xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 07a2f99c)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_ifpoll.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_poll.h>
121 #include <net/ifq_var.h>
122 #include <net/vlan/if_vlan_var.h>
123 #include <net/vlan/if_vlan_ether.h>
124 
125 #include <netinet/ip.h>
126 #include <netinet/tcp.h>
127 #include <netinet/udp.h>
128 
129 #include <bus/pci/pcivar.h>
130 #include <bus/pci/pcireg.h>
131 
132 #include <dev/netif/ig_hal/e1000_api.h>
133 #include <dev/netif/ig_hal/e1000_82571.h>
134 #include <dev/netif/em/if_em.h>
135 
136 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
137 #define EM_VER	" 7.2.4"
138 
139 #define _EM_DEVICE(id, ret)	\
140 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
141 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
142 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
143 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
144 
145 static const struct em_vendor_info em_vendor_info_array[] = {
146 	EM_DEVICE(82540EM),
147 	EM_DEVICE(82540EM_LOM),
148 	EM_DEVICE(82540EP),
149 	EM_DEVICE(82540EP_LOM),
150 	EM_DEVICE(82540EP_LP),
151 
152 	EM_DEVICE(82541EI),
153 	EM_DEVICE(82541ER),
154 	EM_DEVICE(82541ER_LOM),
155 	EM_DEVICE(82541EI_MOBILE),
156 	EM_DEVICE(82541GI),
157 	EM_DEVICE(82541GI_LF),
158 	EM_DEVICE(82541GI_MOBILE),
159 
160 	EM_DEVICE(82542),
161 
162 	EM_DEVICE(82543GC_FIBER),
163 	EM_DEVICE(82543GC_COPPER),
164 
165 	EM_DEVICE(82544EI_COPPER),
166 	EM_DEVICE(82544EI_FIBER),
167 	EM_DEVICE(82544GC_COPPER),
168 	EM_DEVICE(82544GC_LOM),
169 
170 	EM_DEVICE(82545EM_COPPER),
171 	EM_DEVICE(82545EM_FIBER),
172 	EM_DEVICE(82545GM_COPPER),
173 	EM_DEVICE(82545GM_FIBER),
174 	EM_DEVICE(82545GM_SERDES),
175 
176 	EM_DEVICE(82546EB_COPPER),
177 	EM_DEVICE(82546EB_FIBER),
178 	EM_DEVICE(82546EB_QUAD_COPPER),
179 	EM_DEVICE(82546GB_COPPER),
180 	EM_DEVICE(82546GB_FIBER),
181 	EM_DEVICE(82546GB_SERDES),
182 	EM_DEVICE(82546GB_PCIE),
183 	EM_DEVICE(82546GB_QUAD_COPPER),
184 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
185 
186 	EM_DEVICE(82547EI),
187 	EM_DEVICE(82547EI_MOBILE),
188 	EM_DEVICE(82547GI),
189 
190 	EM_EMX_DEVICE(82571EB_COPPER),
191 	EM_EMX_DEVICE(82571EB_FIBER),
192 	EM_EMX_DEVICE(82571EB_SERDES),
193 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
194 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
195 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
196 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
198 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
199 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
200 
201 	EM_EMX_DEVICE(82572EI_COPPER),
202 	EM_EMX_DEVICE(82572EI_FIBER),
203 	EM_EMX_DEVICE(82572EI_SERDES),
204 	EM_EMX_DEVICE(82572EI),
205 
206 	EM_EMX_DEVICE(82573E),
207 	EM_EMX_DEVICE(82573E_IAMT),
208 	EM_EMX_DEVICE(82573L),
209 
210 	EM_DEVICE(82583V),
211 
212 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
213 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
214 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
215 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
216 
217 	EM_DEVICE(ICH8_IGP_M_AMT),
218 	EM_DEVICE(ICH8_IGP_AMT),
219 	EM_DEVICE(ICH8_IGP_C),
220 	EM_DEVICE(ICH8_IFE),
221 	EM_DEVICE(ICH8_IFE_GT),
222 	EM_DEVICE(ICH8_IFE_G),
223 	EM_DEVICE(ICH8_IGP_M),
224 	EM_DEVICE(ICH8_82567V_3),
225 
226 	EM_DEVICE(ICH9_IGP_M_AMT),
227 	EM_DEVICE(ICH9_IGP_AMT),
228 	EM_DEVICE(ICH9_IGP_C),
229 	EM_DEVICE(ICH9_IGP_M),
230 	EM_DEVICE(ICH9_IGP_M_V),
231 	EM_DEVICE(ICH9_IFE),
232 	EM_DEVICE(ICH9_IFE_GT),
233 	EM_DEVICE(ICH9_IFE_G),
234 	EM_DEVICE(ICH9_BM),
235 
236 	EM_EMX_DEVICE(82574L),
237 	EM_EMX_DEVICE(82574LA),
238 
239 	EM_DEVICE(ICH10_R_BM_LM),
240 	EM_DEVICE(ICH10_R_BM_LF),
241 	EM_DEVICE(ICH10_R_BM_V),
242 	EM_DEVICE(ICH10_D_BM_LM),
243 	EM_DEVICE(ICH10_D_BM_LF),
244 	EM_DEVICE(ICH10_D_BM_V),
245 
246 	EM_DEVICE(PCH_M_HV_LM),
247 	EM_DEVICE(PCH_M_HV_LC),
248 	EM_DEVICE(PCH_D_HV_DM),
249 	EM_DEVICE(PCH_D_HV_DC),
250 
251 	EM_DEVICE(PCH2_LV_LM),
252 	EM_DEVICE(PCH2_LV_V),
253 
254 	/* required last entry */
255 	EM_DEVICE_NULL
256 };
257 
258 static int	em_probe(device_t);
259 static int	em_attach(device_t);
260 static int	em_detach(device_t);
261 static int	em_shutdown(device_t);
262 static int	em_suspend(device_t);
263 static int	em_resume(device_t);
264 
265 static void	em_init(void *);
266 static void	em_stop(struct adapter *);
267 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
268 static void	em_start(struct ifnet *);
269 #ifdef IFPOLL_ENABLE
270 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
271 static void	em_npoll_compat(struct ifnet *, void *, int);
272 #endif
273 static void	em_watchdog(struct ifnet *);
274 static void	em_media_status(struct ifnet *, struct ifmediareq *);
275 static int	em_media_change(struct ifnet *);
276 static void	em_timer(void *);
277 
278 static void	em_intr(void *);
279 static void	em_intr_mask(void *);
280 static void	em_intr_body(struct adapter *, boolean_t);
281 static void	em_rxeof(struct adapter *, int);
282 static void	em_txeof(struct adapter *);
283 static void	em_tx_collect(struct adapter *);
284 static void	em_tx_purge(struct adapter *);
285 static void	em_enable_intr(struct adapter *);
286 static void	em_disable_intr(struct adapter *);
287 
288 static int	em_dma_malloc(struct adapter *, bus_size_t,
289 		    struct em_dma_alloc *);
290 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
291 static void	em_init_tx_ring(struct adapter *);
292 static int	em_init_rx_ring(struct adapter *);
293 static int	em_create_tx_ring(struct adapter *);
294 static int	em_create_rx_ring(struct adapter *);
295 static void	em_destroy_tx_ring(struct adapter *, int);
296 static void	em_destroy_rx_ring(struct adapter *, int);
297 static int	em_newbuf(struct adapter *, int, int);
298 static int	em_encap(struct adapter *, struct mbuf **);
299 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
300 		    struct mbuf *);
301 static int	em_txcsum(struct adapter *, struct mbuf *,
302 		    uint32_t *, uint32_t *);
303 static int	em_tso_pullup(struct adapter *, struct mbuf **);
304 static int	em_tso_setup(struct adapter *, struct mbuf *,
305 		    uint32_t *, uint32_t *);
306 
307 static int	em_get_hw_info(struct adapter *);
308 static int 	em_is_valid_eaddr(const uint8_t *);
309 static int	em_alloc_pci_res(struct adapter *);
310 static void	em_free_pci_res(struct adapter *);
311 static int	em_reset(struct adapter *);
312 static void	em_setup_ifp(struct adapter *);
313 static void	em_init_tx_unit(struct adapter *);
314 static void	em_init_rx_unit(struct adapter *);
315 static void	em_update_stats(struct adapter *);
316 static void	em_set_promisc(struct adapter *);
317 static void	em_disable_promisc(struct adapter *);
318 static void	em_set_multi(struct adapter *);
319 static void	em_update_link_status(struct adapter *);
320 static void	em_smartspeed(struct adapter *);
321 static void	em_set_itr(struct adapter *, uint32_t);
322 static void	em_disable_aspm(struct adapter *);
323 
324 /* Hardware workarounds */
325 static int	em_82547_fifo_workaround(struct adapter *, int);
326 static void	em_82547_update_fifo_head(struct adapter *, int);
327 static int	em_82547_tx_fifo_reset(struct adapter *);
328 static void	em_82547_move_tail(void *);
329 static void	em_82547_move_tail_serialized(struct adapter *);
330 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
331 
332 static void	em_print_debug_info(struct adapter *);
333 static void	em_print_nvm_info(struct adapter *);
334 static void	em_print_hw_stats(struct adapter *);
335 
336 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
337 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
338 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
339 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
340 static void	em_add_sysctl(struct adapter *adapter);
341 
342 /* Management and WOL Support */
343 static void	em_get_mgmt(struct adapter *);
344 static void	em_rel_mgmt(struct adapter *);
345 static void	em_get_hw_control(struct adapter *);
346 static void	em_rel_hw_control(struct adapter *);
347 static void	em_enable_wol(device_t);
348 
349 static device_method_t em_methods[] = {
350 	/* Device interface */
351 	DEVMETHOD(device_probe,		em_probe),
352 	DEVMETHOD(device_attach,	em_attach),
353 	DEVMETHOD(device_detach,	em_detach),
354 	DEVMETHOD(device_shutdown,	em_shutdown),
355 	DEVMETHOD(device_suspend,	em_suspend),
356 	DEVMETHOD(device_resume,	em_resume),
357 	{ 0, 0 }
358 };
359 
360 static driver_t em_driver = {
361 	"em",
362 	em_methods,
363 	sizeof(struct adapter),
364 };
365 
366 static devclass_t em_devclass;
367 
368 DECLARE_DUMMY_MODULE(if_em);
369 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
370 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
371 
372 /*
373  * Tunables
374  */
375 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
376 static int	em_rxd = EM_DEFAULT_RXD;
377 static int	em_txd = EM_DEFAULT_TXD;
378 static int	em_smart_pwr_down = 0;
379 
380 /* Controls whether promiscuous also shows bad packets */
381 static int	em_debug_sbp = FALSE;
382 
383 static int	em_82573_workaround = 1;
384 static int	em_msi_enable = 1;
385 
386 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
387 TUNABLE_INT("hw.em.rxd", &em_rxd);
388 TUNABLE_INT("hw.em.txd", &em_txd);
389 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
390 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
391 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
392 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
393 
394 /* Global used in WOL setup with multiport cards */
395 static int	em_global_quad_port_a = 0;
396 
397 /* Set this to one to display debug statistics */
398 static int	em_display_debug_stats = 0;
399 
400 #if !defined(KTR_IF_EM)
401 #define KTR_IF_EM	KTR_ALL
402 #endif
403 KTR_INFO_MASTER(if_em);
404 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
405 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
406 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
407 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
408 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
409 #define logif(name)	KTR_LOG(if_em_ ## name)
410 
411 static int
412 em_probe(device_t dev)
413 {
414 	const struct em_vendor_info *ent;
415 	uint16_t vid, did;
416 
417 	vid = pci_get_vendor(dev);
418 	did = pci_get_device(dev);
419 
420 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
421 		if (vid == ent->vendor_id && did == ent->device_id) {
422 			device_set_desc(dev, ent->desc);
423 			device_set_async_attach(dev, TRUE);
424 			return (ent->ret);
425 		}
426 	}
427 	return (ENXIO);
428 }
429 
430 static int
431 em_attach(device_t dev)
432 {
433 	struct adapter *adapter = device_get_softc(dev);
434 	struct ifnet *ifp = &adapter->arpcom.ac_if;
435 	int tsize, rsize;
436 	int error = 0;
437 	uint16_t eeprom_data, device_id, apme_mask;
438 	driver_intr_t *intr_func;
439 
440 	adapter->dev = adapter->osdep.dev = dev;
441 
442 	callout_init_mp(&adapter->timer);
443 	callout_init_mp(&adapter->tx_fifo_timer);
444 
445 	/* Determine hardware and mac info */
446 	error = em_get_hw_info(adapter);
447 	if (error) {
448 		device_printf(dev, "Identify hardware failed\n");
449 		goto fail;
450 	}
451 
452 	/* Setup PCI resources */
453 	error = em_alloc_pci_res(adapter);
454 	if (error) {
455 		device_printf(dev, "Allocation of PCI resources failed\n");
456 		goto fail;
457 	}
458 
459 	/*
460 	 * For ICH8 and family we need to map the flash memory,
461 	 * and this must happen after the MAC is identified.
462 	 */
463 	if (adapter->hw.mac.type == e1000_ich8lan ||
464 	    adapter->hw.mac.type == e1000_ich9lan ||
465 	    adapter->hw.mac.type == e1000_ich10lan ||
466 	    adapter->hw.mac.type == e1000_pchlan ||
467 	    adapter->hw.mac.type == e1000_pch2lan) {
468 		adapter->flash_rid = EM_BAR_FLASH;
469 
470 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
471 					&adapter->flash_rid, RF_ACTIVE);
472 		if (adapter->flash == NULL) {
473 			device_printf(dev, "Mapping of Flash failed\n");
474 			error = ENXIO;
475 			goto fail;
476 		}
477 		adapter->osdep.flash_bus_space_tag =
478 		    rman_get_bustag(adapter->flash);
479 		adapter->osdep.flash_bus_space_handle =
480 		    rman_get_bushandle(adapter->flash);
481 
482 		/*
483 		 * This is used in the shared code
484 		 * XXX this goof is actually not used.
485 		 */
486 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
487 	}
488 
489 	switch (adapter->hw.mac.type) {
490 	case e1000_82571:
491 	case e1000_82572:
492 		/*
493 		 * Pullup extra 4bytes into the first data segment, see:
494 		 * 82571/82572 specification update errata #7
495 		 *
496 		 * NOTE:
497 		 * 4bytes instead of 2bytes, which are mentioned in the
498 		 * errata, are pulled; mainly to keep rest of the data
499 		 * properly aligned.
500 		 */
501 		adapter->flags |= EM_FLAG_TSO_PULLEX;
502 		/* FALL THROUGH */
503 
504 	case e1000_82573:
505 	case e1000_82574:
506 	case e1000_80003es2lan:
507 		adapter->flags |= EM_FLAG_TSO;
508 		break;
509 
510 	default:
511 		break;
512 	}
513 
514 	/* Do Shared Code initialization */
515 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
516 		device_printf(dev, "Setup of Shared code failed\n");
517 		error = ENXIO;
518 		goto fail;
519 	}
520 
521 	e1000_get_bus_info(&adapter->hw);
522 
523 	/*
524 	 * Validate number of transmit and receive descriptors.  It
525 	 * must not exceed hardware maximum, and must be multiple
526 	 * of E1000_DBA_ALIGN.
