xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 6e278935)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/ifq_var.h>
121 #include <net/vlan/if_vlan_var.h>
122 #include <net/vlan/if_vlan_ether.h>
123 
124 #include <netinet/in_systm.h>
125 #include <netinet/in.h>
126 #include <netinet/ip.h>
127 #include <netinet/tcp.h>
128 #include <netinet/udp.h>
129 
130 #include <bus/pci/pcivar.h>
131 #include <bus/pci/pcireg.h>
132 
133 #include <dev/netif/ig_hal/e1000_api.h>
134 #include <dev/netif/ig_hal/e1000_82571.h>
135 #include <dev/netif/em/if_em.h>
136 
137 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
138 #define EM_VER	" 7.1.7"
139 
140 #define _EM_DEVICE(id, ret)	\
141 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
142 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
143 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
144 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
145 
146 static const struct em_vendor_info em_vendor_info_array[] = {
147 	EM_DEVICE(82540EM),
148 	EM_DEVICE(82540EM_LOM),
149 	EM_DEVICE(82540EP),
150 	EM_DEVICE(82540EP_LOM),
151 	EM_DEVICE(82540EP_LP),
152 
153 	EM_DEVICE(82541EI),
154 	EM_DEVICE(82541ER),
155 	EM_DEVICE(82541ER_LOM),
156 	EM_DEVICE(82541EI_MOBILE),
157 	EM_DEVICE(82541GI),
158 	EM_DEVICE(82541GI_LF),
159 	EM_DEVICE(82541GI_MOBILE),
160 
161 	EM_DEVICE(82542),
162 
163 	EM_DEVICE(82543GC_FIBER),
164 	EM_DEVICE(82543GC_COPPER),
165 
166 	EM_DEVICE(82544EI_COPPER),
167 	EM_DEVICE(82544EI_FIBER),
168 	EM_DEVICE(82544GC_COPPER),
169 	EM_DEVICE(82544GC_LOM),
170 
171 	EM_DEVICE(82545EM_COPPER),
172 	EM_DEVICE(82545EM_FIBER),
173 	EM_DEVICE(82545GM_COPPER),
174 	EM_DEVICE(82545GM_FIBER),
175 	EM_DEVICE(82545GM_SERDES),
176 
177 	EM_DEVICE(82546EB_COPPER),
178 	EM_DEVICE(82546EB_FIBER),
179 	EM_DEVICE(82546EB_QUAD_COPPER),
180 	EM_DEVICE(82546GB_COPPER),
181 	EM_DEVICE(82546GB_FIBER),
182 	EM_DEVICE(82546GB_SERDES),
183 	EM_DEVICE(82546GB_PCIE),
184 	EM_DEVICE(82546GB_QUAD_COPPER),
185 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
186 
187 	EM_DEVICE(82547EI),
188 	EM_DEVICE(82547EI_MOBILE),
189 	EM_DEVICE(82547GI),
190 
191 	EM_EMX_DEVICE(82571EB_COPPER),
192 	EM_EMX_DEVICE(82571EB_FIBER),
193 	EM_EMX_DEVICE(82571EB_SERDES),
194 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
195 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
196 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
197 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
198 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
199 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
200 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
201 
202 	EM_EMX_DEVICE(82572EI_COPPER),
203 	EM_EMX_DEVICE(82572EI_FIBER),
204 	EM_EMX_DEVICE(82572EI_SERDES),
205 	EM_EMX_DEVICE(82572EI),
206 
207 	EM_EMX_DEVICE(82573E),
208 	EM_EMX_DEVICE(82573E_IAMT),
209 	EM_EMX_DEVICE(82573L),
210 
211 	EM_DEVICE(82583V),
212 
213 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
214 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
215 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
216 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
