBIT(sc, DC_SIO, (x))
331 #define SIO_CLR(x)	DC_CLRBIT(sc, DC_SIO, (x))
332 
333 static void
334 dc_delay(struct dc_softc *sc)
335 {
336 	int			idx;
337 
338 	for (idx = (300 / 33) + 1; idx > 0; idx--)
339 		CSR_READ_4(sc, DC_BUSCTL);
340 }
341 
342 static void
343 dc_eeprom_width(struct dc_softc *sc)
344 {
345 	int i;
346 
347 	/* Force EEPROM to idle state. */
348 	dc_eeprom_idle(sc);
349 
350 	/* Enter EEPROM access mode. */
351 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
352 	dc_delay(sc);
353 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
354 	dc_delay(sc);
355 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
356 	dc_delay(sc);
357 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
358 	dc_delay(sc);
359 
360 	for (i = 3; i--;) {
361 		if (6 & (1 << i))
362 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
363 		else
364 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
365 		dc_delay(sc);
366 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
367 		dc_delay(sc);
368 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
369 		dc_delay(sc);
370 	}
371 
372 	for (i = 1; i <= 12; i++) {
373 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
374 		dc_delay(sc);
375 		if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
376 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
377 			dc_delay(sc);
378 			break;
379 		}
380 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
381 		dc_delay(sc);
382 	}
383 
384 	/* Turn off EEPROM access mode. */
385 	dc_eeprom_idle(sc);
386 
387 	if (i < 4 || i > 12)
388 		sc->dc_romwidth = 6;
389 	else
390 		sc->dc_romwidth = i;
391 
392 	/* Enter EEPROM access mode. */
393 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
394 	dc_delay(sc);
395 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
396 	dc_delay(sc);
397 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
398 	dc_delay(sc);
399 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
400 	dc_delay(sc);
401 
402 	/* Turn off EEPROM access mode. */
403 	dc_eeprom_idle(sc);
404 }
405 
406 static void
407 dc_eeprom_idle(struct dc_softc *sc)
408 {
409 	int		i;
410 
411 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
412 	dc_delay(sc);
413 	DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
414 	dc_delay(sc);
415 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
416 	dc_delay(sc);
417 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
418 	dc_delay(sc);
419 
420 	for (i = 0; i < 25; i++) {
421 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
422 		dc_delay(sc);
423 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
424 		dc_delay(sc);
425 	}
426 
427 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
428 	dc_delay(sc);
429 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
430 	dc_delay(sc);
431 	CSR_WRITE_4(sc, DC_SIO, 0x00000000);
432 
433 	return;
434 }
435 
436 /*
437  * Send a read command and address to the EEPROM, check for ACK.
438  */
439 static void
440 dc_eeprom_putbyte(struct dc_softc *sc, int addr)
441 {
442 	int		d, i;
443 
444 	d = DC_EECMD_READ >> 6;
445 	for (i = 3; i--; ) {
446 		if (d & (1 << i))
447 			DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
448 		else
449 			DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
450 		dc_delay(sc);
451 		DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
452 		dc_delay(sc);
453 		DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
454 		dc_delay(sc);
455 	}
456 
457 	/*
458 	 * Feed in each bit and strobe the clock.
459 	 */
460 	for (i = sc->dc_romwidth; i--;) {
461 		if (addr & (1 << i)) {
462 			SIO_SET(DC_SIO_EE_DATAIN);
463 		} else {
464 			SIO_CLR(DC_SIO_EE_DATAIN);
465 		}
466 		dc_delay(sc);
467 		SIO_SET(DC_SIO_EE_CLK);
468 		dc_delay(sc);
469 		SIO_CLR(DC_SIO_EE_CLK);
470 		dc_delay(sc);
471 	}
472 
473 	return;
474 }
475 
476 /*
477  * Read a word of data stored in the EEPROM at address 'addr.'
478  * The PNIC 82c168/82c169 has its own non-standard way to read
479  * the EEPROM.
480  */
481 static void
482 dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
483 {
484 	int		i;
485 	u_int32_t		r;
486 
487 	CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
488 
489 	for (i = 0; i < DC_TIMEOUT; i++) {
490 		DELAY(1);
491 		r = CSR_READ_4(sc, DC_SIO);
492 		if (!(r & DC_PN_SIOCTL_BUSY)) {
493 			*dest = (u_int16_t)(r & 0xFFFF);
494 			return;
495 		}
496 	}
497 
498 	return;
499 }
500 
501 /*
502  * Read a word of data stored in the EEPROM at address 'addr.'
503  * The Xircom X3201 has its own non-standard way to read
504  * the EEPROM, too.
505  */
506 static void
507 dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
508 {
509 	SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
510 
511 	addr *= 2;
512 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
513 	*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff;
514 	addr += 1;
515 	CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
516 	*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO)&0xff) << 8;
517 
518 	SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
519 }
520 
521 /*
522  * Read a word of data stored in the EEPROM at address 'addr.'
523  */
524 static void
525 dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
526 {
527 	int		i;
528 	u_int16_t		word = 0;
529 
530 	/* Force EEPROM to idle state. */
531 	dc_eeprom_idle(sc);
532 
533 	/* Enter EEPROM access mode. */
534 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
535 	dc_delay(sc);
536 	DC_SETBIT(sc, DC_SIO,  DC_SIO_ROMCTL_READ);
537 	dc_delay(sc);
538 	DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
539 	dc_delay(sc);
540 	DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
541 	dc_delay(sc);
542 
543 	/*
544 	 * Send address of word we want to read.
545 	 */
546 	dc_eeprom_putbyte(sc, addr);
547 
548 	/*
549 	 * Start reading bits from EEPROM.
550 	 */
551 	for (i = 0x8000; i; i >>= 1) {
552 		SIO_SET(DC_SIO_EE_CLK);
553 		dc_delay(sc);
554 		if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
555 			word |= i;
556 		dc_delay(sc);
557 		SIO_CLR(DC_SIO_EE_CLK);
558 		dc_delay(sc);
559 	}
560 
561 	/* Turn off EEPROM access mode. */
562 	dc_eeprom_idle(sc);
563 
564 	*dest = word;
565 
566 	return;
567 }
568 
569 /*
570  * Read a sequence of words from the EEPROM.
571  */
572 static void
573 dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int swap)
574 {
575 	int			i;
576 	u_int16_t		word = 0, *ptr;
577 
578 	for (i = 0; i < cnt; i++) {
579 		if (DC_IS_PNIC(sc))
580 			dc_eeprom_getword_pnic(sc, off + i, &word);
581 		else if (DC_IS_XIRCOM(sc))
582 			dc_eeprom_getword_xircom(sc, off + i, &word);
583 		else
584 			dc_eeprom_getword(sc, off + i, &word);
585 		ptr = (u_int16_t *)(dest + (i * 2));
586 		if (swap)
587 			*ptr = ntohs(word);
588 		else
589 			*ptr = word;
590 	}
591 
592 	return;
593 }
594 
595 /*
596  * The following two routines are taken from the Macronix 98713
597  * Application Notes pp.19-21.
598  */
599 /*
600  * Write a bit to the MII bus.
601  */
602 static void
603 dc_mii_writebit(struct dc_softc *sc, int bit)
604 {
605 	if (bit)
606 		CSR_WRITE_4(sc, DC_SIO,
607 		    DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
608 	else
609 		CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
610 
611 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
612 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
613 
614 	return;
615 }
616 
617 /*
618  * Read a bit from the MII bus.
619  */
620 static int
621 dc_mii_readbit(struct dc_softc *sc)
622 {
623 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
624 	CSR_READ_4(sc, DC_SIO);
625 	DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
626 	DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
627 	if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
628 		return(1);
629 
630 	return(0);
631 }
632 
633 /*
634  * Sync the PHYs by setting data bit and strobing the clock 32 times.
635  */
636 static void
637 dc_mii_sync(struct dc_softc *sc)
638 {
639 	int		i;
640 
641 	CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
642 
643 	for (i = 0; i < 32; i++)
644 		dc_mii_writebit(sc, 1);
645 
646 	return;
647 }
648 
649 /*
650  * Clock a series of bits through the MII.
651  */
652 static void
653 dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
654 {
655 	int			i;
656 
657 	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
658 		dc_mii_writebit(sc, bits & i);
659 }
660 
661 /*
662  * Read an PHY register through the MII.
663  */
664 static int
665 dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
666 {
667 	int ack, i;
668 
669 	/*
670 	 * Set up frame for RX.
671 	 */
672 	frame->mii_stdelim = DC_MII_STARTDELIM;
673 	frame->mii_opcode = DC_MII_READOP;
674 	frame->mii_turnaround = 0;
675 	frame->mii_data = 0;
676 
677 	/*
678 	 * Sync the PHYs.
679 	 */
680 	dc_mii_sync(sc);
681 
682 	/*
683 	 * Send command/address info.
684 	 */
685 	dc_mii_send(sc, frame->mii_stdelim, 2);
686 	dc_mii_send(sc, frame->mii_opcode, 2);
687 	dc_mii_send(sc, frame->mii_phyaddr, 5);
688 	dc_mii_send(sc, frame->mii_regaddr, 5);
689 
690 #ifdef notdef
691 	/* Idle bit */
692 	dc_mii_writebit(sc, 1);
693 	dc_mii_writebit(sc, 0);
694 #endif
695 
696 	/* Check for ack */
697 	ack = dc_mii_readbit(sc);
698 
699 	/*
700 	 * Now try reading data bits. If the ack failed, we still
701 	 * need to clock through 16 cycles to keep the PHY(s) in sync.
702 	 */
703 	if (ack) {
704 		for(i = 0; i < 16; i++) {
705 			dc_mii_readbit(sc);
706 		}
707 		goto fail;
708 	}
709 
710 	for (i = 0x8000; i; i >>= 1) {
711 		if (!ack) {
712 			if (dc_mii_readbit(sc))
713 				frame->mii_data |= i;
714 		}
715 	}
716 
717 fail:
718 
719 	dc_mii_writebit(sc, 0);
720 	dc_mii_writebit(sc, 0);
721 
722 	if (ack)
723 		return(1);
724 	return(0);
725 }
726 
727 /*
728  * Write to a PHY register through the MII.
729  */
730 static int
731 dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
732 {
733 	/*
734 	 * Set up frame for TX.
735 	 */
736 
737 	frame->mii_stdelim = DC_MII_STARTDELIM;
738 	frame->mii_opcode = DC_MII_WRITEOP;
739 	frame->mii_turnaround = DC_MII_TURNAROUND;
740 
741 	/*
742 	 * Sync the PHYs.
743 	 */
744 	dc_mii_sync(sc);
745 
746 	dc_mii_send(sc, frame->mii_stdelim, 2);
747 	dc_mii_send(sc, frame->mii_opcode, 2);
748 	dc_mii_send(sc, frame->mii_phyaddr, 5);
749 	dc_mii_send(sc, frame->mii_regaddr, 5);
750 	dc_mii_send(sc, frame->mii_turnaround, 2);
751 	dc_mii_send(sc, frame->mii_data, 16);
752 
753 	/* Idle bit. */
754 	dc_mii_writebit(sc, 0);
755 	dc_mii_writebit(sc, 0);
756 
757 	return(0);
758 }
759 
760 static int
761 dc_miibus_readreg(device_t dev, int phy, int reg)
762 {
763 	struct dc_mii_frame	frame;
764 	struct dc_softc		*sc;
765 	int			i, rval, phy_reg = 0;
766 
767 	sc = device_get_softc(dev);
768 	bzero((char *)&frame, sizeof(frame));
769 
770 	/*
771 	 * Note: both the AL981 and AN985 have internal PHYs,
772 	 * however the AL981 provides direct access to the PHY
773 	 * registers while the AN985 uses a serial MII interface.
774 	 * The AN985's MII interface is also buggy in that you
775 	 * can read from any MII address (0 to 31), but only address 1
776 	 * behaves normally. To deal with both cases, we pretend
777 	 * that the PHY is at MII address 1.
778 	 */
779 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
780 		return(0);
781 
782 	/*
783 	 * Note: the ukphy probes of the RS7112 report a PHY at
784 	 * MII address 0 (possibly HomePNA?) and 1 (ethernet)
785 	 * so we only respond to correct one.
786 	 */
787 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
788 		return(0);
789 
790 	if (sc->dc_pmode != DC_PMODE_MII) {
791 		if (phy == (MII_NPHY - 1)) {
792 			switch(reg) {
793 			case MII_BMSR:
794 			/*
795 			 * Fake something to make the probe
796 			 * code think there's a PHY here.