527 	 */
528 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
529 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
530 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
531 	    em_txd < EM_MIN_TXD) {
532 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
533 		    EM_DEFAULT_TXD, em_txd);
534 		adapter->num_tx_desc = EM_DEFAULT_TXD;
535 	} else {
536 		adapter->num_tx_desc = em_txd;
537 	}
538 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
539 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
540 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
541 	    em_rxd < EM_MIN_RXD) {
542 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
543 		    EM_DEFAULT_RXD, em_rxd);
544 		adapter->num_rx_desc = EM_DEFAULT_RXD;
545 	} else {
546 		adapter->num_rx_desc = em_rxd;
547 	}
548 
549 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
550 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
551 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
552 	adapter->rx_buffer_len = MCLBYTES;
553 
554 	/*
555 	 * Interrupt throttle rate
556 	 */
557 	if (em_int_throttle_ceil == 0) {
558 		adapter->int_throttle_ceil = 0;
559 	} else {
560 		int throttle = em_int_throttle_ceil;
561 
562 		if (throttle < 0)
563 			throttle = EM_DEFAULT_ITR;
564 
565 		/* Recalculate the tunable value to get the exact frequency. */
566 		throttle = 1000000000 / 256 / throttle;
567 
568 		/* Upper 16bits of ITR is reserved and should be zero */
569 		if (throttle & 0xffff0000)
570 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
571 
572 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
573 	}
574 
575 	e1000_init_script_state_82541(&adapter->hw, TRUE);
576 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
577 
578 	/* Copper options */
579 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
580 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
581 		adapter->hw.phy.disable_polarity_correction = FALSE;
582 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
583 	}
584 
585 	/* Set the frame limits assuming standard ethernet sized frames. */
586 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
587 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
588 
589 	/* This controls when hardware reports transmit completion status. */
590 	adapter->hw.mac.report_tx_early = 1;
591 
592 	/*
593 	 * Create top level busdma tag
594 	 */
595 	error = bus_dma_tag_create(NULL, 1, 0,
596 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
597 			NULL, NULL,
598 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
599 			0, &adapter->parent_dtag);
600 	if (error) {
601 		device_printf(dev, "could not create top level DMA tag\n");
602 		goto fail;
603 	}
604 
605 	/*
606 	 * Allocate Transmit Descriptor ring
607 	 */
608 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
609 			 EM_DBA_ALIGN);
610 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
611 	if (error) {
612 		device_printf(dev, "Unable to allocate tx_desc memory\n");
613 		goto fail;
614 	}
615 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
616 
617 	/*
618 	 * Allocate Receive Descriptor ring
619 	 */
620 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
621 			 EM_DBA_ALIGN);
622 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
623 	if (error) {
624 		device_printf(dev, "Unable to allocate rx_desc memory\n");
625 		goto fail;
626 	}
627 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
628 
629 	/* Allocate multicast array memory. */
630 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
631 	    M_DEVBUF, M_WAITOK);
632 
633 	/* Indicate SOL/IDER usage */
634 	if (e1000_check_reset_block(&adapter->hw)) {
635 		device_printf(dev,
636 		    "PHY reset is blocked due to SOL/IDER session.\n");
637 	}
638 
639 	/*
640 	 * Start from a known state, this is important in reading the
641 	 * nvm and mac from that.
642 	 */
643 	e1000_reset_hw(&adapter->hw);
644 
645 	/* Make sure we have a good EEPROM before we read from it */
646 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
647 		/*
648 		 * Some PCI-E parts fail the first check due to
649 		 * the link being in sleep state, call it again,
650 		 * if it fails a second time its a real issue.
651 		 */
652 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
653 			device_printf(dev,
654 			    "The EEPROM Checksum Is Not Valid\n");
655 			error = EIO;
656 			goto fail;
657 		}
658 	}
659 
660 	/* Copy the permanent MAC address out of the EEPROM */
661 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
662 		device_printf(dev, "EEPROM read error while reading MAC"
663 		    " address\n");
664 		error = EIO;
665 		goto fail;
666 	}
667 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
668 		device_printf(dev, "Invalid MAC address\n");
669 		error = EIO;
670 		goto fail;
671 	}
672 
673 	/* Allocate transmit descriptors and buffers */
674 	error = em_create_tx_ring(adapter);
675 	if (error) {
676 		device_printf(dev, "Could not setup transmit structures\n");
677 		goto fail;
678 	}
679 
680 	/* Allocate receive descriptors and buffers */
681 	error = em_create_rx_ring(adapter);
682 	if (error) {
683 		device_printf(dev, "Could not setup receive structures\n");
684 		goto fail;
685 	}
686 
687 	/* Manually turn off all interrupts */
688 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
689 
690 	/* Determine if we have to control management hardware */
691 	if (e1000_enable_mng_pass_thru(&adapter->hw))
692 		adapter->flags |= EM_FLAG_HAS_MGMT;
693 
694 	/*
695 	 * Setup Wake-on-Lan
696 	 */
697 	apme_mask = EM_EEPROM_APME;
698 	eeprom_data = 0;
699 	switch (adapter->hw.mac.type) {
700 	case e1000_82542:
701 	case e1000_82543:
702 		break;
703 
704 	case e1000_82573:
705 	case e1000_82583:
706 		adapter->flags |= EM_FLAG_HAS_AMT;
707 		/* FALL THROUGH */
708 
709 	case e1000_82546:
710 	case e1000_82546_rev_3:
711 	case e1000_82571:
712 	case e1000_82572:
713 	case e1000_80003es2lan:
714 		if (adapter->hw.bus.func == 1) {
715 			e1000_read_nvm(&adapter->hw,
716 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
717 		} else {
718 			e1000_read_nvm(&adapter->hw,
719 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
720 		}
721 		break;
722 
723 	case e1000_ich8lan:
724 	case e1000_ich9lan:
725 	case e1000_ich10lan:
726 	case e1000_pchlan:
727 	case e1000_pch2lan:
728 		apme_mask = E1000_WUC_APME;
729 		adapter->flags |= EM_FLAG_HAS_AMT;
730 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
731 		break;
732 
733 	default:
734 		e1000_read_nvm(&adapter->hw,
735 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
736 		break;
737 	}
738 	if (eeprom_data & apme_mask)
739 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
740 
741 	/*
742          * We have the eeprom settings, now apply the special cases
743          * where the eeprom may be wrong or the board won't support
744          * wake on lan on a particular port
745 	 */
746 	device_id = pci_get_device(dev);
747         switch (device_id) {
748 	case E1000_DEV_ID_82546GB_PCIE:
749 		adapter->wol = 0;
750 		break;
751 
752 	case E1000_DEV_ID_82546EB_FIBER:
753 	case E1000_DEV_ID_82546GB_FIBER:
754 	case E1000_DEV_ID_82571EB_FIBER:
755 		/*
756 		 * Wake events only supported on port A for dual fiber
757 		 * regardless of eeprom setting
758 		 */
759 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
760 		    E1000_STATUS_FUNC_1)
761 			adapter->wol = 0;
762 		break;
763 
764 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
765 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
766 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
767 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
768                 /* if quad port adapter, disable WoL on all but port A */
769 		if (em_global_quad_port_a != 0)
770 			adapter->wol = 0;
771 		/* Reset for multiple quad port adapters */
772 		if (++em_global_quad_port_a == 4)
773 			em_global_quad_port_a = 0;
774                 break;
775 	}
776 
777 	/* XXX disable wol */
778 	adapter->wol = 0;
779 
780 	/* Setup OS specific network interface */
781 	em_setup_ifp(adapter);
782 
783 	/* Add sysctl tree, must after em_setup_ifp() */
784 	em_add_sysctl(adapter);
785 
786 #ifdef IFPOLL_ENABLE
787 	/* Polling setup */
788 	ifpoll_compat_setup(&adapter->npoll,
789 	    &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
790 	    ifp->if_serializer);
791 #endif
792 
793 	/* Reset the hardware */
794 	error = em_reset(adapter);
795 	if (error) {
796 		device_printf(dev, "Unable to reset the hardware\n");
797 		goto fail;
798 	}
799 
800 	/* Initialize statistics */
801 	em_update_stats(adapter);
802 
803 	adapter->hw.mac.get_link_status = 1;
804 	em_update_link_status(adapter);
805 
806 	/* Do we need workaround for 82544 PCI-X adapter? */
807 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
808 	    adapter->hw.mac.type == e1000_82544)
809 		adapter->pcix_82544 = TRUE;
810 	else
811 		adapter->pcix_82544 = FALSE;
812 
813 	if (adapter->pcix_82544) {
814 		/*
815 		 * 82544 on PCI-X may split one TX segment
816 		 * into two TX descs, so we double its number
817 		 * of spare TX desc here.
818 		 */
819 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
820 	} else {
821 		adapter->spare_tx_desc = EM_TX_SPARE;
822 	}
823 	if (adapter->flags & EM_FLAG_TSO)
824 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
825 
826 	/*
827 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
828 	 * and tx_int_nsegs:
829 	 * (spare_tx_desc + EM_TX_RESERVED) <=
830 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
831 	 */
832 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
833 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
834 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
835 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
836 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
837 
838 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
839 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
840 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
841 
842 	/* Non-AMT based hardware can now take control from firmware */
843 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
844 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
845 		em_get_hw_control(adapter);
846 
847 	/*
848 	 * Missing Interrupt Following ICR read:
849 	 *
850 	 * 82571/82572 specification update errata #76
851 	 * 82573 specification update errata #31
852 	 * 82574 specification update errata #12
853 	 * 82583 specification update errata #4
854 	 */
855 	intr_func = em_intr;
856 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
857 	    (adapter->hw.mac.type == e1000_82571 ||
858 	     adapter->hw.mac.type == e1000_82572 ||
859 	     adapter->hw.mac.type == e1000_82573 ||
860 	     adapter->hw.mac.type == e1000_82574 ||
861 	     adapter->hw.mac.type == e1000_82583))
862 		intr_func = em_intr_mask;
863 
864 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
865 			       intr_func, adapter, &adapter->intr_tag,
866 			       ifp->if_serializer);
867 	if (error) {
868 		device_printf(dev, "Failed to register interrupt handler");
869 		ether_ifdetach(&adapter->arpcom.ac_if);
870 		goto fail;
871 	}
872 
873 	ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
874 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
875 	return (0);
876 fail:
877 	em_detach(dev);
878 	return (error);
879 }
880 
881 static int
882 em_detach(device_t dev)
883 {
884 	struct adapter *adapter = device_get_softc(dev);
885 
886 	if (device_is_attached(dev)) {
887 		struct ifnet *ifp = &adapter->arpcom.ac_if;
888 
889 		lwkt_serialize_enter(ifp->if_serializer);
890 
891 		em_stop(adapter);
892 
893 		e1000_phy_hw_reset(&adapter->hw);
894 
895 		em_rel_mgmt(adapter);
896 		em_rel_hw_control(adapter);
897 
898 		if (adapter->wol) {
899 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
900 					E1000_WUC_PME_EN);
901 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
902 			em_enable_wol(dev);
903 		}
904 
905 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
906 
907 		lwkt_serialize_exit(ifp->if_serializer);
908 
909 		ether_ifdetach(ifp);
910 	} else if (adapter->memory != NULL) {
911 		em_rel_hw_control(adapter);
912 	}
913 	bus_generic_detach(dev);
914 
915 	em_free_pci_res(adapter);
916 
917 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
918 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
919 
920 	/* Free Transmit Descriptor ring */
921 	if (adapter->tx_desc_base)
922 		em_dma_free(adapter, &adapter->txdma);
923 
924 	/* Free Receive Descriptor ring */
925 	if (adapter->rx_desc_base)
926 		em_dma_free(adapter, &adapter->rxdma);
927 
928 	/* Free top level busdma tag */
929 	if (adapter->parent_dtag != NULL)
930 		bus_dma_tag_destroy(adapter->parent_dtag);
931 
932 	/* Free sysctl tree */
933 	if (adapter->sysctl_tree != NULL)
934 		sysctl_ctx_free(&adapter->sysctl_ctx);
935 
936 	if (adapter->mta != NULL)
937 		kfree(adapter->mta, M_DEVBUF);
938 
939 	return (0);
940 }
941 
942 static int
943 em_shutdown(device_t dev)
944 {
945 	return em_suspend(dev);
946 }
947 
948 static int
949 em_suspend(device_t dev)
950 {
951 	struct adapter *adapter = device_get_softc(dev);
952 	struct ifnet *ifp = &adapter->arpcom.ac_if;
953 
954 	lwkt_serialize_enter(ifp->if_serializer);
955 
956 	em_stop(adapter);
957 
958 	em_rel_mgmt(adapter);
959 	em_rel_hw_control(adapter);
960 
961 	if (adapter->wol) {
962 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
963 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
964 		em_enable_wol(dev);
965 	}
966 
967 	lwkt_serialize_exit(ifp->if_serializer);
968 
969 	return bus_generic_suspend(dev);
970 }
971 
972 static int
973 em_resume(device_t dev)
974 {
975 	struct adapter *adapter = device_get_softc(dev);
976 	struct ifnet *ifp = &adapter->arpcom.ac_if;
977 
978 	lwkt_serialize_enter(ifp->if_serializer);
979 
980 	em_init(adapter);
981 	em_get_mgmt(adapter);
982 	if_devstart(ifp);
983 
984 	lwkt_serialize_exit(ifp->if_serializer);
985 
986 	return bus_generic_resume(dev);
987 }
988 
989 static void
990 em_start(struct ifnet *ifp)
991 {
992 	struct adapter *adapter = ifp->if_softc;
993 	struct mbuf *m_head;
994 
995 	ASSERT_SERIALIZED(ifp->if_serializer);
996 
997 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
998 		return;
999 
1000 	if (!adapter->link_active) {
1001 		ifq_purge(&ifp->if_snd);
1002 		return;
1003 	}
1004 
1005 	while (!ifq_is_empty(&ifp->if_snd)) {
1006 		/* Now do we at least have a minimal? */
1007 		if (EM_IS_OACTIVE(adapter)) {
1008 			em_tx_collect(adapter);
1009 			if (EM_IS_OACTIVE(adapter)) {
1010 				ifp->if_flags |= IFF_OACTIVE;
1011 				adapter->no_tx_desc_avail1++;
1012 				break;
1013 			}
1014 		}
1015 
1016 		logif(pkt_txqueue);
1017 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1018 		if (m_head == NULL)
1019 			break;
1020 
1021 		if (em_encap(adapter, &m_head)) {
1022 			ifp->if_oerrors++;
1023 			em_tx_collect(adapter);
1024 			continue;
1025 		}
1026 
1027 		/* Send a copy of the frame to the BPF listener */
1028 		ETHER_BPF_MTAP(ifp, m_head);
1029 
1030 		/* Set timeout in case hardware has problems transmitting. */
1031 		ifp->if_timer = EM_TX_TIMEOUT;
1032 	}
1033 }
1034 
1035 static int
1036 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1037 {
1038 	struct adapter *adapter = ifp->if_softc;
1039 	struct ifreq *ifr = (struct ifreq *)data;
1040 	uint16_t eeprom_data = 0;
1041 	int max_frame_size, mask, reinit;
1042 	int error = 0;
1043 
1044 	ASSERT_SERIALIZED(ifp->if_serializer);
1045 
1046 	switch (command) {
1047 	case SIOCSIFMTU:
1048 		switch (adapter->hw.mac.type) {
1049 		case e1000_82573:
1050 			/*
1051 			 * 82573 only supports jumbo frames
1052 			 * if ASPM is disabled.
