xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 066b6da2)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115 
116 #define DEBUG_HW 0
117 
118 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
119 #define EM_VER	" 7.3.8"
120 
121 #define _EM_DEVICE(id, ret)	\
122 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
126 
127 static const struct em_vendor_info em_vendor_info_array[] = {
128 	EM_DEVICE(82540EM),
129 	EM_DEVICE(82540EM_LOM),
130 	EM_DEVICE(82540EP),
131 	EM_DEVICE(82540EP_LOM),
132 	EM_DEVICE(82540EP_LP),
133 
134 	EM_DEVICE(82541EI),
135 	EM_DEVICE(82541ER),
136 	EM_DEVICE(82541ER_LOM),
137 	EM_DEVICE(82541EI_MOBILE),
138 	EM_DEVICE(82541GI),
139 	EM_DEVICE(82541GI_LF),
140 	EM_DEVICE(82541GI_MOBILE),
141 
142 	EM_DEVICE(82542),
143 
144 	EM_DEVICE(82543GC_FIBER),
145 	EM_DEVICE(82543GC_COPPER),
146 
147 	EM_DEVICE(82544EI_COPPER),
148 	EM_DEVICE(82544EI_FIBER),
149 	EM_DEVICE(82544GC_COPPER),
150 	EM_DEVICE(82544GC_LOM),
151 
152 	EM_DEVICE(82545EM_COPPER),
153 	EM_DEVICE(82545EM_FIBER),
154 	EM_DEVICE(82545GM_COPPER),
155 	EM_DEVICE(82545GM_FIBER),
156 	EM_DEVICE(82545GM_SERDES),
157 
158 	EM_DEVICE(82546EB_COPPER),
159 	EM_DEVICE(82546EB_FIBER),
160 	EM_DEVICE(82546EB_QUAD_COPPER),
161 	EM_DEVICE(82546GB_COPPER),
162 	EM_DEVICE(82546GB_FIBER),
163 	EM_DEVICE(82546GB_SERDES),
164 	EM_DEVICE(82546GB_PCIE),
165 	EM_DEVICE(82546GB_QUAD_COPPER),
166 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167 
168 	EM_DEVICE(82547EI),
169 	EM_DEVICE(82547EI_MOBILE),
170 	EM_DEVICE(82547GI),
171 
172 	EM_EMX_DEVICE(82571EB_COPPER),
173 	EM_EMX_DEVICE(82571EB_FIBER),
174 	EM_EMX_DEVICE(82571EB_SERDES),
175 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182 
183 	EM_EMX_DEVICE(82572EI_COPPER),
184 	EM_EMX_DEVICE(82572EI_FIBER),
185 	EM_EMX_DEVICE(82572EI_SERDES),
186 	EM_EMX_DEVICE(82572EI),
187 
188 	EM_EMX_DEVICE(82573E),
189 	EM_EMX_DEVICE(82573E_IAMT),
190 	EM_EMX_DEVICE(82573L),
191 
192 	EM_DEVICE(82583V),
193 
194 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198 
199 	EM_DEVICE(ICH8_IGP_M_AMT),
200 	EM_DEVICE(ICH8_IGP_AMT),
201 	EM_DEVICE(ICH8_IGP_C),
202 	EM_DEVICE(ICH8_IFE),
203 	EM_DEVICE(ICH8_IFE_GT),
204 	EM_DEVICE(ICH8_IFE_G),
205 	EM_DEVICE(ICH8_IGP_M),
206 	EM_DEVICE(ICH8_82567V_3),
207 
208 	EM_DEVICE(ICH9_IGP_M_AMT),
209 	EM_DEVICE(ICH9_IGP_AMT),
210 	EM_DEVICE(ICH9_IGP_C),
211 	EM_DEVICE(ICH9_IGP_M),
212 	EM_DEVICE(ICH9_IGP_M_V),
213 	EM_DEVICE(ICH9_IFE),
214 	EM_DEVICE(ICH9_IFE_GT),
215 	EM_DEVICE(ICH9_IFE_G),
216 	EM_DEVICE(ICH9_BM),
217 
218 	EM_EMX_DEVICE(82574L),
219 	EM_EMX_DEVICE(82574LA),
220 
221 	EM_DEVICE(ICH10_R_BM_LM),
222 	EM_DEVICE(ICH10_R_BM_LF),
223 	EM_DEVICE(ICH10_R_BM_V),
224 	EM_DEVICE(ICH10_D_BM_LM),
225 	EM_DEVICE(ICH10_D_BM_LF),
226 	EM_DEVICE(ICH10_D_BM_V),
227 
228 	EM_DEVICE(PCH_M_HV_LM),
229 	EM_DEVICE(PCH_M_HV_LC),
230 	EM_DEVICE(PCH_D_HV_DM),
231 	EM_DEVICE(PCH_D_HV_DC),
232 
233 	EM_DEVICE(PCH2_LV_LM),
234 	EM_DEVICE(PCH2_LV_V),
235 
236 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
237 	EM_EMX_DEVICE(PCH_LPT_I217_V),
238 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
240 
241 	/* required last entry */
242 	EM_DEVICE_NULL
243 };
244 
245 static int	em_probe(device_t);
246 static int	em_attach(device_t);
247 static int	em_detach(device_t);
248 static int	em_shutdown(device_t);
249 static int	em_suspend(device_t);
250 static int	em_resume(device_t);
251 
252 static void	em_init(void *);
253 static void	em_stop(struct adapter *);
254 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
255 static void	em_start(struct ifnet *, struct ifaltq_subque *);
256 #ifdef IFPOLL_ENABLE
257 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
258 static void	em_npoll_compat(struct ifnet *, void *, int);
259 #endif
260 static void	em_watchdog(struct ifnet *);
261 static void	em_media_status(struct ifnet *, struct ifmediareq *);
262 static int	em_media_change(struct ifnet *);
263 static void	em_timer(void *);
264 
265 static void	em_intr(void *);
266 static void	em_intr_mask(void *);
267 static void	em_intr_body(struct adapter *, boolean_t);
268 static void	em_rxeof(struct adapter *, int);
269 static void	em_txeof(struct adapter *);
270 static void	em_tx_collect(struct adapter *);
271 static void	em_tx_purge(struct adapter *);
272 static void	em_enable_intr(struct adapter *);
273 static void	em_disable_intr(struct adapter *);
274 
275 static int	em_dma_malloc(struct adapter *, bus_size_t,
276 		    struct em_dma_alloc *);
277 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
278 static void	em_init_tx_ring(struct adapter *);
279 static int	em_init_rx_ring(struct adapter *);
280 static int	em_create_tx_ring(struct adapter *);
281 static int	em_create_rx_ring(struct adapter *);
282 static void	em_destroy_tx_ring(struct adapter *, int);
283 static void	em_destroy_rx_ring(struct adapter *, int);
284 static int	em_newbuf(struct adapter *, int, int);
285 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
286 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
287 		    struct mbuf *);
288 static int	em_txcsum(struct adapter *, struct mbuf *,
289 		    uint32_t *, uint32_t *);
290 static int	em_tso_pullup(struct adapter *, struct mbuf **);
291 static int	em_tso_setup(struct adapter *, struct mbuf *,
292 		    uint32_t *, uint32_t *);
293 
294 static int	em_get_hw_info(struct adapter *);
295 static int 	em_is_valid_eaddr(const uint8_t *);
296 static int	em_alloc_pci_res(struct adapter *);
297 static void	em_free_pci_res(struct adapter *);
298 static int	em_reset(struct adapter *);
299 static void	em_setup_ifp(struct adapter *);
300 static void	em_init_tx_unit(struct adapter *);
301 static void	em_init_rx_unit(struct adapter *);
302 static void	em_update_stats(struct adapter *);
303 static void	em_set_promisc(struct adapter *);
304 static void	em_disable_promisc(struct adapter *);
305 static void	em_set_multi(struct adapter *);
306 static void	em_update_link_status(struct adapter *);
307 static void	em_smartspeed(struct adapter *);
308 static void	em_set_itr(struct adapter *, uint32_t);
309 static void	em_disable_aspm(struct adapter *);
310 
311 /* Hardware workarounds */
312 static int	em_82547_fifo_workaround(struct adapter *, int);
313 static void	em_82547_update_fifo_head(struct adapter *, int);
314 static int	em_82547_tx_fifo_reset(struct adapter *);
315 static void	em_82547_move_tail(void *);
316 static void	em_82547_move_tail_serialized(struct adapter *);
317 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
318 
319 static void	em_print_debug_info(struct adapter *);
320 static void	em_print_nvm_info(struct adapter *);
321 static void	em_print_hw_stats(struct adapter *);
322 
323 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
324 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
325 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
326 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
327 static void	em_add_sysctl(struct adapter *adapter);
328 
329 /* Management and WOL Support */
330 static void	em_get_mgmt(struct adapter *);
331 static void	em_rel_mgmt(struct adapter *);
332 static void	em_get_hw_control(struct adapter *);
333 static void	em_rel_hw_control(struct adapter *);
334 static void	em_enable_wol(device_t);
335 
336 static device_method_t em_methods[] = {
337 	/* Device interface */
338 	DEVMETHOD(device_probe,		em_probe),
339 	DEVMETHOD(device_attach,	em_attach),
340 	DEVMETHOD(device_detach,	em_detach),
341 	DEVMETHOD(device_shutdown,	em_shutdown),
342 	DEVMETHOD(device_suspend,	em_suspend),
343 	DEVMETHOD(device_resume,	em_resume),
344 	DEVMETHOD_END
345 };
346 
347 static driver_t em_driver = {
348 	"em",
349 	em_methods,
350 	sizeof(struct adapter),
351 };
352 
353 static devclass_t em_devclass;
354 
355 DECLARE_DUMMY_MODULE(if_em);
356 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
357 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
358 
359 /*
360  * Tunables
361  */
362 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
363 static int	em_rxd = EM_DEFAULT_RXD;
364 static int	em_txd = EM_DEFAULT_TXD;
365 static int	em_smart_pwr_down = 0;
366 
367 /* Controls whether promiscuous also shows bad packets */
368 static int	em_debug_sbp = FALSE;
369 
370 static int	em_82573_workaround = 1;
371 static int	em_msi_enable = 1;
372 
373 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
374 TUNABLE_INT("hw.em.rxd", &em_rxd);
375 TUNABLE_INT("hw.em.txd", &em_txd);
376 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
377 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
378 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
379 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
380 
381 /* Global used in WOL setup with multiport cards */
382 static int	em_global_quad_port_a = 0;
383 
384 /* Set this to one to display debug statistics */
385 static int	em_display_debug_stats = 0;
386 
387 #if !defined(KTR_IF_EM)
388 #define KTR_IF_EM	KTR_ALL
389 #endif
390 KTR_INFO_MASTER(if_em);
391 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
392 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
393 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
394 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
395 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
396 #define logif(name)	KTR_LOG(if_em_ ## name)
397 
398 static int
399 em_probe(device_t dev)
400 {
401 	const struct em_vendor_info *ent;
402 	uint16_t vid, did;
403 
404 	vid = pci_get_vendor(dev);
405 	did = pci_get_device(dev);
406 
407 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
408 		if (vid == ent->vendor_id && did == ent->device_id) {
409 			device_set_desc(dev, ent->desc);
410 			device_set_async_attach(dev, TRUE);
411 			return (ent->ret);
412 		}
413 	}
414 	return (ENXIO);
415 }
416 
417 static int
418 em_attach(device_t dev)
419 {
420 	struct adapter *adapter = device_get_softc(dev);
421 	struct ifnet *ifp = &adapter->arpcom.ac_if;
422 	int tsize, rsize;
423 	int error = 0;
424 	uint16_t eeprom_data, device_id, apme_mask;
425 	driver_intr_t *intr_func;
426 
427 	adapter->dev = adapter->osdep.dev = dev;
428 
429 	callout_init_mp(&adapter->timer);
430 	callout_init_mp(&adapter->tx_fifo_timer);
431 
432 	ifmedia_init(&adapter->media, IFM_IMASK,
433 	    em_media_change, em_media_status);
434 
435 	/* Determine hardware and mac info */
436 	error = em_get_hw_info(adapter);
437 	if (error) {
438 		device_printf(dev, "Identify hardware failed\n");
439 		goto fail;
440 	}
441 
442 	/* Setup PCI resources */
443 	error = em_alloc_pci_res(adapter);
444 	if (error) {
445 		device_printf(dev, "Allocation of PCI resources failed\n");
446 		goto fail;
447 	}
448 
449 	/*
450 	 * For ICH8 and family we need to map the flash memory,
451 	 * and this must happen after the MAC is identified.
452 	 */
453 	if (adapter->hw.mac.type == e1000_ich8lan ||
454 	    adapter->hw.mac.type == e1000_ich9lan ||
455 	    adapter->hw.mac.type == e1000_ich10lan ||
456 	    adapter->hw.mac.type == e1000_pchlan ||
457 	    adapter->hw.mac.type == e1000_pch2lan ||
458 	    adapter->hw.mac.type == e1000_pch_lpt) {
459 		adapter->flash_rid = EM_BAR_FLASH;
460 
461 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
462 					&adapter->flash_rid, RF_ACTIVE);
463 		if (adapter->flash == NULL) {
464 			device_printf(dev, "Mapping of Flash failed\n");
465 			error = ENXIO;
466 			goto fail;
467 		}
468 		adapter->osdep.flash_bus_space_tag =
469 		    rman_get_bustag(adapter->flash);
470 		adapter->osdep.flash_bus_space_handle =
471 		    rman_get_bushandle(adapter->flash);
472 
473 		/*
474 		 * This is used in the shared code
475 		 * XXX this goof is actually not used.
476 		 */
477 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
478 	}
479 
480 	switch (adapter->hw.mac.type) {
481 	case e1000_82571:
482 	case e1000_82572:
483 		/*
484 		 * Pullup extra 4bytes into the first data segment, see:
485 		 * 82571/82572 specification update errata #7
486 		 *
487 		 * NOTE:
488 		 * 4bytes instead of 2bytes, which are mentioned in the
489 		 * errata, are pulled; mainly to keep rest of the data
490 		 * properly aligned.
491 		 */
492 		adapter->flags |= EM_FLAG_TSO_PULLEX;
493 		/* FALL THROUGH */
494 
495 	default:
496 		if (pci_is_pcie(dev))
497 			adapter->flags |= EM_FLAG_TSO;
498 		break;
499 	}
500 
501 	/* Do Shared Code initialization */
502 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
503 		device_printf(dev, "Setup of Shared code failed\n");
504 		error = ENXIO;
505 		goto fail;
506 	}
507 
508 	e1000_get_bus_info(&adapter->hw);
509 
510 	/*
511 	 * Validate number of transmit and receive descriptors.  It
512 	 * must not exceed hardware maximum, and must be multiple
513 	 * of E1000_DBA_ALIGN.
514 	 */
515 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
516 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
517 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
518 	    em_txd < EM_MIN_TXD) {
519 		if (adapter->hw.mac.type < e1000_82544)
520 			adapter->num_tx_desc = EM_MAX_TXD_82543;
521 		else
522 			adapter->num_tx_desc = EM_DEFAULT_TXD;
523 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
524 		    adapter->num_tx_desc, em_txd);
525 	} else {
526 		adapter->num_tx_desc = em_txd;
527 	}
528 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
529 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
530 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
531 	    em_rxd < EM_MIN_RXD) {
532 		if (adapter->hw.mac.type < e1000_82544)
533 			adapter->num_rx_desc = EM_MAX_RXD_82543;
534 		else
535 			adapter->num_rx_desc = EM_DEFAULT_RXD;
536 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
537 		    adapter->num_rx_desc, em_rxd);
538 	} else {
539 		adapter->num_rx_desc = em_rxd;
540 	}
541 
542 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
543 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
544 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
545 	adapter->rx_buffer_len = MCLBYTES;
546 
547 	/*
548 	 * Interrupt throttle rate
549 	 */
550 	if (em_int_throttle_ceil == 0) {
551 		adapter->int_throttle_ceil = 0;
552 	} else {
553 		int throttle = em_int_throttle_ceil;
554 
555 		if (throttle < 0)
556 			throttle = EM_DEFAULT_ITR;
557 
558 		/* Recalculate the tunable value to get the exact frequency. */
559 		throttle = 1000000000 / 256 / throttle;
560 
561 		/* Upper 16bits of ITR is reserved and should be zero */
562 		if (throttle & 0xffff0000)
563 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
564 
565 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
566 	}
567 
568 	e1000_init_script_state_82541(&adapter->hw, TRUE);
569 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
570 
571 	/* Copper options */
572 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
573 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
574 		adapter->hw.phy.disable_polarity_correction = FALSE;
575 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
576 	}
577 
578 	/* Set the frame limits assuming standard ethernet sized frames. */
579 	adapter->hw.mac.max_frame_size =
580 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
581 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
582 
583 	/* This controls when hardware reports transmit completion status. */
584 	adapter->hw.mac.report_tx_early = 1;
585 
586 	/*
587 	 * Create top level busdma tag
588 	 */
589 	error = bus_dma_tag_create(NULL, 1, 0,
590 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
591 			NULL, NULL,
592 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
593 			0, &adapter->parent_dtag);
594 	if (error) {
595 		device_printf(dev, "could not create top level DMA tag\n");
596 		goto fail;
597 	}
598 
599 	/*
600 	 * Allocate Transmit Descriptor ring
601 	 */
602 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
603 			 EM_DBA_ALIGN);
604 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
605 	if (error) {
606 		device_printf(dev, "Unable to allocate tx_desc memory\n");
607 		goto fail;
608 	}
609 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
610 
611 	/*
612 	 * Allocate Receive Descriptor ring
613 	 */
614 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
615 			 EM_DBA_ALIGN);
616 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
617 	if (error) {
618 		device_printf(dev, "Unable to allocate rx_desc memory\n");
619 		goto fail;
620 	}
621 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
622 
623 	/* Allocate multicast array memory. */
624 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
625 	    M_DEVBUF, M_WAITOK);
626 
627 	/* Indicate SOL/IDER usage */
628 	if (e1000_check_reset_block(&adapter->hw)) {
629 		device_printf(dev,
630 		    "PHY reset is blocked due to SOL/IDER session.\n");
631 	}
632 
633 	/* Disable EEE */
634 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
635 
636 	/*
637 	 * Start from a known state, this is important in reading the
638 	 * nvm and mac from that.