797 			 */
798 				return(BMSR_MEDIAMASK);
799 				break;
800 			case MII_PHYIDR1:
801 				if (DC_IS_PNIC(sc))
802 					return(DC_VENDORID_LO);
803 				return(DC_VENDORID_DEC);
804 				break;
805 			case MII_PHYIDR2:
806 				if (DC_IS_PNIC(sc))
807 					return(DC_DEVICEID_82C168);
808 				return(DC_DEVICEID_21143);
809 				break;
810 			default:
811 				return(0);
812 				break;
813 			}
814 		} else
815 			return(0);
816 	}
817 
818 	if (DC_IS_PNIC(sc)) {
819 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
820 		    (phy << 23) | (reg << 18));
821 		for (i = 0; i < DC_TIMEOUT; i++) {
822 			DELAY(1);
823 			rval = CSR_READ_4(sc, DC_PN_MII);
824 			if (!(rval & DC_PN_MII_BUSY)) {
825 				rval &= 0xFFFF;
826 				return(rval == 0xFFFF ? 0 : rval);
827 			}
828 		}
829 		return(0);
830 	}
831 
832 	if (DC_IS_COMET(sc)) {
833 		switch(reg) {
834 		case MII_BMCR:
835 			phy_reg = DC_AL_BMCR;
836 			break;
837 		case MII_BMSR:
838 			phy_reg = DC_AL_BMSR;
839 			break;
840 		case MII_PHYIDR1:
841 			phy_reg = DC_AL_VENID;
842 			break;
843 		case MII_PHYIDR2:
844 			phy_reg = DC_AL_DEVID;
845 			break;
846 		case MII_ANAR:
847 			phy_reg = DC_AL_ANAR;
848 			break;
849 		case MII_ANLPAR:
850 			phy_reg = DC_AL_LPAR;
851 			break;
852 		case MII_ANER:
853 			phy_reg = DC_AL_ANER;
854 			break;
855 		default:
856 			if_printf(&sc->arpcom.ac_if,
857 				  "phy_read: bad phy register %x\n", reg);
858 			return(0);
859 			break;
860 		}
861 
862 		rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
863 
864 		if (rval == 0xFFFF)
865 			return(0);
866 		return(rval);
867 	}
868 
869 	frame.mii_phyaddr = phy;
870 	frame.mii_regaddr = reg;
871 	if (sc->dc_type == DC_TYPE_98713) {
872 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
873 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
874 	}
875 	dc_mii_readreg(sc, &frame);
876 	if (sc->dc_type == DC_TYPE_98713)
877 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
878 
879 	return(frame.mii_data);
880 }
881 
882 static int
883 dc_miibus_writereg(device_t dev, int phy, int reg, int data)
884 {
885 	struct dc_softc		*sc;
886 	struct dc_mii_frame	frame;
887 	int			i, phy_reg = 0;
888 
889 	sc = device_get_softc(dev);
890 	bzero((char *)&frame, sizeof(frame));
891 
892 	if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
893 		return(0);
894 
895 	if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
896 		return(0);
897 
898 	if (DC_IS_PNIC(sc)) {
899 		CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
900 		    (phy << 23) | (reg << 10) | data);
901 		for (i = 0; i < DC_TIMEOUT; i++) {
902 			if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
903 				break;
904 		}
905 		return(0);
906 	}
907 
908 	if (DC_IS_COMET(sc)) {
909 		switch(reg) {
910 		case MII_BMCR:
911 			phy_reg = DC_AL_BMCR;
912 			break;
913 		case MII_BMSR:
914 			phy_reg = DC_AL_BMSR;
915 			break;
916 		case MII_PHYIDR1:
917 			phy_reg = DC_AL_VENID;
918 			break;
919 		case MII_PHYIDR2:
920 			phy_reg = DC_AL_DEVID;
921 			break;
922 		case MII_ANAR:
923 			phy_reg = DC_AL_ANAR;
924 			break;
925 		case MII_ANLPAR:
926 			phy_reg = DC_AL_LPAR;
927 			break;
928 		case MII_ANER:
929 			phy_reg = DC_AL_ANER;
930 			break;
931 		default:
932 			if_printf(&sc->arpcom.ac_if,
933 				  "phy_write: bad phy register %x\n", reg);
934 			return(0);
935 			break;
936 		}
937 
938 		CSR_WRITE_4(sc, phy_reg, data);
939 		return(0);
940 	}
941 
942 	frame.mii_phyaddr = phy;
943 	frame.mii_regaddr = reg;
944 	frame.mii_data = data;
945 
946 	if (sc->dc_type == DC_TYPE_98713) {
947 		phy_reg = CSR_READ_4(sc, DC_NETCFG);
948 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
949 	}
950 	dc_mii_writereg(sc, &frame);
951 	if (sc->dc_type == DC_TYPE_98713)
952 		CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
953 
954 	return(0);
955 }
956 
957 static void
958 dc_miibus_statchg(device_t dev)
959 {
960 	struct dc_softc		*sc;
961 	struct mii_data		*mii;
962 	struct ifmedia		*ifm;
963 
964 	sc = device_get_softc(dev);
965 	if (DC_IS_ADMTEK(sc))
966 		return;
967 
968 	mii = device_get_softc(sc->dc_miibus);
969 	ifm = &mii->mii_media;
970 	if (DC_IS_DAVICOM(sc) &&
971 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
972 		dc_setcfg(sc, ifm->ifm_media);
973 		sc->dc_if_media = ifm->ifm_media;
974 	} else {
975 		dc_setcfg(sc, mii->mii_media_active);
976 		sc->dc_if_media = mii->mii_media_active;
977 	}
978 
979 	return;
980 }
981 
982 /*
983  * Special support for DM9102A cards with HomePNA PHYs. Note:
984  * with the Davicom DM9102A/DM9801 eval board that I have, it seems
985  * to be impossible to talk to the management interface of the DM9801
986  * PHY (its MDIO pin is not connected to anything). Consequently,
987  * the driver has to just 'know' about the additional mode and deal
988  * with it itself. *sigh*
989  */
990 static void
991 dc_miibus_mediainit(device_t dev)
992 {
993 	struct dc_softc		*sc;
994 	struct mii_data		*mii;
995 	struct ifmedia		*ifm;
996 	int			rev;
997 
998 	rev = pci_get_revid(dev);
999 
1000 	sc = device_get_softc(dev);
1001 	mii = device_get_softc(sc->dc_miibus);
1002 	ifm = &mii->mii_media;
1003 
1004 	if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
1005 		ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
1006 
1007 	return;
1008 }
1009 
1010 #define DC_BITS_512	9
1011 #define DC_BITS_128	7
1012 #define DC_BITS_64	6
1013 
1014 static u_int32_t
1015 dc_crc_mask(struct dc_softc *sc)
1016 {
1017 	/*
1018 	 * The hash table on the PNIC II and the MX98715AEC-C/D/E
1019 	 * chips is only 128 bits wide.
1020 	 */
1021 	if (sc->dc_flags & DC_128BIT_HASH)
1022 		return ((1 << DC_BITS_128) - 1);
1023 
1024 	/* The hash table on the MX98715BEC is only 64 bits wide. */
1025 	if (sc->dc_flags & DC_64BIT_HASH)
1026 		return ((1 << DC_BITS_64) - 1);
1027 
1028 	return ((1 << DC_BITS_512) - 1);
1029 }
1030 
1031 /*
1032  * 21143-style RX filter setup routine. Filter programming is done by
1033  * downloading a special setup frame into the TX engine. 21143, Macronix,
1034  * PNIC, PNIC II and Davicom chips are programmed this way.
1035  *
1036  * We always program the chip using 'hash perfect' mode, i.e. one perfect
1037  * address (our node address) and a 512-bit hash filter for multicast
1038  * frames. We also sneak the broadcast address into the hash filter since
1039  * we need that too.
1040  */
1041 void
1042 dc_setfilt_21143(struct dc_softc *sc)
1043 {
1044 	struct dc_desc		*sframe;
1045 	u_int32_t		h, crc_mask, *sp;
1046 	struct ifmultiaddr	*ifma;
1047 	struct ifnet		*ifp;
1048 	int			i;
1049 
1050 	ifp = &sc->arpcom.ac_if;
1051 
1052 	i = sc->dc_cdata.dc_tx_prod;
1053 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1054 	sc->dc_cdata.dc_tx_cnt++;
1055 	sframe = &sc->dc_ldata->dc_tx_list[i];
1056 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1057 	bzero((char *)sp, DC_SFRAME_LEN);
1058 
1059 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1060 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1061 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1062 
1063 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1064 
1065 	/* If we want promiscuous mode, set the allframes bit. */
1066 	if (ifp->if_flags & IFF_PROMISC)
1067 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1068 	else
1069 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1070 
1071 	if (ifp->if_flags & IFF_ALLMULTI)
1072 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1073 	else
1074 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1075 
1076 	crc_mask = dc_crc_mask(sc);
1077 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1078 		if (ifma->ifma_addr->sa_family != AF_LINK)
1079 			continue;
1080 		h = ether_crc32_le(
1081 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1082 			ETHER_ADDR_LEN) & crc_mask;
1083 		sp[h >> 4] |= 1 << (h & 0xF);
1084 	}
1085 
1086 	if (ifp->if_flags & IFF_BROADCAST) {
1087 		h = ether_crc32_le(ifp->if_broadcastaddr,
1088 				   ETHER_ADDR_LEN) & crc_mask;
1089 		sp[h >> 4] |= 1 << (h & 0xF);
1090 	}
1091 
1092 	/* Set our MAC address */
1093 	sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1094 	sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1095 	sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1096 
1097 	sframe->dc_status = DC_TXSTAT_OWN;
1098 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1099 
1100 	/*
1101 	 * The PNIC takes an exceedingly long time to process its
1102 	 * setup frame; wait 10ms after posting the setup frame
1103 	 * before proceeding, just so it has time to swallow its
1104 	 * medicine.
1105 	 */
1106 	DELAY(10000);
1107 
1108 	ifp->if_timer = 5;
1109 
1110 	return;
1111 }
1112 
1113 void
1114 dc_setfilt_admtek(struct dc_softc *sc)
1115 {
1116 	struct ifnet		*ifp;
1117 	int			h = 0;
1118 	u_int32_t		crc_mask;
1119 	u_int32_t		hashes[2] = { 0, 0 };
1120 	struct ifmultiaddr	*ifma;
1121 
1122 	ifp = &sc->arpcom.ac_if;
1123 
1124 	/* Init our MAC address */
1125 	CSR_WRITE_4(sc, DC_AL_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1126 	CSR_WRITE_4(sc, DC_AL_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1127 
1128 	/* If we want promiscuous mode, set the allframes bit. */
1129 	if (ifp->if_flags & IFF_PROMISC)
1130 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1131 	else
1132 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1133 
1134 	if (ifp->if_flags & IFF_ALLMULTI)
1135 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1136 	else
1137 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1138 
1139 	/* first, zot all the existing hash bits */
1140 	CSR_WRITE_4(sc, DC_AL_MAR0, 0);
1141 	CSR_WRITE_4(sc, DC_AL_MAR1, 0);
1142 
1143 	/*
1144 	 * If we're already in promisc or allmulti mode, we
1145 	 * don't have to bother programming the multicast filter.
1146 	 */
1147 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1148 		return;
1149 
1150 	/* now program new ones */
1151 	if (DC_IS_CENTAUR(sc))
1152 		crc_mask = dc_crc_mask(sc);
1153 	else
1154 		crc_mask = 0x3f;
1155 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1156 		if (ifma->ifma_addr->sa_family != AF_LINK)
1157 			continue;
1158 		if (DC_IS_CENTAUR(sc)) {
1159 			h = ether_crc32_le(
1160 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1161 				ETHER_ADDR_LEN) & crc_mask;
1162 		} else {
1163 			h = ether_crc32_be(
1164 				LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1165 				ETHER_ADDR_LEN);
1166 			h = (h >> 26) & crc_mask;
1167 		}
1168 		if (h < 32)
1169 			hashes[0] |= (1 << h);
1170 		else
1171 			hashes[1] |= (1 << (h - 32));
1172 	}
1173 
1174 	CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
1175 	CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
1176 
1177 	return;
1178 }
1179 
1180 void
1181 dc_setfilt_asix(struct dc_softc *sc)
1182 {
1183 	struct ifnet		*ifp;
1184 	int			h = 0;
1185 	u_int32_t		hashes[2] = { 0, 0 };
1186 	struct ifmultiaddr	*ifma;
1187 
1188 	ifp = &sc->arpcom.ac_if;
1189 
1190         /* Init our MAC address */
1191         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
1192         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1193 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1194         CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
1195         CSR_WRITE_4(sc, DC_AX_FILTDATA,
1196 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1197 
1198 	/* If we want promiscuous mode, set the allframes bit. */
1199 	if (ifp->if_flags & IFF_PROMISC)
1200 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1201 	else
1202 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1203 
1204 	if (ifp->if_flags & IFF_ALLMULTI)
1205 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1206 	else
1207 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1208 
1209 	/*
1210 	 * The ASIX chip has a special bit to enable reception
1211 	 * of broadcast frames.
1212 	 */
1213 	if (ifp->if_flags & IFF_BROADCAST)
1214 		DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1215 	else
1216 		DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
1217 
1218 	/* first, zot all the existing hash bits */
1219 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1220 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1221 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1222 	CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
1223 
1224 	/*
1225 	 * If we're already in promisc or allmulti mode, we
1226 	 * don't have to bother programming the multicast filter.