1053 			 */
1054 			e1000_read_nvm(&adapter->hw,
1055 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1056 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1057 				max_frame_size = ETHER_MAX_LEN;
1058 				break;
1059 			}
1060 			/* FALL THROUGH */
1061 
1062 		/* Limit Jumbo Frame size */
1063 		case e1000_82571:
1064 		case e1000_82572:
1065 		case e1000_ich9lan:
1066 		case e1000_ich10lan:
1067 		case e1000_pch2lan:
1068 		case e1000_82574:
1069 		case e1000_82583:
1070 		case e1000_80003es2lan:
1071 			max_frame_size = 9234;
1072 			break;
1073 
1074 		case e1000_pchlan:
1075 			max_frame_size = 4096;
1076 			break;
1077 
1078 		/* Adapters that do not support jumbo frames */
1079 		case e1000_82542:
1080 		case e1000_ich8lan:
1081 			max_frame_size = ETHER_MAX_LEN;
1082 			break;
1083 
1084 		default:
1085 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1086 			break;
1087 		}
1088 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1089 		    ETHER_CRC_LEN) {
1090 			error = EINVAL;
1091 			break;
1092 		}
1093 
1094 		ifp->if_mtu = ifr->ifr_mtu;
1095 		adapter->max_frame_size =
1096 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1097 
1098 		if (ifp->if_flags & IFF_RUNNING)
1099 			em_init(adapter);
1100 		break;
1101 
1102 	case SIOCSIFFLAGS:
1103 		if (ifp->if_flags & IFF_UP) {
1104 			if ((ifp->if_flags & IFF_RUNNING)) {
1105 				if ((ifp->if_flags ^ adapter->if_flags) &
1106 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1107 					em_disable_promisc(adapter);
1108 					em_set_promisc(adapter);
1109 				}
1110 			} else {
1111 				em_init(adapter);
1112 			}
1113 		} else if (ifp->if_flags & IFF_RUNNING) {
1114 			em_stop(adapter);
1115 		}
1116 		adapter->if_flags = ifp->if_flags;
1117 		break;
1118 
1119 	case SIOCADDMULTI:
1120 	case SIOCDELMULTI:
1121 		if (ifp->if_flags & IFF_RUNNING) {
1122 			em_disable_intr(adapter);
1123 			em_set_multi(adapter);
1124 			if (adapter->hw.mac.type == e1000_82542 &&
1125 			    adapter->hw.revision_id == E1000_REVISION_2)
1126 				em_init_rx_unit(adapter);
1127 #ifdef IFPOLL_ENABLE
1128 			if (!(ifp->if_flags & IFF_NPOLLING))
1129 #endif
1130 				em_enable_intr(adapter);
1131 		}
1132 		break;
1133 
1134 	case SIOCSIFMEDIA:
1135 		/* Check SOL/IDER usage */
1136 		if (e1000_check_reset_block(&adapter->hw)) {
1137 			device_printf(adapter->dev, "Media change is"
1138 			    " blocked due to SOL/IDER session.\n");
1139 			break;
1140 		}
1141 		/* FALL THROUGH */
1142 
1143 	case SIOCGIFMEDIA:
1144 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1145 		break;
1146 
1147 	case SIOCSIFCAP:
1148 		reinit = 0;
1149 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1150 		if (mask & IFCAP_RXCSUM) {
1151 			ifp->if_capenable ^= IFCAP_RXCSUM;
1152 			reinit = 1;
1153 		}
1154 		if (mask & IFCAP_TXCSUM) {
1155 			ifp->if_capenable ^= IFCAP_TXCSUM;
1156 			if (ifp->if_capenable & IFCAP_TXCSUM)
1157 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1158 			else
1159 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1160 		}
1161 		if (mask & IFCAP_TSO) {
1162 			ifp->if_capenable ^= IFCAP_TSO;
1163 			if (ifp->if_capenable & IFCAP_TSO)
1164 				ifp->if_hwassist |= CSUM_TSO;
1165 			else
1166 				ifp->if_hwassist &= ~CSUM_TSO;
1167 		}
1168 		if (mask & IFCAP_VLAN_HWTAGGING) {
1169 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1170 			reinit = 1;
1171 		}
1172 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1173 			em_init(adapter);
1174 		break;
1175 
1176 	default:
1177 		error = ether_ioctl(ifp, command, data);
1178 		break;
1179 	}
1180 	return (error);
1181 }
1182 
1183 static void
1184 em_watchdog(struct ifnet *ifp)
1185 {
1186 	struct adapter *adapter = ifp->if_softc;
1187 
1188 	ASSERT_SERIALIZED(ifp->if_serializer);
1189 
1190 	/*
1191 	 * The timer is set to 5 every time start queues a packet.
1192 	 * Then txeof keeps resetting it as long as it cleans at
1193 	 * least one descriptor.
1194 	 * Finally, anytime all descriptors are clean the timer is
1195 	 * set to 0.
1196 	 */
1197 
1198 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1199 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1200 		/*
1201 		 * If we reach here, all TX jobs are completed and
1202 		 * the TX engine should have been idled for some time.
1203 		 * We don't need to call if_devstart() here.
1204 		 */
1205 		ifp->if_flags &= ~IFF_OACTIVE;
1206 		ifp->if_timer = 0;
1207 		return;
1208 	}
1209 
1210 	/*
1211 	 * If we are in this routine because of pause frames, then
1212 	 * don't reset the hardware.
1213 	 */
1214 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1215 	    E1000_STATUS_TXOFF) {
1216 		ifp->if_timer = EM_TX_TIMEOUT;
1217 		return;
1218 	}
1219 
1220 	if (e1000_check_for_link(&adapter->hw) == 0)
1221 		if_printf(ifp, "watchdog timeout -- resetting\n");
1222 
1223 	ifp->if_oerrors++;
1224 	adapter->watchdog_events++;
1225 
1226 	em_init(adapter);
1227 
1228 	if (!ifq_is_empty(&ifp->if_snd))
1229 		if_devstart(ifp);
1230 }
1231 
1232 static void
1233 em_init(void *xsc)
1234 {
1235 	struct adapter *adapter = xsc;
1236 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1237 	device_t dev = adapter->dev;
1238 	uint32_t pba;
1239 
1240 	ASSERT_SERIALIZED(ifp->if_serializer);
1241 
1242 	em_stop(adapter);
1243 
1244 	/*
1245 	 * Packet Buffer Allocation (PBA)
1246 	 * Writing PBA sets the receive portion of the buffer
1247 	 * the remainder is used for the transmit buffer.
1248 	 *
1249 	 * Devices before the 82547 had a Packet Buffer of 64K.
1250 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1251 	 * After the 82547 the buffer was reduced to 40K.
1252 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1253 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1254 	 */
1255 	switch (adapter->hw.mac.type) {
1256 	case e1000_82547:
1257 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1258 		if (adapter->max_frame_size > 8192)
1259 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1260 		else
1261 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1262 		adapter->tx_fifo_head = 0;
1263 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1264 		adapter->tx_fifo_size =
1265 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1266 		break;
1267 
1268 	/* Total Packet Buffer on these is 48K */
1269 	case e1000_82571:
1270 	case e1000_82572:
1271 	case e1000_80003es2lan:
1272 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1273 		break;
1274 
1275 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1276 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1277 		break;
1278 
1279 	case e1000_82574:
1280 	case e1000_82583:
1281 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1282 		break;
1283 
1284 	case e1000_ich8lan:
1285 		pba = E1000_PBA_8K;
1286 		break;
1287 
1288 	case e1000_ich9lan:
1289 	case e1000_ich10lan:
1290 #define E1000_PBA_10K	0x000A
1291 		pba = E1000_PBA_10K;
1292 		break;
1293 
1294 	case e1000_pchlan:
1295 	case e1000_pch2lan:
1296 		pba = E1000_PBA_26K;
1297 		break;
1298 
1299 	default:
1300 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1301 		if (adapter->max_frame_size > 8192)
1302 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1303 		else
1304 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1305 	}
1306 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1307 
1308 	/* Get the latest mac address, User can use a LAA */
1309         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1310 
1311 	/* Put the address into the Receive Address Array */
1312 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1313 
1314 	/*
1315 	 * With the 82571 adapter, RAR[0] may be overwritten
1316 	 * when the other port is reset, we make a duplicate
1317 	 * in RAR[14] for that eventuality, this assures
1318 	 * the interface continues to function.
1319 	 */
1320 	if (adapter->hw.mac.type == e1000_82571) {
1321 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1322 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1323 		    E1000_RAR_ENTRIES - 1);
1324 	}
1325 
1326 	/* Reset the hardware */
1327 	if (em_reset(adapter)) {
1328 		device_printf(dev, "Unable to reset the hardware\n");
1329 		/* XXX em_stop()? */
1330 		return;
1331 	}
1332 	em_update_link_status(adapter);
1333 
1334 	/* Setup VLAN support, basic and offload if available */
1335 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1336 
1337 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1338 		uint32_t ctrl;
1339 
1340 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1341 		ctrl |= E1000_CTRL_VME;
1342 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1343 	}
1344 
1345 	/* Configure for OS presence */
1346 	em_get_mgmt(adapter);
1347 
1348 	/* Prepare transmit descriptors and buffers */
1349 	em_init_tx_ring(adapter);
1350 	em_init_tx_unit(adapter);
1351 
1352 	/* Setup Multicast table */
1353 	em_set_multi(adapter);
1354 
1355 	/* Prepare receive descriptors and buffers */
1356 	if (em_init_rx_ring(adapter)) {
1357 		device_printf(dev, "Could not setup receive structures\n");
1358 		em_stop(adapter);
1359 		return;
1360 	}
1361 	em_init_rx_unit(adapter);
1362 
1363 	/* Don't lose promiscuous settings */
1364 	em_set_promisc(adapter);
1365 
1366 	ifp->if_flags |= IFF_RUNNING;
1367 	ifp->if_flags &= ~IFF_OACTIVE;
1368 
1369 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1370 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1371 
1372 	/* MSI/X configuration for 82574 */
1373 	if (adapter->hw.mac.type == e1000_82574) {
1374 		int tmp;
1375 
1376 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1377 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1378 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1379 		/*
1380 		 * XXX MSIX
1381 		 * Set the IVAR - interrupt vector routing.
1382 		 * Each nibble represents a vector, high bit
1383 		 * is enable, other 3 bits are the MSIX table
1384 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1385 		 * Link (other) to 2, hence the magic number.
1386 		 */
1387 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1388 	}
1389 
1390 #ifdef IFPOLL_ENABLE
1391 	/*
1392 	 * Only enable interrupts if we are not polling, make sure
1393 	 * they are off otherwise.
1394 	 */
1395 	if (ifp->if_flags & IFF_NPOLLING)
1396 		em_disable_intr(adapter);
1397 	else
1398 #endif /* IFPOLL_ENABLE */
1399 		em_enable_intr(adapter);
1400 
1401 	/* AMT based hardware can now take control from firmware */
1402 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1403 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1404 	    adapter->hw.mac.type >= e1000_82571)
1405 		em_get_hw_control(adapter);
1406 
1407 	/* Don't reset the phy next time init gets called */
1408 	adapter->hw.phy.reset_disable = TRUE;
1409 }
1410 
1411 #ifdef IFPOLL_ENABLE
1412 
1413 static void
1414 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1415 {
1416 	struct adapter *adapter = ifp->if_softc;
1417 
1418 	ASSERT_SERIALIZED(ifp->if_serializer);
1419 
1420 	if (adapter->npoll.ifpc_stcount-- == 0) {
1421 		uint32_t reg_icr;
1422 
1423 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1424 
1425 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1426 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1427 			callout_stop(&adapter->timer);
1428 			adapter->hw.mac.get_link_status = 1;
1429 			em_update_link_status(adapter);
1430 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1431 		}
1432 	}
1433 
1434 	em_rxeof(adapter, count);
1435 	em_txeof(adapter);
1436 
1437 	if (!ifq_is_empty(&ifp->if_snd))
1438 		if_devstart(ifp);
1439 }
1440 
1441 static void
1442 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1443 {
1444 	struct adapter *adapter = ifp->if_softc;
1445 
1446 	ASSERT_SERIALIZED(ifp->if_serializer);
1447 
1448 	if (info != NULL) {
1449 		int cpuid = adapter->npoll.ifpc_cpuid;
1450 
1451                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1452 		info->ifpi_rx[cpuid].arg = NULL;
1453 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1454 
1455 		if (ifp->if_flags & IFF_RUNNING)
1456 			em_disable_intr(adapter);
1457 		ifp->if_npoll_cpuid = cpuid;
1458 	} else {
1459 		if (ifp->if_flags & IFF_RUNNING)
1460 			em_enable_intr(adapter);
1461 		ifp->if_npoll_cpuid = -1;
1462 	}
1463 }
1464 
1465 #endif /* IFPOLL_ENABLE */
1466 
1467 static void
1468 em_intr(void *xsc)
1469 {
1470 	em_intr_body(xsc, TRUE);
1471 }
1472 
1473 static void
1474 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1475 {
1476 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1477 	uint32_t reg_icr;
1478 
1479 	logif(intr_beg);
1480 	ASSERT_SERIALIZED(ifp->if_serializer);
1481 
1482 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1483 
1484 	if (chk_asserted &&
1485 	    ((adapter->hw.mac.type >= e1000_82571 &&
1486 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1487 	     reg_icr == 0)) {
1488 		logif(intr_end);
1489 		return;
1490 	}
1491 
1492 	/*
1493 	 * XXX: some laptops trigger several spurious interrupts
1494 	 * on em(4) when in the resume cycle. The ICR register
1495 	 * reports all-ones value in this case. Processing such
1496 	 * interrupts would lead to a freeze. I don't know why.
1497 	 */
1498 	if (reg_icr == 0xffffffff) {
1499 		logif(intr_end);
1500 		return;
1501 	}
1502 
1503 	if (ifp->if_flags & IFF_RUNNING) {
1504 		if (reg_icr &
1505 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1506 			em_rxeof(adapter, -1);
1507 		if (reg_icr & E1000_ICR_TXDW) {
1508 			em_txeof(adapter);
1509 			if (!ifq_is_empty(&ifp->if_snd))
1510 				if_devstart(ifp);
1511 		}
1512 	}
1513 
1514 	/* Link status change */
1515 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1516 		callout_stop(&adapter->timer);
1517 		adapter->hw.mac.get_link_status = 1;
1518 		em_update_link_status(adapter);
1519 
1520 		/* Deal with TX cruft when link lost */
1521 		em_tx_purge(adapter);
1522 
1523 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1524 	}
1525 
1526 	if (reg_icr & E1000_ICR_RXO)
1527 		adapter->rx_overruns++;
1528 
1529 	logif(intr_end);
1530 }
1531 
1532 static void
1533 em_intr_mask(void *xsc)
1534 {
1535 	struct adapter *adapter = xsc;
1536 
1537 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1538 	/*
1539 	 * NOTE:
1540 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1541 	 * so don't check it.
1542 	 */
1543 	em_intr_body(adapter, FALSE);
1544 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1545 }
1546 
1547 static void
1548 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1549 {
1550 	struct adapter *adapter = ifp->if_softc;
1551 	u_char fiber_type = IFM_1000_SX;
1552 
1553 	ASSERT_SERIALIZED(ifp->if_serializer);
1554 
1555 	em_update_link_status(adapter);
1556 
1557 	ifmr->ifm_status = IFM_AVALID;
1558 	ifmr->ifm_active = IFM_ETHER;
1559 
1560 	if (!adapter->link_active)
1561 		return;
1562 
1563 	ifmr->ifm_status |= IFM_ACTIVE;
1564 
1565 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1566 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1567 		if (adapter->hw.mac.type == e1000_82545)
1568 			fiber_type = IFM_1000_LX;
1569 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1570 	} else {
1571 		switch (adapter->link_speed) {
1572 		case 10:
1573 			ifmr->ifm_active |= IFM_10_T;
1574 			break;
1575 		case 100:
1576 			ifmr->ifm_active |= IFM_100_TX;
1577 			break;
1578 
1579 		case 1000:
1580 			ifmr->ifm_active |= IFM_1000_T;
1581 			break;
1582 		}
1583 		if (adapter->link_duplex == FULL_DUPLEX)
1584 			ifmr->ifm_active |= IFM_FDX;
1585 		else
1586 			ifmr->ifm_active |= IFM_HDX;
1587 	}
1588 }
1589 
1590 static int
1591 em_media_change(struct ifnet *ifp)
1592 {
1593 	struct adapter *adapter = ifp->if_softc;
1594 	struct ifmedia *ifm = &adapter->media;
1595 
1596 	ASSERT_SERIALIZED(ifp->if_serializer);
1597 
1598 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1599 		return (EINVAL);
1600 
1601 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1602 	case IFM_AUTO:
1603 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1604 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1605 		break;
1606 
1607 	case IFM_1000_LX:
1608 	case IFM_1000_SX:
1609 	case IFM_1000_T:
1610 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1611 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1612 		break;
1613 
1614 	case IFM_100_TX:
1615 		adapter->hw.mac.autoneg = FALSE;
1616 		adapter->hw.phy.autoneg_advertised = 0;
1617 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1618 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1619 		else
1620 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1621 		break;
1622 
1623 	case IFM_10_T:
1624 		adapter->hw.mac.autoneg = FALSE;
1625 		adapter->hw.phy.autoneg_advertised = 0;
1626 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1627 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1628 		else
1629 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1630 		break;
1631 
1632 	default:
1633 		if_printf(ifp, "Unsupported media type\n");
1634 		break;
1635 	}
1636 
1637 	/*
1638 	 * As the speed/duplex settings my have changed we need to
1639 	 * reset the PHY.
1640 	 */
1641 	adapter->hw.phy.reset_disable = FALSE;
1642 
1643 	em_init(adapter);
1644 
1645 	return (0);
1646 }
1647 
1648 static int
1649 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1650 {
1651 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1652 	bus_dmamap_t map;
1653 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1654 	struct e1000_tx_desc *ctxd = NULL;
1655 	struct mbuf *m_head = *m_headp;
1656 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1657 	int maxsegs, nsegs, i, j, first, last = 0, error;
1658 
1659 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1660 		error = em_tso_pullup(adapter, m_headp);
1661 		if (error)
1662 			return error;
1663 		m_head = *m_headp;
1664 	}
1665 
1666 	txd_upper = txd_lower = 0;
1667 	txd_used = 0;
1668 
1669 	/*
1670 	 * Capture the first descriptor index, this descriptor
1671 	 * will have the index of the EOP which is the only one
1672 	 * that now gets a DONE bit writeback.
