xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 31524921)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2014, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115 
116 #define DEBUG_HW 0
117 
118 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
119 #define EM_VER	" 7.4.2"
120 
121 #define _EM_DEVICE(id, ret)	\
122 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
126 
127 static const struct em_vendor_info em_vendor_info_array[] = {
128 	EM_DEVICE(82540EM),
129 	EM_DEVICE(82540EM_LOM),
130 	EM_DEVICE(82540EP),
131 	EM_DEVICE(82540EP_LOM),
132 	EM_DEVICE(82540EP_LP),
133 
134 	EM_DEVICE(82541EI),
135 	EM_DEVICE(82541ER),
136 	EM_DEVICE(82541ER_LOM),
137 	EM_DEVICE(82541EI_MOBILE),
138 	EM_DEVICE(82541GI),
139 	EM_DEVICE(82541GI_LF),
140 	EM_DEVICE(82541GI_MOBILE),
141 
142 	EM_DEVICE(82542),
143 
144 	EM_DEVICE(82543GC_FIBER),
145 	EM_DEVICE(82543GC_COPPER),
146 
147 	EM_DEVICE(82544EI_COPPER),
148 	EM_DEVICE(82544EI_FIBER),
149 	EM_DEVICE(82544GC_COPPER),
150 	EM_DEVICE(82544GC_LOM),
151 
152 	EM_DEVICE(82545EM_COPPER),
153 	EM_DEVICE(82545EM_FIBER),
154 	EM_DEVICE(82545GM_COPPER),
155 	EM_DEVICE(82545GM_FIBER),
156 	EM_DEVICE(82545GM_SERDES),
157 
158 	EM_DEVICE(82546EB_COPPER),
159 	EM_DEVICE(82546EB_FIBER),
160 	EM_DEVICE(82546EB_QUAD_COPPER),
161 	EM_DEVICE(82546GB_COPPER),
162 	EM_DEVICE(82546GB_FIBER),
163 	EM_DEVICE(82546GB_SERDES),
164 	EM_DEVICE(82546GB_PCIE),
165 	EM_DEVICE(82546GB_QUAD_COPPER),
166 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167 
168 	EM_DEVICE(82547EI),
169 	EM_DEVICE(82547EI_MOBILE),
170 	EM_DEVICE(82547GI),
171 
172 	EM_EMX_DEVICE(82571EB_COPPER),
173 	EM_EMX_DEVICE(82571EB_FIBER),
174 	EM_EMX_DEVICE(82571EB_SERDES),
175 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182 
183 	EM_EMX_DEVICE(82572EI_COPPER),
184 	EM_EMX_DEVICE(82572EI_FIBER),
185 	EM_EMX_DEVICE(82572EI_SERDES),
186 	EM_EMX_DEVICE(82572EI),
187 
188 	EM_EMX_DEVICE(82573E),
189 	EM_EMX_DEVICE(82573E_IAMT),
190 	EM_EMX_DEVICE(82573L),
191 
192 	EM_DEVICE(82583V),
193 
194 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198 
199 	EM_DEVICE(ICH8_IGP_M_AMT),
200 	EM_DEVICE(ICH8_IGP_AMT),
201 	EM_DEVICE(ICH8_IGP_C),
202 	EM_DEVICE(ICH8_IFE),
203 	EM_DEVICE(ICH8_IFE_GT),
204 	EM_DEVICE(ICH8_IFE_G),
205 	EM_DEVICE(ICH8_IGP_M),
206 	EM_DEVICE(ICH8_82567V_3),
207 
208 	EM_DEVICE(ICH9_IGP_M_AMT),
209 	EM_DEVICE(ICH9_IGP_AMT),
210 	EM_DEVICE(ICH9_IGP_C),
211 	EM_DEVICE(ICH9_IGP_M),
212 	EM_DEVICE(ICH9_IGP_M_V),
213 	EM_DEVICE(ICH9_IFE),
214 	EM_DEVICE(ICH9_IFE_GT),
215 	EM_DEVICE(ICH9_IFE_G),
216 	EM_DEVICE(ICH9_BM),
217 
218 	EM_EMX_DEVICE(82574L),
219 	EM_EMX_DEVICE(82574LA),
220 
221 	EM_DEVICE(ICH10_R_BM_LM),
222 	EM_DEVICE(ICH10_R_BM_LF),
223 	EM_DEVICE(ICH10_R_BM_V),
224 	EM_DEVICE(ICH10_D_BM_LM),
225 	EM_DEVICE(ICH10_D_BM_LF),
226 	EM_DEVICE(ICH10_D_BM_V),
227 
228 	EM_DEVICE(PCH_M_HV_LM),
229 	EM_DEVICE(PCH_M_HV_LC),
230 	EM_DEVICE(PCH_D_HV_DM),
231 	EM_DEVICE(PCH_D_HV_DC),
232 
233 	EM_DEVICE(PCH2_LV_LM),
234 	EM_DEVICE(PCH2_LV_V),
235 
236 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
237 	EM_EMX_DEVICE(PCH_LPT_I217_V),
238 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
240 	EM_EMX_DEVICE(PCH_I218_LM2),
241 	EM_EMX_DEVICE(PCH_I218_V2),
242 	EM_EMX_DEVICE(PCH_I218_LM3),
243 	EM_EMX_DEVICE(PCH_I218_V3),
244 
245 	/* required last entry */
246 	EM_DEVICE_NULL
247 };
248 
249 static int	em_probe(device_t);
250 static int	em_attach(device_t);
251 static int	em_detach(device_t);
252 static int	em_shutdown(device_t);
253 static int	em_suspend(device_t);
254 static int	em_resume(device_t);
255 
256 static void	em_init(void *);
257 static void	em_stop(struct adapter *);
258 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
259 static void	em_start(struct ifnet *, struct ifaltq_subque *);
260 #ifdef IFPOLL_ENABLE
261 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
262 static void	em_npoll_compat(struct ifnet *, void *, int);
263 #endif
264 static void	em_watchdog(struct ifnet *);
265 static void	em_media_status(struct ifnet *, struct ifmediareq *);
266 static int	em_media_change(struct ifnet *);
267 static void	em_timer(void *);
268 
269 static void	em_intr(void *);
270 static void	em_intr_mask(void *);
271 static void	em_intr_body(struct adapter *, boolean_t);
272 static void	em_rxeof(struct adapter *, int);
273 static void	em_txeof(struct adapter *);
274 static void	em_tx_collect(struct adapter *);
275 static void	em_tx_purge(struct adapter *);
276 static void	em_enable_intr(struct adapter *);
277 static void	em_disable_intr(struct adapter *);
278 
279 static int	em_dma_malloc(struct adapter *, bus_size_t,
280 		    struct em_dma_alloc *);
281 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
282 static void	em_init_tx_ring(struct adapter *);
283 static int	em_init_rx_ring(struct adapter *);
284 static int	em_create_tx_ring(struct adapter *);
285 static int	em_create_rx_ring(struct adapter *);
286 static void	em_destroy_tx_ring(struct adapter *, int);
287 static void	em_destroy_rx_ring(struct adapter *, int);
288 static int	em_newbuf(struct adapter *, int, int);
289 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
290 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
291 		    struct mbuf *);
292 static int	em_txcsum(struct adapter *, struct mbuf *,
293 		    uint32_t *, uint32_t *);
294 static int	em_tso_pullup(struct adapter *, struct mbuf **);
295 static int	em_tso_setup(struct adapter *, struct mbuf *,
296 		    uint32_t *, uint32_t *);
297 
298 static int	em_get_hw_info(struct adapter *);
299 static int 	em_is_valid_eaddr(const uint8_t *);
300 static int	em_alloc_pci_res(struct adapter *);
301 static void	em_free_pci_res(struct adapter *);
302 static int	em_reset(struct adapter *);
303 static void	em_setup_ifp(struct adapter *);
304 static void	em_init_tx_unit(struct adapter *);
305 static void	em_init_rx_unit(struct adapter *);
306 static void	em_update_stats(struct adapter *);
307 static void	em_set_promisc(struct adapter *);
308 static void	em_disable_promisc(struct adapter *);
309 static void	em_set_multi(struct adapter *);
310 static void	em_update_link_status(struct adapter *);
311 static void	em_smartspeed(struct adapter *);
312 static void	em_set_itr(struct adapter *, uint32_t);
313 static void	em_disable_aspm(struct adapter *);
314 
315 /* Hardware workarounds */
316 static int	em_82547_fifo_workaround(struct adapter *, int);
317 static void	em_82547_update_fifo_head(struct adapter *, int);
318 static int	em_82547_tx_fifo_reset(struct adapter *);
319 static void	em_82547_move_tail(void *);
320 static void	em_82547_move_tail_serialized(struct adapter *);
321 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
322 
323 static void	em_print_debug_info(struct adapter *);
324 static void	em_print_nvm_info(struct adapter *);
325 static void	em_print_hw_stats(struct adapter *);
326 
327 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
328 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
329 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
330 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
331 static void	em_add_sysctl(struct adapter *adapter);
332 
333 /* Management and WOL Support */
334 static void	em_get_mgmt(struct adapter *);
335 static void	em_rel_mgmt(struct adapter *);
336 static void	em_get_hw_control(struct adapter *);
337 static void	em_rel_hw_control(struct adapter *);
338 static void	em_enable_wol(device_t);
339 
340 static device_method_t em_methods[] = {
341 	/* Device interface */
342 	DEVMETHOD(device_probe,		em_probe),
343 	DEVMETHOD(device_attach,	em_attach),
344 	DEVMETHOD(device_detach,	em_detach),
345 	DEVMETHOD(device_shutdown,	em_shutdown),
346 	DEVMETHOD(device_suspend,	em_suspend),
347 	DEVMETHOD(device_resume,	em_resume),
348 	DEVMETHOD_END
349 };
350 
351 static driver_t em_driver = {
352 	"em",
353 	em_methods,
354 	sizeof(struct adapter),
355 };
356 
357 static devclass_t em_devclass;
358 
359 DECLARE_DUMMY_MODULE(if_em);
360 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
361 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
362 
363 /*
364  * Tunables
365  */
366 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
367 static int	em_rxd = EM_DEFAULT_RXD;
368 static int	em_txd = EM_DEFAULT_TXD;
369 static int	em_smart_pwr_down = 0;
370 
371 /* Controls whether promiscuous also shows bad packets */
372 static int	em_debug_sbp = FALSE;
373 
374 static int	em_82573_workaround = 1;
375 static int	em_msi_enable = 1;
376 
377 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
378 TUNABLE_INT("hw.em.rxd", &em_rxd);
379 TUNABLE_INT("hw.em.txd", &em_txd);
380 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
381 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
382 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
383 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
384 
385 /* Global used in WOL setup with multiport cards */
386 static int	em_global_quad_port_a = 0;
387 
388 /* Set this to one to display debug statistics */
389 static int	em_display_debug_stats = 0;
390 
391 #if !defined(KTR_IF_EM)
392 #define KTR_IF_EM	KTR_ALL
393 #endif
394 KTR_INFO_MASTER(if_em);
395 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
396 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
397 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
398 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
399 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
400 #define logif(name)	KTR_LOG(if_em_ ## name)
401 
402 static int
403 em_probe(device_t dev)
404 {
405 	const struct em_vendor_info *ent;
406 	uint16_t vid, did;
407 
408 	vid = pci_get_vendor(dev);
409 	did = pci_get_device(dev);
410 
411 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
412 		if (vid == ent->vendor_id && did == ent->device_id) {
413 			device_set_desc(dev, ent->desc);
414 			device_set_async_attach(dev, TRUE);
415 			return (ent->ret);
416 		}
417 	}
418 	return (ENXIO);
419 }
420 
421 static int
422 em_attach(device_t dev)
423 {
424 	struct adapter *adapter = device_get_softc(dev);
425 	struct ifnet *ifp = &adapter->arpcom.ac_if;
426 	int tsize, rsize;
427 	int error = 0;
428 	uint16_t eeprom_data, device_id, apme_mask;
429 	driver_intr_t *intr_func;
430 
431 	adapter->dev = adapter->osdep.dev = dev;
432 
433 	callout_init_mp(&adapter->timer);
434 	callout_init_mp(&adapter->tx_fifo_timer);
435 
436 	ifmedia_init(&adapter->media, IFM_IMASK,
437 	    em_media_change, em_media_status);
438 
439 	/* Determine hardware and mac info */
440 	error = em_get_hw_info(adapter);
441 	if (error) {
442 		device_printf(dev, "Identify hardware failed\n");
443 		goto fail;
444 	}
445 
446 	/* Setup PCI resources */
447 	error = em_alloc_pci_res(adapter);
448 	if (error) {
449 		device_printf(dev, "Allocation of PCI resources failed\n");
450 		goto fail;
451 	}
452 
453 	/*
454 	 * For ICH8 and family we need to map the flash memory,
455 	 * and this must happen after the MAC is identified.
456 	 */
457 	if (adapter->hw.mac.type == e1000_ich8lan ||
458 	    adapter->hw.mac.type == e1000_ich9lan ||
459 	    adapter->hw.mac.type == e1000_ich10lan ||
460 	    adapter->hw.mac.type == e1000_pchlan ||
461 	    adapter->hw.mac.type == e1000_pch2lan ||
462 	    adapter->hw.mac.type == e1000_pch_lpt) {
463 		adapter->flash_rid = EM_BAR_FLASH;
464 
465 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
466 					&adapter->flash_rid, RF_ACTIVE);
467 		if (adapter->flash == NULL) {
468 			device_printf(dev, "Mapping of Flash failed\n");
469 			error = ENXIO;
470 			goto fail;
471 		}
472 		adapter->osdep.flash_bus_space_tag =
473 		    rman_get_bustag(adapter->flash);
474 		adapter->osdep.flash_bus_space_handle =
475 		    rman_get_bushandle(adapter->flash);
476 
477 		/*
478 		 * This is used in the shared code
479 		 * XXX this goof is actually not used.
480 		 */
481 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
482 	}
483 
484 	switch (adapter->hw.mac.type) {
485 	case e1000_82571:
486 	case e1000_82572:
487 	case e1000_pch_lpt:
488 		/*
489 		 * Pullup extra 4bytes into the first data segment for
490 		 * TSO, see:
491 		 * 82571/82572 specification update errata #7
492 		 *
493 		 * Same applies to I217 (and maybe I218).
494 		 *
495 		 * NOTE:
496 		 * 4bytes instead of 2bytes, which are mentioned in the
497 		 * errata, are pulled; mainly to keep rest of the data
498 		 * properly aligned.
499 		 */
500 		adapter->flags |= EM_FLAG_TSO_PULLEX;
501 		/* FALL THROUGH */
502 
503 	default:
504 		if (pci_is_pcie(dev))
505 			adapter->flags |= EM_FLAG_TSO;
506 		break;
507 	}
508 
509 	/* Do Shared Code initialization */
510 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
511 		device_printf(dev, "Setup of Shared code failed\n");
512 		error = ENXIO;
513 		goto fail;
514 	}
515 
516 	e1000_get_bus_info(&adapter->hw);
517 
518 	/*
519 	 * Validate number of transmit and receive descriptors.  It
520 	 * must not exceed hardware maximum, and must be multiple
521 	 * of E1000_DBA_ALIGN.