217 
218 	EM_DEVICE(ICH8_IGP_M_AMT),
219 	EM_DEVICE(ICH8_IGP_AMT),
220 	EM_DEVICE(ICH8_IGP_C),
221 	EM_DEVICE(ICH8_IFE),
222 	EM_DEVICE(ICH8_IFE_GT),
223 	EM_DEVICE(ICH8_IFE_G),
224 	EM_DEVICE(ICH8_IGP_M),
225 	EM_DEVICE(ICH8_82567V_3),
226 
227 	EM_DEVICE(ICH9_IGP_M_AMT),
228 	EM_DEVICE(ICH9_IGP_AMT),
229 	EM_DEVICE(ICH9_IGP_C),
230 	EM_DEVICE(ICH9_IGP_M),
231 	EM_DEVICE(ICH9_IGP_M_V),
232 	EM_DEVICE(ICH9_IFE),
233 	EM_DEVICE(ICH9_IFE_GT),
234 	EM_DEVICE(ICH9_IFE_G),
235 	EM_DEVICE(ICH9_BM),
236 
237 	EM_EMX_DEVICE(82574L),
238 	EM_EMX_DEVICE(82574LA),
239 
240 	EM_DEVICE(ICH10_R_BM_LM),
241 	EM_DEVICE(ICH10_R_BM_LF),
242 	EM_DEVICE(ICH10_R_BM_V),
243 	EM_DEVICE(ICH10_D_BM_LM),
244 	EM_DEVICE(ICH10_D_BM_LF),
245 	EM_DEVICE(ICH10_D_BM_V),
246 
247 	EM_DEVICE(PCH_M_HV_LM),
248 	EM_DEVICE(PCH_M_HV_LC),
249 	EM_DEVICE(PCH_D_HV_DM),
250 	EM_DEVICE(PCH_D_HV_DC),
251 
252 	EM_DEVICE(PCH2_LV_LM),
253 	EM_DEVICE(PCH2_LV_V),
254 
255 	/* required last entry */
256 	EM_DEVICE_NULL
257 };
258 
259 static int	em_probe(device_t);
260 static int	em_attach(device_t);
261 static int	em_detach(device_t);
262 static int	em_shutdown(device_t);
263 static int	em_suspend(device_t);
264 static int	em_resume(device_t);
265 
266 static void	em_init(void *);
267 static void	em_stop(struct adapter *);
268 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269 static void	em_start(struct ifnet *);
270 #ifdef DEVICE_POLLING
271 static void	em_poll(struct ifnet *, enum poll_cmd, int);
272 #endif
273 static void	em_watchdog(struct ifnet *);
274 static void	em_media_status(struct ifnet *, struct ifmediareq *);
275 static int	em_media_change(struct ifnet *);
276 static void	em_timer(void *);
277 
278 static void	em_intr(void *);
279 static void	em_rxeof(struct adapter *, int);
280 static void	em_txeof(struct adapter *);
281 static void	em_tx_collect(struct adapter *);
282 static void	em_tx_purge(struct adapter *);
283 static void	em_enable_intr(struct adapter *);
284 static void	em_disable_intr(struct adapter *);
285 
286 static int	em_dma_malloc(struct adapter *, bus_size_t,
287 		    struct em_dma_alloc *);
288 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
289 static void	em_init_tx_ring(struct adapter *);
290 static int	em_init_rx_ring(struct adapter *);
291 static int	em_create_tx_ring(struct adapter *);
292 static int	em_create_rx_ring(struct adapter *);
293 static void	em_destroy_tx_ring(struct adapter *, int);
294 static void	em_destroy_rx_ring(struct adapter *, int);
295 static int	em_newbuf(struct adapter *, int, int);
296 static int	em_encap(struct adapter *, struct mbuf **);
297 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
298 		    struct mbuf *);
299 static int	em_txcsum_pullup(struct adapter *, struct mbuf **);
300 static int	em_txcsum(struct adapter *, struct mbuf *,
301 		    uint32_t *, uint32_t *);
302 
303 static int	em_get_hw_info(struct adapter *);
304 static int 	em_is_valid_eaddr(const uint8_t *);
305 static int	em_alloc_pci_res(struct adapter *);
306 static void	em_free_pci_res(struct adapter *);
307 static int	em_reset(struct adapter *);