639 	 */
640 	e1000_reset_hw(&adapter->hw);
641 
642 	/* Make sure we have a good EEPROM before we read from it */
643 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
644 		/*
645 		 * Some PCI-E parts fail the first check due to
646 		 * the link being in sleep state, call it again,
647 		 * if it fails a second time its a real issue.
648 		 */
649 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
650 			device_printf(dev,
651 			    "The EEPROM Checksum Is Not Valid\n");
652 			error = EIO;
653 			goto fail;
654 		}
655 	}
656 
657 	/* Copy the permanent MAC address out of the EEPROM */
658 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
659 		device_printf(dev, "EEPROM read error while reading MAC"
660 		    " address\n");
661 		error = EIO;
662 		goto fail;
663 	}
664 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
665 		device_printf(dev, "Invalid MAC address\n");
666 		error = EIO;
667 		goto fail;
668 	}
669 
670 	/* Allocate transmit descriptors and buffers */
671 	error = em_create_tx_ring(adapter);
672 	if (error) {
673 		device_printf(dev, "Could not setup transmit structures\n");
674 		goto fail;
675 	}
676 
677 	/* Allocate receive descriptors and buffers */
678 	error = em_create_rx_ring(adapter);
679 	if (error) {
680 		device_printf(dev, "Could not setup receive structures\n");
681 		goto fail;
682 	}
683 
684 	/* Manually turn off all interrupts */
685 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
686 
687 	/* Determine if we have to control management hardware */
688 	if (e1000_enable_mng_pass_thru(&adapter->hw))
689 		adapter->flags |= EM_FLAG_HAS_MGMT;
690 
691 	/*
692 	 * Setup Wake-on-Lan
693 	 */
694 	apme_mask = EM_EEPROM_APME;
695 	eeprom_data = 0;
696 	switch (adapter->hw.mac.type) {
697 	case e1000_82542:
698 	case e1000_82543:
699 		break;
700 
701 	case e1000_82573:
702 	case e1000_82583:
703 		adapter->flags |= EM_FLAG_HAS_AMT;
704 		/* FALL THROUGH */
705 
706 	case e1000_82546:
707 	case e1000_82546_rev_3:
708 	case e1000_82571:
709 	case e1000_82572:
710 	case e1000_80003es2lan:
711 		if (adapter->hw.bus.func == 1) {
712 			e1000_read_nvm(&adapter->hw,
713 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
714 		} else {
715 			e1000_read_nvm(&adapter->hw,
716 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
717 		}
718 		break;
719 
720 	case e1000_ich8lan:
721 	case e1000_ich9lan:
722 	case e1000_ich10lan:
723 	case e1000_pchlan:
724 	case e1000_pch2lan:
725 		apme_mask = E1000_WUC_APME;
726 		adapter->flags |= EM_FLAG_HAS_AMT;
727 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
728 		break;
729 
730 	default:
731 		e1000_read_nvm(&adapter->hw,
732 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
733 		break;
734 	}
735 	if (eeprom_data & apme_mask)
736 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
737 
738 	/*
739          * We have the eeprom settings, now apply the special cases
740          * where the eeprom may be wrong or the board won't support
741          * wake on lan on a particular port
742 	 */
743 	device_id = pci_get_device(dev);
744         switch (device_id) {
745 	case E1000_DEV_ID_82546GB_PCIE:
746 		adapter->wol = 0;
747 		break;
748 
749 	case E1000_DEV_ID_82546EB_FIBER:
750 	case E1000_DEV_ID_82546GB_FIBER:
751 	case E1000_DEV_ID_82571EB_FIBER:
752 		/*
753 		 * Wake events only supported on port A for dual fiber
754 		 * regardless of eeprom setting
755 		 */
756 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
757 		    E1000_STATUS_FUNC_1)
758 			adapter->wol = 0;
759 		break;
760 
761 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
762 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
763 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
764 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
765                 /* if quad port adapter, disable WoL on all but port A */
766 		if (em_global_quad_port_a != 0)
767 			adapter->wol = 0;
768 		/* Reset for multiple quad port adapters */
769 		if (++em_global_quad_port_a == 4)
770 			em_global_quad_port_a = 0;
771                 break;
772 	}
773 
774 	/* XXX disable wol */
775 	adapter->wol = 0;
776 
777 	/* Setup OS specific network interface */
778 	em_setup_ifp(adapter);
779 
780 	/* Add sysctl tree, must after em_setup_ifp() */
781 	em_add_sysctl(adapter);
782 
783 #ifdef IFPOLL_ENABLE
784 	/* Polling setup */
785 	ifpoll_compat_setup(&adapter->npoll,
786 	    &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
787 	    ifp->if_serializer);
788 #endif
789 
790 	/* Reset the hardware */
791 	error = em_reset(adapter);
792 	if (error) {
793 		/*
794 		 * Some 82573 parts fail the first reset, call it again,
795 		 * if it fails a second time its a real issue.
796 		 */
797 		error = em_reset(adapter);
798 		if (error) {
799 			device_printf(dev, "Unable to reset the hardware\n");
800 			ether_ifdetach(ifp);
801 			goto fail;
802 		}
803 	}
804 
805 	/* Initialize statistics */
806 	em_update_stats(adapter);
807 
808 	adapter->hw.mac.get_link_status = 1;
809 	em_update_link_status(adapter);
810 
811 	/* Do we need workaround for 82544 PCI-X adapter? */
812 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
813 	    adapter->hw.mac.type == e1000_82544)
814 		adapter->pcix_82544 = TRUE;
815 	else
816 		adapter->pcix_82544 = FALSE;
817 
818 	if (adapter->pcix_82544) {
819 		/*
820 		 * 82544 on PCI-X may split one TX segment
821 		 * into two TX descs, so we double its number
822 		 * of spare TX desc here.
823 		 */
824 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
825 	} else {
826 		adapter->spare_tx_desc = EM_TX_SPARE;
827 	}
828 	if (adapter->flags & EM_FLAG_TSO)
829 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
830 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
831 
832 	/*
833 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
834 	 * and tx_int_nsegs:
835 	 * (spare_tx_desc + EM_TX_RESERVED) <=
836 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
837 	 */
838 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
839 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
840 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
841 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
842 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
843 
844 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
845 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
846 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
847 
848 	/* Non-AMT based hardware can now take control from firmware */
849 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
850 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
851 		em_get_hw_control(adapter);
852 
853 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
854 
855 	/*
856 	 * Missing Interrupt Following ICR read:
857 	 *
858 	 * 82571/82572 specification update errata #76
859 	 * 82573 specification update errata #31
860 	 * 82574 specification update errata #12
861 	 * 82583 specification update errata #4
862 	 */
863 	intr_func = em_intr;
864 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
865 	    (adapter->hw.mac.type == e1000_82571 ||
866 	     adapter->hw.mac.type == e1000_82572 ||
867 	     adapter->hw.mac.type == e1000_82573 ||
868 	     adapter->hw.mac.type == e1000_82574 ||
869 	     adapter->hw.mac.type == e1000_82583))
870 		intr_func = em_intr_mask;
871 
872 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
873 			       intr_func, adapter, &adapter->intr_tag,
874 			       ifp->if_serializer);
875 	if (error) {
876 		device_printf(dev, "Failed to register interrupt handler");
877 		ether_ifdetach(ifp);
878 		goto fail;
879 	}
880 	return (0);
881 fail:
882 	em_detach(dev);
883 	return (error);
884 }
885 
886 static int
887 em_detach(device_t dev)
888 {
889 	struct adapter *adapter = device_get_softc(dev);
890 
891 	if (device_is_attached(dev)) {
892 		struct ifnet *ifp = &adapter->arpcom.ac_if;
893 
894 		lwkt_serialize_enter(ifp->if_serializer);
895 
896 		em_stop(adapter);
897 
898 		e1000_phy_hw_reset(&adapter->hw);
899 
900 		em_rel_mgmt(adapter);
901 		em_rel_hw_control(adapter);
902 
903 		if (adapter->wol) {
904 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
905 					E1000_WUC_PME_EN);
906 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
907 			em_enable_wol(dev);
908 		}
909 
910 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
911 
912 		lwkt_serialize_exit(ifp->if_serializer);
913 
914 		ether_ifdetach(ifp);
915 	} else if (adapter->memory != NULL) {
916 		em_rel_hw_control(adapter);
917 	}
918 
919 	ifmedia_removeall(&adapter->media);
920 	bus_generic_detach(dev);
921 
922 	em_free_pci_res(adapter);
923 
924 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
925 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
926 
927 	/* Free Transmit Descriptor ring */
928 	if (adapter->tx_desc_base)
929 		em_dma_free(adapter, &adapter->txdma);
930 
931 	/* Free Receive Descriptor ring */
932 	if (adapter->rx_desc_base)
933 		em_dma_free(adapter, &adapter->rxdma);
934 
935 	/* Free top level busdma tag */
936 	if (adapter->parent_dtag != NULL)
937 		bus_dma_tag_destroy(adapter->parent_dtag);
938 
939 	/* Free sysctl tree */
940 	if (adapter->sysctl_tree != NULL)
941 		sysctl_ctx_free(&adapter->sysctl_ctx);
942 
943 	if (adapter->mta != NULL)
944 		kfree(adapter->mta, M_DEVBUF);
945 
946 	return (0);
947 }
948 
949 static int
950 em_shutdown(device_t dev)
951 {
952 	return em_suspend(dev);
953 }
954 
955 static int
956 em_suspend(device_t dev)
957 {
958 	struct adapter *adapter = device_get_softc(dev);
959 	struct ifnet *ifp = &adapter->arpcom.ac_if;
960 
961 	lwkt_serialize_enter(ifp->if_serializer);
962 
963 	em_stop(adapter);
964 
965 	em_rel_mgmt(adapter);
966 	em_rel_hw_control(adapter);
967 
968 	if (adapter->wol) {
969 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
970 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
971 		em_enable_wol(dev);
972 	}
973 
974 	lwkt_serialize_exit(ifp->if_serializer);
975 
976 	return bus_generic_suspend(dev);
977 }
978 
979 static int
980 em_resume(device_t dev)
981 {
982 	struct adapter *adapter = device_get_softc(dev);
983 	struct ifnet *ifp = &adapter->arpcom.ac_if;
984 
985 	lwkt_serialize_enter(ifp->if_serializer);
986 
987 	if (adapter->hw.mac.type == e1000_pch2lan)
988 		e1000_resume_workarounds_pchlan(&adapter->hw);
989 
990 	em_init(adapter);
991 	em_get_mgmt(adapter);
992 	if_devstart(ifp);
993 
994 	lwkt_serialize_exit(ifp->if_serializer);
995 
996 	return bus_generic_resume(dev);
997 }
998 
999 static void
1000 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1001 {
1002 	struct adapter *adapter = ifp->if_softc;
1003 	struct mbuf *m_head;
1004 	int idx = -1, nsegs = 0;
1005 
1006 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1007 	ASSERT_SERIALIZED(ifp->if_serializer);
1008 
1009 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1010 		return;
1011 
1012 	if (!adapter->link_active) {
1013 		ifq_purge(&ifp->if_snd);
1014 		return;
1015 	}
1016 
1017 	while (!ifq_is_empty(&ifp->if_snd)) {
1018 		/* Now do we at least have a minimal? */
1019 		if (EM_IS_OACTIVE(adapter)) {
1020 			em_tx_collect(adapter);
1021 			if (EM_IS_OACTIVE(adapter)) {
1022 				ifq_set_oactive(&ifp->if_snd);
1023 				adapter->no_tx_desc_avail1++;
1024 				break;
1025 			}
1026 		}
1027 
1028 		logif(pkt_txqueue);
1029 		m_head = ifq_dequeue(&ifp->if_snd);
1030 		if (m_head == NULL)
1031 			break;
1032 
1033 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1034 			IFNET_STAT_INC(ifp, oerrors, 1);
1035 			em_tx_collect(adapter);
1036 			continue;
1037 		}
1038 
1039 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1040 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1041 			nsegs = 0;
1042 			idx = -1;
1043 		}
1044 
1045 		/* Send a copy of the frame to the BPF listener */
1046 		ETHER_BPF_MTAP(ifp, m_head);
1047 
1048 		/* Set timeout in case hardware has problems transmitting. */
1049 		ifp->if_timer = EM_TX_TIMEOUT;
1050 	}
1051 	if (idx >= 0)
1052 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1053 }
1054 
1055 static int
1056 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1057 {
1058 	struct adapter *adapter = ifp->if_softc;
1059 	struct ifreq *ifr = (struct ifreq *)data;
1060 	uint16_t eeprom_data = 0;
1061 	int max_frame_size, mask, reinit;
1062 	int error = 0;
1063 
1064 	ASSERT_SERIALIZED(ifp->if_serializer);
1065 
1066 	switch (command) {
1067 	case SIOCSIFMTU:
1068 		switch (adapter->hw.mac.type) {
1069 		case e1000_82573:
1070 			/*
1071 			 * 82573 only supports jumbo frames
1072 			 * if ASPM is disabled.
