xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 6ab64ab6)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2014, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
116 
117 #define DEBUG_HW 0
118 
119 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
120 #define EM_VER	" 7.4.2"
121 
122 #define _EM_DEVICE(id, ret)	\
123 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
125 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
127 
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 	EM_DEVICE(82540EM),
130 	EM_DEVICE(82540EM_LOM),
131 	EM_DEVICE(82540EP),
132 	EM_DEVICE(82540EP_LOM),
133 	EM_DEVICE(82540EP_LP),
134 
135 	EM_DEVICE(82541EI),
136 	EM_DEVICE(82541ER),
137 	EM_DEVICE(82541ER_LOM),
138 	EM_DEVICE(82541EI_MOBILE),
139 	EM_DEVICE(82541GI),
140 	EM_DEVICE(82541GI_LF),
141 	EM_DEVICE(82541GI_MOBILE),
142 
143 	EM_DEVICE(82542),
144 
145 	EM_DEVICE(82543GC_FIBER),
146 	EM_DEVICE(82543GC_COPPER),
147 
148 	EM_DEVICE(82544EI_COPPER),
149 	EM_DEVICE(82544EI_FIBER),
150 	EM_DEVICE(82544GC_COPPER),
151 	EM_DEVICE(82544GC_LOM),
152 
153 	EM_DEVICE(82545EM_COPPER),
154 	EM_DEVICE(82545EM_FIBER),
155 	EM_DEVICE(82545GM_COPPER),
156 	EM_DEVICE(82545GM_FIBER),
157 	EM_DEVICE(82545GM_SERDES),
158 
159 	EM_DEVICE(82546EB_COPPER),
160 	EM_DEVICE(82546EB_FIBER),
161 	EM_DEVICE(82546EB_QUAD_COPPER),
162 	EM_DEVICE(82546GB_COPPER),
163 	EM_DEVICE(82546GB_FIBER),
164 	EM_DEVICE(82546GB_SERDES),
165 	EM_DEVICE(82546GB_PCIE),
166 	EM_DEVICE(82546GB_QUAD_COPPER),
167 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 
169 	EM_DEVICE(82547EI),
170 	EM_DEVICE(82547EI_MOBILE),
171 	EM_DEVICE(82547GI),
172 
173 	EM_EMX_DEVICE(82571EB_COPPER),
174 	EM_EMX_DEVICE(82571EB_FIBER),
175 	EM_EMX_DEVICE(82571EB_SERDES),
176 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 
184 	EM_EMX_DEVICE(82572EI_COPPER),
185 	EM_EMX_DEVICE(82572EI_FIBER),
186 	EM_EMX_DEVICE(82572EI_SERDES),
187 	EM_EMX_DEVICE(82572EI),
188 
189 	EM_EMX_DEVICE(82573E),
190 	EM_EMX_DEVICE(82573E_IAMT),
191 	EM_EMX_DEVICE(82573L),
192 
193 	EM_DEVICE(82583V),
194 
195 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 
200 	EM_DEVICE(ICH8_IGP_M_AMT),
201 	EM_DEVICE(ICH8_IGP_AMT),
202 	EM_DEVICE(ICH8_IGP_C),
203 	EM_DEVICE(ICH8_IFE),
204 	EM_DEVICE(ICH8_IFE_GT),
205 	EM_DEVICE(ICH8_IFE_G),
206 	EM_DEVICE(ICH8_IGP_M),
207 	EM_DEVICE(ICH8_82567V_3),
208 
209 	EM_DEVICE(ICH9_IGP_M_AMT),
210 	EM_DEVICE(ICH9_IGP_AMT),
211 	EM_DEVICE(ICH9_IGP_C),
212 	EM_DEVICE(ICH9_IGP_M),
213 	EM_DEVICE(ICH9_IGP_M_V),
214 	EM_DEVICE(ICH9_IFE),
215 	EM_DEVICE(ICH9_IFE_GT),
216 	EM_DEVICE(ICH9_IFE_G),
217 	EM_DEVICE(ICH9_BM),
218 
219 	EM_EMX_DEVICE(82574L),
220 	EM_EMX_DEVICE(82574LA),
221 
222 	EM_DEVICE(ICH10_R_BM_LM),
223 	EM_DEVICE(ICH10_R_BM_LF),
224 	EM_DEVICE(ICH10_R_BM_V),
225 	EM_DEVICE(ICH10_D_BM_LM),
226 	EM_DEVICE(ICH10_D_BM_LF),
227 	EM_DEVICE(ICH10_D_BM_V),
228 
229 	EM_DEVICE(PCH_M_HV_LM),
230 	EM_DEVICE(PCH_M_HV_LC),
231 	EM_DEVICE(PCH_D_HV_DM),
232 	EM_DEVICE(PCH_D_HV_DC),
233 
234 	EM_DEVICE(PCH2_LV_LM),
235 	EM_DEVICE(PCH2_LV_V),
236 
237 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 	EM_EMX_DEVICE(PCH_LPT_I217_V),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 	EM_EMX_DEVICE(PCH_I218_LM2),
242 	EM_EMX_DEVICE(PCH_I218_V2),
243 	EM_EMX_DEVICE(PCH_I218_LM3),
244 	EM_EMX_DEVICE(PCH_I218_V3),
245 	EM_EMX_DEVICE(PCH_SPT_I219_LM),
246 	EM_EMX_DEVICE(PCH_SPT_I219_V),
247 	EM_EMX_DEVICE(PCH_SPT_I219_LM2),
248 	EM_EMX_DEVICE(PCH_SPT_I219_V2),
249 
250 	/* required last entry */
251 	EM_DEVICE_NULL
252 };
253 
254 static int	em_probe(device_t);
255 static int	em_attach(device_t);
256 static int	em_detach(device_t);
257 static int	em_shutdown(device_t);
258 static int	em_suspend(device_t);
259 static int	em_resume(device_t);
260 
261 static void	em_init(void *);
262 static void	em_stop(struct adapter *);
263 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
264 static void	em_start(struct ifnet *, struct ifaltq_subque *);
265 #ifdef IFPOLL_ENABLE
266 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
267 static void	em_npoll_compat(struct ifnet *, void *, int);
268 #endif
269 static void	em_watchdog(struct ifnet *);
270 static void	em_media_status(struct ifnet *, struct ifmediareq *);
271 static int	em_media_change(struct ifnet *);
272 static void	em_timer(void *);
273 
274 static void	em_intr(void *);
275 static void	em_intr_mask(void *);
276 static void	em_intr_body(struct adapter *, boolean_t);
277 static void	em_rxeof(struct adapter *, int);
278 static void	em_txeof(struct adapter *);
279 static void	em_tx_collect(struct adapter *);
280 static void	em_tx_purge(struct adapter *);
281 static void	em_enable_intr(struct adapter *);
282 static void	em_disable_intr(struct adapter *);
283 
284 static int	em_dma_malloc(struct adapter *, bus_size_t,
285 		    struct em_dma_alloc *);
286 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
287 static void	em_init_tx_ring(struct adapter *);
288 static int	em_init_rx_ring(struct adapter *);
289 static int	em_create_tx_ring(struct adapter *);
290 static int	em_create_rx_ring(struct adapter *);
291 static void	em_destroy_tx_ring(struct adapter *, int);
292 static void	em_destroy_rx_ring(struct adapter *, int);
293 static int	em_newbuf(struct adapter *, int, int);
294 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
295 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
296 		    struct mbuf *);
297 static int	em_txcsum(struct adapter *, struct mbuf *,
298 		    uint32_t *, uint32_t *);
299 static int	em_tso_pullup(struct adapter *, struct mbuf **);
300 static int	em_tso_setup(struct adapter *, struct mbuf *,
301 		    uint32_t *, uint32_t *);
302 
303 static int	em_get_hw_info(struct adapter *);
304 static int 	em_is_valid_eaddr(const uint8_t *);
305 static int	em_alloc_pci_res(struct adapter *);
306 static void	em_free_pci_res(struct adapter *);
307 static int	em_reset(struct adapter *);
308 static void	em_setup_ifp(struct adapter *);
309 static void	em_init_tx_unit(struct adapter *);
310 static void	em_init_rx_unit(struct adapter *);
311 static void	em_update_stats(struct adapter *);
312 static void	em_set_promisc(struct adapter *);
313 static void	em_disable_promisc(struct adapter *);
314 static void	em_set_multi(struct adapter *);
315 static void	em_update_link_status(struct adapter *);
316 static void	em_smartspeed(struct adapter *);
317 static void	em_set_itr(struct adapter *, uint32_t);
318 static void	em_disable_aspm(struct adapter *);
319 
320 /* Hardware workarounds */
321 static int	em_82547_fifo_workaround(struct adapter *, int);
322 static void	em_82547_update_fifo_head(struct adapter *, int);
323 static int	em_82547_tx_fifo_reset(struct adapter *);
324 static void	em_82547_move_tail(void *);
325 static void	em_82547_move_tail_serialized(struct adapter *);
326 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
327 
328 static void	em_print_debug_info(struct adapter *);
329 static void	em_print_nvm_info(struct adapter *);
330 static void	em_print_hw_stats(struct adapter *);
331 
332 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
333 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
334 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
335 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
336 static void	em_add_sysctl(struct adapter *adapter);
337 
338 /* Management and WOL Support */
339 static void	em_get_mgmt(struct adapter *);
340 static void	em_rel_mgmt(struct adapter *);
341 static void	em_get_hw_control(struct adapter *);
342 static void	em_rel_hw_control(struct adapter *);
343 static void	em_enable_wol(device_t);
344 
345 static device_method_t em_methods[] = {
346 	/* Device interface */
347 	DEVMETHOD(device_probe,		em_probe),
348 	DEVMETHOD(device_attach,	em_attach),
349 	DEVMETHOD(device_detach,	em_detach),
350 	DEVMETHOD(device_shutdown,	em_shutdown),
351 	DEVMETHOD(device_suspend,	em_suspend),
352 	DEVMETHOD(device_resume,	em_resume),
353 	DEVMETHOD_END
354 };
355 
356 static driver_t em_driver = {
357 	"em",
358 	em_methods,
359 	sizeof(struct adapter),
360 };
361 
362 static devclass_t em_devclass;
363 
364 DECLARE_DUMMY_MODULE(if_em);
365 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
366 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
367 
368 /*
369  * Tunables
370  */
371 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
372 static int	em_rxd = EM_DEFAULT_RXD;
373 static int	em_txd = EM_DEFAULT_TXD;
374 static int	em_smart_pwr_down = 0;
375 
376 /* Controls whether promiscuous also shows bad packets */
377 static int	em_debug_sbp = FALSE;
378 
379 static int	em_82573_workaround = 1;
380 static int	em_msi_enable = 1;
381 
382 static char	em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
383 
384 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
385 TUNABLE_INT("hw.em.rxd", &em_rxd);
386 TUNABLE_INT("hw.em.txd", &em_txd);
387 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
388 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
389 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
390 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
391 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
392 
393 /* Global used in WOL setup with multiport cards */
394 static int	em_global_quad_port_a = 0;
395 
396 /* Set this to one to display debug statistics */
397 static int	em_display_debug_stats = 0;
398 
399 #if !defined(KTR_IF_EM)
400 #define KTR_IF_EM	KTR_ALL
401 #endif
402 KTR_INFO_MASTER(if_em);
403 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
404 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
405 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
406 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
407 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
408 #define logif(name)	KTR_LOG(if_em_ ## name)
409 
410 static int
411 em_probe(device_t dev)
412 {
413 	const struct em_vendor_info *ent;
414 	uint16_t vid, did;
415 
416 	vid = pci_get_vendor(dev);
417 	did = pci_get_device(dev);
418 
419 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
420 		if (vid == ent->vendor_id && did == ent->device_id) {
421 			device_set_desc(dev, ent->desc);
422 			device_set_async_attach(dev, TRUE);
423 			return (ent->ret);
424 		}
425 	}
426 	return (ENXIO);
427 }
428 
429 static int
430 em_attach(device_t dev)
431 {
432 	struct adapter *adapter = device_get_softc(dev);
433 	struct ifnet *ifp = &adapter->arpcom.ac_if;
434 	int tsize, rsize;
435 	int error = 0;
436 	uint16_t eeprom_data, device_id, apme_mask;
437 	driver_intr_t *intr_func;
438 	char flowctrl[IFM_ETH_FC_STRLEN];
439 
440 	adapter->dev = adapter->osdep.dev = dev;
441 
442 	callout_init_mp(&adapter->timer);
443 	callout_init_mp(&adapter->tx_fifo_timer);
444 
445 	ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
446 	    em_media_change, em_media_status);
447 
448 	/* Determine hardware and mac info */
449 	error = em_get_hw_info(adapter);
450 	if (error) {
451 		device_printf(dev, "Identify hardware failed\n");
452 		goto fail;
453 	}
454 
455 	/* Setup PCI resources */
456 	error = em_alloc_pci_res(adapter);
457 	if (error) {
458 		device_printf(dev, "Allocation of PCI resources failed\n");
459 		goto fail;
460 	}
461 
462 	/*
463 	 * For ICH8 and family we need to map the flash memory,
464 	 * and this must happen after the MAC is identified.
465 	 *
466 	 * (SPT does not map the flash with a separate BAR)
467 	 */
468 	if (adapter->hw.mac.type == e1000_ich8lan ||
469 	    adapter->hw.mac.type == e1000_ich9lan ||
470 	    adapter->hw.mac.type == e1000_ich10lan ||
471 	    adapter->hw.mac.type == e1000_pchlan ||
472 	    adapter->hw.mac.type == e1000_pch2lan ||
473 	    adapter->hw.mac.type == e1000_pch_lpt) {
474 		adapter->flash_rid = EM_BAR_FLASH;
475 
476 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
477 					&adapter->flash_rid, RF_ACTIVE);
478 		if (adapter->flash == NULL) {
479 			device_printf(dev, "Mapping of Flash failed\n");
480 			error = ENXIO;
481 			goto fail;
482 		}
483 		adapter->osdep.flash_bus_space_tag =
484 		    rman_get_bustag(adapter->flash);
485 		adapter->osdep.flash_bus_space_handle =
486 		    rman_get_bushandle(adapter->flash);
487 
488 		/*
489 		 * This is used in the shared code
490 		 * XXX this goof is actually not used.
491 		 */
492 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
493 	}
494 
495 	switch (adapter->hw.mac.type) {
496 	case e1000_82571:
497 	case e1000_82572:
498 	case e1000_pch_lpt:
499 	case e1000_pch_spt:
500 		/*
501 		 * Pullup extra 4bytes into the first data segment for
502 		 * TSO, see:
503 		 * 82571/82572 specification update errata #7
504 		 *
505 		 * Same applies to I217 (and maybe I218 and I219).
506 		 *
507 		 * NOTE:
508 		 * 4bytes instead of 2bytes, which are mentioned in the
509 		 * errata, are pulled; mainly to keep rest of the data
510 		 * properly aligned.
511 		 */
512 		adapter->flags |= EM_FLAG_TSO_PULLEX;
513 		/* FALL THROUGH */
514 
515 	default:
516 		if (pci_is_pcie(dev))
517 			adapter->flags |= EM_FLAG_TSO;
518 		break;
519 	}
520 
521 	/* Do Shared Code initialization */
522 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
523 		device_printf(dev, "Setup of Shared code failed\n");
524 		error = ENXIO;
525 		goto fail;
526 	}
527 
528 	e1000_get_bus_info(&adapter->hw);
529 
530 	/*
531 	 * Validate number of transmit and receive descriptors.  It
532 	 * must not exceed hardware maximum, and must be multiple
533 	 * of E1000_DBA_ALIGN.