308 static void	em_setup_ifp(struct adapter *);
309 static void	em_init_tx_unit(struct adapter *);
310 static void	em_init_rx_unit(struct adapter *);
311 static void	em_update_stats(struct adapter *);
312 static void	em_set_promisc(struct adapter *);
313 static void	em_disable_promisc(struct adapter *);
314 static void	em_set_multi(struct adapter *);
315 static void	em_update_link_status(struct adapter *);
316 static void	em_smartspeed(struct adapter *);
317 static void	em_set_itr(struct adapter *, uint32_t);
318 
319 /* Hardware workarounds */
320 static int	em_82547_fifo_workaround(struct adapter *, int);
321 static void	em_82547_update_fifo_head(struct adapter *, int);
322 static int	em_82547_tx_fifo_reset(struct adapter *);
323 static void	em_82547_move_tail(void *);
324 static void	em_82547_move_tail_serialized(struct adapter *);
325 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
326 
327 static void	em_print_debug_info(struct adapter *);
328 static void	em_print_nvm_info(struct adapter *);
329 static void	em_print_hw_stats(struct adapter *);
330 
331 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
332 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
333 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
334 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
335 static void	em_add_sysctl(struct adapter *adapter);
336 
337 /* Management and WOL Support */
338 static void	em_get_mgmt(struct adapter *);
339 static void	em_rel_mgmt(struct adapter *);
340 static void	em_get_hw_control(struct adapter *);
341 static void	em_rel_hw_control(struct adapter *);
342 static void	em_enable_wol(device_t);
343 
344 static device_method_t em_methods[] = {
345 	/* Device interface */
346 	DEVMETHOD(device_probe,		em_probe),
347 	DEVMETHOD(device_attach,	em_attach),
348 	DEVMETHOD(device_detach,	em_detach),
349 	DEVMETHOD(device_shutdown,	em_shutdown),
350 	DEVMETHOD(device_suspend,	em_suspend),
351 	DEVMETHOD(device_resume,	em_resume),
352 	{ 0, 0 }
353 };
354 
355 static driver_t em_driver = {
356 	"em",
357 	em_methods,
358 	sizeof(struct adapter),
359 };
360 
361 static devclass_t em_devclass;
362 
363 DECLARE_DUMMY_MODULE(if_em);
364 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
365 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
366 
367 /*
368  * Tunables
369  */
370 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
371 static int	em_rxd = EM_DEFAULT_RXD;
372 static int	em_txd = EM_DEFAULT_TXD;
373 static int	em_smart_pwr_down = FALSE;
374 
375 /* Controls whether promiscuous also shows bad packets */
376 static int	em_debug_sbp = FALSE;
377 
378 static int	em_82573_workaround = TRUE;
379 
380 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
381 TUNABLE_INT("hw.em.rxd", &em_rxd);
382 TUNABLE_INT("hw.em.txd", &em_txd);
383 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
384 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
385 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
386 
387 /* Global used in WOL setup with multiport cards */
388 static int	em_global_quad_port_a = 0;
389 
390 /* Set this to one to display debug statistics */