1227 	 */
1228 	if (ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI))
1229 		return;
1230 
1231 	/* now program new ones */
1232 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1233 		if (ifma->ifma_addr->sa_family != AF_LINK)
1234 			continue;
1235 		h = ether_crc32_be(
1236 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1237 			ETHER_ADDR_LEN);
1238 		h = (h >> 26) & 0x3f;
1239 		if (h < 32)
1240 			hashes[0] |= (1 << h);
1241 		else
1242 			hashes[1] |= (1 << (h - 32));
1243 	}
1244 
1245 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
1246 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
1247 	CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
1248 	CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
1249 
1250 	return;
1251 }
1252 
1253 void
1254 dc_setfilt_xircom(struct dc_softc *sc)
1255 {
1256 	struct dc_desc		*sframe;
1257 	u_int32_t		h, *sp;
1258 	struct ifmultiaddr	*ifma;
1259 	struct ifnet		*ifp;
1260 	int			i;
1261 
1262 	ifp = &sc->arpcom.ac_if;
1263 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1264 
1265 	i = sc->dc_cdata.dc_tx_prod;
1266 	DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
1267 	sc->dc_cdata.dc_tx_cnt++;
1268 	sframe = &sc->dc_ldata->dc_tx_list[i];
1269 	sp = (u_int32_t *)&sc->dc_cdata.dc_sbuf;
1270 	bzero(sp, DC_SFRAME_LEN);
1271 
1272 	sframe->dc_data = vtophys(&sc->dc_cdata.dc_sbuf);
1273 	sframe->dc_ctl = DC_SFRAME_LEN | DC_TXCTL_SETUP | DC_TXCTL_TLINK |
1274 	    DC_FILTER_HASHPERF | DC_TXCTL_FINT;
1275 
1276 	sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)&sc->dc_cdata.dc_sbuf;
1277 
1278 	/* If we want promiscuous mode, set the allframes bit. */
1279 	if (ifp->if_flags & IFF_PROMISC)
1280 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1281 	else
1282 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
1283 
1284 	if (ifp->if_flags & IFF_ALLMULTI)
1285  		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1286 	else
1287 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
1288 
1289 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1290 		if (ifma->ifma_addr->sa_family != AF_LINK)
1291 			continue;
1292 		h = dc_mchash_xircom(sc,
1293 			LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1294 		sp[h >> 4] |= 1 << (h & 0xF);
1295 	}
1296 
1297 	if (ifp->if_flags & IFF_BROADCAST) {
1298 		h = dc_mchash_xircom(sc, (caddr_t)&etherbroadcastaddr);
1299 		sp[h >> 4] |= 1 << (h & 0xF);
1300 	}
1301 
1302 	/* Set our MAC address */
1303 	sp[0] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0];
1304 	sp[1] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1];
1305 	sp[2] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2];
1306 
1307 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
1308 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
1309 	ifp->if_flags |= IFF_RUNNING;
1310 	sframe->dc_status = DC_TXSTAT_OWN;
1311 	CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
1312 
1313 	/*
1314 	 * wait some time...
1315 	 */
1316 	DELAY(1000);
1317 
1318 	ifp->if_timer = 5;
1319 }
1320 
1321 static void
1322 dc_setfilt(struct dc_softc *sc)
1323 {
1324 	if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
1325 	    DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
1326 		dc_setfilt_21143(sc);
1327 
1328 	if (DC_IS_ASIX(sc))
1329 		dc_setfilt_asix(sc);
1330 
1331 	if (DC_IS_ADMTEK(sc))
1332 		dc_setfilt_admtek(sc);
1333 
1334 	if (DC_IS_XIRCOM(sc))
1335 		dc_setfilt_xircom(sc);
1336 }
1337 
1338 /*
1339  * In order to fiddle with the
1340  * 'full-duplex' and '100Mbps' bits in the netconfig register, we
1341  * first have to put the transmit and/or receive logic in the idle state.
1342  */
1343 static void
1344 dc_setcfg(struct dc_softc *sc, int media)
1345 {
1346 	int			i, restart = 0;
1347 	u_int32_t		isr;
1348 
1349 	if (IFM_SUBTYPE(media) == IFM_NONE)
1350 		return;
1351 
1352 	if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
1353 		restart = 1;
1354 		DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
1355 
1356 		for (i = 0; i < DC_TIMEOUT; i++) {
1357 			isr = CSR_READ_4(sc, DC_ISR);
1358 			if ((isr & DC_ISR_TX_IDLE) &&
1359 			    ((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
1360 			     (isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
1361 				break;
1362 			DELAY(10);
1363 		}
1364 
1365 		if (i == DC_TIMEOUT) {
1366 			if_printf(&sc->arpcom.ac_if,
1367 			    "failed to force tx and rx to idle state\n");
1368 		}
1369 	}
1370 
1371 	if (IFM_SUBTYPE(media) == IFM_100_TX) {
1372 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1373 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1374 		if (sc->dc_pmode == DC_PMODE_MII) {
1375 			int	watchdogreg;
1376 
1377 			if (DC_IS_INTEL(sc)) {
1378 			/* there's a write enable bit here that reads as 1 */
1379 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1380 				watchdogreg &= ~DC_WDOG_CTLWREN;
1381 				watchdogreg |= DC_WDOG_JABBERDIS;
1382 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1383 			} else {
1384 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1385 			}
1386 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1387 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1388 			if (sc->dc_type == DC_TYPE_98713)
1389 				DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1390 				    DC_NETCFG_SCRAMBLER));
1391 			if (!DC_IS_DAVICOM(sc))
1392 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1393 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1394 			if (DC_IS_INTEL(sc))
1395 				dc_apply_fixup(sc, IFM_AUTO);
1396 		} else {
1397 			if (DC_IS_PNIC(sc)) {
1398 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
1399 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1400 				DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1401 			}
1402 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1403 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1404 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1405 			if (DC_IS_INTEL(sc))
1406 				dc_apply_fixup(sc,
1407 				    (media & IFM_GMASK) == IFM_FDX ?
1408 				    IFM_100_TX|IFM_FDX : IFM_100_TX);
1409 		}
1410 	}
1411 
1412 	if (IFM_SUBTYPE(media) == IFM_10_T) {
1413 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
1414 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
1415 		if (sc->dc_pmode == DC_PMODE_MII) {
1416 			int	watchdogreg;
1417 
1418 			/* there's a write enable bit here that reads as 1 */
1419 			if (DC_IS_INTEL(sc)) {
1420 				watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
1421 				watchdogreg &= ~DC_WDOG_CTLWREN;
1422 				watchdogreg |= DC_WDOG_JABBERDIS;
1423 				CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
1424 			} else {
1425 				DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
1426 			}
1427 			DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
1428 			    DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
1429 			if (sc->dc_type == DC_TYPE_98713)
1430 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1431 			if (!DC_IS_DAVICOM(sc))
1432 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1433 			DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1434 			if (DC_IS_INTEL(sc))
1435 				dc_apply_fixup(sc, IFM_AUTO);
1436 		} else {
1437 			if (DC_IS_PNIC(sc)) {
1438 				DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
1439 				DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
1440 				DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
1441 			}
1442 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1443 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
1444 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
1445 			if (DC_IS_INTEL(sc)) {
1446 				DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
1447 				DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
1448 				if ((media & IFM_GMASK) == IFM_FDX)
1449 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
1450 				else
1451 					DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
1452 				DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1453 				DC_CLRBIT(sc, DC_10BTCTRL,
1454 				    DC_TCTL_AUTONEGENBL);
1455 				dc_apply_fixup(sc,
1456 				    (media & IFM_GMASK) == IFM_FDX ?
1457 				    IFM_10_T|IFM_FDX : IFM_10_T);
1458 				DELAY(20000);
1459 			}
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * If this is a Davicom DM9102A card with a DM9801 HomePNA
1465 	 * PHY and we want HomePNA mode, set the portsel bit to turn
1466 	 * on the external MII port.
1467 	 */
1468 	if (DC_IS_DAVICOM(sc)) {
1469 		if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
1470 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1471 			sc->dc_link = 1;
1472 		} else {
1473 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
1474 		}
1475 	}
1476 
1477 	if ((media & IFM_GMASK) == IFM_FDX) {
1478 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1479 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1480 			DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1481 	} else {
1482 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
1483 		if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
1484 			DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
1485 	}
1486 
1487 	if (restart)
1488 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
1489 
1490 	return;
1491 }
1492 
1493 static void
1494 dc_reset(struct dc_softc *sc)
1495 {
1496 	int		i;
1497 
1498 	DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1499 
1500 	for (i = 0; i < DC_TIMEOUT; i++) {
1501 		DELAY(10);
1502 		if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
1503 			break;
1504 	}
1505 
1506 	if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
1507 	    DC_IS_CONEXANT(sc)) {
1508 		DELAY(10000);
1509 		DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
1510 		i = 0;
1511 	}
1512 
1513 	if (i == DC_TIMEOUT)
1514 		if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
1515 
1516 	/* Wait a little while for the chip to get its brains in order. */
1517 	DELAY(1000);
1518 
1519 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
1520 	CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
1521 	CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
1522 
1523 	/*
1524 	 * Bring the SIA out of reset. In some cases, it looks
1525 	 * like failing to unreset the SIA soon enough gets it
1526 	 * into a state where it will never come out of reset
1527 	 * until we reset the whole chip again.
1528 	 */
1529 	if (DC_IS_INTEL(sc)) {
1530 		DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
1531 		CSR_WRITE_4(sc, DC_10BTCTRL, 0);
1532 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
1533 	}
1534 
1535         return;
1536 }
1537 
1538 static const struct dc_type *
1539 dc_devtype(device_t dev)
1540 {
1541 	const struct dc_type	*t;
1542 	u_int32_t		rev;
1543 
1544 	t = dc_devs;
1545 
1546 	while(t->dc_name != NULL) {
1547 		if ((pci_get_vendor(dev) == t->dc_vid) &&
1548 		    (pci_get_device(dev) == t->dc_did)) {
1549 			/* Check the PCI revision */
1550 			rev = pci_get_revid(dev);
1551 			if (t->dc_did == DC_DEVICEID_98713 &&
1552 			    rev >= DC_REVISION_98713A)
1553 				t++;
1554 			if (t->dc_did == DC_DEVICEID_98713_CP &&
1555 			    rev >= DC_REVISION_98713A)
1556 				t++;
1557 			if (t->dc_did == DC_DEVICEID_987x5 &&
1558 			    rev >= DC_REVISION_98715AEC_C)
1559 				t++;
1560 			if (t->dc_did == DC_DEVICEID_987x5 &&
1561 			    rev >= DC_REVISION_98725)
1562 				t++;
1563 			if (t->dc_did == DC_DEVICEID_AX88140A &&
1564 			    rev >= DC_REVISION_88141)
1565 				t++;
1566 			if (t->dc_did == DC_DEVICEID_82C168 &&
1567 			    rev >= DC_REVISION_82C169)
1568 				t++;
1569 			if (t->dc_did == DC_DEVICEID_DM9102 &&
1570 			    rev >= DC_REVISION_DM9102A)
1571 				t++;
1572 			return(t);
1573 		}
1574 		t++;
1575 	}
1576 
1577 	return(NULL);
1578 }
1579 
1580 /*
1581  * Probe for a 21143 or clone chip. Check the PCI vendor and device
1582  * IDs against our list and return a device name if we find a match.
1583  * We do a little bit of extra work to identify the exact type of
1584  * chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
1585  * but different revision IDs. The same is true for 98715/98715A
1586  * chips and the 98725, as well as the ASIX and ADMtek chips. In some
1587  * cases, the exact chip revision affects driver behavior.
1588  */
1589 static int
1590 dc_probe(device_t dev)
1591 {
1592 	const struct dc_type *t;
1593 
1594 	t = dc_devtype(dev);
1595 	if (t != NULL) {
1596 		struct dc_softc *sc = device_get_softc(dev);
1597 
1598 		/* Need this info to decide on a chip type. */
1599 		sc->dc_info = t;
1600 		device_set_desc(dev, t->dc_name);
1601 		return(0);
1602 	}
1603 
1604 	return(ENXIO);
1605 }
1606 
1607 static void
1608 dc_acpi(device_t dev)
1609 {
1610 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1611 		uint32_t iobase, membase, irq;
1612 		struct dc_softc *sc;
1613 
1614 		/* Save important PCI config data. */
1615 		iobase = pci_read_config(dev, DC_PCI_CFBIO, 4);
1616 		membase = pci_read_config(dev, DC_PCI_CFBMA, 4);
1617 		irq = pci_read_config(dev, DC_PCI_CFIT, 4);
1618 
1619 		sc = device_get_softc(dev);
1620 		/* Reset the power state. */
1621 		if_printf(&sc->arpcom.ac_if,
1622 			  "chip is in D%d power mode "
1623 			  "-- setting to D0\n", pci_get_powerstate(dev));
1624 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1625 
1626 		/* Restore PCI config data. */
1627 		pci_write_config(dev, DC_PCI_CFBIO, iobase, 4);
1628 		pci_write_config(dev, DC_PCI_CFBMA, membase, 4);
1629 		pci_write_config(dev, DC_PCI_CFIT, irq, 4);
1630 	}
1631 }
1632 
1633 static void
1634 dc_apply_fixup(struct dc_softc *sc, int media)
1635 {
1636 	struct dc_mediainfo	*m;
1637 	u_int8_t		*p;
1638 	int			i;
1639 	u_int32_t		reg;
1640 
1641 	m = sc->dc_mi;
1642 
1643 	while (m != NULL) {
1644 		if (m->dc_media == media)
1645 			break;
1646 		m = m->dc_next;
1647 	}
1648 
1649 	if (m == NULL)
1650 		return;
1651 
1652 	for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
1653 		reg = (p[0] | (p[1] << 8)) << 16;
1654 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1655 	}
1656 
1657 	for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
1658 		reg = (p[0] | (p[1] << 8)) << 16;
1659 		CSR_WRITE_4(sc, DC_WATCHDOG, reg);
1660 	}
1661 
1662 	return;
1663 }
1664 
1665 static void
1666 dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
1667 {
1668 	struct dc_mediainfo	*m;
1669 
1670 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1671 	switch (l->dc_sia_code & ~DC_SIA_CODE_EXT){
1672 	case DC_SIA_CODE_10BT:
1673 		m->dc_media = IFM_10_T;
1674 		break;
1675 
1676 	case DC_SIA_CODE_10BT_FDX:
1677 		m->dc_media = IFM_10_T|IFM_FDX;
1678 		break;
1679 
1680 	case DC_SIA_CODE_10B2:
1681 		m->dc_media = IFM_10_2;
1682 		break;
1683 
1684 	case DC_SIA_CODE_10B5:
1685 		m->dc_media = IFM_10_5;
1686 		break;
1687 	}
1688 	if (l->dc_sia_code & DC_SIA_CODE_EXT){
1689 		m->dc_gp_len = 2;
1690 		m->dc_gp_ptr =
1691 		  (u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
1692 	} else {
1693 	m->dc_gp_len = 2;
1694 	m->dc_gp_ptr =
1695 		  (u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
1696 	}
1697 
1698 	m->dc_next = sc->dc_mi;
1699 	sc->dc_mi = m;
1700 
1701 	sc->dc_pmode = DC_PMODE_SIA;
1702 
1703 	return;
1704 }
1705 
1706 static void
1707 dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
1708 {
1709 	struct dc_mediainfo	*m;
1710 
1711 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1712 	if (l->dc_sym_code == DC_SYM_CODE_100BT)
1713 		m->dc_media = IFM_100_TX;
1714 
1715 	if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
1716 		m->dc_media = IFM_100_TX|IFM_FDX;
1717 
1718 	m->dc_gp_len = 2;
1719 	m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
1720 
1721 	m->dc_next = sc->dc_mi;
1722 	sc->dc_mi = m;
1723 
1724 	sc->dc_pmode = DC_PMODE_SYM;
1725 
1726 	return;
1727 }
1728 
1729 static void
1730 dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
1731 {
1732 	u_int8_t		*p;
1733 	struct dc_mediainfo	*m;
1734 
1735 	m = kmalloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_INTWAIT | M_ZERO);
1736 	/* We abuse IFM_AUTO to represent MII. */
1737 	m->dc_media = IFM_AUTO;
1738 	m->dc_gp_len = l->dc_gpr_len;
1739 
1740 	p = (u_int8_t *)l;
1741 	p += sizeof(struct dc_eblock_mii);
1742 	m->dc_gp_ptr = p;
1743 	p += 2 * l->dc_gpr_len;
1744 	m->dc_reset_len = *p;
1745 	p++;
1746 	m->dc_reset_ptr = p;
1747 
1748 	m->dc_next = sc->dc_mi;
1749 	sc->dc_mi = m;
1750 
1751 	return;
1752 }
1753 
1754 static void
1755 dc_read_srom(struct dc_softc *sc, int bits)
1756 {
1757 	int size;
1758 
1759 	size = 2 << bits;
1760 	sc->dc_srom = kmalloc(size, M_DEVBUF, M_INTWAIT);
1761 	dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
1762 }
1763 
1764 static void
1765 dc_parse_21143_srom(struct dc_softc *sc)
1766 {
1767 	struct dc_leaf_hdr	*lhdr;
1768 	struct dc_eblock_hdr	*hdr;
1769 	int			i, loff;
1770 	char			*ptr;
1771 	int			have_mii;
1772 
1773 	have_mii = 0;
1774 	loff = sc->dc_srom[27];
1775 	lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
1776 
1777 	ptr = (char *)lhdr;
1778 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1779 	/*
1780 	 * Look if we got a MII media block.