1073 			 */
1074 			e1000_read_nvm(&adapter->hw,
1075 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1076 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1077 				max_frame_size = ETHER_MAX_LEN;
1078 				break;
1079 			}
1080 			/* FALL THROUGH */
1081 
1082 		/* Limit Jumbo Frame size */
1083 		case e1000_82571:
1084 		case e1000_82572:
1085 		case e1000_ich9lan:
1086 		case e1000_ich10lan:
1087 		case e1000_pch2lan:
1088 		case e1000_pch_lpt:
1089 		case e1000_82574:
1090 		case e1000_82583:
1091 		case e1000_80003es2lan:
1092 			max_frame_size = 9234;
1093 			break;
1094 
1095 		case e1000_pchlan:
1096 			max_frame_size = 4096;
1097 			break;
1098 
1099 		/* Adapters that do not support jumbo frames */
1100 		case e1000_82542:
1101 		case e1000_ich8lan:
1102 			max_frame_size = ETHER_MAX_LEN;
1103 			break;
1104 
1105 		default:
1106 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1107 			break;
1108 		}
1109 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1110 		    ETHER_CRC_LEN) {
1111 			error = EINVAL;
1112 			break;
1113 		}
1114 
1115 		ifp->if_mtu = ifr->ifr_mtu;
1116 		adapter->hw.mac.max_frame_size =
1117 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1118 
1119 		if (ifp->if_flags & IFF_RUNNING)
1120 			em_init(adapter);
1121 		break;
1122 
1123 	case SIOCSIFFLAGS:
1124 		if (ifp->if_flags & IFF_UP) {
1125 			if ((ifp->if_flags & IFF_RUNNING)) {
1126 				if ((ifp->if_flags ^ adapter->if_flags) &
1127 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1128 					em_disable_promisc(adapter);
1129 					em_set_promisc(adapter);
1130 				}
1131 			} else {
1132 				em_init(adapter);
1133 			}
1134 		} else if (ifp->if_flags & IFF_RUNNING) {
1135 			em_stop(adapter);
1136 		}
1137 		adapter->if_flags = ifp->if_flags;
1138 		break;
1139 
1140 	case SIOCADDMULTI:
1141 	case SIOCDELMULTI:
1142 		if (ifp->if_flags & IFF_RUNNING) {
1143 			em_disable_intr(adapter);
1144 			em_set_multi(adapter);
1145 			if (adapter->hw.mac.type == e1000_82542 &&
1146 			    adapter->hw.revision_id == E1000_REVISION_2)
1147 				em_init_rx_unit(adapter);
1148 #ifdef IFPOLL_ENABLE
1149 			if (!(ifp->if_flags & IFF_NPOLLING))
1150 #endif
1151 				em_enable_intr(adapter);
1152 		}
1153 		break;
1154 
1155 	case SIOCSIFMEDIA:
1156 		/* Check SOL/IDER usage */
1157 		if (e1000_check_reset_block(&adapter->hw)) {
1158 			device_printf(adapter->dev, "Media change is"
1159 			    " blocked due to SOL/IDER session.\n");
1160 			break;
1161 		}
1162 		/* FALL THROUGH */
1163 
1164 	case SIOCGIFMEDIA:
1165 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1166 		break;
1167 
1168 	case SIOCSIFCAP:
1169 		reinit = 0;
1170 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1171 		if (mask & IFCAP_RXCSUM) {
1172 			ifp->if_capenable ^= IFCAP_RXCSUM;
1173 			reinit = 1;
1174 		}
1175 		if (mask & IFCAP_TXCSUM) {
1176 			ifp->if_capenable ^= IFCAP_TXCSUM;
1177 			if (ifp->if_capenable & IFCAP_TXCSUM)
1178 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1179 			else
1180 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1181 		}
1182 		if (mask & IFCAP_TSO) {
1183 			ifp->if_capenable ^= IFCAP_TSO;
1184 			if (ifp->if_capenable & IFCAP_TSO)
1185 				ifp->if_hwassist |= CSUM_TSO;
1186 			else
1187 				ifp->if_hwassist &= ~CSUM_TSO;
1188 		}
1189 		if (mask & IFCAP_VLAN_HWTAGGING) {
1190 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1191 			reinit = 1;
1192 		}
1193 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1194 			em_init(adapter);
1195 		break;
1196 
1197 	default:
1198 		error = ether_ioctl(ifp, command, data);
1199 		break;
1200 	}
1201 	return (error);
1202 }
1203 
1204 static void
1205 em_watchdog(struct ifnet *ifp)
1206 {
1207 	struct adapter *adapter = ifp->if_softc;
1208 
1209 	ASSERT_SERIALIZED(ifp->if_serializer);
1210 
1211 	/*
1212 	 * The timer is set to 5 every time start queues a packet.
1213 	 * Then txeof keeps resetting it as long as it cleans at
1214 	 * least one descriptor.
1215 	 * Finally, anytime all descriptors are clean the timer is
1216 	 * set to 0.
1217 	 */
1218 
1219 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1220 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1221 		/*
1222 		 * If we reach here, all TX jobs are completed and
1223 		 * the TX engine should have been idled for some time.
1224 		 * We don't need to call if_devstart() here.
1225 		 */
1226 		ifq_clr_oactive(&ifp->if_snd);
1227 		ifp->if_timer = 0;
1228 		return;
1229 	}
1230 
1231 	/*
1232 	 * If we are in this routine because of pause frames, then
1233 	 * don't reset the hardware.
1234 	 */
1235 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1236 	    E1000_STATUS_TXOFF) {
1237 		ifp->if_timer = EM_TX_TIMEOUT;
1238 		return;
1239 	}
1240 
1241 	if (e1000_check_for_link(&adapter->hw) == 0)
1242 		if_printf(ifp, "watchdog timeout -- resetting\n");
1243 
1244 	IFNET_STAT_INC(ifp, oerrors, 1);
1245 	adapter->watchdog_events++;
1246 
1247 	em_init(adapter);
1248 
1249 	if (!ifq_is_empty(&ifp->if_snd))
1250 		if_devstart(ifp);
1251 }
1252 
1253 static void
1254 em_init(void *xsc)
1255 {
1256 	struct adapter *adapter = xsc;
1257 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1258 	device_t dev = adapter->dev;
1259 
1260 	ASSERT_SERIALIZED(ifp->if_serializer);
1261 
1262 	em_stop(adapter);
1263 
1264 	/* Get the latest mac address, User can use a LAA */
1265         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1266 
1267 	/* Put the address into the Receive Address Array */
1268 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1269 
1270 	/*
1271 	 * With the 82571 adapter, RAR[0] may be overwritten
1272 	 * when the other port is reset, we make a duplicate
1273 	 * in RAR[14] for that eventuality, this assures
1274 	 * the interface continues to function.
1275 	 */
1276 	if (adapter->hw.mac.type == e1000_82571) {
1277 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1278 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1279 		    E1000_RAR_ENTRIES - 1);
1280 	}
1281 
1282 	/* Reset the hardware */
1283 	if (em_reset(adapter)) {
1284 		device_printf(dev, "Unable to reset the hardware\n");
1285 		/* XXX em_stop()? */
1286 		return;
1287 	}
1288 	em_update_link_status(adapter);
1289 
1290 	/* Setup VLAN support, basic and offload if available */
1291 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1292 
1293 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1294 		uint32_t ctrl;
1295 
1296 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1297 		ctrl |= E1000_CTRL_VME;
1298 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1299 	}
1300 
1301 	/* Configure for OS presence */
1302 	em_get_mgmt(adapter);
1303 
1304 	/* Prepare transmit descriptors and buffers */
1305 	em_init_tx_ring(adapter);
1306 	em_init_tx_unit(adapter);
1307 
1308 	/* Setup Multicast table */
1309 	em_set_multi(adapter);
1310 
1311 	/* Prepare receive descriptors and buffers */
1312 	if (em_init_rx_ring(adapter)) {
1313 		device_printf(dev, "Could not setup receive structures\n");
1314 		em_stop(adapter);
1315 		return;
1316 	}
1317 	em_init_rx_unit(adapter);
1318 
1319 	/* Don't lose promiscuous settings */
1320 	em_set_promisc(adapter);
1321 
1322 	ifp->if_flags |= IFF_RUNNING;
1323 	ifq_clr_oactive(&ifp->if_snd);
1324 
1325 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1326 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1327 
1328 	/* MSI/X configuration for 82574 */
1329 	if (adapter->hw.mac.type == e1000_82574) {
1330 		int tmp;
1331 
1332 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1333 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1334 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1335 		/*
1336 		 * XXX MSIX
1337 		 * Set the IVAR - interrupt vector routing.
1338 		 * Each nibble represents a vector, high bit
1339 		 * is enable, other 3 bits are the MSIX table
1340 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1341 		 * Link (other) to 2, hence the magic number.
1342 		 */
1343 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1344 	}
1345 
1346 #ifdef IFPOLL_ENABLE
1347 	/*
1348 	 * Only enable interrupts if we are not polling, make sure
1349 	 * they are off otherwise.
1350 	 */
1351 	if (ifp->if_flags & IFF_NPOLLING)
1352 		em_disable_intr(adapter);
1353 	else
1354 #endif /* IFPOLL_ENABLE */
1355 		em_enable_intr(adapter);
1356 
1357 	/* AMT based hardware can now take control from firmware */
1358 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1359 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1360 	    adapter->hw.mac.type >= e1000_82571)
1361 		em_get_hw_control(adapter);
1362 }
1363 
1364 #ifdef IFPOLL_ENABLE
1365 
1366 static void
1367 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1368 {
1369 	struct adapter *adapter = ifp->if_softc;
1370 
1371 	ASSERT_SERIALIZED(ifp->if_serializer);
1372 
1373 	if (adapter->npoll.ifpc_stcount-- == 0) {
1374 		uint32_t reg_icr;
1375 
1376 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1377 
1378 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1379 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1380 			callout_stop(&adapter->timer);
1381 			adapter->hw.mac.get_link_status = 1;
1382 			em_update_link_status(adapter);
1383 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1384 		}
1385 	}
1386 
1387 	em_rxeof(adapter, count);
1388 	em_txeof(adapter);
1389 
1390 	if (!ifq_is_empty(&ifp->if_snd))
1391 		if_devstart(ifp);
1392 }
1393 
1394 static void
1395 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1396 {
1397 	struct adapter *adapter = ifp->if_softc;
1398 
1399 	ASSERT_SERIALIZED(ifp->if_serializer);
1400 
1401 	if (info != NULL) {
1402 		int cpuid = adapter->npoll.ifpc_cpuid;
1403 
1404                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1405 		info->ifpi_rx[cpuid].arg = NULL;
1406 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1407 
1408 		if (ifp->if_flags & IFF_RUNNING)
1409 			em_disable_intr(adapter);
1410 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1411 	} else {
1412 		if (ifp->if_flags & IFF_RUNNING)
1413 			em_enable_intr(adapter);
1414 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1415 	}
1416 }
1417 
1418 #endif /* IFPOLL_ENABLE */
1419 
1420 static void
1421 em_intr(void *xsc)
1422 {
1423 	em_intr_body(xsc, TRUE);
1424 }
1425 
1426 static void
1427 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1428 {
1429 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1430 	uint32_t reg_icr;
1431 
1432 	logif(intr_beg);
1433 	ASSERT_SERIALIZED(ifp->if_serializer);
1434 
1435 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1436 
1437 	if (chk_asserted &&
1438 	    ((adapter->hw.mac.type >= e1000_82571 &&
1439 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1440 	     reg_icr == 0)) {
1441 		logif(intr_end);
1442 		return;
1443 	}
1444 
1445 	/*
1446 	 * XXX: some laptops trigger several spurious interrupts
1447 	 * on em(4) when in the resume cycle. The ICR register
1448 	 * reports all-ones value in this case. Processing such
1449 	 * interrupts would lead to a freeze. I don't know why.
1450 	 */
1451 	if (reg_icr == 0xffffffff) {
1452 		logif(intr_end);
1453 		return;
1454 	}
1455 
1456 	if (ifp->if_flags & IFF_RUNNING) {
1457 		if (reg_icr &
1458 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1459 			em_rxeof(adapter, -1);
1460 		if (reg_icr & E1000_ICR_TXDW) {
1461 			em_txeof(adapter);
1462 			if (!ifq_is_empty(&ifp->if_snd))
1463 				if_devstart(ifp);
1464 		}
1465 	}
1466 
1467 	/* Link status change */
1468 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1469 		callout_stop(&adapter->timer);
1470 		adapter->hw.mac.get_link_status = 1;
1471 		em_update_link_status(adapter);
1472 
1473 		/* Deal with TX cruft when link lost */
1474 		em_tx_purge(adapter);
1475 
1476 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1477 	}
1478 
1479 	if (reg_icr & E1000_ICR_RXO)
1480 		adapter->rx_overruns++;
1481 
1482 	logif(intr_end);
1483 }
1484 
1485 static void
1486 em_intr_mask(void *xsc)
1487 {
1488 	struct adapter *adapter = xsc;
1489 
1490 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1491 	/*
1492 	 * NOTE:
1493 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1494 	 * so don't check it.
1495 	 */
1496 	em_intr_body(adapter, FALSE);
1497 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1498 }
1499 
1500 static void
1501 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1502 {
1503 	struct adapter *adapter = ifp->if_softc;
1504 	u_char fiber_type = IFM_1000_SX;
1505 
1506 	ASSERT_SERIALIZED(ifp->if_serializer);
1507 
1508 	em_update_link_status(adapter);
1509 
1510 	ifmr->ifm_status = IFM_AVALID;
1511 	ifmr->ifm_active = IFM_ETHER;
1512 
1513 	if (!adapter->link_active)
1514 		return;
1515 
1516 	ifmr->ifm_status |= IFM_ACTIVE;
1517 
1518 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1519 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1520 		if (adapter->hw.mac.type == e1000_82545)
1521 			fiber_type = IFM_1000_LX;
1522 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1523 	} else {
1524 		switch (adapter->link_speed) {
1525 		case 10:
1526 			ifmr->ifm_active |= IFM_10_T;
1527 			break;
1528 		case 100:
1529 			ifmr->ifm_active |= IFM_100_TX;
1530 			break;
1531 
1532 		case 1000:
1533 			ifmr->ifm_active |= IFM_1000_T;
1534 			break;
1535 		}
1536 		if (adapter->link_duplex == FULL_DUPLEX)
1537 			ifmr->ifm_active |= IFM_FDX;
1538 		else
1539 			ifmr->ifm_active |= IFM_HDX;
1540 	}
1541 }
1542 
1543 static int
1544 em_media_change(struct ifnet *ifp)
1545 {
1546 	struct adapter *adapter = ifp->if_softc;
1547 	struct ifmedia *ifm = &adapter->media;
1548 
1549 	ASSERT_SERIALIZED(ifp->if_serializer);
1550 
1551 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1552 		return (EINVAL);
1553 
1554 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1555 	case IFM_AUTO:
1556 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1557 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1558 		break;
1559 
1560 	case IFM_1000_LX:
1561 	case IFM_1000_SX:
1562 	case IFM_1000_T:
1563 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1564 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1565 		break;
1566 
1567 	case IFM_100_TX:
1568 		adapter->hw.mac.autoneg = FALSE;
1569 		adapter->hw.phy.autoneg_advertised = 0;
1570 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1571 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1572 		else
1573 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1574 		break;
1575 
1576 	case IFM_10_T:
1577 		adapter->hw.mac.autoneg = FALSE;
1578 		adapter->hw.phy.autoneg_advertised = 0;
1579 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1580 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1581 		else
1582 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1583 		break;
1584 
1585 	default:
1586 		if_printf(ifp, "Unsupported media type\n");
1587 		break;
1588 	}
1589 
1590 	em_init(adapter);
1591 
1592 	return (0);
1593 }
1594 
1595 static int
1596 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1597     int *segs_used, int *idx)
1598 {
1599 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1600 	bus_dmamap_t map;
1601 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1602 	struct e1000_tx_desc *ctxd = NULL;
1603 	struct mbuf *m_head = *m_headp;
1604 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1605 	int maxsegs, nsegs, i, j, first, last = 0, error;
1606 
1607 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1608 		error = em_tso_pullup(adapter, m_headp);
1609 		if (error)
1610 			return error;
1611 		m_head = *m_headp;
1612 	}
1613 
1614 	txd_upper = txd_lower = 0;
1615 	txd_used = 0;
1616 
1617 	/*
1618 	 * Capture the first descriptor index, this descriptor
1619 	 * will have the index of the EOP which is the only one
1620 	 * that now gets a DONE bit writeback.