1673 	 */
1674 	first = adapter->next_avail_tx_desc;
1675 	tx_buffer = &adapter->tx_buffer_area[first];
1676 	tx_buffer_mapped = tx_buffer;
1677 	map = tx_buffer->map;
1678 
1679 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1680 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1681 		("not enough spare TX desc"));
1682 	if (adapter->pcix_82544) {
1683 		/* Half it; see the comment in em_attach() */
1684 		maxsegs >>= 1;
1685 	}
1686 	if (maxsegs > EM_MAX_SCATTER)
1687 		maxsegs = EM_MAX_SCATTER;
1688 
1689 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1690 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1691 	if (error) {
1692 		if (error == ENOBUFS)
1693 			adapter->mbuf_alloc_failed++;
1694 		else
1695 			adapter->no_tx_dma_setup++;
1696 
1697 		m_freem(*m_headp);
1698 		*m_headp = NULL;
1699 		return error;
1700 	}
1701         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1702 
1703 	m_head = *m_headp;
1704 	adapter->tx_nsegs += nsegs;
1705 
1706 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1707 		/* TSO will consume one TX desc */
1708 		adapter->tx_nsegs += em_tso_setup(adapter, m_head,
1709 		    &txd_upper, &txd_lower);
1710 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1711 		/* TX csum offloading will consume one TX desc */
1712 		adapter->tx_nsegs += em_txcsum(adapter, m_head,
1713 					       &txd_upper, &txd_lower);
1714 	}
1715 	i = adapter->next_avail_tx_desc;
1716 
1717 	/* Set up our transmit descriptors */
1718 	for (j = 0; j < nsegs; j++) {
1719 		/* If adapter is 82544 and on PCIX bus */
1720 		if(adapter->pcix_82544) {
1721 			DESC_ARRAY desc_array;
1722 			uint32_t array_elements, counter;
1723 
1724 			/*
1725 			 * Check the Address and Length combination and
1726 			 * split the data accordingly
1727 			 */
1728 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1729 						segs[j].ds_len, &desc_array);
1730 			for (counter = 0; counter < array_elements; counter++) {
1731 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1732 
1733 				tx_buffer = &adapter->tx_buffer_area[i];
1734 				ctxd = &adapter->tx_desc_base[i];
1735 
1736 				ctxd->buffer_addr = htole64(
1737 				    desc_array.descriptor[counter].address);
1738 				ctxd->lower.data = htole32(
1739 				    E1000_TXD_CMD_IFCS | txd_lower |
1740 				    desc_array.descriptor[counter].length);
1741 				ctxd->upper.data = htole32(txd_upper);
1742 
1743 				last = i;
1744 				if (++i == adapter->num_tx_desc)
1745 					i = 0;
1746 
1747 				txd_used++;
1748                         }
1749 		} else {
1750 			tx_buffer = &adapter->tx_buffer_area[i];
1751 			ctxd = &adapter->tx_desc_base[i];
1752 
1753 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1754 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1755 						   txd_lower | segs[j].ds_len);
1756 			ctxd->upper.data = htole32(txd_upper);
1757 
1758 			last = i;
1759 			if (++i == adapter->num_tx_desc)
1760 				i = 0;
1761 		}
1762 	}
1763 
1764 	adapter->next_avail_tx_desc = i;
1765 	if (adapter->pcix_82544) {
1766 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1767 		adapter->num_tx_desc_avail -= txd_used;
1768 	} else {
1769 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1770 		adapter->num_tx_desc_avail -= nsegs;
1771 	}
1772 
1773         /* Handle VLAN tag */
1774 	if (m_head->m_flags & M_VLANTAG) {
1775 		/* Set the vlan id. */
1776 		ctxd->upper.fields.special =
1777 		    htole16(m_head->m_pkthdr.ether_vlantag);
1778 
1779 		/* Tell hardware to add tag */
1780 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1781 	}
1782 
1783 	tx_buffer->m_head = m_head;
1784 	tx_buffer_mapped->map = tx_buffer->map;
1785 	tx_buffer->map = map;
1786 
1787 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1788 		adapter->tx_nsegs = 0;
1789 
1790 		/*
1791 		 * Report Status (RS) is turned on
1792 		 * every tx_int_nsegs descriptors.
1793 		 */
1794 		cmd = E1000_TXD_CMD_RS;
1795 
1796 		/*
1797 		 * Keep track of the descriptor, which will
1798 		 * be written back by hardware.
1799 		 */
1800 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1801 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1802 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1803 	}
1804 
1805 	/*
1806 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1807 	 */
1808 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1809 
1810 	/*
1811 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1812 	 * that this frame is available to transmit.
1813 	 */
1814 	if (adapter->hw.mac.type == e1000_82547 &&
1815 	    adapter->link_duplex == HALF_DUPLEX) {
1816 		em_82547_move_tail_serialized(adapter);
1817 	} else {
1818 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1819 		if (adapter->hw.mac.type == e1000_82547) {
1820 			em_82547_update_fifo_head(adapter,
1821 			    m_head->m_pkthdr.len);
1822 		}
1823 	}
1824 	return (0);
1825 }
1826 
1827 /*
1828  * 82547 workaround to avoid controller hang in half-duplex environment.
1829  * The workaround is to avoid queuing a large packet that would span
1830  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1831  * in this case.  We do that only when FIFO is quiescent.
1832  */
1833 static void
1834 em_82547_move_tail_serialized(struct adapter *adapter)
1835 {
1836 	struct e1000_tx_desc *tx_desc;
1837 	uint16_t hw_tdt, sw_tdt, length = 0;
1838 	bool eop = 0;
1839 
1840 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1841 
1842 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1843 	sw_tdt = adapter->next_avail_tx_desc;
1844 
1845 	while (hw_tdt != sw_tdt) {
1846 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1847 		length += tx_desc->lower.flags.length;
1848 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1849 		if (++hw_tdt == adapter->num_tx_desc)
1850 			hw_tdt = 0;
1851 
1852 		if (eop) {
1853 			if (em_82547_fifo_workaround(adapter, length)) {
1854 				adapter->tx_fifo_wrk_cnt++;
1855 				callout_reset(&adapter->tx_fifo_timer, 1,
1856 					em_82547_move_tail, adapter);
1857 				break;
1858 			}
1859 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1860 			em_82547_update_fifo_head(adapter, length);
1861 			length = 0;
1862 		}
1863 	}
1864 }
1865 
1866 static void
1867 em_82547_move_tail(void *xsc)
1868 {
1869 	struct adapter *adapter = xsc;
1870 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1871 
1872 	lwkt_serialize_enter(ifp->if_serializer);
1873 	em_82547_move_tail_serialized(adapter);
1874 	lwkt_serialize_exit(ifp->if_serializer);
1875 }
1876 
1877 static int
1878 em_82547_fifo_workaround(struct adapter *adapter, int len)
1879 {
1880 	int fifo_space, fifo_pkt_len;
1881 
1882 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1883 
1884 	if (adapter->link_duplex == HALF_DUPLEX) {
1885 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1886 
1887 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1888 			if (em_82547_tx_fifo_reset(adapter))
1889 				return (0);
1890 			else
1891 				return (1);
1892 		}
1893 	}
1894 	return (0);
1895 }
1896 
1897 static void
1898 em_82547_update_fifo_head(struct adapter *adapter, int len)
1899 {
1900 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1901 
1902 	/* tx_fifo_head is always 16 byte aligned */
1903 	adapter->tx_fifo_head += fifo_pkt_len;
1904 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1905 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1906 }
1907 
1908 static int
1909 em_82547_tx_fifo_reset(struct adapter *adapter)
1910 {
1911 	uint32_t tctl;
1912 
1913 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1914 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1915 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1916 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1917 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1918 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1919 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1920 		/* Disable TX unit */
1921 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1922 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1923 		    tctl & ~E1000_TCTL_EN);
1924 
1925 		/* Reset FIFO pointers */
1926 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1927 		    adapter->tx_head_addr);
1928 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1929 		    adapter->tx_head_addr);
1930 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1931 		    adapter->tx_head_addr);
1932 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1933 		    adapter->tx_head_addr);
1934 
1935 		/* Re-enable TX unit */
1936 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1937 		E1000_WRITE_FLUSH(&adapter->hw);
1938 
1939 		adapter->tx_fifo_head = 0;
1940 		adapter->tx_fifo_reset_cnt++;
1941 
1942 		return (TRUE);
1943 	} else {
1944 		return (FALSE);
1945 	}
1946 }
1947 
1948 static void
1949 em_set_promisc(struct adapter *adapter)
1950 {
1951 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1952 	uint32_t reg_rctl;
1953 
1954 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1955 
1956 	if (ifp->if_flags & IFF_PROMISC) {
1957 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1958 		/* Turn this on if you want to see bad packets */
1959 		if (em_debug_sbp)
1960 			reg_rctl |= E1000_RCTL_SBP;
1961 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1962 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1963 		reg_rctl |= E1000_RCTL_MPE;
1964 		reg_rctl &= ~E1000_RCTL_UPE;
1965 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1966 	}
1967 }
1968 
1969 static void
1970 em_disable_promisc(struct adapter *adapter)
1971 {
1972 	uint32_t reg_rctl;
1973 
1974 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1975 
1976 	reg_rctl &= ~E1000_RCTL_UPE;
1977 	reg_rctl &= ~E1000_RCTL_MPE;
1978 	reg_rctl &= ~E1000_RCTL_SBP;
1979 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1980 }
1981 
1982 static void
1983 em_set_multi(struct adapter *adapter)
1984 {
1985 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1986 	struct ifmultiaddr *ifma;
1987 	uint32_t reg_rctl = 0;
1988 	uint8_t *mta;
1989 	int mcnt = 0;
1990 
1991 	mta = adapter->mta;
1992 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1993 
1994 	if (adapter->hw.mac.type == e1000_82542 &&
1995 	    adapter->hw.revision_id == E1000_REVISION_2) {
1996 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1997 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1998 			e1000_pci_clear_mwi(&adapter->hw);
1999 		reg_rctl |= E1000_RCTL_RST;
2000 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2001 		msec_delay(5);
2002 	}
2003 
2004 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2005 		if (ifma->ifma_addr->sa_family != AF_LINK)
2006 			continue;
2007 
2008 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2009 			break;
2010 
2011 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2012 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2013 		mcnt++;
2014 	}
2015 
2016 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2017 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2018 		reg_rctl |= E1000_RCTL_MPE;
2019 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2020 	} else {
2021 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2022 	}
2023 
2024 	if (adapter->hw.mac.type == e1000_82542 &&
2025 	    adapter->hw.revision_id == E1000_REVISION_2) {
2026 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2027 		reg_rctl &= ~E1000_RCTL_RST;
2028 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2029 		msec_delay(5);
2030 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2031 			e1000_pci_set_mwi(&adapter->hw);
2032 	}
2033 }
2034 
2035 /*
2036  * This routine checks for link status and updates statistics.
2037  */
2038 static void
2039 em_timer(void *xsc)
2040 {
2041 	struct adapter *adapter = xsc;
2042 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2043 
2044 	lwkt_serialize_enter(ifp->if_serializer);
2045 
2046 	em_update_link_status(adapter);
2047 	em_update_stats(adapter);
2048 
2049 	/* Reset LAA into RAR[0] on 82571 */
2050 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2051 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2052 
2053 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2054 		em_print_hw_stats(adapter);
2055 
2056 	em_smartspeed(adapter);
2057 
2058 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2059 
2060 	lwkt_serialize_exit(ifp->if_serializer);
2061 }
2062 
2063 static void
2064 em_update_link_status(struct adapter *adapter)
2065 {
2066 	struct e1000_hw *hw = &adapter->hw;
2067 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2068 	device_t dev = adapter->dev;
2069 	uint32_t link_check = 0;
2070 
2071 	/* Get the cached link value or read phy for real */
2072 	switch (hw->phy.media_type) {
2073 	case e1000_media_type_copper:
2074 		if (hw->mac.get_link_status) {
2075 			/* Do the work to read phy */
2076 			e1000_check_for_link(hw);
2077 			link_check = !hw->mac.get_link_status;
2078 			if (link_check) /* ESB2 fix */
2079 				e1000_cfg_on_link_up(hw);
2080 		} else {
2081 			link_check = TRUE;
2082 		}
2083 		break;
2084 
2085 	case e1000_media_type_fiber:
2086 		e1000_check_for_link(hw);
2087 		link_check =
2088 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2089 		break;
2090 
2091 	case e1000_media_type_internal_serdes:
2092 		e1000_check_for_link(hw);
2093 		link_check = adapter->hw.mac.serdes_has_link;
2094 		break;
2095 
2096 	case e1000_media_type_unknown:
2097 	default:
2098 		break;
2099 	}
2100 
2101 	/* Now check for a transition */
2102 	if (link_check && adapter->link_active == 0) {
2103 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2104 		    &adapter->link_duplex);
2105 
2106 		/*
2107 		 * Check if we should enable/disable SPEED_MODE bit on
2108 		 * 82571/82572
2109 		 */
2110 		if (adapter->link_speed != SPEED_1000 &&
2111 		    (hw->mac.type == e1000_82571 ||
2112 		     hw->mac.type == e1000_82572)) {
2113 			int tarc0;
2114 
2115 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2116 			tarc0 &= ~SPEED_MODE_BIT;
2117 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2118 		}
2119 		if (bootverbose) {
2120 			device_printf(dev, "Link is up %d Mbps %s\n",
2121 			    adapter->link_speed,
2122 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2123 			    "Full Duplex" : "Half Duplex"));
2124 		}
2125 		adapter->link_active = 1;
2126 		adapter->smartspeed = 0;
2127 		ifp->if_baudrate = adapter->link_speed * 1000000;
2128 		ifp->if_link_state = LINK_STATE_UP;
2129 		if_link_state_change(ifp);
2130 	} else if (!link_check && adapter->link_active == 1) {
2131 		ifp->if_baudrate = adapter->link_speed = 0;
2132 		adapter->link_duplex = 0;
2133 		if (bootverbose)
2134 			device_printf(dev, "Link is Down\n");
2135 		adapter->link_active = 0;
2136 #if 0
2137 		/* Link down, disable watchdog */
2138 		if->if_timer = 0;
2139 #endif
2140 		ifp->if_link_state = LINK_STATE_DOWN;
2141 		if_link_state_change(ifp);
2142 	}
2143 }
2144 
2145 static void
2146 em_stop(struct adapter *adapter)
2147 {
2148 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2149 	int i;
2150 
2151 	ASSERT_SERIALIZED(ifp->if_serializer);
2152 
2153 	em_disable_intr(adapter);
2154 
2155 	callout_stop(&adapter->timer);
2156 	callout_stop(&adapter->tx_fifo_timer);
2157 
2158 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2159 	ifp->if_timer = 0;
2160 
2161 	e1000_reset_hw(&adapter->hw);
2162 	if (adapter->hw.mac.type >= e1000_82544)
2163 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2164 
2165 	for (i = 0; i < adapter->num_tx_desc; i++) {
2166 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2167 
2168 		if (tx_buffer->m_head != NULL) {
2169 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2170 			m_freem(tx_buffer->m_head);
2171 			tx_buffer->m_head = NULL;
2172 		}
2173 	}
2174 
2175 	for (i = 0; i < adapter->num_rx_desc; i++) {
2176 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2177 
2178 		if (rx_buffer->m_head != NULL) {
2179 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2180 			m_freem(rx_buffer->m_head);
2181 			rx_buffer->m_head = NULL;
2182 		}
2183 	}
2184 
2185 	if (adapter->fmp != NULL)
2186 		m_freem(adapter->fmp);
2187 	adapter->fmp = NULL;
2188 	adapter->lmp = NULL;
2189 
2190 	adapter->csum_flags = 0;
2191 	adapter->csum_lhlen = 0;
2192 	adapter->csum_iphlen = 0;
2193 	adapter->csum_thlen = 0;
2194 	adapter->csum_mss = 0;
2195 	adapter->csum_pktlen = 0;
2196 
2197 	adapter->tx_dd_head = 0;
2198 	adapter->tx_dd_tail = 0;
2199 	adapter->tx_nsegs = 0;
2200 }
2201 
2202 static int
2203 em_get_hw_info(struct adapter *adapter)
2204 {
2205 	device_t dev = adapter->dev;
2206 
2207 	/* Save off the information about this board */
2208 	adapter->hw.vendor_id = pci_get_vendor(dev);
2209 	adapter->hw.device_id = pci_get_device(dev);
2210 	adapter->hw.revision_id = pci_get_revid(dev);
2211 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2212 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2213 
2214 	/* Do Shared Code Init and Setup */
2215 	if (e1000_set_mac_type(&adapter->hw))
2216 		return ENXIO;
2217 	return 0;
2218 }
2219 
2220 static int
2221 em_alloc_pci_res(struct adapter *adapter)
2222 {
2223 	device_t dev = adapter->dev;
2224 	u_int intr_flags;
2225 	int val, rid, msi_enable;
2226 
2227 	/* Enable bus mastering */
2228 	pci_enable_busmaster(dev);
2229 
2230 	adapter->memory_rid = EM_BAR_MEM;
2231 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2232 				&adapter->memory_rid, RF_ACTIVE);
2233 	if (adapter->memory == NULL) {
2234 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2235 		return (ENXIO);
2236 	}
2237 	adapter->osdep.mem_bus_space_tag =
2238 	    rman_get_bustag(adapter->memory);
2239 	adapter->osdep.mem_bus_space_handle =
2240 	    rman_get_bushandle(adapter->memory);
2241 
2242 	/* XXX This is quite goofy, it is not actually used */
2243 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2244 