391 static int	em_display_debug_stats = 0;
392 
393 #if !defined(KTR_IF_EM)
394 #define KTR_IF_EM	KTR_ALL
395 #endif
396 KTR_INFO_MASTER(if_em);
397 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
398 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
399 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
400 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
401 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
402 #define logif(name)	KTR_LOG(if_em_ ## name)
403 
404 static int
405 em_probe(device_t dev)
406 {
407 	const struct em_vendor_info *ent;
408 	uint16_t vid, did;
409 
410 	vid = pci_get_vendor(dev);
411 	did = pci_get_device(dev);
412 
413 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
414 		if (vid == ent->vendor_id && did == ent->device_id) {
415 			device_set_desc(dev, ent->desc);
416 			device_set_async_attach(dev, TRUE);
417 			return (ent->ret);
418 		}
419 	}
420 	return (ENXIO);
421 }
422 
423 static int
424 em_attach(device_t dev)
425 {
426 	struct adapter *adapter = device_get_softc(dev);
427 	struct ifnet *ifp = &adapter->arpcom.ac_if;
428 	int tsize, rsize;
429 	int error = 0;
430 	uint16_t eeprom_data, device_id, apme_mask;
431 
432 	adapter->dev = adapter->osdep.dev = dev;
433 
434 	callout_init_mp(&adapter->timer);
435 	callout_init_mp(&adapter->tx_fifo_timer);
436 
437 	/* Determine hardware and mac info */
438 	error = em_get_hw_info(adapter);
439 	if (error) {
440 		device_printf(dev, "Identify hardware failed\n");
441 		goto fail;
442 	}
443 
444 	/* Setup PCI resources */
445 	error = em_alloc_pci_res(adapter);
446 	if (error) {
447 		device_printf(dev, "Allocation of PCI resources failed\n");
448 		goto fail;
449 	}
450 
451 	/*
452 	 * For ICH8 and family we need to map the flash memory,
453 	 * and this must happen after the MAC is identified.
454 	 */
455 	if (adapter->hw.mac.type == e1000_ich8lan ||
456 	    adapter->hw.mac.type == e1000_ich9lan ||
457 	    adapter->hw.mac.type == e1000_ich10lan ||
458 	    adapter->hw.mac.type == e1000_pchlan ||
459 	    adapter->hw.mac.type == e1000_pch2lan) {
460 		adapter->flash_rid = EM_BAR_FLASH;
461 
462 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
463 					&adapter->flash_rid, RF_ACTIVE);
464 		if (adapter->flash == NULL) {
465 			device_printf(dev, "Mapping of Flash failed\n");
466 			error = ENXIO;
467 			goto fail;
468 		}
469 		adapter->osdep.flash_bus_space_tag =
470 		    rman_get_bustag(adapter->flash);
471 		adapter->osdep.flash_bus_space_handle =
472 		    rman_get_bushandle(adapter->flash);
473 
474 		/*
475 		 * This is used in the shared code
476 		 * XXX this goof is actually not used.
477 		 */
478 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
479 	}
480 
481 	/* Do Shared Code initialization */
482 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
483 		device_printf(dev, "Setup of Shared code failed\n");
484 		error = ENXIO;
485 		goto fail;
486 	}
487 
488 	e1000_get_bus_info(&adapter->hw);
489 
490 	/*
491 	 * Validate number of transmit and receive descriptors.  It
492 	 * must not exceed hardware maximum, and must be multiple
493 	 * of E1000_DBA_ALIGN.