534 	 */
535 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
536 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
537 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
538 	    em_txd < EM_MIN_TXD) {
539 		if (adapter->hw.mac.type < e1000_82544)
540 			adapter->num_tx_desc = EM_MAX_TXD_82543;
541 		else
542 			adapter->num_tx_desc = EM_DEFAULT_TXD;
543 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
544 		    adapter->num_tx_desc, em_txd);
545 	} else {
546 		adapter->num_tx_desc = em_txd;
547 	}
548 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
549 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
550 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
551 	    em_rxd < EM_MIN_RXD) {
552 		if (adapter->hw.mac.type < e1000_82544)
553 			adapter->num_rx_desc = EM_MAX_RXD_82543;
554 		else
555 			adapter->num_rx_desc = EM_DEFAULT_RXD;
556 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
557 		    adapter->num_rx_desc, em_rxd);
558 	} else {
559 		adapter->num_rx_desc = em_rxd;
560 	}
561 
562 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
563 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
564 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
565 	adapter->rx_buffer_len = MCLBYTES;
566 
567 	/*
568 	 * Interrupt throttle rate
569 	 */
570 	if (em_int_throttle_ceil == 0) {
571 		adapter->int_throttle_ceil = 0;
572 	} else {
573 		int throttle = em_int_throttle_ceil;
574 
575 		if (throttle < 0)
576 			throttle = EM_DEFAULT_ITR;
577 
578 		/* Recalculate the tunable value to get the exact frequency. */
579 		throttle = 1000000000 / 256 / throttle;
580 
581 		/* Upper 16bits of ITR is reserved and should be zero */
582 		if (throttle & 0xffff0000)
583 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
584 
585 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
586 	}
587 
588 	e1000_init_script_state_82541(&adapter->hw, TRUE);
589 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
590 
591 	/* Copper options */
592 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
593 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
594 		adapter->hw.phy.disable_polarity_correction = FALSE;
595 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
596 	}
597 
598 	/* Set the frame limits assuming standard ethernet sized frames. */
599 	adapter->hw.mac.max_frame_size =
600 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
601 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
602 
603 	/* This controls when hardware reports transmit completion status. */
604 	adapter->hw.mac.report_tx_early = 1;
605 
606 	/*
607 	 * Create top level busdma tag
608 	 */
609 	error = bus_dma_tag_create(NULL, 1, 0,
610 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
611 			NULL, NULL,
612 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
613 			0, &adapter->parent_dtag);
614 	if (error) {
615 		device_printf(dev, "could not create top level DMA tag\n");
616 		goto fail;
617 	}
618 
619 	/*
620 	 * Allocate Transmit Descriptor ring
621 	 */
622 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
623 			 EM_DBA_ALIGN);
624 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
625 	if (error) {
626 		device_printf(dev, "Unable to allocate tx_desc memory\n");
627 		goto fail;
628 	}
629 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
630 
631 	/*
632 	 * Allocate Receive Descriptor ring
633 	 */
634 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
635 			 EM_DBA_ALIGN);
636 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
637 	if (error) {
638 		device_printf(dev, "Unable to allocate rx_desc memory\n");
639 		goto fail;
640 	}
641 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
642 
643 	/* Allocate multicast array memory. */
644 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
645 	    M_DEVBUF, M_WAITOK);
646 
647 	/* Indicate SOL/IDER usage */
648 	if (e1000_check_reset_block(&adapter->hw)) {
649 		device_printf(dev,
650 		    "PHY reset is blocked due to SOL/IDER session.\n");
651 	}
652 
653 	/* Disable EEE */
654 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
655 
656 	/*
657 	 * Start from a known state, this is important in reading the
658 	 * nvm and mac from that.
659 	 */
660 	e1000_reset_hw(&adapter->hw);
661 
662 	/* Make sure we have a good EEPROM before we read from it */
663 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
664 		/*
665 		 * Some PCI-E parts fail the first check due to
666 		 * the link being in sleep state, call it again,
667 		 * if it fails a second time its a real issue.
668 		 */
669 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
670 			device_printf(dev,
671 			    "The EEPROM Checksum Is Not Valid\n");
672 			error = EIO;
673 			goto fail;
674 		}
675 	}
676 
677 	/* Copy the permanent MAC address out of the EEPROM */
678 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
679 		device_printf(dev, "EEPROM read error while reading MAC"
680 		    " address\n");
681 		error = EIO;
682 		goto fail;
683 	}
684 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
685 		device_printf(dev, "Invalid MAC address\n");
686 		error = EIO;
687 		goto fail;
688 	}
689 
690 	/* Disable ULP support */
691 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
692 
693 	/* Allocate transmit descriptors and buffers */
694 	error = em_create_tx_ring(adapter);
695 	if (error) {
696 		device_printf(dev, "Could not setup transmit structures\n");
697 		goto fail;
698 	}
699 
700 	/* Allocate receive descriptors and buffers */
701 	error = em_create_rx_ring(adapter);
702 	if (error) {
703 		device_printf(dev, "Could not setup receive structures\n");
704 		goto fail;
705 	}
706 
707 	/* Manually turn off all interrupts */
708 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
709 
710 	/* Determine if we have to control management hardware */
711 	if (e1000_enable_mng_pass_thru(&adapter->hw))
712 		adapter->flags |= EM_FLAG_HAS_MGMT;
713 
714 	/*
715 	 * Setup Wake-on-Lan
716 	 */
717 	apme_mask = EM_EEPROM_APME;
718 	eeprom_data = 0;
719 	switch (adapter->hw.mac.type) {
720 	case e1000_82542:
721 	case e1000_82543:
722 		break;
723 
724 	case e1000_82573:
725 	case e1000_82583:
726 		adapter->flags |= EM_FLAG_HAS_AMT;
727 		/* FALL THROUGH */
728 
729 	case e1000_82546:
730 	case e1000_82546_rev_3:
731 	case e1000_82571:
732 	case e1000_82572:
733 	case e1000_80003es2lan:
734 		if (adapter->hw.bus.func == 1) {
735 			e1000_read_nvm(&adapter->hw,
736 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
737 		} else {
738 			e1000_read_nvm(&adapter->hw,
739 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
740 		}
741 		break;
742 
743 	case e1000_ich8lan:
744 	case e1000_ich9lan:
745 	case e1000_ich10lan:
746 	case e1000_pchlan:
747 	case e1000_pch2lan:
748 		apme_mask = E1000_WUC_APME;
749 		adapter->flags |= EM_FLAG_HAS_AMT;
750 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
751 		break;
752 
753 	default:
754 		e1000_read_nvm(&adapter->hw,
755 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
756 		break;
757 	}
758 	if (eeprom_data & apme_mask)
759 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
760 
761 	/*
762          * We have the eeprom settings, now apply the special cases
763          * where the eeprom may be wrong or the board won't support
764          * wake on lan on a particular port
765 	 */
766 	device_id = pci_get_device(dev);
767         switch (device_id) {
768 	case E1000_DEV_ID_82546GB_PCIE:
769 		adapter->wol = 0;
770 		break;
771 
772 	case E1000_DEV_ID_82546EB_FIBER:
773 	case E1000_DEV_ID_82546GB_FIBER:
774 	case E1000_DEV_ID_82571EB_FIBER:
775 		/*
776 		 * Wake events only supported on port A for dual fiber
777 		 * regardless of eeprom setting
778 		 */
779 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
780 		    E1000_STATUS_FUNC_1)
781 			adapter->wol = 0;
782 		break;
783 
784 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
785 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
786 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
787 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
788                 /* if quad port adapter, disable WoL on all but port A */
789 		if (em_global_quad_port_a != 0)
790 			adapter->wol = 0;
791 		/* Reset for multiple quad port adapters */
792 		if (++em_global_quad_port_a == 4)
793 			em_global_quad_port_a = 0;
794                 break;
795 	}
796 
797 	/* XXX disable wol */
798 	adapter->wol = 0;
799 
800 	/* Setup flow control. */
801 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
802 	    em_flowctrl);
803 	adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
804 	if (adapter->hw.mac.type == e1000_pchlan) {
805 		/* Only PAUSE reception is supported on PCH */
806 		adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
807 	}
808 
809 	/* Setup OS specific network interface */
810 	em_setup_ifp(adapter);
811 
812 	/* Add sysctl tree, must after em_setup_ifp() */
813 	em_add_sysctl(adapter);
814 
815 #ifdef IFPOLL_ENABLE
816 	/* Polling setup */
817 	ifpoll_compat_setup(&adapter->npoll,
818 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
819 	    device_get_unit(dev), ifp->if_serializer);
820 #endif
821 
822 	/* Reset the hardware */
823 	error = em_reset(adapter);
824 	if (error) {
825 		/*
826 		 * Some 82573 parts fail the first reset, call it again,
827 		 * if it fails a second time its a real issue.
828 		 */
829 		error = em_reset(adapter);
830 		if (error) {
831 			device_printf(dev, "Unable to reset the hardware\n");
832 			ether_ifdetach(ifp);
833 			goto fail;
834 		}
835 	}
836 
837 	/* Initialize statistics */
838 	em_update_stats(adapter);
839 
840 	adapter->hw.mac.get_link_status = 1;
841 	em_update_link_status(adapter);
842 
843 	/* Do we need workaround for 82544 PCI-X adapter? */
844 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
845 	    adapter->hw.mac.type == e1000_82544)
846 		adapter->pcix_82544 = TRUE;
847 	else
848 		adapter->pcix_82544 = FALSE;
849 
850 	if (adapter->pcix_82544) {
851 		/*
852 		 * 82544 on PCI-X may split one TX segment
853 		 * into two TX descs, so we double its number
854 		 * of spare TX desc here.
855 		 */
856 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
857 	} else {
858 		adapter->spare_tx_desc = EM_TX_SPARE;
859 	}
860 	if (adapter->flags & EM_FLAG_TSO)
861 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
862 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
863 
864 	/*
865 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
866 	 * and tx_int_nsegs:
867 	 * (spare_tx_desc + EM_TX_RESERVED) <=
868 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
869 	 */
870 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
871 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
872 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
873 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
874 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
875 
876 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
877 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
878 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
879 
880 	/* Non-AMT based hardware can now take control from firmware */
881 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
882 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
883 		em_get_hw_control(adapter);
884 
885 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
886 
887 	/*
888 	 * Missing Interrupt Following ICR read:
889 	 *
890 	 * 82571/82572 specification update errata #76
891 	 * 82573 specification update errata #31
892 	 * 82574 specification update errata #12
893 	 * 82583 specification update errata #4
894 	 */
895 	intr_func = em_intr;
896 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
897 	    (adapter->hw.mac.type == e1000_82571 ||
898 	     adapter->hw.mac.type == e1000_82572 ||
899 	     adapter->hw.mac.type == e1000_82573 ||
900 	     adapter->hw.mac.type == e1000_82574 ||
901 	     adapter->hw.mac.type == e1000_82583))
902 		intr_func = em_intr_mask;
903 
904 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
905 			       intr_func, adapter, &adapter->intr_tag,
906 			       ifp->if_serializer);
907 	if (error) {
908 		device_printf(dev, "Failed to register interrupt handler");
909 		ether_ifdetach(ifp);
910 		goto fail;
911 	}
912 	return (0);
913 fail:
914 	em_detach(dev);
915 	return (error);
916 }
917 
918 static int
919 em_detach(device_t dev)
920 {
921 	struct adapter *adapter = device_get_softc(dev);
922 
923 	if (device_is_attached(dev)) {
924 		struct ifnet *ifp = &adapter->arpcom.ac_if;
925 
926 		lwkt_serialize_enter(ifp->if_serializer);
927 
928 		em_stop(adapter);
929 
930 		e1000_phy_hw_reset(&adapter->hw);
931 
932 		em_rel_mgmt(adapter);
933 		em_rel_hw_control(adapter);
934 
935 		if (adapter->wol) {
936 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
937 					E1000_WUC_PME_EN);
938 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
939 			em_enable_wol(dev);
940 		}
941 
942 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
943 
944 		lwkt_serialize_exit(ifp->if_serializer);
945 
946 		ether_ifdetach(ifp);
947 	} else if (adapter->memory != NULL) {
948 		em_rel_hw_control(adapter);
949 	}
950 
951 	ifmedia_removeall(&adapter->media);
952 	bus_generic_detach(dev);
953 
954 	em_free_pci_res(adapter);
955 
956 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
957 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
958 
959 	/* Free Transmit Descriptor ring */
960 	if (adapter->tx_desc_base)
961 		em_dma_free(adapter, &adapter->txdma);
962 
963 	/* Free Receive Descriptor ring */
964 	if (adapter->rx_desc_base)
965 		em_dma_free(adapter, &adapter->rxdma);
966 
967 	/* Free top level busdma tag */
968 	if (adapter->parent_dtag != NULL)
969 		bus_dma_tag_destroy(adapter->parent_dtag);
970 
971 	if (adapter->mta != NULL)
972 		kfree(adapter->mta, M_DEVBUF);
973 
974 	return (0);
975 }
976 
977 static int
978 em_shutdown(device_t dev)
979 {
980 	return em_suspend(dev);
981 }
982 
983 static int
984 em_suspend(device_t dev)
985 {
986 	struct adapter *adapter = device_get_softc(dev);
987 	struct ifnet *ifp = &adapter->arpcom.ac_if;
988 
989 	lwkt_serialize_enter(ifp->if_serializer);
990 
991 	em_stop(adapter);
992 
993 	em_rel_mgmt(adapter);
994 	em_rel_hw_control(adapter);
995 
996 	if (adapter->wol) {
997 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
998 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
999 		em_enable_wol(dev);
1000 	}
1001 
1002 	lwkt_serialize_exit(ifp->if_serializer);
1003 
1004 	return bus_generic_suspend(dev);
1005 }
1006 
1007 static int
1008 em_resume(device_t dev)
1009 {
1010 	struct adapter *adapter = device_get_softc(dev);
1011 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1012 
1013 	lwkt_serialize_enter(ifp->if_serializer);
1014 
1015 	if (adapter->hw.mac.type == e1000_pch2lan)
1016 		e1000_resume_workarounds_pchlan(&adapter->hw);
1017 
1018 	em_init(adapter);
1019 	em_get_mgmt(adapter);
1020 	if_devstart(ifp);
1021 
1022 	lwkt_serialize_exit(ifp->if_serializer);
1023 
1024 	return bus_generic_resume(dev);
1025 }
1026 
1027 static void
1028 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1029 {
1030 	struct adapter *adapter = ifp->if_softc;
1031 	struct mbuf *m_head;
1032 	int idx = -1, nsegs = 0;
1033 
1034 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1035 	ASSERT_SERIALIZED(ifp->if_serializer);
1036 
1037 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1038 		return;
1039 
1040 	if (!adapter->link_active) {
1041 		ifq_purge(&ifp->if_snd);
1042 		return;
1043 	}
1044 
1045 	while (!ifq_is_empty(&ifp->if_snd)) {
1046 		/* Now do we at least have a minimal? */
1047 		if (EM_IS_OACTIVE(adapter)) {
1048 			em_tx_collect(adapter);
1049 			if (EM_IS_OACTIVE(adapter)) {
1050 				ifq_set_oactive(&ifp->if_snd);
1051 				adapter->no_tx_desc_avail1++;
1052 				break;
1053 			}
1054 		}
1055 
1056 		logif(pkt_txqueue);
1057 		m_head = ifq_dequeue(&ifp->if_snd);
1058 		if (m_head == NULL)
1059 			break;
1060 
1061 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1062 			IFNET_STAT_INC(ifp, oerrors, 1);
1063 			em_tx_collect(adapter);
1064 			continue;
1065 		}
1066 
1067 		/*
1068 		 * TX interrupt are aggressively aggregated, so increasing
1069 		 * opackets at TX interrupt time will make the opackets
1070 		 * statistics vastly inaccurate; we do the opackets increment
1071 		 * now.
1072 		 */
1073 		IFNET_STAT_INC(ifp, opackets, 1);
1074 
1075 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1076 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1077 			nsegs = 0;
1078 			idx = -1;
1079 		}
1080 
1081 		/* Send a copy of the frame to the BPF listener */
1082 		ETHER_BPF_MTAP(ifp, m_head);
1083 
1084 		/* Set timeout in case hardware has problems transmitting. */
1085 		ifp->if_timer = EM_TX_TIMEOUT;
1086 	}
1087 	if (idx >= 0)
1088 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1089 }
1090 
1091 static int
1092 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1093 {
1094 	struct adapter *adapter = ifp->if_softc;
1095 	struct ifreq *ifr = (struct ifreq *)data;
1096 	uint16_t eeprom_data = 0;
1097 	int max_frame_size, mask, reinit;
1098 	int error = 0;
1099 
1100 	ASSERT_SERIALIZED(ifp->if_serializer);
1101 
1102 	switch (command) {
1103 	case SIOCSIFMTU:
1104 		switch (adapter->hw.mac.type) {
1105 		case e1000_82573:
1106 			/*
1107 			 * 82573 only supports jumbo frames
1108 			 * if ASPM is disabled.