1621 	 */
1622 	first = adapter->next_avail_tx_desc;
1623 	tx_buffer = &adapter->tx_buffer_area[first];
1624 	tx_buffer_mapped = tx_buffer;
1625 	map = tx_buffer->map;
1626 
1627 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1628 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1629 		("not enough spare TX desc"));
1630 	if (adapter->pcix_82544) {
1631 		/* Half it; see the comment in em_attach() */
1632 		maxsegs >>= 1;
1633 	}
1634 	if (maxsegs > EM_MAX_SCATTER)
1635 		maxsegs = EM_MAX_SCATTER;
1636 
1637 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1638 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1639 	if (error) {
1640 		if (error == ENOBUFS)
1641 			adapter->mbuf_alloc_failed++;
1642 		else
1643 			adapter->no_tx_dma_setup++;
1644 
1645 		m_freem(*m_headp);
1646 		*m_headp = NULL;
1647 		return error;
1648 	}
1649         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1650 
1651 	m_head = *m_headp;
1652 	adapter->tx_nsegs += nsegs;
1653 	*segs_used += nsegs;
1654 
1655 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1656 		/* TSO will consume one TX desc */
1657 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1658 		adapter->tx_nsegs += i;
1659 		*segs_used += i;
1660 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1661 		/* TX csum offloading will consume one TX desc */
1662 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1663 		adapter->tx_nsegs += i;
1664 		*segs_used += i;
1665 	}
1666 
1667         /* Handle VLAN tag */
1668 	if (m_head->m_flags & M_VLANTAG) {
1669 		/* Set the vlan id. */
1670 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1671 		/* Tell hardware to add tag */
1672 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1673 	}
1674 
1675 	i = adapter->next_avail_tx_desc;
1676 
1677 	/* Set up our transmit descriptors */
1678 	for (j = 0; j < nsegs; j++) {
1679 		/* If adapter is 82544 and on PCIX bus */
1680 		if(adapter->pcix_82544) {
1681 			DESC_ARRAY desc_array;
1682 			uint32_t array_elements, counter;
1683 
1684 			/*
1685 			 * Check the Address and Length combination and
1686 			 * split the data accordingly
1687 			 */
1688 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1689 						segs[j].ds_len, &desc_array);
1690 			for (counter = 0; counter < array_elements; counter++) {
1691 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1692 
1693 				tx_buffer = &adapter->tx_buffer_area[i];
1694 				ctxd = &adapter->tx_desc_base[i];
1695 
1696 				ctxd->buffer_addr = htole64(
1697 				    desc_array.descriptor[counter].address);
1698 				ctxd->lower.data = htole32(
1699 				    E1000_TXD_CMD_IFCS | txd_lower |
1700 				    desc_array.descriptor[counter].length);
1701 				ctxd->upper.data = htole32(txd_upper);
1702 
1703 				last = i;
1704 				if (++i == adapter->num_tx_desc)
1705 					i = 0;
1706 
1707 				txd_used++;
1708                         }
1709 		} else {
1710 			tx_buffer = &adapter->tx_buffer_area[i];
1711 			ctxd = &adapter->tx_desc_base[i];
1712 
1713 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1714 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1715 						   txd_lower | segs[j].ds_len);
1716 			ctxd->upper.data = htole32(txd_upper);
1717 
1718 			last = i;
1719 			if (++i == adapter->num_tx_desc)
1720 				i = 0;
1721 		}
1722 	}
1723 
1724 	adapter->next_avail_tx_desc = i;
1725 	if (adapter->pcix_82544) {
1726 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1727 		adapter->num_tx_desc_avail -= txd_used;
1728 	} else {
1729 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1730 		adapter->num_tx_desc_avail -= nsegs;
1731 	}
1732 
1733 	tx_buffer->m_head = m_head;
1734 	tx_buffer_mapped->map = tx_buffer->map;
1735 	tx_buffer->map = map;
1736 
1737 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1738 		adapter->tx_nsegs = 0;
1739 
1740 		/*
1741 		 * Report Status (RS) is turned on
1742 		 * every tx_int_nsegs descriptors.
1743 		 */
1744 		cmd = E1000_TXD_CMD_RS;
1745 
1746 		/*
1747 		 * Keep track of the descriptor, which will
1748 		 * be written back by hardware.
1749 		 */
1750 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1751 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1752 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1753 	}
1754 
1755 	/*
1756 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1757 	 */
1758 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1759 
1760 	if (adapter->hw.mac.type == e1000_82547) {
1761 		/*
1762 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1763 		 * E1000 that this frame is available to transmit.
1764 		 */
1765 		if (adapter->link_duplex == HALF_DUPLEX) {
1766 			em_82547_move_tail_serialized(adapter);
1767 		} else {
1768 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1769 			em_82547_update_fifo_head(adapter,
1770 			    m_head->m_pkthdr.len);
1771 		}
1772 	} else {
1773 		/*
1774 		 * Defer TDT updating, until enough descriptors are setup
1775 		 */
1776 		*idx = i;
1777 	}
1778 	return (0);
1779 }
1780 
1781 /*
1782  * 82547 workaround to avoid controller hang in half-duplex environment.
1783  * The workaround is to avoid queuing a large packet that would span
1784  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1785  * in this case.  We do that only when FIFO is quiescent.
1786  */
1787 static void
1788 em_82547_move_tail_serialized(struct adapter *adapter)
1789 {
1790 	struct e1000_tx_desc *tx_desc;
1791 	uint16_t hw_tdt, sw_tdt, length = 0;
1792 	bool eop = 0;
1793 
1794 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1795 
1796 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1797 	sw_tdt = adapter->next_avail_tx_desc;
1798 
1799 	while (hw_tdt != sw_tdt) {
1800 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1801 		length += tx_desc->lower.flags.length;
1802 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1803 		if (++hw_tdt == adapter->num_tx_desc)
1804 			hw_tdt = 0;
1805 
1806 		if (eop) {
1807 			if (em_82547_fifo_workaround(adapter, length)) {
1808 				adapter->tx_fifo_wrk_cnt++;
1809 				callout_reset(&adapter->tx_fifo_timer, 1,
1810 					em_82547_move_tail, adapter);
1811 				break;
1812 			}
1813 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1814 			em_82547_update_fifo_head(adapter, length);
1815 			length = 0;
1816 		}
1817 	}
1818 }
1819 
1820 static void
1821 em_82547_move_tail(void *xsc)
1822 {
1823 	struct adapter *adapter = xsc;
1824 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1825 
1826 	lwkt_serialize_enter(ifp->if_serializer);
1827 	em_82547_move_tail_serialized(adapter);
1828 	lwkt_serialize_exit(ifp->if_serializer);
1829 }
1830 
1831 static int
1832 em_82547_fifo_workaround(struct adapter *adapter, int len)
1833 {
1834 	int fifo_space, fifo_pkt_len;
1835 
1836 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1837 
1838 	if (adapter->link_duplex == HALF_DUPLEX) {
1839 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1840 
1841 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1842 			if (em_82547_tx_fifo_reset(adapter))
1843 				return (0);
1844 			else
1845 				return (1);
1846 		}
1847 	}
1848 	return (0);
1849 }
1850 
1851 static void
1852 em_82547_update_fifo_head(struct adapter *adapter, int len)
1853 {
1854 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1855 
1856 	/* tx_fifo_head is always 16 byte aligned */
1857 	adapter->tx_fifo_head += fifo_pkt_len;
1858 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1859 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1860 }
1861 
1862 static int
1863 em_82547_tx_fifo_reset(struct adapter *adapter)
1864 {
1865 	uint32_t tctl;
1866 
1867 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1868 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1869 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1870 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1871 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1872 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1873 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1874 		/* Disable TX unit */
1875 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1876 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1877 		    tctl & ~E1000_TCTL_EN);
1878 
1879 		/* Reset FIFO pointers */
1880 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1881 		    adapter->tx_head_addr);
1882 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1883 		    adapter->tx_head_addr);
1884 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1885 		    adapter->tx_head_addr);
1886 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1887 		    adapter->tx_head_addr);
1888 
1889 		/* Re-enable TX unit */
1890 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1891 		E1000_WRITE_FLUSH(&adapter->hw);
1892 
1893 		adapter->tx_fifo_head = 0;
1894 		adapter->tx_fifo_reset_cnt++;
1895 
1896 		return (TRUE);
1897 	} else {
1898 		return (FALSE);
1899 	}
1900 }
1901 
1902 static void
1903 em_set_promisc(struct adapter *adapter)
1904 {
1905 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1906 	uint32_t reg_rctl;
1907 
1908 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1909 
1910 	if (ifp->if_flags & IFF_PROMISC) {
1911 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1912 		/* Turn this on if you want to see bad packets */
1913 		if (em_debug_sbp)
1914 			reg_rctl |= E1000_RCTL_SBP;
1915 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1916 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1917 		reg_rctl |= E1000_RCTL_MPE;
1918 		reg_rctl &= ~E1000_RCTL_UPE;
1919 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1920 	}
1921 }
1922 
1923 static void
1924 em_disable_promisc(struct adapter *adapter)
1925 {
1926 	uint32_t reg_rctl;
1927 
1928 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1929 
1930 	reg_rctl &= ~E1000_RCTL_UPE;
1931 	reg_rctl &= ~E1000_RCTL_MPE;
1932 	reg_rctl &= ~E1000_RCTL_SBP;
1933 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1934 }
1935 
1936 static void
1937 em_set_multi(struct adapter *adapter)
1938 {
1939 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1940 	struct ifmultiaddr *ifma;
1941 	uint32_t reg_rctl = 0;
1942 	uint8_t *mta;
1943 	int mcnt = 0;
1944 
1945 	mta = adapter->mta;
1946 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1947 
1948 	if (adapter->hw.mac.type == e1000_82542 &&
1949 	    adapter->hw.revision_id == E1000_REVISION_2) {
1950 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1951 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1952 			e1000_pci_clear_mwi(&adapter->hw);
1953 		reg_rctl |= E1000_RCTL_RST;
1954 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1955 		msec_delay(5);
1956 	}
1957 
1958 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1959 		if (ifma->ifma_addr->sa_family != AF_LINK)
1960 			continue;
1961 
1962 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1963 			break;
1964 
1965 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1966 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1967 		mcnt++;
1968 	}
1969 
1970 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1971 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1972 		reg_rctl |= E1000_RCTL_MPE;
1973 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1974 	} else {
1975 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1976 	}
1977 
1978 	if (adapter->hw.mac.type == e1000_82542 &&
1979 	    adapter->hw.revision_id == E1000_REVISION_2) {
1980 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1981 		reg_rctl &= ~E1000_RCTL_RST;
1982 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1983 		msec_delay(5);
1984 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1985 			e1000_pci_set_mwi(&adapter->hw);
1986 	}
1987 }
1988 
1989 /*
1990  * This routine checks for link status and updates statistics.
1991  */
1992 static void
1993 em_timer(void *xsc)
1994 {
1995 	struct adapter *adapter = xsc;
1996 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1997 
1998 	lwkt_serialize_enter(ifp->if_serializer);
1999 
2000 	em_update_link_status(adapter);
2001 	em_update_stats(adapter);
2002 
2003 	/* Reset LAA into RAR[0] on 82571 */
2004 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2005 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2006 
2007 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2008 		em_print_hw_stats(adapter);
2009 
2010 	em_smartspeed(adapter);
2011 
2012 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2013 
2014 	lwkt_serialize_exit(ifp->if_serializer);
2015 }
2016 
2017 static void
2018 em_update_link_status(struct adapter *adapter)
2019 {
2020 	struct e1000_hw *hw = &adapter->hw;
2021 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2022 	device_t dev = adapter->dev;
2023 	uint32_t link_check = 0;
2024 
2025 	/* Get the cached link value or read phy for real */
2026 	switch (hw->phy.media_type) {
2027 	case e1000_media_type_copper:
2028 		if (hw->mac.get_link_status) {
2029 			/* Do the work to read phy */
2030 			e1000_check_for_link(hw);
2031 			link_check = !hw->mac.get_link_status;
2032 			if (link_check) /* ESB2 fix */
2033 				e1000_cfg_on_link_up(hw);
2034 		} else {
2035 			link_check = TRUE;
2036 		}
2037 		break;
2038 
2039 	case e1000_media_type_fiber:
2040 		e1000_check_for_link(hw);
2041 		link_check =
2042 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2043 		break;
2044 
2045 	case e1000_media_type_internal_serdes:
2046 		e1000_check_for_link(hw);
2047 		link_check = adapter->hw.mac.serdes_has_link;
2048 		break;
2049 
2050 	case e1000_media_type_unknown:
2051 	default:
2052 		break;
2053 	}
2054 
2055 	/* Now check for a transition */
2056 	if (link_check && adapter->link_active == 0) {
2057 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2058 		    &adapter->link_duplex);
2059 
2060 		/*
2061 		 * Check if we should enable/disable SPEED_MODE bit on
2062 		 * 82571/82572
2063 		 */
2064 		if (adapter->link_speed != SPEED_1000 &&
2065 		    (hw->mac.type == e1000_82571 ||
2066 		     hw->mac.type == e1000_82572)) {
2067 			int tarc0;
2068 
2069 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2070 			tarc0 &= ~SPEED_MODE_BIT;
2071 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2072 		}
2073 		if (bootverbose) {
2074 			device_printf(dev, "Link is up %d Mbps %s\n",
2075 			    adapter->link_speed,
2076 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2077 			    "Full Duplex" : "Half Duplex"));
2078 		}
2079 		adapter->link_active = 1;
2080 		adapter->smartspeed = 0;
2081 		ifp->if_baudrate = adapter->link_speed * 1000000;
2082 		ifp->if_link_state = LINK_STATE_UP;
2083 		if_link_state_change(ifp);
2084 	} else if (!link_check && adapter->link_active == 1) {
2085 		ifp->if_baudrate = adapter->link_speed = 0;
2086 		adapter->link_duplex = 0;
2087 		if (bootverbose)
2088 			device_printf(dev, "Link is Down\n");
2089 		adapter->link_active = 0;
2090 #if 0
2091 		/* Link down, disable watchdog */
2092 		if->if_timer = 0;
2093 #endif
2094 		ifp->if_link_state = LINK_STATE_DOWN;
2095 		if_link_state_change(ifp);
2096 	}
2097 }
2098 
2099 static void
2100 em_stop(struct adapter *adapter)
2101 {
2102 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2103 	int i;
2104 
2105 	ASSERT_SERIALIZED(ifp->if_serializer);
2106 
2107 	em_disable_intr(adapter);
2108 
2109 	callout_stop(&adapter->timer);
2110 	callout_stop(&adapter->tx_fifo_timer);
2111 
2112 	ifp->if_flags &= ~IFF_RUNNING;
2113 	ifq_clr_oactive(&ifp->if_snd);
2114 	ifp->if_timer = 0;
2115 
2116 	e1000_reset_hw(&adapter->hw);
2117 	if (adapter->hw.mac.type >= e1000_82544)
2118 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2119 
2120 	for (i = 0; i < adapter->num_tx_desc; i++) {
2121 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2122 
2123 		if (tx_buffer->m_head != NULL) {
2124 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2125 			m_freem(tx_buffer->m_head);
2126 			tx_buffer->m_head = NULL;
2127 		}
2128 	}
2129 
2130 	for (i = 0; i < adapter->num_rx_desc; i++) {
2131 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2132 
2133 		if (rx_buffer->m_head != NULL) {
2134 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2135 			m_freem(rx_buffer->m_head);
2136 			rx_buffer->m_head = NULL;
2137 		}
2138 	}
2139 
2140 	if (adapter->fmp != NULL)
2141 		m_freem(adapter->fmp);
2142 	adapter->fmp = NULL;
2143 	adapter->lmp = NULL;
2144 
2145 	adapter->csum_flags = 0;
2146 	adapter->csum_lhlen = 0;
2147 	adapter->csum_iphlen = 0;
2148 	adapter->csum_thlen = 0;
2149 	adapter->csum_mss = 0;
2150 	adapter->csum_pktlen = 0;
2151 
2152 	adapter->tx_dd_head = 0;
2153 	adapter->tx_dd_tail = 0;
2154 	adapter->tx_nsegs = 0;
2155 }
2156 
2157 static int
2158 em_get_hw_info(struct adapter *adapter)
2159 {
2160 	device_t dev = adapter->dev;
2161 
2162 	/* Save off the information about this board */
2163 	adapter->hw.vendor_id = pci_get_vendor(dev);
2164 	adapter->hw.device_id = pci_get_device(dev);
2165 	adapter->hw.revision_id = pci_get_revid(dev);
2166 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2167 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2168 
2169 	/* Do Shared Code Init and Setup */
2170 	if (e1000_set_mac_type(&adapter->hw))
2171 		return ENXIO;
2172 	return 0;
2173 }
2174 
2175 static int
2176 em_alloc_pci_res(struct adapter *adapter)
2177 {
2178 	device_t dev = adapter->dev;
2179 	u_int intr_flags;
2180 	int val, rid, msi_enable;
2181 
2182 	/* Enable bus mastering */
2183 	pci_enable_busmaster(dev);
2184 
2185 	adapter->memory_rid = EM_BAR_MEM;
2186 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2187 				&adapter->memory_rid, RF_ACTIVE);
2188 	if (adapter->memory == NULL) {
2189 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2190 		return (ENXIO);
2191 	}
2192 	adapter->osdep.mem_bus_space_tag =
2193 	    rman_get_bustag(adapter->memory);
2194 	adapter->osdep.mem_bus_space_handle =
2195 	    rman_get_bushandle(adapter->memory);
2196 
2197 	/* XXX This is quite goofy, it is not actually used */
2198 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2199 
2200 	/* Only older adapters use IO mapping */
2201 	if (adapter->hw.mac.type > e1000_82543 &&
2202 	    adapter->hw.mac.type < e1000_82571) {
2203 		/* Figure our where our IO BAR is ? */
2204 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2205 			val = pci_read_config(dev, rid, 4);
2206 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2207 				adapter->io_rid = rid;
2208 				break;
2209 			}
2210 			rid += 4;
2211 			/* check for 64bit BAR */
2212 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2213 				rid += 4;
2214 		}
2215 		if (rid >= PCIR_CARDBUSCIS) {
2216 			device_printf(dev, "Unable to locate IO BAR\n");
2217 			return (ENXIO);
2218 		}
2219 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2220 					&adapter->io_rid, RF_ACTIVE);
2221 		if (adapter->ioport == NULL) {
2222 			device_printf(dev, "Unable to allocate bus resource: "
2223 			    "ioport\n");
2224 			return (ENXIO);
2225 		}
2226 		adapter->hw.io_base = 0;
2227 		adapter->osdep.io_bus_space_tag =
2228 		    rman_get_bustag(adapter->ioport);
2229 		adapter->osdep.io_bus_space_handle =
2230 		    rman_get_bushandle(adapter->ioport);
2231 	}
2232 
2233 	/*
2234 	 * Don't enable MSI-X on 82574, see:
2235 	 * 82574 specification update errata #15
2236 	 *
2237 	 * Don't enable MSI on PCI/PCI-X chips, see:
2238 	 * 82540 specification update errata #6
2239 	 * 82545 specification update errata #4
2240 	 *
2241 	 * Don't enable MSI on 82571/82572, see:
2242 	 * 82571/82572 specification update errata #63
2243 	 */
2244 	msi_enable = em_msi_enable;
2245 	if (msi_enable &&
2246 	    (!pci_is_pcie(dev) ||
2247 	     adapter->hw.mac.type == e1000_82571 ||
2248 	     adapter->hw.mac.type == e1000_82572))
2249 		msi_enable = 0;
2250 
2251 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2252 	    &adapter->intr_rid, &intr_flags);
2253 
2254 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2255 		int unshared;
2256 
2257 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2258 		if (!unshared) {
2259 			adapter->flags |= EM_FLAG_SHARED_INTR;
2260 			if (bootverbose)
2261 				device_printf(dev, "IRQ shared\n");
2262 		} else {
2263 			intr_flags &= ~RF_SHAREABLE;
2264 			if (bootverbose)
2265 				device_printf(dev, "IRQ unshared\n");
2266 		}
2267 	}
2268 
2269 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2270 	    &adapter->intr_rid, intr_flags);
2271 	if (adapter->intr_res == NULL) {
2272 		device_printf(dev, "Unable to allocate bus resource: "
2273 		    "interrupt\n");
2274 		return (ENXIO);
2275 	}
2276 
2277 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2278 	adapter->hw.back = &adapter->osdep;
2279 	return (0);
2280 }
2281 
2282 static void
2283 em_free_pci_res(struct adapter *adapter)
2284 {
2285 	device_t dev = adapter->dev;
2286 
2287 	if (adapter->intr_res != NULL) {
2288 		bus_release_resource(dev, SYS_RES_IRQ,
2289 		    adapter->intr_rid, adapter->intr_res);
2290 	}
2291 
2292 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2293 		pci_release_msi(dev);
2294 
2295 	if (adapter->memory != NULL) {
2296 		bus_release_resource(dev, SYS_RES_MEMORY,
2297 		    adapter->memory_rid, adapter->memory);
2298 	}
2299 
2300 	if (adapter->flash != NULL) {
2301 		bus_release_resource(dev, SYS_RES_MEMORY,
2302 		    adapter->flash_rid, adapter->flash);
2303 	}
2304 
2305 	if (adapter->ioport != NULL) {
2306 		bus_release_resource(dev, SYS_RES_IOPORT,
2307 		    adapter->io_rid, adapter->ioport);
2308 	}
2309 }
2310 
2311 static int
2312 em_reset(struct adapter *adapter)
2313 {
2314 	device_t dev = adapter->dev;
2315 	uint16_t rx_buffer_size;
2316 	uint32_t pba;
2317 
2318 	/* When hardware is reset, fifo_head is also reset */
2319 	adapter->tx_fifo_head = 0;
2320 
2321 	/* Set up smart power down as default off on newer adapters. */
2322 	if (!em_smart_pwr_down &&
2323 	    (adapter->hw.mac.type == e1000_82571 ||
2324 	     adapter->hw.mac.type == e1000_82572)) {
2325 		uint16_t phy_tmp = 0;
2326 
2327 		/* Speed up time to link by disabling smart power down. */
2328 		e1000_read_phy_reg(&adapter->hw,
2329 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2330 		phy_tmp &= ~IGP02E1000_PM_SPD;
2331 		e1000_write_phy_reg(&adapter->hw,
2332 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2333 	}
2334 
2335 	/*
2336 	 * Packet Buffer Allocation (PBA)
2337 	 * Writing PBA sets the receive portion of the buffer
2338 	 * the remainder is used for the transmit buffer.