494 	 */
495 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
496 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
497 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
498 	    em_txd < EM_MIN_TXD) {
499 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
500 		    EM_DEFAULT_TXD, em_txd);
501 		adapter->num_tx_desc = EM_DEFAULT_TXD;
502 	} else {
503 		adapter->num_tx_desc = em_txd;
504 	}
505 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
506 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
507 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
508 	    em_rxd < EM_MIN_RXD) {
509 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
510 		    EM_DEFAULT_RXD, em_rxd);
511 		adapter->num_rx_desc = EM_DEFAULT_RXD;
512 	} else {
513 		adapter->num_rx_desc = em_rxd;
514 	}
515 
516 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
517 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
518 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
519 	adapter->rx_buffer_len = MCLBYTES;
520 
521 	/*
522 	 * Interrupt throttle rate
523 	 */
524 	if (em_int_throttle_ceil == 0) {
525 		adapter->int_throttle_ceil = 0;
526 	} else {
527 		int throttle = em_int_throttle_ceil;
528 
529 		if (throttle < 0)
530 			throttle = EM_DEFAULT_ITR;
531 
532 		/* Recalculate the tunable value to get the exact frequency. */
533 		throttle = 1000000000 / 256 / throttle;
534 
535 		/* Upper 16bits of ITR is reserved and should be zero */
536 		if (throttle & 0xffff0000)
537 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
538 
539 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
540 	}
541 
542 	e1000_init_script_state_82541(&adapter->hw, TRUE);
543 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
544 
545 	/* Copper options */
546 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
547 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
548 		adapter->hw.phy.disable_polarity_correction = FALSE;
549 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
550 	}
551 
552 	/* Set the frame limits assuming standard ethernet sized frames. */
553 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
554 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
555 
556 	/* This controls when hardware reports transmit completion status. */
557 	adapter->hw.mac.report_tx_early = 1;
558 
559 	/*
560 	 * Create top level busdma tag
561 	 */
562 	error = bus_dma_tag_create(NULL, 1, 0,
563 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
564 			NULL, NULL,
565 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
566 			0, &adapter->parent_dtag);
567 	if (error) {
568 		device_printf(dev, "could not create top level DMA tag\n");
569 		goto fail;
570 	}
571 
572 	/*
573 	 * Allocate Transmit Descriptor ring
574 	 */
575 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
576 			 EM_DBA_ALIGN);
577 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
578 	if (error) {
579 		device_printf(dev, "Unable to allocate tx_desc memory\n");
580 		goto fail;
581 	}
582 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
583 
584 	/*
585 	 * Allocate Receive Descriptor ring
586 	 */
587 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
588 			 EM_DBA_ALIGN);
589 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
590 	if (error) {
591 		device_printf(dev, "Unable to allocate rx_desc memory\n");
592 		goto fail;
593 	}
594 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
595 
596 	/* Allocate multicast array memory. */
597 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
598 	    M_DEVBUF, M_WAITOK);
599 
600 	/* Indicate SOL/IDER usage */
601 	if (e1000_check_reset_block(&adapter->hw)) {
602 		device_printf(dev,
603 		    "PHY reset is blocked due to SOL/IDER session.\n");
604 	}
605 
606 	/*
607 	 * Start from a known state, this is important in reading the
608 	 * nvm and mac from that.
609 	 */
610 	e1000_reset_hw(&adapter->hw);
611 
612 	/* Make sure we have a good EEPROM before we read from it */
613 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
614 		/*
615 		 * Some PCI-E parts fail the first check due to
616 		 * the link being in sleep state, call it again,
617 		 * if it fails a second time its a real issue.
618 		 */
619 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
620 			device_printf(dev,
621 			    "The EEPROM Checksum Is Not Valid\n");
622 			error = EIO;
623 			goto fail;
624 		}
625 	}
626 