1781 	 */
1782 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1783 		hdr = (struct dc_eblock_hdr *)ptr;
1784 		if (hdr->dc_type == DC_EBLOCK_MII)
1785 		    have_mii++;
1786 
1787 		ptr += (hdr->dc_len & 0x7F);
1788 		ptr++;
1789 	}
1790 
1791 	/*
1792 	 * Do the same thing again. Only use SIA and SYM media
1793 	 * blocks if no MII media block is available.
1794 	 */
1795 	ptr = (char *)lhdr;
1796 	ptr += sizeof(struct dc_leaf_hdr) - 1;
1797 	for (i = 0; i < lhdr->dc_mcnt; i++) {
1798 		hdr = (struct dc_eblock_hdr *)ptr;
1799 		switch(hdr->dc_type) {
1800 		case DC_EBLOCK_MII:
1801 			dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
1802 			break;
1803 		case DC_EBLOCK_SIA:
1804 			if (! have_mii)
1805 				dc_decode_leaf_sia(sc,
1806 				    (struct dc_eblock_sia *)hdr);
1807 			break;
1808 		case DC_EBLOCK_SYM:
1809 			if (! have_mii)
1810 				dc_decode_leaf_sym(sc,
1811 				    (struct dc_eblock_sym *)hdr);
1812 			break;
1813 		default:
1814 			/* Don't care. Yet. */
1815 			break;
1816 		}
1817 		ptr += (hdr->dc_len & 0x7F);
1818 		ptr++;
1819 	}
1820 
1821 	return;
1822 }
1823 
1824 /*
1825  * Attach the interface. Allocate softc structures, do ifmedia
1826  * setup and ethernet/BPF attach.
1827  */
1828 static int
1829 dc_attach(device_t dev)
1830 {
1831 	int			tmp = 0;
1832 	u_char			eaddr[ETHER_ADDR_LEN];
1833 	u_int32_t		command;
1834 	struct dc_softc		*sc;
1835 	struct ifnet		*ifp;
1836 	u_int32_t		revision;
1837 	int			error = 0, rid, mac_offset;
1838 	uint8_t			*mac;
1839 
1840 	sc = device_get_softc(dev);
1841 	callout_init(&sc->dc_stat_timer);
1842 
1843 	ifp = &sc->arpcom.ac_if;
1844 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1845 
1846 	/*
1847 	 * Handle power management nonsense.
1848 	 */
1849 	dc_acpi(dev);
1850 
1851 	/*
1852 	 * Map control/status registers.
1853 	 */
1854 	pci_enable_busmaster(dev);
1855 
1856 	rid = DC_RID;
1857 	sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
1858 
1859 	if (sc->dc_res == NULL) {
1860 		device_printf(dev, "couldn't map ports/memory\n");
1861 		error = ENXIO;
1862 		goto fail;
1863 	}
1864 
1865 	sc->dc_btag = rman_get_bustag(sc->dc_res);
1866 	sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
1867 
1868 	/* Allocate interrupt */
1869 	rid = 0;
1870 	sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1871 	    RF_SHAREABLE | RF_ACTIVE);
1872 
1873 	if (sc->dc_irq == NULL) {
1874 		device_printf(dev, "couldn't map interrupt\n");
1875 		error = ENXIO;
1876 		goto fail;
1877 	}
1878 
1879 	revision = pci_get_revid(dev);
1880 
1881 	/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
1882 	if (sc->dc_info->dc_did != DC_DEVICEID_82C168 &&
1883 	    sc->dc_info->dc_did != DC_DEVICEID_X3201)
1884 		dc_eeprom_width(sc);
1885 
1886 	switch(sc->dc_info->dc_did) {
1887 	case DC_DEVICEID_21143:
1888 		sc->dc_type = DC_TYPE_21143;
1889 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1890 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1891 		/* Save EEPROM contents so we can parse them later. */
1892 		dc_read_srom(sc, sc->dc_romwidth);
1893 		break;
1894 	case DC_DEVICEID_DM9009:
1895 	case DC_DEVICEID_DM9100:
1896 	case DC_DEVICEID_DM9102:
1897 		sc->dc_type = DC_TYPE_DM9102;
1898 		sc->dc_flags |= DC_TX_COALESCE|DC_TX_INTR_ALWAYS;
1899 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_TX_STORENFWD;
1900 		sc->dc_flags |= DC_TX_ALIGN;
1901 		sc->dc_pmode = DC_PMODE_MII;
1902 		/* Increase the latency timer value. */
1903 		command = pci_read_config(dev, DC_PCI_CFLT, 4);
1904 		command &= 0xFFFF00FF;
1905 		command |= 0x00008000;
1906 		pci_write_config(dev, DC_PCI_CFLT, command, 4);
1907 		break;
1908 	case DC_DEVICEID_AL981:
1909 		sc->dc_type = DC_TYPE_AL981;
1910 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1911 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1912 		sc->dc_pmode = DC_PMODE_MII;
1913 		dc_read_srom(sc, sc->dc_romwidth);
1914 		break;
1915 	case DC_DEVICEID_AN985:
1916 	case DC_DEVICEID_ADM9511:
1917 	case DC_DEVICEID_ADM9513:
1918 	case DC_DEVICEID_FA511:
1919 	case DC_DEVICEID_EN2242:
1920 	case DC_DEVICEID_3CSOHOB:
1921 		sc->dc_type = DC_TYPE_AN985;
1922 		sc->dc_flags |= DC_64BIT_HASH;
1923 		sc->dc_flags |= DC_TX_USE_TX_INTR;
1924 		sc->dc_flags |= DC_TX_ADMTEK_WAR;
1925 		sc->dc_pmode = DC_PMODE_MII;
1926 		break;
1927 	case DC_DEVICEID_98713:
1928 	case DC_DEVICEID_98713_CP:
1929 		if (revision < DC_REVISION_98713A) {
1930 			sc->dc_type = DC_TYPE_98713;
1931 		}
1932 		if (revision >= DC_REVISION_98713A) {
1933 			sc->dc_type = DC_TYPE_98713A;
1934 			sc->dc_flags |= DC_21143_NWAY;
1935 		}
1936 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1937 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1938 		break;
1939 	case DC_DEVICEID_987x5:
1940 	case DC_DEVICEID_EN1217:
1941 		/*
1942 		 * Macronix MX98715AEC-C/D/E parts have only a
1943 		 * 128-bit hash table. We need to deal with these
1944 		 * in the same manner as the PNIC II so that we
1945 		 * get the right number of bits out of the
1946 		 * CRC routine.
1947 		 */
1948 		if (revision >= DC_REVISION_98715AEC_C &&
1949 		    revision < DC_REVISION_98725)
1950 			sc->dc_flags |= DC_128BIT_HASH;
1951 		sc->dc_type = DC_TYPE_987x5;
1952 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1953 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1954 		break;
1955 	case DC_DEVICEID_98727:
1956 		sc->dc_type = DC_TYPE_987x5;
1957 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR;
1958 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1959 		break;
1960 	case DC_DEVICEID_82C115:
1961 		sc->dc_type = DC_TYPE_PNICII;
1962 		sc->dc_flags |= DC_TX_POLL|DC_TX_USE_TX_INTR|DC_128BIT_HASH;
1963 		sc->dc_flags |= DC_REDUCED_MII_POLL|DC_21143_NWAY;
1964 		break;
1965 	case DC_DEVICEID_82C168:
1966 		sc->dc_type = DC_TYPE_PNIC;
1967 		sc->dc_flags |= DC_TX_STORENFWD|DC_TX_INTR_ALWAYS;
1968 		sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
1969 		sc->dc_pnic_rx_buf = kmalloc(DC_RXLEN * 5, M_DEVBUF, M_WAITOK);
1970 		if (revision < DC_REVISION_82C169)
1971 			sc->dc_pmode = DC_PMODE_SYM;
1972 		break;
1973 	case DC_DEVICEID_AX88140A:
1974 		sc->dc_type = DC_TYPE_ASIX;
1975 		sc->dc_flags |= DC_TX_USE_TX_INTR|DC_TX_INTR_FIRSTFRAG;
1976 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1977 		sc->dc_pmode = DC_PMODE_MII;
1978 		break;
1979 	case DC_DEVICEID_RS7112:
1980 		sc->dc_type = DC_TYPE_CONEXANT;
1981 		sc->dc_flags |= DC_TX_INTR_ALWAYS;
1982 		sc->dc_flags |= DC_REDUCED_MII_POLL;
1983 		sc->dc_pmode = DC_PMODE_MII;
1984 		dc_read_srom(sc, sc->dc_romwidth);
1985 		break;
1986 	case DC_DEVICEID_X3201:
1987 		sc->dc_type = DC_TYPE_XIRCOM;
1988 		sc->dc_flags |= (DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
1989 				 DC_TX_ALIGN);
1990 		/*
1991 		 * We don't actually need to coalesce, but we're doing
1992 		 * it to obtain a double word aligned buffer.
1993 		 * The DC_TX_COALESCE flag is required.
1994 		 */
1995 		sc->dc_pmode = DC_PMODE_MII;
1996 		break;
1997 	default:
1998 		device_printf(dev, "unknown device: %x\n", sc->dc_info->dc_did);
1999 		break;
2000 	}
2001 
2002 	/* Save the cache line size. */
2003 	if (DC_IS_DAVICOM(sc))
2004 		sc->dc_cachesize = 0;
2005 	else
2006 		sc->dc_cachesize = pci_read_config(dev,
2007 		    DC_PCI_CFLT, 4) & 0xFF;
2008 
2009 	/* Reset the adapter. */
2010 	dc_reset(sc);
2011 
2012 	/* Take 21143 out of snooze mode */
2013 	if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
2014 		command = pci_read_config(dev, DC_PCI_CFDD, 4);
2015 		command &= ~(DC_CFDD_SNOOZE_MODE|DC_CFDD_SLEEP_MODE);
2016 		pci_write_config(dev, DC_PCI_CFDD, command, 4);
2017 	}
2018 
2019 	/*
2020 	 * Try to learn something about the supported media.
2021 	 * We know that ASIX and ADMtek and Davicom devices
2022 	 * will *always* be using MII media, so that's a no-brainer.
2023 	 * The tricky ones are the Macronix/PNIC II and the
2024 	 * Intel 21143.
2025 	 */
2026 	if (DC_IS_INTEL(sc))
2027 		dc_parse_21143_srom(sc);
2028 	else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
2029 		if (sc->dc_type == DC_TYPE_98713)
2030 			sc->dc_pmode = DC_PMODE_MII;
2031 		else
2032 			sc->dc_pmode = DC_PMODE_SYM;
2033 	} else if (!sc->dc_pmode)
2034 		sc->dc_pmode = DC_PMODE_MII;
2035 
2036 	/*
2037 	 * Get station address from the EEPROM.