1109 			 */
1110 			e1000_read_nvm(&adapter->hw,
1111 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1112 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1113 				max_frame_size = ETHER_MAX_LEN;
1114 				break;
1115 			}
1116 			/* FALL THROUGH */
1117 
1118 		/* Limit Jumbo Frame size */
1119 		case e1000_82571:
1120 		case e1000_82572:
1121 		case e1000_ich9lan:
1122 		case e1000_ich10lan:
1123 		case e1000_pch2lan:
1124 		case e1000_pch_lpt:
1125 		case e1000_pch_spt:
1126 		case e1000_82574:
1127 		case e1000_82583:
1128 		case e1000_80003es2lan:
1129 			max_frame_size = 9234;
1130 			break;
1131 
1132 		case e1000_pchlan:
1133 			max_frame_size = 4096;
1134 			break;
1135 
1136 		/* Adapters that do not support jumbo frames */
1137 		case e1000_82542:
1138 		case e1000_ich8lan:
1139 			max_frame_size = ETHER_MAX_LEN;
1140 			break;
1141 
1142 		default:
1143 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1144 			break;
1145 		}
1146 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1147 		    ETHER_CRC_LEN) {
1148 			error = EINVAL;
1149 			break;
1150 		}
1151 
1152 		ifp->if_mtu = ifr->ifr_mtu;
1153 		adapter->hw.mac.max_frame_size =
1154 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1155 
1156 		if (ifp->if_flags & IFF_RUNNING)
1157 			em_init(adapter);
1158 		break;
1159 
1160 	case SIOCSIFFLAGS:
1161 		if (ifp->if_flags & IFF_UP) {
1162 			if ((ifp->if_flags & IFF_RUNNING)) {
1163 				if ((ifp->if_flags ^ adapter->if_flags) &
1164 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1165 					em_disable_promisc(adapter);
1166 					em_set_promisc(adapter);
1167 				}
1168 			} else {
1169 				em_init(adapter);
1170 			}
1171 		} else if (ifp->if_flags & IFF_RUNNING) {
1172 			em_stop(adapter);
1173 		}
1174 		adapter->if_flags = ifp->if_flags;
1175 		break;
1176 
1177 	case SIOCADDMULTI:
1178 	case SIOCDELMULTI:
1179 		if (ifp->if_flags & IFF_RUNNING) {
1180 			em_disable_intr(adapter);
1181 			em_set_multi(adapter);
1182 			if (adapter->hw.mac.type == e1000_82542 &&
1183 			    adapter->hw.revision_id == E1000_REVISION_2)
1184 				em_init_rx_unit(adapter);
1185 #ifdef IFPOLL_ENABLE
1186 			if (!(ifp->if_flags & IFF_NPOLLING))
1187 #endif
1188 				em_enable_intr(adapter);
1189 		}
1190 		break;
1191 
1192 	case SIOCSIFMEDIA:
1193 		/* Check SOL/IDER usage */
1194 		if (e1000_check_reset_block(&adapter->hw)) {
1195 			device_printf(adapter->dev, "Media change is"
1196 			    " blocked due to SOL/IDER session.\n");
1197 			break;
1198 		}
1199 		/* FALL THROUGH */
1200 
1201 	case SIOCGIFMEDIA:
1202 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1203 		break;
1204 
1205 	case SIOCSIFCAP:
1206 		reinit = 0;
1207 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1208 		if (mask & IFCAP_RXCSUM) {
1209 			ifp->if_capenable ^= IFCAP_RXCSUM;
1210 			reinit = 1;
1211 		}
1212 		if (mask & IFCAP_TXCSUM) {
1213 			ifp->if_capenable ^= IFCAP_TXCSUM;
1214 			if (ifp->if_capenable & IFCAP_TXCSUM)
1215 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1216 			else
1217 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1218 		}
1219 		if (mask & IFCAP_TSO) {
1220 			ifp->if_capenable ^= IFCAP_TSO;
1221 			if (ifp->if_capenable & IFCAP_TSO)
1222 				ifp->if_hwassist |= CSUM_TSO;
1223 			else
1224 				ifp->if_hwassist &= ~CSUM_TSO;
1225 		}
1226 		if (mask & IFCAP_VLAN_HWTAGGING) {
1227 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1228 			reinit = 1;
1229 		}
1230 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1231 			em_init(adapter);
1232 		break;
1233 
1234 	default:
1235 		error = ether_ioctl(ifp, command, data);
1236 		break;
1237 	}
1238 	return (error);
1239 }
1240 
1241 static void
1242 em_watchdog(struct ifnet *ifp)
1243 {
1244 	struct adapter *adapter = ifp->if_softc;
1245 
1246 	ASSERT_SERIALIZED(ifp->if_serializer);
1247 
1248 	/*
1249 	 * The timer is set to 5 every time start queues a packet.
1250 	 * Then txeof keeps resetting it as long as it cleans at
1251 	 * least one descriptor.
1252 	 * Finally, anytime all descriptors are clean the timer is
1253 	 * set to 0.
1254 	 */
1255 
1256 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1257 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1258 		/*
1259 		 * If we reach here, all TX jobs are completed and
1260 		 * the TX engine should have been idled for some time.
1261 		 * We don't need to call if_devstart() here.
1262 		 */
1263 		ifq_clr_oactive(&ifp->if_snd);
1264 		ifp->if_timer = 0;
1265 		return;
1266 	}
1267 
1268 	/*
1269 	 * If we are in this routine because of pause frames, then
1270 	 * don't reset the hardware.
1271 	 */
1272 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1273 	    E1000_STATUS_TXOFF) {
1274 		ifp->if_timer = EM_TX_TIMEOUT;
1275 		return;
1276 	}
1277 
1278 	if (e1000_check_for_link(&adapter->hw) == 0)
1279 		if_printf(ifp, "watchdog timeout -- resetting\n");
1280 
1281 	IFNET_STAT_INC(ifp, oerrors, 1);
1282 	adapter->watchdog_events++;
1283 
1284 	em_init(adapter);
1285 
1286 	if (!ifq_is_empty(&ifp->if_snd))
1287 		if_devstart(ifp);
1288 }
1289 
1290 static void
1291 em_init(void *xsc)
1292 {
1293 	struct adapter *adapter = xsc;
1294 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1295 	device_t dev = adapter->dev;
1296 
1297 	ASSERT_SERIALIZED(ifp->if_serializer);
1298 
1299 	em_stop(adapter);
1300 
1301 	/* Get the latest mac address, User can use a LAA */
1302         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1303 
1304 	/* Put the address into the Receive Address Array */
1305 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1306 
1307 	/*
1308 	 * With the 82571 adapter, RAR[0] may be overwritten
1309 	 * when the other port is reset, we make a duplicate
1310 	 * in RAR[14] for that eventuality, this assures
1311 	 * the interface continues to function.
1312 	 */
1313 	if (adapter->hw.mac.type == e1000_82571) {
1314 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1315 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1316 		    E1000_RAR_ENTRIES - 1);
1317 	}
1318 
1319 	/* Reset the hardware */
1320 	if (em_reset(adapter)) {
1321 		device_printf(dev, "Unable to reset the hardware\n");
1322 		/* XXX em_stop()? */
1323 		return;
1324 	}
1325 	em_update_link_status(adapter);
1326 
1327 	/* Setup VLAN support, basic and offload if available */
1328 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1329 
1330 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1331 		uint32_t ctrl;
1332 
1333 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1334 		ctrl |= E1000_CTRL_VME;
1335 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1336 	}
1337 
1338 	/* Configure for OS presence */
1339 	em_get_mgmt(adapter);
1340 
1341 	/* Prepare transmit descriptors and buffers */
1342 	em_init_tx_ring(adapter);
1343 	em_init_tx_unit(adapter);
1344 
1345 	/* Setup Multicast table */
1346 	em_set_multi(adapter);
1347 
1348 	/* Prepare receive descriptors and buffers */
1349 	if (em_init_rx_ring(adapter)) {
1350 		device_printf(dev, "Could not setup receive structures\n");
1351 		em_stop(adapter);
1352 		return;
1353 	}
1354 	em_init_rx_unit(adapter);
1355 
1356 	/* Don't lose promiscuous settings */
1357 	em_set_promisc(adapter);
1358 
1359 	ifp->if_flags |= IFF_RUNNING;
1360 	ifq_clr_oactive(&ifp->if_snd);
1361 
1362 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1363 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1364 
1365 	/* MSI/X configuration for 82574 */
1366 	if (adapter->hw.mac.type == e1000_82574) {
1367 		int tmp;
1368 
1369 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1370 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1371 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1372 		/*
1373 		 * XXX MSIX
1374 		 * Set the IVAR - interrupt vector routing.
1375 		 * Each nibble represents a vector, high bit
1376 		 * is enable, other 3 bits are the MSIX table
1377 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1378 		 * Link (other) to 2, hence the magic number.
1379 		 */
1380 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1381 	}
1382 
1383 #ifdef IFPOLL_ENABLE
1384 	/*
1385 	 * Only enable interrupts if we are not polling, make sure
1386 	 * they are off otherwise.
1387 	 */
1388 	if (ifp->if_flags & IFF_NPOLLING)
1389 		em_disable_intr(adapter);
1390 	else
1391 #endif /* IFPOLL_ENABLE */
1392 		em_enable_intr(adapter);
1393 
1394 	/* AMT based hardware can now take control from firmware */
1395 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1396 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1397 	    adapter->hw.mac.type >= e1000_82571)
1398 		em_get_hw_control(adapter);
1399 }
1400 
1401 #ifdef IFPOLL_ENABLE
1402 
1403 static void
1404 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1405 {
1406 	struct adapter *adapter = ifp->if_softc;
1407 
1408 	ASSERT_SERIALIZED(ifp->if_serializer);
1409 
1410 	if (adapter->npoll.ifpc_stcount-- == 0) {
1411 		uint32_t reg_icr;
1412 
1413 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1414 
1415 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1416 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1417 			callout_stop(&adapter->timer);
1418 			adapter->hw.mac.get_link_status = 1;
1419 			em_update_link_status(adapter);
1420 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1421 		}
1422 	}
1423 
1424 	em_rxeof(adapter, count);
1425 	em_txeof(adapter);
1426 
1427 	if (!ifq_is_empty(&ifp->if_snd))
1428 		if_devstart(ifp);
1429 }
1430 
1431 static void
1432 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1433 {
1434 	struct adapter *adapter = ifp->if_softc;
1435 
1436 	ASSERT_SERIALIZED(ifp->if_serializer);
1437 
1438 	if (info != NULL) {
1439 		int cpuid = adapter->npoll.ifpc_cpuid;
1440 
1441                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1442 		info->ifpi_rx[cpuid].arg = NULL;
1443 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1444 
1445 		if (ifp->if_flags & IFF_RUNNING)
1446 			em_disable_intr(adapter);
1447 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1448 	} else {
1449 		if (ifp->if_flags & IFF_RUNNING)
1450 			em_enable_intr(adapter);
1451 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1452 	}
1453 }
1454 
1455 #endif /* IFPOLL_ENABLE */
1456 
1457 static void
1458 em_intr(void *xsc)
1459 {
1460 	em_intr_body(xsc, TRUE);
1461 }
1462 
1463 static void
1464 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1465 {
1466 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1467 	uint32_t reg_icr;
1468 
1469 	logif(intr_beg);
1470 	ASSERT_SERIALIZED(ifp->if_serializer);
1471 
1472 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1473 
1474 	if (chk_asserted &&
1475 	    ((adapter->hw.mac.type >= e1000_82571 &&
1476 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1477 	     reg_icr == 0)) {
1478 		logif(intr_end);
1479 		return;
1480 	}
1481 
1482 	/*
1483 	 * XXX: some laptops trigger several spurious interrupts
1484 	 * on em(4) when in the resume cycle. The ICR register
1485 	 * reports all-ones value in this case. Processing such
1486 	 * interrupts would lead to a freeze. I don't know why.
1487 	 */
1488 	if (reg_icr == 0xffffffff) {
1489 		logif(intr_end);
1490 		return;
1491 	}
1492 
1493 	if (ifp->if_flags & IFF_RUNNING) {
1494 		if (reg_icr &
1495 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1496 			em_rxeof(adapter, -1);
1497 		if (reg_icr & E1000_ICR_TXDW) {
1498 			em_txeof(adapter);
1499 			if (!ifq_is_empty(&ifp->if_snd))
1500 				if_devstart(ifp);
1501 		}
1502 	}
1503 
1504 	/* Link status change */
1505 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1506 		callout_stop(&adapter->timer);
1507 		adapter->hw.mac.get_link_status = 1;
1508 		em_update_link_status(adapter);
1509 
1510 		/* Deal with TX cruft when link lost */
1511 		em_tx_purge(adapter);
1512 
1513 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1514 	}
1515 
1516 	if (reg_icr & E1000_ICR_RXO)
1517 		adapter->rx_overruns++;
1518 
1519 	logif(intr_end);
1520 }
1521 
1522 static void
1523 em_intr_mask(void *xsc)
1524 {
1525 	struct adapter *adapter = xsc;
1526 
1527 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1528 	/*
1529 	 * NOTE:
1530 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1531 	 * so don't check it.
1532 	 */
1533 	em_intr_body(adapter, FALSE);
1534 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1535 }
1536 
1537 static void
1538 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1539 {
1540 	struct adapter *adapter = ifp->if_softc;
1541 
1542 	ASSERT_SERIALIZED(ifp->if_serializer);
1543 
1544 	em_update_link_status(adapter);
1545 
1546 	ifmr->ifm_status = IFM_AVALID;
1547 	ifmr->ifm_active = IFM_ETHER;
1548 
1549 	if (!adapter->link_active) {
1550 		if (adapter->hw.mac.autoneg)
1551 			ifmr->ifm_active |= IFM_NONE;
1552 		else
1553 			ifmr->ifm_active = adapter->media.ifm_media;
1554 		return;
1555 	}
1556 
1557 	ifmr->ifm_status |= IFM_ACTIVE;
1558 	if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1559 		ifmr->ifm_active |= adapter->ifm_flowctrl;
1560 
1561 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1562 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1563 		u_char fiber_type = IFM_1000_SX;
1564 
1565 		if (adapter->hw.mac.type == e1000_82545)
1566 			fiber_type = IFM_1000_LX;
1567 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1568 	} else {
1569 		switch (adapter->link_speed) {
1570 		case 10:
1571 			ifmr->ifm_active |= IFM_10_T;
1572 			break;
1573 		case 100:
1574 			ifmr->ifm_active |= IFM_100_TX;
1575 			break;
1576 
1577 		case 1000:
1578 			ifmr->ifm_active |= IFM_1000_T;
1579 			break;
1580 		}
1581 		if (adapter->link_duplex == FULL_DUPLEX)
1582 			ifmr->ifm_active |= IFM_FDX;
1583 		else
1584 			ifmr->ifm_active |= IFM_HDX;
1585 	}
1586 	if (ifmr->ifm_active & IFM_FDX) {
1587 		ifmr->ifm_active |=
1588 		    e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1589 	}
1590 }
1591 
1592 static int
1593 em_media_change(struct ifnet *ifp)
1594 {
1595 	struct adapter *adapter = ifp->if_softc;
1596 	struct ifmedia *ifm = &adapter->media;
1597 
1598 	ASSERT_SERIALIZED(ifp->if_serializer);
1599 
1600 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1601 		return (EINVAL);
1602 
1603 	if (adapter->hw.mac.type == e1000_pchlan &&
1604 	    (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1605 		if (bootverbose)
1606 			if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1607 		return EINVAL;
1608 	}
1609 
1610 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1611 	case IFM_AUTO:
1612 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1613 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1614 		break;
1615 
1616 	case IFM_1000_LX:
1617 	case IFM_1000_SX:
1618 	case IFM_1000_T:
1619 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1620 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1621 		break;
1622 
1623 	case IFM_100_TX:
1624 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1625 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1626 		} else {
1627 			if (IFM_OPTIONS(ifm->ifm_media) &
1628 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1629 				if (bootverbose) {
1630 					if_printf(ifp, "Flow control is not "
1631 					    "allowed for half-duplex\n");
1632 				}
1633 				return EINVAL;
1634 			}
1635 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1636 		}
1637 		adapter->hw.mac.autoneg = FALSE;
1638 		adapter->hw.phy.autoneg_advertised = 0;
1639 		break;
1640 
1641 	case IFM_10_T:
1642 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1643 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1644 		} else {
1645 			if (IFM_OPTIONS(ifm->ifm_media) &
1646 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1647 				if (bootverbose) {
1648 					if_printf(ifp, "Flow control is not "
1649 					    "allowed for half-duplex\n");
1650 				}
1651 				return EINVAL;
1652 			}
1653 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1654 		}
1655 		adapter->hw.mac.autoneg = FALSE;
1656 		adapter->hw.phy.autoneg_advertised = 0;
1657 		break;
1658 
1659 	default:
1660 		if (bootverbose) {
1661 			if_printf(ifp, "Unsupported media type %d\n",
1662 			    IFM_SUBTYPE(ifm->ifm_media));
1663 		}
1664 		return EINVAL;
1665 	}
1666 	adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1667 
1668 	if (ifp->if_flags & IFF_RUNNING)
1669 		em_init(adapter);
1670 
1671 	return (0);
1672 }
1673 
1674 static int
1675 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1676     int *segs_used, int *idx)
1677 {
1678 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1679 	bus_dmamap_t map;
1680 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1681 	struct e1000_tx_desc *ctxd = NULL;
1682 	struct mbuf *m_head = *m_headp;
1683 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1684 	int maxsegs, nsegs, i, j, first, last = 0, error;
1685 
1686 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1687 		error = em_tso_pullup(adapter, m_headp);
1688 		if (error)
1689 			return error;
1690 		m_head = *m_headp;
1691 	}
1692 
1693 	txd_upper = txd_lower = 0;
1694 	txd_used = 0;
1695 
1696 	/*
1697 	 * Capture the first descriptor index, this descriptor
1698 	 * will have the index of the EOP which is the only one
1699 	 * that now gets a DONE bit writeback.