522 	 */
523 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
524 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
525 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
526 	    em_txd < EM_MIN_TXD) {
527 		if (adapter->hw.mac.type < e1000_82544)
528 			adapter->num_tx_desc = EM_MAX_TXD_82543;
529 		else
530 			adapter->num_tx_desc = EM_DEFAULT_TXD;
531 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
532 		    adapter->num_tx_desc, em_txd);
533 	} else {
534 		adapter->num_tx_desc = em_txd;
535 	}
536 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
537 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
538 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
539 	    em_rxd < EM_MIN_RXD) {
540 		if (adapter->hw.mac.type < e1000_82544)
541 			adapter->num_rx_desc = EM_MAX_RXD_82543;
542 		else
543 			adapter->num_rx_desc = EM_DEFAULT_RXD;
544 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
545 		    adapter->num_rx_desc, em_rxd);
546 	} else {
547 		adapter->num_rx_desc = em_rxd;
548 	}
549 
550 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
551 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
552 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
553 	adapter->rx_buffer_len = MCLBYTES;
554 
555 	/*
556 	 * Interrupt throttle rate
557 	 */
558 	if (em_int_throttle_ceil == 0) {
559 		adapter->int_throttle_ceil = 0;
560 	} else {
561 		int throttle = em_int_throttle_ceil;
562 
563 		if (throttle < 0)
564 			throttle = EM_DEFAULT_ITR;
565 
566 		/* Recalculate the tunable value to get the exact frequency. */
567 		throttle = 1000000000 / 256 / throttle;
568 
569 		/* Upper 16bits of ITR is reserved and should be zero */
570 		if (throttle & 0xffff0000)
571 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
572 
573 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
574 	}
575 
576 	e1000_init_script_state_82541(&adapter->hw, TRUE);
577 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
578 
579 	/* Copper options */
580 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
581 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
582 		adapter->hw.phy.disable_polarity_correction = FALSE;
583 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
584 	}
585 
586 	/* Set the frame limits assuming standard ethernet sized frames. */
587 	adapter->hw.mac.max_frame_size =
588 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
589 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
590 
591 	/* This controls when hardware reports transmit completion status. */
592 	adapter->hw.mac.report_tx_early = 1;
593 
594 	/*
595 	 * Create top level busdma tag
596 	 */
597 	error = bus_dma_tag_create(NULL, 1, 0,
598 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
599 			NULL, NULL,
600 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
601 			0, &adapter->parent_dtag);
602 	if (error) {
603 		device_printf(dev, "could not create top level DMA tag\n");
604 		goto fail;
605 	}
606 
607 	/*
608 	 * Allocate Transmit Descriptor ring
609 	 */
610 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
611 			 EM_DBA_ALIGN);
612 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
613 	if (error) {
614 		device_printf(dev, "Unable to allocate tx_desc memory\n");
615 		goto fail;
616 	}
617 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
618 
619 	/*
620 	 * Allocate Receive Descriptor ring
621 	 */
622 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
623 			 EM_DBA_ALIGN);
624 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
625 	if (error) {
626 		device_printf(dev, "Unable to allocate rx_desc memory\n");
627 		goto fail;
628 	}
629 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
630 
631 	/* Allocate multicast array memory. */
632 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
633 	    M_DEVBUF, M_WAITOK);
634 
635 	/* Indicate SOL/IDER usage */
636 	if (e1000_check_reset_block(&adapter->hw)) {
637 		device_printf(dev,
638 		    "PHY reset is blocked due to SOL/IDER session.\n");
639 	}
640 
641 	/* Disable EEE */
642 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
643 
644 	/*
645 	 * Start from a known state, this is important in reading the
646 	 * nvm and mac from that.
647 	 */
648 	e1000_reset_hw(&adapter->hw);
649 
650 	/* Make sure we have a good EEPROM before we read from it */
651 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
652 		/*
653 		 * Some PCI-E parts fail the first check due to
654 		 * the link being in sleep state, call it again,
655 		 * if it fails a second time its a real issue.
656 		 */
657 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
658 			device_printf(dev,
659 			    "The EEPROM Checksum Is Not Valid\n");
660 			error = EIO;
661 			goto fail;
662 		}
663 	}
664 
665 	/* Copy the permanent MAC address out of the EEPROM */
666 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
667 		device_printf(dev, "EEPROM read error while reading MAC"
668 		    " address\n");
669 		error = EIO;
670 		goto fail;
671 	}
672 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
673 		device_printf(dev, "Invalid MAC address\n");
674 		error = EIO;
675 		goto fail;
676 	}
677 
678 	/* Disable ULP support */
679 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
680 
681 	/* Allocate transmit descriptors and buffers */
682 	error = em_create_tx_ring(adapter);
683 	if (error) {
684 		device_printf(dev, "Could not setup transmit structures\n");
685 		goto fail;
686 	}
687 
688 	/* Allocate receive descriptors and buffers */
689 	error = em_create_rx_ring(adapter);
690 	if (error) {
691 		device_printf(dev, "Could not setup receive structures\n");
692 		goto fail;
693 	}
694 
695 	/* Manually turn off all interrupts */
696 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
697 
698 	/* Determine if we have to control management hardware */
699 	if (e1000_enable_mng_pass_thru(&adapter->hw))
700 		adapter->flags |= EM_FLAG_HAS_MGMT;
701 
702 	/*
703 	 * Setup Wake-on-Lan
704 	 */
705 	apme_mask = EM_EEPROM_APME;
706 	eeprom_data = 0;
707 	switch (adapter->hw.mac.type) {
708 	case e1000_82542:
709 	case e1000_82543:
710 		break;
711 
712 	case e1000_82573:
713 	case e1000_82583:
714 		adapter->flags |= EM_FLAG_HAS_AMT;
715 		/* FALL THROUGH */
716 
717 	case e1000_82546:
718 	case e1000_82546_rev_3:
719 	case e1000_82571:
720 	case e1000_82572:
721 	case e1000_80003es2lan:
722 		if (adapter->hw.bus.func == 1) {
723 			e1000_read_nvm(&adapter->hw,
724 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
725 		} else {
726 			e1000_read_nvm(&adapter->hw,
727 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
728 		}
729 		break;
730 
731 	case e1000_ich8lan:
732 	case e1000_ich9lan:
733 	case e1000_ich10lan:
734 	case e1000_pchlan:
735 	case e1000_pch2lan:
736 		apme_mask = E1000_WUC_APME;
737 		adapter->flags |= EM_FLAG_HAS_AMT;
738 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
739 		break;
740 
741 	default:
742 		e1000_read_nvm(&adapter->hw,
743 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
744 		break;
745 	}
746 	if (eeprom_data & apme_mask)
747 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
748 
749 	/*
750          * We have the eeprom settings, now apply the special cases
751          * where the eeprom may be wrong or the board won't support
752          * wake on lan on a particular port
753 	 */
754 	device_id = pci_get_device(dev);
755         switch (device_id) {
756 	case E1000_DEV_ID_82546GB_PCIE:
757 		adapter->wol = 0;
758 		break;
759 
760 	case E1000_DEV_ID_82546EB_FIBER:
761 	case E1000_DEV_ID_82546GB_FIBER:
762 	case E1000_DEV_ID_82571EB_FIBER:
763 		/*
764 		 * Wake events only supported on port A for dual fiber
765 		 * regardless of eeprom setting
766 		 */
767 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
768 		    E1000_STATUS_FUNC_1)
769 			adapter->wol = 0;
770 		break;
771 
772 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
773 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
774 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
775 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
776                 /* if quad port adapter, disable WoL on all but port A */
777 		if (em_global_quad_port_a != 0)
778 			adapter->wol = 0;
779 		/* Reset for multiple quad port adapters */
780 		if (++em_global_quad_port_a == 4)
781 			em_global_quad_port_a = 0;
782                 break;
783 	}
784 
785 	/* XXX disable wol */
786 	adapter->wol = 0;
787 
788 	/* Setup OS specific network interface */
789 	em_setup_ifp(adapter);
790 
791 	/* Add sysctl tree, must after em_setup_ifp() */
792 	em_add_sysctl(adapter);
793 
794 #ifdef IFPOLL_ENABLE
795 	/* Polling setup */
796 	ifpoll_compat_setup(&adapter->npoll,
797 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
798 	    device_get_unit(dev), ifp->if_serializer);
799 #endif
800 
801 	/* Reset the hardware */
802 	error = em_reset(adapter);
803 	if (error) {
804 		/*
805 		 * Some 82573 parts fail the first reset, call it again,
806 		 * if it fails a second time its a real issue.
807 		 */
808 		error = em_reset(adapter);
809 		if (error) {
810 			device_printf(dev, "Unable to reset the hardware\n");
811 			ether_ifdetach(ifp);
812 			goto fail;
813 		}
814 	}
815 
816 	/* Initialize statistics */
817 	em_update_stats(adapter);
818 
819 	adapter->hw.mac.get_link_status = 1;
820 	em_update_link_status(adapter);
821 
822 	/* Do we need workaround for 82544 PCI-X adapter? */
823 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
824 	    adapter->hw.mac.type == e1000_82544)
825 		adapter->pcix_82544 = TRUE;
826 	else
827 		adapter->pcix_82544 = FALSE;
828 
829 	if (adapter->pcix_82544) {
830 		/*
831 		 * 82544 on PCI-X may split one TX segment
832 		 * into two TX descs, so we double its number
833 		 * of spare TX desc here.
834 		 */
835 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
836 	} else {
837 		adapter->spare_tx_desc = EM_TX_SPARE;
838 	}
839 	if (adapter->flags & EM_FLAG_TSO)
840 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
841 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
842 
843 	/*
844 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
845 	 * and tx_int_nsegs:
846 	 * (spare_tx_desc + EM_TX_RESERVED) <=
847 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
848 	 */
849 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
850 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
851 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
852 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
853 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
854 
855 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
856 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
857 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
858 
859 	/* Non-AMT based hardware can now take control from firmware */
860 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
861 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
862 		em_get_hw_control(adapter);
863 
864 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
865 
866 	/*
867 	 * Missing Interrupt Following ICR read:
868 	 *
869 	 * 82571/82572 specification update errata #76
870 	 * 82573 specification update errata #31
871 	 * 82574 specification update errata #12
872 	 * 82583 specification update errata #4
873 	 */
874 	intr_func = em_intr;
875 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
876 	    (adapter->hw.mac.type == e1000_82571 ||
877 	     adapter->hw.mac.type == e1000_82572 ||
878 	     adapter->hw.mac.type == e1000_82573 ||
879 	     adapter->hw.mac.type == e1000_82574 ||
880 	     adapter->hw.mac.type == e1000_82583))
881 		intr_func = em_intr_mask;
882 
883 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
884 			       intr_func, adapter, &adapter->intr_tag,
885 			       ifp->if_serializer);
886 	if (error) {
887 		device_printf(dev, "Failed to register interrupt handler");
888 		ether_ifdetach(ifp);
889 		goto fail;
890 	}
891 	return (0);
892 fail:
893 	em_detach(dev);
894 	return (error);
895 }
896 
897 static int
898 em_detach(device_t dev)
899 {
900 	struct adapter *adapter = device_get_softc(dev);
901 
902 	if (device_is_attached(dev)) {
903 		struct ifnet *ifp = &adapter->arpcom.ac_if;
904 
905 		lwkt_serialize_enter(ifp->if_serializer);
906 
907 		em_stop(adapter);
908 
909 		e1000_phy_hw_reset(&adapter->hw);
910 
911 		em_rel_mgmt(adapter);
912 		em_rel_hw_control(adapter);
913 
914 		if (adapter->wol) {
915 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
916 					E1000_WUC_PME_EN);
917 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
918 			em_enable_wol(dev);
919 		}
920 
921 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
922 
923 		lwkt_serialize_exit(ifp->if_serializer);
924 
925 		ether_ifdetach(ifp);
926 	} else if (adapter->memory != NULL) {
927 		em_rel_hw_control(adapter);
928 	}
929 
930 	ifmedia_removeall(&adapter->media);
931 	bus_generic_detach(dev);
932 
933 	em_free_pci_res(adapter);
934 
935 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
936 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
937 
938 	/* Free Transmit Descriptor ring */
939 	if (adapter->tx_desc_base)
940 		em_dma_free(adapter, &adapter->txdma);
941 
942 	/* Free Receive Descriptor ring */
943 	if (adapter->rx_desc_base)
944 		em_dma_free(adapter, &adapter->rxdma);
945 
946 	/* Free top level busdma tag */
947 	if (adapter->parent_dtag != NULL)
948 		bus_dma_tag_destroy(adapter->parent_dtag);
949 
950 	if (adapter->mta != NULL)
951 		kfree(adapter->mta, M_DEVBUF);
952 
953 	return (0);
954 }
955 
956 static int
957 em_shutdown(device_t dev)
958 {
959 	return em_suspend(dev);
960 }
961 
962 static int
963 em_suspend(device_t dev)
964 {
965 	struct adapter *adapter = device_get_softc(dev);
966 	struct ifnet *ifp = &adapter->arpcom.ac_if;
967 
968 	lwkt_serialize_enter(ifp->if_serializer);
969 
970 	em_stop(adapter);
971 
972 	em_rel_mgmt(adapter);
973 	em_rel_hw_control(adapter);
974 
975 	if (adapter->wol) {
976 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
977 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
978 		em_enable_wol(dev);
979 	}
980 
981 	lwkt_serialize_exit(ifp->if_serializer);
982 
983 	return bus_generic_suspend(dev);
984 }
985 
986 static int
987 em_resume(device_t dev)
988 {
989 	struct adapter *adapter = device_get_softc(dev);
990 	struct ifnet *ifp = &adapter->arpcom.ac_if;
991 
992 	lwkt_serialize_enter(ifp->if_serializer);
993 
994 	if (adapter->hw.mac.type == e1000_pch2lan)
995 		e1000_resume_workarounds_pchlan(&adapter->hw);
996 
997 	em_init(adapter);
998 	em_get_mgmt(adapter);
999 	if_devstart(ifp);
1000 
1001 	lwkt_serialize_exit(ifp->if_serializer);
1002 
1003 	return bus_generic_resume(dev);
1004 }
1005 
1006 static void
1007 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1008 {
1009 	struct adapter *adapter = ifp->if_softc;
1010 	struct mbuf *m_head;
1011 	int idx = -1, nsegs = 0;
1012 
1013 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1014 	ASSERT_SERIALIZED(ifp->if_serializer);
1015 
1016 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1017 		return;
1018 
1019 	if (!adapter->link_active) {
1020 		ifq_purge(&ifp->if_snd);
1021 		return;
1022 	}
1023 
1024 	while (!ifq_is_empty(&ifp->if_snd)) {
1025 		/* Now do we at least have a minimal? */
1026 		if (EM_IS_OACTIVE(adapter)) {
1027 			em_tx_collect(adapter);
1028 			if (EM_IS_OACTIVE(adapter)) {
1029 				ifq_set_oactive(&ifp->if_snd);
1030 				adapter->no_tx_desc_avail1++;
1031 				break;
1032 			}
1033 		}
1034 
1035 		logif(pkt_txqueue);
1036 		m_head = ifq_dequeue(&ifp->if_snd);
1037 		if (m_head == NULL)
1038 			break;
1039 
1040 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1041 			IFNET_STAT_INC(ifp, oerrors, 1);
1042 			em_tx_collect(adapter);
1043 			continue;
1044 		}
1045 
1046 		/*
1047 		 * TX interrupt are aggressively aggregated, so increasing
1048 		 * opackets at TX interrupt time will make the opackets
1049 		 * statistics vastly inaccurate; we do the opackets increment
1050 		 * now.
1051 		 */
1052 		IFNET_STAT_INC(ifp, opackets, 1);
1053 
1054 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1055 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1056 			nsegs = 0;
1057 			idx = -1;
1058 		}
1059 
1060 		/* Send a copy of the frame to the BPF listener */
1061 		ETHER_BPF_MTAP(ifp, m_head);
1062 
1063 		/* Set timeout in case hardware has problems transmitting. */
1064 		ifp->if_timer = EM_TX_TIMEOUT;
1065 	}
1066 	if (idx >= 0)
1067 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1068 }
1069 
1070 static int
1071 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1072 {
1073 	struct adapter *adapter = ifp->if_softc;
1074 	struct ifreq *ifr = (struct ifreq *)data;
1075 	uint16_t eeprom_data = 0;
1076 	int max_frame_size, mask, reinit;
1077 	int error = 0;
1078 
1079 	ASSERT_SERIALIZED(ifp->if_serializer);
1080 
1081 	switch (command) {
1082 	case SIOCSIFMTU:
1083 		switch (adapter->hw.mac.type) {
1084 		case e1000_82573:
1085 			/*
1086 			 * 82573 only supports jumbo frames
1087 			 * if ASPM is disabled.