2339 	 *
2340 	 * Devices before the 82547 had a Packet Buffer of 64K.
2341 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2342 	 * After the 82547 the buffer was reduced to 40K.
2343 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2344 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2345 	 */
2346 	switch (adapter->hw.mac.type) {
2347 	case e1000_82547:
2348 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2349 		if (adapter->hw.mac.max_frame_size > 8192)
2350 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2351 		else
2352 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2353 		adapter->tx_fifo_head = 0;
2354 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2355 		adapter->tx_fifo_size =
2356 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2357 		break;
2358 
2359 	/* Total Packet Buffer on these is 48K */
2360 	case e1000_82571:
2361 	case e1000_82572:
2362 	case e1000_80003es2lan:
2363 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2364 		break;
2365 
2366 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2367 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2368 		break;
2369 
2370 	case e1000_82574:
2371 	case e1000_82583:
2372 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2373 		break;
2374 
2375 	case e1000_ich8lan:
2376 		pba = E1000_PBA_8K;
2377 		break;
2378 
2379 	case e1000_ich9lan:
2380 	case e1000_ich10lan:
2381 #define E1000_PBA_10K	0x000A
2382 		pba = E1000_PBA_10K;
2383 		break;
2384 
2385 	case e1000_pchlan:
2386 	case e1000_pch2lan:
2387 	case e1000_pch_lpt:
2388 		pba = E1000_PBA_26K;
2389 		break;
2390 
2391 	default:
2392 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2393 		if (adapter->hw.mac.max_frame_size > 8192)
2394 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2395 		else
2396 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2397 	}
2398 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2399 
2400 	/*
2401 	 * These parameters control the automatic generation (Tx) and
2402 	 * response (Rx) to Ethernet PAUSE frames.
2403 	 * - High water mark should allow for at least two frames to be
2404 	 *   received after sending an XOFF.
2405 	 * - Low water mark works best when it is very near the high water mark.
2406 	 *   This allows the receiver to restart by sending XON when it has
2407 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2408 	 *   restart after one full frame is pulled from the buffer. There
2409 	 *   could be several smaller frames in the buffer and if so they will
2410 	 *   not trigger the XON until their total number reduces the buffer
2411 	 *   by 1500.
2412 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2413 	 */
2414 	rx_buffer_size =
2415 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2416 
2417 	adapter->hw.fc.high_water = rx_buffer_size -
2418 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2419 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2420 
2421 	if (adapter->hw.mac.type == e1000_80003es2lan)
2422 		adapter->hw.fc.pause_time = 0xFFFF;
2423 	else
2424 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2425 
2426 	adapter->hw.fc.send_xon = TRUE;
2427 
2428 	adapter->hw.fc.requested_mode = e1000_fc_full;
2429 
2430 	/*
2431 	 * Device specific overrides/settings
2432 	 */
2433 	switch (adapter->hw.mac.type) {
2434 	case e1000_pchlan:
2435 		/* Workaround: no TX flow ctrl for PCH */
2436 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2437 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2438 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2439 			adapter->hw.fc.high_water = 0x3500;
2440 			adapter->hw.fc.low_water = 0x1500;
2441 		} else {
2442 			adapter->hw.fc.high_water = 0x5000;
2443 			adapter->hw.fc.low_water = 0x3000;
2444 		}
2445 		adapter->hw.fc.refresh_time = 0x1000;
2446 		break;
2447 
2448 	case e1000_pch2lan:
2449 	case e1000_pch_lpt:
2450 		adapter->hw.fc.high_water = 0x5C20;
2451 		adapter->hw.fc.low_water = 0x5048;
2452 		adapter->hw.fc.pause_time = 0x0650;
2453 		adapter->hw.fc.refresh_time = 0x0400;
2454 		/* Jumbos need adjusted PBA */
2455 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2456 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2457 		else
2458 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2459 		break;
2460 
2461 	case e1000_ich9lan:
2462 	case e1000_ich10lan:
2463 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2464 			adapter->hw.fc.high_water = 0x2800;
2465 			adapter->hw.fc.low_water =
2466 			    adapter->hw.fc.high_water - 8;
2467 			break;
2468 		}
2469 		/* FALL THROUGH */
2470 	default:
2471 		if (adapter->hw.mac.type == e1000_80003es2lan)
2472 			adapter->hw.fc.pause_time = 0xFFFF;
2473 		break;
2474 	}
2475 
2476 	/* Issue a global reset */
2477 	e1000_reset_hw(&adapter->hw);
2478 	if (adapter->hw.mac.type >= e1000_82544)
2479 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2480 	em_disable_aspm(adapter);
2481 
2482 	if (e1000_init_hw(&adapter->hw) < 0) {
2483 		device_printf(dev, "Hardware Initialization Failed\n");
2484 		return (EIO);
2485 	}
2486 
2487 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2488 	e1000_get_phy_info(&adapter->hw);
2489 	e1000_check_for_link(&adapter->hw);
2490 
2491 	return (0);
2492 }
2493 
2494 static void
2495 em_setup_ifp(struct adapter *adapter)
2496 {
2497 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2498 
2499 	if_initname(ifp, device_get_name(adapter->dev),
2500 		    device_get_unit(adapter->dev));
2501 	ifp->if_softc = adapter;
2502 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2503 	ifp->if_init =  em_init;
2504 	ifp->if_ioctl = em_ioctl;
2505 	ifp->if_start = em_start;
2506 #ifdef IFPOLL_ENABLE
2507 	ifp->if_npoll = em_npoll;
2508 #endif
2509 	ifp->if_watchdog = em_watchdog;
2510 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2511 	ifq_set_ready(&ifp->if_snd);
2512 
2513 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2514 
2515 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2516 	if (adapter->hw.mac.type >= e1000_82543)
2517 		ifp->if_capabilities |= IFCAP_HWCSUM;
2518 	if (adapter->flags & EM_FLAG_TSO)
2519 		ifp->if_capabilities |= IFCAP_TSO;
2520 	ifp->if_capenable = ifp->if_capabilities;
2521 
2522 	if (ifp->if_capenable & IFCAP_TXCSUM)
2523 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2524 	if (ifp->if_capenable & IFCAP_TSO)
2525 		ifp->if_hwassist |= CSUM_TSO;
2526 
2527 	/*
2528 	 * Tell the upper layer(s) we support long frames.
2529 	 */
2530 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2531 
2532 	/*
2533 	 * Specify the media types supported by this adapter and register
2534 	 * callbacks to update media and link information
2535 	 */
2536 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2537 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2538 		u_char fiber_type = IFM_1000_SX; /* default type */
2539 
2540 		if (adapter->hw.mac.type == e1000_82545)
2541 			fiber_type = IFM_1000_LX;
2542 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2543 			    0, NULL);
2544 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2545 	} else {
2546 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2547 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2548 			    0, NULL);
2549 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2550 			    0, NULL);
2551 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2552 			    0, NULL);
2553 		if (adapter->hw.phy.type != e1000_phy_ife) {
2554 			ifmedia_add(&adapter->media,
2555 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2556 			ifmedia_add(&adapter->media,
2557 				IFM_ETHER | IFM_1000_T, 0, NULL);
2558 		}
2559 	}
2560 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2561 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2562 }
2563 
2564 
2565 /*
2566  * Workaround for SmartSpeed on 82541 and 82547 controllers
2567  */
2568 static void
2569 em_smartspeed(struct adapter *adapter)
2570 {
2571 	uint16_t phy_tmp;
2572 
2573 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2574 	    adapter->hw.mac.autoneg == 0 ||
2575 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2576 		return;
2577 
2578 	if (adapter->smartspeed == 0) {
2579 		/*
2580 		 * If Master/Slave config fault is asserted twice,
2581 		 * we assume back-to-back
2582 		 */
2583 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2584 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2585 			return;
2586 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2587 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2588 			e1000_read_phy_reg(&adapter->hw,
2589 			    PHY_1000T_CTRL, &phy_tmp);
2590 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2591 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2592 				e1000_write_phy_reg(&adapter->hw,
2593 				    PHY_1000T_CTRL, phy_tmp);
2594 				adapter->smartspeed++;
2595 				if (adapter->hw.mac.autoneg &&
2596 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2597 				    !e1000_read_phy_reg(&adapter->hw,
2598 				     PHY_CONTROL, &phy_tmp)) {
2599 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2600 						   MII_CR_RESTART_AUTO_NEG;
2601 					e1000_write_phy_reg(&adapter->hw,
2602 					    PHY_CONTROL, phy_tmp);
2603 				}
2604 			}
2605 		}
2606 		return;
2607 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2608 		/* If still no link, perhaps using 2/3 pair cable */
2609 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2610 		phy_tmp |= CR_1000T_MS_ENABLE;
2611 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2612 		if (adapter->hw.mac.autoneg &&
2613 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2614 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2615 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2616 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2617 		}
2618 	}
2619 
2620 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2621 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2622 		adapter->smartspeed = 0;
2623 }
2624 
2625 static int
2626 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2627 	      struct em_dma_alloc *dma)
2628 {
2629 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2630 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2631 				&dma->dma_tag, &dma->dma_map,
2632 				&dma->dma_paddr);
2633 	if (dma->dma_vaddr == NULL)
2634 		return ENOMEM;
2635 	else
2636 		return 0;
2637 }
2638 
2639 static void
2640 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2641 {
2642 	if (dma->dma_tag == NULL)
2643 		return;
2644 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2645 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2646 	bus_dma_tag_destroy(dma->dma_tag);
2647 }
2648 
2649 static int
2650 em_create_tx_ring(struct adapter *adapter)
2651 {
2652 	device_t dev = adapter->dev;
2653 	struct em_buffer *tx_buffer;
2654 	int error, i;
2655 
2656 	adapter->tx_buffer_area =
2657 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2658 			M_DEVBUF, M_WAITOK | M_ZERO);
2659 
2660 	/*
2661 	 * Create DMA tags for tx buffers
2662 	 */
2663 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2664 			1, 0,			/* alignment, bounds */
2665 			BUS_SPACE_MAXADDR,	/* lowaddr */
2666 			BUS_SPACE_MAXADDR,	/* highaddr */
2667 			NULL, NULL,		/* filter, filterarg */
2668 			EM_TSO_SIZE,		/* maxsize */
2669 			EM_MAX_SCATTER,		/* nsegments */
2670 			PAGE_SIZE,		/* maxsegsize */
2671 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2672 			BUS_DMA_ONEBPAGE,	/* flags */
2673 			&adapter->txtag);
2674 	if (error) {
2675 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2676 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2677 		adapter->tx_buffer_area = NULL;
2678 		return error;
2679 	}
2680 
2681 	/*
2682 	 * Create DMA maps for tx buffers
2683 	 */
2684 	for (i = 0; i < adapter->num_tx_desc; i++) {
2685 		tx_buffer = &adapter->tx_buffer_area[i];
2686 
2687 		error = bus_dmamap_create(adapter->txtag,
2688 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2689 					  &tx_buffer->map);
2690 		if (error) {
2691 			device_printf(dev, "Unable to create TX DMA map\n");
2692 			em_destroy_tx_ring(adapter, i);
2693 			return error;
2694 		}
2695 	}
2696 	return (0);
2697 }
2698 
2699 static void
2700 em_init_tx_ring(struct adapter *adapter)
2701 {
2702 	/* Clear the old ring contents */
2703 	bzero(adapter->tx_desc_base,
2704 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2705 
2706 	/* Reset state */
2707 	adapter->next_avail_tx_desc = 0;
2708 	adapter->next_tx_to_clean = 0;
2709 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2710 }
2711 
2712 static void
2713 em_init_tx_unit(struct adapter *adapter)
2714 {
2715 	uint32_t tctl, tarc, tipg = 0;
2716 	uint64_t bus_addr;
2717 
2718 	/* Setup the Base and Length of the Tx Descriptor Ring */
2719 	bus_addr = adapter->txdma.dma_paddr;
2720 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2721 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2722 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2723 	    (uint32_t)(bus_addr >> 32));
2724 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2725 	    (uint32_t)bus_addr);
2726 	/* Setup the HW Tx Head and Tail descriptor pointers */
2727 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2728 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2729 
2730 	/* Set the default values for the Tx Inter Packet Gap timer */
2731 	switch (adapter->hw.mac.type) {
2732 	case e1000_82542:
2733 		tipg = DEFAULT_82542_TIPG_IPGT;
2734 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2735 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2736 		break;
2737 
2738 	case e1000_80003es2lan:
2739 		tipg = DEFAULT_82543_TIPG_IPGR1;
2740 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2741 		    E1000_TIPG_IPGR2_SHIFT;
2742 		break;
2743 
2744 	default:
2745 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2746 		    adapter->hw.phy.media_type ==
2747 		    e1000_media_type_internal_serdes)
2748 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2749 		else
2750 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2751 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2752 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2753 		break;
2754 	}
2755 
2756 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2757 
2758 	/* NOTE: 0 is not allowed for TIDV */
2759 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2760 	if(adapter->hw.mac.type >= e1000_82540)
2761 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2762 
2763 	if (adapter->hw.mac.type == e1000_82571 ||
2764 	    adapter->hw.mac.type == e1000_82572) {
2765 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2766 		tarc |= SPEED_MODE_BIT;
2767 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2768 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2769 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2770 		tarc |= 1;
2771 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2772 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2773 		tarc |= 1;
2774 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2775 	}
2776 
2777 	/* Program the Transmit Control Register */
2778 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2779 	tctl &= ~E1000_TCTL_CT;
2780 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2781 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2782 
2783 	if (adapter->hw.mac.type >= e1000_82571)
2784 		tctl |= E1000_TCTL_MULR;
2785 
2786 	/* This write will effectively turn on the transmit unit. */
2787 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2788 
2789 	if (adapter->hw.mac.type == e1000_82571 ||
2790 	    adapter->hw.mac.type == e1000_82572 ||
2791 	    adapter->hw.mac.type == e1000_80003es2lan) {
2792 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2793 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2794 		tarc &= ~(1 << 28);
2795 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2796 	}
2797 }
2798 
2799 static void
2800 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2801 {
2802 	struct em_buffer *tx_buffer;
2803 	int i;
2804 
2805 	if (adapter->tx_buffer_area == NULL)
2806 		return;
2807 
2808 	for (i = 0; i < ndesc; i++) {
2809 		tx_buffer = &adapter->tx_buffer_area[i];
2810 
2811 		KKASSERT(tx_buffer->m_head == NULL);
2812 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2813 	}
2814 	bus_dma_tag_destroy(adapter->txtag);
2815 
2816 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2817 	adapter->tx_buffer_area = NULL;
2818 }
2819 
2820 /*
2821  * The offload context needs to be set when we transfer the first
2822  * packet of a particular protocol (TCP/UDP).  This routine has been
2823  * enhanced to deal with inserted VLAN headers.