1700 	 */
1701 	first = adapter->next_avail_tx_desc;
1702 	tx_buffer = &adapter->tx_buffer_area[first];
1703 	tx_buffer_mapped = tx_buffer;
1704 	map = tx_buffer->map;
1705 
1706 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1707 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1708 		("not enough spare TX desc"));
1709 	if (adapter->pcix_82544) {
1710 		/* Half it; see the comment in em_attach() */
1711 		maxsegs >>= 1;
1712 	}
1713 	if (maxsegs > EM_MAX_SCATTER)
1714 		maxsegs = EM_MAX_SCATTER;
1715 
1716 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1717 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1718 	if (error) {
1719 		if (error == ENOBUFS)
1720 			adapter->mbuf_alloc_failed++;
1721 		else
1722 			adapter->no_tx_dma_setup++;
1723 
1724 		m_freem(*m_headp);
1725 		*m_headp = NULL;
1726 		return error;
1727 	}
1728         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1729 
1730 	m_head = *m_headp;
1731 	adapter->tx_nsegs += nsegs;
1732 	*segs_used += nsegs;
1733 
1734 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1735 		/* TSO will consume one TX desc */
1736 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1737 		adapter->tx_nsegs += i;
1738 		*segs_used += i;
1739 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1740 		/* TX csum offloading will consume one TX desc */
1741 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1742 		adapter->tx_nsegs += i;
1743 		*segs_used += i;
1744 	}
1745 
1746         /* Handle VLAN tag */
1747 	if (m_head->m_flags & M_VLANTAG) {
1748 		/* Set the vlan id. */
1749 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1750 		/* Tell hardware to add tag */
1751 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1752 	}
1753 
1754 	i = adapter->next_avail_tx_desc;
1755 
1756 	/* Set up our transmit descriptors */
1757 	for (j = 0; j < nsegs; j++) {
1758 		/* If adapter is 82544 and on PCIX bus */
1759 		if(adapter->pcix_82544) {
1760 			DESC_ARRAY desc_array;
1761 			uint32_t array_elements, counter;
1762 
1763 			/*
1764 			 * Check the Address and Length combination and
1765 			 * split the data accordingly
1766 			 */
1767 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1768 						segs[j].ds_len, &desc_array);
1769 			for (counter = 0; counter < array_elements; counter++) {
1770 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1771 
1772 				tx_buffer = &adapter->tx_buffer_area[i];
1773 				ctxd = &adapter->tx_desc_base[i];
1774 
1775 				ctxd->buffer_addr = htole64(
1776 				    desc_array.descriptor[counter].address);
1777 				ctxd->lower.data = htole32(
1778 				    E1000_TXD_CMD_IFCS | txd_lower |
1779 				    desc_array.descriptor[counter].length);
1780 				ctxd->upper.data = htole32(txd_upper);
1781 
1782 				last = i;
1783 				if (++i == adapter->num_tx_desc)
1784 					i = 0;
1785 
1786 				txd_used++;
1787                         }
1788 		} else {
1789 			tx_buffer = &adapter->tx_buffer_area[i];
1790 			ctxd = &adapter->tx_desc_base[i];
1791 
1792 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1793 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1794 						   txd_lower | segs[j].ds_len);
1795 			ctxd->upper.data = htole32(txd_upper);
1796 
1797 			last = i;
1798 			if (++i == adapter->num_tx_desc)
1799 				i = 0;
1800 		}
1801 	}
1802 
1803 	adapter->next_avail_tx_desc = i;
1804 	if (adapter->pcix_82544) {
1805 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1806 		adapter->num_tx_desc_avail -= txd_used;
1807 	} else {
1808 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1809 		adapter->num_tx_desc_avail -= nsegs;
1810 	}
1811 
1812 	tx_buffer->m_head = m_head;
1813 	tx_buffer_mapped->map = tx_buffer->map;
1814 	tx_buffer->map = map;
1815 
1816 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1817 		adapter->tx_nsegs = 0;
1818 
1819 		/*
1820 		 * Report Status (RS) is turned on
1821 		 * every tx_int_nsegs descriptors.
1822 		 */
1823 		cmd = E1000_TXD_CMD_RS;
1824 
1825 		/*
1826 		 * Keep track of the descriptor, which will
1827 		 * be written back by hardware.
1828 		 */
1829 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1830 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1831 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1832 	}
1833 
1834 	/*
1835 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1836 	 */
1837 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1838 
1839 	if (adapter->hw.mac.type == e1000_82547) {
1840 		/*
1841 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1842 		 * E1000 that this frame is available to transmit.
1843 		 */
1844 		if (adapter->link_duplex == HALF_DUPLEX) {
1845 			em_82547_move_tail_serialized(adapter);
1846 		} else {
1847 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1848 			em_82547_update_fifo_head(adapter,
1849 			    m_head->m_pkthdr.len);
1850 		}
1851 	} else {
1852 		/*
1853 		 * Defer TDT updating, until enough descriptors are setup
1854 		 */
1855 		*idx = i;
1856 	}
1857 	return (0);
1858 }
1859 
1860 /*
1861  * 82547 workaround to avoid controller hang in half-duplex environment.
1862  * The workaround is to avoid queuing a large packet that would span
1863  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1864  * in this case.  We do that only when FIFO is quiescent.
1865  */
1866 static void
1867 em_82547_move_tail_serialized(struct adapter *adapter)
1868 {
1869 	struct e1000_tx_desc *tx_desc;
1870 	uint16_t hw_tdt, sw_tdt, length = 0;
1871 	bool eop = 0;
1872 
1873 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1874 
1875 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1876 	sw_tdt = adapter->next_avail_tx_desc;
1877 
1878 	while (hw_tdt != sw_tdt) {
1879 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1880 		length += tx_desc->lower.flags.length;
1881 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1882 		if (++hw_tdt == adapter->num_tx_desc)
1883 			hw_tdt = 0;
1884 
1885 		if (eop) {
1886 			if (em_82547_fifo_workaround(adapter, length)) {
1887 				adapter->tx_fifo_wrk_cnt++;
1888 				callout_reset(&adapter->tx_fifo_timer, 1,
1889 					em_82547_move_tail, adapter);
1890 				break;
1891 			}
1892 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1893 			em_82547_update_fifo_head(adapter, length);
1894 			length = 0;
1895 		}
1896 	}
1897 }
1898 
1899 static void
1900 em_82547_move_tail(void *xsc)
1901 {
1902 	struct adapter *adapter = xsc;
1903 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1904 
1905 	lwkt_serialize_enter(ifp->if_serializer);
1906 	em_82547_move_tail_serialized(adapter);
1907 	lwkt_serialize_exit(ifp->if_serializer);
1908 }
1909 
1910 static int
1911 em_82547_fifo_workaround(struct adapter *adapter, int len)
1912 {
1913 	int fifo_space, fifo_pkt_len;
1914 
1915 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1916 
1917 	if (adapter->link_duplex == HALF_DUPLEX) {
1918 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1919 
1920 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1921 			if (em_82547_tx_fifo_reset(adapter))
1922 				return (0);
1923 			else
1924 				return (1);
1925 		}
1926 	}
1927 	return (0);
1928 }
1929 
1930 static void
1931 em_82547_update_fifo_head(struct adapter *adapter, int len)
1932 {
1933 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1934 
1935 	/* tx_fifo_head is always 16 byte aligned */
1936 	adapter->tx_fifo_head += fifo_pkt_len;
1937 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1938 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1939 }
1940 
1941 static int
1942 em_82547_tx_fifo_reset(struct adapter *adapter)
1943 {
1944 	uint32_t tctl;
1945 
1946 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1947 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1948 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1949 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1950 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1951 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1952 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1953 		/* Disable TX unit */
1954 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1955 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1956 		    tctl & ~E1000_TCTL_EN);
1957 
1958 		/* Reset FIFO pointers */
1959 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1960 		    adapter->tx_head_addr);
1961 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1962 		    adapter->tx_head_addr);
1963 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1964 		    adapter->tx_head_addr);
1965 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1966 		    adapter->tx_head_addr);
1967 
1968 		/* Re-enable TX unit */
1969 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1970 		E1000_WRITE_FLUSH(&adapter->hw);
1971 
1972 		adapter->tx_fifo_head = 0;
1973 		adapter->tx_fifo_reset_cnt++;
1974 
1975 		return (TRUE);
1976 	} else {
1977 		return (FALSE);
1978 	}
1979 }
1980 
1981 static void
1982 em_set_promisc(struct adapter *adapter)
1983 {
1984 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1985 	uint32_t reg_rctl;
1986 
1987 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1988 
1989 	if (ifp->if_flags & IFF_PROMISC) {
1990 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1991 		/* Turn this on if you want to see bad packets */
1992 		if (em_debug_sbp)
1993 			reg_rctl |= E1000_RCTL_SBP;
1994 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1995 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1996 		reg_rctl |= E1000_RCTL_MPE;
1997 		reg_rctl &= ~E1000_RCTL_UPE;
1998 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1999 	}
2000 }
2001 
2002 static void
2003 em_disable_promisc(struct adapter *adapter)
2004 {
2005 	uint32_t reg_rctl;
2006 
2007 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2008 
2009 	reg_rctl &= ~E1000_RCTL_UPE;
2010 	reg_rctl &= ~E1000_RCTL_MPE;
2011 	reg_rctl &= ~E1000_RCTL_SBP;
2012 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2013 }
2014 
2015 static void
2016 em_set_multi(struct adapter *adapter)
2017 {
2018 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2019 	struct ifmultiaddr *ifma;
2020 	uint32_t reg_rctl = 0;
2021 	uint8_t *mta;
2022 	int mcnt = 0;
2023 
2024 	mta = adapter->mta;
2025 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2026 
2027 	if (adapter->hw.mac.type == e1000_82542 &&
2028 	    adapter->hw.revision_id == E1000_REVISION_2) {
2029 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2030 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2031 			e1000_pci_clear_mwi(&adapter->hw);
2032 		reg_rctl |= E1000_RCTL_RST;
2033 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2034 		msec_delay(5);
2035 	}
2036 
2037 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2038 		if (ifma->ifma_addr->sa_family != AF_LINK)
2039 			continue;
2040 
2041 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2042 			break;
2043 
2044 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2045 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2046 		mcnt++;
2047 	}
2048 
2049 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2050 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2051 		reg_rctl |= E1000_RCTL_MPE;
2052 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2053 	} else {
2054 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2055 	}
2056 
2057 	if (adapter->hw.mac.type == e1000_82542 &&
2058 	    adapter->hw.revision_id == E1000_REVISION_2) {
2059 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2060 		reg_rctl &= ~E1000_RCTL_RST;
2061 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2062 		msec_delay(5);
2063 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2064 			e1000_pci_set_mwi(&adapter->hw);
2065 	}
2066 }
2067 
2068 /*
2069  * This routine checks for link status and updates statistics.
2070  */
2071 static void
2072 em_timer(void *xsc)
2073 {
2074 	struct adapter *adapter = xsc;
2075 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2076 
2077 	lwkt_serialize_enter(ifp->if_serializer);
2078 
2079 	em_update_link_status(adapter);
2080 	em_update_stats(adapter);
2081 
2082 	/* Reset LAA into RAR[0] on 82571 */
2083 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2084 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2085 
2086 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2087 		em_print_hw_stats(adapter);
2088 
2089 	em_smartspeed(adapter);
2090 
2091 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2092 
2093 	lwkt_serialize_exit(ifp->if_serializer);
2094 }
2095 
2096 static void
2097 em_update_link_status(struct adapter *adapter)
2098 {
2099 	struct e1000_hw *hw = &adapter->hw;
2100 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2101 	device_t dev = adapter->dev;
2102 	uint32_t link_check = 0;
2103 
2104 	/* Get the cached link value or read phy for real */
2105 	switch (hw->phy.media_type) {
2106 	case e1000_media_type_copper:
2107 		if (hw->mac.get_link_status) {
2108 			/* Do the work to read phy */
2109 			e1000_check_for_link(hw);
2110 			link_check = !hw->mac.get_link_status;
2111 			if (link_check) /* ESB2 fix */
2112 				e1000_cfg_on_link_up(hw);
2113 		} else {
2114 			link_check = TRUE;
2115 		}
2116 		break;
2117 
2118 	case e1000_media_type_fiber:
2119 		e1000_check_for_link(hw);
2120 		link_check =
2121 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2122 		break;
2123 
2124 	case e1000_media_type_internal_serdes:
2125 		e1000_check_for_link(hw);
2126 		link_check = adapter->hw.mac.serdes_has_link;
2127 		break;
2128 
2129 	case e1000_media_type_unknown:
2130 	default:
2131 		break;
2132 	}
2133 
2134 	/* Now check for a transition */
2135 	if (link_check && adapter->link_active == 0) {
2136 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2137 		    &adapter->link_duplex);
2138 
2139 		/*
2140 		 * Check if we should enable/disable SPEED_MODE bit on
2141 		 * 82571/82572
2142 		 */
2143 		if (adapter->link_speed != SPEED_1000 &&
2144 		    (hw->mac.type == e1000_82571 ||
2145 		     hw->mac.type == e1000_82572)) {
2146 			int tarc0;
2147 
2148 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2149 			tarc0 &= ~SPEED_MODE_BIT;
2150 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2151 		}
2152 		if (bootverbose) {
2153 			char flowctrl[IFM_ETH_FC_STRLEN];
2154 
2155 			e1000_fc2str(hw->fc.current_mode, flowctrl,
2156 			    sizeof(flowctrl));
2157 			device_printf(dev, "Link is up %d Mbps %s, "
2158 			    "Flow control: %s\n",
2159 			    adapter->link_speed,
2160 			    (adapter->link_duplex == FULL_DUPLEX) ?