1088 			 */
1089 			e1000_read_nvm(&adapter->hw,
1090 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1091 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1092 				max_frame_size = ETHER_MAX_LEN;
1093 				break;
1094 			}
1095 			/* FALL THROUGH */
1096 
1097 		/* Limit Jumbo Frame size */
1098 		case e1000_82571:
1099 		case e1000_82572:
1100 		case e1000_ich9lan:
1101 		case e1000_ich10lan:
1102 		case e1000_pch2lan:
1103 		case e1000_pch_lpt:
1104 		case e1000_82574:
1105 		case e1000_82583:
1106 		case e1000_80003es2lan:
1107 			max_frame_size = 9234;
1108 			break;
1109 
1110 		case e1000_pchlan:
1111 			max_frame_size = 4096;
1112 			break;
1113 
1114 		/* Adapters that do not support jumbo frames */
1115 		case e1000_82542:
1116 		case e1000_ich8lan:
1117 			max_frame_size = ETHER_MAX_LEN;
1118 			break;
1119 
1120 		default:
1121 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1122 			break;
1123 		}
1124 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1125 		    ETHER_CRC_LEN) {
1126 			error = EINVAL;
1127 			break;
1128 		}
1129 
1130 		ifp->if_mtu = ifr->ifr_mtu;
1131 		adapter->hw.mac.max_frame_size =
1132 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1133 
1134 		if (ifp->if_flags & IFF_RUNNING)
1135 			em_init(adapter);
1136 		break;
1137 
1138 	case SIOCSIFFLAGS:
1139 		if (ifp->if_flags & IFF_UP) {
1140 			if ((ifp->if_flags & IFF_RUNNING)) {
1141 				if ((ifp->if_flags ^ adapter->if_flags) &
1142 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1143 					em_disable_promisc(adapter);
1144 					em_set_promisc(adapter);
1145 				}
1146 			} else {
1147 				em_init(adapter);
1148 			}
1149 		} else if (ifp->if_flags & IFF_RUNNING) {
1150 			em_stop(adapter);
1151 		}
1152 		adapter->if_flags = ifp->if_flags;
1153 		break;
1154 
1155 	case SIOCADDMULTI:
1156 	case SIOCDELMULTI:
1157 		if (ifp->if_flags & IFF_RUNNING) {
1158 			em_disable_intr(adapter);
1159 			em_set_multi(adapter);
1160 			if (adapter->hw.mac.type == e1000_82542 &&
1161 			    adapter->hw.revision_id == E1000_REVISION_2)
1162 				em_init_rx_unit(adapter);
1163 #ifdef IFPOLL_ENABLE
1164 			if (!(ifp->if_flags & IFF_NPOLLING))
1165 #endif
1166 				em_enable_intr(adapter);
1167 		}
1168 		break;
1169 
1170 	case SIOCSIFMEDIA:
1171 		/* Check SOL/IDER usage */
1172 		if (e1000_check_reset_block(&adapter->hw)) {
1173 			device_printf(adapter->dev, "Media change is"
1174 			    " blocked due to SOL/IDER session.\n");
1175 			break;
1176 		}
1177 		/* FALL THROUGH */
1178 
1179 	case SIOCGIFMEDIA:
1180 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1181 		break;
1182 
1183 	case SIOCSIFCAP:
1184 		reinit = 0;
1185 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1186 		if (mask & IFCAP_RXCSUM) {
1187 			ifp->if_capenable ^= IFCAP_RXCSUM;
1188 			reinit = 1;
1189 		}
1190 		if (mask & IFCAP_TXCSUM) {
1191 			ifp->if_capenable ^= IFCAP_TXCSUM;
1192 			if (ifp->if_capenable & IFCAP_TXCSUM)
1193 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1194 			else
1195 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1196 		}
1197 		if (mask & IFCAP_TSO) {
1198 			ifp->if_capenable ^= IFCAP_TSO;
1199 			if (ifp->if_capenable & IFCAP_TSO)
1200 				ifp->if_hwassist |= CSUM_TSO;
1201 			else
1202 				ifp->if_hwassist &= ~CSUM_TSO;
1203 		}
1204 		if (mask & IFCAP_VLAN_HWTAGGING) {
1205 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1206 			reinit = 1;
1207 		}
1208 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1209 			em_init(adapter);
1210 		break;
1211 
1212 	default:
1213 		error = ether_ioctl(ifp, command, data);
1214 		break;
1215 	}
1216 	return (error);
1217 }
1218 
1219 static void
1220 em_watchdog(struct ifnet *ifp)
1221 {
1222 	struct adapter *adapter = ifp->if_softc;
1223 
1224 	ASSERT_SERIALIZED(ifp->if_serializer);
1225 
1226 	/*
1227 	 * The timer is set to 5 every time start queues a packet.
1228 	 * Then txeof keeps resetting it as long as it cleans at
1229 	 * least one descriptor.
1230 	 * Finally, anytime all descriptors are clean the timer is
1231 	 * set to 0.
1232 	 */
1233 
1234 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1235 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1236 		/*
1237 		 * If we reach here, all TX jobs are completed and
1238 		 * the TX engine should have been idled for some time.
1239 		 * We don't need to call if_devstart() here.
1240 		 */
1241 		ifq_clr_oactive(&ifp->if_snd);
1242 		ifp->if_timer = 0;
1243 		return;
1244 	}
1245 
1246 	/*
1247 	 * If we are in this routine because of pause frames, then
1248 	 * don't reset the hardware.
1249 	 */
1250 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1251 	    E1000_STATUS_TXOFF) {
1252 		ifp->if_timer = EM_TX_TIMEOUT;
1253 		return;
1254 	}
1255 
1256 	if (e1000_check_for_link(&adapter->hw) == 0)
1257 		if_printf(ifp, "watchdog timeout -- resetting\n");
1258 
1259 	IFNET_STAT_INC(ifp, oerrors, 1);
1260 	adapter->watchdog_events++;
1261 
1262 	em_init(adapter);
1263 
1264 	if (!ifq_is_empty(&ifp->if_snd))
1265 		if_devstart(ifp);
1266 }
1267 
1268 static void
1269 em_init(void *xsc)
1270 {
1271 	struct adapter *adapter = xsc;
1272 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1273 	device_t dev = adapter->dev;
1274 
1275 	ASSERT_SERIALIZED(ifp->if_serializer);
1276 
1277 	em_stop(adapter);
1278 
1279 	/* Get the latest mac address, User can use a LAA */
1280         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1281 
1282 	/* Put the address into the Receive Address Array */
1283 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1284 
1285 	/*
1286 	 * With the 82571 adapter, RAR[0] may be overwritten
1287 	 * when the other port is reset, we make a duplicate
1288 	 * in RAR[14] for that eventuality, this assures
1289 	 * the interface continues to function.
1290 	 */
1291 	if (adapter->hw.mac.type == e1000_82571) {
1292 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1293 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1294 		    E1000_RAR_ENTRIES - 1);
1295 	}
1296 
1297 	/* Reset the hardware */
1298 	if (em_reset(adapter)) {
1299 		device_printf(dev, "Unable to reset the hardware\n");
1300 		/* XXX em_stop()? */
1301 		return;
1302 	}
1303 	em_update_link_status(adapter);
1304 
1305 	/* Setup VLAN support, basic and offload if available */
1306 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1307 
1308 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1309 		uint32_t ctrl;
1310 
1311 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1312 		ctrl |= E1000_CTRL_VME;
1313 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1314 	}
1315 
1316 	/* Configure for OS presence */
1317 	em_get_mgmt(adapter);
1318 
1319 	/* Prepare transmit descriptors and buffers */
1320 	em_init_tx_ring(adapter);
1321 	em_init_tx_unit(adapter);
1322 
1323 	/* Setup Multicast table */
1324 	em_set_multi(adapter);
1325 
1326 	/* Prepare receive descriptors and buffers */
1327 	if (em_init_rx_ring(adapter)) {
1328 		device_printf(dev, "Could not setup receive structures\n");
1329 		em_stop(adapter);
1330 		return;
1331 	}
1332 	em_init_rx_unit(adapter);
1333 
1334 	/* Don't lose promiscuous settings */
1335 	em_set_promisc(adapter);
1336 
1337 	ifp->if_flags |= IFF_RUNNING;
1338 	ifq_clr_oactive(&ifp->if_snd);
1339 
1340 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1341 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1342 
1343 	/* MSI/X configuration for 82574 */
1344 	if (adapter->hw.mac.type == e1000_82574) {
1345 		int tmp;
1346 
1347 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1348 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1349 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1350 		/*
1351 		 * XXX MSIX
1352 		 * Set the IVAR - interrupt vector routing.
1353 		 * Each nibble represents a vector, high bit
1354 		 * is enable, other 3 bits are the MSIX table
1355 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1356 		 * Link (other) to 2, hence the magic number.
1357 		 */
1358 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1359 	}
1360 
1361 #ifdef IFPOLL_ENABLE
1362 	/*
1363 	 * Only enable interrupts if we are not polling, make sure
1364 	 * they are off otherwise.
1365 	 */
1366 	if (ifp->if_flags & IFF_NPOLLING)
1367 		em_disable_intr(adapter);
1368 	else
1369 #endif /* IFPOLL_ENABLE */
1370 		em_enable_intr(adapter);
1371 
1372 	/* AMT based hardware can now take control from firmware */
1373 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1374 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1375 	    adapter->hw.mac.type >= e1000_82571)
1376 		em_get_hw_control(adapter);
1377 }
1378 
1379 #ifdef IFPOLL_ENABLE
1380 
1381 static void
1382 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1383 {
1384 	struct adapter *adapter = ifp->if_softc;
1385 
1386 	ASSERT_SERIALIZED(ifp->if_serializer);
1387 
1388 	if (adapter->npoll.ifpc_stcount-- == 0) {
1389 		uint32_t reg_icr;
1390 
1391 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1392 
1393 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1394 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1395 			callout_stop(&adapter->timer);
1396 			adapter->hw.mac.get_link_status = 1;
1397 			em_update_link_status(adapter);
1398 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1399 		}
1400 	}
1401 
1402 	em_rxeof(adapter, count);
1403 	em_txeof(adapter);
1404 
1405 	if (!ifq_is_empty(&ifp->if_snd))
1406 		if_devstart(ifp);
1407 }
1408 
1409 static void
1410 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1411 {
1412 	struct adapter *adapter = ifp->if_softc;
1413 
1414 	ASSERT_SERIALIZED(ifp->if_serializer);
1415 
1416 	if (info != NULL) {
1417 		int cpuid = adapter->npoll.ifpc_cpuid;
1418 
1419                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1420 		info->ifpi_rx[cpuid].arg = NULL;
1421 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1422 
1423 		if (ifp->if_flags & IFF_RUNNING)
1424 			em_disable_intr(adapter);
1425 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1426 	} else {
1427 		if (ifp->if_flags & IFF_RUNNING)
1428 			em_enable_intr(adapter);
1429 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1430 	}
1431 }
1432 
1433 #endif /* IFPOLL_ENABLE */
1434 
1435 static void
1436 em_intr(void *xsc)
1437 {
1438 	em_intr_body(xsc, TRUE);
1439 }
1440 
1441 static void
1442 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1443 {
1444 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1445 	uint32_t reg_icr;
1446 
1447 	logif(intr_beg);
1448 	ASSERT_SERIALIZED(ifp->if_serializer);
1449 
1450 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1451 
1452 	if (chk_asserted &&
1453 	    ((adapter->hw.mac.type >= e1000_82571 &&
1454 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1455 	     reg_icr == 0)) {
1456 		logif(intr_end);
1457 		return;
1458 	}
1459 
1460 	/*
1461 	 * XXX: some laptops trigger several spurious interrupts
1462 	 * on em(4) when in the resume cycle. The ICR register
1463 	 * reports all-ones value in this case. Processing such
1464 	 * interrupts would lead to a freeze. I don't know why.
1465 	 */
1466 	if (reg_icr == 0xffffffff) {
1467 		logif(intr_end);
1468 		return;
1469 	}
1470 
1471 	if (ifp->if_flags & IFF_RUNNING) {
1472 		if (reg_icr &
1473 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1474 			em_rxeof(adapter, -1);
1475 		if (reg_icr & E1000_ICR_TXDW) {
1476 			em_txeof(adapter);
1477 			if (!ifq_is_empty(&ifp->if_snd))
1478 				if_devstart(ifp);
1479 		}
1480 	}
1481 
1482 	/* Link status change */
1483 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1484 		callout_stop(&adapter->timer);
1485 		adapter->hw.mac.get_link_status = 1;
1486 		em_update_link_status(adapter);
1487 
1488 		/* Deal with TX cruft when link lost */
1489 		em_tx_purge(adapter);
1490 
1491 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1492 	}
1493 
1494 	if (reg_icr & E1000_ICR_RXO)
1495 		adapter->rx_overruns++;
1496 
1497 	logif(intr_end);
1498 }
1499 
1500 static void
1501 em_intr_mask(void *xsc)
1502 {
1503 	struct adapter *adapter = xsc;
1504 
1505 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1506 	/*
1507 	 * NOTE:
1508 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1509 	 * so don't check it.
1510 	 */
1511 	em_intr_body(adapter, FALSE);
1512 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1513 }
1514 
1515 static void
1516 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1517 {
1518 	struct adapter *adapter = ifp->if_softc;
1519 	u_char fiber_type = IFM_1000_SX;
1520 
1521 	ASSERT_SERIALIZED(ifp->if_serializer);
1522 
1523 	em_update_link_status(adapter);
1524 
1525 	ifmr->ifm_status = IFM_AVALID;
1526 	ifmr->ifm_active = IFM_ETHER;
1527 
1528 	if (!adapter->link_active)
1529 		return;
1530 
1531 	ifmr->ifm_status |= IFM_ACTIVE;
1532 
1533 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1534 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1535 		if (adapter->hw.mac.type == e1000_82545)
1536 			fiber_type = IFM_1000_LX;
1537 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1538 	} else {
1539 		switch (adapter->link_speed) {
1540 		case 10:
1541 			ifmr->ifm_active |= IFM_10_T;
1542 			break;
1543 		case 100:
1544 			ifmr->ifm_active |= IFM_100_TX;
1545 			break;
1546 
1547 		case 1000:
1548 			ifmr->ifm_active |= IFM_1000_T;
1549 			break;
1550 		}
1551 		if (adapter->link_duplex == FULL_DUPLEX)
1552 			ifmr->ifm_active |= IFM_FDX;
1553 		else
1554 			ifmr->ifm_active |= IFM_HDX;
1555 	}
1556 }
1557 
1558 static int
1559 em_media_change(struct ifnet *ifp)
1560 {
1561 	struct adapter *adapter = ifp->if_softc;
1562 	struct ifmedia *ifm = &adapter->media;
1563 
1564 	ASSERT_SERIALIZED(ifp->if_serializer);
1565 
1566 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1567 		return (EINVAL);
1568 
1569 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1570 	case IFM_AUTO:
1571 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1572 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1573 		break;
1574 
1575 	case IFM_1000_LX:
1576 	case IFM_1000_SX:
1577 	case IFM_1000_T:
1578 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1579 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1580 		break;
1581 
1582 	case IFM_100_TX:
1583 		adapter->hw.mac.autoneg = FALSE;
1584 		adapter->hw.phy.autoneg_advertised = 0;
1585 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1586 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1587 		else
1588 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1589 		break;
1590 
1591 	case IFM_10_T:
1592 		adapter->hw.mac.autoneg = FALSE;
1593 		adapter->hw.phy.autoneg_advertised = 0;
1594 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1595 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1596 		else
1597 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1598 		break;
1599 
1600 	default:
1601 		if_printf(ifp, "Unsupported media type\n");
1602 		break;
1603 	}
1604 
1605 	em_init(adapter);
1606 
1607 	return (0);
1608 }
1609 
1610 static int
1611 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1612     int *segs_used, int *idx)
1613 {
1614 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1615 	bus_dmamap_t map;
1616 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1617 	struct e1000_tx_desc *ctxd = NULL;
1618 	struct mbuf *m_head = *m_headp;
1619 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1620 	int maxsegs, nsegs, i, j, first, last = 0, error;
1621 
1622 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1623 		error = em_tso_pullup(adapter, m_headp);
1624 		if (error)
1625 			return error;
1626 		m_head = *m_headp;
1627 	}
1628 
1629 	txd_upper = txd_lower = 0;
1630 	txd_used = 0;
1631 
1632 	/*
1633 	 * Capture the first descriptor index, this descriptor
1634 	 * will have the index of the EOP which is the only one
1635 	 * that now gets a DONE bit writeback.