2245 	/* Only older adapters use IO mapping */
2246 	if (adapter->hw.mac.type > e1000_82543 &&
2247 	    adapter->hw.mac.type < e1000_82571) {
2248 		/* Figure our where our IO BAR is ? */
2249 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2250 			val = pci_read_config(dev, rid, 4);
2251 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2252 				adapter->io_rid = rid;
2253 				break;
2254 			}
2255 			rid += 4;
2256 			/* check for 64bit BAR */
2257 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2258 				rid += 4;
2259 		}
2260 		if (rid >= PCIR_CARDBUSCIS) {
2261 			device_printf(dev, "Unable to locate IO BAR\n");
2262 			return (ENXIO);
2263 		}
2264 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2265 					&adapter->io_rid, RF_ACTIVE);
2266 		if (adapter->ioport == NULL) {
2267 			device_printf(dev, "Unable to allocate bus resource: "
2268 			    "ioport\n");
2269 			return (ENXIO);
2270 		}
2271 		adapter->hw.io_base = 0;
2272 		adapter->osdep.io_bus_space_tag =
2273 		    rman_get_bustag(adapter->ioport);
2274 		adapter->osdep.io_bus_space_handle =
2275 		    rman_get_bushandle(adapter->ioport);
2276 	}
2277 
2278 	/*
2279 	 * Don't enable MSI-X on 82574, see:
2280 	 * 82574 specification update errata #15
2281 	 *
2282 	 * Don't enable MSI on PCI/PCI-X chips, see:
2283 	 * 82540 specification update errata #6
2284 	 * 82545 specification update errata #4
2285 	 *
2286 	 * Don't enable MSI on 82571/82572, see:
2287 	 * 82571/82572 specification update errata #63
2288 	 */
2289 	msi_enable = em_msi_enable;
2290 	if (msi_enable &&
2291 	    (!pci_is_pcie(dev) ||
2292 	     adapter->hw.mac.type == e1000_82571 ||
2293 	     adapter->hw.mac.type == e1000_82572))
2294 		msi_enable = 0;
2295 
2296 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2297 	    &adapter->intr_rid, &intr_flags);
2298 
2299 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2300 		int unshared;
2301 
2302 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2303 		if (!unshared) {
2304 			adapter->flags |= EM_FLAG_SHARED_INTR;
2305 			if (bootverbose)
2306 				device_printf(dev, "IRQ shared\n");
2307 		} else {
2308 			intr_flags &= ~RF_SHAREABLE;
2309 			if (bootverbose)
2310 				device_printf(dev, "IRQ unshared\n");
2311 		}
2312 	}
2313 
2314 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2315 	    &adapter->intr_rid, intr_flags);
2316 	if (adapter->intr_res == NULL) {
2317 		device_printf(dev, "Unable to allocate bus resource: "
2318 		    "interrupt\n");
2319 		return (ENXIO);
2320 	}
2321 
2322 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2323 	adapter->hw.back = &adapter->osdep;
2324 	return (0);
2325 }
2326 
2327 static void
2328 em_free_pci_res(struct adapter *adapter)
2329 {
2330 	device_t dev = adapter->dev;
2331 
2332 	if (adapter->intr_res != NULL) {
2333 		bus_release_resource(dev, SYS_RES_IRQ,
2334 		    adapter->intr_rid, adapter->intr_res);
2335 	}
2336 
2337 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2338 		pci_release_msi(dev);
2339 
2340 	if (adapter->memory != NULL) {
2341 		bus_release_resource(dev, SYS_RES_MEMORY,
2342 		    adapter->memory_rid, adapter->memory);
2343 	}
2344 
2345 	if (adapter->flash != NULL) {
2346 		bus_release_resource(dev, SYS_RES_MEMORY,
2347 		    adapter->flash_rid, adapter->flash);
2348 	}
2349 
2350 	if (adapter->ioport != NULL) {
2351 		bus_release_resource(dev, SYS_RES_IOPORT,
2352 		    adapter->io_rid, adapter->ioport);
2353 	}
2354 }
2355 
2356 static int
2357 em_reset(struct adapter *adapter)
2358 {
2359 	device_t dev = adapter->dev;
2360 	uint16_t rx_buffer_size;
2361 
2362 	/* When hardware is reset, fifo_head is also reset */
2363 	adapter->tx_fifo_head = 0;
2364 
2365 	/* Set up smart power down as default off on newer adapters. */
2366 	if (!em_smart_pwr_down &&
2367 	    (adapter->hw.mac.type == e1000_82571 ||
2368 	     adapter->hw.mac.type == e1000_82572)) {
2369 		uint16_t phy_tmp = 0;
2370 
2371 		/* Speed up time to link by disabling smart power down. */
2372 		e1000_read_phy_reg(&adapter->hw,
2373 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2374 		phy_tmp &= ~IGP02E1000_PM_SPD;
2375 		e1000_write_phy_reg(&adapter->hw,
2376 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2377 	}
2378 
2379 	/*
2380 	 * These parameters control the automatic generation (Tx) and
2381 	 * response (Rx) to Ethernet PAUSE frames.
2382 	 * - High water mark should allow for at least two frames to be
2383 	 *   received after sending an XOFF.
2384 	 * - Low water mark works best when it is very near the high water mark.
2385 	 *   This allows the receiver to restart by sending XON when it has
2386 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2387 	 *   restart after one full frame is pulled from the buffer. There
2388 	 *   could be several smaller frames in the buffer and if so they will
2389 	 *   not trigger the XON until their total number reduces the buffer
2390 	 *   by 1500.
2391 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2392 	 */
2393 	rx_buffer_size =
2394 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2395 
2396 	adapter->hw.fc.high_water = rx_buffer_size -
2397 				    roundup2(adapter->max_frame_size, 1024);
2398 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2399 
2400 	if (adapter->hw.mac.type == e1000_80003es2lan)
2401 		adapter->hw.fc.pause_time = 0xFFFF;
2402 	else
2403 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2404 
2405 	adapter->hw.fc.send_xon = TRUE;
2406 
2407 	adapter->hw.fc.requested_mode = e1000_fc_full;
2408 
2409 	/* Workaround: no TX flow ctrl for PCH */
2410 	if (adapter->hw.mac.type == e1000_pchlan)
2411 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2412 
2413 	/* Override - settings for PCH2LAN, ya its magic :) */
2414 	if (adapter->hw.mac.type == e1000_pch2lan) {
2415 		adapter->hw.fc.high_water = 0x5C20;
2416 		adapter->hw.fc.low_water = 0x5048;
2417 		adapter->hw.fc.pause_time = 0x0650;
2418 		adapter->hw.fc.refresh_time = 0x0400;
2419 
2420 		/* Jumbos need adjusted PBA */
2421 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2422 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2423 		else
2424 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2425 	}
2426 
2427 	/* Issue a global reset */
2428 	e1000_reset_hw(&adapter->hw);
2429 	if (adapter->hw.mac.type >= e1000_82544)
2430 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2431 	em_disable_aspm(adapter);
2432 
2433 	if (e1000_init_hw(&adapter->hw) < 0) {
2434 		device_printf(dev, "Hardware Initialization Failed\n");
2435 		return (EIO);
2436 	}
2437 
2438 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2439 	e1000_get_phy_info(&adapter->hw);
2440 	e1000_check_for_link(&adapter->hw);
2441 
2442 	return (0);
2443 }
2444 
2445 static void
2446 em_setup_ifp(struct adapter *adapter)
2447 {
2448 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2449 
2450 	if_initname(ifp, device_get_name(adapter->dev),
2451 		    device_get_unit(adapter->dev));
2452 	ifp->if_softc = adapter;
2453 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2454 	ifp->if_init =  em_init;
2455 	ifp->if_ioctl = em_ioctl;
2456 	ifp->if_start = em_start;
2457 #ifdef IFPOLL_ENABLE
2458 	ifp->if_npoll = em_npoll;
2459 #endif
2460 	ifp->if_watchdog = em_watchdog;
2461 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2462 	ifq_set_ready(&ifp->if_snd);
2463 
2464 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2465 
2466 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2467 	if (adapter->hw.mac.type >= e1000_82543)
2468 		ifp->if_capabilities |= IFCAP_HWCSUM;
2469 	if (adapter->flags & EM_FLAG_TSO)
2470 		ifp->if_capabilities |= IFCAP_TSO;
2471 	ifp->if_capenable = ifp->if_capabilities;
2472 
2473 	if (ifp->if_capenable & IFCAP_TXCSUM)
2474 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2475 	if (ifp->if_capenable & IFCAP_TSO)
2476 		ifp->if_hwassist |= CSUM_TSO;
2477 
2478 	/*
2479 	 * Tell the upper layer(s) we support long frames.
2480 	 */
2481 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2482 
2483 	/*
2484 	 * Specify the media types supported by this adapter and register
2485 	 * callbacks to update media and link information
2486 	 */
2487 	ifmedia_init(&adapter->media, IFM_IMASK,
2488 		     em_media_change, em_media_status);
2489 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2490 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2491 		u_char fiber_type = IFM_1000_SX; /* default type */
2492 
2493 		if (adapter->hw.mac.type == e1000_82545)
2494 			fiber_type = IFM_1000_LX;
2495 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2496 			    0, NULL);
2497 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2498 	} else {
2499 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2500 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2501 			    0, NULL);
2502 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2503 			    0, NULL);
2504 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2505 			    0, NULL);
2506 		if (adapter->hw.phy.type != e1000_phy_ife) {
2507 			ifmedia_add(&adapter->media,
2508 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2509 			ifmedia_add(&adapter->media,
2510 				IFM_ETHER | IFM_1000_T, 0, NULL);
2511 		}
2512 	}
2513 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2514 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2515 }
2516 
2517 
2518 /*
2519  * Workaround for SmartSpeed on 82541 and 82547 controllers
2520  */
2521 static void
2522 em_smartspeed(struct adapter *adapter)
2523 {
2524 	uint16_t phy_tmp;
2525 
2526 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2527 	    adapter->hw.mac.autoneg == 0 ||
2528 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2529 		return;
2530 
2531 	if (adapter->smartspeed == 0) {
2532 		/*
2533 		 * If Master/Slave config fault is asserted twice,
2534 		 * we assume back-to-back
2535 		 */
2536 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2537 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2538 			return;
2539 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2540 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2541 			e1000_read_phy_reg(&adapter->hw,
2542 			    PHY_1000T_CTRL, &phy_tmp);
2543 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2544 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2545 				e1000_write_phy_reg(&adapter->hw,
2546 				    PHY_1000T_CTRL, phy_tmp);
2547 				adapter->smartspeed++;
2548 				if (adapter->hw.mac.autoneg &&
2549 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2550 				    !e1000_read_phy_reg(&adapter->hw,
2551 				     PHY_CONTROL, &phy_tmp)) {
2552 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2553 						   MII_CR_RESTART_AUTO_NEG;
2554 					e1000_write_phy_reg(&adapter->hw,
2555 					    PHY_CONTROL, phy_tmp);
2556 				}
2557 			}
2558 		}
2559 		return;
2560 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2561 		/* If still no link, perhaps using 2/3 pair cable */
2562 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2563 		phy_tmp |= CR_1000T_MS_ENABLE;
2564 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2565 		if (adapter->hw.mac.autoneg &&
2566 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2567 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2568 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2569 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2570 		}
2571 	}
2572 
2573 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2574 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2575 		adapter->smartspeed = 0;
2576 }
2577 
2578 static int
2579 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2580 	      struct em_dma_alloc *dma)
2581 {
2582 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2583 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2584 				&dma->dma_tag, &dma->dma_map,
2585 				&dma->dma_paddr);
2586 	if (dma->dma_vaddr == NULL)
2587 		return ENOMEM;
2588 	else
2589 		return 0;
2590 }
2591 
2592 static void
2593 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2594 {
2595 	if (dma->dma_tag == NULL)
2596 		return;
2597 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2598 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2599 	bus_dma_tag_destroy(dma->dma_tag);
2600 }
2601 
2602 static int
2603 em_create_tx_ring(struct adapter *adapter)
2604 {
2605 	device_t dev = adapter->dev;
2606 	struct em_buffer *tx_buffer;
2607 	int error, i;
2608 
2609 	adapter->tx_buffer_area =
2610 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2611 			M_DEVBUF, M_WAITOK | M_ZERO);
2612 
2613 	/*
2614 	 * Create DMA tags for tx buffers
2615 	 */
2616 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2617 			1, 0,			/* alignment, bounds */
2618 			BUS_SPACE_MAXADDR,	/* lowaddr */
2619 			BUS_SPACE_MAXADDR,	/* highaddr */
2620 			NULL, NULL,		/* filter, filterarg */
2621 			EM_TSO_SIZE,		/* maxsize */
2622 			EM_MAX_SCATTER,		/* nsegments */
2623 			PAGE_SIZE,		/* maxsegsize */
2624 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2625 			BUS_DMA_ONEBPAGE,	/* flags */
2626 			&adapter->txtag);
2627 	if (error) {
2628 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2629 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2630 		adapter->tx_buffer_area = NULL;
2631 		return error;
2632 	}
2633 
2634 	/*
2635 	 * Create DMA maps for tx buffers
2636 	 */
2637 	for (i = 0; i < adapter->num_tx_desc; i++) {
2638 		tx_buffer = &adapter->tx_buffer_area[i];
2639 
2640 		error = bus_dmamap_create(adapter->txtag,
2641 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2642 					  &tx_buffer->map);
2643 		if (error) {
2644 			device_printf(dev, "Unable to create TX DMA map\n");
2645 			em_destroy_tx_ring(adapter, i);
2646 			return error;
2647 		}
2648 	}
2649 	return (0);
2650 }
2651 
2652 static void
2653 em_init_tx_ring(struct adapter *adapter)
2654 {
2655 	/* Clear the old ring contents */
2656 	bzero(adapter->tx_desc_base,
2657 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2658 
2659 	/* Reset state */
2660 	adapter->next_avail_tx_desc = 0;
2661 	adapter->next_tx_to_clean = 0;
2662 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2663 }
2664 
2665 static void
2666 em_init_tx_unit(struct adapter *adapter)
2667 {
2668 	uint32_t tctl, tarc, tipg = 0;
2669 	uint64_t bus_addr;
2670 
2671 	/* Setup the Base and Length of the Tx Descriptor Ring */
2672 	bus_addr = adapter->txdma.dma_paddr;
2673 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2674 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2675 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2676 	    (uint32_t)(bus_addr >> 32));
2677 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2678 	    (uint32_t)bus_addr);
2679 	/* Setup the HW Tx Head and Tail descriptor pointers */
2680 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2681 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2682 
2683 	/* Set the default values for the Tx Inter Packet Gap timer */
2684 	switch (adapter->hw.mac.type) {
2685 	case e1000_82542:
2686 		tipg = DEFAULT_82542_TIPG_IPGT;
2687 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2688 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2689 		break;
2690 
2691 	case e1000_80003es2lan:
2692 		tipg = DEFAULT_82543_TIPG_IPGR1;
2693 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2694 		    E1000_TIPG_IPGR2_SHIFT;
2695 		break;
2696 
2697 	default:
2698 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2699 		    adapter->hw.phy.media_type ==
2700 		    e1000_media_type_internal_serdes)
2701 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2702 		else
2703 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2704 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2705 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2706 		break;
2707 	}
2708 
2709 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2710 
2711 	/* NOTE: 0 is not allowed for TIDV */
2712 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2713 	if(adapter->hw.mac.type >= e1000_82540)
2714 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2715 
2716 	if (adapter->hw.mac.type == e1000_82571 ||
2717 	    adapter->hw.mac.type == e1000_82572) {
2718 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2719 		tarc |= SPEED_MODE_BIT;
2720 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2721 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2722 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2723 		tarc |= 1;
2724 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2725 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2726 		tarc |= 1;
2727 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2728 	}
2729 
2730 	/* Program the Transmit Control Register */
2731 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2732 	tctl &= ~E1000_TCTL_CT;
2733 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2734 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2735 
2736 	if (adapter->hw.mac.type >= e1000_82571)
2737 		tctl |= E1000_TCTL_MULR;
2738 
2739 	/* This write will effectively turn on the transmit unit. */
2740 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2741 }
2742 
2743 static void
2744 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2745 {
2746 	struct em_buffer *tx_buffer;
2747 	int i;
2748 
2749 	if (adapter->tx_buffer_area == NULL)
2750 		return;
2751 
2752 	for (i = 0; i < ndesc; i++) {
2753 		tx_buffer = &adapter->tx_buffer_area[i];
2754 
2755 		KKASSERT(tx_buffer->m_head == NULL);
2756 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2757 	}
2758 	bus_dma_tag_destroy(adapter->txtag);
2759 
2760 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2761 	adapter->tx_buffer_area = NULL;
2762 }
2763 
2764 /*
2765  * The offload context needs to be set when we transfer the first
2766  * packet of a particular protocol (TCP/UDP).  This routine has been
2767  * enhanced to deal with inserted VLAN headers.