2161 			    "Full Duplex" : "Half Duplex",
2162 			    flowctrl);
2163 		}
2164 		if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2165 			e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2166 		adapter->link_active = 1;
2167 		adapter->smartspeed = 0;
2168 		ifp->if_baudrate = adapter->link_speed * 1000000;
2169 		ifp->if_link_state = LINK_STATE_UP;
2170 		if_link_state_change(ifp);
2171 	} else if (!link_check && adapter->link_active == 1) {
2172 		ifp->if_baudrate = adapter->link_speed = 0;
2173 		adapter->link_duplex = 0;
2174 		if (bootverbose)
2175 			device_printf(dev, "Link is Down\n");
2176 		adapter->link_active = 0;
2177 #if 0
2178 		/* Link down, disable watchdog */
2179 		if->if_timer = 0;
2180 #endif
2181 		ifp->if_link_state = LINK_STATE_DOWN;
2182 		if_link_state_change(ifp);
2183 	}
2184 }
2185 
2186 static void
2187 em_stop(struct adapter *adapter)
2188 {
2189 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2190 	int i;
2191 
2192 	ASSERT_SERIALIZED(ifp->if_serializer);
2193 
2194 	em_disable_intr(adapter);
2195 
2196 	callout_stop(&adapter->timer);
2197 	callout_stop(&adapter->tx_fifo_timer);
2198 
2199 	ifp->if_flags &= ~IFF_RUNNING;
2200 	ifq_clr_oactive(&ifp->if_snd);
2201 	ifp->if_timer = 0;
2202 
2203 	e1000_reset_hw(&adapter->hw);
2204 	if (adapter->hw.mac.type >= e1000_82544)
2205 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2206 
2207 	for (i = 0; i < adapter->num_tx_desc; i++) {
2208 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2209 
2210 		if (tx_buffer->m_head != NULL) {
2211 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2212 			m_freem(tx_buffer->m_head);
2213 			tx_buffer->m_head = NULL;
2214 		}
2215 	}
2216 
2217 	for (i = 0; i < adapter->num_rx_desc; i++) {
2218 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2219 
2220 		if (rx_buffer->m_head != NULL) {
2221 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2222 			m_freem(rx_buffer->m_head);
2223 			rx_buffer->m_head = NULL;
2224 		}
2225 	}
2226 
2227 	if (adapter->fmp != NULL)
2228 		m_freem(adapter->fmp);
2229 	adapter->fmp = NULL;
2230 	adapter->lmp = NULL;
2231 
2232 	adapter->csum_flags = 0;
2233 	adapter->csum_lhlen = 0;
2234 	adapter->csum_iphlen = 0;
2235 	adapter->csum_thlen = 0;
2236 	adapter->csum_mss = 0;
2237 	adapter->csum_pktlen = 0;
2238 
2239 	adapter->tx_dd_head = 0;
2240 	adapter->tx_dd_tail = 0;
2241 	adapter->tx_nsegs = 0;
2242 }
2243 
2244 static int
2245 em_get_hw_info(struct adapter *adapter)
2246 {
2247 	device_t dev = adapter->dev;
2248 
2249 	/* Save off the information about this board */
2250 	adapter->hw.vendor_id = pci_get_vendor(dev);
2251 	adapter->hw.device_id = pci_get_device(dev);
2252 	adapter->hw.revision_id = pci_get_revid(dev);
2253 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2254 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2255 
2256 	/* Do Shared Code Init and Setup */
2257 	if (e1000_set_mac_type(&adapter->hw))
2258 		return ENXIO;
2259 	return 0;
2260 }
2261 
2262 static int
2263 em_alloc_pci_res(struct adapter *adapter)
2264 {
2265 	device_t dev = adapter->dev;
2266 	u_int intr_flags;
2267 	int val, rid, msi_enable;
2268 
2269 	/* Enable bus mastering */
2270 	pci_enable_busmaster(dev);
2271 
2272 	adapter->memory_rid = EM_BAR_MEM;
2273 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2274 				&adapter->memory_rid, RF_ACTIVE);
2275 	if (adapter->memory == NULL) {
2276 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2277 		return (ENXIO);
2278 	}
2279 	adapter->osdep.mem_bus_space_tag =
2280 	    rman_get_bustag(adapter->memory);
2281 	adapter->osdep.mem_bus_space_handle =
2282 	    rman_get_bushandle(adapter->memory);
2283 
2284 	/* XXX This is quite goofy, it is not actually used */
2285 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2286 
2287 	/* Only older adapters use IO mapping */
2288 	if (adapter->hw.mac.type > e1000_82543 &&
2289 	    adapter->hw.mac.type < e1000_82571) {
2290 		/* Figure our where our IO BAR is ? */
2291 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2292 			val = pci_read_config(dev, rid, 4);
2293 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2294 				adapter->io_rid = rid;
2295 				break;
2296 			}
2297 			rid += 4;
2298 			/* check for 64bit BAR */
2299 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2300 				rid += 4;
2301 		}
2302 		if (rid >= PCIR_CARDBUSCIS) {
2303 			device_printf(dev, "Unable to locate IO BAR\n");
2304 			return (ENXIO);
2305 		}
2306 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2307 					&adapter->io_rid, RF_ACTIVE);
2308 		if (adapter->ioport == NULL) {
2309 			device_printf(dev, "Unable to allocate bus resource: "
2310 			    "ioport\n");
2311 			return (ENXIO);
2312 		}
2313 		adapter->hw.io_base = 0;
2314 		adapter->osdep.io_bus_space_tag =
2315 		    rman_get_bustag(adapter->ioport);
2316 		adapter->osdep.io_bus_space_handle =
2317 		    rman_get_bushandle(adapter->ioport);
2318 	}
2319 
2320 	/*
2321 	 * Don't enable MSI-X on 82574, see:
2322 	 * 82574 specification update errata #15
2323 	 *
2324 	 * Don't enable MSI on PCI/PCI-X chips, see:
2325 	 * 82540 specification update errata #6
2326 	 * 82545 specification update errata #4
2327 	 *
2328 	 * Don't enable MSI on 82571/82572, see:
2329 	 * 82571/82572 specification update errata #63
2330 	 */
2331 	msi_enable = em_msi_enable;
2332 	if (msi_enable &&
2333 	    (!pci_is_pcie(dev) ||
2334 	     adapter->hw.mac.type == e1000_82571 ||
2335 	     adapter->hw.mac.type == e1000_82572))
2336 		msi_enable = 0;
2337 
2338 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2339 	    &adapter->intr_rid, &intr_flags);
2340 
2341 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2342 		int unshared;
2343 
2344 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2345 		if (!unshared) {
2346 			adapter->flags |= EM_FLAG_SHARED_INTR;
2347 			if (bootverbose)
2348 				device_printf(dev, "IRQ shared\n");
2349 		} else {
2350 			intr_flags &= ~RF_SHAREABLE;
2351 			if (bootverbose)
2352 				device_printf(dev, "IRQ unshared\n");
2353 		}
2354 	}
2355 
2356 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2357 	    &adapter->intr_rid, intr_flags);
2358 	if (adapter->intr_res == NULL) {
2359 		device_printf(dev, "Unable to allocate bus resource: "
2360 		    "interrupt\n");
2361 		return (ENXIO);
2362 	}
2363 
2364 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2365 	adapter->hw.back = &adapter->osdep;
2366 	return (0);
2367 }
2368 
2369 static void
2370 em_free_pci_res(struct adapter *adapter)
2371 {
2372 	device_t dev = adapter->dev;
2373 
2374 	if (adapter->intr_res != NULL) {
2375 		bus_release_resource(dev, SYS_RES_IRQ,
2376 		    adapter->intr_rid, adapter->intr_res);
2377 	}
2378 
2379 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2380 		pci_release_msi(dev);
2381 
2382 	if (adapter->memory != NULL) {
2383 		bus_release_resource(dev, SYS_RES_MEMORY,
2384 		    adapter->memory_rid, adapter->memory);
2385 	}
2386 
2387 	if (adapter->flash != NULL) {
2388 		bus_release_resource(dev, SYS_RES_MEMORY,
2389 		    adapter->flash_rid, adapter->flash);
2390 	}
2391 
2392 	if (adapter->ioport != NULL) {
2393 		bus_release_resource(dev, SYS_RES_IOPORT,
2394 		    adapter->io_rid, adapter->ioport);
2395 	}
2396 }
2397 
2398 static int
2399 em_reset(struct adapter *adapter)
2400 {
2401 	device_t dev = adapter->dev;
2402 	uint16_t rx_buffer_size;
2403 	uint32_t pba;
2404 
2405 	/* When hardware is reset, fifo_head is also reset */
2406 	adapter->tx_fifo_head = 0;
2407 
2408 	/* Set up smart power down as default off on newer adapters. */
2409 	if (!em_smart_pwr_down &&
2410 	    (adapter->hw.mac.type == e1000_82571 ||
2411 	     adapter->hw.mac.type == e1000_82572)) {
2412 		uint16_t phy_tmp = 0;
2413 
2414 		/* Speed up time to link by disabling smart power down. */
2415 		e1000_read_phy_reg(&adapter->hw,
2416 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2417 		phy_tmp &= ~IGP02E1000_PM_SPD;
2418 		e1000_write_phy_reg(&adapter->hw,
2419 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2420 	}
2421 
2422 	/*
2423 	 * Packet Buffer Allocation (PBA)
2424 	 * Writing PBA sets the receive portion of the buffer
2425 	 * the remainder is used for the transmit buffer.
2426 	 *
2427 	 * Devices before the 82547 had a Packet Buffer of 64K.
2428 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2429 	 * After the 82547 the buffer was reduced to 40K.
2430 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2431 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2432 	 */
2433 	switch (adapter->hw.mac.type) {
2434 	case e1000_82547:
2435 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2436 		if (adapter->hw.mac.max_frame_size > 8192)
2437 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2438 		else
2439 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2440 		adapter->tx_fifo_head = 0;
2441 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2442 		adapter->tx_fifo_size =
2443 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2444 		break;
2445 
2446 	/* Total Packet Buffer on these is 48K */
2447 	case e1000_82571:
2448 	case e1000_82572:
2449 	case e1000_80003es2lan:
2450 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2451 		break;
2452 
2453 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2454 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2455 		break;
2456 
2457 	case e1000_82574:
2458 	case e1000_82583:
2459 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2460 		break;
2461 
2462 	case e1000_ich8lan:
2463 		pba = E1000_PBA_8K;
2464 		break;
2465 
2466 	case e1000_ich9lan:
2467 	case e1000_ich10lan:
2468 #define E1000_PBA_10K	0x000A
2469 		pba = E1000_PBA_10K;
2470 		break;
2471 
2472 	case e1000_pchlan:
2473 	case e1000_pch2lan:
2474 	case e1000_pch_lpt:
2475 	case e1000_pch_spt:
2476 		pba = E1000_PBA_26K;
2477 		break;
2478 
2479 	default:
2480 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2481 		if (adapter->hw.mac.max_frame_size > 8192)
2482 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2483 		else
2484 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2485 	}
2486 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2487 
2488 	/*
2489 	 * These parameters control the automatic generation (Tx) and
2490 	 * response (Rx) to Ethernet PAUSE frames.
2491 	 * - High water mark should allow for at least two frames to be
2492 	 *   received after sending an XOFF.
2493 	 * - Low water mark works best when it is very near the high water mark.
2494 	 *   This allows the receiver to restart by sending XON when it has
2495 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2496 	 *   restart after one full frame is pulled from the buffer. There
2497 	 *   could be several smaller frames in the buffer and if so they will
2498 	 *   not trigger the XON until their total number reduces the buffer
2499 	 *   by 1500.
2500 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2501 	 */
2502 	rx_buffer_size =
2503 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2504 
2505 	adapter->hw.fc.high_water = rx_buffer_size -
2506 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2507 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2508 
2509 	if (adapter->hw.mac.type == e1000_80003es2lan)
2510 		adapter->hw.fc.pause_time = 0xFFFF;
2511 	else
2512 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2513 
2514 	adapter->hw.fc.send_xon = TRUE;
2515 
2516 	adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2517 
2518 	/*
2519 	 * Device specific overrides/settings
2520 	 */
2521 	switch (adapter->hw.mac.type) {
2522 	case e1000_pchlan:
2523 		KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2524 		    adapter->hw.fc.requested_mode == e1000_fc_none,
2525 		    ("unsupported flow control on PCH %d",
2526 		     adapter->hw.fc.requested_mode));
2527 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2528 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2529 			adapter->hw.fc.high_water = 0x3500;
2530 			adapter->hw.fc.low_water = 0x1500;
2531 		} else {
2532 			adapter->hw.fc.high_water = 0x5000;
2533 			adapter->hw.fc.low_water = 0x3000;
2534 		}
2535 		adapter->hw.fc.refresh_time = 0x1000;
2536 		break;
2537 
2538 	case e1000_pch2lan:
2539 	case e1000_pch_lpt:
2540 	case e1000_pch_spt:
2541 		adapter->hw.fc.high_water = 0x5C20;
2542 		adapter->hw.fc.low_water = 0x5048;
2543 		adapter->hw.fc.pause_time = 0x0650;
2544 		adapter->hw.fc.refresh_time = 0x0400;
2545 		/* Jumbos need adjusted PBA */
2546 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2547 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2548 		else
2549 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2550 		break;
2551 
2552 	case e1000_ich9lan:
2553 	case e1000_ich10lan:
2554 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2555 			adapter->hw.fc.high_water = 0x2800;
2556 			adapter->hw.fc.low_water =
2557 			    adapter->hw.fc.high_water - 8;
2558 			break;
2559 		}
2560 		/* FALL THROUGH */
2561 	default:
2562 		if (adapter->hw.mac.type == e1000_80003es2lan)
2563 			adapter->hw.fc.pause_time = 0xFFFF;
2564 		break;
2565 	}
2566 
2567 	/* Issue a global reset */
2568 	e1000_reset_hw(&adapter->hw);
2569 	if (adapter->hw.mac.type >= e1000_82544)
2570 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2571 	em_disable_aspm(adapter);
2572 
2573 	if (e1000_init_hw(&adapter->hw) < 0) {
2574 		device_printf(dev, "Hardware Initialization Failed\n");
2575 		return (EIO);
2576 	}
2577 
2578 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2579 	e1000_get_phy_info(&adapter->hw);
2580 	e1000_check_for_link(&adapter->hw);
2581 
2582 	return (0);
2583 }
2584 
2585 static void
2586 em_setup_ifp(struct adapter *adapter)
2587 {
2588 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2589 
2590 	if_initname(ifp, device_get_name(adapter->dev),
2591 		    device_get_unit(adapter->dev));
2592 	ifp->if_softc = adapter;
2593 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2594 	ifp->if_init =  em_init;
2595 	ifp->if_ioctl = em_ioctl;
2596 	ifp->if_start = em_start;
2597 #ifdef IFPOLL_ENABLE
2598 	ifp->if_npoll = em_npoll;
2599 #endif
2600 	ifp->if_watchdog = em_watchdog;
2601 	ifp->if_nmbclusters = adapter->num_rx_desc;
2602 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2603 	ifq_set_ready(&ifp->if_snd);
2604 
2605 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2606 
2607 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2608 	if (adapter->hw.mac.type >= e1000_82543)
2609 		ifp->if_capabilities |= IFCAP_HWCSUM;
2610 	if (adapter->flags & EM_FLAG_TSO)
2611 		ifp->if_capabilities |= IFCAP_TSO;
2612 	ifp->if_capenable = ifp->if_capabilities;
2613 
2614 	if (ifp->if_capenable & IFCAP_TXCSUM)
2615 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2616 	if (ifp->if_capenable & IFCAP_TSO)
2617 		ifp->if_hwassist |= CSUM_TSO;
2618 
2619 	/*
2620 	 * Tell the upper layer(s) we support long frames.
2621 	 */
2622 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2623 
2624 	/*
2625 	 * Specify the media types supported by this adapter and register
2626 	 * callbacks to update media and link information
2627 	 */
2628 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2629 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2630 		u_char fiber_type = IFM_1000_SX; /* default type */
2631 
2632 		if (adapter->hw.mac.type == e1000_82545)
2633 			fiber_type = IFM_1000_LX;
2634 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2635 			    0, NULL);
2636 	} else {
2637 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2638 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2639 			    0, NULL);
2640 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2641 			    0, NULL);
2642 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2643 			    0, NULL);
2644 		if (adapter->hw.phy.type != e1000_phy_ife) {
2645 			ifmedia_add(&adapter->media,
2646 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2647 		}
2648 	}
2649 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2650 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2651 	    adapter->ifm_flowctrl);
2652 }
2653 
2654 
2655 /*
2656  * Workaround for SmartSpeed on 82541 and 82547 controllers
2657  */
2658 static void
2659 em_smartspeed(struct adapter *adapter)
2660 {
2661 	uint16_t phy_tmp;
2662 
2663 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2664 	    adapter->hw.mac.autoneg == 0 ||
2665 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2666 		return;
2667 
2668 	if (adapter->smartspeed == 0) {
2669 		/*
2670 		 * If Master/Slave config fault is asserted twice,
2671 		 * we assume back-to-back
2672 		 */
2673 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2674 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2675 			return;
2676 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2677 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2678 			e1000_read_phy_reg(&adapter->hw,
2679 			    PHY_1000T_CTRL, &phy_tmp);
2680 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2681 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2682 				e1000_write_phy_reg(&adapter->hw,
2683 				    PHY_1000T_CTRL, phy_tmp);
2684 				adapter->smartspeed++;
2685 				if (adapter->hw.mac.autoneg &&
2686 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2687 				    !e1000_read_phy_reg(&adapter->hw,
2688 				     PHY_CONTROL, &phy_tmp)) {
2689 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2690 						   MII_CR_RESTART_AUTO_NEG;
2691 					e1000_write_phy_reg(&adapter->hw,
2692 					    PHY_CONTROL, phy_tmp);
2693 				}
2694 			}
2695 		}
2696 		return;
2697 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2698 		/* If still no link, perhaps using 2/3 pair cable */
2699 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2700 		phy_tmp |= CR_1000T_MS_ENABLE;
2701 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2702 		if (adapter->hw.mac.autoneg &&
2703 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2704 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2705 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2706 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2707 		}
2708 	}
2709 
2710 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2711 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2712 		adapter->smartspeed = 0;
2713 }
2714 
2715 static int
2716 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2717 	      struct em_dma_alloc *dma)
2718 {
2719 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2720 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2721 				&dma->dma_tag, &dma->dma_map,
2722 				&dma->dma_paddr);
2723 	if (dma->dma_vaddr == NULL)
2724 		return ENOMEM;
2725 	else
2726 		return 0;
2727 }
2728 
2729 static void
2730 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2731 {
2732 	if (dma->dma_tag == NULL)
2733 		return;
2734 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2735 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2736 	bus_dma_tag_destroy(dma->dma_tag);
2737 }
2738 
2739 static int
2740 em_create_tx_ring(struct adapter *adapter)
2741 {
2742 	device_t dev = adapter->dev;
2743 	struct em_buffer *tx_buffer;
2744 	int error, i;
2745 
2746 	adapter->tx_buffer_area =
2747 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2748 			M_DEVBUF, M_WAITOK | M_ZERO);
2749 
2750 	/*
2751 	 * Create DMA tags for tx buffers
2752 	 */
2753 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2754 			1, 0,			/* alignment, bounds */
2755 			BUS_SPACE_MAXADDR,	/* lowaddr */
2756 			BUS_SPACE_MAXADDR,	/* highaddr */
2757 			NULL, NULL,		/* filter, filterarg */
2758 			EM_TSO_SIZE,		/* maxsize */
2759 			EM_MAX_SCATTER,		/* nsegments */
2760 			PAGE_SIZE,		/* maxsegsize */
2761 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2762 			BUS_DMA_ONEBPAGE,	/* flags */
2763 			&adapter->txtag);
2764 	if (error) {
2765 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2766 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2767 		adapter->tx_buffer_area = NULL;
2768 		return error;
2769 	}
2770 
2771 	/*
2772 	 * Create DMA maps for tx buffers
2773 	 */
2774 	for (i = 0; i < adapter->num_tx_desc; i++) {
2775 		tx_buffer = &adapter->tx_buffer_area[i];
2776 
2777 		error = bus_dmamap_create(adapter->txtag,
2778 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2779 					  &tx_buffer->map);
2780 		if (error) {
2781 			device_printf(dev, "Unable to create TX DMA map\n");
2782 			em_destroy_tx_ring(adapter, i);
2783 			return error;
2784 		}
2785 	}
2786 	return (0);
2787 }
2788 
2789 static void
2790 em_init_tx_ring(struct adapter *adapter)
2791 {
2792 	/* Clear the old ring contents */
2793 	bzero(adapter->tx_desc_base,
2794 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2795 
2796 	/* Reset state */
2797 	adapter->next_avail_tx_desc = 0;
2798 	adapter->next_tx_to_clean = 0;
2799 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2800 }
2801 
2802 static void
2803 em_init_tx_unit(struct adapter *adapter)
2804 {
2805 	uint32_t tctl, tarc, tipg = 0;
2806 	uint64_t bus_addr;
2807 
2808 	/* Setup the Base and Length of the Tx Descriptor Ring */
2809 	bus_addr = adapter->txdma.dma_paddr;
2810 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2811 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2812 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2813 	    (uint32_t)(bus_addr >> 32));
2814 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2815 	    (uint32_t)bus_addr);
2816 	/* Setup the HW Tx Head and Tail descriptor pointers */
2817 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2818 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2819 
2820 	/* Set the default values for the Tx Inter Packet Gap timer */
2821 	switch (adapter->hw.mac.type) {
2822 	case e1000_82542:
2823 		tipg = DEFAULT_82542_TIPG_IPGT;
2824 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2825 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2826 		break;
2827 
2828 	case e1000_80003es2lan:
2829 		tipg = DEFAULT_82543_TIPG_IPGR1;
2830 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2831 		    E1000_TIPG_IPGR2_SHIFT;
2832 		break;
2833 
2834 	default:
2835 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2836 		    adapter->hw.phy.media_type ==
2837 		    e1000_media_type_internal_serdes)
2838 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2839 		else
2840 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2841 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2842 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2843 		break;
2844 	}
2845 
2846 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2847 
2848 	/* NOTE: 0 is not allowed for TIDV */
2849 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2850 	if(adapter->hw.mac.type >= e1000_82540)
2851 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2852 
2853 	if (adapter->hw.mac.type == e1000_82571 ||
2854 	    adapter->hw.mac.type == e1000_82572) {
2855 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2856 		tarc |= SPEED_MODE_BIT;
2857 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2858 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2859 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2860 		tarc |= 1;
2861 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2862 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2863 		tarc |= 1;
2864 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2865 	}
2866 
2867 	/* Program the Transmit Control Register */
2868 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2869 	tctl &= ~E1000_TCTL_CT;
2870 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2871 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2872 
2873 	if (adapter->hw.mac.type >= e1000_82571)
2874 		tctl |= E1000_TCTL_MULR;
2875 
2876 	/* This write will effectively turn on the transmit unit. */
2877 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2878 
2879 	if (adapter->hw.mac.type == e1000_82571 ||
2880 	    adapter->hw.mac.type == e1000_82572 ||
2881 	    adapter->hw.mac.type == e1000_80003es2lan) {
2882 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2883 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2884 		tarc &= ~(1 << 28);
2885 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2886 	}
2887 }
2888 
2889 static void
2890 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2891 {
2892 	struct em_buffer *tx_buffer;
2893 	int i;
2894 
2895 	if (adapter->tx_buffer_area == NULL)
2896 		return;
2897 
2898 	for (i = 0; i < ndesc; i++) {
2899 		tx_buffer = &adapter->tx_buffer_area[i];
2900 
2901 		KKASSERT(tx_buffer->m_head == NULL);
2902 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2903 	}
2904 	bus_dma_tag_destroy(adapter->txtag);
2905 
2906 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2907 	adapter->tx_buffer_area = NULL;
2908 }
2909 
2910 /*
2911  * The offload context needs to be set when we transfer the first
2912  * packet of a particular protocol (TCP/UDP).  This routine has been
2913  * enhanced to deal with inserted VLAN headers.
