xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 36a3d1d6)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.80 2008/09/17 08:51:29 sephe Exp $
67  */
68 /*
69  * SERIALIZATION API RULES:
70  *
71  * - If the driver uses the same serializer for the interrupt as for the
72  *   ifnet, most of the serialization will be done automatically for the
73  *   driver.
74  *
75  * - ifmedia entry points will be serialized by the ifmedia code using the
76  *   ifnet serializer.
77  *
78  * - if_* entry points except for if_input will be serialized by the IF
79  *   and protocol layers.
80  *
81  * - The device driver must be sure to serialize access from timeout code
82  *   installed by the device driver.
83  *
84  * - The device driver typically holds the serializer at the time it wishes
85  *   to call if_input.
86  *
87  * - We must call lwkt_serialize_handler_enable() prior to enabling the
88  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
89  *   the hardware interrupt in order to avoid handler execution races from
90  *   scheduled interrupt threads.
91  *
92  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
93  *   the device driver may be holding a serializer at the time it calls
94  *   if_input even if it is not serializer-aware.
95  */
96 
97 #include "opt_polling.h"
98 
99 #include <sys/param.h>
100 #include <sys/bus.h>
101 #include <sys/endian.h>
102 #include <sys/interrupt.h>
103 #include <sys/kernel.h>
104 #include <sys/ktr.h>
105 #include <sys/malloc.h>
106 #include <sys/mbuf.h>
107 #include <sys/proc.h>
108 #include <sys/rman.h>
109 #include <sys/serialize.h>
110 #include <sys/socket.h>
111 #include <sys/sockio.h>
112 #include <sys/sysctl.h>
113 #include <sys/systm.h>
114 
115 #include <net/bpf.h>
116 #include <net/ethernet.h>
117 #include <net/if.h>
118 #include <net/if_arp.h>
119 #include <net/if_dl.h>
120 #include <net/if_media.h>
121 #include <net/ifq_var.h>
122 #include <net/vlan/if_vlan_var.h>
123 #include <net/vlan/if_vlan_ether.h>
124 
125 #include <netinet/in_systm.h>
126 #include <netinet/in.h>
127 #include <netinet/ip.h>
128 #include <netinet/tcp.h>
129 #include <netinet/udp.h>
130 
131 #include <bus/pci/pcivar.h>
132 #include <bus/pci/pcireg.h>
133 
134 #include <dev/netif/ig_hal/e1000_api.h>
135 #include <dev/netif/ig_hal/e1000_82571.h>
136 #include <dev/netif/em/if_em.h>
137 
138 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
139 #define EM_VER	" 6.9.6"
140 
141 #define _EM_DEVICE(id, ret)	\
142 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
143 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
144 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
145 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
146 
147 static const struct em_vendor_info em_vendor_info_array[] = {
148 	EM_DEVICE(82540EM),
149 	EM_DEVICE(82540EM_LOM),
150 	EM_DEVICE(82540EP),
151 	EM_DEVICE(82540EP_LOM),
152 	EM_DEVICE(82540EP_LP),
153 
154 	EM_DEVICE(82541EI),
155 	EM_DEVICE(82541ER),
156 	EM_DEVICE(82541ER_LOM),
157 	EM_DEVICE(82541EI_MOBILE),
158 	EM_DEVICE(82541GI),
159 	EM_DEVICE(82541GI_LF),
160 	EM_DEVICE(82541GI_MOBILE),
161 
162 	EM_DEVICE(82542),
163 
164 	EM_DEVICE(82543GC_FIBER),
165 	EM_DEVICE(82543GC_COPPER),
166 
167 	EM_DEVICE(82544EI_COPPER),
168 	EM_DEVICE(82544EI_FIBER),
169 	EM_DEVICE(82544GC_COPPER),
170 	EM_DEVICE(82544GC_LOM),
171 
172 	EM_DEVICE(82545EM_COPPER),
173 	EM_DEVICE(82545EM_FIBER),
174 	EM_DEVICE(82545GM_COPPER),
175 	EM_DEVICE(82545GM_FIBER),
176 	EM_DEVICE(82545GM_SERDES),
177 
178 	EM_DEVICE(82546EB_COPPER),
179 	EM_DEVICE(82546EB_FIBER),
180 	EM_DEVICE(82546EB_QUAD_COPPER),
181 	EM_DEVICE(82546GB_COPPER),
182 	EM_DEVICE(82546GB_FIBER),
183 	EM_DEVICE(82546GB_SERDES),
184 	EM_DEVICE(82546GB_PCIE),
185 	EM_DEVICE(82546GB_QUAD_COPPER),
186 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
187 
188 	EM_DEVICE(82547EI),
189 	EM_DEVICE(82547EI_MOBILE),
190 	EM_DEVICE(82547GI),
191 
192 	EM_EMX_DEVICE(82571EB_COPPER),
193 	EM_EMX_DEVICE(82571EB_FIBER),
194 	EM_EMX_DEVICE(82571EB_SERDES),
195 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
196 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
198 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
199 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
200 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
201 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
202 
203 	EM_EMX_DEVICE(82572EI_COPPER),
204 	EM_EMX_DEVICE(82572EI_FIBER),
205 	EM_EMX_DEVICE(82572EI_SERDES),
206 	EM_EMX_DEVICE(82572EI),
207 
208 	EM_EMX_DEVICE(82573E),
209 	EM_EMX_DEVICE(82573E_IAMT),
210 	EM_EMX_DEVICE(82573L),
211 
212 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
213 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
214 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
215 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
216 
217 	EM_DEVICE(ICH8_IGP_M_AMT),
218 	EM_DEVICE(ICH8_IGP_AMT),
219 	EM_DEVICE(ICH8_IGP_C),
220 	EM_DEVICE(ICH8_IFE),
221 	EM_DEVICE(ICH8_IFE_GT),
222 	EM_DEVICE(ICH8_IFE_G),
223 	EM_DEVICE(ICH8_IGP_M),
224 
225 	EM_DEVICE(ICH9_IGP_M_AMT),
226 	EM_DEVICE(ICH9_IGP_AMT),
227 	EM_DEVICE(ICH9_IGP_C),
228 	EM_DEVICE(ICH9_IGP_M),
229 	EM_DEVICE(ICH9_IGP_M_V),
230 	EM_DEVICE(ICH9_IFE),
231 	EM_DEVICE(ICH9_IFE_GT),
232 	EM_DEVICE(ICH9_IFE_G),
233 	EM_DEVICE(ICH9_BM),
234 
235 	EM_EMX_DEVICE(82574L),
236 
237 	EM_DEVICE(ICH10_R_BM_LM),
238 	EM_DEVICE(ICH10_R_BM_LF),
239 	EM_DEVICE(ICH10_R_BM_V),
240 	EM_DEVICE(ICH10_D_BM_LM),
241 	EM_DEVICE(ICH10_D_BM_LF),
242 
243 	/* required last entry */
244 	EM_DEVICE_NULL
245 };
246 
247 static int	em_probe(device_t);
248 static int	em_attach(device_t);
249 static int	em_detach(device_t);
250 static int	em_shutdown(device_t);
251 static int	em_suspend(device_t);
252 static int	em_resume(device_t);
253 
254 static void	em_init(void *);
255 static void	em_stop(struct adapter *);
256 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
257 static void	em_start(struct ifnet *);
258 #ifdef DEVICE_POLLING
259 static void	em_poll(struct ifnet *, enum poll_cmd, int);
260 #endif
261 static void	em_watchdog(struct ifnet *);
262 static void	em_media_status(struct ifnet *, struct ifmediareq *);
263 static int	em_media_change(struct ifnet *);
264 static void	em_timer(void *);
265 
266 static void	em_intr(void *);
267 static void	em_rxeof(struct adapter *, int);
268 static void	em_txeof(struct adapter *);
269 static void	em_tx_collect(struct adapter *);
270 static void	em_tx_purge(struct adapter *);
271 static void	em_enable_intr(struct adapter *);
272 static void	em_disable_intr(struct adapter *);
273 
274 static int	em_dma_malloc(struct adapter *, bus_size_t,
275 		    struct em_dma_alloc *);
276 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
277 static void	em_init_tx_ring(struct adapter *);
278 static int	em_init_rx_ring(struct adapter *);
279 static int	em_create_tx_ring(struct adapter *);
280 static int	em_create_rx_ring(struct adapter *);
281 static void	em_destroy_tx_ring(struct adapter *, int);
282 static void	em_destroy_rx_ring(struct adapter *, int);
283 static int	em_newbuf(struct adapter *, int, int);
284 static int	em_encap(struct adapter *, struct mbuf **);
285 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
286 		    struct mbuf *);
287 static int	em_txcsum_pullup(struct adapter *, struct mbuf **);
288 static int	em_txcsum(struct adapter *, struct mbuf *,
289 		    uint32_t *, uint32_t *);
290 
291 static int	em_get_hw_info(struct adapter *);
292 static int 	em_is_valid_eaddr(const uint8_t *);
293 static int	em_alloc_pci_res(struct adapter *);
294 static void	em_free_pci_res(struct adapter *);
295 static int	em_hw_init(struct adapter *);
296 static void	em_setup_ifp(struct adapter *);
297 static void	em_init_tx_unit(struct adapter *);
298 static void	em_init_rx_unit(struct adapter *);
299 static void	em_update_stats(struct adapter *);
300 static void	em_set_promisc(struct adapter *);
301 static void	em_disable_promisc(struct adapter *);
302 static void	em_set_multi(struct adapter *);
303 static void	em_update_link_status(struct adapter *);
304 static void	em_smartspeed(struct adapter *);
305 
306 /* Hardware workarounds */
307 static int	em_82547_fifo_workaround(struct adapter *, int);
308 static void	em_82547_update_fifo_head(struct adapter *, int);
309 static int	em_82547_tx_fifo_reset(struct adapter *);
310 static void	em_82547_move_tail(void *);
311 static void	em_82547_move_tail_serialized(struct adapter *);
312 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
313 
314 static void	em_print_debug_info(struct adapter *);
315 static void	em_print_nvm_info(struct adapter *);
316 static void	em_print_hw_stats(struct adapter *);
317 
318 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
319 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
320 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
321 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
322 static void	em_add_sysctl(struct adapter *adapter);
323 
324 /* Management and WOL Support */
325 static void	em_get_mgmt(struct adapter *);
326 static void	em_rel_mgmt(struct adapter *);
327 static void	em_get_hw_control(struct adapter *);
328 static void	em_rel_hw_control(struct adapter *);
329 static void	em_enable_wol(device_t);
330 
331 static device_method_t em_methods[] = {
332 	/* Device interface */
333 	DEVMETHOD(device_probe,		em_probe),
334 	DEVMETHOD(device_attach,	em_attach),
335 	DEVMETHOD(device_detach,	em_detach),
336 	DEVMETHOD(device_shutdown,	em_shutdown),
337 	DEVMETHOD(device_suspend,	em_suspend),
338 	DEVMETHOD(device_resume,	em_resume),
339 	{ 0, 0 }
340 };
341 
342 static driver_t em_driver = {
343 	"em",
344 	em_methods,
345 	sizeof(struct adapter),
346 };
347 
348 static devclass_t em_devclass;
349 
350 DECLARE_DUMMY_MODULE(if_em);
351 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
352 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
353 
354 /*
355  * Tunables
356  */
357 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
358 static int	em_rxd = EM_DEFAULT_RXD;
359 static int	em_txd = EM_DEFAULT_TXD;
360 static int	em_smart_pwr_down = FALSE;
361 
362 /* Controls whether promiscuous also shows bad packets */
363 static int	em_debug_sbp = FALSE;
364 
365 static int	em_82573_workaround = TRUE;
366 
367 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
368 TUNABLE_INT("hw.em.rxd", &em_rxd);
369 TUNABLE_INT("hw.em.txd", &em_txd);
370 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
371 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
372 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
373 
374 /* Global used in WOL setup with multiport cards */
375 static int	em_global_quad_port_a = 0;
376 
377 /* Set this to one to display debug statistics */
378 static int	em_display_debug_stats = 0;
379 
380 #if !defined(KTR_IF_EM)
381 #define KTR_IF_EM	KTR_ALL
382 #endif
383 KTR_INFO_MASTER(if_em);
384 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
385 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
386 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
387 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
388 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
389 #define logif(name)	KTR_LOG(if_em_ ## name)
390 
391 static int
392 em_probe(device_t dev)
393 {
394 	const struct em_vendor_info *ent;
395 	uint16_t vid, did;
396 
397 	vid = pci_get_vendor(dev);
398 	did = pci_get_device(dev);
399 
400 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
401 		if (vid == ent->vendor_id && did == ent->device_id) {
402 			device_set_desc(dev, ent->desc);
403 			device_set_async_attach(dev, TRUE);
404 			return (ent->ret);
405 		}
406 	}
407 	return (ENXIO);
408 }
409 
410 static int
411 em_attach(device_t dev)
412 {
413 	struct adapter *adapter = device_get_softc(dev);
414 	struct ifnet *ifp = &adapter->arpcom.ac_if;
415 	int tsize, rsize;
416 	int error = 0;
417 	uint16_t eeprom_data, device_id;
418 
419 	adapter->dev = adapter->osdep.dev = dev;
420 
421 	callout_init(&adapter->timer);
422 	callout_init(&adapter->tx_fifo_timer);
423 
424 	/* Determine hardware and mac info */
425 	error = em_get_hw_info(adapter);
426 	if (error) {
427 		device_printf(dev, "Identify hardware failed\n");
428 		goto fail;
429 	}
430 
431 	/* Setup PCI resources */
432 	error = em_alloc_pci_res(adapter);
433 	if (error) {
434 		device_printf(dev, "Allocation of PCI resources failed\n");
435 		goto fail;
436 	}
437 
438 	/*
439 	 * For ICH8 and family we need to map the flash memory,
440 	 * and this must happen after the MAC is identified.
441 	 */
442 	if (adapter->hw.mac.type == e1000_ich8lan ||
443 	    adapter->hw.mac.type == e1000_ich10lan ||
444 	    adapter->hw.mac.type == e1000_ich9lan) {
445 		adapter->flash_rid = EM_BAR_FLASH;
446 
447 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
448 					&adapter->flash_rid, RF_ACTIVE);
449 		if (adapter->flash == NULL) {
450 			device_printf(dev, "Mapping of Flash failed\n");
451 			error = ENXIO;
452 			goto fail;
453 		}
454 		adapter->osdep.flash_bus_space_tag =
455 		    rman_get_bustag(adapter->flash);
456 		adapter->osdep.flash_bus_space_handle =
457 		    rman_get_bushandle(adapter->flash);
458 
459 		/*
460 		 * This is used in the shared code
461 		 * XXX this goof is actually not used.
462 		 */
463 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
464 	}
465 
466 	/* Do Shared Code initialization */
467 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
468 		device_printf(dev, "Setup of Shared code failed\n");
469 		error = ENXIO;
470 		goto fail;
471 	}
472 
473 	e1000_get_bus_info(&adapter->hw);
474 
475 	/*
476 	 * Validate number of transmit and receive descriptors.  It
477 	 * must not exceed hardware maximum, and must be multiple
478 	 * of E1000_DBA_ALIGN.