2038 	 */
2039 	switch(sc->dc_type) {
2040 	case DC_TYPE_98713:
2041 	case DC_TYPE_98713A:
2042 	case DC_TYPE_987x5:
2043 	case DC_TYPE_PNICII:
2044 		dc_read_eeprom(sc, (caddr_t)&mac_offset,
2045 		    (DC_EE_NODEADDR_OFFSET / 2), 1, 0);
2046 		dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
2047 		break;
2048 	case DC_TYPE_PNIC:
2049 		dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
2050 		break;
2051 	case DC_TYPE_DM9102:
2052 	case DC_TYPE_21143:
2053 	case DC_TYPE_ASIX:
2054 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2055 		break;
2056 	case DC_TYPE_AL981:
2057 	case DC_TYPE_AN985:
2058 		*(u_int32_t *)(&eaddr[0]) = CSR_READ_4(sc,DC_AL_PAR0);
2059 		*(u_int16_t *)(&eaddr[4]) = CSR_READ_4(sc,DC_AL_PAR1);
2060 		break;
2061 	case DC_TYPE_CONEXANT:
2062 		bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr, 6);
2063 		break;
2064 	case DC_TYPE_XIRCOM:
2065 		/* The MAC comes from the CIS */
2066 		mac = pci_get_ether(dev);
2067 		if (!mac) {
2068 			device_printf(dev, "No station address in CIS!\n");
2069 			error = ENXIO;
2070 			goto fail;
2071 		}
2072 		bcopy(mac, eaddr, ETHER_ADDR_LEN);
2073 	 	break;
2074 	default:
2075 		dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
2076 		break;
2077 	}
2078 
2079 	sc->dc_ldata = contigmalloc(sizeof(struct dc_list_data), M_DEVBUF,
2080 	    M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
2081 
2082 	if (sc->dc_ldata == NULL) {
2083 		device_printf(dev, "no memory for list buffers!\n");
2084 		error = ENXIO;
2085 		goto fail;
2086 	}
2087 
2088 	bzero(sc->dc_ldata, sizeof(struct dc_list_data));
2089 
2090 	ifp->if_softc = sc;
2091 	ifp->if_mtu = ETHERMTU;
2092 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2093 	ifp->if_ioctl = dc_ioctl;
2094 	ifp->if_start = dc_start;
2095 #ifdef DEVICE_POLLING
2096 	ifp->if_poll = dc_poll;
2097 #endif
2098 	ifp->if_watchdog = dc_watchdog;
2099 	ifp->if_init = dc_init;
2100 	ifp->if_baudrate = 10000000;
2101 	ifq_set_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
2102 	ifq_set_ready(&ifp->if_snd);
2103 
2104 	/*
2105 	 * Do MII setup. If this is a 21143, check for a PHY on the
2106 	 * MII bus after applying any necessary fixups to twiddle the
2107 	 * GPIO bits. If we don't end up finding a PHY, restore the
2108 	 * old selection (SIA only or SIA/SYM) and attach the dcphy
2109 	 * driver instead.
2110 	 */
2111 	if (DC_IS_INTEL(sc)) {
2112 		dc_apply_fixup(sc, IFM_AUTO);
2113 		tmp = sc->dc_pmode;
2114 		sc->dc_pmode = DC_PMODE_MII;
2115 	}
2116 
2117 	/*
2118 	 * Setup General Purpose port mode and data so the tulip can talk
2119 	 * to the MII.  This needs to be done before mii_phy_probe so that
2120 	 * we can actually see them.
2121 	 */
2122 	if (DC_IS_XIRCOM(sc)) {
2123 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
2124 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2125 		DELAY(10);
2126 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
2127 		    DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
2128 		DELAY(10);
2129 	}
2130 
2131 	error = mii_phy_probe(dev, &sc->dc_miibus,
2132 	    dc_ifmedia_upd, dc_ifmedia_sts);
2133 
2134 	if (error && DC_IS_INTEL(sc)) {
2135 		sc->dc_pmode = tmp;
2136 		if (sc->dc_pmode != DC_PMODE_SIA)
2137 			sc->dc_pmode = DC_PMODE_SYM;
2138 		sc->dc_flags |= DC_21143_NWAY;
2139 		mii_phy_probe(dev, &sc->dc_miibus,
2140 		    dc_ifmedia_upd, dc_ifmedia_sts);
2141 		/*
2142 		 * For non-MII cards, we need to have the 21143
2143 		 * drive the LEDs. Except there are some systems
2144 		 * like the NEC VersaPro NoteBook PC which have no
2145 		 * LEDs, and twiddling these bits has adverse effects
2146 		 * on them. (I.e. you suddenly can't get a link.)
2147 		 */
2148 		if (pci_read_config(dev, DC_PCI_CSID, 4) != 0x80281033)
2149 			sc->dc_flags |= DC_TULIP_LEDS;
2150 		error = 0;
2151 	}
2152 
2153 	if (error) {
2154 		device_printf(dev, "MII without any PHY!\n");
2155 		error = ENXIO;
2156 		goto fail;
2157 	}
2158 
2159 	/*
2160 	 * Call MI attach routine.
2161 	 */
2162 	ether_ifattach(ifp, eaddr, NULL);
2163 
2164 	if (DC_IS_ADMTEK(sc)) {
2165 		/*
2166 		 * Set automatic TX underrun recovery for the ADMtek chips
2167 		 */
2168 		DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
2169 	}
2170 
2171 	/*
2172 	 * Tell the upper layer(s) we support long frames.
2173 	 */
2174 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2175 
2176 	error = bus_setup_intr(dev, sc->dc_irq, INTR_NETSAFE,
2177 			       dc_intr, sc, &sc->dc_intrhand,
2178 			       ifp->if_serializer);
2179 	if (error) {
2180 		ether_ifdetach(ifp);
2181 		device_printf(dev, "couldn't set up irq\n");
2182 		goto fail;
2183 	}
2184 
2185 	return(0);
2186 
2187 fail:
2188 	dc_detach(dev);
2189 	return(error);
2190 }
2191 
2192 static int
2193 dc_detach(device_t dev)
2194 {
2195 	struct dc_softc *sc = device_get_softc(dev);
2196 	struct ifnet *ifp = &sc->arpcom.ac_if;
2197 	struct dc_mediainfo *m;
2198 
2199 	if (device_is_attached(dev)) {
2200 		lwkt_serialize_enter(ifp->if_serializer);
2201 		dc_stop(sc);
2202 		bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
2203 		lwkt_serialize_exit(ifp->if_serializer);
2204 
2205 		ether_ifdetach(ifp);
2206 	}
2207 
2208 	if (sc->dc_miibus)
2209 		device_delete_child(dev, sc->dc_miibus);
2210 	bus_generic_detach(dev);
2211 
2212 	if (sc->dc_irq)
2213 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
2214 	if (sc->dc_res)
2215 		bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
2216 
2217 	if (sc->dc_ldata)
2218 		contigfree(sc->dc_ldata, sizeof(struct dc_list_data), M_DEVBUF);
2219 	if (sc->dc_pnic_rx_buf != NULL)
2220 		kfree(sc->dc_pnic_rx_buf, M_DEVBUF);
2221 
2222 	while (sc->dc_mi != NULL) {
2223 		m = sc->dc_mi->dc_next;
2224 		kfree(sc->dc_mi, M_DEVBUF);
2225 		sc->dc_mi = m;
2226 	}
2227 
2228 	if (sc->dc_srom)
2229 		kfree(sc->dc_srom, M_DEVBUF);
2230 
2231 	return(0);
2232 }
2233 
2234 /*
2235  * Initialize the transmit descriptors.
2236  */
2237 static int
2238 dc_list_tx_init(struct dc_softc *sc)
2239 {
2240 	struct dc_chain_data	*cd;
2241 	struct dc_list_data	*ld;
2242 	int			i;
2243 
2244 	cd = &sc->dc_cdata;
2245 	ld = sc->dc_ldata;
2246 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
2247 		if (i == (DC_TX_LIST_CNT - 1)) {
2248 			ld->dc_tx_list[i].dc_next =
2249 			    vtophys(&ld->dc_tx_list[0]);
2250 		} else {
2251 			ld->dc_tx_list[i].dc_next =
2252 			    vtophys(&ld->dc_tx_list[i + 1]);
2253 		}
2254 		cd->dc_tx_chain[i] = NULL;
2255 		ld->dc_tx_list[i].dc_data = 0;
2256 		ld->dc_tx_list[i].dc_ctl = 0;
2257 	}
2258 
2259 	cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
2260 
2261 	return(0);
2262 }
2263 
2264 
2265 /*
2266  * Initialize the RX descriptors and allocate mbufs for them. Note that
2267  * we arrange the descriptors in a closed ring, so that the last descriptor
2268  * points back to the first.
2269  */
2270 static int
2271 dc_list_rx_init(struct dc_softc *sc)
2272 {
2273 	struct dc_chain_data	*cd;
2274 	struct dc_list_data	*ld;
2275 	int			i;
2276 
2277 	cd = &sc->dc_cdata;
2278 	ld = sc->dc_ldata;
2279 
2280 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2281 		if (dc_newbuf(sc, i, NULL) == ENOBUFS)
2282 			return(ENOBUFS);
2283 		if (i == (DC_RX_LIST_CNT - 1)) {
2284 			ld->dc_rx_list[i].dc_next =
2285 			    vtophys(&ld->dc_rx_list[0]);
2286 		} else {
2287 			ld->dc_rx_list[i].dc_next =
2288 			    vtophys(&ld->dc_rx_list[i + 1]);
2289 		}
2290 	}
2291 
2292 	cd->dc_rx_prod = 0;
2293 
2294 	return(0);
2295 }
2296 
2297 /*
2298  * Initialize an RX descriptor and attach an MBUF cluster.
2299  */
2300 static int
2301 dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
2302 {
2303 	struct mbuf		*m_new = NULL;
2304 	struct dc_desc		*c;
2305 
2306 	c = &sc->dc_ldata->dc_rx_list[i];
2307 
2308 	if (m == NULL) {
2309 		m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
2310 		if (m_new == NULL)
2311 			return (ENOBUFS);
2312 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2313 	} else {
2314 		m_new = m;
2315 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
2316 		m_new->m_data = m_new->m_ext.ext_buf;
2317 	}
2318 
2319 	m_adj(m_new, sizeof(u_int64_t));
2320 
2321 	/*
2322 	 * If this is a PNIC chip, zero the buffer. This is part
2323 	 * of the workaround for the receive bug in the 82c168 and
2324 	 * 82c169 chips.
2325 	 */
2326 	if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
2327 		bzero((char *)mtod(m_new, char *), m_new->m_len);
2328 
2329 	sc->dc_cdata.dc_rx_chain[i] = m_new;
2330 	c->dc_data = vtophys(mtod(m_new, caddr_t));
2331 	c->dc_ctl = DC_RXCTL_RLINK | DC_RXLEN;
2332 	c->dc_status = DC_RXSTAT_OWN;
2333 
2334 	return(0);
2335 }
2336 
2337 /*
2338  * Grrrrr.
2339  * The PNIC chip has a terrible bug in it that manifests itself during
2340  * periods of heavy activity. The exact mode of failure if difficult to
2341  * pinpoint: sometimes it only happens in promiscuous mode, sometimes it
2342  * will happen on slow machines. The bug is that sometimes instead of
2343  * uploading one complete frame during reception, it uploads what looks
2344  * like the entire contents of its FIFO memory. The frame we want is at
2345  * the end of the whole mess, but we never know exactly how much data has
2346  * been uploaded, so salvaging the frame is hard.
2347  *
2348  * There is only one way to do it reliably, and it's disgusting.
2349  * Here's what we know:
2350  *
2351  * - We know there will always be somewhere between one and three extra
2352  *   descriptors uploaded.
2353  *
2354  * - We know the desired received frame will always be at the end of the
2355  *   total data upload.
2356  *
2357  * - We know the size of the desired received frame because it will be
2358  *   provided in the length field of the status word in the last descriptor.
2359  *
2360  * Here's what we do:
2361  *
2362  * - When we allocate buffers for the receive ring, we bzero() them.
2363  *   This means that we know that the buffer contents should be all
2364  *   zeros, except for data uploaded by the chip.
2365  *
2366  * - We also force the PNIC chip to upload frames that include the
2367  *   ethernet CRC at the end.
2368  *
2369  * - We gather all of the bogus frame data into a single buffer.
2370  *
2371  * - We then position a pointer at the end of this buffer and scan
2372  *   backwards until we encounter the first non-zero byte of data.
2373  *   This is the end of the received frame. We know we will encounter
2374  *   some data at the end of the frame because the CRC will always be
2375  *   there, so even if the sender transmits a packet of all zeros,
2376  *   we won't be fooled.
2377  *
2378  * - We know the size of the actual received frame, so we subtract
2379  *   that value from the current pointer location. This brings us
2380  *   to the start of the actual received packet.
2381  *
2382  * - We copy this into an mbuf and pass it on, along with the actual
2383  *   frame length.
2384  *
2385  * The performance hit is tremendous, but it beats dropping frames all
2386  * the time.
2387  */
2388 
2389 #define DC_WHOLEFRAME	(DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
2390 static void
2391 dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
2392 {
2393 	struct dc_desc		*cur_rx;
2394 	struct dc_desc		*c = NULL;
2395 	struct mbuf		*m = NULL;
2396 	unsigned char		*ptr;
2397 	int			i, total_len;
2398 	u_int32_t		rxstat = 0;
2399 
2400 	i = sc->dc_pnic_rx_bug_save;
2401 	cur_rx = &sc->dc_ldata->dc_rx_list[idx];
2402 	ptr = sc->dc_pnic_rx_buf;
2403 	bzero(ptr, DC_RXLEN * 5);
2404 
2405 	/* Copy all the bytes from the bogus buffers. */
2406 	while (1) {
2407 		c = &sc->dc_ldata->dc_rx_list[i];
2408 		rxstat = c->dc_status;
2409 		m = sc->dc_cdata.dc_rx_chain[i];
2410 		bcopy(mtod(m, char *), ptr, DC_RXLEN);
2411 		ptr += DC_RXLEN;
2412 		/* If this is the last buffer, break out. */
2413 		if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
2414 			break;
2415 		dc_newbuf(sc, i, m);
2416 		DC_INC(i, DC_RX_LIST_CNT);
2417 	}
2418 
2419 	/* Find the length of the actual receive frame. */
2420 	total_len = DC_RXBYTES(rxstat);
2421 
2422 	/* Scan backwards until we hit a non-zero byte. */
2423 	while(*ptr == 0x00)
2424 		ptr--;
2425 
2426 	/* Round off. */
2427 	if ((uintptr_t)(ptr) & 0x3)
2428 		ptr -= 1;
2429 
2430 	/* Now find the start of the frame. */
2431 	ptr -= total_len;
2432 	if (ptr < sc->dc_pnic_rx_buf)
2433 		ptr = sc->dc_pnic_rx_buf;
2434 
2435 	/*
2436 	 * Now copy the salvaged frame to the last mbuf and fake up
2437 	 * the status word to make it look like a successful
2438  	 * frame reception.