1636 	 */
1637 	first = adapter->next_avail_tx_desc;
1638 	tx_buffer = &adapter->tx_buffer_area[first];
1639 	tx_buffer_mapped = tx_buffer;
1640 	map = tx_buffer->map;
1641 
1642 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1643 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1644 		("not enough spare TX desc"));
1645 	if (adapter->pcix_82544) {
1646 		/* Half it; see the comment in em_attach() */
1647 		maxsegs >>= 1;
1648 	}
1649 	if (maxsegs > EM_MAX_SCATTER)
1650 		maxsegs = EM_MAX_SCATTER;
1651 
1652 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1653 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1654 	if (error) {
1655 		if (error == ENOBUFS)
1656 			adapter->mbuf_alloc_failed++;
1657 		else
1658 			adapter->no_tx_dma_setup++;
1659 
1660 		m_freem(*m_headp);
1661 		*m_headp = NULL;
1662 		return error;
1663 	}
1664         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1665 
1666 	m_head = *m_headp;
1667 	adapter->tx_nsegs += nsegs;
1668 	*segs_used += nsegs;
1669 
1670 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1671 		/* TSO will consume one TX desc */
1672 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1673 		adapter->tx_nsegs += i;
1674 		*segs_used += i;
1675 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1676 		/* TX csum offloading will consume one TX desc */
1677 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1678 		adapter->tx_nsegs += i;
1679 		*segs_used += i;
1680 	}
1681 
1682         /* Handle VLAN tag */
1683 	if (m_head->m_flags & M_VLANTAG) {
1684 		/* Set the vlan id. */
1685 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1686 		/* Tell hardware to add tag */
1687 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1688 	}
1689 
1690 	i = adapter->next_avail_tx_desc;
1691 
1692 	/* Set up our transmit descriptors */
1693 	for (j = 0; j < nsegs; j++) {
1694 		/* If adapter is 82544 and on PCIX bus */
1695 		if(adapter->pcix_82544) {
1696 			DESC_ARRAY desc_array;
1697 			uint32_t array_elements, counter;
1698 
1699 			/*
1700 			 * Check the Address and Length combination and
1701 			 * split the data accordingly
1702 			 */
1703 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1704 						segs[j].ds_len, &desc_array);
1705 			for (counter = 0; counter < array_elements; counter++) {
1706 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1707 
1708 				tx_buffer = &adapter->tx_buffer_area[i];
1709 				ctxd = &adapter->tx_desc_base[i];
1710 
1711 				ctxd->buffer_addr = htole64(
1712 				    desc_array.descriptor[counter].address);
1713 				ctxd->lower.data = htole32(
1714 				    E1000_TXD_CMD_IFCS | txd_lower |
1715 				    desc_array.descriptor[counter].length);
1716 				ctxd->upper.data = htole32(txd_upper);
1717 
1718 				last = i;
1719 				if (++i == adapter->num_tx_desc)
1720 					i = 0;
1721 
1722 				txd_used++;
1723                         }
1724 		} else {
1725 			tx_buffer = &adapter->tx_buffer_area[i];
1726 			ctxd = &adapter->tx_desc_base[i];
1727 
1728 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1729 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1730 						   txd_lower | segs[j].ds_len);
1731 			ctxd->upper.data = htole32(txd_upper);
1732 
1733 			last = i;
1734 			if (++i == adapter->num_tx_desc)
1735 				i = 0;
1736 		}
1737 	}
1738 
1739 	adapter->next_avail_tx_desc = i;
1740 	if (adapter->pcix_82544) {
1741 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1742 		adapter->num_tx_desc_avail -= txd_used;
1743 	} else {
1744 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1745 		adapter->num_tx_desc_avail -= nsegs;
1746 	}
1747 
1748 	tx_buffer->m_head = m_head;
1749 	tx_buffer_mapped->map = tx_buffer->map;
1750 	tx_buffer->map = map;
1751 
1752 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1753 		adapter->tx_nsegs = 0;
1754 
1755 		/*
1756 		 * Report Status (RS) is turned on
1757 		 * every tx_int_nsegs descriptors.
1758 		 */
1759 		cmd = E1000_TXD_CMD_RS;
1760 
1761 		/*
1762 		 * Keep track of the descriptor, which will
1763 		 * be written back by hardware.
1764 		 */
1765 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1766 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1767 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1768 	}
1769 
1770 	/*
1771 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1772 	 */
1773 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1774 
1775 	if (adapter->hw.mac.type == e1000_82547) {
1776 		/*
1777 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1778 		 * E1000 that this frame is available to transmit.
1779 		 */
1780 		if (adapter->link_duplex == HALF_DUPLEX) {
1781 			em_82547_move_tail_serialized(adapter);
1782 		} else {
1783 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1784 			em_82547_update_fifo_head(adapter,
1785 			    m_head->m_pkthdr.len);
1786 		}
1787 	} else {
1788 		/*
1789 		 * Defer TDT updating, until enough descriptors are setup
1790 		 */
1791 		*idx = i;
1792 	}
1793 	return (0);
1794 }
1795 
1796 /*
1797  * 82547 workaround to avoid controller hang in half-duplex environment.
1798  * The workaround is to avoid queuing a large packet that would span
1799  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1800  * in this case.  We do that only when FIFO is quiescent.
1801  */
1802 static void
1803 em_82547_move_tail_serialized(struct adapter *adapter)
1804 {
1805 	struct e1000_tx_desc *tx_desc;
1806 	uint16_t hw_tdt, sw_tdt, length = 0;
1807 	bool eop = 0;
1808 
1809 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1810 
1811 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1812 	sw_tdt = adapter->next_avail_tx_desc;
1813 
1814 	while (hw_tdt != sw_tdt) {
1815 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1816 		length += tx_desc->lower.flags.length;
1817 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1818 		if (++hw_tdt == adapter->num_tx_desc)
1819 			hw_tdt = 0;
1820 
1821 		if (eop) {
1822 			if (em_82547_fifo_workaround(adapter, length)) {
1823 				adapter->tx_fifo_wrk_cnt++;
1824 				callout_reset(&adapter->tx_fifo_timer, 1,
1825 					em_82547_move_tail, adapter);
1826 				break;
1827 			}
1828 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1829 			em_82547_update_fifo_head(adapter, length);
1830 			length = 0;
1831 		}
1832 	}
1833 }
1834 
1835 static void
1836 em_82547_move_tail(void *xsc)
1837 {
1838 	struct adapter *adapter = xsc;
1839 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1840 
1841 	lwkt_serialize_enter(ifp->if_serializer);
1842 	em_82547_move_tail_serialized(adapter);
1843 	lwkt_serialize_exit(ifp->if_serializer);
1844 }
1845 
1846 static int
1847 em_82547_fifo_workaround(struct adapter *adapter, int len)
1848 {
1849 	int fifo_space, fifo_pkt_len;
1850 
1851 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1852 
1853 	if (adapter->link_duplex == HALF_DUPLEX) {
1854 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1855 
1856 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1857 			if (em_82547_tx_fifo_reset(adapter))
1858 				return (0);
1859 			else
1860 				return (1);
1861 		}
1862 	}
1863 	return (0);
1864 }
1865 
1866 static void
1867 em_82547_update_fifo_head(struct adapter *adapter, int len)
1868 {
1869 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1870 
1871 	/* tx_fifo_head is always 16 byte aligned */
1872 	adapter->tx_fifo_head += fifo_pkt_len;
1873 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1874 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1875 }
1876 
1877 static int
1878 em_82547_tx_fifo_reset(struct adapter *adapter)
1879 {
1880 	uint32_t tctl;
1881 
1882 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1883 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1884 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1885 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1886 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1887 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1888 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1889 		/* Disable TX unit */
1890 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1891 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1892 		    tctl & ~E1000_TCTL_EN);
1893 
1894 		/* Reset FIFO pointers */
1895 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1896 		    adapter->tx_head_addr);
1897 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1898 		    adapter->tx_head_addr);
1899 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1900 		    adapter->tx_head_addr);
1901 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1902 		    adapter->tx_head_addr);
1903 
1904 		/* Re-enable TX unit */
1905 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1906 		E1000_WRITE_FLUSH(&adapter->hw);
1907 
1908 		adapter->tx_fifo_head = 0;
1909 		adapter->tx_fifo_reset_cnt++;
1910 
1911 		return (TRUE);
1912 	} else {
1913 		return (FALSE);
1914 	}
1915 }
1916 
1917 static void
1918 em_set_promisc(struct adapter *adapter)
1919 {
1920 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1921 	uint32_t reg_rctl;
1922 
1923 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1924 
1925 	if (ifp->if_flags & IFF_PROMISC) {
1926 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1927 		/* Turn this on if you want to see bad packets */
1928 		if (em_debug_sbp)
1929 			reg_rctl |= E1000_RCTL_SBP;
1930 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1931 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1932 		reg_rctl |= E1000_RCTL_MPE;
1933 		reg_rctl &= ~E1000_RCTL_UPE;
1934 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1935 	}
1936 }
1937 
1938 static void
1939 em_disable_promisc(struct adapter *adapter)
1940 {
1941 	uint32_t reg_rctl;
1942 
1943 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1944 
1945 	reg_rctl &= ~E1000_RCTL_UPE;
1946 	reg_rctl &= ~E1000_RCTL_MPE;
1947 	reg_rctl &= ~E1000_RCTL_SBP;
1948 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1949 }
1950 
1951 static void
1952 em_set_multi(struct adapter *adapter)
1953 {
1954 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1955 	struct ifmultiaddr *ifma;
1956 	uint32_t reg_rctl = 0;
1957 	uint8_t *mta;
1958 	int mcnt = 0;
1959 
1960 	mta = adapter->mta;
1961 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1962 
1963 	if (adapter->hw.mac.type == e1000_82542 &&
1964 	    adapter->hw.revision_id == E1000_REVISION_2) {
1965 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1966 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1967 			e1000_pci_clear_mwi(&adapter->hw);
1968 		reg_rctl |= E1000_RCTL_RST;
1969 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1970 		msec_delay(5);
1971 	}
1972 
1973 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1974 		if (ifma->ifma_addr->sa_family != AF_LINK)
1975 			continue;
1976 
1977 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1978 			break;
1979 
1980 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1981 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1982 		mcnt++;
1983 	}
1984 
1985 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1986 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1987 		reg_rctl |= E1000_RCTL_MPE;
1988 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1989 	} else {
1990 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1991 	}
1992 
1993 	if (adapter->hw.mac.type == e1000_82542 &&
1994 	    adapter->hw.revision_id == E1000_REVISION_2) {
1995 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1996 		reg_rctl &= ~E1000_RCTL_RST;
1997 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1998 		msec_delay(5);
1999 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2000 			e1000_pci_set_mwi(&adapter->hw);
2001 	}
2002 }
2003 
2004 /*
2005  * This routine checks for link status and updates statistics.
2006  */
2007 static void
2008 em_timer(void *xsc)
2009 {
2010 	struct adapter *adapter = xsc;
2011 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2012 
2013 	lwkt_serialize_enter(ifp->if_serializer);
2014 
2015 	em_update_link_status(adapter);
2016 	em_update_stats(adapter);
2017 
2018 	/* Reset LAA into RAR[0] on 82571 */
2019 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2020 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2021 
2022 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2023 		em_print_hw_stats(adapter);
2024 
2025 	em_smartspeed(adapter);
2026 
2027 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2028 
2029 	lwkt_serialize_exit(ifp->if_serializer);
2030 }
2031 
2032 static void
2033 em_update_link_status(struct adapter *adapter)
2034 {
2035 	struct e1000_hw *hw = &adapter->hw;
2036 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2037 	device_t dev = adapter->dev;
2038 	uint32_t link_check = 0;
2039 
2040 	/* Get the cached link value or read phy for real */
2041 	switch (hw->phy.media_type) {
2042 	case e1000_media_type_copper:
2043 		if (hw->mac.get_link_status) {
2044 			/* Do the work to read phy */
2045 			e1000_check_for_link(hw);
2046 			link_check = !hw->mac.get_link_status;
2047 			if (link_check) /* ESB2 fix */
2048 				e1000_cfg_on_link_up(hw);
2049 		} else {
2050 			link_check = TRUE;
2051 		}
2052 		break;
2053 
2054 	case e1000_media_type_fiber:
2055 		e1000_check_for_link(hw);
2056 		link_check =
2057 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2058 		break;
2059 
2060 	case e1000_media_type_internal_serdes:
2061 		e1000_check_for_link(hw);
2062 		link_check = adapter->hw.mac.serdes_has_link;
2063 		break;
2064 
2065 	case e1000_media_type_unknown:
2066 	default:
2067 		break;
2068 	}
2069 
2070 	/* Now check for a transition */
2071 	if (link_check && adapter->link_active == 0) {
2072 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2073 		    &adapter->link_duplex);
2074 
2075 		/*
2076 		 * Check if we should enable/disable SPEED_MODE bit on
2077 		 * 82571/82572
2078 		 */
2079 		if (adapter->link_speed != SPEED_1000 &&
2080 		    (hw->mac.type == e1000_82571 ||
2081 		     hw->mac.type == e1000_82572)) {
2082 			int tarc0;
2083 
2084 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2085 			tarc0 &= ~SPEED_MODE_BIT;
2086 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2087 		}
2088 		if (bootverbose) {
2089 			device_printf(dev, "Link is up %d Mbps %s\n",
2090 			    adapter->link_speed,
2091 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2092 			    "Full Duplex" : "Half Duplex"));
2093 		}
2094 		adapter->link_active = 1;
2095 		adapter->smartspeed = 0;
2096 		ifp->if_baudrate = adapter->link_speed * 1000000;
2097 		ifp->if_link_state = LINK_STATE_UP;
2098 		if_link_state_change(ifp);
2099 	} else if (!link_check && adapter->link_active == 1) {
2100 		ifp->if_baudrate = adapter->link_speed = 0;
2101 		adapter->link_duplex = 0;
2102 		if (bootverbose)
2103 			device_printf(dev, "Link is Down\n");
2104 		adapter->link_active = 0;
2105 #if 0
2106 		/* Link down, disable watchdog */
2107 		if->if_timer = 0;
2108 #endif
2109 		ifp->if_link_state = LINK_STATE_DOWN;
2110 		if_link_state_change(ifp);
2111 	}
2112 }
2113 
2114 static void
2115 em_stop(struct adapter *adapter)
2116 {
2117 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2118 	int i;
2119 
2120 	ASSERT_SERIALIZED(ifp->if_serializer);
2121 
2122 	em_disable_intr(adapter);
2123 
2124 	callout_stop(&adapter->timer);
2125 	callout_stop(&adapter->tx_fifo_timer);
2126 
2127 	ifp->if_flags &= ~IFF_RUNNING;
2128 	ifq_clr_oactive(&ifp->if_snd);
2129 	ifp->if_timer = 0;
2130 
2131 	e1000_reset_hw(&adapter->hw);
2132 	if (adapter->hw.mac.type >= e1000_82544)
2133 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2134 
2135 	for (i = 0; i < adapter->num_tx_desc; i++) {
2136 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2137 
2138 		if (tx_buffer->m_head != NULL) {
2139 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2140 			m_freem(tx_buffer->m_head);
2141 			tx_buffer->m_head = NULL;
2142 		}
2143 	}
2144 
2145 	for (i = 0; i < adapter->num_rx_desc; i++) {
2146 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2147 
2148 		if (rx_buffer->m_head != NULL) {
2149 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2150 			m_freem(rx_buffer->m_head);
2151 			rx_buffer->m_head = NULL;
2152 		}
2153 	}
2154 
2155 	if (adapter->fmp != NULL)
2156 		m_freem(adapter->fmp);
2157 	adapter->fmp = NULL;
2158 	adapter->lmp = NULL;
2159 
2160 	adapter->csum_flags = 0;
2161 	adapter->csum_lhlen = 0;
2162 	adapter->csum_iphlen = 0;
2163 	adapter->csum_thlen = 0;
2164 	adapter->csum_mss = 0;
2165 	adapter->csum_pktlen = 0;
2166 
2167 	adapter->tx_dd_head = 0;
2168 	adapter->tx_dd_tail = 0;
2169 	adapter->tx_nsegs = 0;
2170 }
2171 
2172 static int
2173 em_get_hw_info(struct adapter *adapter)
2174 {
2175 	device_t dev = adapter->dev;
2176 
2177 	/* Save off the information about this board */
2178 	adapter->hw.vendor_id = pci_get_vendor(dev);
2179 	adapter->hw.device_id = pci_get_device(dev);
2180 	adapter->hw.revision_id = pci_get_revid(dev);
2181 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2182 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2183 
2184 	/* Do Shared Code Init and Setup */
2185 	if (e1000_set_mac_type(&adapter->hw))
2186 		return ENXIO;
2187 	return 0;
2188 }
2189 
2190 static int
2191 em_alloc_pci_res(struct adapter *adapter)
2192 {
2193 	device_t dev = adapter->dev;
2194 	u_int intr_flags;
2195 	int val, rid, msi_enable;
2196 
2197 	/* Enable bus mastering */
2198 	pci_enable_busmaster(dev);
2199 
2200 	adapter->memory_rid = EM_BAR_MEM;
2201 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2202 				&adapter->memory_rid, RF_ACTIVE);
2203 	if (adapter->memory == NULL) {
2204 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2205 		return (ENXIO);
2206 	}
2207 	adapter->osdep.mem_bus_space_tag =
2208 	    rman_get_bustag(adapter->memory);
2209 	adapter->osdep.mem_bus_space_handle =
2210 	    rman_get_bushandle(adapter->memory);
2211 
2212 	/* XXX This is quite goofy, it is not actually used */
2213 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2214 
2215 	/* Only older adapters use IO mapping */
2216 	if (adapter->hw.mac.type > e1000_82543 &&
2217 	    adapter->hw.mac.type < e1000_82571) {
2218 		/* Figure our where our IO BAR is ? */
2219 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2220 			val = pci_read_config(dev, rid, 4);
2221 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2222 				adapter->io_rid = rid;
2223 				break;
2224 			}
2225 			rid += 4;
2226 			/* check for 64bit BAR */
2227 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2228 				rid += 4;
2229 		}
2230 		if (rid >= PCIR_CARDBUSCIS) {
2231 			device_printf(dev, "Unable to locate IO BAR\n");
2232 			return (ENXIO);
2233 		}
2234 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2235 					&adapter->io_rid, RF_ACTIVE);
2236 		if (adapter->ioport == NULL) {
2237 			device_printf(dev, "Unable to allocate bus resource: "
2238 			    "ioport\n");
2239 			return (ENXIO);
2240 		}
2241 		adapter->hw.io_base = 0;
2242 		adapter->osdep.io_bus_space_tag =
2243 		    rman_get_bustag(adapter->ioport);
2244 		adapter->osdep.io_bus_space_handle =
2245 		    rman_get_bushandle(adapter->ioport);
2246 	}
2247 
2248 	/*
2249 	 * Don't enable MSI-X on 82574, see:
2250 	 * 82574 specification update errata #15
2251 	 *
2252 	 * Don't enable MSI on PCI/PCI-X chips, see:
2253 	 * 82540 specification update errata #6
2254 	 * 82545 specification update errata #4
2255 	 *
2256 	 * Don't enable MSI on 82571/82572, see:
2257 	 * 82571/82572 specification update errata #63
2258 	 */
2259 	msi_enable = em_msi_enable;
2260 	if (msi_enable &&
2261 	    (!pci_is_pcie(dev) ||
2262 	     adapter->hw.mac.type == e1000_82571 ||
2263 	     adapter->hw.mac.type == e1000_82572))
2264 		msi_enable = 0;
2265 
2266 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2267 	    &adapter->intr_rid, &intr_flags);
2268 
2269 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2270 		int unshared;
2271 
2272 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2273 		if (!unshared) {
2274 			adapter->flags |= EM_FLAG_SHARED_INTR;
2275 			if (bootverbose)
2276 				device_printf(dev, "IRQ shared\n");
2277 		} else {
2278 			intr_flags &= ~RF_SHAREABLE;
2279 			if (bootverbose)
2280 				device_printf(dev, "IRQ unshared\n");
2281 		}
2282 	}
2283 
2284 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2285 	    &adapter->intr_rid, intr_flags);
2286 	if (adapter->intr_res == NULL) {
2287 		device_printf(dev, "Unable to allocate bus resource: "
2288 		    "interrupt\n");
2289 		return (ENXIO);
2290 	}
2291 
2292 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2293 	adapter->hw.back = &adapter->osdep;
2294 	return (0);
2295 }
2296 
2297 static void
2298 em_free_pci_res(struct adapter *adapter)
2299 {
2300 	device_t dev = adapter->dev;
2301 
2302 	if (adapter->intr_res != NULL) {
2303 		bus_release_resource(dev, SYS_RES_IRQ,
2304 		    adapter->intr_rid, adapter->intr_res);
2305 	}
2306 
2307 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2308 		pci_release_msi(dev);
2309 
2310 	if (adapter->memory != NULL) {
2311 		bus_release_resource(dev, SYS_RES_MEMORY,
2312 		    adapter->memory_rid, adapter->memory);
2313 	}
2314 
2315 	if (adapter->flash != NULL) {
2316 		bus_release_resource(dev, SYS_RES_MEMORY,
2317 		    adapter->flash_rid, adapter->flash);
2318 	}
2319 
2320 	if (adapter->ioport != NULL) {
2321 		bus_release_resource(dev, SYS_RES_IOPORT,
2322 		    adapter->io_rid, adapter->ioport);
2323 	}
2324 }
2325 
2326 static int
2327 em_reset(struct adapter *adapter)
2328 {
2329 	device_t dev = adapter->dev;
2330 	uint16_t rx_buffer_size;
2331 	uint32_t pba;
2332 
2333 	/* When hardware is reset, fifo_head is also reset */
2334 	adapter->tx_fifo_head = 0;
2335 
2336 	/* Set up smart power down as default off on newer adapters. */
2337 	if (!em_smart_pwr_down &&
2338 	    (adapter->hw.mac.type == e1000_82571 ||
2339 	     adapter->hw.mac.type == e1000_82572)) {
2340 		uint16_t phy_tmp = 0;
2341 
2342 		/* Speed up time to link by disabling smart power down. */
2343 		e1000_read_phy_reg(&adapter->hw,
2344 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2345 		phy_tmp &= ~IGP02E1000_PM_SPD;
2346 		e1000_write_phy_reg(&adapter->hw,
2347 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2348 	}
2349 
2350 	/*
2351 	 * Packet Buffer Allocation (PBA)
2352 	 * Writing PBA sets the receive portion of the buffer
2353 	 * the remainder is used for the transmit buffer.