479 	 */
480 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
481 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
482 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
483 	    em_txd < EM_MIN_TXD) {
484 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
485 		    EM_DEFAULT_TXD, em_txd);
486 		adapter->num_tx_desc = EM_DEFAULT_TXD;
487 	} else {
488 		adapter->num_tx_desc = em_txd;
489 	}
490 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
491 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
492 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
493 	    em_rxd < EM_MIN_RXD) {
494 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
495 		    EM_DEFAULT_RXD, em_rxd);
496 		adapter->num_rx_desc = EM_DEFAULT_RXD;
497 	} else {
498 		adapter->num_rx_desc = em_rxd;
499 	}
500 
501 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
502 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
503 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
504 	adapter->rx_buffer_len = MCLBYTES;
505 
506 	/*
507 	 * Interrupt throttle rate
508 	 */
509 	if (em_int_throttle_ceil == 0) {
510 		adapter->int_throttle_ceil = 0;
511 	} else {
512 		int throttle = em_int_throttle_ceil;
513 
514 		if (throttle < 0)
515 			throttle = EM_DEFAULT_ITR;
516 
517 		/* Recalculate the tunable value to get the exact frequency. */
518 		throttle = 1000000000 / 256 / throttle;
519 
520 		/* Upper 16bits of ITR is reserved and should be zero */
521 		if (throttle & 0xffff0000)
522 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
523 
524 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
525 	}
526 
527 	e1000_init_script_state_82541(&adapter->hw, TRUE);
528 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
529 
530 	/* Copper options */
531 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
532 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
533 		adapter->hw.phy.disable_polarity_correction = FALSE;
534 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
535 	}
536 
537 	/* Set the frame limits assuming standard ethernet sized frames. */
538 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
539 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
540 
541 	/* This controls when hardware reports transmit completion status. */
542 	adapter->hw.mac.report_tx_early = 1;
543 
544 	/*
545 	 * Create top level busdma tag
546 	 */
547 	error = bus_dma_tag_create(NULL, 1, 0,
548 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
549 			NULL, NULL,
550 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
551 			0, &adapter->parent_dtag);
552 	if (error) {
553 		device_printf(dev, "could not create top level DMA tag\n");
554 		goto fail;
555 	}
556 
557 	/*
558 	 * Allocate Transmit Descriptor ring
559 	 */
560 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
561 			 EM_DBA_ALIGN);
562 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
563 	if (error) {
564 		device_printf(dev, "Unable to allocate tx_desc memory\n");
565 		goto fail;
566 	}
567 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
568 
569 	/*
570 	 * Allocate Receive Descriptor ring
571 	 */
572 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
573 			 EM_DBA_ALIGN);
574 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
575 	if (error) {
576 		device_printf(dev, "Unable to allocate rx_desc memory\n");
577 		goto fail;
578 	}
579 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
580 
581 	/* Make sure we have a good EEPROM before we read from it */
582 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
583 		/*
584 		 * Some PCI-E parts fail the first check due to
585 		 * the link being in sleep state, call it again,
586 		 * if it fails a second time its a real issue.
587 		 */
588 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
589 			device_printf(dev,
590 			    "The EEPROM Checksum Is Not Valid\n");
591 			error = EIO;
592 			goto fail;
593 		}
594 	}
595 
596 	/* Initialize the hardware */
597 	error = em_hw_init(adapter);
598 	if (error) {
599 		device_printf(dev, "Unable to initialize the hardware\n");
600 		goto fail;
601 	}
602 
603 	/* Copy the permanent MAC address out of the EEPROM */
604 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
605 		device_printf(dev, "EEPROM read error while reading MAC"
606 		    " address\n");
607 		error = EIO;
608 		goto fail;
609 	}
610 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
611 		device_printf(dev, "Invalid MAC address\n");
612 		error = EIO;
613 		goto fail;
614 	}
615 
616 	/* Allocate transmit descriptors and buffers */
617 	error = em_create_tx_ring(adapter);
618 	if (error) {
619 		device_printf(dev, "Could not setup transmit structures\n");
620 		goto fail;
621 	}
622 
623 	/* Allocate receive descriptors and buffers */
624 	error = em_create_rx_ring(adapter);
625 	if (error) {
626 		device_printf(dev, "Could not setup receive structures\n");
627 		goto fail;
628 	}
629 
630 	/* Manually turn off all interrupts */
631 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
632 
633 	/* Setup OS specific network interface */
634 	em_setup_ifp(adapter);
635 
636 	/* Add sysctl tree, must after em_setup_ifp() */
637 	em_add_sysctl(adapter);
638 
639 	/* Initialize statistics */
640 	em_update_stats(adapter);
641 
642 	adapter->hw.mac.get_link_status = 1;
643 	em_update_link_status(adapter);
644 
645 	/* Indicate SOL/IDER usage */
646 	if (e1000_check_reset_block(&adapter->hw)) {
647 		device_printf(dev,
648 		    "PHY reset is blocked due to SOL/IDER session.\n");
649 	}
650 
651 	/* Determine if we have to control management hardware */
652 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
653 
654 	/*
655 	 * Setup Wake-on-Lan
656 	 */
657 	switch (adapter->hw.mac.type) {
658 	case e1000_82542:
659 	case e1000_82543:
660 		break;
661 
662 	case e1000_82546:
663 	case e1000_82546_rev_3:
664 	case e1000_82571:
665 	case e1000_80003es2lan:
666 		if (adapter->hw.bus.func == 1) {
667 			e1000_read_nvm(&adapter->hw,
668 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
669 		} else {
670 			e1000_read_nvm(&adapter->hw,
671 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
672 		}
673 		eeprom_data &= EM_EEPROM_APME;
674 		break;
675 
676 	default:
677 		/* APME bit in EEPROM is mapped to WUC.APME */
678 		eeprom_data =
679 		    E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME;
680 		break;
681 	}
682 	if (eeprom_data)
683 		adapter->wol = E1000_WUFC_MAG;
684 	/*
685          * We have the eeprom settings, now apply the special cases
686          * where the eeprom may be wrong or the board won't support
687          * wake on lan on a particular port
688 	 */
689 	device_id = pci_get_device(dev);
690         switch (device_id) {
691 	case E1000_DEV_ID_82546GB_PCIE:
692 		adapter->wol = 0;
693 		break;
694 
695 	case E1000_DEV_ID_82546EB_FIBER:
696 	case E1000_DEV_ID_82546GB_FIBER:
697 	case E1000_DEV_ID_82571EB_FIBER:
698 		/*
699 		 * Wake events only supported on port A for dual fiber
700 		 * regardless of eeprom setting
701 		 */
702 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
703 		    E1000_STATUS_FUNC_1)
704 			adapter->wol = 0;
705 		break;
706 
707 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
708 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
709 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
710 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
711                 /* if quad port adapter, disable WoL on all but port A */
712 		if (em_global_quad_port_a != 0)
713 			adapter->wol = 0;
714 		/* Reset for multiple quad port adapters */
715 		if (++em_global_quad_port_a == 4)
716 			em_global_quad_port_a = 0;
717                 break;
718 	}
719 
720 	/* XXX disable wol */
721 	adapter->wol = 0;
722 
723 	/* Do we need workaround for 82544 PCI-X adapter? */
724 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
725 	    adapter->hw.mac.type == e1000_82544)
726 		adapter->pcix_82544 = TRUE;
727 	else
728 		adapter->pcix_82544 = FALSE;
729 
730 	if (adapter->pcix_82544) {
731 		/*
732 		 * 82544 on PCI-X may split one TX segment
733 		 * into two TX descs, so we double its number
734 		 * of spare TX desc here.
735 		 */
736 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
737 	} else {
738 		adapter->spare_tx_desc = EM_TX_SPARE;
739 	}
740 
741 	/*
742 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
743 	 * and tx_int_nsegs:
744 	 * (spare_tx_desc + EM_TX_RESERVED) <=
745 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
746 	 */
747 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
748 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
749 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
750 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
751 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
752 
753 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
754 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
755 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
756 
757 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
758 			       em_intr, adapter, &adapter->intr_tag,
759 			       ifp->if_serializer);
760 	if (error) {
761 		device_printf(dev, "Failed to register interrupt handler");
762 		ether_ifdetach(&adapter->arpcom.ac_if);
763 		goto fail;
764 	}
765 
766 	ifp->if_cpuid = ithread_cpuid(rman_get_start(adapter->intr_res));
767 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
768 	return (0);
769 fail:
770 	em_detach(dev);
771 	return (error);
772 }
773 
774 static int
775 em_detach(device_t dev)
776 {
777 	struct adapter *adapter = device_get_softc(dev);
778 
779 	if (device_is_attached(dev)) {
780 		struct ifnet *ifp = &adapter->arpcom.ac_if;
781 
782 		lwkt_serialize_enter(ifp->if_serializer);
783 
784 		em_stop(adapter);
785 
786 		e1000_phy_hw_reset(&adapter->hw);
787 
788 		em_rel_mgmt(adapter);
789 
790 		if ((adapter->hw.mac.type == e1000_82573 ||
791 		     adapter->hw.mac.type == e1000_ich8lan ||
792 		     adapter->hw.mac.type == e1000_ich10lan ||
793 		     adapter->hw.mac.type == e1000_ich9lan) &&
794 		    e1000_check_mng_mode(&adapter->hw))
795 			em_rel_hw_control(adapter);
796 
797 		if (adapter->wol) {
798 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
799 					E1000_WUC_PME_EN);
800 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
801 			em_enable_wol(dev);
802 		}
803 
804 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
805 
806 		lwkt_serialize_exit(ifp->if_serializer);
807 
808 		ether_ifdetach(ifp);
809 	}
810 	bus_generic_detach(dev);
811 
812 	em_free_pci_res(adapter);
813 
814 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
815 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
816 
817 	/* Free Transmit Descriptor ring */
818 	if (adapter->tx_desc_base)
819 		em_dma_free(adapter, &adapter->txdma);
820 
821 	/* Free Receive Descriptor ring */
822 	if (adapter->rx_desc_base)
823 		em_dma_free(adapter, &adapter->rxdma);
824 
825 	/* Free top level busdma tag */
826 	if (adapter->parent_dtag != NULL)
827 		bus_dma_tag_destroy(adapter->parent_dtag);
828 
829 	/* Free sysctl tree */
830 	if (adapter->sysctl_tree != NULL)
831 		sysctl_ctx_free(&adapter->sysctl_ctx);
832 
833 	return (0);
834 }
835 
836 static int
837 em_shutdown(device_t dev)
838 {
839 	return em_suspend(dev);
840 }
841 
842 static int
843 em_suspend(device_t dev)
844 {
845 	struct adapter *adapter = device_get_softc(dev);
846 	struct ifnet *ifp = &adapter->arpcom.ac_if;
847 
848 	lwkt_serialize_enter(ifp->if_serializer);
849 
850 	em_stop(adapter);
851 
852 	em_rel_mgmt(adapter);
853 
854         if ((adapter->hw.mac.type == e1000_82573 ||
855              adapter->hw.mac.type == e1000_ich8lan ||
856              adapter->hw.mac.type == e1000_ich10lan ||
857              adapter->hw.mac.type == e1000_ich9lan) &&
858             e1000_check_mng_mode(&adapter->hw))
859                 em_rel_hw_control(adapter);
860 
861         if (adapter->wol) {
862 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
863 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
864 		em_enable_wol(dev);
865         }
866 
867 	lwkt_serialize_exit(ifp->if_serializer);
868 
869 	return bus_generic_suspend(dev);
870 }
871 
872 static int
873 em_resume(device_t dev)
874 {
875 	struct adapter *adapter = device_get_softc(dev);
876 	struct ifnet *ifp = &adapter->arpcom.ac_if;
877 
878 	lwkt_serialize_enter(ifp->if_serializer);
879 
880 	em_init(adapter);
881 	em_get_mgmt(adapter);
882 	if_devstart(ifp);
883 
884 	lwkt_serialize_exit(ifp->if_serializer);
885 
886 	return bus_generic_resume(dev);
887 }
888 
889 static void
890 em_start(struct ifnet *ifp)
891 {
892 	struct adapter *adapter = ifp->if_softc;
893 	struct mbuf *m_head;
894 
895 	ASSERT_SERIALIZED(ifp->if_serializer);
896 
897 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
898 		return;
899 
900 	if (!adapter->link_active) {
901 		ifq_purge(&ifp->if_snd);
902 		return;
903 	}
904 
905 	while (!ifq_is_empty(&ifp->if_snd)) {
906 		/* Now do we at least have a minimal? */
907 		if (EM_IS_OACTIVE(adapter)) {
908 			em_tx_collect(adapter);
909 			if (EM_IS_OACTIVE(adapter)) {
910 				ifp->if_flags |= IFF_OACTIVE;
911 				adapter->no_tx_desc_avail1++;
912 				break;
913 			}
914 		}
915 
916 		logif(pkt_txqueue);
917 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
918 		if (m_head == NULL)
919 			break;
920 
921 		if (em_encap(adapter, &m_head)) {
922 			ifp->if_oerrors++;
923 			em_tx_collect(adapter);
924 			continue;
925 		}
926 
927 		/* Send a copy of the frame to the BPF listener */
928 		ETHER_BPF_MTAP(ifp, m_head);
929 
930 		/* Set timeout in case hardware has problems transmitting. */
931 		ifp->if_timer = EM_TX_TIMEOUT;
932 	}
933 }
934 
935 static int
936 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
937 {
938 	struct adapter *adapter = ifp->if_softc;
939 	struct ifreq *ifr = (struct ifreq *)data;
940 	uint16_t eeprom_data = 0;
941 	int max_frame_size, mask, reinit;
942 	int error = 0;
943 
944 	ASSERT_SERIALIZED(ifp->if_serializer);
945 
946 	switch (command) {
947 	case SIOCSIFMTU:
948 		switch (adapter->hw.mac.type) {
949 		case e1000_82573:
950 			/*
951 			 * 82573 only supports jumbo frames
952 			 * if ASPM is disabled.