2439 	 */
2440 	dc_newbuf(sc, i, m);
2441 	bcopy(ptr, mtod(m, char *), total_len);
2442 	cur_rx->dc_status = rxstat | DC_RXSTAT_FIRSTFRAG;
2443 
2444 	return;
2445 }
2446 
2447 /*
2448  * This routine searches the RX ring for dirty descriptors in the
2449  * event that the rxeof routine falls out of sync with the chip's
2450  * current descriptor pointer. This may happen sometimes as a result
2451  * of a "no RX buffer available" condition that happens when the chip
2452  * consumes all of the RX buffers before the driver has a chance to
2453  * process the RX ring. This routine may need to be called more than
2454  * once to bring the driver back in sync with the chip, however we
2455  * should still be getting RX DONE interrupts to drive the search
2456  * for new packets in the RX ring, so we should catch up eventually.
2457  */
2458 static int
2459 dc_rx_resync(struct dc_softc *sc)
2460 {
2461 	int			i, pos;
2462 	struct dc_desc		*cur_rx;
2463 
2464 	pos = sc->dc_cdata.dc_rx_prod;
2465 
2466 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
2467 		cur_rx = &sc->dc_ldata->dc_rx_list[pos];
2468 		if (!(cur_rx->dc_status & DC_RXSTAT_OWN))
2469 			break;
2470 		DC_INC(pos, DC_RX_LIST_CNT);
2471 	}
2472 
2473 	/* If the ring really is empty, then just return. */
2474 	if (i == DC_RX_LIST_CNT)
2475 		return(0);
2476 
2477 	/* We've fallen behing the chip: catch it. */
2478 	sc->dc_cdata.dc_rx_prod = pos;
2479 
2480 	return(EAGAIN);
2481 }
2482 
2483 /*
2484  * A frame has been uploaded: pass the resulting mbuf chain up to
2485  * the higher level protocols.
2486  */
2487 static void
2488 dc_rxeof(struct dc_softc *sc)
2489 {
2490         struct mbuf		*m;
2491         struct ifnet		*ifp;
2492 	struct dc_desc		*cur_rx;
2493 	int			i, total_len = 0;
2494 	u_int32_t		rxstat;
2495 
2496 	ifp = &sc->arpcom.ac_if;
2497 	i = sc->dc_cdata.dc_rx_prod;
2498 
2499 	while(!(sc->dc_ldata->dc_rx_list[i].dc_status & DC_RXSTAT_OWN)) {
2500 
2501 #ifdef DEVICE_POLLING
2502 		if (ifp->if_flags & IFF_POLLING) {
2503 			if (sc->rxcycles <= 0)
2504 				break;
2505 			sc->rxcycles--;
2506 		}
2507 #endif /* DEVICE_POLLING */
2508 		cur_rx = &sc->dc_ldata->dc_rx_list[i];
2509 		rxstat = cur_rx->dc_status;
2510 		m = sc->dc_cdata.dc_rx_chain[i];
2511 		total_len = DC_RXBYTES(rxstat);
2512 
2513 		if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
2514 			if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
2515 				if (rxstat & DC_RXSTAT_FIRSTFRAG)
2516 					sc->dc_pnic_rx_bug_save = i;
2517 				if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
2518 					DC_INC(i, DC_RX_LIST_CNT);
2519 					continue;
2520 				}
2521 				dc_pnic_rx_bug_war(sc, i);
2522 				rxstat = cur_rx->dc_status;
2523 				total_len = DC_RXBYTES(rxstat);
2524 			}
2525 		}
2526 
2527 		sc->dc_cdata.dc_rx_chain[i] = NULL;
2528 
2529 		/*
2530 		 * If an error occurs, update stats, clear the
2531 		 * status word and leave the mbuf cluster in place:
2532 		 * it should simply get re-used next time this descriptor
2533 		 * comes up in the ring.  However, don't report long
2534 		 * frames as errors since they could be vlans
2535 		 */
2536 		if ((rxstat & DC_RXSTAT_RXERR)){
2537 			if (!(rxstat & DC_RXSTAT_GIANT) ||
2538 			    (rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
2539 				       DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
2540 				       DC_RXSTAT_RUNT   | DC_RXSTAT_DE))) {
2541 				ifp->if_ierrors++;
2542 				if (rxstat & DC_RXSTAT_COLLSEEN)
2543 					ifp->if_collisions++;
2544 				dc_newbuf(sc, i, m);
2545 				if (rxstat & DC_RXSTAT_CRCERR) {
2546 					DC_INC(i, DC_RX_LIST_CNT);
2547 					continue;
2548 				} else {
2549 					dc_init(sc);
2550 					return;
2551 				}
2552 			}
2553 		}
2554 
2555 		/* No errors; receive the packet. */
2556 		total_len -= ETHER_CRC_LEN;
2557 
2558 #ifdef __i386__
2559 		/*
2560 		 * On the x86 we do not have alignment problems, so try to
2561 		 * allocate a new buffer for the receive ring, and pass up
2562 		 * the one where the packet is already, saving the expensive
2563 		 * copy done in m_devget().
2564 		 * If we are on an architecture with alignment problems, or
2565 		 * if the allocation fails, then use m_devget and leave the
2566 		 * existing buffer in the receive ring.
2567 		 */
2568 		if (dc_quick && dc_newbuf(sc, i, NULL) == 0) {
2569 			m->m_pkthdr.rcvif = ifp;
2570 			m->m_pkthdr.len = m->m_len = total_len;
2571 			DC_INC(i, DC_RX_LIST_CNT);
2572 		} else
2573 #endif
2574 		{
2575 			struct mbuf *m0;
2576 
2577 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2578 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2579 			dc_newbuf(sc, i, m);
2580 			DC_INC(i, DC_RX_LIST_CNT);
2581 			if (m0 == NULL) {
2582 				ifp->if_ierrors++;
2583 				continue;
2584 			}
2585 			m_adj(m0, ETHER_ALIGN);
2586 			m = m0;
2587 		}
2588 
2589 		ifp->if_ipackets++;
2590 		ifp->if_input(ifp, m);
2591 	}
2592 
2593 	sc->dc_cdata.dc_rx_prod = i;
2594 }
2595 
2596 /*
2597  * A frame was downloaded to the chip. It's safe for us to clean up
2598  * the list buffers.
2599  */
2600 
2601 static void
2602 dc_txeof(struct dc_softc *sc)
2603 {
2604 	struct dc_desc		*cur_tx = NULL;
2605 	struct ifnet		*ifp;
2606 	int			idx;
2607 
2608 	ifp = &sc->arpcom.ac_if;
2609 
2610 	/*
2611 	 * Go through our tx list and free mbufs for those
2612 	 * frames that have been transmitted.
2613 	 */
2614 	idx = sc->dc_cdata.dc_tx_cons;
2615 	while(idx != sc->dc_cdata.dc_tx_prod) {
2616 		u_int32_t		txstat;
2617 
2618 		cur_tx = &sc->dc_ldata->dc_tx_list[idx];
2619 		txstat = cur_tx->dc_status;
2620 
2621 		if (txstat & DC_TXSTAT_OWN)
2622 			break;
2623 
2624 		if (!(cur_tx->dc_ctl & DC_TXCTL_LASTFRAG) ||
2625 		    cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2626 			if (cur_tx->dc_ctl & DC_TXCTL_SETUP) {
2627 				/*
2628 				 * Yes, the PNIC is so brain damaged
2629 				 * that it will sometimes generate a TX
2630 				 * underrun error while DMAing the RX
2631 				 * filter setup frame. If we detect this,
2632 				 * we have to send the setup frame again,
2633 				 * or else the filter won't be programmed
2634 				 * correctly.
2635 				 */
2636 				if (DC_IS_PNIC(sc)) {
2637 					if (txstat & DC_TXSTAT_ERRSUM)
2638 						dc_setfilt(sc);
2639 				}
2640 				sc->dc_cdata.dc_tx_chain[idx] = NULL;
2641 			}
2642 			sc->dc_cdata.dc_tx_cnt--;
2643 			DC_INC(idx, DC_TX_LIST_CNT);
2644 			continue;
2645 		}
2646 
2647 		if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
2648 			/*
2649 			 * XXX: Why does my Xircom taunt me so?
2650 			 * For some reason Conexant chips like
2651 			 * setting the CARRLOST flag even when
2652 			 * the carrier is there. In CURRENT we
2653 			 * have the same problem for Xircom
2654 			 * cards !
2655 			 */
2656 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2657 			    sc->dc_pmode == DC_PMODE_MII &&
2658 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2659 			    DC_TXSTAT_NOCARRIER)))
2660 				txstat &= ~DC_TXSTAT_ERRSUM;
2661 		} else {
2662 			if (/*sc->dc_type == DC_TYPE_21143 &&*/
2663 			    sc->dc_pmode == DC_PMODE_MII &&
2664 			    ((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
2665 			    DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
2666 				txstat &= ~DC_TXSTAT_ERRSUM;
2667 		}
2668 
2669 		if (txstat & DC_TXSTAT_ERRSUM) {
2670 			ifp->if_oerrors++;
2671 			if (txstat & DC_TXSTAT_EXCESSCOLL)
2672 				ifp->if_collisions++;
2673 			if (txstat & DC_TXSTAT_LATECOLL)
2674 				ifp->if_collisions++;
2675 			if (!(txstat & DC_TXSTAT_UNDERRUN)) {
2676 				dc_init(sc);
2677 				return;
2678 			}
2679 		}
2680 
2681 		ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
2682 
2683 		ifp->if_opackets++;
2684 		if (sc->dc_cdata.dc_tx_chain[idx] != NULL) {
2685 			m_freem(sc->dc_cdata.dc_tx_chain[idx]);
2686 			sc->dc_cdata.dc_tx_chain[idx] = NULL;
2687 		}
2688 
2689 		sc->dc_cdata.dc_tx_cnt--;
2690 		DC_INC(idx, DC_TX_LIST_CNT);
2691 	}
2692 
2693 	if (idx != sc->dc_cdata.dc_tx_cons) {
2694 	    	/* some buffers have been freed */
2695 		sc->dc_cdata.dc_tx_cons = idx;
2696 		ifp->if_flags &= ~IFF_OACTIVE;
2697 	}
2698 	ifp->if_timer = (sc->dc_cdata.dc_tx_cnt == 0) ? 0 : 5;
2699 
2700 	return;
2701 }
2702 
2703 static void
2704 dc_tick(void *xsc)
2705 {
2706 	struct dc_softc *sc = xsc;
2707 	struct ifnet *ifp = &sc->arpcom.ac_if;
2708 	struct mii_data *mii;
2709 	u_int32_t r;
2710 
2711 	lwkt_serialize_enter(ifp->if_serializer);
2712 
2713 	mii = device_get_softc(sc->dc_miibus);
2714 
2715 	if (sc->dc_flags & DC_REDUCED_MII_POLL) {
2716 		if (sc->dc_flags & DC_21143_NWAY) {
2717 			r = CSR_READ_4(sc, DC_10BTSTAT);
2718 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2719 			    IFM_100_TX && (r & DC_TSTAT_LS100)) {
2720 				sc->dc_link = 0;
2721 				mii_mediachg(mii);
2722 			}
2723 			if (IFM_SUBTYPE(mii->mii_media_active) ==
2724 			    IFM_10_T && (r & DC_TSTAT_LS10)) {
2725 				sc->dc_link = 0;
2726 				mii_mediachg(mii);
2727 			}
2728 			if (sc->dc_link == 0)
2729 				mii_tick(mii);
2730 		} else {
2731 			r = CSR_READ_4(sc, DC_ISR);
2732 			if ((r & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT &&
2733 			    sc->dc_cdata.dc_tx_cnt == 0) {
2734 				mii_tick(mii);
2735 				if (!(mii->mii_media_status & IFM_ACTIVE))
2736 					sc->dc_link = 0;
2737 			}
2738 		}
2739 	} else {
2740 		mii_tick(mii);
2741 	}
2742 
2743 	/*
2744 	 * When the init routine completes, we expect to be able to send
2745 	 * packets right away, and in fact the network code will send a
2746 	 * gratuitous ARP the moment the init routine marks the interface
2747 	 * as running. However, even though the MAC may have been initialized,
2748 	 * there may be a delay of a few seconds before the PHY completes
2749 	 * autonegotiation and the link is brought up. Any transmissions
2750 	 * made during that delay will be lost. Dealing with this is tricky:
2751 	 * we can't just pause in the init routine while waiting for the
2752 	 * PHY to come ready since that would bring the whole system to
2753 	 * a screeching halt for several seconds.
2754 	 *
2755 	 * What we do here is prevent the TX start routine from sending
2756 	 * any packets until a link has been established. After the
2757 	 * interface has been initialized, the tick routine will poll
2758 	 * the state of the PHY until the IFM_ACTIVE flag is set. Until
2759 	 * that time, packets will stay in the send queue, and once the
2760 	 * link comes up, they will be flushed out to the wire.