627 	/* Copy the permanent MAC address out of the EEPROM */
628 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
629 		device_printf(dev, "EEPROM read error while reading MAC"
630 		    " address\n");
631 		error = EIO;
632 		goto fail;
633 	}
634 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
635 		device_printf(dev, "Invalid MAC address\n");
636 		error = EIO;
637 		goto fail;
638 	}
639 
640 	/* Allocate transmit descriptors and buffers */
641 	error = em_create_tx_ring(adapter);
642 	if (error) {
643 		device_printf(dev, "Could not setup transmit structures\n");
644 		goto fail;
645 	}
646 
647 	/* Allocate receive descriptors and buffers */
648 	error = em_create_rx_ring(adapter);
649 	if (error) {
650 		device_printf(dev, "Could not setup receive structures\n");
651 		goto fail;
652 	}
653 
654 	/* Manually turn off all interrupts */
655 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
656 
657 	/* Determine if we have to control management hardware */
658 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
659 
660 	/*
661 	 * Setup Wake-on-Lan
662 	 */
663 	apme_mask = EM_EEPROM_APME;
664 	eeprom_data = 0;
665 	switch (adapter->hw.mac.type) {
666 	case e1000_82542:
667 	case e1000_82543:
668 		break;
669 
670 	case e1000_82573:
671 	case e1000_82583:
672 		adapter->has_amt = 1;
673 		/* FALL THROUGH */
674 
675 	case e1000_82546:
676 	case e1000_82546_rev_3:
677 	case e1000_82571:
678 	case e1000_82572:
679 	case e1000_80003es2lan:
680 		if (adapter->hw.bus.func == 1) {
681 			e1000_read_nvm(&adapter->hw,
682 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
683 		} else {
684 			e1000_read_nvm(&adapter->hw,
685 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
686 		}
687 		break;
688 
689 	case e1000_ich8lan:
690 	case e1000_ich9lan:
691 	case e1000_ich10lan:
692 	case e1000_pchlan:
693 	case e1000_pch2lan:
694 		apme_mask = E1000_WUC_APME;
695 		adapter->has_amt = TRUE;
696 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
697 		break;
698 
699 	default:
700 		e1000_read_nvm(&adapter->hw,
701 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
702 		break;
703 	}
704 	if (eeprom_data & apme_mask)
705 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
706 
707 	/*
708          * We have the eeprom settings, now apply the special cases
709          * where the eeprom may be wrong or the board won't support
710          * wake on lan on a particular port
711 	 */
712 	device_id = pci_get_device(dev);
713         switch (device_id) {
714 	case E1000_DEV_ID_82546GB_PCIE:
715 		adapter->wol = 0;
716 		break;
717 
718 	case E1000_DEV_ID_82546EB_FIBER:
719 	case E1000_DEV_ID_82546GB_FIBER:
720 	case E1000_DEV_ID_82571EB_FIBER:
721 		/*
722 		 * Wake events only supported on port A for dual fiber
723 		 * regardless of eeprom setting
724 		 */
725 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
726 		    E1000_STATUS_FUNC_1)
727 			adapter->wol = 0;
728 		break;
729 
730 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
731 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
732 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
733 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
734                 /* if quad port adapter, disable WoL on all but port A */
735 		if (em_global_quad_port_a != 0)
736 			adapter->wol = 0;
737 		/* Reset for multiple quad port adapters */
738 		if (++em_global_quad_port_a == 4)
739 			em_global_quad_port_a = 0;
740                 break;
741 	}
742 
743 	/* XXX disable wol */
744 	adapter->wol = 0;
745 
746 	/* Setup OS specific network interface */
747 	em_setup_ifp(adapter);
748 
749 	/* Add sysctl tree, must after em_setup_ifp() */
750 	em_add_sysctl(adapter);
751 
752 	/* Reset the hardware */
753 	error = em_reset(adapter);
754 	if (error) {
755 		device_printf(dev, "Unable to reset the hardware\n");
756 		goto fail;
757 	}
758 
759 	/* Initialize statistics */
760 	em_update_stats(adapter);
761 
762 	adapter->hw.mac.get_link_status = 1;
763 	em_update_link_status(adapter);
764 
765 	/* Do we need workaround for 82544 PCI-X adapter? */
766 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
767 	    adapter->hw.mac.type == e1000_82544)
768 		adapter->pcix_82544 = TRUE;
769 	else
770 		adapter->pcix_82544 = FALSE;
771 
772 	if (adapter->pcix_82544) {
773 		/*
774 		 * 82544 on PCI-X may split one TX segment
775 		 * into two TX descs, so we double its number
776 		 * of spare TX desc here.