953 			 */
954 			e1000_read_nvm(&adapter->hw,
955 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
956 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
957 				max_frame_size = ETHER_MAX_LEN;
958 				break;
959 			}
960 			/* FALL THROUGH */
961 
962 		/* Limit Jumbo Frame size */
963 		case e1000_82571:
964 		case e1000_82572:
965 		case e1000_ich9lan:
966 		case e1000_ich10lan:
967 		case e1000_82574:
968 		case e1000_80003es2lan:
969 			max_frame_size = 9234;
970 			break;
971 
972 		/* Adapters that do not support jumbo frames */
973 		case e1000_82542:
974 		case e1000_ich8lan:
975 			max_frame_size = ETHER_MAX_LEN;
976 			break;
977 
978 		default:
979 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
980 			break;
981 		}
982 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
983 		    ETHER_CRC_LEN) {
984 			error = EINVAL;
985 			break;
986 		}
987 
988 		ifp->if_mtu = ifr->ifr_mtu;
989 		adapter->max_frame_size =
990 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
991 
992 		if (ifp->if_flags & IFF_RUNNING)
993 			em_init(adapter);
994 		break;
995 
996 	case SIOCSIFFLAGS:
997 		if (ifp->if_flags & IFF_UP) {
998 			if ((ifp->if_flags & IFF_RUNNING)) {
999 				if ((ifp->if_flags ^ adapter->if_flags) &
1000 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1001 					em_disable_promisc(adapter);
1002 					em_set_promisc(adapter);
1003 				}
1004 			} else {
1005 				em_init(adapter);
1006 			}
1007 		} else if (ifp->if_flags & IFF_RUNNING) {
1008 			em_stop(adapter);
1009 		}
1010 		adapter->if_flags = ifp->if_flags;
1011 		break;
1012 
1013 	case SIOCADDMULTI:
1014 	case SIOCDELMULTI:
1015 		if (ifp->if_flags & IFF_RUNNING) {
1016 			em_disable_intr(adapter);
1017 			em_set_multi(adapter);
1018 			if (adapter->hw.mac.type == e1000_82542 &&
1019 			    adapter->hw.revision_id == E1000_REVISION_2)
1020 				em_init_rx_unit(adapter);
1021 #ifdef DEVICE_POLLING
1022 			if (!(ifp->if_flags & IFF_POLLING))
1023 #endif
1024 				em_enable_intr(adapter);
1025 		}
1026 		break;
1027 
1028 	case SIOCSIFMEDIA:
1029 		/* Check SOL/IDER usage */
1030 		if (e1000_check_reset_block(&adapter->hw)) {
1031 			device_printf(adapter->dev, "Media change is"
1032 			    " blocked due to SOL/IDER session.\n");
1033 			break;
1034 		}
1035 		/* FALL THROUGH */
1036 
1037 	case SIOCGIFMEDIA:
1038 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1039 		break;
1040 
1041 	case SIOCSIFCAP:
1042 		reinit = 0;
1043 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1044 		if (mask & IFCAP_HWCSUM) {
1045 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1046 			reinit = 1;
1047 		}
1048 		if (mask & IFCAP_VLAN_HWTAGGING) {
1049 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1050 			reinit = 1;
1051 		}
1052 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1053 			em_init(adapter);
1054 		break;
1055 
1056 	default:
1057 		error = ether_ioctl(ifp, command, data);
1058 		break;
1059 	}
1060 	return (error);
1061 }
1062 
1063 static void
1064 em_watchdog(struct ifnet *ifp)
1065 {
1066 	struct adapter *adapter = ifp->if_softc;
1067 
1068 	ASSERT_SERIALIZED(ifp->if_serializer);
1069 
1070 	/*
1071 	 * The timer is set to 5 every time start queues a packet.
1072 	 * Then txeof keeps resetting it as long as it cleans at
1073 	 * least one descriptor.
1074 	 * Finally, anytime all descriptors are clean the timer is
1075 	 * set to 0.
1076 	 */
1077 
1078 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1079 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1080 		/*
1081 		 * If we reach here, all TX jobs are completed and
1082 		 * the TX engine should have been idled for some time.
1083 		 * We don't need to call if_devstart() here.
1084 		 */
1085 		ifp->if_flags &= ~IFF_OACTIVE;
1086 		ifp->if_timer = 0;
1087 		return;
1088 	}
1089 
1090 	/*
1091 	 * If we are in this routine because of pause frames, then
1092 	 * don't reset the hardware.
1093 	 */
1094 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1095 	    E1000_STATUS_TXOFF) {
1096 		ifp->if_timer = EM_TX_TIMEOUT;
1097 		return;
1098 	}
1099 
1100 	if (e1000_check_for_link(&adapter->hw) == 0)
1101 		if_printf(ifp, "watchdog timeout -- resetting\n");
1102 
1103 	ifp->if_oerrors++;
1104 	adapter->watchdog_events++;
1105 
1106 	em_init(adapter);
1107 
1108 	if (!ifq_is_empty(&ifp->if_snd))
1109 		if_devstart(ifp);
1110 }
1111 
1112 static void
1113 em_init(void *xsc)
1114 {
1115 	struct adapter *adapter = xsc;
1116 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1117 	device_t dev = adapter->dev;
1118 	uint32_t pba;
1119 
1120 	ASSERT_SERIALIZED(ifp->if_serializer);
1121 
1122 	em_stop(adapter);
1123 
1124 	/*
1125 	 * Packet Buffer Allocation (PBA)
1126 	 * Writing PBA sets the receive portion of the buffer
1127 	 * the remainder is used for the transmit buffer.
1128 	 *
1129 	 * Devices before the 82547 had a Packet Buffer of 64K.
1130 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1131 	 * After the 82547 the buffer was reduced to 40K.
1132 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1133 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1134 	 */
1135 	switch (adapter->hw.mac.type) {
1136 	case e1000_82547:
1137 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1138 		if (adapter->max_frame_size > 8192)
1139 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1140 		else
1141 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1142 		adapter->tx_fifo_head = 0;
1143 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1144 		adapter->tx_fifo_size =
1145 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1146 		break;
1147 
1148 	/* Total Packet Buffer on these is 48K */
1149 	case e1000_82571:
1150 	case e1000_82572:
1151 	case e1000_80003es2lan:
1152 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1153 		break;
1154 
1155 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1156 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1157 		break;
1158 
1159 	case e1000_82574:
1160 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1161 		break;
1162 
1163 	case e1000_ich9lan:
1164 	case e1000_ich10lan:
1165 #define E1000_PBA_10K	0x000A
1166 		pba = E1000_PBA_10K;
1167 		break;
1168 
1169 	case e1000_ich8lan:
1170 		pba = E1000_PBA_8K;
1171 		break;
1172 
1173 	default:
1174 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1175 		if (adapter->max_frame_size > 8192)
1176 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1177 		else
1178 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1179 	}
1180 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1181 
1182 	/* Get the latest mac address, User can use a LAA */
1183         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1184 
1185 	/* Put the address into the Receive Address Array */
1186 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1187 
1188 	/*
1189 	 * With the 82571 adapter, RAR[0] may be overwritten
1190 	 * when the other port is reset, we make a duplicate
1191 	 * in RAR[14] for that eventuality, this assures
1192 	 * the interface continues to function.
1193 	 */
1194 	if (adapter->hw.mac.type == e1000_82571) {
1195 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1196 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1197 		    E1000_RAR_ENTRIES - 1);
1198 	}
1199 
1200 	/* Initialize the hardware */
1201 	if (em_hw_init(adapter)) {
1202 		device_printf(dev, "Unable to initialize the hardware\n");
1203 		/* XXX em_stop()? */
1204 		return;
1205 	}
1206 	em_update_link_status(adapter);
1207 
1208 	/* Setup VLAN support, basic and offload if available */
1209 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1210 
1211 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1212 		uint32_t ctrl;
1213 
1214 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1215 		ctrl |= E1000_CTRL_VME;
1216 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1217 	}
1218 
1219 	/* Set hardware offload abilities */
1220 	if (ifp->if_capenable & IFCAP_TXCSUM)
1221 		ifp->if_hwassist = EM_CSUM_FEATURES;
1222 	else
1223 		ifp->if_hwassist = 0;
1224 
1225 	/* Configure for OS presence */
1226 	em_get_mgmt(adapter);
1227 
1228 	/* Prepare transmit descriptors and buffers */
1229 	em_init_tx_ring(adapter);
1230 	em_init_tx_unit(adapter);
1231 
1232 	/* Setup Multicast table */
1233 	em_set_multi(adapter);
1234 
1235 	/* Prepare receive descriptors and buffers */
1236 	if (em_init_rx_ring(adapter)) {
1237 		device_printf(dev, "Could not setup receive structures\n");
1238 		em_stop(adapter);
1239 		return;
1240 	}
1241 	em_init_rx_unit(adapter);
1242 
1243 	/* Don't lose promiscuous settings */
1244 	em_set_promisc(adapter);
1245 
1246 	ifp->if_flags |= IFF_RUNNING;
1247 	ifp->if_flags &= ~IFF_OACTIVE;
1248 
1249 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1250 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1251 
1252 	/* MSI/X configuration for 82574 */
1253 	if (adapter->hw.mac.type == e1000_82574) {
1254 		int tmp;
1255 
1256 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1257 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1258 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1259 		/*
1260 		 * Set the IVAR - interrupt vector routing.
1261 		 * Each nibble represents a vector, high bit
1262 		 * is enable, other 3 bits are the MSIX table
1263 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1264 		 * Link (other) to 2, hence the magic number.
1265 		 */
1266 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1267 	}
1268 
1269 #ifdef DEVICE_POLLING
1270 	/*
1271 	 * Only enable interrupts if we are not polling, make sure
1272 	 * they are off otherwise.
1273 	 */
1274 	if (ifp->if_flags & IFF_POLLING)
1275 		em_disable_intr(adapter);
1276 	else
1277 #endif /* DEVICE_POLLING */
1278 		em_enable_intr(adapter);
1279 
1280 	/* Don't reset the phy next time init gets called */
1281 	adapter->hw.phy.reset_disable = TRUE;
1282 }
1283 
1284 #ifdef DEVICE_POLLING
1285 
1286 static void
1287 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1288 {
1289 	struct adapter *adapter = ifp->if_softc;
1290 	uint32_t reg_icr;
1291 
1292 	ASSERT_SERIALIZED(ifp->if_serializer);
1293 
1294 	switch (cmd) {
1295 	case POLL_REGISTER:
1296 		em_disable_intr(adapter);
1297 		break;
1298 
1299 	case POLL_DEREGISTER:
1300 		em_enable_intr(adapter);
1301 		break;
1302 
1303 	case POLL_AND_CHECK_STATUS:
1304 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1305 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1306 			callout_stop(&adapter->timer);
1307 			adapter->hw.mac.get_link_status = 1;
1308 			em_update_link_status(adapter);
1309 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1310 		}
1311 		/* FALL THROUGH */
1312 	case POLL_ONLY:
1313 		if (ifp->if_flags & IFF_RUNNING) {
1314 			em_rxeof(adapter, count);
1315 			em_txeof(adapter);
1316 
1317 			if (!ifq_is_empty(&ifp->if_snd))
1318 				if_devstart(ifp);
1319 		}
1320 		break;
1321 	}
1322 }
1323 
1324 #endif /* DEVICE_POLLING */
1325 
1326 static void
1327 em_intr(void *xsc)
1328 {
1329 	struct adapter *adapter = xsc;
1330 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1331 	uint32_t reg_icr;
1332 
1333 	logif(intr_beg);
1334 	ASSERT_SERIALIZED(ifp->if_serializer);
1335 
1336 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1337 
1338 	if ((adapter->hw.mac.type >= e1000_82571 &&
1339 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1340 	    reg_icr == 0) {
1341 		logif(intr_end);
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * XXX: some laptops trigger several spurious interrupts
1347 	 * on em(4) when in the resume cycle. The ICR register
1348 	 * reports all-ones value in this case. Processing such
1349 	 * interrupts would lead to a freeze. I don't know why.
1350 	 */
1351 	if (reg_icr == 0xffffffff) {
1352 		logif(intr_end);
1353 		return;
1354 	}
1355 
1356 	if (ifp->if_flags & IFF_RUNNING) {
1357 		if (reg_icr &
1358 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1359 			em_rxeof(adapter, -1);
1360 		if (reg_icr & E1000_ICR_TXDW) {
1361 			em_txeof(adapter);
1362 			if (!ifq_is_empty(&ifp->if_snd))
1363 				if_devstart(ifp);
1364 		}
1365 	}
1366 
1367 	/* Link status change */
1368 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1369 		callout_stop(&adapter->timer);
1370 		adapter->hw.mac.get_link_status = 1;
1371 		em_update_link_status(adapter);
1372 
1373 		/* Deal with TX cruft when link lost */
1374 		em_tx_purge(adapter);
1375 
1376 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1377 	}
1378 
1379 	if (reg_icr & E1000_ICR_RXO)
1380 		adapter->rx_overruns++;
1381 
1382 	logif(intr_end);
1383 }
1384 
1385 static void
1386 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1387 {
1388 	struct adapter *adapter = ifp->if_softc;
1389 	u_char fiber_type = IFM_1000_SX;
1390 
1391 	ASSERT_SERIALIZED(ifp->if_serializer);
1392 
1393 	em_update_link_status(adapter);
1394 
1395 	ifmr->ifm_status = IFM_AVALID;
1396 	ifmr->ifm_active = IFM_ETHER;
1397 
1398 	if (!adapter->link_active)
1399 		return;
1400 
1401 	ifmr->ifm_status |= IFM_ACTIVE;
1402 
1403 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1404 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1405 		if (adapter->hw.mac.type == e1000_82545)
1406 			fiber_type = IFM_1000_LX;
1407 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1408 	} else {
1409 		switch (adapter->link_speed) {
1410 		case 10:
1411 			ifmr->ifm_active |= IFM_10_T;
1412 			break;
1413 		case 100:
1414 			ifmr->ifm_active |= IFM_100_TX;
1415 			break;
1416 
1417 		case 1000:
1418 			ifmr->ifm_active |= IFM_1000_T;
1419 			break;
1420 		}
1421 		if (adapter->link_duplex == FULL_DUPLEX)
1422 			ifmr->ifm_active |= IFM_FDX;
1423 		else
1424 			ifmr->ifm_active |= IFM_HDX;
1425 	}
1426 }
1427 
1428 static int
1429 em_media_change(struct ifnet *ifp)
1430 {
1431 	struct adapter *adapter = ifp->if_softc;
1432 	struct ifmedia *ifm = &adapter->media;
1433 
1434 	ASSERT_SERIALIZED(ifp->if_serializer);
1435 
1436 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1437 		return (EINVAL);
1438 
1439 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1440 	case IFM_AUTO:
1441 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1442 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1443 		break;
1444 
1445 	case IFM_1000_LX:
1446 	case IFM_1000_SX:
1447 	case IFM_1000_T:
1448 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1449 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1450 		break;
1451 
1452 	case IFM_100_TX:
1453 		adapter->hw.mac.autoneg = FALSE;
1454 		adapter->hw.phy.autoneg_advertised = 0;
1455 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1456 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1457 		else
1458 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1459 		break;
1460 
1461 	case IFM_10_T:
1462 		adapter->hw.mac.autoneg = FALSE;
1463 		adapter->hw.phy.autoneg_advertised = 0;
1464 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1465 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1466 		else
1467 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1468 		break;
1469 
1470 	default:
1471 		if_printf(ifp, "Unsupported media type\n");
1472 		break;
1473 	}
1474 
1475 	/*
1476 	 * As the speed/duplex settings my have changed we need to
1477 	 * reset the PHY.
1478 	 */
1479 	adapter->hw.phy.reset_disable = FALSE;
1480 
1481 	em_init(adapter);
1482 
1483 	return (0);
1484 }
1485 
1486 static int
1487 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1488 {
1489 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1490 	bus_dmamap_t map;
1491 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1492 	struct e1000_tx_desc *ctxd = NULL;
1493 	struct mbuf *m_head = *m_headp;
1494 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1495 	int maxsegs, nsegs, i, j, first, last = 0, error;
1496 
1497 	if (m_head->m_len < EM_TXCSUM_MINHL &&
1498 	    (m_head->m_flags & EM_CSUM_FEATURES)) {
1499 		/*
1500 		 * Make sure that ethernet header and ip.ip_hl are in
1501 		 * contiguous memory, since if TXCSUM is enabled, later
1502 		 * TX context descriptor's setup need to access ip.ip_hl.
1503 		 */
1504 		error = em_txcsum_pullup(adapter, m_headp);
1505 		if (error) {
1506 			KKASSERT(*m_headp == NULL);
1507 			return error;
1508 		}
1509 		m_head = *m_headp;
1510 	}
1511 
1512 	txd_upper = txd_lower = 0;
1513 	txd_used = 0;
1514 
1515 	/*
1516 	 * Capture the first descriptor index, this descriptor
1517 	 * will have the index of the EOP which is the only one
1518 	 * that now gets a DONE bit writeback.