2761 	 */
2762 	if (!sc->dc_link) {
2763 		mii_pollstat(mii);
2764 		if (mii->mii_media_status & IFM_ACTIVE &&
2765 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2766 			sc->dc_link++;
2767 			if (!ifq_is_empty(&ifp->if_snd))
2768 				dc_start(ifp);
2769 		}
2770 	}
2771 
2772 	if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
2773 		callout_reset(&sc->dc_stat_timer, hz / 10, dc_tick, sc);
2774 	else
2775 		callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
2776 
2777 	lwkt_serialize_exit(ifp->if_serializer);
2778 }
2779 
2780 /*
2781  * A transmit underrun has occurred.  Back off the transmit threshold,
2782  * or switch to store and forward mode if we have to.
2783  */
2784 static void
2785 dc_tx_underrun(struct dc_softc *sc)
2786 {
2787 	u_int32_t		isr;
2788 	int			i;
2789 
2790 	if (DC_IS_DAVICOM(sc))
2791 		dc_init(sc);
2792 
2793 	if (DC_IS_INTEL(sc)) {
2794 		/*
2795 		 * The real 21143 requires that the transmitter be idle
2796 		 * in order to change the transmit threshold or store
2797 		 * and forward state.
2798 		 */
2799 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2800 
2801 		for (i = 0; i < DC_TIMEOUT; i++) {
2802 			isr = CSR_READ_4(sc, DC_ISR);
2803 			if (isr & DC_ISR_TX_IDLE)
2804 				break;
2805 			DELAY(10);
2806 		}
2807 		if (i == DC_TIMEOUT) {
2808 			if_printf(&sc->arpcom.ac_if,
2809 				  "failed to force tx to idle state\n");
2810 			dc_init(sc);
2811 		}
2812 	}
2813 
2814 	if_printf(&sc->arpcom.ac_if, "TX underrun -- ");
2815 	sc->dc_txthresh += DC_TXTHRESH_INC;
2816 	if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
2817 		kprintf("using store and forward mode\n");
2818 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
2819 	} else {
2820 		kprintf("increasing TX threshold\n");
2821 		DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
2822 		DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
2823 	}
2824 
2825 	if (DC_IS_INTEL(sc))
2826 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2827 
2828 	return;
2829 }
2830 
2831 #ifdef DEVICE_POLLING
2832 
2833 static void
2834 dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2835 {
2836 	struct	dc_softc *sc = ifp->if_softc;
2837 	u_int32_t status;
2838 
2839 	switch(cmd) {
2840 	case POLL_REGISTER:
2841 		/* Disable interrupts */
2842 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2843 		break;
2844 	case POLL_DEREGISTER:
2845 		/* Re-enable interrupts. */
2846 		CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2847 		break;
2848 	case POLL_ONLY:
2849 		sc->rxcycles = count;
2850 		dc_rxeof(sc);
2851 		dc_txeof(sc);
2852 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2853 			dc_start(ifp);
2854 		break;
2855 	case POLL_AND_CHECK_STATUS:
2856 		sc->rxcycles = count;
2857 		dc_rxeof(sc);
2858 		dc_txeof(sc);
2859 		if ((ifp->if_flags & IFF_OACTIVE) == 0 && !ifq_is_empty(&ifp->if_snd))
2860 			dc_start(ifp);
2861 		status = CSR_READ_4(sc, DC_ISR);
2862 		status &= (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF|
2863 			DC_ISR_TX_NOBUF|DC_ISR_TX_IDLE|DC_ISR_TX_UNDERRUN|
2864 			DC_ISR_BUS_ERR);
2865 		if (!status)
2866 			break;
2867 		/* ack what we have */
2868 		CSR_WRITE_4(sc, DC_ISR, status);
2869 
2870 		if (status & (DC_ISR_RX_WATDOGTIMEO|DC_ISR_RX_NOBUF) ) {
2871 			u_int32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
2872 			ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
2873 
2874 			if (dc_rx_resync(sc))
2875 				dc_rxeof(sc);
2876 		}
2877 		/* restart transmit unit if necessary */
2878 		if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
2879 			CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2880 
2881 		if (status & DC_ISR_TX_UNDERRUN)
2882 			dc_tx_underrun(sc);
2883 
2884 		if (status & DC_ISR_BUS_ERR) {
2885 			if_printf(ifp, "dc_poll: bus error\n");
2886 			dc_reset(sc);
2887 			dc_init(sc);
2888 		}
2889 		break;
2890 	}
2891 }
2892 #endif /* DEVICE_POLLING */
2893 
2894 static void
2895 dc_intr(void *arg)
2896 {
2897 	struct dc_softc		*sc;
2898 	struct ifnet		*ifp;
2899 	u_int32_t		status;
2900 
2901 	sc = arg;
2902 
2903 	if (sc->suspended) {
2904 		return;
2905 	}
2906 
2907 	ifp = &sc->arpcom.ac_if;
2908 
2909 	if ( (CSR_READ_4(sc, DC_ISR) & DC_INTRS) == 0)
2910 		return ;
2911 
2912 	/* Suppress unwanted interrupts */
2913 	if (!(ifp->if_flags & IFF_UP)) {
2914 		if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
2915 			dc_stop(sc);
2916 		return;
2917 	}
2918 
2919 	/* Disable interrupts. */
2920 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
2921 
2922 	while(((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
2923 	      status != 0xFFFFFFFF) {
2924 
2925 		CSR_WRITE_4(sc, DC_ISR, status);
2926 
2927 		if (status & DC_ISR_RX_OK) {
2928 			int		curpkts;
2929 			curpkts = ifp->if_ipackets;
2930 			dc_rxeof(sc);
2931 			if (curpkts == ifp->if_ipackets) {
2932 				while(dc_rx_resync(sc))
2933 					dc_rxeof(sc);
2934 			}
2935 		}
2936 
2937 		if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
2938 			dc_txeof(sc);
2939 
2940 		if (status & DC_ISR_TX_IDLE) {
2941 			dc_txeof(sc);
2942 			if (sc->dc_cdata.dc_tx_cnt) {
2943 				DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
2944 				CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
2945 			}
2946 		}
2947 
2948 		if (status & DC_ISR_TX_UNDERRUN)
2949 			dc_tx_underrun(sc);
2950 
2951 		if ((status & DC_ISR_RX_WATDOGTIMEO)
2952 		    || (status & DC_ISR_RX_NOBUF)) {
2953 			int		curpkts;
2954 			curpkts = ifp->if_ipackets;
2955 			dc_rxeof(sc);
2956 			if (curpkts == ifp->if_ipackets) {
2957 				while(dc_rx_resync(sc))
2958 					dc_rxeof(sc);
2959 			}
2960 		}
2961 
2962 		if (status & DC_ISR_BUS_ERR) {
2963 			dc_reset(sc);
2964 			dc_init(sc);
2965 		}
2966 	}
2967 
2968 	/* Re-enable interrupts. */
2969 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
2970 
2971 	if (!ifq_is_empty(&ifp->if_snd))
2972 		dc_start(ifp);
2973 
2974 	return;
2975 }
2976 
2977 /*
2978  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
2979  * pointers to the fragment pointers.
2980  */
2981 static int
2982 dc_encap(struct dc_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2983 {
2984 	struct dc_desc		*f = NULL;
2985 	struct mbuf		*m;
2986 	int			frag, cur, cnt = 0;
2987 
2988 	/*
2989  	 * Start packing the mbufs in this chain into
2990 	 * the fragment pointers. Stop when we run out
2991  	 * of fragments or hit the end of the mbuf chain.
2992 	 */
2993 	m = m_head;
2994 	cur = frag = *txidx;
2995 
2996 	for (m = m_head; m != NULL; m = m->m_next) {
2997 		if (m->m_len != 0) {
2998 			if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
2999 				if (*txidx != sc->dc_cdata.dc_tx_prod &&
3000 				    frag == (DC_TX_LIST_CNT - 1))
3001 					return(ENOBUFS);
3002 			}
3003 			if ((DC_TX_LIST_CNT -
3004 			    (sc->dc_cdata.dc_tx_cnt + cnt)) < 5)
3005 				return(ENOBUFS);
3006 
3007 			f = &sc->dc_ldata->dc_tx_list[frag];
3008 			f->dc_ctl = DC_TXCTL_TLINK | m->m_len;
3009 			if (cnt == 0) {
3010 				f->dc_status = 0;
3011 				f->dc_ctl |= DC_TXCTL_FIRSTFRAG;
3012 			} else
3013 				f->dc_status = DC_TXSTAT_OWN;
3014 			f->dc_data = vtophys(mtod(m, vm_offset_t));
3015 			cur = frag;
3016 			DC_INC(frag, DC_TX_LIST_CNT);
3017 			cnt++;
3018 		}
3019 	}
3020 
3021 	if (m != NULL)
3022 		return(ENOBUFS);
3023 
3024 	sc->dc_cdata.dc_tx_cnt += cnt;
3025 	sc->dc_cdata.dc_tx_chain[cur] = m_head;
3026 	sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_LASTFRAG;
3027 	if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
3028 		sc->dc_ldata->dc_tx_list[*txidx].dc_ctl |= DC_TXCTL_FINT;
3029 	if (sc->dc_flags & DC_TX_INTR_ALWAYS)
3030 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3031 	if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
3032 		sc->dc_ldata->dc_tx_list[cur].dc_ctl |= DC_TXCTL_FINT;
3033 	sc->dc_ldata->dc_tx_list[*txidx].dc_status = DC_TXSTAT_OWN;
3034 	*txidx = frag;
3035 
3036 	return(0);
3037 }
3038 
3039 /*
3040  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3041  * to the mbuf data regions directly in the transmit lists. We also save a
3042  * copy of the pointers since the transmit list fragment pointers are
3043  * physical addresses.
3044  */
3045 
3046 static void
3047 dc_start(struct ifnet *ifp)
3048 {
3049 	struct dc_softc	*sc;
3050 	struct mbuf *m_head;
3051 	struct mbuf *m_defragged;
3052 	int idx, need_trans;
3053 
3054 	sc = ifp->if_softc;
3055 
3056 	if (!sc->dc_link)
3057 		return;
3058 
3059 	if (ifp->if_flags & IFF_OACTIVE)
3060 		return;
3061 
3062 	idx = sc->dc_cdata.dc_tx_prod;
3063 
3064 	need_trans = 0;
3065 	while(sc->dc_cdata.dc_tx_chain[idx] == NULL) {
3066 		m_defragged = NULL;
3067 		m_head = ifq_poll(&ifp->if_snd);
3068 		if (m_head == NULL)
3069 			break;
3070 
3071 		if (sc->dc_flags & DC_TX_COALESCE &&
3072 		    (m_head->m_next != NULL ||
3073 			sc->dc_flags & DC_TX_ALIGN)){
3074 			/*
3075 			 * Check first if coalescing allows us to queue
3076 			 * the packet. We don't want to loose it if
3077 			 * the TX queue is full.
3078 			 */
3079 			if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
3080 			    idx != sc->dc_cdata.dc_tx_prod &&
3081 			    idx == (DC_TX_LIST_CNT - 1)) {
3082 				ifp->if_flags |= IFF_OACTIVE;
3083 				break;
3084 			}
3085 			if ((DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt) < 5) {
3086 				ifp->if_flags |= IFF_OACTIVE;
3087 				break;
3088 			}
3089 
3090 			/* only coalesce if have >1 mbufs */
3091 			m_defragged = m_defrag_nofree(m_head, MB_DONTWAIT);
3092 			if (m_defragged == NULL) {
3093 				ifp->if_flags |= IFF_OACTIVE;
3094 				break;
3095 			}
3096 		}
3097 
3098 		if (dc_encap(sc, (m_defragged ? m_defragged : m_head), &idx)) {
3099 			if (m_defragged) {
3100 				/*
3101 				 * Throw away the original packet if the
3102 				 * defragged packet could not be encapsulated,
3103 				 * as well as the defragged packet.
3104 				 */
3105 				ifq_dequeue(&ifp->if_snd, m_head);
3106 				m_freem(m_head);
3107 				m_freem(m_defragged);
3108 			}
3109 			ifp->if_flags |= IFF_OACTIVE;
3110 			break;
3111 		}
3112 
3113 		ifq_dequeue(&ifp->if_snd, m_head);
3114 
3115 		need_trans = 1;
3116 
3117 		/*
3118 		 * If there's a BPF listener, bounce a copy of this frame
3119 		 * to him.
3120 		 */
3121 		BPF_MTAP(ifp, (m_defragged ? m_defragged : m_head));
3122 
3123 		/*
3124 		 * If we defragged the packet, m_head is not the one we
3125 		 * encapsulated so we can throw it away.
3126 		 */
3127 		if (m_defragged)
3128 			m_freem(m_head);
3129 
3130 		if (sc->dc_flags & DC_TX_ONE) {
3131 			ifp->if_flags |= IFF_OACTIVE;
3132 			break;
3133 		}
3134 	}
3135 
3136 	if (!need_trans)
3137 		return;
3138 
3139 	/* Transmit */
3140 	sc->dc_cdata.dc_tx_prod = idx;
3141 	if (!(sc->dc_flags & DC_TX_POLL))
3142 		CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
3143 
3144 	/*
3145 	 * Set a timeout in case the chip goes out to lunch.
3146 	 */
3147 	ifp->if_timer = 5;
3148 }
3149 
3150 static void
3151 dc_init(void *xsc)
3152 {
3153 	struct dc_softc		*sc = xsc;
3154 	struct ifnet		*ifp = &sc->arpcom.ac_if;
3155 	struct mii_data		*mii;
3156 
3157 	mii = device_get_softc(sc->dc_miibus);
3158 
3159 	/*
3160 	 * Cancel pending I/O and free all RX/TX buffers.