2768  *
2769  * If the new packet's ether header length, ip header length and
2770  * csum offloading type are same as the previous packet, we should
2771  * avoid allocating a new csum context descriptor; mainly to take
2772  * advantage of the pipeline effect of the TX data read request.
2773  *
2774  * This function returns number of TX descrptors allocated for
2775  * csum context.
2776  */
2777 static int
2778 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2779 	  uint32_t *txd_upper, uint32_t *txd_lower)
2780 {
2781 	struct e1000_context_desc *TXD;
2782 	int curr_txd, ehdrlen, csum_flags;
2783 	uint32_t cmd, hdr_len, ip_hlen;
2784 
2785 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2786 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2787 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2788 
2789 	if (adapter->csum_lhlen == ehdrlen &&
2790 	    adapter->csum_iphlen == ip_hlen &&
2791 	    adapter->csum_flags == csum_flags) {
2792 		/*
2793 		 * Same csum offload context as the previous packets;
2794 		 * just return.
2795 		 */
2796 		*txd_upper = adapter->csum_txd_upper;
2797 		*txd_lower = adapter->csum_txd_lower;
2798 		return 0;
2799 	}
2800 
2801 	/*
2802 	 * Setup a new csum offload context.
2803 	 */
2804 
2805 	curr_txd = adapter->next_avail_tx_desc;
2806 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2807 
2808 	cmd = 0;
2809 
2810 	/* Setup of IP header checksum. */
2811 	if (csum_flags & CSUM_IP) {
2812 		/*
2813 		 * Start offset for header checksum calculation.
2814 		 * End offset for header checksum calculation.
2815 		 * Offset of place to put the checksum.
2816 		 */
2817 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2818 		TXD->lower_setup.ip_fields.ipcse =
2819 		    htole16(ehdrlen + ip_hlen - 1);
2820 		TXD->lower_setup.ip_fields.ipcso =
2821 		    ehdrlen + offsetof(struct ip, ip_sum);
2822 		cmd |= E1000_TXD_CMD_IP;
2823 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2824 	}
2825 	hdr_len = ehdrlen + ip_hlen;
2826 
2827 	if (csum_flags & CSUM_TCP) {
2828 		/*
2829 		 * Start offset for payload checksum calculation.
2830 		 * End offset for payload checksum calculation.
2831 		 * Offset of place to put the checksum.
2832 		 */
2833 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2834 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2835 		TXD->upper_setup.tcp_fields.tucso =
2836 		    hdr_len + offsetof(struct tcphdr, th_sum);
2837 		cmd |= E1000_TXD_CMD_TCP;
2838 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2839 	} else if (csum_flags & CSUM_UDP) {
2840 		/*
2841 		 * Start offset for header checksum calculation.
2842 		 * End offset for header checksum calculation.
2843 		 * Offset of place to put the checksum.
2844 		 */
2845 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2846 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2847 		TXD->upper_setup.tcp_fields.tucso =
2848 		    hdr_len + offsetof(struct udphdr, uh_sum);
2849 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2850 	}
2851 
2852 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2853 		     E1000_TXD_DTYP_D;		/* Data descr */
2854 
2855 	/* Save the information for this csum offloading context */
2856 	adapter->csum_lhlen = ehdrlen;
2857 	adapter->csum_iphlen = ip_hlen;
2858 	adapter->csum_flags = csum_flags;
2859 	adapter->csum_txd_upper = *txd_upper;
2860 	adapter->csum_txd_lower = *txd_lower;
2861 
2862 	TXD->tcp_seg_setup.data = htole32(0);
2863 	TXD->cmd_and_length =
2864 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2865 
2866 	if (++curr_txd == adapter->num_tx_desc)
2867 		curr_txd = 0;
2868 
2869 	KKASSERT(adapter->num_tx_desc_avail > 0);
2870 	adapter->num_tx_desc_avail--;
2871 
2872 	adapter->next_avail_tx_desc = curr_txd;
2873 	return 1;
2874 }
2875 
2876 static void
2877 em_txeof(struct adapter *adapter)
2878 {
2879 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2880 	struct em_buffer *tx_buffer;
2881 	int first, num_avail;
2882 
2883 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2884 		return;
2885 
2886 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2887 		return;
2888 
2889 	num_avail = adapter->num_tx_desc_avail;
2890 	first = adapter->next_tx_to_clean;
2891 
2892 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2893 		struct e1000_tx_desc *tx_desc;
2894 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2895 
2896 		tx_desc = &adapter->tx_desc_base[dd_idx];
2897 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2898 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2899 
2900 			if (++dd_idx == adapter->num_tx_desc)
2901 				dd_idx = 0;
2902 
2903 			while (first != dd_idx) {
2904 				logif(pkt_txclean);
2905 
2906 				num_avail++;
2907 
2908 				tx_buffer = &adapter->tx_buffer_area[first];
2909 				if (tx_buffer->m_head) {
2910 					ifp->if_opackets++;
2911 					bus_dmamap_unload(adapter->txtag,
2912 							  tx_buffer->map);
2913 					m_freem(tx_buffer->m_head);
2914 					tx_buffer->m_head = NULL;
2915 				}
2916 
2917 				if (++first == adapter->num_tx_desc)
2918 					first = 0;
2919 			}
2920 		} else {
2921 			break;
2922 		}
2923 	}
2924 	adapter->next_tx_to_clean = first;
2925 	adapter->num_tx_desc_avail = num_avail;
2926 
2927 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2928 		adapter->tx_dd_head = 0;
2929 		adapter->tx_dd_tail = 0;
2930 	}
2931 
2932 	if (!EM_IS_OACTIVE(adapter)) {
2933 		ifp->if_flags &= ~IFF_OACTIVE;
2934 
2935 		/* All clean, turn off the timer */
2936 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2937 			ifp->if_timer = 0;
2938 	}
2939 }
2940 
2941 static void
2942 em_tx_collect(struct adapter *adapter)
2943 {
2944 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2945 	struct em_buffer *tx_buffer;
2946 	int tdh, first, num_avail, dd_idx = -1;
2947 
2948 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2949 		return;
2950 
2951 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2952 	if (tdh == adapter->next_tx_to_clean)
2953 		return;
2954 
2955 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2956 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2957 
2958 	num_avail = adapter->num_tx_desc_avail;
2959 	first = adapter->next_tx_to_clean;
2960 
2961 	while (first != tdh) {
2962 		logif(pkt_txclean);
2963 
2964 		num_avail++;
2965 
2966 		tx_buffer = &adapter->tx_buffer_area[first];
2967 		if (tx_buffer->m_head) {
2968 			ifp->if_opackets++;
2969 			bus_dmamap_unload(adapter->txtag,
2970 					  tx_buffer->map);
2971 			m_freem(tx_buffer->m_head);
2972 			tx_buffer->m_head = NULL;
2973 		}
2974 
2975 		if (first == dd_idx) {
2976 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2977 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2978 				adapter->tx_dd_head = 0;
2979 				adapter->tx_dd_tail = 0;
2980 				dd_idx = -1;
2981 			} else {
2982 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2983 			}
2984 		}
2985 
2986 		if (++first == adapter->num_tx_desc)
2987 			first = 0;
2988 	}
2989 	adapter->next_tx_to_clean = first;
2990 	adapter->num_tx_desc_avail = num_avail;
2991 
2992 	if (!EM_IS_OACTIVE(adapter)) {
2993 		ifp->if_flags &= ~IFF_OACTIVE;
2994 
2995 		/* All clean, turn off the timer */
2996 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2997 			ifp->if_timer = 0;
2998 	}
2999 }
3000 
3001 /*
3002  * When Link is lost sometimes there is work still in the TX ring
3003  * which will result in a watchdog, rather than allow that do an
3004  * attempted cleanup and then reinit here.  Note that this has been
3005  * seens mostly with fiber adapters.
3006  */
3007 static void
3008 em_tx_purge(struct adapter *adapter)
3009 {
3010 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3011 
3012 	if (!adapter->link_active && ifp->if_timer) {
3013 		em_tx_collect(adapter);
3014 		if (ifp->if_timer) {
3015 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3016 			ifp->if_timer = 0;
3017 			em_init(adapter);
3018 		}
3019 	}
3020 }
3021 
3022 static int
3023 em_newbuf(struct adapter *adapter, int i, int init)
3024 {
3025 	struct mbuf *m;
3026 	bus_dma_segment_t seg;
3027 	bus_dmamap_t map;
3028 	struct em_buffer *rx_buffer;
3029 	int error, nseg;
3030 
3031 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3032 	if (m == NULL) {
3033 		adapter->mbuf_cluster_failed++;
3034 		if (init) {
3035 			if_printf(&adapter->arpcom.ac_if,
3036 				  "Unable to allocate RX mbuf\n");
3037 		}
3038 		return (ENOBUFS);
3039 	}
3040 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3041 
3042 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3043 		m_adj(m, ETHER_ALIGN);
3044 
3045 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3046 			adapter->rx_sparemap, m,
3047 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3048 	if (error) {
3049 		m_freem(m);
3050 		if (init) {
3051 			if_printf(&adapter->arpcom.ac_if,
3052 				  "Unable to load RX mbuf\n");
3053 		}
3054 		return (error);
3055 	}
3056 
3057 	rx_buffer = &adapter->rx_buffer_area[i];
3058 	if (rx_buffer->m_head != NULL)
3059 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3060 
3061 	map = rx_buffer->map;
3062 	rx_buffer->map = adapter->rx_sparemap;
3063 	adapter->rx_sparemap = map;
3064 
3065 	rx_buffer->m_head = m;
3066 
3067 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3068 	return (0);
3069 }
3070 
3071 static int
3072 em_create_rx_ring(struct adapter *adapter)
3073 {
3074 	device_t dev = adapter->dev;
3075 	struct em_buffer *rx_buffer;
3076 	int i, error;
3077 
3078 	adapter->rx_buffer_area =
3079 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3080 			M_DEVBUF, M_WAITOK | M_ZERO);
3081 
3082 	/*
3083 	 * Create DMA tag for rx buffers
3084 	 */
3085 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3086 			1, 0,			/* alignment, bounds */
3087 			BUS_SPACE_MAXADDR,	/* lowaddr */
3088 			BUS_SPACE_MAXADDR,	/* highaddr */
3089 			NULL, NULL,		/* filter, filterarg */
3090 			MCLBYTES,		/* maxsize */
3091 			1,			/* nsegments */
3092 			MCLBYTES,		/* maxsegsize */
3093 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3094 			&adapter->rxtag);
3095 	if (error) {
3096 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3097 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3098 		adapter->rx_buffer_area = NULL;
3099 		return error;
3100 	}
3101 
3102 	/*
3103 	 * Create spare DMA map for rx buffers
3104 	 */
3105 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3106 				  &adapter->rx_sparemap);
3107 	if (error) {
3108 		device_printf(dev, "Unable to create spare RX DMA map\n");
3109 		bus_dma_tag_destroy(adapter->rxtag);
3110 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3111 		adapter->rx_buffer_area = NULL;
3112 		return error;
3113 	}
3114 
3115 	/*
3116 	 * Create DMA maps for rx buffers
3117 	 */
3118 	for (i = 0; i < adapter->num_rx_desc; i++) {
3119 		rx_buffer = &adapter->rx_buffer_area[i];
3120 
3121 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3122 					  &rx_buffer->map);
3123 		if (error) {
3124 			device_printf(dev, "Unable to create RX DMA map\n");
3125 			em_destroy_rx_ring(adapter, i);
3126 			return error;
3127 		}
3128 	}
3129 	return (0);
3130 }
3131 
3132 static int
3133 em_init_rx_ring(struct adapter *adapter)
3134 {
3135 	int i, error;
3136 
3137 	/* Reset descriptor ring */
3138 	bzero(adapter->rx_desc_base,
3139 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3140 
3141 	/* Allocate new ones. */
3142 	for (i = 0; i < adapter->num_rx_desc; i++) {
3143 		error = em_newbuf(adapter, i, 1);
3144 		if (error)
3145 			return (error);
3146 	}
3147 
3148 	/* Setup our descriptor pointers */
3149 	adapter->next_rx_desc_to_check = 0;
3150 
3151 	return (0);
3152 }
3153 
3154 static void
3155 em_init_rx_unit(struct adapter *adapter)
3156 {
3157 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3158 	uint64_t bus_addr;
3159 	uint32_t rctl;
3160 
3161 	/*
3162 	 * Make sure receives are disabled while setting
3163 	 * up the descriptor ring
3164 	 */
3165 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3166 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3167 
3168 	if (adapter->hw.mac.type >= e1000_82540) {
3169 		uint32_t itr;
3170 
3171 		/*
3172 		 * Set the interrupt throttling rate. Value is calculated
3173 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3174 		 */
3175 		if (adapter->int_throttle_ceil)
3176 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3177 		else
3178 			itr = 0;
3179 		em_set_itr(adapter, itr);
3180 	}
3181 
3182 	/* Disable accelerated ackknowledge */
3183 	if (adapter->hw.mac.type == e1000_82574) {
3184 		E1000_WRITE_REG(&adapter->hw,
3185 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3186 	}
3187 
3188 	/* Receive Checksum Offload for TCP and UDP */
3189 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3190 		uint32_t rxcsum;
3191 
3192 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3193 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3194 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3195 	}
3196 
3197 	/*
3198 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3199 	 * long latencies are observed, like Lenovo X60. This
3200 	 * change eliminates the problem, but since having positive
3201 	 * values in RDTR is a known source of problems on other
3202 	 * platforms another solution is being sought.