1519 	 */
1520 	first = adapter->next_avail_tx_desc;
1521 	tx_buffer = &adapter->tx_buffer_area[first];
1522 	tx_buffer_mapped = tx_buffer;
1523 	map = tx_buffer->map;
1524 
1525 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1526 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1527 		("not enough spare TX desc\n"));
1528 	if (adapter->pcix_82544) {
1529 		/* Half it; see the comment in em_attach() */
1530 		maxsegs >>= 1;
1531 	}
1532 	if (maxsegs > EM_MAX_SCATTER)
1533 		maxsegs = EM_MAX_SCATTER;
1534 
1535 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1536 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1537 	if (error) {
1538 		if (error == ENOBUFS)
1539 			adapter->mbuf_alloc_failed++;
1540 		else
1541 			adapter->no_tx_dma_setup++;
1542 
1543 		m_freem(*m_headp);
1544 		*m_headp = NULL;
1545 		return error;
1546 	}
1547         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1548 
1549 	m_head = *m_headp;
1550 	adapter->tx_nsegs += nsegs;
1551 
1552 	if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1553 		/* TX csum offloading will consume one TX desc */
1554 		adapter->tx_nsegs += em_txcsum(adapter, m_head,
1555 					       &txd_upper, &txd_lower);
1556 	}
1557 	i = adapter->next_avail_tx_desc;
1558 
1559 	/* Set up our transmit descriptors */
1560 	for (j = 0; j < nsegs; j++) {
1561 		/* If adapter is 82544 and on PCIX bus */
1562 		if(adapter->pcix_82544) {
1563 			DESC_ARRAY desc_array;
1564 			uint32_t array_elements, counter;
1565 
1566 			/*
1567 			 * Check the Address and Length combination and
1568 			 * split the data accordingly
1569 			 */
1570 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1571 						segs[j].ds_len, &desc_array);
1572 			for (counter = 0; counter < array_elements; counter++) {
1573 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1574 
1575 				tx_buffer = &adapter->tx_buffer_area[i];
1576 				ctxd = &adapter->tx_desc_base[i];
1577 
1578 				ctxd->buffer_addr = htole64(
1579 				    desc_array.descriptor[counter].address);
1580 				ctxd->lower.data = htole32(
1581 				    E1000_TXD_CMD_IFCS | txd_lower |
1582 				    desc_array.descriptor[counter].length);
1583 				ctxd->upper.data = htole32(txd_upper);
1584 
1585 				last = i;
1586 				if (++i == adapter->num_tx_desc)
1587 					i = 0;
1588 
1589 				txd_used++;
1590                         }
1591 		} else {
1592 			tx_buffer = &adapter->tx_buffer_area[i];
1593 			ctxd = &adapter->tx_desc_base[i];
1594 
1595 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1596 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1597 						   txd_lower | segs[j].ds_len);
1598 			ctxd->upper.data = htole32(txd_upper);
1599 
1600 			last = i;
1601 			if (++i == adapter->num_tx_desc)
1602 				i = 0;
1603 		}
1604 	}
1605 
1606 	adapter->next_avail_tx_desc = i;
1607 	if (adapter->pcix_82544) {
1608 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1609 		adapter->num_tx_desc_avail -= txd_used;
1610 	} else {
1611 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1612 		adapter->num_tx_desc_avail -= nsegs;
1613 	}
1614 
1615         /* Handle VLAN tag */
1616 	if (m_head->m_flags & M_VLANTAG) {
1617 		/* Set the vlan id. */
1618 		ctxd->upper.fields.special =
1619 		    htole16(m_head->m_pkthdr.ether_vlantag);
1620 
1621 		/* Tell hardware to add tag */
1622 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1623 	}
1624 
1625 	tx_buffer->m_head = m_head;
1626 	tx_buffer_mapped->map = tx_buffer->map;
1627 	tx_buffer->map = map;
1628 
1629 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1630 		adapter->tx_nsegs = 0;
1631 
1632 		/*
1633 		 * Report Status (RS) is turned on
1634 		 * every tx_int_nsegs descriptors.
1635 		 */
1636 		cmd = E1000_TXD_CMD_RS;
1637 
1638 		/*
1639 		 * Keep track of the descriptor, which will
1640 		 * be written back by hardware.
1641 		 */
1642 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1643 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1644 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1645 	}
1646 
1647 	/*
1648 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1649 	 */
1650 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1651 
1652 	/*
1653 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1654 	 * that this frame is available to transmit.
1655 	 */
1656 	if (adapter->hw.mac.type == e1000_82547 &&
1657 	    adapter->link_duplex == HALF_DUPLEX) {
1658 		em_82547_move_tail_serialized(adapter);
1659 	} else {
1660 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1661 		if (adapter->hw.mac.type == e1000_82547) {
1662 			em_82547_update_fifo_head(adapter,
1663 			    m_head->m_pkthdr.len);
1664 		}
1665 	}
1666 	return (0);
1667 }
1668 
1669 /*
1670  * 82547 workaround to avoid controller hang in half-duplex environment.
1671  * The workaround is to avoid queuing a large packet that would span
1672  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1673  * in this case.  We do that only when FIFO is quiescent.
1674  */
1675 static void
1676 em_82547_move_tail_serialized(struct adapter *adapter)
1677 {
1678 	struct e1000_tx_desc *tx_desc;
1679 	uint16_t hw_tdt, sw_tdt, length = 0;
1680 	bool eop = 0;
1681 
1682 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1683 
1684 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1685 	sw_tdt = adapter->next_avail_tx_desc;
1686 
1687 	while (hw_tdt != sw_tdt) {
1688 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1689 		length += tx_desc->lower.flags.length;
1690 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1691 		if (++hw_tdt == adapter->num_tx_desc)
1692 			hw_tdt = 0;
1693 
1694 		if (eop) {
1695 			if (em_82547_fifo_workaround(adapter, length)) {
1696 				adapter->tx_fifo_wrk_cnt++;
1697 				callout_reset(&adapter->tx_fifo_timer, 1,
1698 					em_82547_move_tail, adapter);
1699 				break;
1700 			}
1701 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1702 			em_82547_update_fifo_head(adapter, length);
1703 			length = 0;
1704 		}
1705 	}
1706 }
1707 
1708 static void
1709 em_82547_move_tail(void *xsc)
1710 {
1711 	struct adapter *adapter = xsc;
1712 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1713 
1714 	lwkt_serialize_enter(ifp->if_serializer);
1715 	em_82547_move_tail_serialized(adapter);
1716 	lwkt_serialize_exit(ifp->if_serializer);
1717 }
1718 
1719 static int
1720 em_82547_fifo_workaround(struct adapter *adapter, int len)
1721 {
1722 	int fifo_space, fifo_pkt_len;
1723 
1724 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1725 
1726 	if (adapter->link_duplex == HALF_DUPLEX) {
1727 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1728 
1729 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1730 			if (em_82547_tx_fifo_reset(adapter))
1731 				return (0);
1732 			else
1733 				return (1);
1734 		}
1735 	}
1736 	return (0);
1737 }
1738 
1739 static void
1740 em_82547_update_fifo_head(struct adapter *adapter, int len)
1741 {
1742 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1743 
1744 	/* tx_fifo_head is always 16 byte aligned */
1745 	adapter->tx_fifo_head += fifo_pkt_len;
1746 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1747 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1748 }
1749 
1750 static int
1751 em_82547_tx_fifo_reset(struct adapter *adapter)
1752 {
1753 	uint32_t tctl;
1754 
1755 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1756 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1757 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1758 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1759 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1760 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1761 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1762 		/* Disable TX unit */
1763 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1764 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1765 		    tctl & ~E1000_TCTL_EN);
1766 
1767 		/* Reset FIFO pointers */
1768 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1769 		    adapter->tx_head_addr);
1770 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1771 		    adapter->tx_head_addr);
1772 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1773 		    adapter->tx_head_addr);
1774 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1775 		    adapter->tx_head_addr);
1776 
1777 		/* Re-enable TX unit */
1778 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1779 		E1000_WRITE_FLUSH(&adapter->hw);
1780 
1781 		adapter->tx_fifo_head = 0;
1782 		adapter->tx_fifo_reset_cnt++;
1783 
1784 		return (TRUE);
1785 	} else {
1786 		return (FALSE);
1787 	}
1788 }
1789 
1790 static void
1791 em_set_promisc(struct adapter *adapter)
1792 {
1793 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1794 	uint32_t reg_rctl;
1795 
1796 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1797 
1798 	if (ifp->if_flags & IFF_PROMISC) {
1799 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1800 		/* Turn this on if you want to see bad packets */
1801 		if (em_debug_sbp)
1802 			reg_rctl |= E1000_RCTL_SBP;
1803 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1804 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1805 		reg_rctl |= E1000_RCTL_MPE;
1806 		reg_rctl &= ~E1000_RCTL_UPE;
1807 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1808 	}
1809 }
1810 
1811 static void
1812 em_disable_promisc(struct adapter *adapter)
1813 {
1814 	uint32_t reg_rctl;
1815 
1816 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1817 
1818 	reg_rctl &= ~E1000_RCTL_UPE;
1819 	reg_rctl &= ~E1000_RCTL_MPE;
1820 	reg_rctl &= ~E1000_RCTL_SBP;
1821 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1822 }
1823 
1824 static void
1825 em_set_multi(struct adapter *adapter)
1826 {
1827 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1828 	struct ifmultiaddr *ifma;
1829 	uint32_t reg_rctl = 0;
1830 	uint8_t  mta[512]; /* Largest MTS is 4096 bits */
1831 	int mcnt = 0;
1832 
1833 	if (adapter->hw.mac.type == e1000_82542 &&
1834 	    adapter->hw.revision_id == E1000_REVISION_2) {
1835 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1836 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1837 			e1000_pci_clear_mwi(&adapter->hw);
1838 		reg_rctl |= E1000_RCTL_RST;
1839 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1840 		msec_delay(5);
1841 	}
1842 
1843 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1844 		if (ifma->ifma_addr->sa_family != AF_LINK)
1845 			continue;
1846 
1847 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1848 			break;
1849 
1850 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1851 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1852 		mcnt++;
1853 	}
1854 
1855 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1856 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1857 		reg_rctl |= E1000_RCTL_MPE;
1858 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1859 	} else {
1860 		e1000_update_mc_addr_list(&adapter->hw, mta,
1861 		    mcnt, 1, adapter->hw.mac.rar_entry_count);
1862 	}
1863 
1864 	if (adapter->hw.mac.type == e1000_82542 &&
1865 	    adapter->hw.revision_id == E1000_REVISION_2) {
1866 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1867 		reg_rctl &= ~E1000_RCTL_RST;
1868 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1869 		msec_delay(5);
1870 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1871 			e1000_pci_set_mwi(&adapter->hw);
1872 	}
1873 }
1874 
1875 /*
1876  * This routine checks for link status and updates statistics.
1877  */
1878 static void
1879 em_timer(void *xsc)
1880 {
1881 	struct adapter *adapter = xsc;
1882 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1883 
1884 	lwkt_serialize_enter(ifp->if_serializer);
1885 
1886 	em_update_link_status(adapter);
1887 	em_update_stats(adapter);
1888 
1889 	/* Reset LAA into RAR[0] on 82571 */
1890 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1891 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1892 
1893 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1894 		em_print_hw_stats(adapter);
1895 
1896 	em_smartspeed(adapter);
1897 
1898 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1899 
1900 	lwkt_serialize_exit(ifp->if_serializer);
1901 }
1902 
1903 static void
1904 em_update_link_status(struct adapter *adapter)
1905 {
1906 	struct e1000_hw *hw = &adapter->hw;
1907 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1908 	device_t dev = adapter->dev;
1909 	uint32_t link_check = 0;
1910 
1911 	/* Get the cached link value or read phy for real */
1912 	switch (hw->phy.media_type) {
1913 	case e1000_media_type_copper:
1914 		if (hw->mac.get_link_status) {
1915 			/* Do the work to read phy */
1916 			e1000_check_for_link(hw);
1917 			link_check = !hw->mac.get_link_status;
1918 			if (link_check) /* ESB2 fix */
1919 				e1000_cfg_on_link_up(hw);
1920 		} else {
1921 			link_check = TRUE;
1922 		}
1923 		break;
1924 
1925 	case e1000_media_type_fiber:
1926 		e1000_check_for_link(hw);
1927 		link_check =
1928 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1929 		break;
1930 
1931 	case e1000_media_type_internal_serdes:
1932 		e1000_check_for_link(hw);
1933 		link_check = adapter->hw.mac.serdes_has_link;
1934 		break;
1935 
1936 	case e1000_media_type_unknown:
1937 	default:
1938 		break;
1939 	}
1940 
1941 	/* Now check for a transition */
1942 	if (link_check && adapter->link_active == 0) {
1943 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
1944 		    &adapter->link_duplex);
1945 
1946 		/*
1947 		 * Check if we should enable/disable SPEED_MODE bit on
1948 		 * 82571/82572
1949 		 */
1950 		if (hw->mac.type == e1000_82571 ||
1951 		    hw->mac.type == e1000_82572) {
1952 			int tarc0;
1953 
1954 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1955 			if (adapter->link_speed != SPEED_1000)
1956 				tarc0 &= ~SPEED_MODE_BIT;
1957 			else
1958 				tarc0 |= SPEED_MODE_BIT;
1959 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1960 		}
1961 		if (bootverbose) {
1962 			device_printf(dev, "Link is up %d Mbps %s\n",
1963 			    adapter->link_speed,
1964 			    ((adapter->link_duplex == FULL_DUPLEX) ?