2824  *
2825  * If the new packet's ether header length, ip header length and
2826  * csum offloading type are same as the previous packet, we should
2827  * avoid allocating a new csum context descriptor; mainly to take
2828  * advantage of the pipeline effect of the TX data read request.
2829  *
2830  * This function returns number of TX descrptors allocated for
2831  * csum context.
2832  */
2833 static int
2834 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2835 	  uint32_t *txd_upper, uint32_t *txd_lower)
2836 {
2837 	struct e1000_context_desc *TXD;
2838 	int curr_txd, ehdrlen, csum_flags;
2839 	uint32_t cmd, hdr_len, ip_hlen;
2840 
2841 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2842 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2843 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2844 
2845 	if (adapter->csum_lhlen == ehdrlen &&
2846 	    adapter->csum_iphlen == ip_hlen &&
2847 	    adapter->csum_flags == csum_flags) {
2848 		/*
2849 		 * Same csum offload context as the previous packets;
2850 		 * just return.
2851 		 */
2852 		*txd_upper = adapter->csum_txd_upper;
2853 		*txd_lower = adapter->csum_txd_lower;
2854 		return 0;
2855 	}
2856 
2857 	/*
2858 	 * Setup a new csum offload context.
2859 	 */
2860 
2861 	curr_txd = adapter->next_avail_tx_desc;
2862 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2863 
2864 	cmd = 0;
2865 
2866 	/* Setup of IP header checksum. */
2867 	if (csum_flags & CSUM_IP) {
2868 		/*
2869 		 * Start offset for header checksum calculation.
2870 		 * End offset for header checksum calculation.
2871 		 * Offset of place to put the checksum.
2872 		 */
2873 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2874 		TXD->lower_setup.ip_fields.ipcse =
2875 		    htole16(ehdrlen + ip_hlen - 1);
2876 		TXD->lower_setup.ip_fields.ipcso =
2877 		    ehdrlen + offsetof(struct ip, ip_sum);
2878 		cmd |= E1000_TXD_CMD_IP;
2879 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2880 	}
2881 	hdr_len = ehdrlen + ip_hlen;
2882 
2883 	if (csum_flags & CSUM_TCP) {
2884 		/*
2885 		 * Start offset for payload checksum calculation.
2886 		 * End offset for payload checksum calculation.
2887 		 * Offset of place to put the checksum.
2888 		 */
2889 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2890 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2891 		TXD->upper_setup.tcp_fields.tucso =
2892 		    hdr_len + offsetof(struct tcphdr, th_sum);
2893 		cmd |= E1000_TXD_CMD_TCP;
2894 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2895 	} else if (csum_flags & CSUM_UDP) {
2896 		/*
2897 		 * Start offset for header checksum calculation.
2898 		 * End offset for header checksum calculation.
2899 		 * Offset of place to put the checksum.
2900 		 */
2901 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2902 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2903 		TXD->upper_setup.tcp_fields.tucso =
2904 		    hdr_len + offsetof(struct udphdr, uh_sum);
2905 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2906 	}
2907 
2908 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2909 		     E1000_TXD_DTYP_D;		/* Data descr */
2910 
2911 	/* Save the information for this csum offloading context */
2912 	adapter->csum_lhlen = ehdrlen;
2913 	adapter->csum_iphlen = ip_hlen;
2914 	adapter->csum_flags = csum_flags;
2915 	adapter->csum_txd_upper = *txd_upper;
2916 	adapter->csum_txd_lower = *txd_lower;
2917 
2918 	TXD->tcp_seg_setup.data = htole32(0);
2919 	TXD->cmd_and_length =
2920 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2921 
2922 	if (++curr_txd == adapter->num_tx_desc)
2923 		curr_txd = 0;
2924 
2925 	KKASSERT(adapter->num_tx_desc_avail > 0);
2926 	adapter->num_tx_desc_avail--;
2927 
2928 	adapter->next_avail_tx_desc = curr_txd;
2929 	return 1;
2930 }
2931 
2932 static void
2933 em_txeof(struct adapter *adapter)
2934 {
2935 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2936 	struct em_buffer *tx_buffer;
2937 	int first, num_avail;
2938 
2939 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2940 		return;
2941 
2942 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2943 		return;
2944 
2945 	num_avail = adapter->num_tx_desc_avail;
2946 	first = adapter->next_tx_to_clean;
2947 
2948 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2949 		struct e1000_tx_desc *tx_desc;
2950 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2951 
2952 		tx_desc = &adapter->tx_desc_base[dd_idx];
2953 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2954 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2955 
2956 			if (++dd_idx == adapter->num_tx_desc)
2957 				dd_idx = 0;
2958 
2959 			while (first != dd_idx) {
2960 				logif(pkt_txclean);
2961 
2962 				num_avail++;
2963 
2964 				tx_buffer = &adapter->tx_buffer_area[first];
2965 				if (tx_buffer->m_head) {
2966 					IFNET_STAT_INC(ifp, opackets, 1);
2967 					bus_dmamap_unload(adapter->txtag,
2968 							  tx_buffer->map);
2969 					m_freem(tx_buffer->m_head);
2970 					tx_buffer->m_head = NULL;
2971 				}
2972 
2973 				if (++first == adapter->num_tx_desc)
2974 					first = 0;
2975 			}
2976 		} else {
2977 			break;
2978 		}
2979 	}
2980 	adapter->next_tx_to_clean = first;
2981 	adapter->num_tx_desc_avail = num_avail;
2982 
2983 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2984 		adapter->tx_dd_head = 0;
2985 		adapter->tx_dd_tail = 0;
2986 	}
2987 
2988 	if (!EM_IS_OACTIVE(adapter)) {
2989 		ifq_clr_oactive(&ifp->if_snd);
2990 
2991 		/* All clean, turn off the timer */
2992 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2993 			ifp->if_timer = 0;
2994 	}
2995 }
2996 
2997 static void
2998 em_tx_collect(struct adapter *adapter)
2999 {
3000 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3001 	struct em_buffer *tx_buffer;
3002 	int tdh, first, num_avail, dd_idx = -1;
3003 
3004 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3005 		return;
3006 
3007 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3008 	if (tdh == adapter->next_tx_to_clean)
3009 		return;
3010 
3011 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3012 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3013 
3014 	num_avail = adapter->num_tx_desc_avail;
3015 	first = adapter->next_tx_to_clean;
3016 
3017 	while (first != tdh) {
3018 		logif(pkt_txclean);
3019 
3020 		num_avail++;
3021 
3022 		tx_buffer = &adapter->tx_buffer_area[first];
3023 		if (tx_buffer->m_head) {
3024 			IFNET_STAT_INC(ifp, opackets, 1);
3025 			bus_dmamap_unload(adapter->txtag,
3026 					  tx_buffer->map);
3027 			m_freem(tx_buffer->m_head);
3028 			tx_buffer->m_head = NULL;
3029 		}
3030 
3031 		if (first == dd_idx) {
3032 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3033 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3034 				adapter->tx_dd_head = 0;
3035 				adapter->tx_dd_tail = 0;
3036 				dd_idx = -1;
3037 			} else {
3038 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3039 			}
3040 		}
3041 
3042 		if (++first == adapter->num_tx_desc)
3043 			first = 0;
3044 	}
3045 	adapter->next_tx_to_clean = first;
3046 	adapter->num_tx_desc_avail = num_avail;
3047 
3048 	if (!EM_IS_OACTIVE(adapter)) {
3049 		ifq_clr_oactive(&ifp->if_snd);
3050 
3051 		/* All clean, turn off the timer */
3052 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3053 			ifp->if_timer = 0;
3054 	}
3055 }
3056 
3057 /*
3058  * When Link is lost sometimes there is work still in the TX ring
3059  * which will result in a watchdog, rather than allow that do an
3060  * attempted cleanup and then reinit here.  Note that this has been
3061  * seens mostly with fiber adapters.
3062  */
3063 static void
3064 em_tx_purge(struct adapter *adapter)
3065 {
3066 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3067 
3068 	if (!adapter->link_active && ifp->if_timer) {
3069 		em_tx_collect(adapter);
3070 		if (ifp->if_timer) {
3071 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3072 			ifp->if_timer = 0;
3073 			em_init(adapter);
3074 		}
3075 	}
3076 }
3077 
3078 static int
3079 em_newbuf(struct adapter *adapter, int i, int init)
3080 {
3081 	struct mbuf *m;
3082 	bus_dma_segment_t seg;
3083 	bus_dmamap_t map;
3084 	struct em_buffer *rx_buffer;
3085 	int error, nseg;
3086 
3087 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3088 	if (m == NULL) {
3089 		adapter->mbuf_cluster_failed++;
3090 		if (init) {
3091 			if_printf(&adapter->arpcom.ac_if,
3092 				  "Unable to allocate RX mbuf\n");
3093 		}
3094 		return (ENOBUFS);
3095 	}
3096 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3097 
3098 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3099 		m_adj(m, ETHER_ALIGN);
3100 
3101 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3102 			adapter->rx_sparemap, m,
3103 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3104 	if (error) {
3105 		m_freem(m);
3106 		if (init) {
3107 			if_printf(&adapter->arpcom.ac_if,
3108 				  "Unable to load RX mbuf\n");
3109 		}
3110 		return (error);
3111 	}
3112 
3113 	rx_buffer = &adapter->rx_buffer_area[i];
3114 	if (rx_buffer->m_head != NULL)
3115 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3116 
3117 	map = rx_buffer->map;
3118 	rx_buffer->map = adapter->rx_sparemap;
3119 	adapter->rx_sparemap = map;
3120 
3121 	rx_buffer->m_head = m;
3122 
3123 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3124 	return (0);
3125 }
3126 
3127 static int
3128 em_create_rx_ring(struct adapter *adapter)
3129 {
3130 	device_t dev = adapter->dev;
3131 	struct em_buffer *rx_buffer;
3132 	int i, error;
3133 
3134 	adapter->rx_buffer_area =
3135 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3136 			M_DEVBUF, M_WAITOK | M_ZERO);
3137 
3138 	/*
3139 	 * Create DMA tag for rx buffers
3140 	 */
3141 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3142 			1, 0,			/* alignment, bounds */
3143 			BUS_SPACE_MAXADDR,	/* lowaddr */
3144 			BUS_SPACE_MAXADDR,	/* highaddr */
3145 			NULL, NULL,		/* filter, filterarg */
3146 			MCLBYTES,		/* maxsize */
3147 			1,			/* nsegments */
3148 			MCLBYTES,		/* maxsegsize */
3149 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3150 			&adapter->rxtag);
3151 	if (error) {
3152 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3153 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3154 		adapter->rx_buffer_area = NULL;
3155 		return error;
3156 	}
3157 
3158 	/*
3159 	 * Create spare DMA map for rx buffers
3160 	 */
3161 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3162 				  &adapter->rx_sparemap);
3163 	if (error) {
3164 		device_printf(dev, "Unable to create spare RX DMA map\n");
3165 		bus_dma_tag_destroy(adapter->rxtag);
3166 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3167 		adapter->rx_buffer_area = NULL;
3168 		return error;
3169 	}
3170 
3171 	/*
3172 	 * Create DMA maps for rx buffers
3173 	 */
3174 	for (i = 0; i < adapter->num_rx_desc; i++) {
3175 		rx_buffer = &adapter->rx_buffer_area[i];
3176 
3177 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3178 					  &rx_buffer->map);
3179 		if (error) {
3180 			device_printf(dev, "Unable to create RX DMA map\n");
3181 			em_destroy_rx_ring(adapter, i);
3182 			return error;
3183 		}
3184 	}
3185 	return (0);
3186 }
3187 
3188 static int
3189 em_init_rx_ring(struct adapter *adapter)
3190 {
3191 	int i, error;
3192 
3193 	/* Reset descriptor ring */
3194 	bzero(adapter->rx_desc_base,
3195 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3196 
3197 	/* Allocate new ones. */
3198 	for (i = 0; i < adapter->num_rx_desc; i++) {
3199 		error = em_newbuf(adapter, i, 1);
3200 		if (error)
3201 			return (error);
3202 	}
3203 
3204 	/* Setup our descriptor pointers */
3205 	adapter->next_rx_desc_to_check = 0;
3206 
3207 	return (0);
3208 }
3209 
3210 static void
3211 em_init_rx_unit(struct adapter *adapter)
3212 {
3213 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3214 	uint64_t bus_addr;
3215 	uint32_t rctl;
3216 
3217 	/*
3218 	 * Make sure receives are disabled while setting
3219 	 * up the descriptor ring
3220 	 */
3221 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3222 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3223 
3224 	if (adapter->hw.mac.type >= e1000_82540) {
3225 		uint32_t itr;
3226 
3227 		/*
3228 		 * Set the interrupt throttling rate. Value is calculated
3229 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3230 		 */
3231 		if (adapter->int_throttle_ceil)
3232 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3233 		else
3234 			itr = 0;
3235 		em_set_itr(adapter, itr);
3236 	}
3237 
3238 	/* Disable accelerated ackknowledge */
3239 	if (adapter->hw.mac.type == e1000_82574) {
3240 		E1000_WRITE_REG(&adapter->hw,
3241 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3242 	}
3243 
3244 	/* Receive Checksum Offload for TCP and UDP */
3245 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3246 		uint32_t rxcsum;
3247 
3248 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3249 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3250 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3251 	}
3252 
3253 	/*
3254 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3255 	 * long latencies are observed, like Lenovo X60. This
3256 	 * change eliminates the problem, but since having positive
3257 	 * values in RDTR is a known source of problems on other
3258 	 * platforms another solution is being sought.