3161 	 */
3162 	dc_stop(sc);
3163 	dc_reset(sc);
3164 
3165 	/*
3166 	 * Set cache alignment and burst length.
3167 	 */
3168 	if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
3169 		CSR_WRITE_4(sc, DC_BUSCTL, 0);
3170 	else
3171 		CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
3172 	/*
3173 	 * Evenly share the bus between receive and transmit process.
3174 	 */
3175 	if (DC_IS_INTEL(sc))
3176 		DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
3177 	if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
3178 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
3179 	} else {
3180 		DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
3181 	}
3182 	if (sc->dc_flags & DC_TX_POLL)
3183 		DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
3184 	switch(sc->dc_cachesize) {
3185 	case 32:
3186 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
3187 		break;
3188 	case 16:
3189 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
3190 		break;
3191 	case 8:
3192 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
3193 		break;
3194 	case 0:
3195 	default:
3196 		DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
3197 		break;
3198 	}
3199 
3200 	if (sc->dc_flags & DC_TX_STORENFWD)
3201 		DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3202 	else {
3203 		if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
3204 			DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3205 		} else {
3206 			DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
3207 			DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
3208 		}
3209 	}
3210 
3211 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
3212 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
3213 
3214 	if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
3215 		/*
3216 		 * The app notes for the 98713 and 98715A say that
3217 		 * in order to have the chips operate properly, a magic
3218 		 * number must be written to CSR16. Macronix does not
3219 		 * document the meaning of these bits so there's no way
3220 		 * to know exactly what they do. The 98713 has a magic
3221 		 * number all its own; the rest all use a different one.
3222 		 */
3223 		DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
3224 		if (sc->dc_type == DC_TYPE_98713)
3225 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
3226 		else
3227 			DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
3228 	}
3229 
3230 	if (DC_IS_XIRCOM(sc)) {
3231 		/*
3232 		 * Setup General Purpose Port mode and data so the tulip
3233 		 * can talk to the MII.
3234 		 */
3235 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
3236 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3237 		DELAY(10);
3238 		CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
3239 			   DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
3240 		DELAY(10);
3241  	}
3242 
3243 	DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
3244 	DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
3245 
3246 	/* Init circular RX list. */
3247 	if (dc_list_rx_init(sc) == ENOBUFS) {
3248 		if_printf(ifp, "initialization failed: no "
3249 			  "memory for rx buffers\n");
3250 		dc_stop(sc);
3251 		return;
3252 	}
3253 
3254 	/*
3255 	 * Init tx descriptors.
3256 	 */
3257 	dc_list_tx_init(sc);
3258 
3259 	/*
3260 	 * Load the address of the RX list.
3261 	 */
3262 	CSR_WRITE_4(sc, DC_RXADDR, vtophys(&sc->dc_ldata->dc_rx_list[0]));
3263 	CSR_WRITE_4(sc, DC_TXADDR, vtophys(&sc->dc_ldata->dc_tx_list[0]));
3264 
3265 	/*
3266 	 * Enable interrupts.
3267 	 */
3268 #ifdef DEVICE_POLLING
3269 	/*
3270 	 * ... but only if we are not polling, and make sure they are off in
3271 	 * the case of polling. Some cards (e.g. fxp) turn interrupts on
3272 	 * after a reset.
3273 	 */
3274 	if (ifp->if_flags & IFF_POLLING)
3275 		CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3276 	else
3277 #endif
3278 	CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
3279 	CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
3280 
3281 	/* Enable transmitter. */
3282 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
3283 
3284 	/*
3285 	 * If this is an Intel 21143 and we're not using the
3286 	 * MII port, program the LED control pins so we get
3287 	 * link and activity indications.
3288 	 */
3289 	if (sc->dc_flags & DC_TULIP_LEDS) {
3290 		CSR_WRITE_4(sc, DC_WATCHDOG,
3291 		    DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
3292 		CSR_WRITE_4(sc, DC_WATCHDOG, 0);
3293 	}
3294 
3295 	/*
3296 	 * Load the RX/multicast filter. We do this sort of late
3297 	 * because the filter programming scheme on the 21143 and
3298 	 * some clones requires DMAing a setup frame via the TX
3299 	 * engine, and we need the transmitter enabled for that.
3300 	 */
3301 	dc_setfilt(sc);
3302 
3303 	/* Enable receiver. */
3304 	DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
3305 	CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
3306 
3307 	mii_mediachg(mii);
3308 	dc_setcfg(sc, sc->dc_if_media);
3309 
3310 	ifp->if_flags |= IFF_RUNNING;
3311 	ifp->if_flags &= ~IFF_OACTIVE;
3312 
3313 	/* Don't start the ticker if this is a homePNA link. */
3314 	if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
3315 		sc->dc_link = 1;
3316 	else {
3317 		if (sc->dc_flags & DC_21143_NWAY)
3318 			callout_reset(&sc->dc_stat_timer, hz/10, dc_tick, sc);
3319 		else
3320 			callout_reset(&sc->dc_stat_timer, hz, dc_tick, sc);
3321 	}
3322 
3323 	return;
3324 }
3325 
3326 /*
3327  * Set media options.
3328  */
3329 static int
3330 dc_ifmedia_upd(struct ifnet *ifp)
3331 {
3332 	struct dc_softc		*sc;
3333 	struct mii_data		*mii;
3334 	struct ifmedia		*ifm;
3335 
3336 	sc = ifp->if_softc;
3337 	mii = device_get_softc(sc->dc_miibus);
3338 	mii_mediachg(mii);
3339 	ifm = &mii->mii_media;
3340 
3341 	if (DC_IS_DAVICOM(sc) &&
3342 	    IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
3343 		dc_setcfg(sc, ifm->ifm_media);
3344 	else
3345 		sc->dc_link = 0;
3346 
3347 	return(0);
3348 }
3349 
3350 /*
3351  * Report current media status.
3352  */
3353 static void
3354 dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3355 {
3356 	struct dc_softc		*sc;
3357 	struct mii_data		*mii;
3358 	struct ifmedia		*ifm;
3359 
3360 	sc = ifp->if_softc;
3361 	mii = device_get_softc(sc->dc_miibus);
3362 	mii_pollstat(mii);
3363 	ifm = &mii->mii_media;
3364 	if (DC_IS_DAVICOM(sc)) {
3365 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
3366 			ifmr->ifm_active = ifm->ifm_media;
3367 			ifmr->ifm_status = 0;
3368 			return;
3369 		}
3370 	}
3371 	ifmr->ifm_active = mii->mii_media_active;
3372 	ifmr->ifm_status = mii->mii_media_status;
3373 
3374 	return;
3375 }
3376 
3377 static int
3378 dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3379 {
3380 	struct dc_softc		*sc = ifp->if_softc;
3381 	struct ifreq		*ifr = (struct ifreq *) data;
3382 	struct mii_data		*mii;
3383 	int			error = 0;
3384 
3385 	switch(command) {
3386 	case SIOCSIFFLAGS:
3387 		if (ifp->if_flags & IFF_UP) {
3388 			int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
3389 				(IFF_PROMISC | IFF_ALLMULTI);
3390 			if (ifp->if_flags & IFF_RUNNING) {
3391 				if (need_setfilt)
3392 					dc_setfilt(sc);
3393 			} else {
3394 				sc->dc_txthresh = 0;
3395 				dc_init(sc);
3396 			}
3397 		} else {
3398 			if (ifp->if_flags & IFF_RUNNING)
3399 				dc_stop(sc);
3400 		}
3401 		sc->dc_if_flags = ifp->if_flags;
3402 		error = 0;
3403 		break;
3404 	case SIOCADDMULTI:
3405 	case SIOCDELMULTI:
3406 		dc_setfilt(sc);
3407 		error = 0;
3408 		break;
3409 	case SIOCGIFMEDIA:
3410 	case SIOCSIFMEDIA:
3411 		mii = device_get_softc(sc->dc_miibus);
3412 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3413 		break;
3414 	default:
3415 		error = ether_ioctl(ifp, command, data);
3416 		break;
3417 	}
3418 
3419 	return(error);
3420 }
3421 
3422 static void
3423 dc_watchdog(struct ifnet *ifp)
3424 {
3425 	struct dc_softc		*sc;
3426 
3427 	sc = ifp->if_softc;
3428 
3429 	ifp->if_oerrors++;
3430 	if_printf(ifp, "watchdog timeout\n");
3431 
3432 	dc_stop(sc);
3433 	dc_reset(sc);
3434 	dc_init(sc);
3435 
3436 	if (!ifq_is_empty(&ifp->if_snd))
3437 		dc_start(ifp);
3438 
3439 	return;
3440 }
3441 
3442 /*
3443  * Stop the adapter and free any mbufs allocated to the
3444  * RX and TX lists.
3445  */
3446 static void
3447 dc_stop(struct dc_softc *sc)
3448 {
3449 	int		i;
3450 	struct ifnet		*ifp;
3451 
3452 	ifp = &sc->arpcom.ac_if;
3453 	ifp->if_timer = 0;
3454 
3455 	callout_stop(&sc->dc_stat_timer);
3456 
3457 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3458 
3459 	DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
3460 	CSR_WRITE_4(sc, DC_IMR, 0x00000000);
3461 	CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
3462 	CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
3463 	sc->dc_link = 0;
3464 
3465 	/*
3466 	 * Free data in the RX lists.
3467 	 */
3468 	for (i = 0; i < DC_RX_LIST_CNT; i++) {
3469 		if (sc->dc_cdata.dc_rx_chain[i] != NULL) {
3470 			m_freem(sc->dc_cdata.dc_rx_chain[i]);
3471 			sc->dc_cdata.dc_rx_chain[i] = NULL;
3472 		}
3473 	}
3474 	bzero((char *)&sc->dc_ldata->dc_rx_list,
3475 		sizeof(sc->dc_ldata->dc_rx_list));
3476 
3477 	/*
3478 	 * Free the TX list buffers.
3479 	 */
3480 	for (i = 0; i < DC_TX_LIST_CNT; i++) {
3481 		if (sc->dc_cdata.dc_tx_chain[i] != NULL) {
3482 			if ((sc->dc_ldata->dc_tx_list[i].dc_ctl &
3483 			    DC_TXCTL_SETUP) ||
3484 			    !(sc->dc_ldata->dc_tx_list[i].dc_ctl &
3485 			    DC_TXCTL_LASTFRAG)) {
3486 				sc->dc_cdata.dc_tx_chain[i] = NULL;
3487 				continue;
3488 			}
3489 			m_freem(sc->dc_cdata.dc_tx_chain[i]);
3490 			sc->dc_cdata.dc_tx_chain[i] = NULL;
3491 		}
3492 	}
3493 
3494 	bzero((char *)&sc->dc_ldata->dc_tx_list,
3495 		sizeof(sc->dc_ldata->dc_tx_list));
3496 
3497 	return;
3498 }
3499 
3500 /*
3501  * Stop all chip I/O so that the kernel's probe routines don't
3502  * get confused by errant DMAs when rebooting.
3503  */
3504 static void
3505 dc_shutdown(device_t dev)
3506 {
3507 	struct dc_softc	*sc;
3508 	struct ifnet *ifp;
3509 
3510 	sc = device_get_softc(dev);
3511 	ifp = &sc->arpcom.ac_if;
3512 	lwkt_serialize_enter(ifp->if_serializer);
3513 
3514 	dc_stop(sc);
3515 
3516 	lwkt_serialize_exit(ifp->if_serializer);
3517 }
3518 
3519 /*
3520  * Device suspend routine.  Stop the interface and save some PCI
3521  * settings in case the BIOS doesn't restore them properly on
3522  * resume.
3523  */
3524 static int
3525 dc_suspend(device_t dev)
3526 {
3527 	struct dc_softc	*sc = device_get_softc(dev);
3528 	struct ifnet *ifp = &sc->arpcom.ac_if;
3529 	int i;
3530 	lwkt_serialize_enter(ifp->if_serializer);
3531 
3532 	dc_stop(sc);
3533 	for (i = 0; i < 5; i++)
3534 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
3535 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
3536 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
3537 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
3538 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
3539 
3540 	sc->suspended = 1;
3541 
3542 	lwkt_serialize_exit(ifp->if_serializer);
3543 	return (0);
3544 }
3545 
3546 /*
3547  * Device resume routine.  Restore some PCI settings in case the BIOS
3548  * doesn't, re-enable busmastering, and restart the interface if
3549  * appropriate.
3550  */
3551 static int
3552 dc_resume(device_t dev)
3553 {
3554 	struct dc_softc *sc = device_get_softc(dev);
3555 	struct ifnet *ifp = &sc->arpcom.ac_if;
3556 	int i;
3557 
3558 	lwkt_serialize_enter(ifp->if_serializer);
3559 	dc_acpi(dev);
3560 
3561 	/* better way to do this? */
3562 	for (i = 0; i < 5; i++)
3563 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
3564 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
3565 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
3566 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
3567 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
3568 
3569 	/* reenable busmastering */
3570 	pci_enable_busmaster(dev);
3571 	pci_enable_io(dev, DC_RES);
3572 
3573         /* reinitialize interface if necessary */
3574         if (ifp->if_flags & IFF_UP)
3575                 dc_init(sc);
3576 
3577 	sc->suspended = 0;
3578 	lwkt_serialize_exit(ifp->if_serializer);
3579 
3580 	return (0);
3581 }
3582 
3583 static uint32_t
3584 dc_mchash_xircom(struct dc_softc *sc, const uint8_t *addr)
3585 {
3586 	uint32_t crc;
3587 
3588 	/* Compute CRC for the address value. */
3589 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
3590 
3591 	if ((crc & 0x180) == 0x180)
3592 		return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
3593 	else
3594 		return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 + (12 << 4));
3595 }
3596