1965 			    "Full Duplex" : "Half Duplex"));
1966 		}
1967 		adapter->link_active = 1;
1968 		adapter->smartspeed = 0;
1969 		ifp->if_baudrate = adapter->link_speed * 1000000;
1970 		ifp->if_link_state = LINK_STATE_UP;
1971 		if_link_state_change(ifp);
1972 	} else if (!link_check && adapter->link_active == 1) {
1973 		ifp->if_baudrate = adapter->link_speed = 0;
1974 		adapter->link_duplex = 0;
1975 		if (bootverbose)
1976 			device_printf(dev, "Link is Down\n");
1977 		adapter->link_active = 0;
1978 #if 0
1979 		/* Link down, disable watchdog */
1980 		if->if_timer = 0;
1981 #endif
1982 		ifp->if_link_state = LINK_STATE_DOWN;
1983 		if_link_state_change(ifp);
1984 	}
1985 }
1986 
1987 static void
1988 em_stop(struct adapter *adapter)
1989 {
1990 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1991 	int i;
1992 
1993 	ASSERT_SERIALIZED(ifp->if_serializer);
1994 
1995 	em_disable_intr(adapter);
1996 
1997 	callout_stop(&adapter->timer);
1998 	callout_stop(&adapter->tx_fifo_timer);
1999 
2000 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2001 	ifp->if_timer = 0;
2002 
2003 	e1000_reset_hw(&adapter->hw);
2004 	if (adapter->hw.mac.type >= e1000_82544)
2005 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2006 
2007 	for (i = 0; i < adapter->num_tx_desc; i++) {
2008 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2009 
2010 		if (tx_buffer->m_head != NULL) {
2011 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2012 			m_freem(tx_buffer->m_head);
2013 			tx_buffer->m_head = NULL;
2014 		}
2015 	}
2016 
2017 	for (i = 0; i < adapter->num_rx_desc; i++) {
2018 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2019 
2020 		if (rx_buffer->m_head != NULL) {
2021 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2022 			m_freem(rx_buffer->m_head);
2023 			rx_buffer->m_head = NULL;
2024 		}
2025 	}
2026 
2027 	if (adapter->fmp != NULL)
2028 		m_freem(adapter->fmp);
2029 	adapter->fmp = NULL;
2030 	adapter->lmp = NULL;
2031 
2032 	adapter->csum_flags = 0;
2033 	adapter->csum_ehlen = 0;
2034 	adapter->csum_iphlen = 0;
2035 
2036 	adapter->tx_dd_head = 0;
2037 	adapter->tx_dd_tail = 0;
2038 	adapter->tx_nsegs = 0;
2039 }
2040 
2041 static int
2042 em_get_hw_info(struct adapter *adapter)
2043 {
2044 	device_t dev = adapter->dev;
2045 
2046 	/* Save off the information about this board */
2047 	adapter->hw.vendor_id = pci_get_vendor(dev);
2048 	adapter->hw.device_id = pci_get_device(dev);
2049 	adapter->hw.revision_id = pci_get_revid(dev);
2050 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2051 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2052 
2053 	/* Do Shared Code Init and Setup */
2054 	if (e1000_set_mac_type(&adapter->hw))
2055 		return ENXIO;
2056 	return 0;
2057 }
2058 
2059 static int
2060 em_alloc_pci_res(struct adapter *adapter)
2061 {
2062 	device_t dev = adapter->dev;
2063 	int val, rid;
2064 
2065 	/* Enable bus mastering */
2066 	pci_enable_busmaster(dev);
2067 
2068 	adapter->memory_rid = EM_BAR_MEM;
2069 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2070 				&adapter->memory_rid, RF_ACTIVE);
2071 	if (adapter->memory == NULL) {
2072 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2073 		return (ENXIO);
2074 	}
2075 	adapter->osdep.mem_bus_space_tag =
2076 	    rman_get_bustag(adapter->memory);
2077 	adapter->osdep.mem_bus_space_handle =
2078 	    rman_get_bushandle(adapter->memory);
2079 
2080 	/* XXX This is quite goofy, it is not actually used */
2081 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2082 
2083 	/* Only older adapters use IO mapping */
2084 	if (adapter->hw.mac.type > e1000_82543 &&
2085 	    adapter->hw.mac.type < e1000_82571) {
2086 		/* Figure our where our IO BAR is ? */
2087 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2088 			val = pci_read_config(dev, rid, 4);
2089 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2090 				adapter->io_rid = rid;
2091 				break;
2092 			}
2093 			rid += 4;
2094 			/* check for 64bit BAR */
2095 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2096 				rid += 4;
2097 		}
2098 		if (rid >= PCIR_CARDBUSCIS) {
2099 			device_printf(dev, "Unable to locate IO BAR\n");
2100 			return (ENXIO);
2101 		}
2102 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2103 					&adapter->io_rid, RF_ACTIVE);
2104 		if (adapter->ioport == NULL) {
2105 			device_printf(dev, "Unable to allocate bus resource: "
2106 			    "ioport\n");
2107 			return (ENXIO);
2108 		}
2109 		adapter->hw.io_base = 0;
2110 		adapter->osdep.io_bus_space_tag =
2111 		    rman_get_bustag(adapter->ioport);
2112 		adapter->osdep.io_bus_space_handle =
2113 		    rman_get_bushandle(adapter->ioport);
2114 	}
2115 
2116 	adapter->intr_rid = 0;
2117 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2118 				&adapter->intr_rid,
2119 				RF_SHAREABLE | RF_ACTIVE);
2120 	if (adapter->intr_res == NULL) {
2121 		device_printf(dev, "Unable to allocate bus resource: "
2122 		    "interrupt\n");
2123 		return (ENXIO);
2124 	}
2125 
2126 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2127 	adapter->hw.back = &adapter->osdep;
2128 	return (0);
2129 }
2130 
2131 static void
2132 em_free_pci_res(struct adapter *adapter)
2133 {
2134 	device_t dev = adapter->dev;
2135 
2136 	if (adapter->intr_res != NULL) {
2137 		bus_release_resource(dev, SYS_RES_IRQ,
2138 		    adapter->intr_rid, adapter->intr_res);
2139 	}
2140 
2141 	if (adapter->memory != NULL) {
2142 		bus_release_resource(dev, SYS_RES_MEMORY,
2143 		    adapter->memory_rid, adapter->memory);
2144 	}
2145 
2146 	if (adapter->flash != NULL) {
2147 		bus_release_resource(dev, SYS_RES_MEMORY,
2148 		    adapter->flash_rid, adapter->flash);
2149 	}
2150 
2151 	if (adapter->ioport != NULL) {
2152 		bus_release_resource(dev, SYS_RES_IOPORT,
2153 		    adapter->io_rid, adapter->ioport);
2154 	}
2155 }
2156 
2157 static int
2158 em_hw_init(struct adapter *adapter)
2159 {
2160 	device_t dev = adapter->dev;
2161 	uint16_t rx_buffer_size;
2162 
2163 	/* Issue a global reset */
2164 	e1000_reset_hw(&adapter->hw);
2165 
2166 	/* Get control from any management/hw control */
2167 	if ((adapter->hw.mac.type == e1000_82573 ||
2168 	     adapter->hw.mac.type == e1000_ich8lan ||
2169 	     adapter->hw.mac.type == e1000_ich10lan ||
2170 	     adapter->hw.mac.type == e1000_ich9lan) &&
2171 	    e1000_check_mng_mode(&adapter->hw))
2172 		em_get_hw_control(adapter);
2173 
2174 	/* When hardware is reset, fifo_head is also reset */
2175 	adapter->tx_fifo_head = 0;
2176 
2177 	/* Set up smart power down as default off on newer adapters. */
2178 	if (!em_smart_pwr_down &&
2179 	    (adapter->hw.mac.type == e1000_82571 ||
2180 	     adapter->hw.mac.type == e1000_82572)) {
2181 		uint16_t phy_tmp = 0;
2182 
2183 		/* Speed up time to link by disabling smart power down. */
2184 		e1000_read_phy_reg(&adapter->hw,
2185 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2186 		phy_tmp &= ~IGP02E1000_PM_SPD;
2187 		e1000_write_phy_reg(&adapter->hw,
2188 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2189 	}
2190 
2191 	/*
2192 	 * These parameters control the automatic generation (Tx) and
2193 	 * response (Rx) to Ethernet PAUSE frames.
2194 	 * - High water mark should allow for at least two frames to be
2195 	 *   received after sending an XOFF.
2196 	 * - Low water mark works best when it is very near the high water mark.
2197 	 *   This allows the receiver to restart by sending XON when it has
2198 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2199 	 *   restart after one full frame is pulled from the buffer. There
2200 	 *   could be several smaller frames in the buffer and if so they will
2201 	 *   not trigger the XON until their total number reduces the buffer
2202 	 *   by 1500.
2203 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2204 	 */
2205 	rx_buffer_size =
2206 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2207 
2208 	adapter->hw.fc.high_water = rx_buffer_size -
2209 				    roundup2(adapter->max_frame_size, 1024);
2210 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2211 
2212 	if (adapter->hw.mac.type == e1000_80003es2lan)
2213 		adapter->hw.fc.pause_time = 0xFFFF;
2214 	else
2215 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2216 	adapter->hw.fc.send_xon = TRUE;
2217 	adapter->hw.fc.requested_mode = e1000_fc_full;
2218 
2219 	if (e1000_init_hw(&adapter->hw) < 0) {
2220 		device_printf(dev, "Hardware Initialization Failed\n");
2221 		return (EIO);
2222 	}
2223 
2224 	e1000_check_for_link(&adapter->hw);
2225 
2226 	return (0);
2227 }
2228 
2229 static void
2230 em_setup_ifp(struct adapter *adapter)
2231 {
2232 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2233 
2234 	if_initname(ifp, device_get_name(adapter->dev),
2235 		    device_get_unit(adapter->dev));
2236 	ifp->if_softc = adapter;
2237 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2238 	ifp->if_init =  em_init;
2239 	ifp->if_ioctl = em_ioctl;
2240 	ifp->if_start = em_start;
2241 #ifdef DEVICE_POLLING
2242 	ifp->if_poll = em_poll;
2243 #endif
2244 	ifp->if_watchdog = em_watchdog;
2245 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2246 	ifq_set_ready(&ifp->if_snd);
2247 
2248 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2249 
2250 	if (adapter->hw.mac.type >= e1000_82543)
2251 		ifp->if_capabilities = IFCAP_HWCSUM;
2252 
2253 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2254 	ifp->if_capenable = ifp->if_capabilities;
2255 
2256 	if (ifp->if_capenable & IFCAP_TXCSUM)
2257 		ifp->if_hwassist = EM_CSUM_FEATURES;
2258 
2259 	/*
2260 	 * Tell the upper layer(s) we support long frames.
2261 	 */
2262 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2263 
2264 	/*
2265 	 * Specify the media types supported by this adapter and register
2266 	 * callbacks to update media and link information
2267 	 */
2268 	ifmedia_init(&adapter->media, IFM_IMASK,
2269 		     em_media_change, em_media_status);
2270 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2271 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2272 		u_char fiber_type = IFM_1000_SX; /* default type */
2273 
2274 		if (adapter->hw.mac.type == e1000_82545)
2275 			fiber_type = IFM_1000_LX;
2276 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2277 			    0, NULL);
2278 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2279 	} else {
2280 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2281 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2282 			    0, NULL);
2283 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2284 			    0, NULL);
2285 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2286 			    0, NULL);
2287 		if (adapter->hw.phy.type != e1000_phy_ife) {
2288 			ifmedia_add(&adapter->media,
2289 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2290 			ifmedia_add(&adapter->media,
2291 				IFM_ETHER | IFM_1000_T, 0, NULL);
2292 		}
2293 	}
2294 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2295 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2296 }
2297 
2298 
2299 /*
2300  * Workaround for SmartSpeed on 82541 and 82547 controllers
2301  */
2302 static void
2303 em_smartspeed(struct adapter *adapter)
2304 {
2305 	uint16_t phy_tmp;
2306 
2307 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2308 	    adapter->hw.mac.autoneg == 0 ||
2309 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2310 		return;
2311 
2312 	if (adapter->smartspeed == 0) {
2313 		/*
2314 		 * If Master/Slave config fault is asserted twice,
2315 		 * we assume back-to-back
2316 		 */
2317 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2318 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2319 			return;
2320 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2321 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2322 			e1000_read_phy_reg(&adapter->hw,
2323 			    PHY_1000T_CTRL, &phy_tmp);
2324 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2325 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2326 				e1000_write_phy_reg(&adapter->hw,
2327 				    PHY_1000T_CTRL, phy_tmp);
2328 				adapter->smartspeed++;
2329 				if (adapter->hw.mac.autoneg &&
2330 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2331 				    !e1000_read_phy_reg(&adapter->hw,
2332 				     PHY_CONTROL, &phy_tmp)) {
2333 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2334 						   MII_CR_RESTART_AUTO_NEG;
2335 					e1000_write_phy_reg(&adapter->hw,
2336 					    PHY_CONTROL, phy_tmp);
2337 				}
2338 			}
2339 		}
2340 		return;
2341 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2342 		/* If still no link, perhaps using 2/3 pair cable */
2343 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2344 		phy_tmp |= CR_1000T_MS_ENABLE;
2345 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2346 		if (adapter->hw.mac.autoneg &&
2347 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2348 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2349 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2350 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2351 		}
2352 	}
2353 
2354 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2355 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2356 		adapter->smartspeed = 0;
2357 }
2358 
2359 static int
2360 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2361 	      struct em_dma_alloc *dma)
2362 {
2363 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2364 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2365 				&dma->dma_tag, &dma->dma_map,
2366 				&dma->dma_paddr);
2367 	if (dma->dma_vaddr == NULL)
2368 		return ENOMEM;
2369 	else
2370 		return 0;
2371 }
2372 
2373 static void
2374 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2375 {
2376 	if (dma->dma_tag == NULL)
2377 		return;
2378 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2379 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2380 	bus_dma_tag_destroy(dma->dma_tag);
2381 }
2382 
2383 static int
2384 em_create_tx_ring(struct adapter *adapter)
2385 {
2386 	device_t dev = adapter->dev;
2387 	struct em_buffer *tx_buffer;
2388 	int error, i;
2389 
2390 	adapter->tx_buffer_area =
2391 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2392 			M_DEVBUF, M_WAITOK | M_ZERO);
2393 
2394 	/*
2395 	 * Create DMA tags for tx buffers
2396 	 */
2397 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2398 			1, 0,			/* alignment, bounds */
2399 			BUS_SPACE_MAXADDR,	/* lowaddr */
2400 			BUS_SPACE_MAXADDR,	/* highaddr */
2401 			NULL, NULL,		/* filter, filterarg */
2402 			EM_TSO_SIZE,		/* maxsize */
2403 			EM_MAX_SCATTER,		/* nsegments */
2404 			EM_MAX_SEGSIZE,		/* maxsegsize */
2405 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2406 			BUS_DMA_ONEBPAGE,	/* flags */
2407 			&adapter->txtag);
2408 	if (error) {
2409 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2410 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2411 		adapter->tx_buffer_area = NULL;
2412 		return error;
2413 	}
2414 
2415 	/*
2416 	 * Create DMA maps for tx buffers
2417 	 */
2418 	for (i = 0; i < adapter->num_tx_desc; i++) {
2419 		tx_buffer = &adapter->tx_buffer_area[i];
2420 
2421 		error = bus_dmamap_create(adapter->txtag,
2422 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2423 					  &tx_buffer->map);
2424 		if (error) {
2425 			device_printf(dev, "Unable to create TX DMA map\n");
2426 			em_destroy_tx_ring(adapter, i);
2427 			return error;
2428 		}
2429 	}
2430 	return (0);
2431 }
2432 
2433 static void
2434 em_init_tx_ring(struct adapter *adapter)
2435 {
2436 	/* Clear the old ring contents */
2437 	bzero(adapter->tx_desc_base,
2438 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2439 
2440 	/* Reset state */
2441 	adapter->next_avail_tx_desc = 0;
2442 	adapter->next_tx_to_clean = 0;
2443 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2444 }
2445 
2446 static void
2447 em_init_tx_unit(struct adapter *adapter)
2448 {
2449 	uint32_t tctl, tarc, tipg = 0;
2450 	uint64_t bus_addr;
2451 
2452 	/* Setup the Base and Length of the Tx Descriptor Ring */
2453 	bus_addr = adapter->txdma.dma_paddr;
2454 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2455 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2456 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2457 	    (uint32_t)(bus_addr >> 32));
2458 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2459 	    (uint32_t)bus_addr);
2460 	/* Setup the HW Tx Head and Tail descriptor pointers */
2461 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2462 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2463 
2464 	/* Set the default values for the Tx Inter Packet Gap timer */
2465 	switch (adapter->hw.mac.type) {
2466 	case e1000_82542:
2467 		tipg = DEFAULT_82542_TIPG_IPGT;
2468 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2469 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2470 		break;
2471 
2472 	case e1000_80003es2lan:
2473 		tipg = DEFAULT_82543_TIPG_IPGR1;
2474 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2475 		    E1000_TIPG_IPGR2_SHIFT;
2476 		break;
2477 
2478 	default:
2479 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2480 		    adapter->hw.phy.media_type ==
2481 		    e1000_media_type_internal_serdes)
2482 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2483 		else
2484 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2485 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2486 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2487 		break;
2488 	}
2489 
2490 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2491 
2492 	/* NOTE: 0 is not allowed for TIDV */
2493 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2494 	if(adapter->hw.mac.type >= e1000_82540)
2495 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2496 
2497 	if (adapter->hw.mac.type == e1000_82571 ||
2498 	    adapter->hw.mac.type == e1000_82572) {
2499 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2500 		tarc |= SPEED_MODE_BIT;
2501 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2502 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2503 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2504 		tarc |= 1;
2505 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2506 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2507 		tarc |= 1;
2508 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2509 	}
2510 
2511 	/* Program the Transmit Control Register */
2512 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2513 	tctl &= ~E1000_TCTL_CT;
2514 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2515 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2516 
2517 	if (adapter->hw.mac.type >= e1000_82571)
2518 		tctl |= E1000_TCTL_MULR;
2519 
2520 	/* This write will effectively turn on the transmit unit. */
2521 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2522 }
2523 
2524 static void
2525 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2526 {
2527 	struct em_buffer *tx_buffer;
2528 	int i;
2529 
2530 	if (adapter->tx_buffer_area == NULL)
2531 		return;
2532 
2533 	for (i = 0; i < ndesc; i++) {
2534 		tx_buffer = &adapter->tx_buffer_area[i];
2535 
2536 		KKASSERT(tx_buffer->m_head == NULL);
2537 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2538 	}
2539 	bus_dma_tag_destroy(adapter->txtag);
2540 
2541 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2542 	adapter->tx_buffer_area = NULL;
2543 }
2544 
2545 /*
2546  * The offload context needs to be set when we transfer the first
2547  * packet of a particular protocol (TCP/UDP).  This routine has been
2548  * enhanced to deal with inserted VLAN headers.