3259 	 */
3260 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3261 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3262 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3263 	}
3264 
3265 	/*
3266 	 * Setup the Base and Length of the Rx Descriptor Ring
3267 	 */
3268 	bus_addr = adapter->rxdma.dma_paddr;
3269 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3270 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3271 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3272 	    (uint32_t)(bus_addr >> 32));
3273 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3274 	    (uint32_t)bus_addr);
3275 
3276 	/*
3277 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3278 	 */
3279 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3280 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3281 
3282 	/* Set PTHRESH for improved jumbo performance */
3283 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3284 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3285 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3286 	    (ifp->if_mtu > ETHERMTU)) {
3287 		uint32_t rxdctl;
3288 
3289 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3290 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3291 	}
3292 
3293 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3294 		if (ifp->if_mtu > ETHERMTU)
3295 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3296 		else
3297 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3298 	}
3299 
3300 	/* Setup the Receive Control Register */
3301 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3302 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3303 		E1000_RCTL_RDMTS_HALF |
3304 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3305 
3306 	/* Make sure VLAN Filters are off */
3307 	rctl &= ~E1000_RCTL_VFE;
3308 
3309 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3310 		rctl |= E1000_RCTL_SBP;
3311 	else
3312 		rctl &= ~E1000_RCTL_SBP;
3313 
3314 	switch (adapter->rx_buffer_len) {
3315 	default:
3316 	case 2048:
3317 		rctl |= E1000_RCTL_SZ_2048;
3318 		break;
3319 
3320 	case 4096:
3321 		rctl |= E1000_RCTL_SZ_4096 |
3322 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3323 		break;
3324 
3325 	case 8192:
3326 		rctl |= E1000_RCTL_SZ_8192 |
3327 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3328 		break;
3329 
3330 	case 16384:
3331 		rctl |= E1000_RCTL_SZ_16384 |
3332 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3333 		break;
3334 	}
3335 
3336 	if (ifp->if_mtu > ETHERMTU)
3337 		rctl |= E1000_RCTL_LPE;
3338 	else
3339 		rctl &= ~E1000_RCTL_LPE;
3340 
3341 	/* Enable Receives */
3342 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3343 }
3344 
3345 static void
3346 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3347 {
3348 	struct em_buffer *rx_buffer;
3349 	int i;
3350 
3351 	if (adapter->rx_buffer_area == NULL)
3352 		return;
3353 
3354 	for (i = 0; i < ndesc; i++) {
3355 		rx_buffer = &adapter->rx_buffer_area[i];
3356 
3357 		KKASSERT(rx_buffer->m_head == NULL);
3358 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3359 	}
3360 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3361 	bus_dma_tag_destroy(adapter->rxtag);
3362 
3363 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3364 	adapter->rx_buffer_area = NULL;
3365 }
3366 
3367 static void
3368 em_rxeof(struct adapter *adapter, int count)
3369 {
3370 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3371 	uint8_t status, accept_frame = 0, eop = 0;
3372 	uint16_t len, desc_len, prev_len_adj;
3373 	struct e1000_rx_desc *current_desc;
3374 	struct mbuf *mp;
3375 	int i;
3376 
3377 	i = adapter->next_rx_desc_to_check;
3378 	current_desc = &adapter->rx_desc_base[i];
3379 
3380 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3381 		return;
3382 
3383 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3384 		struct mbuf *m = NULL;
3385 
3386 		logif(pkt_receive);
3387 
3388 		mp = adapter->rx_buffer_area[i].m_head;
3389 
3390 		/*
3391 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3392 		 * needs to access the last received byte in the mbuf.
3393 		 */
3394 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3395 				BUS_DMASYNC_POSTREAD);
3396 
3397 		accept_frame = 1;
3398 		prev_len_adj = 0;
3399 		desc_len = le16toh(current_desc->length);
3400 		status = current_desc->status;
3401 		if (status & E1000_RXD_STAT_EOP) {
3402 			count--;
3403 			eop = 1;
3404 			if (desc_len < ETHER_CRC_LEN) {
3405 				len = 0;
3406 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3407 			} else {
3408 				len = desc_len - ETHER_CRC_LEN;
3409 			}
3410 		} else {
3411 			eop = 0;
3412 			len = desc_len;
3413 		}
3414 
3415 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3416 			uint8_t	last_byte;
3417 			uint32_t pkt_len = desc_len;
3418 
3419 			if (adapter->fmp != NULL)
3420 				pkt_len += adapter->fmp->m_pkthdr.len;
3421 
3422 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3423 			if (TBI_ACCEPT(&adapter->hw, status,
3424 			    current_desc->errors, pkt_len, last_byte,
3425 			    adapter->min_frame_size,
3426 			    adapter->hw.mac.max_frame_size)) {
3427 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3428 				    &adapter->stats, pkt_len,
3429 				    adapter->hw.mac.addr,
3430 				    adapter->hw.mac.max_frame_size);
3431 				if (len > 0)
3432 					len--;
3433 			} else {
3434 				accept_frame = 0;
3435 			}
3436 		}
3437 
3438 		if (accept_frame) {
3439 			if (em_newbuf(adapter, i, 0) != 0) {
3440 				IFNET_STAT_INC(ifp, iqdrops, 1);
3441 				goto discard;
3442 			}
3443 
3444 			/* Assign correct length to the current fragment */
3445 			mp->m_len = len;
3446 
3447 			if (adapter->fmp == NULL) {
3448 				mp->m_pkthdr.len = len;
3449 				adapter->fmp = mp; /* Store the first mbuf */
3450 				adapter->lmp = mp;
3451 			} else {
3452 				/*
3453 				 * Chain mbuf's together
3454 				 */
3455 
3456 				/*
3457 				 * Adjust length of previous mbuf in chain if
3458 				 * we received less than 4 bytes in the last
3459 				 * descriptor.
3460 				 */
3461 				if (prev_len_adj > 0) {
3462 					adapter->lmp->m_len -= prev_len_adj;
3463 					adapter->fmp->m_pkthdr.len -=
3464 					    prev_len_adj;
3465 				}
3466 				adapter->lmp->m_next = mp;
3467 				adapter->lmp = adapter->lmp->m_next;
3468 				adapter->fmp->m_pkthdr.len += len;
3469 			}
3470 
3471 			if (eop) {
3472 				adapter->fmp->m_pkthdr.rcvif = ifp;
3473 				IFNET_STAT_INC(ifp, ipackets, 1);
3474 
3475 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3476 					em_rxcsum(adapter, current_desc,
3477 						  adapter->fmp);
3478 				}
3479 
3480 				if (status & E1000_RXD_STAT_VP) {
3481 					adapter->fmp->m_pkthdr.ether_vlantag =
3482 					    (le16toh(current_desc->special) &
3483 					    E1000_RXD_SPC_VLAN_MASK);
3484 					adapter->fmp->m_flags |= M_VLANTAG;
3485 				}
3486 				m = adapter->fmp;
3487 				adapter->fmp = NULL;
3488 				adapter->lmp = NULL;
3489 			}
3490 		} else {
3491 			IFNET_STAT_INC(ifp, ierrors, 1);
3492 discard:
3493 #ifdef foo
3494 			/* Reuse loaded DMA map and just update mbuf chain */
3495 			mp = adapter->rx_buffer_area[i].m_head;
3496 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3497 			mp->m_data = mp->m_ext.ext_buf;
3498 			mp->m_next = NULL;
3499 			if (adapter->hw.mac.max_frame_size <=
3500 			    (MCLBYTES - ETHER_ALIGN))
3501 				m_adj(mp, ETHER_ALIGN);
3502 #endif
3503 			if (adapter->fmp != NULL) {
3504 				m_freem(adapter->fmp);
3505 				adapter->fmp = NULL;
3506 				adapter->lmp = NULL;
3507 			}
3508 			m = NULL;
3509 		}
3510 
3511 		/* Zero out the receive descriptors status. */
3512 		current_desc->status = 0;
3513 
3514 		if (m != NULL)
3515 			ifp->if_input(ifp, m, NULL, -1);
3516 
3517 		/* Advance our pointers to the next descriptor. */
3518 		if (++i == adapter->num_rx_desc)
3519 			i = 0;
3520 		current_desc = &adapter->rx_desc_base[i];
3521 	}
3522 	adapter->next_rx_desc_to_check = i;
3523 
3524 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3525 	if (--i < 0)
3526 		i = adapter->num_rx_desc - 1;
3527 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3528 }
3529 
3530 static void
3531 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3532 	  struct mbuf *mp)
3533 {
3534 	/* 82543 or newer only */
3535 	if (adapter->hw.mac.type < e1000_82543 ||
3536 	    /* Ignore Checksum bit is set */
3537 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3538 		return;
3539 
3540 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3541 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3542 		/* IP Checksum Good */
3543 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3544 	}
3545 
3546 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3547 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3548 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3549 					   CSUM_PSEUDO_HDR |
3550 					   CSUM_FRAG_NOT_CHECKED;
3551 		mp->m_pkthdr.csum_data = htons(0xffff);
3552 	}
3553 }
3554 
3555 static void
3556 em_enable_intr(struct adapter *adapter)
3557 {
3558 	uint32_t ims_mask = IMS_ENABLE_MASK;
3559 
3560 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3561 
3562 #if 0
3563 	/* XXX MSIX */
3564 	if (adapter->hw.mac.type == e1000_82574) {
3565 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3566 		ims_mask |= EM_MSIX_MASK;
3567         }
3568 #endif
3569 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3570 }
3571 
3572 static void
3573 em_disable_intr(struct adapter *adapter)
3574 {
3575 	uint32_t clear = 0xffffffff;
3576 
3577 	/*
3578 	 * The first version of 82542 had an errata where when link was forced
3579 	 * it would stay up even up even if the cable was disconnected.
3580 	 * Sequence errors were used to detect the disconnect and then the
3581 	 * driver would unforce the link.  This code in the in the ISR.  For
3582 	 * this to work correctly the Sequence error interrupt had to be
3583 	 * enabled all the time.
3584 	 */
3585 	if (adapter->hw.mac.type == e1000_82542 &&
3586 	    adapter->hw.revision_id == E1000_REVISION_2)
3587 		clear &= ~E1000_ICR_RXSEQ;
3588 	else if (adapter->hw.mac.type == e1000_82574)
3589 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3590 
3591 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3592 
3593 	adapter->npoll.ifpc_stcount = 0;
3594 
3595 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3596 }
3597 
3598 /*
3599  * Bit of a misnomer, what this really means is
3600  * to enable OS management of the system... aka
3601  * to disable special hardware management features
3602  */
3603 static void
3604 em_get_mgmt(struct adapter *adapter)
3605 {
3606 	/* A shared code workaround */
3607 #define E1000_82542_MANC2H E1000_MANC2H
3608 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3609 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3610 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3611 
3612 		/* disable hardware interception of ARP */
3613 		manc &= ~(E1000_MANC_ARP_EN);
3614 
3615                 /* enable receiving management packets to the host */
3616                 if (adapter->hw.mac.type >= e1000_82571) {
3617 			manc |= E1000_MANC_EN_MNG2HOST;
3618 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3619 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3620 			manc2h |= E1000_MNG2HOST_PORT_623;
3621 			manc2h |= E1000_MNG2HOST_PORT_664;
3622 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3623 		}
3624 
3625 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3626 	}
3627 }
3628 
3629 /*
3630  * Give control back to hardware management
3631  * controller if there is one.
3632  */
3633 static void
3634 em_rel_mgmt(struct adapter *adapter)
3635 {
3636 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3637 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3638 
3639 		/* re-enable hardware interception of ARP */
3640 		manc |= E1000_MANC_ARP_EN;
3641 
3642 		if (adapter->hw.mac.type >= e1000_82571)
3643 			manc &= ~E1000_MANC_EN_MNG2HOST;
3644 
3645 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3646 	}
3647 }
3648 
3649 /*
3650  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3651  * For ASF and Pass Through versions of f/w this means that
3652  * the driver is loaded.  For AMT version (only with 82573)
3653  * of the f/w this means that the network i/f is open.
3654  */
3655 static void
3656 em_get_hw_control(struct adapter *adapter)
3657 {
3658 	/* Let firmware know the driver has taken over */
3659 	if (adapter->hw.mac.type == e1000_82573) {
3660 		uint32_t swsm;
3661 
3662 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3663 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3664 		    swsm | E1000_SWSM_DRV_LOAD);
3665 	} else {
3666 		uint32_t ctrl_ext;
3667 
3668 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3669 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3670 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3671 	}
3672 	adapter->flags |= EM_FLAG_HW_CTRL;
3673 }
3674 
3675 /*
3676  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3677  * For ASF and Pass Through versions of f/w this means that the
3678  * driver is no longer loaded.  For AMT version (only with 82573)
3679  * of the f/w this means that the network i/f is closed.
3680  */
3681 static void
3682 em_rel_hw_control(struct adapter *adapter)
3683 {
3684 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3685 		return;
3686 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3687 
3688 	/* Let firmware taken over control of h/w */
3689 	if (adapter->hw.mac.type == e1000_82573) {
3690 		uint32_t swsm;
3691 
3692 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3693 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3694 		    swsm & ~E1000_SWSM_DRV_LOAD);
3695 	} else {
3696 		uint32_t ctrl_ext;
3697 
3698 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3699 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3700 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3701 	}
3702 }
3703 
3704 static int
3705 em_is_valid_eaddr(const uint8_t *addr)
3706 {
3707 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3708 
3709 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3710 		return (FALSE);
3711 
3712 	return (TRUE);
3713 }
3714 
3715 /*
3716  * Enable PCI Wake On Lan capability
3717  */
3718 void
3719 em_enable_wol(device_t dev)
3720 {
3721 	uint16_t cap, status;
3722 	uint8_t id;
3723 
3724 	/* First find the capabilities pointer*/
3725 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3726 
3727 	/* Read the PM Capabilities */
3728 	id = pci_read_config(dev, cap, 1);
3729 	if (id != PCIY_PMG)     /* Something wrong */
3730 		return;
3731 
3732 	/*
3733 	 * OK, we have the power capabilities,
3734 	 * so now get the status register
3735 	 */
3736 	cap += PCIR_POWER_STATUS;
3737 	status = pci_read_config(dev, cap, 2);
3738 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3739 	pci_write_config(dev, cap, status, 2);
3740 }
3741 
3742 
3743 /*
3744  * 82544 Coexistence issue workaround.
3745  *    There are 2 issues.
3746  *       1. Transmit Hang issue.
3747  *    To detect this issue, following equation can be used...
3748  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3749  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3750  *
3751  *       2. DAC issue.
3752  *    To detect this issue, following equation can be used...
3753  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3754  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3755  *
3756  *    WORKAROUND:
3757  *	  Make sure we do not have ending address
3758  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3759  */
3760 static uint32_t
3761 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3762 {
3763 	uint32_t safe_terminator;
3764 
3765 	/*
3766 	 * Since issue is sensitive to length and address.
3767 	 * Let us first check the address...