2354 	 *
2355 	 * Devices before the 82547 had a Packet Buffer of 64K.
2356 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2357 	 * After the 82547 the buffer was reduced to 40K.
2358 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2359 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2360 	 */
2361 	switch (adapter->hw.mac.type) {
2362 	case e1000_82547:
2363 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2364 		if (adapter->hw.mac.max_frame_size > 8192)
2365 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2366 		else
2367 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2368 		adapter->tx_fifo_head = 0;
2369 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2370 		adapter->tx_fifo_size =
2371 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2372 		break;
2373 
2374 	/* Total Packet Buffer on these is 48K */
2375 	case e1000_82571:
2376 	case e1000_82572:
2377 	case e1000_80003es2lan:
2378 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2379 		break;
2380 
2381 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2382 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2383 		break;
2384 
2385 	case e1000_82574:
2386 	case e1000_82583:
2387 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2388 		break;
2389 
2390 	case e1000_ich8lan:
2391 		pba = E1000_PBA_8K;
2392 		break;
2393 
2394 	case e1000_ich9lan:
2395 	case e1000_ich10lan:
2396 #define E1000_PBA_10K	0x000A
2397 		pba = E1000_PBA_10K;
2398 		break;
2399 
2400 	case e1000_pchlan:
2401 	case e1000_pch2lan:
2402 	case e1000_pch_lpt:
2403 		pba = E1000_PBA_26K;
2404 		break;
2405 
2406 	default:
2407 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2408 		if (adapter->hw.mac.max_frame_size > 8192)
2409 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2410 		else
2411 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2412 	}
2413 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2414 
2415 	/*
2416 	 * These parameters control the automatic generation (Tx) and
2417 	 * response (Rx) to Ethernet PAUSE frames.
2418 	 * - High water mark should allow for at least two frames to be
2419 	 *   received after sending an XOFF.
2420 	 * - Low water mark works best when it is very near the high water mark.
2421 	 *   This allows the receiver to restart by sending XON when it has
2422 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2423 	 *   restart after one full frame is pulled from the buffer. There
2424 	 *   could be several smaller frames in the buffer and if so they will
2425 	 *   not trigger the XON until their total number reduces the buffer
2426 	 *   by 1500.
2427 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2428 	 */
2429 	rx_buffer_size =
2430 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2431 
2432 	adapter->hw.fc.high_water = rx_buffer_size -
2433 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2434 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2435 
2436 	if (adapter->hw.mac.type == e1000_80003es2lan)
2437 		adapter->hw.fc.pause_time = 0xFFFF;
2438 	else
2439 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2440 
2441 	adapter->hw.fc.send_xon = TRUE;
2442 
2443 	adapter->hw.fc.requested_mode = e1000_fc_full;
2444 
2445 	/*
2446 	 * Device specific overrides/settings
2447 	 */
2448 	switch (adapter->hw.mac.type) {
2449 	case e1000_pchlan:
2450 		/* Workaround: no TX flow ctrl for PCH */
2451 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2452 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2453 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2454 			adapter->hw.fc.high_water = 0x3500;
2455 			adapter->hw.fc.low_water = 0x1500;
2456 		} else {
2457 			adapter->hw.fc.high_water = 0x5000;
2458 			adapter->hw.fc.low_water = 0x3000;
2459 		}
2460 		adapter->hw.fc.refresh_time = 0x1000;
2461 		break;
2462 
2463 	case e1000_pch2lan:
2464 	case e1000_pch_lpt:
2465 		adapter->hw.fc.high_water = 0x5C20;
2466 		adapter->hw.fc.low_water = 0x5048;
2467 		adapter->hw.fc.pause_time = 0x0650;
2468 		adapter->hw.fc.refresh_time = 0x0400;
2469 		/* Jumbos need adjusted PBA */
2470 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2471 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2472 		else
2473 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2474 		break;
2475 
2476 	case e1000_ich9lan:
2477 	case e1000_ich10lan:
2478 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2479 			adapter->hw.fc.high_water = 0x2800;
2480 			adapter->hw.fc.low_water =
2481 			    adapter->hw.fc.high_water - 8;
2482 			break;
2483 		}
2484 		/* FALL THROUGH */
2485 	default:
2486 		if (adapter->hw.mac.type == e1000_80003es2lan)
2487 			adapter->hw.fc.pause_time = 0xFFFF;
2488 		break;
2489 	}
2490 
2491 	/* Issue a global reset */
2492 	e1000_reset_hw(&adapter->hw);
2493 	if (adapter->hw.mac.type >= e1000_82544)
2494 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2495 	em_disable_aspm(adapter);
2496 
2497 	if (e1000_init_hw(&adapter->hw) < 0) {
2498 		device_printf(dev, "Hardware Initialization Failed\n");
2499 		return (EIO);
2500 	}
2501 
2502 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2503 	e1000_get_phy_info(&adapter->hw);
2504 	e1000_check_for_link(&adapter->hw);
2505 
2506 	return (0);
2507 }
2508 
2509 static void
2510 em_setup_ifp(struct adapter *adapter)
2511 {
2512 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2513 
2514 	if_initname(ifp, device_get_name(adapter->dev),
2515 		    device_get_unit(adapter->dev));
2516 	ifp->if_softc = adapter;
2517 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2518 	ifp->if_init =  em_init;
2519 	ifp->if_ioctl = em_ioctl;
2520 	ifp->if_start = em_start;
2521 #ifdef IFPOLL_ENABLE
2522 	ifp->if_npoll = em_npoll;
2523 #endif
2524 	ifp->if_watchdog = em_watchdog;
2525 	ifp->if_nmbclusters = adapter->num_rx_desc;
2526 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2527 	ifq_set_ready(&ifp->if_snd);
2528 
2529 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2530 
2531 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2532 	if (adapter->hw.mac.type >= e1000_82543)
2533 		ifp->if_capabilities |= IFCAP_HWCSUM;
2534 	if (adapter->flags & EM_FLAG_TSO)
2535 		ifp->if_capabilities |= IFCAP_TSO;
2536 	ifp->if_capenable = ifp->if_capabilities;
2537 
2538 	if (ifp->if_capenable & IFCAP_TXCSUM)
2539 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2540 	if (ifp->if_capenable & IFCAP_TSO)
2541 		ifp->if_hwassist |= CSUM_TSO;
2542 
2543 	/*
2544 	 * Tell the upper layer(s) we support long frames.
2545 	 */
2546 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2547 
2548 	/*
2549 	 * Specify the media types supported by this adapter and register
2550 	 * callbacks to update media and link information
2551 	 */
2552 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2553 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2554 		u_char fiber_type = IFM_1000_SX; /* default type */
2555 
2556 		if (adapter->hw.mac.type == e1000_82545)
2557 			fiber_type = IFM_1000_LX;
2558 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2559 			    0, NULL);
2560 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2561 	} else {
2562 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2563 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2564 			    0, NULL);
2565 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2566 			    0, NULL);
2567 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2568 			    0, NULL);
2569 		if (adapter->hw.phy.type != e1000_phy_ife) {
2570 			ifmedia_add(&adapter->media,
2571 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2572 			ifmedia_add(&adapter->media,
2573 				IFM_ETHER | IFM_1000_T, 0, NULL);
2574 		}
2575 	}
2576 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2577 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2578 }
2579 
2580 
2581 /*
2582  * Workaround for SmartSpeed on 82541 and 82547 controllers
2583  */
2584 static void
2585 em_smartspeed(struct adapter *adapter)
2586 {
2587 	uint16_t phy_tmp;
2588 
2589 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2590 	    adapter->hw.mac.autoneg == 0 ||
2591 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2592 		return;
2593 
2594 	if (adapter->smartspeed == 0) {
2595 		/*
2596 		 * If Master/Slave config fault is asserted twice,
2597 		 * we assume back-to-back
2598 		 */
2599 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2600 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2601 			return;
2602 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2603 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2604 			e1000_read_phy_reg(&adapter->hw,
2605 			    PHY_1000T_CTRL, &phy_tmp);
2606 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2607 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2608 				e1000_write_phy_reg(&adapter->hw,
2609 				    PHY_1000T_CTRL, phy_tmp);
2610 				adapter->smartspeed++;
2611 				if (adapter->hw.mac.autoneg &&
2612 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2613 				    !e1000_read_phy_reg(&adapter->hw,
2614 				     PHY_CONTROL, &phy_tmp)) {
2615 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2616 						   MII_CR_RESTART_AUTO_NEG;
2617 					e1000_write_phy_reg(&adapter->hw,
2618 					    PHY_CONTROL, phy_tmp);
2619 				}
2620 			}
2621 		}
2622 		return;
2623 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2624 		/* If still no link, perhaps using 2/3 pair cable */
2625 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2626 		phy_tmp |= CR_1000T_MS_ENABLE;
2627 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2628 		if (adapter->hw.mac.autoneg &&
2629 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2630 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2631 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2632 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2633 		}
2634 	}
2635 
2636 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2637 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2638 		adapter->smartspeed = 0;
2639 }
2640 
2641 static int
2642 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2643 	      struct em_dma_alloc *dma)
2644 {
2645 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2646 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2647 				&dma->dma_tag, &dma->dma_map,
2648 				&dma->dma_paddr);
2649 	if (dma->dma_vaddr == NULL)
2650 		return ENOMEM;
2651 	else
2652 		return 0;
2653 }
2654 
2655 static void
2656 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2657 {
2658 	if (dma->dma_tag == NULL)
2659 		return;
2660 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2661 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2662 	bus_dma_tag_destroy(dma->dma_tag);
2663 }
2664 
2665 static int
2666 em_create_tx_ring(struct adapter *adapter)
2667 {
2668 	device_t dev = adapter->dev;
2669 	struct em_buffer *tx_buffer;
2670 	int error, i;
2671 
2672 	adapter->tx_buffer_area =
2673 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2674 			M_DEVBUF, M_WAITOK | M_ZERO);
2675 
2676 	/*
2677 	 * Create DMA tags for tx buffers
2678 	 */
2679 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2680 			1, 0,			/* alignment, bounds */
2681 			BUS_SPACE_MAXADDR,	/* lowaddr */
2682 			BUS_SPACE_MAXADDR,	/* highaddr */
2683 			NULL, NULL,		/* filter, filterarg */
2684 			EM_TSO_SIZE,		/* maxsize */
2685 			EM_MAX_SCATTER,		/* nsegments */
2686 			PAGE_SIZE,		/* maxsegsize */
2687 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2688 			BUS_DMA_ONEBPAGE,	/* flags */
2689 			&adapter->txtag);
2690 	if (error) {
2691 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2692 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2693 		adapter->tx_buffer_area = NULL;
2694 		return error;
2695 	}
2696 
2697 	/*
2698 	 * Create DMA maps for tx buffers
2699 	 */
2700 	for (i = 0; i < adapter->num_tx_desc; i++) {
2701 		tx_buffer = &adapter->tx_buffer_area[i];
2702 
2703 		error = bus_dmamap_create(adapter->txtag,
2704 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2705 					  &tx_buffer->map);
2706 		if (error) {
2707 			device_printf(dev, "Unable to create TX DMA map\n");
2708 			em_destroy_tx_ring(adapter, i);
2709 			return error;
2710 		}
2711 	}
2712 	return (0);
2713 }
2714 
2715 static void
2716 em_init_tx_ring(struct adapter *adapter)
2717 {
2718 	/* Clear the old ring contents */
2719 	bzero(adapter->tx_desc_base,
2720 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2721 
2722 	/* Reset state */
2723 	adapter->next_avail_tx_desc = 0;
2724 	adapter->next_tx_to_clean = 0;
2725 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2726 }
2727 
2728 static void
2729 em_init_tx_unit(struct adapter *adapter)
2730 {
2731 	uint32_t tctl, tarc, tipg = 0;
2732 	uint64_t bus_addr;
2733 
2734 	/* Setup the Base and Length of the Tx Descriptor Ring */
2735 	bus_addr = adapter->txdma.dma_paddr;
2736 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2737 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2738 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2739 	    (uint32_t)(bus_addr >> 32));
2740 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2741 	    (uint32_t)bus_addr);
2742 	/* Setup the HW Tx Head and Tail descriptor pointers */
2743 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2744 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2745 
2746 	/* Set the default values for the Tx Inter Packet Gap timer */
2747 	switch (adapter->hw.mac.type) {
2748 	case e1000_82542:
2749 		tipg = DEFAULT_82542_TIPG_IPGT;
2750 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2751 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2752 		break;
2753 
2754 	case e1000_80003es2lan:
2755 		tipg = DEFAULT_82543_TIPG_IPGR1;
2756 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2757 		    E1000_TIPG_IPGR2_SHIFT;
2758 		break;
2759 
2760 	default:
2761 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2762 		    adapter->hw.phy.media_type ==
2763 		    e1000_media_type_internal_serdes)
2764 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2765 		else
2766 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2767 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2768 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2769 		break;
2770 	}
2771 
2772 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2773 
2774 	/* NOTE: 0 is not allowed for TIDV */
2775 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2776 	if(adapter->hw.mac.type >= e1000_82540)
2777 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2778 
2779 	if (adapter->hw.mac.type == e1000_82571 ||
2780 	    adapter->hw.mac.type == e1000_82572) {
2781 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2782 		tarc |= SPEED_MODE_BIT;
2783 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2784 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2785 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2786 		tarc |= 1;
2787 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2788 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2789 		tarc |= 1;
2790 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2791 	}
2792 
2793 	/* Program the Transmit Control Register */
2794 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2795 	tctl &= ~E1000_TCTL_CT;
2796 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2797 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2798 
2799 	if (adapter->hw.mac.type >= e1000_82571)
2800 		tctl |= E1000_TCTL_MULR;
2801 
2802 	/* This write will effectively turn on the transmit unit. */
2803 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2804 
2805 	if (adapter->hw.mac.type == e1000_82571 ||
2806 	    adapter->hw.mac.type == e1000_82572 ||
2807 	    adapter->hw.mac.type == e1000_80003es2lan) {
2808 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2809 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2810 		tarc &= ~(1 << 28);
2811 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2812 	}
2813 }
2814 
2815 static void
2816 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2817 {
2818 	struct em_buffer *tx_buffer;
2819 	int i;
2820 
2821 	if (adapter->tx_buffer_area == NULL)
2822 		return;
2823 
2824 	for (i = 0; i < ndesc; i++) {
2825 		tx_buffer = &adapter->tx_buffer_area[i];
2826 
2827 		KKASSERT(tx_buffer->m_head == NULL);
2828 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2829 	}
2830 	bus_dma_tag_destroy(adapter->txtag);
2831 
2832 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2833 	adapter->tx_buffer_area = NULL;
2834 }
2835 
2836 /*
2837  * The offload context needs to be set when we transfer the first
2838  * packet of a particular protocol (TCP/UDP).  This routine has been
2839  * enhanced to deal with inserted VLAN headers.