2549  *
2550  * If the new packet's ether header length, ip header length and
2551  * csum offloading type are same as the previous packet, we should
2552  * avoid allocating a new csum context descriptor; mainly to take
2553  * advantage of the pipeline effect of the TX data read request.
2554  *
2555  * This function returns number of TX descrptors allocated for
2556  * csum context.
2557  */
2558 static int
2559 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2560 	  uint32_t *txd_upper, uint32_t *txd_lower)
2561 {
2562 	struct e1000_context_desc *TXD;
2563 	struct em_buffer *tx_buffer;
2564 	struct ether_vlan_header *eh;
2565 	struct ip *ip;
2566 	int curr_txd, ehdrlen, csum_flags;
2567 	uint32_t cmd, hdr_len, ip_hlen;
2568 	uint16_t etype;
2569 
2570 	/*
2571 	 * Determine where frame payload starts.
2572 	 * Jump over vlan headers if already present,
2573 	 * helpful for QinQ too.
2574 	 */
2575 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2576 		("em_txcsum_pullup is not called (eh)?\n"));
2577 	eh = mtod(mp, struct ether_vlan_header *);
2578 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2579 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2580 			("em_txcsum_pullup is not called (evh)?\n"));
2581 		etype = ntohs(eh->evl_proto);
2582 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2583 	} else {
2584 		etype = ntohs(eh->evl_encap_proto);
2585 		ehdrlen = ETHER_HDR_LEN;
2586 	}
2587 
2588 	/*
2589 	 * We only support TCP/UDP for IPv4 for the moment.
2590 	 * TODO: Support SCTP too when it hits the tree.
2591 	 */
2592 	if (etype != ETHERTYPE_IP)
2593 		return 0;
2594 
2595 	KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2596 		("em_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2597 
2598 	/* NOTE: We could only safely access ip.ip_vhl part */
2599 	ip = (struct ip *)(mp->m_data + ehdrlen);
2600 	ip_hlen = ip->ip_hl << 2;
2601 
2602 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2603 
2604 	if (adapter->csum_ehlen == ehdrlen &&
2605 	    adapter->csum_iphlen == ip_hlen &&
2606 	    adapter->csum_flags == csum_flags) {
2607 		/*
2608 		 * Same csum offload context as the previous packets;
2609 		 * just return.
2610 		 */
2611 		*txd_upper = adapter->csum_txd_upper;
2612 		*txd_lower = adapter->csum_txd_lower;
2613 		return 0;
2614 	}
2615 
2616 	/*
2617 	 * Setup a new csum offload context.
2618 	 */
2619 
2620 	curr_txd = adapter->next_avail_tx_desc;
2621 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2622 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2623 
2624 	cmd = 0;
2625 
2626 	/* Setup of IP header checksum. */
2627 	if (csum_flags & CSUM_IP) {
2628 		/*
2629 		 * Start offset for header checksum calculation.
2630 		 * End offset for header checksum calculation.
2631 		 * Offset of place to put the checksum.
2632 		 */
2633 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2634 		TXD->lower_setup.ip_fields.ipcse =
2635 		    htole16(ehdrlen + ip_hlen - 1);
2636 		TXD->lower_setup.ip_fields.ipcso =
2637 		    ehdrlen + offsetof(struct ip, ip_sum);
2638 		cmd |= E1000_TXD_CMD_IP;
2639 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2640 	}
2641 	hdr_len = ehdrlen + ip_hlen;
2642 
2643 	if (csum_flags & CSUM_TCP) {
2644 		/*
2645 		 * Start offset for payload checksum calculation.
2646 		 * End offset for payload checksum calculation.
2647 		 * Offset of place to put the checksum.
2648 		 */
2649 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2650 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2651 		TXD->upper_setup.tcp_fields.tucso =
2652 		    hdr_len + offsetof(struct tcphdr, th_sum);
2653 		cmd |= E1000_TXD_CMD_TCP;
2654 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2655 	} else if (csum_flags & CSUM_UDP) {
2656 		/*
2657 		 * Start offset for header checksum calculation.
2658 		 * End offset for header checksum calculation.
2659 		 * Offset of place to put the checksum.
2660 		 */
2661 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2662 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2663 		TXD->upper_setup.tcp_fields.tucso =
2664 		    hdr_len + offsetof(struct udphdr, uh_sum);
2665 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2666 	}
2667 
2668 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2669 		     E1000_TXD_DTYP_D;		/* Data descr */
2670 
2671 	/* Save the information for this csum offloading context */
2672 	adapter->csum_ehlen = ehdrlen;
2673 	adapter->csum_iphlen = ip_hlen;
2674 	adapter->csum_flags = csum_flags;
2675 	adapter->csum_txd_upper = *txd_upper;
2676 	adapter->csum_txd_lower = *txd_lower;
2677 
2678 	TXD->tcp_seg_setup.data = htole32(0);
2679 	TXD->cmd_and_length =
2680 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2681 
2682 	if (++curr_txd == adapter->num_tx_desc)
2683 		curr_txd = 0;
2684 
2685 	KKASSERT(adapter->num_tx_desc_avail > 0);
2686 	adapter->num_tx_desc_avail--;
2687 
2688 	adapter->next_avail_tx_desc = curr_txd;
2689 	return 1;
2690 }
2691 
2692 static int
2693 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2694 {
2695 	struct mbuf *m = *m0;
2696 	struct ether_header *eh;
2697 	int len;
2698 
2699 	adapter->tx_csum_try_pullup++;
2700 
2701 	len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2702 
2703 	if (__predict_false(!M_WRITABLE(m))) {
2704 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2705 			adapter->tx_csum_drop1++;
2706 			m_freem(m);
2707 			*m0 = NULL;
2708 			return ENOBUFS;
2709 		}
2710 		eh = mtod(m, struct ether_header *);
2711 
2712 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2713 			len += EVL_ENCAPLEN;
2714 
2715 		if (m->m_len < len) {
2716 			adapter->tx_csum_drop2++;
2717 			m_freem(m);
2718 			*m0 = NULL;
2719 			return ENOBUFS;
2720 		}
2721 		return 0;
2722 	}
2723 
2724 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2725 		adapter->tx_csum_pullup1++;
2726 		m = m_pullup(m, ETHER_HDR_LEN);
2727 		if (m == NULL) {
2728 			adapter->tx_csum_pullup1_failed++;
2729 			*m0 = NULL;
2730 			return ENOBUFS;
2731 		}
2732 		*m0 = m;
2733 	}
2734 	eh = mtod(m, struct ether_header *);
2735 
2736 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2737 		len += EVL_ENCAPLEN;
2738 
2739 	if (m->m_len < len) {
2740 		adapter->tx_csum_pullup2++;
2741 		m = m_pullup(m, len);
2742 		if (m == NULL) {
2743 			adapter->tx_csum_pullup2_failed++;
2744 			*m0 = NULL;
2745 			return ENOBUFS;
2746 		}
2747 		*m0 = m;
2748 	}
2749 	return 0;
2750 }
2751 
2752 static void
2753 em_txeof(struct adapter *adapter)
2754 {
2755 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2756 	struct em_buffer *tx_buffer;
2757 	int first, num_avail;
2758 
2759 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2760 		return;
2761 
2762 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2763 		return;
2764 
2765 	num_avail = adapter->num_tx_desc_avail;
2766 	first = adapter->next_tx_to_clean;
2767 
2768 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2769 		struct e1000_tx_desc *tx_desc;
2770 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2771 
2772 		tx_desc = &adapter->tx_desc_base[dd_idx];
2773 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2774 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2775 
2776 			if (++dd_idx == adapter->num_tx_desc)
2777 				dd_idx = 0;
2778 
2779 			while (first != dd_idx) {
2780 				logif(pkt_txclean);
2781 
2782 				num_avail++;
2783 
2784 				tx_buffer = &adapter->tx_buffer_area[first];
2785 				if (tx_buffer->m_head) {
2786 					ifp->if_opackets++;
2787 					bus_dmamap_unload(adapter->txtag,
2788 							  tx_buffer->map);
2789 					m_freem(tx_buffer->m_head);
2790 					tx_buffer->m_head = NULL;
2791 				}
2792 
2793 				if (++first == adapter->num_tx_desc)
2794 					first = 0;
2795 			}
2796 		} else {
2797 			break;
2798 		}
2799 	}
2800 	adapter->next_tx_to_clean = first;
2801 	adapter->num_tx_desc_avail = num_avail;
2802 
2803 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2804 		adapter->tx_dd_head = 0;
2805 		adapter->tx_dd_tail = 0;
2806 	}
2807 
2808 	if (!EM_IS_OACTIVE(adapter)) {
2809 		ifp->if_flags &= ~IFF_OACTIVE;
2810 
2811 		/* All clean, turn off the timer */
2812 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2813 			ifp->if_timer = 0;
2814 	}
2815 }
2816 
2817 static void
2818 em_tx_collect(struct adapter *adapter)
2819 {
2820 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2821 	struct em_buffer *tx_buffer;
2822 	int tdh, first, num_avail, dd_idx = -1;
2823 
2824 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2825 		return;
2826 
2827 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2828 	if (tdh == adapter->next_tx_to_clean)
2829 		return;
2830 
2831 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2832 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2833 
2834 	num_avail = adapter->num_tx_desc_avail;
2835 	first = adapter->next_tx_to_clean;
2836 
2837 	while (first != tdh) {
2838 		logif(pkt_txclean);
2839 
2840 		num_avail++;
2841 
2842 		tx_buffer = &adapter->tx_buffer_area[first];
2843 		if (tx_buffer->m_head) {
2844 			ifp->if_opackets++;
2845 			bus_dmamap_unload(adapter->txtag,
2846 					  tx_buffer->map);
2847 			m_freem(tx_buffer->m_head);
2848 			tx_buffer->m_head = NULL;
2849 		}
2850 
2851 		if (first == dd_idx) {
2852 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2853 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2854 				adapter->tx_dd_head = 0;
2855 				adapter->tx_dd_tail = 0;
2856 				dd_idx = -1;
2857 			} else {
2858 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2859 			}
2860 		}
2861 
2862 		if (++first == adapter->num_tx_desc)
2863 			first = 0;
2864 	}
2865 	adapter->next_tx_to_clean = first;
2866 	adapter->num_tx_desc_avail = num_avail;
2867 
2868 	if (!EM_IS_OACTIVE(adapter)) {
2869 		ifp->if_flags &= ~IFF_OACTIVE;
2870 
2871 		/* All clean, turn off the timer */
2872 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2873 			ifp->if_timer = 0;
2874 	}
2875 }
2876 
2877 /*
2878  * When Link is lost sometimes there is work still in the TX ring
2879  * which will result in a watchdog, rather than allow that do an
2880  * attempted cleanup and then reinit here.  Note that this has been
2881  * seens mostly with fiber adapters.