3768 	 */
3769 	if (length <= 4) {
3770 		desc_array->descriptor[0].address = address;
3771 		desc_array->descriptor[0].length = length;
3772 		desc_array->elements = 1;
3773 		return (desc_array->elements);
3774 	}
3775 
3776 	safe_terminator =
3777 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3778 
3779 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3780 	if (safe_terminator == 0 ||
3781 	    (safe_terminator > 4 && safe_terminator < 9) ||
3782 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3783 		desc_array->descriptor[0].address = address;
3784 		desc_array->descriptor[0].length = length;
3785 		desc_array->elements = 1;
3786 		return (desc_array->elements);
3787 	}
3788 
3789 	desc_array->descriptor[0].address = address;
3790 	desc_array->descriptor[0].length = length - 4;
3791 	desc_array->descriptor[1].address = address + (length - 4);
3792 	desc_array->descriptor[1].length = 4;
3793 	desc_array->elements = 2;
3794 	return (desc_array->elements);
3795 }
3796 
3797 static void
3798 em_update_stats(struct adapter *adapter)
3799 {
3800 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3801 
3802 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3803 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3804 		adapter->stats.symerrs +=
3805 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3806 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3807 	}
3808 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3809 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3810 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3811 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3812 
3813 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3814 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3815 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3816 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3817 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3818 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3819 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3820 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3821 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3822 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3823 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3824 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3825 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3826 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3827 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3828 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3829 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3830 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3831 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3832 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3833 
3834 	/* For the 64-bit byte counters the low dword must be read first. */
3835 	/* Both registers clear on the read of the high dword */
3836 
3837 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3838 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3839 
3840 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3841 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3842 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3843 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3844 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3845 
3846 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3847 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3848 
3849 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3850 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3851 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3852 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3853 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3854 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3855 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3856 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3857 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3858 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3859 
3860 	if (adapter->hw.mac.type >= e1000_82543) {
3861 		adapter->stats.algnerrc +=
3862 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3863 		adapter->stats.rxerrc +=
3864 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3865 		adapter->stats.tncrs +=
3866 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3867 		adapter->stats.cexterr +=
3868 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3869 		adapter->stats.tsctc +=
3870 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3871 		adapter->stats.tsctfc +=
3872 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3873 	}
3874 
3875 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3876 
3877 	/* Rx Errors */
3878 	IFNET_STAT_SET(ifp, ierrors,
3879 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3880 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3881 	    adapter->stats.ruc + adapter->stats.roc +
3882 	    adapter->stats.mpc + adapter->stats.cexterr);
3883 
3884 	/* Tx Errors */
3885 	IFNET_STAT_SET(ifp, oerrors,
3886 	    adapter->stats.ecol + adapter->stats.latecol +
3887 	    adapter->watchdog_events);
3888 }
3889 
3890 static void
3891 em_print_debug_info(struct adapter *adapter)
3892 {
3893 	device_t dev = adapter->dev;
3894 	uint8_t *hw_addr = adapter->hw.hw_addr;
3895 
3896 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3897 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3898 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3899 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3900 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3901 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3902 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3903 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3904 	    adapter->hw.fc.high_water,
3905 	    adapter->hw.fc.low_water);
3906 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3907 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3908 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3909 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3910 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3911 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3912 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3913 	    (long long)adapter->tx_fifo_wrk_cnt,
3914 	    (long long)adapter->tx_fifo_reset_cnt);
3915 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3916 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3917 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3918 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3919 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3920 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3921 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3922 	    adapter->num_tx_desc_avail);
3923 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3924 	    adapter->no_tx_desc_avail1);
3925 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3926 	    adapter->no_tx_desc_avail2);
3927 	device_printf(dev, "Std mbuf failed = %ld\n",
3928 	    adapter->mbuf_alloc_failed);
3929 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3930 	    adapter->mbuf_cluster_failed);
3931 	device_printf(dev, "Driver dropped packets = %ld\n",
3932 	    adapter->dropped_pkts);
3933 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3934 	    adapter->no_tx_dma_setup);
3935 }
3936 
3937 static void
3938 em_print_hw_stats(struct adapter *adapter)
3939 {
3940 	device_t dev = adapter->dev;
3941 
3942 	device_printf(dev, "Excessive collisions = %lld\n",
3943 	    (long long)adapter->stats.ecol);
3944 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3945 	device_printf(dev, "Symbol errors = %lld\n",
3946 	    (long long)adapter->stats.symerrs);
3947 #endif
3948 	device_printf(dev, "Sequence errors = %lld\n",
3949 	    (long long)adapter->stats.sec);
3950 	device_printf(dev, "Defer count = %lld\n",
3951 	    (long long)adapter->stats.dc);
3952 	device_printf(dev, "Missed Packets = %lld\n",
3953 	    (long long)adapter->stats.mpc);
3954 	device_printf(dev, "Receive No Buffers = %lld\n",
3955 	    (long long)adapter->stats.rnbc);
3956 	/* RLEC is inaccurate on some hardware, calculate our own. */
3957 	device_printf(dev, "Receive Length Errors = %lld\n",
3958 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3959 	device_printf(dev, "Receive errors = %lld\n",
3960 	    (long long)adapter->stats.rxerrc);
3961 	device_printf(dev, "Crc errors = %lld\n",
3962 	    (long long)adapter->stats.crcerrs);
3963 	device_printf(dev, "Alignment errors = %lld\n",
3964 	    (long long)adapter->stats.algnerrc);
3965 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3966 	    (long long)adapter->stats.cexterr);
3967 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3968 	device_printf(dev, "watchdog timeouts = %ld\n",
3969 	    adapter->watchdog_events);
3970 	device_printf(dev, "XON Rcvd = %lld\n",
3971 	    (long long)adapter->stats.xonrxc);
3972 	device_printf(dev, "XON Xmtd = %lld\n",
3973 	    (long long)adapter->stats.xontxc);
3974 	device_printf(dev, "XOFF Rcvd = %lld\n",
3975 	    (long long)adapter->stats.xoffrxc);
3976 	device_printf(dev, "XOFF Xmtd = %lld\n",
3977 	    (long long)adapter->stats.xofftxc);
3978 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3979 	    (long long)adapter->stats.gprc);
3980 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3981 	    (long long)adapter->stats.gptc);
3982 }
3983 
3984 static void
3985 em_print_nvm_info(struct adapter *adapter)
3986 {
3987 	uint16_t eeprom_data;
3988 	int i, j, row = 0;
3989 
3990 	/* Its a bit crude, but it gets the job done */
3991 	kprintf("\nInterface EEPROM Dump:\n");
3992 	kprintf("Offset\n0x0000  ");
3993 	for (i = 0, j = 0; i < 32; i++, j++) {
3994 		if (j == 8) { /* Make the offset block */
3995 			j = 0; ++row;
3996 			kprintf("\n0x00%x0  ",row);
3997 		}
3998 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3999 		kprintf("%04x ", eeprom_data);
4000 	}
4001 	kprintf("\n");
4002 }
4003 
4004 static int
4005 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4006 {
4007 	struct adapter *adapter;
4008 	struct ifnet *ifp;
4009 	int error, result;
4010 
4011 	result = -1;
4012 	error = sysctl_handle_int(oidp, &result, 0, req);
4013 	if (error || !req->newptr)
4014 		return (error);
4015 
4016 	adapter = (struct adapter *)arg1;
4017 	ifp = &adapter->arpcom.ac_if;
4018 
4019 	lwkt_serialize_enter(ifp->if_serializer);
4020 
4021 	if (result == 1)
4022 		em_print_debug_info(adapter);
4023 
4024 	/*
4025 	 * This value will cause a hex dump of the
4026 	 * first 32 16-bit words of the EEPROM to
4027 	 * the screen.
4028 	 */
4029 	if (result == 2)
4030 		em_print_nvm_info(adapter);
4031 
4032 	lwkt_serialize_exit(ifp->if_serializer);
4033 
4034 	return (error);
4035 }
4036 
4037 static int
4038 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4039 {
4040 	int error, result;
4041 
4042 	result = -1;
4043 	error = sysctl_handle_int(oidp, &result, 0, req);
4044 	if (error || !req->newptr)
4045 		return (error);
4046 
4047 	if (result == 1) {
4048 		struct adapter *adapter = (struct adapter *)arg1;
4049 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4050 
4051 		lwkt_serialize_enter(ifp->if_serializer);
4052 		em_print_hw_stats(adapter);
4053 		lwkt_serialize_exit(ifp->if_serializer);
4054 	}
4055 	return (error);
4056 }
4057 
4058 static void
4059 em_add_sysctl(struct adapter *adapter)
4060 {
4061 	sysctl_ctx_init(&adapter->sysctl_ctx);
4062 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4063 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4064 					device_get_nameunit(adapter->dev),
4065 					CTLFLAG_RD, 0, "");
4066 	if (adapter->sysctl_tree == NULL) {
4067 		device_printf(adapter->dev, "can't add sysctl node\n");
4068 	} else {
4069 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4070 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4071 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4072 		    em_sysctl_debug_info, "I", "Debug Information");
4073 
4074 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4075 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4076 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4077 		    em_sysctl_stats, "I", "Statistics");
4078 
4079 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4080 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4081 		    OID_AUTO, "rxd", CTLFLAG_RD,
4082 		    &adapter->num_rx_desc, 0, NULL);
4083 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4084 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4085 		    OID_AUTO, "txd", CTLFLAG_RD,
4086 		    &adapter->num_tx_desc, 0, NULL);
4087 
4088 		if (adapter->hw.mac.type >= e1000_82540) {
4089 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4090 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4091 			    OID_AUTO, "int_throttle_ceil",
4092 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4093 			    em_sysctl_int_throttle, "I",
4094 			    "interrupt throttling rate");
4095 		}
4096 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4097 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4098 		    OID_AUTO, "int_tx_nsegs",
4099 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4100 		    em_sysctl_int_tx_nsegs, "I",
4101 		    "# segments per TX interrupt");
4102 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4103 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4104 	            OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4105 		    &adapter->tx_wreg_nsegs, 0,
4106 		    "# segments before write to hardware register");
4107 	}
4108 }
4109 
4110 static int
4111 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4112 {
4113 	struct adapter *adapter = (void *)arg1;
4114 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4115 	int error, throttle;
4116 
4117 	throttle = adapter->int_throttle_ceil;
4118 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4119 	if (error || req->newptr == NULL)
4120 		return error;
4121 	if (throttle < 0 || throttle > 1000000000 / 256)
4122 		return EINVAL;
4123 
4124 	if (throttle) {
4125 		/*
4126 		 * Set the interrupt throttling rate in 256ns increments,
4127 		 * recalculate sysctl value assignment to get exact frequency.
4128 		 */
4129 		throttle = 1000000000 / 256 / throttle;
4130 
4131 		/* Upper 16bits of ITR is reserved and should be zero */
4132 		if (throttle & 0xffff0000)
4133 			return EINVAL;
4134 	}
4135 
4136 	lwkt_serialize_enter(ifp->if_serializer);
4137 
4138 	if (throttle)
4139 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4140 	else
4141 		adapter->int_throttle_ceil = 0;
4142 
4143 	if (ifp->if_flags & IFF_RUNNING)
4144 		em_set_itr(adapter, throttle);
4145 
4146 	lwkt_serialize_exit(ifp->if_serializer);
4147 
4148 	if (bootverbose) {
4149 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4150 			  adapter->int_throttle_ceil);
4151 	}
4152 	return 0;
4153 }
4154 
4155 static int
4156 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4157 {
4158 	struct adapter *adapter = (void *)arg1;
4159 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4160 	int error, segs;
4161 
4162 	segs = adapter->tx_int_nsegs;
4163 	error = sysctl_handle_int(oidp, &segs, 0, req);
4164 	if (error || req->newptr == NULL)
4165 		return error;
4166 	if (segs <= 0)
4167 		return EINVAL;
4168 
4169 	lwkt_serialize_enter(ifp->if_serializer);
4170 
4171 	/*
4172 	 * Don't allow int_tx_nsegs to become:
4173 	 * o  Less the oact_tx_desc
4174 	 * o  Too large that no TX desc will cause TX interrupt to
4175 	 *    be generated (OACTIVE will never recover)
4176 	 * o  Too small that will cause tx_dd[] overflow
4177 	 */
4178 	if (segs < adapter->oact_tx_desc ||
4179 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4180 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4181 		error = EINVAL;
4182 	} else {
4183 		error = 0;
4184 		adapter->tx_int_nsegs = segs;
4185 	}
4186 
4187 	lwkt_serialize_exit(ifp->if_serializer);
4188 
4189 	return error;
4190 }
4191 
4192 static void
4193 em_set_itr(struct adapter *adapter, uint32_t itr)
4194 {
4195 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4196 	if (adapter->hw.mac.type == e1000_82574) {
4197 		int i;
4198 
4199 		/*
4200 		 * When using MSIX interrupts we need to
4201 		 * throttle using the EITR register
4202 		 */
4203 		for (i = 0; i < 4; ++i) {
4204 			E1000_WRITE_REG(&adapter->hw,
4205 			    E1000_EITR_82574(i), itr);
4206 		}
4207 	}
4208 }
4209 
4210 static void
4211 em_disable_aspm(struct adapter *adapter)
4212 {
4213 	uint16_t link_cap, link_ctrl, disable;
4214 	uint8_t pcie_ptr, reg;
4215 	device_t dev = adapter->dev;
4216 
4217 	switch (adapter->hw.mac.type) {
4218 	case e1000_82571:
4219 	case e1000_82572:
4220 	case e1000_82573:
4221 		/*
4222 		 * 82573 specification update
4223 		 * errata #8 disable L0s
4224 		 * errata #41 disable L1
4225 		 *
4226 		 * 82571/82572 specification update
4227 		 # errata #13 disable L1
4228 		 * errata #68 disable L0s
4229 		 */
4230 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4231 		break;
4232 
4233 	case e1000_82574:
4234 	case e1000_82583:
4235 		/*
4236 		 * 82574 specification update errata #20
4237 		 * 82583 specification update errata #9
4238 		 *
4239 		 * There is no need to disable L1
4240 		 */
4241 		disable = PCIEM_LNKCTL_ASPM_L0S;
4242 		break;
4243 
4244 	default:
4245 		return;
4246 	}
4247 
4248 	pcie_ptr = pci_get_pciecap_ptr(dev);
4249 	if (pcie_ptr == 0)
4250 		return;
4251 
4252 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4253 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4254 		return;
4255 
4256 	if (bootverbose) {
4257 		if_printf(&adapter->arpcom.ac_if,
4258 		    "disable ASPM %#02x\n", disable);
4259 	}
4260 
4261 	reg = pcie_ptr + PCIER_LINKCTRL;
4262 	link_ctrl = pci_read_config(dev, reg, 2);
4263 	link_ctrl &= ~disable;
4264 	pci_write_config(dev, reg, link_ctrl, 2);
4265 }
4266 
4267 static int
4268 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4269 {
4270 	int iphlen, hoff, thoff, ex = 0;
4271 	struct mbuf *m;
4272 	struct ip *ip;
4273 
4274 	m = *mp;
4275 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4276 
4277 	iphlen = m->m_pkthdr.csum_iphlen;
4278 	thoff = m->m_pkthdr.csum_thlen;
4279 	hoff = m->m_pkthdr.csum_lhlen;
4280 
4281 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4282 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4283 	KASSERT(hoff > 0, ("invalid ether hlen"));
4284 
4285 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4286 		ex = 4;
4287 
4288 	if (m->m_len < hoff + iphlen + thoff + ex) {
4289 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4290 		if (m == NULL) {
4291 			*mp = NULL;
4292 			return ENOBUFS;
4293 		}
4294 		*mp = m;
4295 	}
4296 	ip = mtodoff(m, struct ip *, hoff);
4297 	ip->ip_len = 0;
4298 
4299 	return 0;
4300 }
4301 
4302 static int
4303 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4304     uint32_t *txd_upper, uint32_t *txd_lower)
4305 {
4306 	struct e1000_context_desc *TXD;
4307 	int hoff, iphlen, thoff, hlen;
4308 	int mss, pktlen, curr_txd;
4309 
4310 	iphlen = mp->m_pkthdr.csum_iphlen;
4311 	thoff = mp->m_pkthdr.csum_thlen;
4312 	hoff = mp->m_pkthdr.csum_lhlen;
4313 	mss = mp->m_pkthdr.tso_segsz;
4314 	pktlen = mp->m_pkthdr.len;
4315 
4316 	if (adapter->csum_flags == CSUM_TSO &&
4317 	    adapter->csum_iphlen == iphlen &&
4318 	    adapter->csum_lhlen == hoff &&
4319 	    adapter->csum_thlen == thoff &&
4320 	    adapter->csum_mss == mss &&
4321 	    adapter->csum_pktlen == pktlen) {
4322 		*txd_upper = adapter->csum_txd_upper;
4323 		*txd_lower = adapter->csum_txd_lower;
4324 		return 0;
4325 	}
4326 	hlen = hoff + iphlen + thoff;
4327 
4328 	/*
4329 	 * Setup a new TSO context.
4330 	 */
4331 
4332 	curr_txd = adapter->next_avail_tx_desc;
4333 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4334 
4335 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4336 		     E1000_TXD_DTYP_D |		/* Data descr type */
4337 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4338 
4339 	/* IP and/or TCP header checksum calculation and insertion. */
4340 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4341 
4342 	/*
4343 	 * Start offset for header checksum calculation.
4344 	 * End offset for header checksum calculation.
4345 	 * Offset of place put the checksum.
4346 	 */
4347 	TXD->lower_setup.ip_fields.ipcss = hoff;
4348 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4349 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4350 
4351 	/*
4352 	 * Start offset for payload checksum calculation.
4353 	 * End offset for payload checksum calculation.
4354 	 * Offset of place to put the checksum.
4355 	 */
4356 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4357 	TXD->upper_setup.tcp_fields.tucse = 0;
4358 	TXD->upper_setup.tcp_fields.tucso =
4359 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4360 
4361 	/*
4362 	 * Payload size per packet w/o any headers.
4363 	 * Length of all headers up to payload.
4364 	 */
4365 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4366 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4367 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4368 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4369 				E1000_TXD_CMD_TSE |	/* TSE context */
4370 				E1000_TXD_CMD_IP |	/* Do IP csum */
4371 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4372 				(pktlen - hlen));	/* Total len */
4373 
4374 	/* Save the information for this TSO context */
4375 	adapter->csum_flags = CSUM_TSO;
4376 	adapter->csum_lhlen = hoff;
4377 	adapter->csum_iphlen = iphlen;
4378 	adapter->csum_thlen = thoff;
4379 	adapter->csum_mss = mss;
4380 	adapter->csum_pktlen = pktlen;
4381 	adapter->csum_txd_upper = *txd_upper;
4382 	adapter->csum_txd_lower = *txd_lower;
4383 
4384 	if (++curr_txd == adapter->num_tx_desc)
4385 		curr_txd = 0;
4386 
4387 	KKASSERT(adapter->num_tx_desc_avail > 0);
4388 	adapter->num_tx_desc_avail--;
4389 
4390 	adapter->next_avail_tx_desc = curr_txd;
4391 	return 1;
4392 }
4393