2840  *
2841  * If the new packet's ether header length, ip header length and
2842  * csum offloading type are same as the previous packet, we should
2843  * avoid allocating a new csum context descriptor; mainly to take
2844  * advantage of the pipeline effect of the TX data read request.
2845  *
2846  * This function returns number of TX descrptors allocated for
2847  * csum context.
2848  */
2849 static int
2850 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2851 	  uint32_t *txd_upper, uint32_t *txd_lower)
2852 {
2853 	struct e1000_context_desc *TXD;
2854 	int curr_txd, ehdrlen, csum_flags;
2855 	uint32_t cmd, hdr_len, ip_hlen;
2856 
2857 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2858 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2859 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2860 
2861 	if (adapter->csum_lhlen == ehdrlen &&
2862 	    adapter->csum_iphlen == ip_hlen &&
2863 	    adapter->csum_flags == csum_flags) {
2864 		/*
2865 		 * Same csum offload context as the previous packets;
2866 		 * just return.
2867 		 */
2868 		*txd_upper = adapter->csum_txd_upper;
2869 		*txd_lower = adapter->csum_txd_lower;
2870 		return 0;
2871 	}
2872 
2873 	/*
2874 	 * Setup a new csum offload context.
2875 	 */
2876 
2877 	curr_txd = adapter->next_avail_tx_desc;
2878 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2879 
2880 	cmd = 0;
2881 
2882 	/* Setup of IP header checksum. */
2883 	if (csum_flags & CSUM_IP) {
2884 		/*
2885 		 * Start offset for header checksum calculation.
2886 		 * End offset for header checksum calculation.
2887 		 * Offset of place to put the checksum.
2888 		 */
2889 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2890 		TXD->lower_setup.ip_fields.ipcse =
2891 		    htole16(ehdrlen + ip_hlen - 1);
2892 		TXD->lower_setup.ip_fields.ipcso =
2893 		    ehdrlen + offsetof(struct ip, ip_sum);
2894 		cmd |= E1000_TXD_CMD_IP;
2895 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2896 	}
2897 	hdr_len = ehdrlen + ip_hlen;
2898 
2899 	if (csum_flags & CSUM_TCP) {
2900 		/*
2901 		 * Start offset for payload checksum calculation.
2902 		 * End offset for payload checksum calculation.
2903 		 * Offset of place to put the checksum.
2904 		 */
2905 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2906 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2907 		TXD->upper_setup.tcp_fields.tucso =
2908 		    hdr_len + offsetof(struct tcphdr, th_sum);
2909 		cmd |= E1000_TXD_CMD_TCP;
2910 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2911 	} else if (csum_flags & CSUM_UDP) {
2912 		/*
2913 		 * Start offset for header checksum calculation.
2914 		 * End offset for header checksum calculation.
2915 		 * Offset of place to put the checksum.
2916 		 */
2917 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2918 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2919 		TXD->upper_setup.tcp_fields.tucso =
2920 		    hdr_len + offsetof(struct udphdr, uh_sum);
2921 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2922 	}
2923 
2924 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2925 		     E1000_TXD_DTYP_D;		/* Data descr */
2926 
2927 	/* Save the information for this csum offloading context */
2928 	adapter->csum_lhlen = ehdrlen;
2929 	adapter->csum_iphlen = ip_hlen;
2930 	adapter->csum_flags = csum_flags;
2931 	adapter->csum_txd_upper = *txd_upper;
2932 	adapter->csum_txd_lower = *txd_lower;
2933 
2934 	TXD->tcp_seg_setup.data = htole32(0);
2935 	TXD->cmd_and_length =
2936 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2937 
2938 	if (++curr_txd == adapter->num_tx_desc)
2939 		curr_txd = 0;
2940 
2941 	KKASSERT(adapter->num_tx_desc_avail > 0);
2942 	adapter->num_tx_desc_avail--;
2943 
2944 	adapter->next_avail_tx_desc = curr_txd;
2945 	return 1;
2946 }
2947 
2948 static void
2949 em_txeof(struct adapter *adapter)
2950 {
2951 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2952 	struct em_buffer *tx_buffer;
2953 	int first, num_avail;
2954 
2955 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2956 		return;
2957 
2958 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2959 		return;
2960 
2961 	num_avail = adapter->num_tx_desc_avail;
2962 	first = adapter->next_tx_to_clean;
2963 
2964 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2965 		struct e1000_tx_desc *tx_desc;
2966 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2967 
2968 		tx_desc = &adapter->tx_desc_base[dd_idx];
2969 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2970 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2971 
2972 			if (++dd_idx == adapter->num_tx_desc)
2973 				dd_idx = 0;
2974 
2975 			while (first != dd_idx) {
2976 				logif(pkt_txclean);
2977 
2978 				num_avail++;
2979 
2980 				tx_buffer = &adapter->tx_buffer_area[first];
2981 				if (tx_buffer->m_head) {
2982 					bus_dmamap_unload(adapter->txtag,
2983 							  tx_buffer->map);
2984 					m_freem(tx_buffer->m_head);
2985 					tx_buffer->m_head = NULL;
2986 				}
2987 
2988 				if (++first == adapter->num_tx_desc)
2989 					first = 0;
2990 			}
2991 		} else {
2992 			break;
2993 		}
2994 	}
2995 	adapter->next_tx_to_clean = first;
2996 	adapter->num_tx_desc_avail = num_avail;
2997 
2998 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2999 		adapter->tx_dd_head = 0;
3000 		adapter->tx_dd_tail = 0;
3001 	}
3002 
3003 	if (!EM_IS_OACTIVE(adapter)) {
3004 		ifq_clr_oactive(&ifp->if_snd);
3005 
3006 		/* All clean, turn off the timer */
3007 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3008 			ifp->if_timer = 0;
3009 	}
3010 }
3011 
3012 static void
3013 em_tx_collect(struct adapter *adapter)
3014 {
3015 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3016 	struct em_buffer *tx_buffer;
3017 	int tdh, first, num_avail, dd_idx = -1;
3018 
3019 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3020 		return;
3021 
3022 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3023 	if (tdh == adapter->next_tx_to_clean)
3024 		return;
3025 
3026 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3027 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3028 
3029 	num_avail = adapter->num_tx_desc_avail;
3030 	first = adapter->next_tx_to_clean;
3031 
3032 	while (first != tdh) {
3033 		logif(pkt_txclean);
3034 
3035 		num_avail++;
3036 
3037 		tx_buffer = &adapter->tx_buffer_area[first];
3038 		if (tx_buffer->m_head) {
3039 			bus_dmamap_unload(adapter->txtag,
3040 					  tx_buffer->map);
3041 			m_freem(tx_buffer->m_head);
3042 			tx_buffer->m_head = NULL;
3043 		}
3044 
3045 		if (first == dd_idx) {
3046 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3047 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3048 				adapter->tx_dd_head = 0;
3049 				adapter->tx_dd_tail = 0;
3050 				dd_idx = -1;
3051 			} else {
3052 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3053 			}
3054 		}
3055 
3056 		if (++first == adapter->num_tx_desc)
3057 			first = 0;
3058 	}
3059 	adapter->next_tx_to_clean = first;
3060 	adapter->num_tx_desc_avail = num_avail;
3061 
3062 	if (!EM_IS_OACTIVE(adapter)) {
3063 		ifq_clr_oactive(&ifp->if_snd);
3064 
3065 		/* All clean, turn off the timer */
3066 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3067 			ifp->if_timer = 0;
3068 	}
3069 }
3070 
3071 /*
3072  * When Link is lost sometimes there is work still in the TX ring
3073  * which will result in a watchdog, rather than allow that do an
3074  * attempted cleanup and then reinit here.  Note that this has been
3075  * seens mostly with fiber adapters.
3076  */
3077 static void
3078 em_tx_purge(struct adapter *adapter)
3079 {
3080 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3081 
3082 	if (!adapter->link_active && ifp->if_timer) {
3083 		em_tx_collect(adapter);
3084 		if (ifp->if_timer) {
3085 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3086 			ifp->if_timer = 0;
3087 			em_init(adapter);
3088 		}
3089 	}
3090 }
3091 
3092 static int
3093 em_newbuf(struct adapter *adapter, int i, int init)
3094 {
3095 	struct mbuf *m;
3096 	bus_dma_segment_t seg;
3097 	bus_dmamap_t map;
3098 	struct em_buffer *rx_buffer;
3099 	int error, nseg;
3100 
3101 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3102 	if (m == NULL) {
3103 		adapter->mbuf_cluster_failed++;
3104 		if (init) {
3105 			if_printf(&adapter->arpcom.ac_if,
3106 				  "Unable to allocate RX mbuf\n");
3107 		}
3108 		return (ENOBUFS);
3109 	}
3110 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3111 
3112 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3113 		m_adj(m, ETHER_ALIGN);
3114 
3115 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3116 			adapter->rx_sparemap, m,
3117 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3118 	if (error) {
3119 		m_freem(m);
3120 		if (init) {
3121 			if_printf(&adapter->arpcom.ac_if,
3122 				  "Unable to load RX mbuf\n");
3123 		}
3124 		return (error);
3125 	}
3126 
3127 	rx_buffer = &adapter->rx_buffer_area[i];
3128 	if (rx_buffer->m_head != NULL)
3129 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3130 
3131 	map = rx_buffer->map;
3132 	rx_buffer->map = adapter->rx_sparemap;
3133 	adapter->rx_sparemap = map;
3134 
3135 	rx_buffer->m_head = m;
3136 
3137 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3138 	return (0);
3139 }
3140 
3141 static int
3142 em_create_rx_ring(struct adapter *adapter)
3143 {
3144 	device_t dev = adapter->dev;
3145 	struct em_buffer *rx_buffer;
3146 	int i, error;
3147 
3148 	adapter->rx_buffer_area =
3149 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3150 			M_DEVBUF, M_WAITOK | M_ZERO);
3151 
3152 	/*
3153 	 * Create DMA tag for rx buffers
3154 	 */
3155 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3156 			1, 0,			/* alignment, bounds */
3157 			BUS_SPACE_MAXADDR,	/* lowaddr */
3158 			BUS_SPACE_MAXADDR,	/* highaddr */
3159 			NULL, NULL,		/* filter, filterarg */
3160 			MCLBYTES,		/* maxsize */
3161 			1,			/* nsegments */
3162 			MCLBYTES,		/* maxsegsize */
3163 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3164 			&adapter->rxtag);
3165 	if (error) {
3166 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3167 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3168 		adapter->rx_buffer_area = NULL;
3169 		return error;
3170 	}
3171 
3172 	/*
3173 	 * Create spare DMA map for rx buffers
3174 	 */
3175 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3176 				  &adapter->rx_sparemap);
3177 	if (error) {
3178 		device_printf(dev, "Unable to create spare RX DMA map\n");
3179 		bus_dma_tag_destroy(adapter->rxtag);
3180 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3181 		adapter->rx_buffer_area = NULL;
3182 		return error;
3183 	}
3184 
3185 	/*
3186 	 * Create DMA maps for rx buffers
3187 	 */
3188 	for (i = 0; i < adapter->num_rx_desc; i++) {
3189 		rx_buffer = &adapter->rx_buffer_area[i];
3190 
3191 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3192 					  &rx_buffer->map);
3193 		if (error) {
3194 			device_printf(dev, "Unable to create RX DMA map\n");
3195 			em_destroy_rx_ring(adapter, i);
3196 			return error;
3197 		}
3198 	}
3199 	return (0);
3200 }
3201 
3202 static int
3203 em_init_rx_ring(struct adapter *adapter)
3204 {
3205 	int i, error;
3206 
3207 	/* Reset descriptor ring */
3208 	bzero(adapter->rx_desc_base,
3209 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3210 
3211 	/* Allocate new ones. */
3212 	for (i = 0; i < adapter->num_rx_desc; i++) {
3213 		error = em_newbuf(adapter, i, 1);
3214 		if (error)
3215 			return (error);
3216 	}
3217 
3218 	/* Setup our descriptor pointers */
3219 	adapter->next_rx_desc_to_check = 0;
3220 
3221 	return (0);
3222 }
3223 
3224 static void
3225 em_init_rx_unit(struct adapter *adapter)
3226 {
3227 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3228 	uint64_t bus_addr;
3229 	uint32_t rctl;
3230 
3231 	/*
3232 	 * Make sure receives are disabled while setting
3233 	 * up the descriptor ring
3234 	 */
3235 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3236 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3237 
3238 	if (adapter->hw.mac.type >= e1000_82540) {
3239 		uint32_t itr;
3240 
3241 		/*
3242 		 * Set the interrupt throttling rate. Value is calculated
3243 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3244 		 */
3245 		if (adapter->int_throttle_ceil)
3246 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3247 		else
3248 			itr = 0;
3249 		em_set_itr(adapter, itr);
3250 	}
3251 
3252 	/* Disable accelerated ackknowledge */
3253 	if (adapter->hw.mac.type == e1000_82574) {
3254 		E1000_WRITE_REG(&adapter->hw,
3255 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3256 	}
3257 
3258 	/* Receive Checksum Offload for TCP and UDP */
3259 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3260 		uint32_t rxcsum;
3261 
3262 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3263 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3264 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3265 	}
3266 
3267 	/*
3268 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3269 	 * long latencies are observed, like Lenovo X60. This
3270 	 * change eliminates the problem, but since having positive
3271 	 * values in RDTR is a known source of problems on other
3272 	 * platforms another solution is being sought.