2882  */
2883 static void
2884 em_tx_purge(struct adapter *adapter)
2885 {
2886 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2887 
2888 	if (!adapter->link_active && ifp->if_timer) {
2889 		em_tx_collect(adapter);
2890 		if (ifp->if_timer) {
2891 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2892 			ifp->if_timer = 0;
2893 			em_init(adapter);
2894 		}
2895 	}
2896 }
2897 
2898 static int
2899 em_newbuf(struct adapter *adapter, int i, int init)
2900 {
2901 	struct mbuf *m;
2902 	bus_dma_segment_t seg;
2903 	bus_dmamap_t map;
2904 	struct em_buffer *rx_buffer;
2905 	int error, nseg;
2906 
2907 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2908 	if (m == NULL) {
2909 		adapter->mbuf_cluster_failed++;
2910 		if (init) {
2911 			if_printf(&adapter->arpcom.ac_if,
2912 				  "Unable to allocate RX mbuf\n");
2913 		}
2914 		return (ENOBUFS);
2915 	}
2916 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2917 
2918 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2919 		m_adj(m, ETHER_ALIGN);
2920 
2921 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
2922 			adapter->rx_sparemap, m,
2923 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2924 	if (error) {
2925 		m_freem(m);
2926 		if (init) {
2927 			if_printf(&adapter->arpcom.ac_if,
2928 				  "Unable to load RX mbuf\n");
2929 		}
2930 		return (error);
2931 	}
2932 
2933 	rx_buffer = &adapter->rx_buffer_area[i];
2934 	if (rx_buffer->m_head != NULL)
2935 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2936 
2937 	map = rx_buffer->map;
2938 	rx_buffer->map = adapter->rx_sparemap;
2939 	adapter->rx_sparemap = map;
2940 
2941 	rx_buffer->m_head = m;
2942 
2943 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
2944 	return (0);
2945 }
2946 
2947 static int
2948 em_create_rx_ring(struct adapter *adapter)
2949 {
2950 	device_t dev = adapter->dev;
2951 	struct em_buffer *rx_buffer;
2952 	int i, error;
2953 
2954 	adapter->rx_buffer_area =
2955 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
2956 			M_DEVBUF, M_WAITOK | M_ZERO);
2957 
2958 	/*
2959 	 * Create DMA tag for rx buffers
2960 	 */
2961 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2962 			1, 0,			/* alignment, bounds */
2963 			BUS_SPACE_MAXADDR,	/* lowaddr */
2964 			BUS_SPACE_MAXADDR,	/* highaddr */
2965 			NULL, NULL,		/* filter, filterarg */
2966 			MCLBYTES,		/* maxsize */
2967 			1,			/* nsegments */
2968 			MCLBYTES,		/* maxsegsize */
2969 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2970 			&adapter->rxtag);
2971 	if (error) {
2972 		device_printf(dev, "Unable to allocate RX DMA tag\n");
2973 		kfree(adapter->rx_buffer_area, M_DEVBUF);
2974 		adapter->rx_buffer_area = NULL;
2975 		return error;
2976 	}
2977 
2978 	/*
2979 	 * Create spare DMA map for rx buffers
2980 	 */
2981 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
2982 				  &adapter->rx_sparemap);
2983 	if (error) {
2984 		device_printf(dev, "Unable to create spare RX DMA map\n");
2985 		bus_dma_tag_destroy(adapter->rxtag);
2986 		kfree(adapter->rx_buffer_area, M_DEVBUF);
2987 		adapter->rx_buffer_area = NULL;
2988 		return error;
2989 	}
2990 
2991 	/*
2992 	 * Create DMA maps for rx buffers
2993 	 */
2994 	for (i = 0; i < adapter->num_rx_desc; i++) {
2995 		rx_buffer = &adapter->rx_buffer_area[i];
2996 
2997 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
2998 					  &rx_buffer->map);
2999 		if (error) {
3000 			device_printf(dev, "Unable to create RX DMA map\n");
3001 			em_destroy_rx_ring(adapter, i);
3002 			return error;
3003 		}
3004 	}
3005 	return (0);
3006 }
3007 
3008 static int
3009 em_init_rx_ring(struct adapter *adapter)
3010 {
3011 	int i, error;
3012 
3013 	/* Reset descriptor ring */
3014 	bzero(adapter->rx_desc_base,
3015 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3016 
3017 	/* Allocate new ones. */
3018 	for (i = 0; i < adapter->num_rx_desc; i++) {
3019 		error = em_newbuf(adapter, i, 1);
3020 		if (error)
3021 			return (error);
3022 	}
3023 
3024 	/* Setup our descriptor pointers */
3025 	adapter->next_rx_desc_to_check = 0;
3026 
3027 	return (0);
3028 }
3029 
3030 static void
3031 em_init_rx_unit(struct adapter *adapter)
3032 {
3033 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3034 	uint64_t bus_addr;
3035 	uint32_t rctl, rxcsum;
3036 
3037 	/*
3038 	 * Make sure receives are disabled while setting
3039 	 * up the descriptor ring
3040 	 */
3041 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3042 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3043 
3044 	if (adapter->hw.mac.type >= e1000_82540) {
3045 		/*
3046 		 * Set the interrupt throttling rate. Value is calculated
3047 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3048 		 */
3049 		if (adapter->int_throttle_ceil) {
3050 			E1000_WRITE_REG(&adapter->hw, E1000_ITR,
3051 				1000000000 / 256 / adapter->int_throttle_ceil);
3052 		} else {
3053 			E1000_WRITE_REG(&adapter->hw, E1000_ITR, 0);
3054 		}
3055 	}
3056 
3057 	/* Disable accelerated ackknowledge */
3058 	if (adapter->hw.mac.type == e1000_82574) {
3059 		E1000_WRITE_REG(&adapter->hw,
3060 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3061 	}
3062 
3063 	/* Setup the Base and Length of the Rx Descriptor Ring */
3064 	bus_addr = adapter->rxdma.dma_paddr;
3065 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3066 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3067 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3068 	    (uint32_t)(bus_addr >> 32));
3069 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3070 	    (uint32_t)bus_addr);
3071 
3072 	/* Setup the Receive Control Register */
3073 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3074 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3075 		E1000_RCTL_RDMTS_HALF |
3076 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3077 
3078 	/* Make sure VLAN Filters are off */
3079 	rctl &= ~E1000_RCTL_VFE;
3080 
3081 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3082 		rctl |= E1000_RCTL_SBP;
3083 	else
3084 		rctl &= ~E1000_RCTL_SBP;
3085 
3086 	switch (adapter->rx_buffer_len) {
3087 	default:
3088 	case 2048:
3089 		rctl |= E1000_RCTL_SZ_2048;
3090 		break;
3091 
3092 	case 4096:
3093 		rctl |= E1000_RCTL_SZ_4096 |
3094 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3095 		break;
3096 
3097 	case 8192:
3098 		rctl |= E1000_RCTL_SZ_8192 |
3099 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3100 		break;
3101 
3102 	case 16384:
3103 		rctl |= E1000_RCTL_SZ_16384 |
3104 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3105 		break;
3106 	}
3107 
3108 	if (ifp->if_mtu > ETHERMTU)
3109 		rctl |= E1000_RCTL_LPE;
3110 	else
3111 		rctl &= ~E1000_RCTL_LPE;
3112 
3113 	/* Receive Checksum Offload for TCP and UDP */
3114 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3115 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3116 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3117 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3118 	}
3119 
3120 	/*
3121 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3122 	 * long latencies are observed, like Lenovo X60. This
3123 	 * change eliminates the problem, but since having positive
3124 	 * values in RDTR is a known source of problems on other
3125 	 * platforms another solution is being sought.
3126 	 */
3127 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3128 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3129 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3130 	}
3131 
3132 	/*
3133 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3134 	 */
3135 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3136 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3137 
3138 	/* Enable Receives */
3139 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3140 }
3141 
3142 static void
3143 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3144 {
3145 	struct em_buffer *rx_buffer;
3146 	int i;
3147 
3148 	if (adapter->rx_buffer_area == NULL)
3149 		return;
3150 
3151 	for (i = 0; i < ndesc; i++) {
3152 		rx_buffer = &adapter->rx_buffer_area[i];
3153 
3154 		KKASSERT(rx_buffer->m_head == NULL);
3155 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3156 	}
3157 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3158 	bus_dma_tag_destroy(adapter->rxtag);
3159 
3160 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3161 	adapter->rx_buffer_area = NULL;
3162 }
3163 
3164 static void
3165 em_rxeof(struct adapter *adapter, int count)
3166 {
3167 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3168 	uint8_t status, accept_frame = 0, eop = 0;
3169 	uint16_t len, desc_len, prev_len_adj;
3170 	struct e1000_rx_desc *current_desc;
3171 	struct mbuf *mp;
3172 	int i;
3173 	struct mbuf_chain chain[MAXCPU];
3174 
3175 	i = adapter->next_rx_desc_to_check;
3176 	current_desc = &adapter->rx_desc_base[i];
3177 
3178 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3179 		return;
3180 
3181 	ether_input_chain_init(chain);
3182 
3183 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3184 		struct mbuf *m = NULL;
3185 
3186 		logif(pkt_receive);
3187 
3188 		mp = adapter->rx_buffer_area[i].m_head;
3189 
3190 		/*
3191 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3192 		 * needs to access the last received byte in the mbuf.
3193 		 */
3194 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3195 				BUS_DMASYNC_POSTREAD);
3196 
3197 		accept_frame = 1;
3198 		prev_len_adj = 0;
3199 		desc_len = le16toh(current_desc->length);
3200 		status = current_desc->status;
3201 		if (status & E1000_RXD_STAT_EOP) {
3202 			count--;
3203 			eop = 1;
3204 			if (desc_len < ETHER_CRC_LEN) {
3205 				len = 0;
3206 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3207 			} else {
3208 				len = desc_len - ETHER_CRC_LEN;
3209 			}
3210 		} else {
3211 			eop = 0;
3212 			len = desc_len;
3213 		}
3214 
3215 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3216 			uint8_t	last_byte;
3217 			uint32_t pkt_len = desc_len;
3218 
3219 			if (adapter->fmp != NULL)
3220 				pkt_len += adapter->fmp->m_pkthdr.len;
3221 
3222 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3223 			if (TBI_ACCEPT(&adapter->hw, status,
3224 			    current_desc->errors, pkt_len, last_byte,
3225 			    adapter->min_frame_size, adapter->max_frame_size)) {
3226 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3227 				    &adapter->stats, pkt_len,
3228 				    adapter->hw.mac.addr,
3229 				    adapter->max_frame_size);
3230 				if (len > 0)
3231 					len--;
3232 			} else {
3233 				accept_frame = 0;
3234 			}
3235 		}
3236 
3237 		if (accept_frame) {
3238 			if (em_newbuf(adapter, i, 0) != 0) {
3239 				ifp->if_iqdrops++;
3240 				goto discard;
3241 			}
3242 
3243 			/* Assign correct length to the current fragment */
3244 			mp->m_len = len;
3245 
3246 			if (adapter->fmp == NULL) {
3247 				mp->m_pkthdr.len = len;
3248 				adapter->fmp = mp; /* Store the first mbuf */
3249 				adapter->lmp = mp;
3250 			} else {
3251 				/*
3252 				 * Chain mbuf's together
3253 				 */
3254 
3255 				/*
3256 				 * Adjust length of previous mbuf in chain if
3257 				 * we received less than 4 bytes in the last
3258 				 * descriptor.
3259 				 */
3260 				if (prev_len_adj > 0) {
3261 					adapter->lmp->m_len -= prev_len_adj;
3262 					adapter->fmp->m_pkthdr.len -=
3263 					    prev_len_adj;
3264 				}
3265 				adapter->lmp->m_next = mp;
3266 				adapter->lmp = adapter->lmp->m_next;
3267 				adapter->fmp->m_pkthdr.len += len;
3268 			}
3269 
3270 			if (eop) {
3271 				adapter->fmp->m_pkthdr.rcvif = ifp;
3272 				ifp->if_ipackets++;
3273 
3274 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3275 					em_rxcsum(adapter, current_desc,
3276 						  adapter->fmp);
3277 				}
3278 
3279 				if (status & E1000_RXD_STAT_VP) {
3280 					adapter->fmp->m_pkthdr.ether_vlantag =
3281 					    (le16toh(current_desc->special) &
3282 					    E1000_RXD_SPC_VLAN_MASK);
3283 					adapter->fmp->m_flags |= M_VLANTAG;
3284 				}
3285 				m = adapter->fmp;
3286 				adapter->fmp = NULL;
3287 				adapter->lmp = NULL;
3288 			}
3289 		} else {
3290 			ifp->if_ierrors++;
3291 discard:
3292 #ifdef foo
3293 			/* Reuse loaded DMA map and just update mbuf chain */
3294 			mp = adapter->rx_buffer_area[i].m_head;
3295 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3296 			mp->m_data = mp->m_ext.ext_buf;
3297 			mp->m_next = NULL;
3298 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3299 				m_adj(mp, ETHER_ALIGN);
3300 #endif
3301 			if (adapter->fmp != NULL) {
3302 				m_freem(adapter->fmp);
3303 				adapter->fmp = NULL;
3304 				adapter->lmp = NULL;
3305 			}
3306 			m = NULL;
3307 		}
3308 
3309 		/* Zero out the receive descriptors status. */
3310 		current_desc->status = 0;
3311 
3312 		if (m != NULL)
3313 			ether_input_chain(ifp, m, NULL, chain);
3314 
3315 		/* Advance our pointers to the next descriptor. */
3316 		if (++i == adapter->num_rx_desc)
3317 			i = 0;
3318 		current_desc = &adapter->rx_desc_base[i];
3319 	}
3320 	adapter->next_rx_desc_to_check = i;
3321 
3322 	ether_input_dispatch(chain);
3323 
3324 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3325 	if (--i < 0)
3326 		i = adapter->num_rx_desc - 1;
3327 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3328 }
3329 
3330 static void
3331 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3332 	  struct mbuf *mp)
3333 {
3334 	/* 82543 or newer only */
3335 	if (adapter->hw.mac.type < e1000_82543 ||
3336 	    /* Ignore Checksum bit is set */
3337 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3338 		return;
3339 
3340 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3341 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3342 		/* IP Checksum Good */
3343 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3344 	}
3345 
3346 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3347 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3348 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3349 					   CSUM_PSEUDO_HDR |
3350 					   CSUM_FRAG_NOT_CHECKED;
3351 		mp->m_pkthdr.csum_data = htons(0xffff);
3352 	}
3353 }
3354 
3355 static void
3356 em_enable_intr(struct adapter *adapter)
3357 {
3358 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3359 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
3360 }
3361 
3362 static void
3363 em_disable_intr(struct adapter *adapter)
3364 {
3365 	uint32_t clear = 0xffffffff;
3366 
3367 	/*
3368 	 * The first version of 82542 had an errata where when link was forced
3369 	 * it would stay up even up even if the cable was disconnected.
3370 	 * Sequence errors were used to detect the disconnect and then the
3371 	 * driver would unforce the link.  This code in the in the ISR.  For
3372 	 * this to work correctly the Sequence error interrupt had to be
3373 	 * enabled all the time.
3374 	 */
3375 	if (adapter->hw.mac.type == e1000_82542 &&
3376 	    adapter->hw.revision_id == E1000_REVISION_2)
3377 		clear &= ~E1000_IMC_RXSEQ;
3378 
3379 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3380 
3381 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3382 }
3383 
3384 /*
3385  * Bit of a misnomer, what this really means is
3386  * to enable OS management of the system... aka
3387  * to disable special hardware management features
3388  */
3389 static void
3390 em_get_mgmt(struct adapter *adapter)
3391 {
3392 	/* A shared code workaround */
3393 #define E1000_82542_MANC2H E1000_MANC2H
3394 	if (adapter->has_manage) {
3395 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3396 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3397 
3398 		/* disable hardware interception of ARP */
3399 		manc &= ~(E1000_MANC_ARP_EN);
3400 
3401                 /* enable receiving management packets to the host */
3402                 if (adapter->hw.mac.type >= e1000_82571) {
3403 			manc |= E1000_MANC_EN_MNG2HOST;
3404 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3405 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3406 			manc2h |= E1000_MNG2HOST_PORT_623;
3407 			manc2h |= E1000_MNG2HOST_PORT_664;
3408 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3409 		}
3410 
3411 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3412 	}
3413 }
3414 
3415 /*
3416  * Give control back to hardware management
3417  * controller if there is one.
3418  */
3419 static void
3420 em_rel_mgmt(struct adapter *adapter)
3421 {
3422 	if (adapter->has_manage) {
3423 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3424 
3425 		/* re-enable hardware interception of ARP */
3426 		manc |= E1000_MANC_ARP_EN;
3427 
3428 		if (adapter->hw.mac.type >= e1000_82571)
3429 			manc &= ~E1000_MANC_EN_MNG2HOST;
3430 
3431 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3432 	}
3433 }
3434 
3435 /*
3436  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3437  * For ASF and Pass Through versions of f/w this means that
3438  * the driver is loaded.  For AMT version (only with 82573)
3439  * of the f/w this means that the network i/f is open.
3440  */
3441 static void
3442 em_get_hw_control(struct adapter *adapter)
3443 {
3444 	uint32_t ctrl_ext, swsm;
3445 
3446 	/* Let firmware know the driver has taken over */
3447 	switch (adapter->hw.mac.type) {
3448 	case e1000_82573:
3449 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3450 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3451 		    swsm | E1000_SWSM_DRV_LOAD);
3452 		break;
3453 	case e1000_82571:
3454 	case e1000_82572:
3455 	case e1000_80003es2lan:
3456 	case e1000_ich8lan:
3457 	case e1000_ich9lan:
3458 	case e1000_ich10lan:
3459 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3460 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3461 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3462 		break;
3463 	default:
3464 		break;
3465 	}
3466 }
3467 
3468 /*
3469  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3470  * For ASF and Pass Through versions of f/w this means that the
3471  * driver is no longer loaded.  For AMT version (only with 82573)
3472  * of the f/w this means that the network i/f is closed.