3203 	 */
3204 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3205 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3206 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3207 	}
3208 
3209 	/*
3210 	 * Setup the Base and Length of the Rx Descriptor Ring
3211 	 */
3212 	bus_addr = adapter->rxdma.dma_paddr;
3213 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3214 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3215 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3216 	    (uint32_t)(bus_addr >> 32));
3217 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3218 	    (uint32_t)bus_addr);
3219 
3220 	/*
3221 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3222 	 */
3223 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3224 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3225 
3226 	/* Set early receive threshold on appropriate hw */
3227 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3228 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3229 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3230 	    (ifp->if_mtu > ETHERMTU)) {
3231 		uint32_t rxdctl;
3232 
3233 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3234 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3235 		E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3236 	}
3237 
3238 	if (adapter->hw.mac.type == e1000_pch2lan) {
3239 		if (ifp->if_mtu > ETHERMTU)
3240 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3241 		else
3242 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3243 	}
3244 
3245 	/* Setup the Receive Control Register */
3246 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3247 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3248 		E1000_RCTL_RDMTS_HALF |
3249 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3250 
3251 	/* Make sure VLAN Filters are off */
3252 	rctl &= ~E1000_RCTL_VFE;
3253 
3254 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3255 		rctl |= E1000_RCTL_SBP;
3256 	else
3257 		rctl &= ~E1000_RCTL_SBP;
3258 
3259 	switch (adapter->rx_buffer_len) {
3260 	default:
3261 	case 2048:
3262 		rctl |= E1000_RCTL_SZ_2048;
3263 		break;
3264 
3265 	case 4096:
3266 		rctl |= E1000_RCTL_SZ_4096 |
3267 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3268 		break;
3269 
3270 	case 8192:
3271 		rctl |= E1000_RCTL_SZ_8192 |
3272 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3273 		break;
3274 
3275 	case 16384:
3276 		rctl |= E1000_RCTL_SZ_16384 |
3277 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3278 		break;
3279 	}
3280 
3281 	if (ifp->if_mtu > ETHERMTU)
3282 		rctl |= E1000_RCTL_LPE;
3283 	else
3284 		rctl &= ~E1000_RCTL_LPE;
3285 
3286 	/* Enable Receives */
3287 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3288 }
3289 
3290 static void
3291 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3292 {
3293 	struct em_buffer *rx_buffer;
3294 	int i;
3295 
3296 	if (adapter->rx_buffer_area == NULL)
3297 		return;
3298 
3299 	for (i = 0; i < ndesc; i++) {
3300 		rx_buffer = &adapter->rx_buffer_area[i];
3301 
3302 		KKASSERT(rx_buffer->m_head == NULL);
3303 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3304 	}
3305 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3306 	bus_dma_tag_destroy(adapter->rxtag);
3307 
3308 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3309 	adapter->rx_buffer_area = NULL;
3310 }
3311 
3312 static void
3313 em_rxeof(struct adapter *adapter, int count)
3314 {
3315 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3316 	uint8_t status, accept_frame = 0, eop = 0;
3317 	uint16_t len, desc_len, prev_len_adj;
3318 	struct e1000_rx_desc *current_desc;
3319 	struct mbuf *mp;
3320 	int i;
3321 
3322 	i = adapter->next_rx_desc_to_check;
3323 	current_desc = &adapter->rx_desc_base[i];
3324 
3325 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3326 		return;
3327 
3328 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3329 		struct mbuf *m = NULL;
3330 
3331 		logif(pkt_receive);
3332 
3333 		mp = adapter->rx_buffer_area[i].m_head;
3334 
3335 		/*
3336 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3337 		 * needs to access the last received byte in the mbuf.
3338 		 */
3339 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3340 				BUS_DMASYNC_POSTREAD);
3341 
3342 		accept_frame = 1;
3343 		prev_len_adj = 0;
3344 		desc_len = le16toh(current_desc->length);
3345 		status = current_desc->status;
3346 		if (status & E1000_RXD_STAT_EOP) {
3347 			count--;
3348 			eop = 1;
3349 			if (desc_len < ETHER_CRC_LEN) {
3350 				len = 0;
3351 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3352 			} else {
3353 				len = desc_len - ETHER_CRC_LEN;
3354 			}
3355 		} else {
3356 			eop = 0;
3357 			len = desc_len;
3358 		}
3359 
3360 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3361 			uint8_t	last_byte;
3362 			uint32_t pkt_len = desc_len;
3363 
3364 			if (adapter->fmp != NULL)
3365 				pkt_len += adapter->fmp->m_pkthdr.len;
3366 
3367 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3368 			if (TBI_ACCEPT(&adapter->hw, status,
3369 			    current_desc->errors, pkt_len, last_byte,
3370 			    adapter->min_frame_size, adapter->max_frame_size)) {
3371 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3372 				    &adapter->stats, pkt_len,
3373 				    adapter->hw.mac.addr,
3374 				    adapter->max_frame_size);
3375 				if (len > 0)
3376 					len--;
3377 			} else {
3378 				accept_frame = 0;
3379 			}
3380 		}
3381 
3382 		if (accept_frame) {
3383 			if (em_newbuf(adapter, i, 0) != 0) {
3384 				ifp->if_iqdrops++;
3385 				goto discard;
3386 			}
3387 
3388 			/* Assign correct length to the current fragment */
3389 			mp->m_len = len;
3390 
3391 			if (adapter->fmp == NULL) {
3392 				mp->m_pkthdr.len = len;
3393 				adapter->fmp = mp; /* Store the first mbuf */
3394 				adapter->lmp = mp;
3395 			} else {
3396 				/*
3397 				 * Chain mbuf's together
3398 				 */
3399 
3400 				/*
3401 				 * Adjust length of previous mbuf in chain if
3402 				 * we received less than 4 bytes in the last
3403 				 * descriptor.
3404 				 */
3405 				if (prev_len_adj > 0) {
3406 					adapter->lmp->m_len -= prev_len_adj;
3407 					adapter->fmp->m_pkthdr.len -=
3408 					    prev_len_adj;
3409 				}
3410 				adapter->lmp->m_next = mp;
3411 				adapter->lmp = adapter->lmp->m_next;
3412 				adapter->fmp->m_pkthdr.len += len;
3413 			}
3414 
3415 			if (eop) {
3416 				adapter->fmp->m_pkthdr.rcvif = ifp;
3417 				ifp->if_ipackets++;
3418 
3419 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3420 					em_rxcsum(adapter, current_desc,
3421 						  adapter->fmp);
3422 				}
3423 
3424 				if (status & E1000_RXD_STAT_VP) {
3425 					adapter->fmp->m_pkthdr.ether_vlantag =
3426 					    (le16toh(current_desc->special) &
3427 					    E1000_RXD_SPC_VLAN_MASK);
3428 					adapter->fmp->m_flags |= M_VLANTAG;
3429 				}
3430 				m = adapter->fmp;
3431 				adapter->fmp = NULL;
3432 				adapter->lmp = NULL;
3433 			}
3434 		} else {
3435 			ifp->if_ierrors++;
3436 discard:
3437 #ifdef foo
3438 			/* Reuse loaded DMA map and just update mbuf chain */
3439 			mp = adapter->rx_buffer_area[i].m_head;
3440 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3441 			mp->m_data = mp->m_ext.ext_buf;
3442 			mp->m_next = NULL;
3443 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3444 				m_adj(mp, ETHER_ALIGN);
3445 #endif
3446 			if (adapter->fmp != NULL) {
3447 				m_freem(adapter->fmp);
3448 				adapter->fmp = NULL;
3449 				adapter->lmp = NULL;
3450 			}
3451 			m = NULL;
3452 		}
3453 
3454 		/* Zero out the receive descriptors status. */
3455 		current_desc->status = 0;
3456 
3457 		if (m != NULL)
3458 			ifp->if_input(ifp, m);
3459 
3460 		/* Advance our pointers to the next descriptor. */
3461 		if (++i == adapter->num_rx_desc)
3462 			i = 0;
3463 		current_desc = &adapter->rx_desc_base[i];
3464 	}
3465 	adapter->next_rx_desc_to_check = i;
3466 
3467 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3468 	if (--i < 0)
3469 		i = adapter->num_rx_desc - 1;
3470 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3471 }
3472 
3473 static void
3474 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3475 	  struct mbuf *mp)
3476 {
3477 	/* 82543 or newer only */
3478 	if (adapter->hw.mac.type < e1000_82543 ||
3479 	    /* Ignore Checksum bit is set */
3480 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3481 		return;
3482 
3483 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3484 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3485 		/* IP Checksum Good */
3486 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3487 	}
3488 
3489 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3490 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3491 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3492 					   CSUM_PSEUDO_HDR |
3493 					   CSUM_FRAG_NOT_CHECKED;
3494 		mp->m_pkthdr.csum_data = htons(0xffff);
3495 	}
3496 }
3497 
3498 static void
3499 em_enable_intr(struct adapter *adapter)
3500 {
3501 	uint32_t ims_mask = IMS_ENABLE_MASK;
3502 
3503 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3504 
3505 #if 0
3506 	/* XXX MSIX */
3507 	if (adapter->hw.mac.type == e1000_82574) {
3508 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3509 		ims_mask |= EM_MSIX_MASK;
3510         }
3511 #endif
3512 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3513 }
3514 
3515 static void
3516 em_disable_intr(struct adapter *adapter)
3517 {
3518 	uint32_t clear = 0xffffffff;
3519 
3520 	/*
3521 	 * The first version of 82542 had an errata where when link was forced
3522 	 * it would stay up even up even if the cable was disconnected.
3523 	 * Sequence errors were used to detect the disconnect and then the
3524 	 * driver would unforce the link.  This code in the in the ISR.  For
3525 	 * this to work correctly the Sequence error interrupt had to be
3526 	 * enabled all the time.
3527 	 */
3528 	if (adapter->hw.mac.type == e1000_82542 &&
3529 	    adapter->hw.revision_id == E1000_REVISION_2)
3530 		clear &= ~E1000_ICR_RXSEQ;
3531 	else if (adapter->hw.mac.type == e1000_82574)
3532 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3533 
3534 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3535 
3536 	adapter->npoll.ifpc_stcount = 0;
3537 
3538 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3539 }
3540 
3541 /*
3542  * Bit of a misnomer, what this really means is
3543  * to enable OS management of the system... aka
3544  * to disable special hardware management features
3545  */
3546 static void
3547 em_get_mgmt(struct adapter *adapter)
3548 {
3549 	/* A shared code workaround */
3550 #define E1000_82542_MANC2H E1000_MANC2H
3551 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3552 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3553 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3554 
3555 		/* disable hardware interception of ARP */
3556 		manc &= ~(E1000_MANC_ARP_EN);
3557 
3558                 /* enable receiving management packets to the host */
3559                 if (adapter->hw.mac.type >= e1000_82571) {
3560 			manc |= E1000_MANC_EN_MNG2HOST;
3561 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3562 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3563 			manc2h |= E1000_MNG2HOST_PORT_623;
3564 			manc2h |= E1000_MNG2HOST_PORT_664;
3565 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3566 		}
3567 
3568 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3569 	}
3570 }
3571 
3572 /*
3573  * Give control back to hardware management
3574  * controller if there is one.
3575  */
3576 static void
3577 em_rel_mgmt(struct adapter *adapter)
3578 {
3579 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3580 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3581 
3582 		/* re-enable hardware interception of ARP */
3583 		manc |= E1000_MANC_ARP_EN;
3584 
3585 		if (adapter->hw.mac.type >= e1000_82571)
3586 			manc &= ~E1000_MANC_EN_MNG2HOST;
3587 
3588 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3589 	}
3590 }
3591 
3592 /*
3593  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3594  * For ASF and Pass Through versions of f/w this means that
3595  * the driver is loaded.  For AMT version (only with 82573)
3596  * of the f/w this means that the network i/f is open.
3597  */
3598 static void
3599 em_get_hw_control(struct adapter *adapter)
3600 {
3601 	/* Let firmware know the driver has taken over */
3602 	if (adapter->hw.mac.type == e1000_82573) {
3603 		uint32_t swsm;
3604 
3605 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3606 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3607 		    swsm | E1000_SWSM_DRV_LOAD);
3608 	} else {
3609 		uint32_t ctrl_ext;
3610 
3611 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3612 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3613 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3614 	}
3615 	adapter->flags |= EM_FLAG_HW_CTRL;
3616 }
3617 
3618 /*
3619  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3620  * For ASF and Pass Through versions of f/w this means that the
3621  * driver is no longer loaded.  For AMT version (only with 82573)
3622  * of the f/w this means that the network i/f is closed.
3623  */
3624 static void
3625 em_rel_hw_control(struct adapter *adapter)
3626 {
3627 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3628 		return;
3629 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3630 
3631 	/* Let firmware taken over control of h/w */
3632 	if (adapter->hw.mac.type == e1000_82573) {
3633 		uint32_t swsm;
3634 
3635 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3636 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3637 		    swsm & ~E1000_SWSM_DRV_LOAD);
3638 	} else {
3639 		uint32_t ctrl_ext;
3640 
3641 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3642 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3643 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3644 	}
3645 }
3646 
3647 static int
3648 em_is_valid_eaddr(const uint8_t *addr)
3649 {
3650 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3651 
3652 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3653 		return (FALSE);
3654 
3655 	return (TRUE);
3656 }
3657 
3658 /*
3659  * Enable PCI Wake On Lan capability
3660  */
3661 void
3662 em_enable_wol(device_t dev)
3663 {
3664 	uint16_t cap, status;
3665 	uint8_t id;
3666 
3667 	/* First find the capabilities pointer*/
3668 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3669 
3670 	/* Read the PM Capabilities */
3671 	id = pci_read_config(dev, cap, 1);
3672 	if (id != PCIY_PMG)     /* Something wrong */
3673 		return;
3674 
3675 	/*
3676 	 * OK, we have the power capabilities,
3677 	 * so now get the status register
3678 	 */
3679 	cap += PCIR_POWER_STATUS;
3680 	status = pci_read_config(dev, cap, 2);
3681 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3682 	pci_write_config(dev, cap, status, 2);
3683 }
3684 
3685 
3686 /*
3687  * 82544 Coexistence issue workaround.
3688  *    There are 2 issues.
3689  *       1. Transmit Hang issue.
3690  *    To detect this issue, following equation can be used...
3691  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3692  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3693  *
3694  *       2. DAC issue.
3695  *    To detect this issue, following equation can be used...
3696  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3697  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3698  *
3699  *    WORKAROUND:
3700  *	  Make sure we do not have ending address
3701  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3702  */
3703 static uint32_t
3704 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3705 {
3706 	uint32_t safe_terminator;
3707 
3708 	/*
3709 	 * Since issue is sensitive to length and address.
3710 	 * Let us first check the address...