2914  *
2915  * If the new packet's ether header length, ip header length and
2916  * csum offloading type are same as the previous packet, we should
2917  * avoid allocating a new csum context descriptor; mainly to take
2918  * advantage of the pipeline effect of the TX data read request.
2919  *
2920  * This function returns number of TX descrptors allocated for
2921  * csum context.
2922  */
2923 static int
2924 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2925 	  uint32_t *txd_upper, uint32_t *txd_lower)
2926 {
2927 	struct e1000_context_desc *TXD;
2928 	int curr_txd, ehdrlen, csum_flags;
2929 	uint32_t cmd, hdr_len, ip_hlen;
2930 
2931 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2932 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2933 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2934 
2935 	if (adapter->csum_lhlen == ehdrlen &&
2936 	    adapter->csum_iphlen == ip_hlen &&
2937 	    adapter->csum_flags == csum_flags) {
2938 		/*
2939 		 * Same csum offload context as the previous packets;
2940 		 * just return.
2941 		 */
2942 		*txd_upper = adapter->csum_txd_upper;
2943 		*txd_lower = adapter->csum_txd_lower;
2944 		return 0;
2945 	}
2946 
2947 	/*
2948 	 * Setup a new csum offload context.
2949 	 */
2950 
2951 	curr_txd = adapter->next_avail_tx_desc;
2952 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2953 
2954 	cmd = 0;
2955 
2956 	/* Setup of IP header checksum. */
2957 	if (csum_flags & CSUM_IP) {
2958 		/*
2959 		 * Start offset for header checksum calculation.
2960 		 * End offset for header checksum calculation.
2961 		 * Offset of place to put the checksum.
2962 		 */
2963 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2964 		TXD->lower_setup.ip_fields.ipcse =
2965 		    htole16(ehdrlen + ip_hlen - 1);
2966 		TXD->lower_setup.ip_fields.ipcso =
2967 		    ehdrlen + offsetof(struct ip, ip_sum);
2968 		cmd |= E1000_TXD_CMD_IP;
2969 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2970 	}
2971 	hdr_len = ehdrlen + ip_hlen;
2972 
2973 	if (csum_flags & CSUM_TCP) {
2974 		/*
2975 		 * Start offset for payload checksum calculation.
2976 		 * End offset for payload checksum calculation.
2977 		 * Offset of place to put the checksum.
2978 		 */
2979 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2980 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2981 		TXD->upper_setup.tcp_fields.tucso =
2982 		    hdr_len + offsetof(struct tcphdr, th_sum);
2983 		cmd |= E1000_TXD_CMD_TCP;
2984 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2985 	} else if (csum_flags & CSUM_UDP) {
2986 		/*
2987 		 * Start offset for header checksum calculation.
2988 		 * End offset for header checksum calculation.
2989 		 * Offset of place to put the checksum.
2990 		 */
2991 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2992 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2993 		TXD->upper_setup.tcp_fields.tucso =
2994 		    hdr_len + offsetof(struct udphdr, uh_sum);
2995 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2996 	}
2997 
2998 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2999 		     E1000_TXD_DTYP_D;		/* Data descr */
3000 
3001 	/* Save the information for this csum offloading context */
3002 	adapter->csum_lhlen = ehdrlen;
3003 	adapter->csum_iphlen = ip_hlen;
3004 	adapter->csum_flags = csum_flags;
3005 	adapter->csum_txd_upper = *txd_upper;
3006 	adapter->csum_txd_lower = *txd_lower;
3007 
3008 	TXD->tcp_seg_setup.data = htole32(0);
3009 	TXD->cmd_and_length =
3010 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3011 
3012 	if (++curr_txd == adapter->num_tx_desc)
3013 		curr_txd = 0;
3014 
3015 	KKASSERT(adapter->num_tx_desc_avail > 0);
3016 	adapter->num_tx_desc_avail--;
3017 
3018 	adapter->next_avail_tx_desc = curr_txd;
3019 	return 1;
3020 }
3021 
3022 static void
3023 em_txeof(struct adapter *adapter)
3024 {
3025 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3026 	struct em_buffer *tx_buffer;
3027 	int first, num_avail;
3028 
3029 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
3030 		return;
3031 
3032 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3033 		return;
3034 
3035 	num_avail = adapter->num_tx_desc_avail;
3036 	first = adapter->next_tx_to_clean;
3037 
3038 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3039 		struct e1000_tx_desc *tx_desc;
3040 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3041 
3042 		tx_desc = &adapter->tx_desc_base[dd_idx];
3043 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3044 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3045 
3046 			if (++dd_idx == adapter->num_tx_desc)
3047 				dd_idx = 0;
3048 
3049 			while (first != dd_idx) {
3050 				logif(pkt_txclean);
3051 
3052 				num_avail++;
3053 
3054 				tx_buffer = &adapter->tx_buffer_area[first];
3055 				if (tx_buffer->m_head) {
3056 					bus_dmamap_unload(adapter->txtag,
3057 							  tx_buffer->map);
3058 					m_freem(tx_buffer->m_head);
3059 					tx_buffer->m_head = NULL;
3060 				}
3061 
3062 				if (++first == adapter->num_tx_desc)
3063 					first = 0;
3064 			}
3065 		} else {
3066 			break;
3067 		}
3068 	}
3069 	adapter->next_tx_to_clean = first;
3070 	adapter->num_tx_desc_avail = num_avail;
3071 
3072 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3073 		adapter->tx_dd_head = 0;
3074 		adapter->tx_dd_tail = 0;
3075 	}
3076 
3077 	if (!EM_IS_OACTIVE(adapter)) {
3078 		ifq_clr_oactive(&ifp->if_snd);
3079 
3080 		/* All clean, turn off the timer */
3081 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3082 			ifp->if_timer = 0;
3083 	}
3084 }
3085 
3086 static void
3087 em_tx_collect(struct adapter *adapter)
3088 {
3089 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3090 	struct em_buffer *tx_buffer;
3091 	int tdh, first, num_avail, dd_idx = -1;
3092 
3093 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3094 		return;
3095 
3096 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3097 	if (tdh == adapter->next_tx_to_clean)
3098 		return;
3099 
3100 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3101 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3102 
3103 	num_avail = adapter->num_tx_desc_avail;
3104 	first = adapter->next_tx_to_clean;
3105 
3106 	while (first != tdh) {
3107 		logif(pkt_txclean);
3108 
3109 		num_avail++;
3110 
3111 		tx_buffer = &adapter->tx_buffer_area[first];
3112 		if (tx_buffer->m_head) {
3113 			bus_dmamap_unload(adapter->txtag,
3114 					  tx_buffer->map);
3115 			m_freem(tx_buffer->m_head);
3116 			tx_buffer->m_head = NULL;
3117 		}
3118 
3119 		if (first == dd_idx) {
3120 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3121 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3122 				adapter->tx_dd_head = 0;
3123 				adapter->tx_dd_tail = 0;
3124 				dd_idx = -1;
3125 			} else {
3126 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3127 			}
3128 		}
3129 
3130 		if (++first == adapter->num_tx_desc)
3131 			first = 0;
3132 	}
3133 	adapter->next_tx_to_clean = first;
3134 	adapter->num_tx_desc_avail = num_avail;
3135 
3136 	if (!EM_IS_OACTIVE(adapter)) {
3137 		ifq_clr_oactive(&ifp->if_snd);
3138 
3139 		/* All clean, turn off the timer */
3140 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3141 			ifp->if_timer = 0;
3142 	}
3143 }
3144 
3145 /*
3146  * When Link is lost sometimes there is work still in the TX ring
3147  * which will result in a watchdog, rather than allow that do an
3148  * attempted cleanup and then reinit here.  Note that this has been
3149  * seens mostly with fiber adapters.
3150  */
3151 static void
3152 em_tx_purge(struct adapter *adapter)
3153 {
3154 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3155 
3156 	if (!adapter->link_active && ifp->if_timer) {
3157 		em_tx_collect(adapter);
3158 		if (ifp->if_timer) {
3159 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3160 			ifp->if_timer = 0;
3161 			em_init(adapter);
3162 		}
3163 	}
3164 }
3165 
3166 static int
3167 em_newbuf(struct adapter *adapter, int i, int init)
3168 {
3169 	struct mbuf *m;
3170 	bus_dma_segment_t seg;
3171 	bus_dmamap_t map;
3172 	struct em_buffer *rx_buffer;
3173 	int error, nseg;
3174 
3175 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3176 	if (m == NULL) {
3177 		adapter->mbuf_cluster_failed++;
3178 		if (init) {
3179 			if_printf(&adapter->arpcom.ac_if,
3180 				  "Unable to allocate RX mbuf\n");
3181 		}
3182 		return (ENOBUFS);
3183 	}
3184 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3185 
3186 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3187 		m_adj(m, ETHER_ALIGN);
3188 
3189 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3190 			adapter->rx_sparemap, m,
3191 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3192 	if (error) {
3193 		m_freem(m);
3194 		if (init) {
3195 			if_printf(&adapter->arpcom.ac_if,
3196 				  "Unable to load RX mbuf\n");
3197 		}
3198 		return (error);
3199 	}
3200 
3201 	rx_buffer = &adapter->rx_buffer_area[i];
3202 	if (rx_buffer->m_head != NULL)
3203 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3204 
3205 	map = rx_buffer->map;
3206 	rx_buffer->map = adapter->rx_sparemap;
3207 	adapter->rx_sparemap = map;
3208 
3209 	rx_buffer->m_head = m;
3210 
3211 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3212 	return (0);
3213 }
3214 
3215 static int
3216 em_create_rx_ring(struct adapter *adapter)
3217 {
3218 	device_t dev = adapter->dev;
3219 	struct em_buffer *rx_buffer;
3220 	int i, error;
3221 
3222 	adapter->rx_buffer_area =
3223 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3224 			M_DEVBUF, M_WAITOK | M_ZERO);
3225 
3226 	/*
3227 	 * Create DMA tag for rx buffers
3228 	 */
3229 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3230 			1, 0,			/* alignment, bounds */
3231 			BUS_SPACE_MAXADDR,	/* lowaddr */
3232 			BUS_SPACE_MAXADDR,	/* highaddr */
3233 			NULL, NULL,		/* filter, filterarg */
3234 			MCLBYTES,		/* maxsize */
3235 			1,			/* nsegments */
3236 			MCLBYTES,		/* maxsegsize */
3237 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3238 			&adapter->rxtag);
3239 	if (error) {
3240 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3241 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3242 		adapter->rx_buffer_area = NULL;
3243 		return error;
3244 	}
3245 
3246 	/*
3247 	 * Create spare DMA map for rx buffers
3248 	 */
3249 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3250 				  &adapter->rx_sparemap);
3251 	if (error) {
3252 		device_printf(dev, "Unable to create spare RX DMA map\n");
3253 		bus_dma_tag_destroy(adapter->rxtag);
3254 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3255 		adapter->rx_buffer_area = NULL;
3256 		return error;
3257 	}
3258 
3259 	/*
3260 	 * Create DMA maps for rx buffers
3261 	 */
3262 	for (i = 0; i < adapter->num_rx_desc; i++) {
3263 		rx_buffer = &adapter->rx_buffer_area[i];
3264 
3265 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3266 					  &rx_buffer->map);
3267 		if (error) {
3268 			device_printf(dev, "Unable to create RX DMA map\n");
3269 			em_destroy_rx_ring(adapter, i);
3270 			return error;
3271 		}
3272 	}
3273 	return (0);
3274 }
3275 
3276 static int
3277 em_init_rx_ring(struct adapter *adapter)
3278 {
3279 	int i, error;
3280 
3281 	/* Reset descriptor ring */
3282 	bzero(adapter->rx_desc_base,
3283 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3284 
3285 	/* Allocate new ones. */
3286 	for (i = 0; i < adapter->num_rx_desc; i++) {
3287 		error = em_newbuf(adapter, i, 1);
3288 		if (error)
3289 			return (error);
3290 	}
3291 
3292 	/* Setup our descriptor pointers */
3293 	adapter->next_rx_desc_to_check = 0;
3294 
3295 	return (0);
3296 }
3297 
3298 static void
3299 em_init_rx_unit(struct adapter *adapter)
3300 {
3301 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3302 	uint64_t bus_addr;
3303 	uint32_t rctl;
3304 
3305 	/*
3306 	 * Make sure receives are disabled while setting
3307 	 * up the descriptor ring
3308 	 */
3309 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3310 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3311 
3312 	if (adapter->hw.mac.type >= e1000_82540) {
3313 		uint32_t itr;
3314 
3315 		/*
3316 		 * Set the interrupt throttling rate. Value is calculated
3317 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3318 		 */
3319 		if (adapter->int_throttle_ceil)
3320 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3321 		else
3322 			itr = 0;
3323 		em_set_itr(adapter, itr);
3324 	}
3325 
3326 	/* Disable accelerated ackknowledge */
3327 	if (adapter->hw.mac.type == e1000_82574) {
3328 		E1000_WRITE_REG(&adapter->hw,
3329 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3330 	}
3331 
3332 	/* Receive Checksum Offload for TCP and UDP */
3333 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3334 		uint32_t rxcsum;
3335 
3336 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3337 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3338 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3339 	}
3340 
3341 	/*
3342 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3343 	 * long latencies are observed, like Lenovo X60. This
3344 	 * change eliminates the problem, but since having positive
3345 	 * values in RDTR is a known source of problems on other
3346 	 * platforms another solution is being sought.