3273 	 */
3274 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3275 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3276 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3277 	}
3278 
3279 	/*
3280 	 * Setup the Base and Length of the Rx Descriptor Ring
3281 	 */
3282 	bus_addr = adapter->rxdma.dma_paddr;
3283 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3284 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3285 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3286 	    (uint32_t)(bus_addr >> 32));
3287 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3288 	    (uint32_t)bus_addr);
3289 
3290 	/*
3291 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3292 	 */
3293 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3294 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3295 
3296 	/* Set PTHRESH for improved jumbo performance */
3297 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3298 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3299 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3300 	    (ifp->if_mtu > ETHERMTU)) {
3301 		uint32_t rxdctl;
3302 
3303 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3304 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3305 	}
3306 
3307 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3308 		if (ifp->if_mtu > ETHERMTU)
3309 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3310 		else
3311 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3312 	}
3313 
3314 	/* Setup the Receive Control Register */
3315 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3316 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3317 		E1000_RCTL_RDMTS_HALF |
3318 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3319 
3320 	/* Make sure VLAN Filters are off */
3321 	rctl &= ~E1000_RCTL_VFE;
3322 
3323 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3324 		rctl |= E1000_RCTL_SBP;
3325 	else
3326 		rctl &= ~E1000_RCTL_SBP;
3327 
3328 	switch (adapter->rx_buffer_len) {
3329 	default:
3330 	case 2048:
3331 		rctl |= E1000_RCTL_SZ_2048;
3332 		break;
3333 
3334 	case 4096:
3335 		rctl |= E1000_RCTL_SZ_4096 |
3336 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3337 		break;
3338 
3339 	case 8192:
3340 		rctl |= E1000_RCTL_SZ_8192 |
3341 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3342 		break;
3343 
3344 	case 16384:
3345 		rctl |= E1000_RCTL_SZ_16384 |
3346 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3347 		break;
3348 	}
3349 
3350 	if (ifp->if_mtu > ETHERMTU)
3351 		rctl |= E1000_RCTL_LPE;
3352 	else
3353 		rctl &= ~E1000_RCTL_LPE;
3354 
3355 	/* Enable Receives */
3356 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3357 }
3358 
3359 static void
3360 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3361 {
3362 	struct em_buffer *rx_buffer;
3363 	int i;
3364 
3365 	if (adapter->rx_buffer_area == NULL)
3366 		return;
3367 
3368 	for (i = 0; i < ndesc; i++) {
3369 		rx_buffer = &adapter->rx_buffer_area[i];
3370 
3371 		KKASSERT(rx_buffer->m_head == NULL);
3372 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3373 	}
3374 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3375 	bus_dma_tag_destroy(adapter->rxtag);
3376 
3377 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3378 	adapter->rx_buffer_area = NULL;
3379 }
3380 
3381 static void
3382 em_rxeof(struct adapter *adapter, int count)
3383 {
3384 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3385 	uint8_t status, accept_frame = 0, eop = 0;
3386 	uint16_t len, desc_len, prev_len_adj;
3387 	struct e1000_rx_desc *current_desc;
3388 	struct mbuf *mp;
3389 	int i;
3390 
3391 	i = adapter->next_rx_desc_to_check;
3392 	current_desc = &adapter->rx_desc_base[i];
3393 
3394 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3395 		return;
3396 
3397 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3398 		struct mbuf *m = NULL;
3399 
3400 		logif(pkt_receive);
3401 
3402 		mp = adapter->rx_buffer_area[i].m_head;
3403 
3404 		/*
3405 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3406 		 * needs to access the last received byte in the mbuf.
3407 		 */
3408 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3409 				BUS_DMASYNC_POSTREAD);
3410 
3411 		accept_frame = 1;
3412 		prev_len_adj = 0;
3413 		desc_len = le16toh(current_desc->length);
3414 		status = current_desc->status;
3415 		if (status & E1000_RXD_STAT_EOP) {
3416 			count--;
3417 			eop = 1;
3418 			if (desc_len < ETHER_CRC_LEN) {
3419 				len = 0;
3420 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3421 			} else {
3422 				len = desc_len - ETHER_CRC_LEN;
3423 			}
3424 		} else {
3425 			eop = 0;
3426 			len = desc_len;
3427 		}
3428 
3429 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3430 			uint8_t	last_byte;
3431 			uint32_t pkt_len = desc_len;
3432 
3433 			if (adapter->fmp != NULL)
3434 				pkt_len += adapter->fmp->m_pkthdr.len;
3435 
3436 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3437 			if (TBI_ACCEPT(&adapter->hw, status,
3438 			    current_desc->errors, pkt_len, last_byte,
3439 			    adapter->min_frame_size,
3440 			    adapter->hw.mac.max_frame_size)) {
3441 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3442 				    &adapter->stats, pkt_len,
3443 				    adapter->hw.mac.addr,
3444 				    adapter->hw.mac.max_frame_size);
3445 				if (len > 0)
3446 					len--;
3447 			} else {
3448 				accept_frame = 0;
3449 			}
3450 		}
3451 
3452 		if (accept_frame) {
3453 			if (em_newbuf(adapter, i, 0) != 0) {
3454 				IFNET_STAT_INC(ifp, iqdrops, 1);
3455 				goto discard;
3456 			}
3457 
3458 			/* Assign correct length to the current fragment */
3459 			mp->m_len = len;
3460 
3461 			if (adapter->fmp == NULL) {
3462 				mp->m_pkthdr.len = len;
3463 				adapter->fmp = mp; /* Store the first mbuf */
3464 				adapter->lmp = mp;
3465 			} else {
3466 				/*
3467 				 * Chain mbuf's together
3468 				 */
3469 
3470 				/*
3471 				 * Adjust length of previous mbuf in chain if
3472 				 * we received less than 4 bytes in the last
3473 				 * descriptor.
3474 				 */
3475 				if (prev_len_adj > 0) {
3476 					adapter->lmp->m_len -= prev_len_adj;
3477 					adapter->fmp->m_pkthdr.len -=
3478 					    prev_len_adj;
3479 				}
3480 				adapter->lmp->m_next = mp;
3481 				adapter->lmp = adapter->lmp->m_next;
3482 				adapter->fmp->m_pkthdr.len += len;
3483 			}
3484 
3485 			if (eop) {
3486 				adapter->fmp->m_pkthdr.rcvif = ifp;
3487 				IFNET_STAT_INC(ifp, ipackets, 1);
3488 
3489 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3490 					em_rxcsum(adapter, current_desc,
3491 						  adapter->fmp);
3492 				}
3493 
3494 				if (status & E1000_RXD_STAT_VP) {
3495 					adapter->fmp->m_pkthdr.ether_vlantag =
3496 					    (le16toh(current_desc->special) &
3497 					    E1000_RXD_SPC_VLAN_MASK);
3498 					adapter->fmp->m_flags |= M_VLANTAG;
3499 				}
3500 				m = adapter->fmp;
3501 				adapter->fmp = NULL;
3502 				adapter->lmp = NULL;
3503 			}
3504 		} else {
3505 			IFNET_STAT_INC(ifp, ierrors, 1);
3506 discard:
3507 #ifdef foo
3508 			/* Reuse loaded DMA map and just update mbuf chain */
3509 			mp = adapter->rx_buffer_area[i].m_head;
3510 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3511 			mp->m_data = mp->m_ext.ext_buf;
3512 			mp->m_next = NULL;
3513 			if (adapter->hw.mac.max_frame_size <=
3514 			    (MCLBYTES - ETHER_ALIGN))
3515 				m_adj(mp, ETHER_ALIGN);
3516 #endif
3517 			if (adapter->fmp != NULL) {
3518 				m_freem(adapter->fmp);
3519 				adapter->fmp = NULL;
3520 				adapter->lmp = NULL;
3521 			}
3522 			m = NULL;
3523 		}
3524 
3525 		/* Zero out the receive descriptors status. */
3526 		current_desc->status = 0;
3527 
3528 		if (m != NULL)
3529 			ifp->if_input(ifp, m, NULL, -1);
3530 
3531 		/* Advance our pointers to the next descriptor. */
3532 		if (++i == adapter->num_rx_desc)
3533 			i = 0;
3534 		current_desc = &adapter->rx_desc_base[i];
3535 	}
3536 	adapter->next_rx_desc_to_check = i;
3537 
3538 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3539 	if (--i < 0)
3540 		i = adapter->num_rx_desc - 1;
3541 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3542 }
3543 
3544 static void
3545 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3546 	  struct mbuf *mp)
3547 {
3548 	/* 82543 or newer only */
3549 	if (adapter->hw.mac.type < e1000_82543 ||
3550 	    /* Ignore Checksum bit is set */
3551 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3552 		return;
3553 
3554 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3555 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3556 		/* IP Checksum Good */
3557 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3558 	}
3559 
3560 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3561 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3562 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3563 					   CSUM_PSEUDO_HDR |
3564 					   CSUM_FRAG_NOT_CHECKED;
3565 		mp->m_pkthdr.csum_data = htons(0xffff);
3566 	}
3567 }
3568 
3569 static void
3570 em_enable_intr(struct adapter *adapter)
3571 {
3572 	uint32_t ims_mask = IMS_ENABLE_MASK;
3573 
3574 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3575 
3576 #if 0
3577 	/* XXX MSIX */
3578 	if (adapter->hw.mac.type == e1000_82574) {
3579 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3580 		ims_mask |= EM_MSIX_MASK;
3581         }
3582 #endif
3583 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3584 }
3585 
3586 static void
3587 em_disable_intr(struct adapter *adapter)
3588 {
3589 	uint32_t clear = 0xffffffff;
3590 
3591 	/*
3592 	 * The first version of 82542 had an errata where when link was forced
3593 	 * it would stay up even up even if the cable was disconnected.
3594 	 * Sequence errors were used to detect the disconnect and then the
3595 	 * driver would unforce the link.  This code in the in the ISR.  For
3596 	 * this to work correctly the Sequence error interrupt had to be
3597 	 * enabled all the time.
3598 	 */
3599 	if (adapter->hw.mac.type == e1000_82542 &&
3600 	    adapter->hw.revision_id == E1000_REVISION_2)
3601 		clear &= ~E1000_ICR_RXSEQ;
3602 	else if (adapter->hw.mac.type == e1000_82574)
3603 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3604 
3605 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3606 
3607 	adapter->npoll.ifpc_stcount = 0;
3608 
3609 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3610 }
3611 
3612 /*
3613  * Bit of a misnomer, what this really means is
3614  * to enable OS management of the system... aka
3615  * to disable special hardware management features
3616  */
3617 static void
3618 em_get_mgmt(struct adapter *adapter)
3619 {
3620 	/* A shared code workaround */
3621 #define E1000_82542_MANC2H E1000_MANC2H
3622 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3623 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3624 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3625 
3626 		/* disable hardware interception of ARP */
3627 		manc &= ~(E1000_MANC_ARP_EN);
3628 
3629                 /* enable receiving management packets to the host */
3630                 if (adapter->hw.mac.type >= e1000_82571) {
3631 			manc |= E1000_MANC_EN_MNG2HOST;
3632 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3633 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3634 			manc2h |= E1000_MNG2HOST_PORT_623;
3635 			manc2h |= E1000_MNG2HOST_PORT_664;
3636 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3637 		}
3638 
3639 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3640 	}
3641 }
3642 
3643 /*
3644  * Give control back to hardware management
3645  * controller if there is one.
3646  */
3647 static void
3648 em_rel_mgmt(struct adapter *adapter)
3649 {
3650 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3651 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3652 
3653 		/* re-enable hardware interception of ARP */
3654 		manc |= E1000_MANC_ARP_EN;
3655 
3656 		if (adapter->hw.mac.type >= e1000_82571)
3657 			manc &= ~E1000_MANC_EN_MNG2HOST;
3658 
3659 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3660 	}
3661 }
3662 
3663 /*
3664  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3665  * For ASF and Pass Through versions of f/w this means that
3666  * the driver is loaded.  For AMT version (only with 82573)
3667  * of the f/w this means that the network i/f is open.
3668  */
3669 static void
3670 em_get_hw_control(struct adapter *adapter)
3671 {
3672 	/* Let firmware know the driver has taken over */
3673 	if (adapter->hw.mac.type == e1000_82573) {
3674 		uint32_t swsm;
3675 
3676 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3677 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3678 		    swsm | E1000_SWSM_DRV_LOAD);
3679 	} else {
3680 		uint32_t ctrl_ext;
3681 
3682 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3683 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3684 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3685 	}
3686 	adapter->flags |= EM_FLAG_HW_CTRL;
3687 }
3688 
3689 /*
3690  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3691  * For ASF and Pass Through versions of f/w this means that the
3692  * driver is no longer loaded.  For AMT version (only with 82573)
3693  * of the f/w this means that the network i/f is closed.
3694  */
3695 static void
3696 em_rel_hw_control(struct adapter *adapter)
3697 {
3698 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3699 		return;
3700 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3701 
3702 	/* Let firmware taken over control of h/w */
3703 	if (adapter->hw.mac.type == e1000_82573) {
3704 		uint32_t swsm;
3705 
3706 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3707 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3708 		    swsm & ~E1000_SWSM_DRV_LOAD);
3709 	} else {
3710 		uint32_t ctrl_ext;
3711 
3712 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3713 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3714 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3715 	}
3716 }
3717 
3718 static int
3719 em_is_valid_eaddr(const uint8_t *addr)
3720 {
3721 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3722 
3723 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3724 		return (FALSE);
3725 
3726 	return (TRUE);
3727 }
3728 
3729 /*
3730  * Enable PCI Wake On Lan capability
3731  */
3732 void
3733 em_enable_wol(device_t dev)
3734 {
3735 	uint16_t cap, status;
3736 	uint8_t id;
3737 
3738 	/* First find the capabilities pointer*/
3739 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3740 
3741 	/* Read the PM Capabilities */
3742 	id = pci_read_config(dev, cap, 1);
3743 	if (id != PCIY_PMG)     /* Something wrong */
3744 		return;
3745 
3746 	/*
3747 	 * OK, we have the power capabilities,
3748 	 * so now get the status register
3749 	 */
3750 	cap += PCIR_POWER_STATUS;
3751 	status = pci_read_config(dev, cap, 2);
3752 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3753 	pci_write_config(dev, cap, status, 2);
3754 }
3755 
3756 
3757 /*
3758  * 82544 Coexistence issue workaround.
3759  *    There are 2 issues.
3760  *       1. Transmit Hang issue.
3761  *    To detect this issue, following equation can be used...
3762  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3763  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3764  *
3765  *       2. DAC issue.
3766  *    To detect this issue, following equation can be used...
3767  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3768  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3769  *
3770  *    WORKAROUND:
3771  *	  Make sure we do not have ending address
3772  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3773  */
3774 static uint32_t
3775 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3776 {
3777 	uint32_t safe_terminator;
3778 
3779 	/*
3780 	 * Since issue is sensitive to length and address.
3781 	 * Let us first check the address...