3711 	 */
3712 	if (length <= 4) {
3713 		desc_array->descriptor[0].address = address;
3714 		desc_array->descriptor[0].length = length;
3715 		desc_array->elements = 1;
3716 		return (desc_array->elements);
3717 	}
3718 
3719 	safe_terminator =
3720 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3721 
3722 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3723 	if (safe_terminator == 0 ||
3724 	    (safe_terminator > 4 && safe_terminator < 9) ||
3725 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3726 		desc_array->descriptor[0].address = address;
3727 		desc_array->descriptor[0].length = length;
3728 		desc_array->elements = 1;
3729 		return (desc_array->elements);
3730 	}
3731 
3732 	desc_array->descriptor[0].address = address;
3733 	desc_array->descriptor[0].length = length - 4;
3734 	desc_array->descriptor[1].address = address + (length - 4);
3735 	desc_array->descriptor[1].length = 4;
3736 	desc_array->elements = 2;
3737 	return (desc_array->elements);
3738 }
3739 
3740 static void
3741 em_update_stats(struct adapter *adapter)
3742 {
3743 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3744 
3745 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3746 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3747 		adapter->stats.symerrs +=
3748 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3749 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3750 	}
3751 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3752 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3753 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3754 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3755 
3756 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3757 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3758 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3759 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3760 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3761 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3762 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3763 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3764 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3765 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3766 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3767 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3768 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3769 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3770 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3771 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3772 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3773 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3774 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3775 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3776 
3777 	/* For the 64-bit byte counters the low dword must be read first. */
3778 	/* Both registers clear on the read of the high dword */
3779 
3780 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3781 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3782 
3783 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3784 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3785 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3786 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3787 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3788 
3789 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3790 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3791 
3792 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3793 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3794 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3795 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3796 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3797 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3798 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3799 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3800 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3801 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3802 
3803 	if (adapter->hw.mac.type >= e1000_82543) {
3804 		adapter->stats.algnerrc +=
3805 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3806 		adapter->stats.rxerrc +=
3807 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3808 		adapter->stats.tncrs +=
3809 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3810 		adapter->stats.cexterr +=
3811 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3812 		adapter->stats.tsctc +=
3813 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3814 		adapter->stats.tsctfc +=
3815 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3816 	}
3817 
3818 	ifp->if_collisions = adapter->stats.colc;
3819 
3820 	/* Rx Errors */
3821 	ifp->if_ierrors =
3822 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3823 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3824 	    adapter->stats.ruc + adapter->stats.roc +
3825 	    adapter->stats.mpc + adapter->stats.cexterr;
3826 
3827 	/* Tx Errors */
3828 	ifp->if_oerrors =
3829 	    adapter->stats.ecol + adapter->stats.latecol +
3830 	    adapter->watchdog_events;
3831 }
3832 
3833 static void
3834 em_print_debug_info(struct adapter *adapter)
3835 {
3836 	device_t dev = adapter->dev;
3837 	uint8_t *hw_addr = adapter->hw.hw_addr;
3838 
3839 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3840 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3841 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3842 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3843 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3844 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3845 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3846 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3847 	    adapter->hw.fc.high_water,
3848 	    adapter->hw.fc.low_water);
3849 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3850 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3851 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3852 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3853 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3854 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3855 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3856 	    (long long)adapter->tx_fifo_wrk_cnt,
3857 	    (long long)adapter->tx_fifo_reset_cnt);
3858 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3859 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3860 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3861 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3862 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3863 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3864 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3865 	    adapter->num_tx_desc_avail);
3866 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3867 	    adapter->no_tx_desc_avail1);
3868 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3869 	    adapter->no_tx_desc_avail2);
3870 	device_printf(dev, "Std mbuf failed = %ld\n",
3871 	    adapter->mbuf_alloc_failed);
3872 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3873 	    adapter->mbuf_cluster_failed);
3874 	device_printf(dev, "Driver dropped packets = %ld\n",
3875 	    adapter->dropped_pkts);
3876 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3877 	    adapter->no_tx_dma_setup);
3878 }
3879 
3880 static void
3881 em_print_hw_stats(struct adapter *adapter)
3882 {
3883 	device_t dev = adapter->dev;
3884 
3885 	device_printf(dev, "Excessive collisions = %lld\n",
3886 	    (long long)adapter->stats.ecol);
3887 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3888 	device_printf(dev, "Symbol errors = %lld\n",
3889 	    (long long)adapter->stats.symerrs);
3890 #endif
3891 	device_printf(dev, "Sequence errors = %lld\n",
3892 	    (long long)adapter->stats.sec);
3893 	device_printf(dev, "Defer count = %lld\n",
3894 	    (long long)adapter->stats.dc);
3895 	device_printf(dev, "Missed Packets = %lld\n",
3896 	    (long long)adapter->stats.mpc);
3897 	device_printf(dev, "Receive No Buffers = %lld\n",
3898 	    (long long)adapter->stats.rnbc);
3899 	/* RLEC is inaccurate on some hardware, calculate our own. */
3900 	device_printf(dev, "Receive Length Errors = %lld\n",
3901 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3902 	device_printf(dev, "Receive errors = %lld\n",
3903 	    (long long)adapter->stats.rxerrc);
3904 	device_printf(dev, "Crc errors = %lld\n",
3905 	    (long long)adapter->stats.crcerrs);
3906 	device_printf(dev, "Alignment errors = %lld\n",
3907 	    (long long)adapter->stats.algnerrc);
3908 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3909 	    (long long)adapter->stats.cexterr);
3910 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3911 	device_printf(dev, "watchdog timeouts = %ld\n",
3912 	    adapter->watchdog_events);
3913 	device_printf(dev, "XON Rcvd = %lld\n",
3914 	    (long long)adapter->stats.xonrxc);
3915 	device_printf(dev, "XON Xmtd = %lld\n",
3916 	    (long long)adapter->stats.xontxc);
3917 	device_printf(dev, "XOFF Rcvd = %lld\n",
3918 	    (long long)adapter->stats.xoffrxc);
3919 	device_printf(dev, "XOFF Xmtd = %lld\n",
3920 	    (long long)adapter->stats.xofftxc);
3921 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3922 	    (long long)adapter->stats.gprc);
3923 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3924 	    (long long)adapter->stats.gptc);
3925 }
3926 
3927 static void
3928 em_print_nvm_info(struct adapter *adapter)
3929 {
3930 	uint16_t eeprom_data;
3931 	int i, j, row = 0;
3932 
3933 	/* Its a bit crude, but it gets the job done */
3934 	kprintf("\nInterface EEPROM Dump:\n");
3935 	kprintf("Offset\n0x0000  ");
3936 	for (i = 0, j = 0; i < 32; i++, j++) {
3937 		if (j == 8) { /* Make the offset block */
3938 			j = 0; ++row;
3939 			kprintf("\n0x00%x0  ",row);
3940 		}
3941 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3942 		kprintf("%04x ", eeprom_data);
3943 	}
3944 	kprintf("\n");
3945 }
3946 
3947 static int
3948 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3949 {
3950 	struct adapter *adapter;
3951 	struct ifnet *ifp;
3952 	int error, result;
3953 
3954 	result = -1;
3955 	error = sysctl_handle_int(oidp, &result, 0, req);
3956 	if (error || !req->newptr)
3957 		return (error);
3958 
3959 	adapter = (struct adapter *)arg1;
3960 	ifp = &adapter->arpcom.ac_if;
3961 
3962 	lwkt_serialize_enter(ifp->if_serializer);
3963 
3964 	if (result == 1)
3965 		em_print_debug_info(adapter);
3966 
3967 	/*
3968 	 * This value will cause a hex dump of the
3969 	 * first 32 16-bit words of the EEPROM to
3970 	 * the screen.
3971 	 */
3972 	if (result == 2)
3973 		em_print_nvm_info(adapter);
3974 
3975 	lwkt_serialize_exit(ifp->if_serializer);
3976 
3977 	return (error);
3978 }
3979 
3980 static int
3981 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3982 {
3983 	int error, result;
3984 
3985 	result = -1;
3986 	error = sysctl_handle_int(oidp, &result, 0, req);
3987 	if (error || !req->newptr)
3988 		return (error);
3989 
3990 	if (result == 1) {
3991 		struct adapter *adapter = (struct adapter *)arg1;
3992 		struct ifnet *ifp = &adapter->arpcom.ac_if;
3993 
3994 		lwkt_serialize_enter(ifp->if_serializer);
3995 		em_print_hw_stats(adapter);
3996 		lwkt_serialize_exit(ifp->if_serializer);
3997 	}
3998 	return (error);
3999 }
4000 
4001 static void
4002 em_add_sysctl(struct adapter *adapter)
4003 {
4004 	sysctl_ctx_init(&adapter->sysctl_ctx);
4005 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4006 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4007 					device_get_nameunit(adapter->dev),
4008 					CTLFLAG_RD, 0, "");
4009 	if (adapter->sysctl_tree == NULL) {
4010 		device_printf(adapter->dev, "can't add sysctl node\n");
4011 	} else {
4012 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4013 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4014 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4015 		    em_sysctl_debug_info, "I", "Debug Information");
4016 
4017 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4018 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4019 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4020 		    em_sysctl_stats, "I", "Statistics");
4021 
4022 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4023 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4024 		    OID_AUTO, "rxd", CTLFLAG_RD,
4025 		    &adapter->num_rx_desc, 0, NULL);
4026 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4027 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4028 		    OID_AUTO, "txd", CTLFLAG_RD,
4029 		    &adapter->num_tx_desc, 0, NULL);
4030 
4031 		if (adapter->hw.mac.type >= e1000_82540) {
4032 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4033 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4034 			    OID_AUTO, "int_throttle_ceil",
4035 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4036 			    em_sysctl_int_throttle, "I",
4037 			    "interrupt throttling rate");
4038 		}
4039 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4040 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4041 		    OID_AUTO, "int_tx_nsegs",
4042 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4043 		    em_sysctl_int_tx_nsegs, "I",
4044 		    "# segments per TX interrupt");
4045 	}
4046 }
4047 
4048 static int
4049 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4050 {
4051 	struct adapter *adapter = (void *)arg1;
4052 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4053 	int error, throttle;
4054 
4055 	throttle = adapter->int_throttle_ceil;
4056 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4057 	if (error || req->newptr == NULL)
4058 		return error;
4059 	if (throttle < 0 || throttle > 1000000000 / 256)
4060 		return EINVAL;
4061 
4062 	if (throttle) {
4063 		/*
4064 		 * Set the interrupt throttling rate in 256ns increments,
4065 		 * recalculate sysctl value assignment to get exact frequency.
4066 		 */
4067 		throttle = 1000000000 / 256 / throttle;
4068 
4069 		/* Upper 16bits of ITR is reserved and should be zero */
4070 		if (throttle & 0xffff0000)
4071 			return EINVAL;
4072 	}
4073 
4074 	lwkt_serialize_enter(ifp->if_serializer);
4075 
4076 	if (throttle)
4077 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4078 	else
4079 		adapter->int_throttle_ceil = 0;
4080 
4081 	if (ifp->if_flags & IFF_RUNNING)
4082 		em_set_itr(adapter, throttle);
4083 
4084 	lwkt_serialize_exit(ifp->if_serializer);
4085 
4086 	if (bootverbose) {
4087 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4088 			  adapter->int_throttle_ceil);
4089 	}
4090 	return 0;
4091 }
4092 
4093 static int
4094 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4095 {
4096 	struct adapter *adapter = (void *)arg1;
4097 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4098 	int error, segs;
4099 
4100 	segs = adapter->tx_int_nsegs;
4101 	error = sysctl_handle_int(oidp, &segs, 0, req);
4102 	if (error || req->newptr == NULL)
4103 		return error;
4104 	if (segs <= 0)
4105 		return EINVAL;
4106 
4107 	lwkt_serialize_enter(ifp->if_serializer);
4108 
4109 	/*
4110 	 * Don't allow int_tx_nsegs to become:
4111 	 * o  Less the oact_tx_desc
4112 	 * o  Too large that no TX desc will cause TX interrupt to
4113 	 *    be generated (OACTIVE will never recover)
4114 	 * o  Too small that will cause tx_dd[] overflow
4115 	 */
4116 	if (segs < adapter->oact_tx_desc ||
4117 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4118 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4119 		error = EINVAL;
4120 	} else {
4121 		error = 0;
4122 		adapter->tx_int_nsegs = segs;
4123 	}
4124 
4125 	lwkt_serialize_exit(ifp->if_serializer);
4126 
4127 	return error;
4128 }
4129 
4130 static void
4131 em_set_itr(struct adapter *adapter, uint32_t itr)
4132 {
4133 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4134 	if (adapter->hw.mac.type == e1000_82574) {
4135 		int i;
4136 
4137 		/*
4138 		 * When using MSIX interrupts we need to
4139 		 * throttle using the EITR register
4140 		 */
4141 		for (i = 0; i < 4; ++i) {
4142 			E1000_WRITE_REG(&adapter->hw,
4143 			    E1000_EITR_82574(i), itr);
4144 		}
4145 	}
4146 }
4147 
4148 static void
4149 em_disable_aspm(struct adapter *adapter)
4150 {
4151 	uint16_t link_cap, link_ctrl, disable;
4152 	uint8_t pcie_ptr, reg;
4153 	device_t dev = adapter->dev;
4154 
4155 	switch (adapter->hw.mac.type) {
4156 	case e1000_82571:
4157 	case e1000_82572:
4158 	case e1000_82573:
4159 		/*
4160 		 * 82573 specification update
4161 		 * errata #8 disable L0s
4162 		 * errata #41 disable L1
4163 		 *
4164 		 * 82571/82572 specification update
4165 		 # errata #13 disable L1
4166 		 * errata #68 disable L0s
4167 		 */
4168 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4169 		break;
4170 
4171 	case e1000_82574:
4172 	case e1000_82583:
4173 		/*
4174 		 * 82574 specification update errata #20
4175 		 * 82583 specification update errata #9
4176 		 *
4177 		 * There is no need to disable L1
4178 		 */
4179 		disable = PCIEM_LNKCTL_ASPM_L0S;
4180 		break;
4181 
4182 	default:
4183 		return;
4184 	}
4185 
4186 	pcie_ptr = pci_get_pciecap_ptr(dev);
4187 	if (pcie_ptr == 0)
4188 		return;
4189 
4190 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4191 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4192 		return;
4193 
4194 	if (bootverbose) {
4195 		if_printf(&adapter->arpcom.ac_if,
4196 		    "disable ASPM %#02x\n", disable);
4197 	}
4198 
4199 	reg = pcie_ptr + PCIER_LINKCTRL;
4200 	link_ctrl = pci_read_config(dev, reg, 2);
4201 	link_ctrl &= ~disable;
4202 	pci_write_config(dev, reg, link_ctrl, 2);
4203 }
4204 
4205 static int
4206 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4207 {
4208 	int iphlen, hoff, thoff, ex = 0;
4209 	struct mbuf *m;
4210 	struct ip *ip;
4211 
4212 	m = *mp;
4213 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4214 
4215 	iphlen = m->m_pkthdr.csum_iphlen;
4216 	thoff = m->m_pkthdr.csum_thlen;
4217 	hoff = m->m_pkthdr.csum_lhlen;
4218 
4219 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4220 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4221 	KASSERT(hoff > 0, ("invalid ether hlen"));
4222 
4223 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4224 		ex = 4;
4225 
4226 	if (m->m_len < hoff + iphlen + thoff + ex) {
4227 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4228 		if (m == NULL) {
4229 			*mp = NULL;
4230 			return ENOBUFS;
4231 		}
4232 		*mp = m;
4233 	}
4234 	ip = mtodoff(m, struct ip *, hoff);
4235 	ip->ip_len = 0;
4236 
4237 	return 0;
4238 }
4239 
4240 static int
4241 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4242     uint32_t *txd_upper, uint32_t *txd_lower)
4243 {
4244 	struct e1000_context_desc *TXD;
4245 	int hoff, iphlen, thoff, hlen;
4246 	int mss, pktlen, curr_txd;
4247 
4248 	iphlen = mp->m_pkthdr.csum_iphlen;
4249 	thoff = mp->m_pkthdr.csum_thlen;
4250 	hoff = mp->m_pkthdr.csum_lhlen;
4251 	mss = mp->m_pkthdr.tso_segsz;
4252 	pktlen = mp->m_pkthdr.len;
4253 
4254 	if (adapter->csum_flags == CSUM_TSO &&
4255 	    adapter->csum_iphlen == iphlen &&
4256 	    adapter->csum_lhlen == hoff &&
4257 	    adapter->csum_thlen == thoff &&
4258 	    adapter->csum_mss == mss &&
4259 	    adapter->csum_pktlen == pktlen) {
4260 		*txd_upper = adapter->csum_txd_upper;
4261 		*txd_lower = adapter->csum_txd_lower;
4262 		return 0;
4263 	}
4264 	hlen = hoff + iphlen + thoff;
4265 
4266 	/*
4267 	 * Setup a new TSO context.
4268 	 */
4269 
4270 	curr_txd = adapter->next_avail_tx_desc;
4271 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4272 
4273 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4274 		     E1000_TXD_DTYP_D |		/* Data descr type */
4275 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4276 
4277 	/* IP and/or TCP header checksum calculation and insertion. */
4278 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4279 
4280 	/*
4281 	 * Start offset for header checksum calculation.
4282 	 * End offset for header checksum calculation.
4283 	 * Offset of place put the checksum.
4284 	 */
4285 	TXD->lower_setup.ip_fields.ipcss = hoff;
4286 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4287 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4288 
4289 	/*
4290 	 * Start offset for payload checksum calculation.
4291 	 * End offset for payload checksum calculation.
4292 	 * Offset of place to put the checksum.
4293 	 */
4294 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4295 	TXD->upper_setup.tcp_fields.tucse = 0;
4296 	TXD->upper_setup.tcp_fields.tucso =
4297 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4298 
4299 	/*
4300 	 * Payload size per packet w/o any headers.
4301 	 * Length of all headers up to payload.
4302 	 */
4303 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4304 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4305 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4306 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4307 				E1000_TXD_CMD_TSE |	/* TSE context */
4308 				E1000_TXD_CMD_IP |	/* Do IP csum */
4309 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4310 				(pktlen - hlen));	/* Total len */
4311 
4312 	/* Save the information for this TSO context */
4313 	adapter->csum_flags = CSUM_TSO;
4314 	adapter->csum_lhlen = hoff;
4315 	adapter->csum_iphlen = iphlen;
4316 	adapter->csum_thlen = thoff;
4317 	adapter->csum_mss = mss;
4318 	adapter->csum_pktlen = pktlen;
4319 	adapter->csum_txd_upper = *txd_upper;
4320 	adapter->csum_txd_lower = *txd_lower;
4321 
4322 	if (++curr_txd == adapter->num_tx_desc)
4323 		curr_txd = 0;
4324 
4325 	KKASSERT(adapter->num_tx_desc_avail > 0);
4326 	adapter->num_tx_desc_avail--;
4327 
4328 	adapter->next_avail_tx_desc = curr_txd;
4329 	return 1;
4330 }
4331