3347 	 */
3348 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3349 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3350 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3351 	}
3352 
3353 	/*
3354 	 * Setup the Base and Length of the Rx Descriptor Ring
3355 	 */
3356 	bus_addr = adapter->rxdma.dma_paddr;
3357 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3358 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3359 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3360 	    (uint32_t)(bus_addr >> 32));
3361 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3362 	    (uint32_t)bus_addr);
3363 
3364 	/*
3365 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3366 	 */
3367 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3368 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3369 
3370 	/* Set PTHRESH for improved jumbo performance */
3371 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3372 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3373 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3374 	    (ifp->if_mtu > ETHERMTU)) {
3375 		uint32_t rxdctl;
3376 
3377 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3378 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3379 	}
3380 
3381 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3382 		if (ifp->if_mtu > ETHERMTU)
3383 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3384 		else
3385 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3386 	}
3387 
3388 	/* Setup the Receive Control Register */
3389 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3390 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3391 		E1000_RCTL_RDMTS_HALF |
3392 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3393 
3394 	/* Make sure VLAN Filters are off */
3395 	rctl &= ~E1000_RCTL_VFE;
3396 
3397 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3398 		rctl |= E1000_RCTL_SBP;
3399 	else
3400 		rctl &= ~E1000_RCTL_SBP;
3401 
3402 	switch (adapter->rx_buffer_len) {
3403 	default:
3404 	case 2048:
3405 		rctl |= E1000_RCTL_SZ_2048;
3406 		break;
3407 
3408 	case 4096:
3409 		rctl |= E1000_RCTL_SZ_4096 |
3410 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3411 		break;
3412 
3413 	case 8192:
3414 		rctl |= E1000_RCTL_SZ_8192 |
3415 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3416 		break;
3417 
3418 	case 16384:
3419 		rctl |= E1000_RCTL_SZ_16384 |
3420 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3421 		break;
3422 	}
3423 
3424 	if (ifp->if_mtu > ETHERMTU)
3425 		rctl |= E1000_RCTL_LPE;
3426 	else
3427 		rctl &= ~E1000_RCTL_LPE;
3428 
3429 	/* Enable Receives */
3430 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3431 }
3432 
3433 static void
3434 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3435 {
3436 	struct em_buffer *rx_buffer;
3437 	int i;
3438 
3439 	if (adapter->rx_buffer_area == NULL)
3440 		return;
3441 
3442 	for (i = 0; i < ndesc; i++) {
3443 		rx_buffer = &adapter->rx_buffer_area[i];
3444 
3445 		KKASSERT(rx_buffer->m_head == NULL);
3446 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3447 	}
3448 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3449 	bus_dma_tag_destroy(adapter->rxtag);
3450 
3451 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3452 	adapter->rx_buffer_area = NULL;
3453 }
3454 
3455 static void
3456 em_rxeof(struct adapter *adapter, int count)
3457 {
3458 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3459 	uint8_t status, accept_frame = 0, eop = 0;
3460 	uint16_t len, desc_len, prev_len_adj;
3461 	struct e1000_rx_desc *current_desc;
3462 	struct mbuf *mp;
3463 	int i;
3464 
3465 	i = adapter->next_rx_desc_to_check;
3466 	current_desc = &adapter->rx_desc_base[i];
3467 
3468 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3469 		return;
3470 
3471 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3472 		struct mbuf *m = NULL;
3473 
3474 		logif(pkt_receive);
3475 
3476 		mp = adapter->rx_buffer_area[i].m_head;
3477 
3478 		/*
3479 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3480 		 * needs to access the last received byte in the mbuf.
3481 		 */
3482 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3483 				BUS_DMASYNC_POSTREAD);
3484 
3485 		accept_frame = 1;
3486 		prev_len_adj = 0;
3487 		desc_len = le16toh(current_desc->length);
3488 		status = current_desc->status;
3489 		if (status & E1000_RXD_STAT_EOP) {
3490 			count--;
3491 			eop = 1;
3492 			if (desc_len < ETHER_CRC_LEN) {
3493 				len = 0;
3494 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3495 			} else {
3496 				len = desc_len - ETHER_CRC_LEN;
3497 			}
3498 		} else {
3499 			eop = 0;
3500 			len = desc_len;
3501 		}
3502 
3503 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3504 			uint8_t	last_byte;
3505 			uint32_t pkt_len = desc_len;
3506 
3507 			if (adapter->fmp != NULL)
3508 				pkt_len += adapter->fmp->m_pkthdr.len;
3509 
3510 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3511 			if (TBI_ACCEPT(&adapter->hw, status,
3512 			    current_desc->errors, pkt_len, last_byte,
3513 			    adapter->min_frame_size,
3514 			    adapter->hw.mac.max_frame_size)) {
3515 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3516 				    &adapter->stats, pkt_len,
3517 				    adapter->hw.mac.addr,
3518 				    adapter->hw.mac.max_frame_size);
3519 				if (len > 0)
3520 					len--;
3521 			} else {
3522 				accept_frame = 0;
3523 			}
3524 		}
3525 
3526 		if (accept_frame) {
3527 			if (em_newbuf(adapter, i, 0) != 0) {
3528 				IFNET_STAT_INC(ifp, iqdrops, 1);
3529 				goto discard;
3530 			}
3531 
3532 			/* Assign correct length to the current fragment */
3533 			mp->m_len = len;
3534 
3535 			if (adapter->fmp == NULL) {
3536 				mp->m_pkthdr.len = len;
3537 				adapter->fmp = mp; /* Store the first mbuf */
3538 				adapter->lmp = mp;
3539 			} else {
3540 				/*
3541 				 * Chain mbuf's together
3542 				 */
3543 
3544 				/*
3545 				 * Adjust length of previous mbuf in chain if
3546 				 * we received less than 4 bytes in the last
3547 				 * descriptor.
3548 				 */
3549 				if (prev_len_adj > 0) {
3550 					adapter->lmp->m_len -= prev_len_adj;
3551 					adapter->fmp->m_pkthdr.len -=
3552 					    prev_len_adj;
3553 				}
3554 				adapter->lmp->m_next = mp;
3555 				adapter->lmp = adapter->lmp->m_next;
3556 				adapter->fmp->m_pkthdr.len += len;
3557 			}
3558 
3559 			if (eop) {
3560 				adapter->fmp->m_pkthdr.rcvif = ifp;
3561 				IFNET_STAT_INC(ifp, ipackets, 1);
3562 
3563 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3564 					em_rxcsum(adapter, current_desc,
3565 						  adapter->fmp);
3566 				}
3567 
3568 				if (status & E1000_RXD_STAT_VP) {
3569 					adapter->fmp->m_pkthdr.ether_vlantag =
3570 					    (le16toh(current_desc->special) &
3571 					    E1000_RXD_SPC_VLAN_MASK);
3572 					adapter->fmp->m_flags |= M_VLANTAG;
3573 				}
3574 				m = adapter->fmp;
3575 				adapter->fmp = NULL;
3576 				adapter->lmp = NULL;
3577 			}
3578 		} else {
3579 			IFNET_STAT_INC(ifp, ierrors, 1);
3580 discard:
3581 #ifdef foo
3582 			/* Reuse loaded DMA map and just update mbuf chain */
3583 			mp = adapter->rx_buffer_area[i].m_head;
3584 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3585 			mp->m_data = mp->m_ext.ext_buf;
3586 			mp->m_next = NULL;
3587 			if (adapter->hw.mac.max_frame_size <=
3588 			    (MCLBYTES - ETHER_ALIGN))
3589 				m_adj(mp, ETHER_ALIGN);
3590 #endif
3591 			if (adapter->fmp != NULL) {
3592 				m_freem(adapter->fmp);
3593 				adapter->fmp = NULL;
3594 				adapter->lmp = NULL;
3595 			}
3596 			m = NULL;
3597 		}
3598 
3599 		/* Zero out the receive descriptors status. */
3600 		current_desc->status = 0;
3601 
3602 		if (m != NULL)
3603 			ifp->if_input(ifp, m, NULL, -1);
3604 
3605 		/* Advance our pointers to the next descriptor. */
3606 		if (++i == adapter->num_rx_desc)
3607 			i = 0;
3608 		current_desc = &adapter->rx_desc_base[i];
3609 	}
3610 	adapter->next_rx_desc_to_check = i;
3611 
3612 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3613 	if (--i < 0)
3614 		i = adapter->num_rx_desc - 1;
3615 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3616 }
3617 
3618 static void
3619 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3620 	  struct mbuf *mp)
3621 {
3622 	/* 82543 or newer only */
3623 	if (adapter->hw.mac.type < e1000_82543 ||
3624 	    /* Ignore Checksum bit is set */
3625 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3626 		return;
3627 
3628 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3629 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3630 		/* IP Checksum Good */
3631 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3632 	}
3633 
3634 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3635 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3636 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3637 					   CSUM_PSEUDO_HDR |
3638 					   CSUM_FRAG_NOT_CHECKED;
3639 		mp->m_pkthdr.csum_data = htons(0xffff);
3640 	}
3641 }
3642 
3643 static void
3644 em_enable_intr(struct adapter *adapter)
3645 {
3646 	uint32_t ims_mask = IMS_ENABLE_MASK;
3647 
3648 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3649 
3650 #if 0
3651 	/* XXX MSIX */
3652 	if (adapter->hw.mac.type == e1000_82574) {
3653 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3654 		ims_mask |= EM_MSIX_MASK;
3655         }
3656 #endif
3657 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3658 }
3659 
3660 static void
3661 em_disable_intr(struct adapter *adapter)
3662 {
3663 	uint32_t clear = 0xffffffff;
3664 
3665 	/*
3666 	 * The first version of 82542 had an errata where when link was forced
3667 	 * it would stay up even up even if the cable was disconnected.
3668 	 * Sequence errors were used to detect the disconnect and then the
3669 	 * driver would unforce the link.  This code in the in the ISR.  For
3670 	 * this to work correctly the Sequence error interrupt had to be
3671 	 * enabled all the time.
3672 	 */
3673 	if (adapter->hw.mac.type == e1000_82542 &&
3674 	    adapter->hw.revision_id == E1000_REVISION_2)
3675 		clear &= ~E1000_ICR_RXSEQ;
3676 	else if (adapter->hw.mac.type == e1000_82574)
3677 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3678 
3679 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3680 
3681 	adapter->npoll.ifpc_stcount = 0;
3682 
3683 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3684 }
3685 
3686 /*
3687  * Bit of a misnomer, what this really means is
3688  * to enable OS management of the system... aka
3689  * to disable special hardware management features
3690  */
3691 static void
3692 em_get_mgmt(struct adapter *adapter)
3693 {
3694 	/* A shared code workaround */
3695 #define E1000_82542_MANC2H E1000_MANC2H
3696 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3697 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3698 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3699 
3700 		/* disable hardware interception of ARP */
3701 		manc &= ~(E1000_MANC_ARP_EN);
3702 
3703                 /* enable receiving management packets to the host */
3704                 if (adapter->hw.mac.type >= e1000_82571) {
3705 			manc |= E1000_MANC_EN_MNG2HOST;
3706 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3707 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3708 			manc2h |= E1000_MNG2HOST_PORT_623;
3709 			manc2h |= E1000_MNG2HOST_PORT_664;
3710 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3711 		}
3712 
3713 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3714 	}
3715 }
3716 
3717 /*
3718  * Give control back to hardware management
3719  * controller if there is one.
3720  */
3721 static void
3722 em_rel_mgmt(struct adapter *adapter)
3723 {
3724 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3725 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3726 
3727 		/* re-enable hardware interception of ARP */
3728 		manc |= E1000_MANC_ARP_EN;
3729 
3730 		if (adapter->hw.mac.type >= e1000_82571)
3731 			manc &= ~E1000_MANC_EN_MNG2HOST;
3732 
3733 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3734 	}
3735 }
3736 
3737 /*
3738  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3739  * For ASF and Pass Through versions of f/w this means that
3740  * the driver is loaded.  For AMT version (only with 82573)
3741  * of the f/w this means that the network i/f is open.
3742  */
3743 static void
3744 em_get_hw_control(struct adapter *adapter)
3745 {
3746 	/* Let firmware know the driver has taken over */
3747 	if (adapter->hw.mac.type == e1000_82573) {
3748 		uint32_t swsm;
3749 
3750 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3751 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3752 		    swsm | E1000_SWSM_DRV_LOAD);
3753 	} else {
3754 		uint32_t ctrl_ext;
3755 
3756 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3757 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3758 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3759 	}
3760 	adapter->flags |= EM_FLAG_HW_CTRL;
3761 }
3762 
3763 /*
3764  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3765  * For ASF and Pass Through versions of f/w this means that the
3766  * driver is no longer loaded.  For AMT version (only with 82573)
3767  * of the f/w this means that the network i/f is closed.
3768  */
3769 static void
3770 em_rel_hw_control(struct adapter *adapter)
3771 {
3772 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3773 		return;
3774 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3775 
3776 	/* Let firmware taken over control of h/w */
3777 	if (adapter->hw.mac.type == e1000_82573) {
3778 		uint32_t swsm;
3779 
3780 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3781 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3782 		    swsm & ~E1000_SWSM_DRV_LOAD);
3783 	} else {
3784 		uint32_t ctrl_ext;
3785 
3786 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3787 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3788 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3789 	}
3790 }
3791 
3792 static int
3793 em_is_valid_eaddr(const uint8_t *addr)
3794 {
3795 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3796 
3797 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3798 		return (FALSE);
3799 
3800 	return (TRUE);
3801 }
3802 
3803 /*
3804  * Enable PCI Wake On Lan capability
3805  */
3806 void
3807 em_enable_wol(device_t dev)
3808 {
3809 	uint16_t cap, status;
3810 	uint8_t id;
3811 
3812 	/* First find the capabilities pointer*/
3813 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3814 
3815 	/* Read the PM Capabilities */
3816 	id = pci_read_config(dev, cap, 1);
3817 	if (id != PCIY_PMG)     /* Something wrong */
3818 		return;
3819 
3820 	/*
3821 	 * OK, we have the power capabilities,
3822 	 * so now get the status register
3823 	 */
3824 	cap += PCIR_POWER_STATUS;
3825 	status = pci_read_config(dev, cap, 2);
3826 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3827 	pci_write_config(dev, cap, status, 2);
3828 }
3829 
3830 
3831 /*
3832  * 82544 Coexistence issue workaround.
3833  *    There are 2 issues.
3834  *       1. Transmit Hang issue.
3835  *    To detect this issue, following equation can be used...
3836  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3837  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3838  *
3839  *       2. DAC issue.
3840  *    To detect this issue, following equation can be used...
3841  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3842  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3843  *
3844  *    WORKAROUND:
3845  *	  Make sure we do not have ending address
3846  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3847  */
3848 static uint32_t
3849 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3850 {
3851 	uint32_t safe_terminator;
3852 
3853 	/*
3854 	 * Since issue is sensitive to length and address.
3855 	 * Let us first check the address...