3782 	 */
3783 	if (length <= 4) {
3784 		desc_array->descriptor[0].address = address;
3785 		desc_array->descriptor[0].length = length;
3786 		desc_array->elements = 1;
3787 		return (desc_array->elements);
3788 	}
3789 
3790 	safe_terminator =
3791 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3792 
3793 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3794 	if (safe_terminator == 0 ||
3795 	    (safe_terminator > 4 && safe_terminator < 9) ||
3796 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3797 		desc_array->descriptor[0].address = address;
3798 		desc_array->descriptor[0].length = length;
3799 		desc_array->elements = 1;
3800 		return (desc_array->elements);
3801 	}
3802 
3803 	desc_array->descriptor[0].address = address;
3804 	desc_array->descriptor[0].length = length - 4;
3805 	desc_array->descriptor[1].address = address + (length - 4);
3806 	desc_array->descriptor[1].length = 4;
3807 	desc_array->elements = 2;
3808 	return (desc_array->elements);
3809 }
3810 
3811 static void
3812 em_update_stats(struct adapter *adapter)
3813 {
3814 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3815 
3816 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3817 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3818 		adapter->stats.symerrs +=
3819 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3820 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3821 	}
3822 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3823 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3824 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3825 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3826 
3827 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3828 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3829 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3830 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3831 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3832 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3833 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3834 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3835 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3836 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3837 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3838 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3839 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3840 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3841 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3842 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3843 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3844 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3845 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3846 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3847 
3848 	/* For the 64-bit byte counters the low dword must be read first. */
3849 	/* Both registers clear on the read of the high dword */
3850 
3851 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3852 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3853 
3854 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3855 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3856 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3857 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3858 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3859 
3860 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3861 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3862 
3863 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3864 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3865 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3866 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3867 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3868 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3869 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3870 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3871 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3872 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3873 
3874 	if (adapter->hw.mac.type >= e1000_82543) {
3875 		adapter->stats.algnerrc +=
3876 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3877 		adapter->stats.rxerrc +=
3878 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3879 		adapter->stats.tncrs +=
3880 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3881 		adapter->stats.cexterr +=
3882 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3883 		adapter->stats.tsctc +=
3884 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3885 		adapter->stats.tsctfc +=
3886 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3887 	}
3888 
3889 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3890 
3891 	/* Rx Errors */
3892 	IFNET_STAT_SET(ifp, ierrors,
3893 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3894 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3895 	    adapter->stats.ruc + adapter->stats.roc +
3896 	    adapter->stats.mpc + adapter->stats.cexterr);
3897 
3898 	/* Tx Errors */
3899 	IFNET_STAT_SET(ifp, oerrors,
3900 	    adapter->stats.ecol + adapter->stats.latecol +
3901 	    adapter->watchdog_events);
3902 }
3903 
3904 static void
3905 em_print_debug_info(struct adapter *adapter)
3906 {
3907 	device_t dev = adapter->dev;
3908 	uint8_t *hw_addr = adapter->hw.hw_addr;
3909 
3910 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3911 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3912 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3913 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3914 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3915 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3916 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3917 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3918 	    adapter->hw.fc.high_water,
3919 	    adapter->hw.fc.low_water);
3920 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3921 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3922 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3923 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3924 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3925 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3926 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3927 	    (long long)adapter->tx_fifo_wrk_cnt,
3928 	    (long long)adapter->tx_fifo_reset_cnt);
3929 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3930 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3931 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3932 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3933 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3934 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3935 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3936 	    adapter->num_tx_desc_avail);
3937 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3938 	    adapter->no_tx_desc_avail1);
3939 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3940 	    adapter->no_tx_desc_avail2);
3941 	device_printf(dev, "Std mbuf failed = %ld\n",
3942 	    adapter->mbuf_alloc_failed);
3943 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3944 	    adapter->mbuf_cluster_failed);
3945 	device_printf(dev, "Driver dropped packets = %ld\n",
3946 	    adapter->dropped_pkts);
3947 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3948 	    adapter->no_tx_dma_setup);
3949 }
3950 
3951 static void
3952 em_print_hw_stats(struct adapter *adapter)
3953 {
3954 	device_t dev = adapter->dev;
3955 
3956 	device_printf(dev, "Excessive collisions = %lld\n",
3957 	    (long long)adapter->stats.ecol);
3958 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3959 	device_printf(dev, "Symbol errors = %lld\n",
3960 	    (long long)adapter->stats.symerrs);
3961 #endif
3962 	device_printf(dev, "Sequence errors = %lld\n",
3963 	    (long long)adapter->stats.sec);
3964 	device_printf(dev, "Defer count = %lld\n",
3965 	    (long long)adapter->stats.dc);
3966 	device_printf(dev, "Missed Packets = %lld\n",
3967 	    (long long)adapter->stats.mpc);
3968 	device_printf(dev, "Receive No Buffers = %lld\n",
3969 	    (long long)adapter->stats.rnbc);
3970 	/* RLEC is inaccurate on some hardware, calculate our own. */
3971 	device_printf(dev, "Receive Length Errors = %lld\n",
3972 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3973 	device_printf(dev, "Receive errors = %lld\n",
3974 	    (long long)adapter->stats.rxerrc);
3975 	device_printf(dev, "Crc errors = %lld\n",
3976 	    (long long)adapter->stats.crcerrs);
3977 	device_printf(dev, "Alignment errors = %lld\n",
3978 	    (long long)adapter->stats.algnerrc);
3979 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3980 	    (long long)adapter->stats.cexterr);
3981 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3982 	device_printf(dev, "watchdog timeouts = %ld\n",
3983 	    adapter->watchdog_events);
3984 	device_printf(dev, "XON Rcvd = %lld\n",
3985 	    (long long)adapter->stats.xonrxc);
3986 	device_printf(dev, "XON Xmtd = %lld\n",
3987 	    (long long)adapter->stats.xontxc);
3988 	device_printf(dev, "XOFF Rcvd = %lld\n",
3989 	    (long long)adapter->stats.xoffrxc);
3990 	device_printf(dev, "XOFF Xmtd = %lld\n",
3991 	    (long long)adapter->stats.xofftxc);
3992 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3993 	    (long long)adapter->stats.gprc);
3994 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3995 	    (long long)adapter->stats.gptc);
3996 }
3997 
3998 static void
3999 em_print_nvm_info(struct adapter *adapter)
4000 {
4001 	uint16_t eeprom_data;
4002 	int i, j, row = 0;
4003 
4004 	/* Its a bit crude, but it gets the job done */
4005 	kprintf("\nInterface EEPROM Dump:\n");
4006 	kprintf("Offset\n0x0000  ");
4007 	for (i = 0, j = 0; i < 32; i++, j++) {
4008 		if (j == 8) { /* Make the offset block */
4009 			j = 0; ++row;
4010 			kprintf("\n0x00%x0  ",row);
4011 		}
4012 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4013 		kprintf("%04x ", eeprom_data);
4014 	}
4015 	kprintf("\n");
4016 }
4017 
4018 static int
4019 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4020 {
4021 	struct adapter *adapter;
4022 	struct ifnet *ifp;
4023 	int error, result;
4024 
4025 	result = -1;
4026 	error = sysctl_handle_int(oidp, &result, 0, req);
4027 	if (error || !req->newptr)
4028 		return (error);
4029 
4030 	adapter = (struct adapter *)arg1;
4031 	ifp = &adapter->arpcom.ac_if;
4032 
4033 	lwkt_serialize_enter(ifp->if_serializer);
4034 
4035 	if (result == 1)
4036 		em_print_debug_info(adapter);
4037 
4038 	/*
4039 	 * This value will cause a hex dump of the
4040 	 * first 32 16-bit words of the EEPROM to
4041 	 * the screen.
4042 	 */
4043 	if (result == 2)
4044 		em_print_nvm_info(adapter);
4045 
4046 	lwkt_serialize_exit(ifp->if_serializer);
4047 
4048 	return (error);
4049 }
4050 
4051 static int
4052 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4053 {
4054 	int error, result;
4055 
4056 	result = -1;
4057 	error = sysctl_handle_int(oidp, &result, 0, req);
4058 	if (error || !req->newptr)
4059 		return (error);
4060 
4061 	if (result == 1) {
4062 		struct adapter *adapter = (struct adapter *)arg1;
4063 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4064 
4065 		lwkt_serialize_enter(ifp->if_serializer);
4066 		em_print_hw_stats(adapter);
4067 		lwkt_serialize_exit(ifp->if_serializer);
4068 	}
4069 	return (error);
4070 }
4071 
4072 static void
4073 em_add_sysctl(struct adapter *adapter)
4074 {
4075 	struct sysctl_ctx_list *ctx;
4076 	struct sysctl_oid *tree;
4077 
4078 	ctx = device_get_sysctl_ctx(adapter->dev);
4079 	tree = device_get_sysctl_tree(adapter->dev);
4080 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4081 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4082 	    em_sysctl_debug_info, "I", "Debug Information");
4083 
4084 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4085 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4086 	    em_sysctl_stats, "I", "Statistics");
4087 
4088 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4089 	    OID_AUTO, "rxd", CTLFLAG_RD,
4090 	    &adapter->num_rx_desc, 0, NULL);
4091 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4092 	    OID_AUTO, "txd", CTLFLAG_RD,
4093 	    &adapter->num_tx_desc, 0, NULL);
4094 
4095 	if (adapter->hw.mac.type >= e1000_82540) {
4096 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4097 		    OID_AUTO, "int_throttle_ceil",
4098 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4099 		    em_sysctl_int_throttle, "I",
4100 		    "interrupt throttling rate");
4101 	}
4102 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4103 	    OID_AUTO, "int_tx_nsegs",
4104 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4105 	    em_sysctl_int_tx_nsegs, "I",
4106 	    "# segments per TX interrupt");
4107 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4108 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4109 	    &adapter->tx_wreg_nsegs, 0,
4110 	    "# segments before write to hardware register");
4111 }
4112 
4113 static int
4114 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4115 {
4116 	struct adapter *adapter = (void *)arg1;
4117 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4118 	int error, throttle;
4119 
4120 	throttle = adapter->int_throttle_ceil;
4121 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4122 	if (error || req->newptr == NULL)
4123 		return error;
4124 	if (throttle < 0 || throttle > 1000000000 / 256)
4125 		return EINVAL;
4126 
4127 	if (throttle) {
4128 		/*
4129 		 * Set the interrupt throttling rate in 256ns increments,
4130 		 * recalculate sysctl value assignment to get exact frequency.
4131 		 */
4132 		throttle = 1000000000 / 256 / throttle;
4133 
4134 		/* Upper 16bits of ITR is reserved and should be zero */
4135 		if (throttle & 0xffff0000)
4136 			return EINVAL;
4137 	}
4138 
4139 	lwkt_serialize_enter(ifp->if_serializer);
4140 
4141 	if (throttle)
4142 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4143 	else
4144 		adapter->int_throttle_ceil = 0;
4145 
4146 	if (ifp->if_flags & IFF_RUNNING)
4147 		em_set_itr(adapter, throttle);
4148 
4149 	lwkt_serialize_exit(ifp->if_serializer);
4150 
4151 	if (bootverbose) {
4152 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4153 			  adapter->int_throttle_ceil);
4154 	}
4155 	return 0;
4156 }
4157 
4158 static int
4159 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4160 {
4161 	struct adapter *adapter = (void *)arg1;
4162 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4163 	int error, segs;
4164 
4165 	segs = adapter->tx_int_nsegs;
4166 	error = sysctl_handle_int(oidp, &segs, 0, req);
4167 	if (error || req->newptr == NULL)
4168 		return error;
4169 	if (segs <= 0)
4170 		return EINVAL;
4171 
4172 	lwkt_serialize_enter(ifp->if_serializer);
4173 
4174 	/*
4175 	 * Don't allow int_tx_nsegs to become:
4176 	 * o  Less the oact_tx_desc
4177 	 * o  Too large that no TX desc will cause TX interrupt to
4178 	 *    be generated (OACTIVE will never recover)
4179 	 * o  Too small that will cause tx_dd[] overflow
4180 	 */
4181 	if (segs < adapter->oact_tx_desc ||
4182 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4183 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4184 		error = EINVAL;
4185 	} else {
4186 		error = 0;
4187 		adapter->tx_int_nsegs = segs;
4188 	}
4189 
4190 	lwkt_serialize_exit(ifp->if_serializer);
4191 
4192 	return error;
4193 }
4194 
4195 static void
4196 em_set_itr(struct adapter *adapter, uint32_t itr)
4197 {
4198 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4199 	if (adapter->hw.mac.type == e1000_82574) {
4200 		int i;
4201 
4202 		/*
4203 		 * When using MSIX interrupts we need to
4204 		 * throttle using the EITR register
4205 		 */
4206 		for (i = 0; i < 4; ++i) {
4207 			E1000_WRITE_REG(&adapter->hw,
4208 			    E1000_EITR_82574(i), itr);
4209 		}
4210 	}
4211 }
4212 
4213 static void
4214 em_disable_aspm(struct adapter *adapter)
4215 {
4216 	uint16_t link_cap, link_ctrl, disable;
4217 	uint8_t pcie_ptr, reg;
4218 	device_t dev = adapter->dev;
4219 
4220 	switch (adapter->hw.mac.type) {
4221 	case e1000_82571:
4222 	case e1000_82572:
4223 	case e1000_82573:
4224 		/*
4225 		 * 82573 specification update
4226 		 * errata #8 disable L0s
4227 		 * errata #41 disable L1
4228 		 *
4229 		 * 82571/82572 specification update
4230 		 # errata #13 disable L1
4231 		 * errata #68 disable L0s
4232 		 */
4233 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4234 		break;
4235 
4236 	case e1000_82574:
4237 	case e1000_82583:
4238 		/*
4239 		 * 82574 specification update errata #20
4240 		 * 82583 specification update errata #9
4241 		 *
4242 		 * There is no need to disable L1
4243 		 */
4244 		disable = PCIEM_LNKCTL_ASPM_L0S;
4245 		break;
4246 
4247 	default:
4248 		return;
4249 	}
4250 
4251 	pcie_ptr = pci_get_pciecap_ptr(dev);
4252 	if (pcie_ptr == 0)
4253 		return;
4254 
4255 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4256 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4257 		return;
4258 
4259 	if (bootverbose) {
4260 		if_printf(&adapter->arpcom.ac_if,
4261 		    "disable ASPM %#02x\n", disable);
4262 	}
4263 
4264 	reg = pcie_ptr + PCIER_LINKCTRL;
4265 	link_ctrl = pci_read_config(dev, reg, 2);
4266 	link_ctrl &= ~disable;
4267 	pci_write_config(dev, reg, link_ctrl, 2);
4268 }
4269 
4270 static int
4271 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4272 {
4273 	int iphlen, hoff, thoff, ex = 0;
4274 	struct mbuf *m;
4275 	struct ip *ip;
4276 
4277 	m = *mp;
4278 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4279 
4280 	iphlen = m->m_pkthdr.csum_iphlen;
4281 	thoff = m->m_pkthdr.csum_thlen;
4282 	hoff = m->m_pkthdr.csum_lhlen;
4283 
4284 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4285 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4286 	KASSERT(hoff > 0, ("invalid ether hlen"));
4287 
4288 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4289 		ex = 4;
4290 
4291 	if (m->m_len < hoff + iphlen + thoff + ex) {
4292 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4293 		if (m == NULL) {
4294 			*mp = NULL;
4295 			return ENOBUFS;
4296 		}
4297 		*mp = m;
4298 	}
4299 	ip = mtodoff(m, struct ip *, hoff);
4300 	ip->ip_len = 0;
4301 
4302 	return 0;
4303 }
4304 
4305 static int
4306 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4307     uint32_t *txd_upper, uint32_t *txd_lower)
4308 {
4309 	struct e1000_context_desc *TXD;
4310 	int hoff, iphlen, thoff, hlen;
4311 	int mss, pktlen, curr_txd;
4312 
4313 	iphlen = mp->m_pkthdr.csum_iphlen;
4314 	thoff = mp->m_pkthdr.csum_thlen;
4315 	hoff = mp->m_pkthdr.csum_lhlen;
4316 	mss = mp->m_pkthdr.tso_segsz;
4317 	pktlen = mp->m_pkthdr.len;
4318 
4319 	if (adapter->csum_flags == CSUM_TSO &&
4320 	    adapter->csum_iphlen == iphlen &&
4321 	    adapter->csum_lhlen == hoff &&
4322 	    adapter->csum_thlen == thoff &&
4323 	    adapter->csum_mss == mss &&
4324 	    adapter->csum_pktlen == pktlen) {
4325 		*txd_upper = adapter->csum_txd_upper;
4326 		*txd_lower = adapter->csum_txd_lower;
4327 		return 0;
4328 	}
4329 	hlen = hoff + iphlen + thoff;
4330 
4331 	/*
4332 	 * Setup a new TSO context.
4333 	 */
4334 
4335 	curr_txd = adapter->next_avail_tx_desc;
4336 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4337 
4338 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4339 		     E1000_TXD_DTYP_D |		/* Data descr type */
4340 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4341 
4342 	/* IP and/or TCP header checksum calculation and insertion. */
4343 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4344 
4345 	/*
4346 	 * Start offset for header checksum calculation.
4347 	 * End offset for header checksum calculation.
4348 	 * Offset of place put the checksum.
4349 	 */
4350 	TXD->lower_setup.ip_fields.ipcss = hoff;
4351 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4352 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4353 
4354 	/*
4355 	 * Start offset for payload checksum calculation.
4356 	 * End offset for payload checksum calculation.
4357 	 * Offset of place to put the checksum.
4358 	 */
4359 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4360 	TXD->upper_setup.tcp_fields.tucse = 0;
4361 	TXD->upper_setup.tcp_fields.tucso =
4362 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4363 
4364 	/*
4365 	 * Payload size per packet w/o any headers.
4366 	 * Length of all headers up to payload.
4367 	 */
4368 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4369 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4370 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4371 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4372 				E1000_TXD_CMD_TSE |	/* TSE context */
4373 				E1000_TXD_CMD_IP |	/* Do IP csum */
4374 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4375 				(pktlen - hlen));	/* Total len */
4376 
4377 	/* Save the information for this TSO context */
4378 	adapter->csum_flags = CSUM_TSO;
4379 	adapter->csum_lhlen = hoff;
4380 	adapter->csum_iphlen = iphlen;
4381 	adapter->csum_thlen = thoff;
4382 	adapter->csum_mss = mss;
4383 	adapter->csum_pktlen = pktlen;
4384 	adapter->csum_txd_upper = *txd_upper;
4385 	adapter->csum_txd_lower = *txd_lower;
4386 
4387 	if (++curr_txd == adapter->num_tx_desc)
4388 		curr_txd = 0;
4389 
4390 	KKASSERT(adapter->num_tx_desc_avail > 0);
4391 	adapter->num_tx_desc_avail--;
4392 
4393 	adapter->next_avail_tx_desc = curr_txd;
4394 	return 1;
4395 }
4396