3473  */
3474 static void
3475 em_rel_hw_control(struct adapter *adapter)
3476 {
3477 	uint32_t ctrl_ext, swsm;
3478 
3479 	/* Let firmware taken over control of h/w */
3480 	switch (adapter->hw.mac.type) {
3481 	case e1000_82573:
3482 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3483 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3484 		    swsm & ~E1000_SWSM_DRV_LOAD);
3485 		break;
3486 
3487 	case e1000_82571:
3488 	case e1000_82572:
3489 	case e1000_80003es2lan:
3490 	case e1000_ich8lan:
3491 	case e1000_ich9lan:
3492 	case e1000_ich10lan:
3493 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3494 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3495 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3496 		break;
3497 
3498 	default:
3499 		break;
3500 	}
3501 }
3502 
3503 static int
3504 em_is_valid_eaddr(const uint8_t *addr)
3505 {
3506 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3507 
3508 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3509 		return (FALSE);
3510 
3511 	return (TRUE);
3512 }
3513 
3514 /*
3515  * Enable PCI Wake On Lan capability
3516  */
3517 void
3518 em_enable_wol(device_t dev)
3519 {
3520 	uint16_t cap, status;
3521 	uint8_t id;
3522 
3523 	/* First find the capabilities pointer*/
3524 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3525 
3526 	/* Read the PM Capabilities */
3527 	id = pci_read_config(dev, cap, 1);
3528 	if (id != PCIY_PMG)     /* Something wrong */
3529 		return;
3530 
3531 	/*
3532 	 * OK, we have the power capabilities,
3533 	 * so now get the status register
3534 	 */
3535 	cap += PCIR_POWER_STATUS;
3536 	status = pci_read_config(dev, cap, 2);
3537 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3538 	pci_write_config(dev, cap, status, 2);
3539 }
3540 
3541 
3542 /*
3543  * 82544 Coexistence issue workaround.
3544  *    There are 2 issues.
3545  *       1. Transmit Hang issue.
3546  *    To detect this issue, following equation can be used...
3547  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3548  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3549  *
3550  *       2. DAC issue.
3551  *    To detect this issue, following equation can be used...
3552  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3553  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3554  *
3555  *    WORKAROUND:
3556  *	  Make sure we do not have ending address
3557  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3558  */
3559 static uint32_t
3560 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3561 {
3562 	uint32_t safe_terminator;
3563 
3564 	/*
3565 	 * Since issue is sensitive to length and address.
3566 	 * Let us first check the address...
3567 	 */
3568 	if (length <= 4) {
3569 		desc_array->descriptor[0].address = address;
3570 		desc_array->descriptor[0].length = length;
3571 		desc_array->elements = 1;
3572 		return (desc_array->elements);
3573 	}
3574 
3575 	safe_terminator =
3576 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3577 
3578 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3579 	if (safe_terminator == 0 ||
3580 	    (safe_terminator > 4 && safe_terminator < 9) ||
3581 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3582 		desc_array->descriptor[0].address = address;
3583 		desc_array->descriptor[0].length = length;
3584 		desc_array->elements = 1;
3585 		return (desc_array->elements);
3586 	}
3587 
3588 	desc_array->descriptor[0].address = address;
3589 	desc_array->descriptor[0].length = length - 4;
3590 	desc_array->descriptor[1].address = address + (length - 4);
3591 	desc_array->descriptor[1].length = 4;
3592 	desc_array->elements = 2;
3593 	return (desc_array->elements);
3594 }
3595 
3596 static void
3597 em_update_stats(struct adapter *adapter)
3598 {
3599 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3600 
3601 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3602 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3603 		adapter->stats.symerrs +=
3604 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3605 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3606 	}
3607 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3608 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3609 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3610 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3611 
3612 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3613 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3614 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3615 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3616 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3617 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3618 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3619 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3620 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3621 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3622 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3623 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3624 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3625 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3626 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3627 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3628 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3629 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3630 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3631 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3632 
3633 	/* For the 64-bit byte counters the low dword must be read first. */
3634 	/* Both registers clear on the read of the high dword */
3635 
3636 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3637 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3638 
3639 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3640 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3641 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3642 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3643 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3644 
3645 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3646 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3647 
3648 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3649 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3650 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3651 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3652 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3653 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3654 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3655 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3656 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3657 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3658 
3659 	if (adapter->hw.mac.type >= e1000_82543) {
3660 		adapter->stats.algnerrc +=
3661 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3662 		adapter->stats.rxerrc +=
3663 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3664 		adapter->stats.tncrs +=
3665 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3666 		adapter->stats.cexterr +=
3667 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3668 		adapter->stats.tsctc +=
3669 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3670 		adapter->stats.tsctfc +=
3671 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3672 	}
3673 
3674 	ifp->if_collisions = adapter->stats.colc;
3675 
3676 	/* Rx Errors */
3677 	ifp->if_ierrors =
3678 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3679 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3680 	    adapter->stats.ruc + adapter->stats.roc +
3681 	    adapter->stats.mpc + adapter->stats.cexterr;
3682 
3683 	/* Tx Errors */
3684 	ifp->if_oerrors =
3685 	    adapter->stats.ecol + adapter->stats.latecol +
3686 	    adapter->watchdog_events;
3687 }
3688 
3689 static void
3690 em_print_debug_info(struct adapter *adapter)
3691 {
3692 	device_t dev = adapter->dev;
3693 	uint8_t *hw_addr = adapter->hw.hw_addr;
3694 
3695 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3696 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3697 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3698 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3699 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3700 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3701 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3702 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3703 	    adapter->hw.fc.high_water,
3704 	    adapter->hw.fc.low_water);
3705 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3706 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3707 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3708 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3709 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3710 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3711 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3712 	    (long long)adapter->tx_fifo_wrk_cnt,
3713 	    (long long)adapter->tx_fifo_reset_cnt);
3714 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3715 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3716 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3717 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3718 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3719 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3720 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3721 	    adapter->num_tx_desc_avail);
3722 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3723 	    adapter->no_tx_desc_avail1);
3724 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3725 	    adapter->no_tx_desc_avail2);
3726 	device_printf(dev, "Std mbuf failed = %ld\n",
3727 	    adapter->mbuf_alloc_failed);
3728 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3729 	    adapter->mbuf_cluster_failed);
3730 	device_printf(dev, "Driver dropped packets = %ld\n",
3731 	    adapter->dropped_pkts);
3732 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3733 	    adapter->no_tx_dma_setup);
3734 
3735 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3736 	    adapter->tx_csum_try_pullup);
3737 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3738 	    adapter->tx_csum_pullup1);
3739 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3740 	    adapter->tx_csum_pullup1_failed);
3741 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3742 	    adapter->tx_csum_pullup2);
3743 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3744 	    adapter->tx_csum_pullup2_failed);
3745 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3746 	    adapter->tx_csum_drop1);
3747 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3748 	    adapter->tx_csum_drop2);
3749 }
3750 
3751 static void
3752 em_print_hw_stats(struct adapter *adapter)
3753 {
3754 	device_t dev = adapter->dev;
3755 
3756 	device_printf(dev, "Excessive collisions = %lld\n",
3757 	    (long long)adapter->stats.ecol);
3758 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3759 	device_printf(dev, "Symbol errors = %lld\n",
3760 	    (long long)adapter->stats.symerrs);
3761 #endif
3762 	device_printf(dev, "Sequence errors = %lld\n",
3763 	    (long long)adapter->stats.sec);
3764 	device_printf(dev, "Defer count = %lld\n",
3765 	    (long long)adapter->stats.dc);
3766 	device_printf(dev, "Missed Packets = %lld\n",
3767 	    (long long)adapter->stats.mpc);
3768 	device_printf(dev, "Receive No Buffers = %lld\n",
3769 	    (long long)adapter->stats.rnbc);
3770 	/* RLEC is inaccurate on some hardware, calculate our own. */
3771 	device_printf(dev, "Receive Length Errors = %lld\n",
3772 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3773 	device_printf(dev, "Receive errors = %lld\n",
3774 	    (long long)adapter->stats.rxerrc);
3775 	device_printf(dev, "Crc errors = %lld\n",
3776 	    (long long)adapter->stats.crcerrs);
3777 	device_printf(dev, "Alignment errors = %lld\n",
3778 	    (long long)adapter->stats.algnerrc);
3779 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3780 	    (long long)adapter->stats.cexterr);
3781 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3782 	device_printf(dev, "watchdog timeouts = %ld\n",
3783 	    adapter->watchdog_events);
3784 	device_printf(dev, "XON Rcvd = %lld\n",
3785 	    (long long)adapter->stats.xonrxc);
3786 	device_printf(dev, "XON Xmtd = %lld\n",
3787 	    (long long)adapter->stats.xontxc);
3788 	device_printf(dev, "XOFF Rcvd = %lld\n",
3789 	    (long long)adapter->stats.xoffrxc);
3790 	device_printf(dev, "XOFF Xmtd = %lld\n",
3791 	    (long long)adapter->stats.xofftxc);
3792 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3793 	    (long long)adapter->stats.gprc);
3794 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3795 	    (long long)adapter->stats.gptc);
3796 }
3797 
3798 static void
3799 em_print_nvm_info(struct adapter *adapter)
3800 {
3801 	uint16_t eeprom_data;
3802 	int i, j, row = 0;
3803 
3804 	/* Its a bit crude, but it gets the job done */
3805 	kprintf("\nInterface EEPROM Dump:\n");
3806 	kprintf("Offset\n0x0000  ");
3807 	for (i = 0, j = 0; i < 32; i++, j++) {
3808 		if (j == 8) { /* Make the offset block */
3809 			j = 0; ++row;
3810 			kprintf("\n0x00%x0  ",row);
3811 		}
3812 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3813 		kprintf("%04x ", eeprom_data);
3814 	}
3815 	kprintf("\n");
3816 }
3817 
3818 static int
3819 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3820 {
3821 	struct adapter *adapter;
3822 	struct ifnet *ifp;
3823 	int error, result;
3824 
3825 	result = -1;
3826 	error = sysctl_handle_int(oidp, &result, 0, req);
3827 	if (error || !req->newptr)
3828 		return (error);
3829 
3830 	adapter = (struct adapter *)arg1;
3831 	ifp = &adapter->arpcom.ac_if;
3832 
3833 	lwkt_serialize_enter(ifp->if_serializer);
3834 
3835 	if (result == 1)
3836 		em_print_debug_info(adapter);
3837 
3838 	/*
3839 	 * This value will cause a hex dump of the
3840 	 * first 32 16-bit words of the EEPROM to
3841 	 * the screen.
3842 	 */
3843 	if (result == 2)
3844 		em_print_nvm_info(adapter);
3845 
3846 	lwkt_serialize_exit(ifp->if_serializer);
3847 
3848 	return (error);
3849 }
3850 
3851 static int
3852 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3853 {
3854 	int error, result;
3855 
3856 	result = -1;
3857 	error = sysctl_handle_int(oidp, &result, 0, req);
3858 	if (error || !req->newptr)
3859 		return (error);
3860 
3861 	if (result == 1) {
3862 		struct adapter *adapter = (struct adapter *)arg1;
3863 		struct ifnet *ifp = &adapter->arpcom.ac_if;
3864 
3865 		lwkt_serialize_enter(ifp->if_serializer);
3866 		em_print_hw_stats(adapter);
3867 		lwkt_serialize_exit(ifp->if_serializer);
3868 	}
3869 	return (error);
3870 }
3871 
3872 static void
3873 em_add_sysctl(struct adapter *adapter)
3874 {
3875 	sysctl_ctx_init(&adapter->sysctl_ctx);
3876 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
3877 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3878 					device_get_nameunit(adapter->dev),
3879 					CTLFLAG_RD, 0, "");
3880 	if (adapter->sysctl_tree == NULL) {
3881 		device_printf(adapter->dev, "can't add sysctl node\n");
3882 	} else {
3883 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3884 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3885 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3886 		    em_sysctl_debug_info, "I", "Debug Information");
3887 
3888 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3889 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3890 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3891 		    em_sysctl_stats, "I", "Statistics");
3892 
3893 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3894 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3895 		    OID_AUTO, "rxd", CTLFLAG_RD,
3896 		    &adapter->num_rx_desc, 0, NULL);
3897 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3898 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3899 		    OID_AUTO, "txd", CTLFLAG_RD,
3900 		    &adapter->num_tx_desc, 0, NULL);
3901 
3902 		if (adapter->hw.mac.type >= e1000_82540) {
3903 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3904 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
3905 			    OID_AUTO, "int_throttle_ceil",
3906 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3907 			    em_sysctl_int_throttle, "I",
3908 			    "interrupt throttling rate");
3909 		}
3910 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3911 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3912 		    OID_AUTO, "int_tx_nsegs",
3913 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3914 		    em_sysctl_int_tx_nsegs, "I",
3915 		    "# segments per TX interrupt");
3916 	}
3917 }
3918 
3919 static int
3920 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3921 {
3922 	struct adapter *adapter = (void *)arg1;
3923 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3924 	int error, throttle;
3925 
3926 	throttle = adapter->int_throttle_ceil;
3927 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3928 	if (error || req->newptr == NULL)
3929 		return error;
3930 	if (throttle < 0 || throttle > 1000000000 / 256)
3931 		return EINVAL;
3932 
3933 	if (throttle) {
3934 		/*
3935 		 * Set the interrupt throttling rate in 256ns increments,
3936 		 * recalculate sysctl value assignment to get exact frequency.
3937 		 */
3938 		throttle = 1000000000 / 256 / throttle;
3939 
3940 		/* Upper 16bits of ITR is reserved and should be zero */
3941 		if (throttle & 0xffff0000)
3942 			return EINVAL;
3943 	}
3944 
3945 	lwkt_serialize_enter(ifp->if_serializer);
3946 
3947 	if (throttle)
3948 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
3949 	else
3950 		adapter->int_throttle_ceil = 0;
3951 
3952 	if (ifp->if_flags & IFF_RUNNING)
3953 		E1000_WRITE_REG(&adapter->hw, E1000_ITR, throttle);
3954 
3955 	lwkt_serialize_exit(ifp->if_serializer);
3956 
3957 	if (bootverbose) {
3958 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3959 			  adapter->int_throttle_ceil);
3960 	}
3961 	return 0;
3962 }
3963 
3964 static int
3965 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3966 {
3967 	struct adapter *adapter = (void *)arg1;
3968 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3969 	int error, segs;
3970 
3971 	segs = adapter->tx_int_nsegs;
3972 	error = sysctl_handle_int(oidp, &segs, 0, req);
3973 	if (error || req->newptr == NULL)
3974 		return error;
3975 	if (segs <= 0)
3976 		return EINVAL;
3977 
3978 	lwkt_serialize_enter(ifp->if_serializer);
3979 
3980 	/*
3981 	 * Don't allow int_tx_nsegs to become:
3982 	 * o  Less the oact_tx_desc
3983 	 * o  Too large that no TX desc will cause TX interrupt to
3984 	 *    be generated (OACTIVE will never recover)
3985 	 * o  Too small that will cause tx_dd[] overflow
3986 	 */
3987 	if (segs < adapter->oact_tx_desc ||
3988 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
3989 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
3990 		error = EINVAL;
3991 	} else {
3992 		error = 0;
3993 		adapter->tx_int_nsegs = segs;
3994 	}
3995 
3996 	lwkt_serialize_exit(ifp->if_serializer);
3997 
3998 	return error;
3999 }
4000