3856 	 */
3857 	if (length <= 4) {
3858 		desc_array->descriptor[0].address = address;
3859 		desc_array->descriptor[0].length = length;
3860 		desc_array->elements = 1;
3861 		return (desc_array->elements);
3862 	}
3863 
3864 	safe_terminator =
3865 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3866 
3867 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3868 	if (safe_terminator == 0 ||
3869 	    (safe_terminator > 4 && safe_terminator < 9) ||
3870 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3871 		desc_array->descriptor[0].address = address;
3872 		desc_array->descriptor[0].length = length;
3873 		desc_array->elements = 1;
3874 		return (desc_array->elements);
3875 	}
3876 
3877 	desc_array->descriptor[0].address = address;
3878 	desc_array->descriptor[0].length = length - 4;
3879 	desc_array->descriptor[1].address = address + (length - 4);
3880 	desc_array->descriptor[1].length = 4;
3881 	desc_array->elements = 2;
3882 	return (desc_array->elements);
3883 }
3884 
3885 static void
3886 em_update_stats(struct adapter *adapter)
3887 {
3888 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3889 
3890 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3891 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3892 		adapter->stats.symerrs +=
3893 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3894 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3895 	}
3896 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3897 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3898 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3899 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3900 
3901 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3902 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3903 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3904 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3905 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3906 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3907 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3908 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3909 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3910 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3911 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3912 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3913 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3914 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3915 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3916 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3917 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3918 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3919 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3920 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3921 
3922 	/* For the 64-bit byte counters the low dword must be read first. */
3923 	/* Both registers clear on the read of the high dword */
3924 
3925 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3926 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3927 
3928 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3929 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3930 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3931 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3932 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3933 
3934 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3935 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3936 
3937 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3938 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3939 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3940 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3941 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3942 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3943 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3944 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3945 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3946 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3947 
3948 	if (adapter->hw.mac.type >= e1000_82543) {
3949 		adapter->stats.algnerrc +=
3950 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3951 		adapter->stats.rxerrc +=
3952 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3953 		adapter->stats.tncrs +=
3954 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3955 		adapter->stats.cexterr +=
3956 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3957 		adapter->stats.tsctc +=
3958 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3959 		adapter->stats.tsctfc +=
3960 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3961 	}
3962 
3963 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3964 
3965 	/* Rx Errors */
3966 	IFNET_STAT_SET(ifp, ierrors,
3967 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3968 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3969 	    adapter->stats.ruc + adapter->stats.roc +
3970 	    adapter->stats.mpc + adapter->stats.cexterr);
3971 
3972 	/* Tx Errors */
3973 	IFNET_STAT_SET(ifp, oerrors,
3974 	    adapter->stats.ecol + adapter->stats.latecol +
3975 	    adapter->watchdog_events);
3976 }
3977 
3978 static void
3979 em_print_debug_info(struct adapter *adapter)
3980 {
3981 	device_t dev = adapter->dev;
3982 	uint8_t *hw_addr = adapter->hw.hw_addr;
3983 
3984 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3985 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3986 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3987 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3988 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3989 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3990 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3991 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3992 	    adapter->hw.fc.high_water,
3993 	    adapter->hw.fc.low_water);
3994 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3995 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3996 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3997 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3998 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3999 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
4000 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
4001 	    (long long)adapter->tx_fifo_wrk_cnt,
4002 	    (long long)adapter->tx_fifo_reset_cnt);
4003 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4004 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
4005 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
4006 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4007 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
4008 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
4009 	device_printf(dev, "Num Tx descriptors avail = %d\n",
4010 	    adapter->num_tx_desc_avail);
4011 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4012 	    adapter->no_tx_desc_avail1);
4013 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4014 	    adapter->no_tx_desc_avail2);
4015 	device_printf(dev, "Std mbuf failed = %ld\n",
4016 	    adapter->mbuf_alloc_failed);
4017 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
4018 	    adapter->mbuf_cluster_failed);
4019 	device_printf(dev, "Driver dropped packets = %ld\n",
4020 	    adapter->dropped_pkts);
4021 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4022 	    adapter->no_tx_dma_setup);
4023 }
4024 
4025 static void
4026 em_print_hw_stats(struct adapter *adapter)
4027 {
4028 	device_t dev = adapter->dev;
4029 
4030 	device_printf(dev, "Excessive collisions = %lld\n",
4031 	    (long long)adapter->stats.ecol);
4032 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
4033 	device_printf(dev, "Symbol errors = %lld\n",
4034 	    (long long)adapter->stats.symerrs);
4035 #endif
4036 	device_printf(dev, "Sequence errors = %lld\n",
4037 	    (long long)adapter->stats.sec);
4038 	device_printf(dev, "Defer count = %lld\n",
4039 	    (long long)adapter->stats.dc);
4040 	device_printf(dev, "Missed Packets = %lld\n",
4041 	    (long long)adapter->stats.mpc);
4042 	device_printf(dev, "Receive No Buffers = %lld\n",
4043 	    (long long)adapter->stats.rnbc);
4044 	/* RLEC is inaccurate on some hardware, calculate our own. */
4045 	device_printf(dev, "Receive Length Errors = %lld\n",
4046 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4047 	device_printf(dev, "Receive errors = %lld\n",
4048 	    (long long)adapter->stats.rxerrc);
4049 	device_printf(dev, "Crc errors = %lld\n",
4050 	    (long long)adapter->stats.crcerrs);
4051 	device_printf(dev, "Alignment errors = %lld\n",
4052 	    (long long)adapter->stats.algnerrc);
4053 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4054 	    (long long)adapter->stats.cexterr);
4055 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4056 	device_printf(dev, "watchdog timeouts = %ld\n",
4057 	    adapter->watchdog_events);
4058 	device_printf(dev, "XON Rcvd = %lld\n",
4059 	    (long long)adapter->stats.xonrxc);
4060 	device_printf(dev, "XON Xmtd = %lld\n",
4061 	    (long long)adapter->stats.xontxc);
4062 	device_printf(dev, "XOFF Rcvd = %lld\n",
4063 	    (long long)adapter->stats.xoffrxc);
4064 	device_printf(dev, "XOFF Xmtd = %lld\n",
4065 	    (long long)adapter->stats.xofftxc);
4066 	device_printf(dev, "Good Packets Rcvd = %lld\n",
4067 	    (long long)adapter->stats.gprc);
4068 	device_printf(dev, "Good Packets Xmtd = %lld\n",
4069 	    (long long)adapter->stats.gptc);
4070 }
4071 
4072 static void
4073 em_print_nvm_info(struct adapter *adapter)
4074 {
4075 	uint16_t eeprom_data;
4076 	int i, j, row = 0;
4077 
4078 	/* Its a bit crude, but it gets the job done */
4079 	kprintf("\nInterface EEPROM Dump:\n");
4080 	kprintf("Offset\n0x0000  ");
4081 	for (i = 0, j = 0; i < 32; i++, j++) {
4082 		if (j == 8) { /* Make the offset block */
4083 			j = 0; ++row;
4084 			kprintf("\n0x00%x0  ",row);
4085 		}
4086 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4087 		kprintf("%04x ", eeprom_data);
4088 	}
4089 	kprintf("\n");
4090 }
4091 
4092 static int
4093 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4094 {
4095 	struct adapter *adapter;
4096 	struct ifnet *ifp;
4097 	int error, result;
4098 
4099 	result = -1;
4100 	error = sysctl_handle_int(oidp, &result, 0, req);
4101 	if (error || !req->newptr)
4102 		return (error);
4103 
4104 	adapter = (struct adapter *)arg1;
4105 	ifp = &adapter->arpcom.ac_if;
4106 
4107 	lwkt_serialize_enter(ifp->if_serializer);
4108 
4109 	if (result == 1)
4110 		em_print_debug_info(adapter);
4111 
4112 	/*
4113 	 * This value will cause a hex dump of the
4114 	 * first 32 16-bit words of the EEPROM to
4115 	 * the screen.
4116 	 */
4117 	if (result == 2)
4118 		em_print_nvm_info(adapter);
4119 
4120 	lwkt_serialize_exit(ifp->if_serializer);
4121 
4122 	return (error);
4123 }
4124 
4125 static int
4126 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4127 {
4128 	int error, result;
4129 
4130 	result = -1;
4131 	error = sysctl_handle_int(oidp, &result, 0, req);
4132 	if (error || !req->newptr)
4133 		return (error);
4134 
4135 	if (result == 1) {
4136 		struct adapter *adapter = (struct adapter *)arg1;
4137 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4138 
4139 		lwkt_serialize_enter(ifp->if_serializer);
4140 		em_print_hw_stats(adapter);
4141 		lwkt_serialize_exit(ifp->if_serializer);
4142 	}
4143 	return (error);
4144 }
4145 
4146 static void
4147 em_add_sysctl(struct adapter *adapter)
4148 {
4149 	struct sysctl_ctx_list *ctx;
4150 	struct sysctl_oid *tree;
4151 
4152 	ctx = device_get_sysctl_ctx(adapter->dev);
4153 	tree = device_get_sysctl_tree(adapter->dev);
4154 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4155 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4156 	    em_sysctl_debug_info, "I", "Debug Information");
4157 
4158 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4159 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4160 	    em_sysctl_stats, "I", "Statistics");
4161 
4162 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4163 	    OID_AUTO, "rxd", CTLFLAG_RD,
4164 	    &adapter->num_rx_desc, 0, NULL);
4165 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4166 	    OID_AUTO, "txd", CTLFLAG_RD,
4167 	    &adapter->num_tx_desc, 0, NULL);
4168 
4169 	if (adapter->hw.mac.type >= e1000_82540) {
4170 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4171 		    OID_AUTO, "int_throttle_ceil",
4172 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4173 		    em_sysctl_int_throttle, "I",
4174 		    "interrupt throttling rate");
4175 	}
4176 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4177 	    OID_AUTO, "int_tx_nsegs",
4178 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4179 	    em_sysctl_int_tx_nsegs, "I",
4180 	    "# segments per TX interrupt");
4181 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4182 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4183 	    &adapter->tx_wreg_nsegs, 0,
4184 	    "# segments before write to hardware register");
4185 }
4186 
4187 static int
4188 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4189 {
4190 	struct adapter *adapter = (void *)arg1;
4191 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4192 	int error, throttle;
4193 
4194 	throttle = adapter->int_throttle_ceil;
4195 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4196 	if (error || req->newptr == NULL)
4197 		return error;
4198 	if (throttle < 0 || throttle > 1000000000 / 256)
4199 		return EINVAL;
4200 
4201 	if (throttle) {
4202 		/*
4203 		 * Set the interrupt throttling rate in 256ns increments,
4204 		 * recalculate sysctl value assignment to get exact frequency.
4205 		 */
4206 		throttle = 1000000000 / 256 / throttle;
4207 
4208 		/* Upper 16bits of ITR is reserved and should be zero */
4209 		if (throttle & 0xffff0000)
4210 			return EINVAL;
4211 	}
4212 
4213 	lwkt_serialize_enter(ifp->if_serializer);
4214 
4215 	if (throttle)
4216 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4217 	else
4218 		adapter->int_throttle_ceil = 0;
4219 
4220 	if (ifp->if_flags & IFF_RUNNING)
4221 		em_set_itr(adapter, throttle);
4222 
4223 	lwkt_serialize_exit(ifp->if_serializer);
4224 
4225 	if (bootverbose) {
4226 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4227 			  adapter->int_throttle_ceil);
4228 	}
4229 	return 0;
4230 }
4231 
4232 static int
4233 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4234 {
4235 	struct adapter *adapter = (void *)arg1;
4236 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4237 	int error, segs;
4238 
4239 	segs = adapter->tx_int_nsegs;
4240 	error = sysctl_handle_int(oidp, &segs, 0, req);
4241 	if (error || req->newptr == NULL)
4242 		return error;
4243 	if (segs <= 0)
4244 		return EINVAL;
4245 
4246 	lwkt_serialize_enter(ifp->if_serializer);
4247 
4248 	/*
4249 	 * Don't allow int_tx_nsegs to become:
4250 	 * o  Less the oact_tx_desc
4251 	 * o  Too large that no TX desc will cause TX interrupt to
4252 	 *    be generated (OACTIVE will never recover)
4253 	 * o  Too small that will cause tx_dd[] overflow
4254 	 */
4255 	if (segs < adapter->oact_tx_desc ||
4256 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4257 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4258 		error = EINVAL;
4259 	} else {
4260 		error = 0;
4261 		adapter->tx_int_nsegs = segs;
4262 	}
4263 
4264 	lwkt_serialize_exit(ifp->if_serializer);
4265 
4266 	return error;
4267 }
4268 
4269 static void
4270 em_set_itr(struct adapter *adapter, uint32_t itr)
4271 {
4272 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4273 	if (adapter->hw.mac.type == e1000_82574) {
4274 		int i;
4275 
4276 		/*
4277 		 * When using MSIX interrupts we need to
4278 		 * throttle using the EITR register
4279 		 */
4280 		for (i = 0; i < 4; ++i) {
4281 			E1000_WRITE_REG(&adapter->hw,
4282 			    E1000_EITR_82574(i), itr);
4283 		}
4284 	}
4285 }
4286 
4287 static void
4288 em_disable_aspm(struct adapter *adapter)
4289 {
4290 	uint16_t link_cap, link_ctrl, disable;
4291 	uint8_t pcie_ptr, reg;
4292 	device_t dev = adapter->dev;
4293 
4294 	switch (adapter->hw.mac.type) {
4295 	case e1000_82571:
4296 	case e1000_82572:
4297 	case e1000_82573:
4298 		/*
4299 		 * 82573 specification update
4300 		 * errata #8 disable L0s
4301 		 * errata #41 disable L1
4302 		 *
4303 		 * 82571/82572 specification update
4304 		 # errata #13 disable L1
4305 		 * errata #68 disable L0s
4306 		 */
4307 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4308 		break;
4309 
4310 	case e1000_82574:
4311 	case e1000_82583:
4312 		/*
4313 		 * 82574 specification update errata #20
4314 		 * 82583 specification update errata #9
4315 		 *
4316 		 * There is no need to disable L1
4317 		 */
4318 		disable = PCIEM_LNKCTL_ASPM_L0S;
4319 		break;
4320 
4321 	default:
4322 		return;
4323 	}
4324 
4325 	pcie_ptr = pci_get_pciecap_ptr(dev);
4326 	if (pcie_ptr == 0)
4327 		return;
4328 
4329 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4330 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4331 		return;
4332 
4333 	if (bootverbose) {
4334 		if_printf(&adapter->arpcom.ac_if,
4335 		    "disable ASPM %#02x\n", disable);
4336 	}
4337 
4338 	reg = pcie_ptr + PCIER_LINKCTRL;
4339 	link_ctrl = pci_read_config(dev, reg, 2);
4340 	link_ctrl &= ~disable;
4341 	pci_write_config(dev, reg, link_ctrl, 2);
4342 }
4343 
4344 static int
4345 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4346 {
4347 	int iphlen, hoff, thoff, ex = 0;
4348 	struct mbuf *m;
4349 	struct ip *ip;
4350 
4351 	m = *mp;
4352 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4353 
4354 	iphlen = m->m_pkthdr.csum_iphlen;
4355 	thoff = m->m_pkthdr.csum_thlen;
4356 	hoff = m->m_pkthdr.csum_lhlen;
4357 
4358 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4359 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4360 	KASSERT(hoff > 0, ("invalid ether hlen"));
4361 
4362 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4363 		ex = 4;
4364 
4365 	if (m->m_len < hoff + iphlen + thoff + ex) {
4366 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4367 		if (m == NULL) {
4368 			*mp = NULL;
4369 			return ENOBUFS;
4370 		}
4371 		*mp = m;
4372 	}
4373 	ip = mtodoff(m, struct ip *, hoff);
4374 	ip->ip_len = 0;
4375 
4376 	return 0;
4377 }
4378 
4379 static int
4380 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4381     uint32_t *txd_upper, uint32_t *txd_lower)
4382 {
4383 	struct e1000_context_desc *TXD;
4384 	int hoff, iphlen, thoff, hlen;
4385 	int mss, pktlen, curr_txd;
4386 
4387 	iphlen = mp->m_pkthdr.csum_iphlen;
4388 	thoff = mp->m_pkthdr.csum_thlen;
4389 	hoff = mp->m_pkthdr.csum_lhlen;
4390 	mss = mp->m_pkthdr.tso_segsz;
4391 	pktlen = mp->m_pkthdr.len;
4392 
4393 	if (adapter->csum_flags == CSUM_TSO &&
4394 	    adapter->csum_iphlen == iphlen &&
4395 	    adapter->csum_lhlen == hoff &&
4396 	    adapter->csum_thlen == thoff &&
4397 	    adapter->csum_mss == mss &&
4398 	    adapter->csum_pktlen == pktlen) {
4399 		*txd_upper = adapter->csum_txd_upper;
4400 		*txd_lower = adapter->csum_txd_lower;
4401 		return 0;
4402 	}
4403 	hlen = hoff + iphlen + thoff;
4404 
4405 	/*
4406 	 * Setup a new TSO context.
4407 	 */
4408 
4409 	curr_txd = adapter->next_avail_tx_desc;
4410 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4411 
4412 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4413 		     E1000_TXD_DTYP_D |		/* Data descr type */
4414 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4415 
4416 	/* IP and/or TCP header checksum calculation and insertion. */
4417 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4418 
4419 	/*
4420 	 * Start offset for header checksum calculation.
4421 	 * End offset for header checksum calculation.
4422 	 * Offset of place put the checksum.
4423 	 */
4424 	TXD->lower_setup.ip_fields.ipcss = hoff;
4425 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4426 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4427 
4428 	/*
4429 	 * Start offset for payload checksum calculation.
4430 	 * End offset for payload checksum calculation.
4431 	 * Offset of place to put the checksum.
4432 	 */
4433 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4434 	TXD->upper_setup.tcp_fields.tucse = 0;
4435 	TXD->upper_setup.tcp_fields.tucso =
4436 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4437 
4438 	/*
4439 	 * Payload size per packet w/o any headers.
4440 	 * Length of all headers up to payload.
4441 	 */
4442 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4443 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4444 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4445 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4446 				E1000_TXD_CMD_TSE |	/* TSE context */
4447 				E1000_TXD_CMD_IP |	/* Do IP csum */
4448 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4449 				(pktlen - hlen));	/* Total len */
4450 
4451 	/* Save the information for this TSO context */
4452 	adapter->csum_flags = CSUM_TSO;
4453 	adapter->csum_lhlen = hoff;
4454 	adapter->csum_iphlen = iphlen;
4455 	adapter->csum_thlen = thoff;
4456 	adapter->csum_mss = mss;
4457 	adapter->csum_pktlen = pktlen;
4458 	adapter->csum_txd_upper = *txd_upper;
4459 	adapter->csum_txd_lower = *txd_lower;
4460 
4461 	if (++curr_txd == adapter->num_tx_desc)
4462 		curr_txd = 0;
4463 
4464 	KKASSERT(adapter->num_tx_desc_avail > 0);
4465 	adapter->num_tx_desc_avail--;
4466 
4467 	adapter->next_avail_tx_desc = curr_txd;
4468 	return 1;
4469 }
4470