777 		 */
778 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
779 	} else {
780 		adapter->spare_tx_desc = EM_TX_SPARE;
781 	}
782 
783 	/*
784 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
785 	 * and tx_int_nsegs:
786 	 * (spare_tx_desc + EM_TX_RESERVED) <=
787 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
788 	 */
789 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
790 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
791 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
792 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
793 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
794 
795 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
796 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
797 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
798 
799 	/* Non-AMT based hardware can now take control from firmware */
800 	if (adapter->has_manage && !adapter->has_amt &&
801 	    adapter->hw.mac.type >= e1000_82571)
802 		em_get_hw_control(adapter);
803 
804 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
805 			       em_intr, adapter, &adapter->intr_tag,
806 			       ifp->if_serializer);
807 	if (error) {
808 		device_printf(dev, "Failed to register interrupt handler");
809 		ether_ifdetach(&adapter->arpcom.ac_if);
810 		goto fail;
811 	}
812 
813 	ifp->if_cpuid = ithread_cpuid(rman_get_start(adapter->intr_res));
814 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
815 	return (0);
816 fail:
817 	em_detach(dev);
818 	return (error);
819 }
820 
821 static int
822 em_detach(device_t dev)
823 {
824 	struct adapter *adapter = device_get_softc(dev);
825 
826 	if (device_is_attached(dev)) {
827 		struct ifnet *ifp = &adapter->arpcom.ac_if;
828 
829 		lwkt_serialize_enter(ifp->if_serializer);
830 
831 		em_stop(adapter);
832 
833 		e1000_phy_hw_reset(&adapter->hw);
834 
835 		em_rel_mgmt(adapter);
836 		em_rel_hw_control(adapter);
837 
838 		if (adapter->wol) {
839 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
840 					E1000_WUC_PME_EN);
841 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
842 			em_enable_wol(dev);
843 		}
844 
845 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
846 
847 		lwkt_serialize_exit(ifp->if_serializer);
848 
849 		ether_ifdetach(ifp);
850 	} else {
851 		em_rel_hw_control(adapter);
852 	}
853 	bus_generic_detach(dev);
854 
855 	em_free_pci_res(adapter);
856 
857 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
858 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
859 
860 	/* Free Transmit Descriptor ring */
861 	if (adapter->tx_desc_base)
862 		em_dma_free(adapter, &adapter->txdma);
863 
864 	/* Free Receive Descriptor ring */
865 	if (adapter->rx_desc_base)
866 		em_dma_free(adapter, &adapter->rxdma);
867 
868 	/* Free top level busdma tag */
869 	if (adapter->parent_dtag != NULL)
870 		bus_dma_tag_destroy(adapter->parent_dtag);
871 
872 	/* Free sysctl tree */
873 	if (adapter->sysctl_tree != NULL)
874 		sysctl_ctx_free(&adapter->sysctl_ctx);
875 
876 	return (0);
877 }
878 
879 static int
880 em_shutdown(device_t dev)
881 {
882 	return em_suspend(dev);
883 }
884 
885 static int
886 em_suspend(device_t dev)
887 {
888 	struct adapter *adapter = device_get_softc(dev);
889 	struct ifnet *ifp = &adapter->arpcom.ac_if;
890 
891 	lwkt_serialize_enter(ifp->if_serializer);
892 
893 	em_stop(adapter);
894 
895 	em_rel_mgmt(adapter);
896 	em_rel_hw_control(adapter);
897 
898 	if (adapter->wol) {
899 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
900 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
901 		em_enable_wol(dev);
902 	}
903 
904 	lwkt_serialize_exit(ifp->if_serializer);
905 
906 	return bus_generic_suspend(dev);
907 }
908 
909 static int
910 em_resume(device_t dev)
911 {
912 	struct adapter *adapter = device_get_softc(dev);
913 	struct ifnet *ifp = &adapter->arpcom.ac_if;
914 
915 	lwkt_serialize_enter(ifp->if_serializer);
916 
917 	em_init(adapter);
918 	em_get_mgmt(adapter);
919 	if_devstart(ifp);
920 
921 	lwkt_serialize_exit(ifp->if_serializer);
922 
923 	return bus_generic_resume(dev);
924 }
925 
926 static void
927 em_start(struct ifnet *ifp)
928 {
929 	struct adapter *adapter = ifp->if_softc;
930 	struct mbuf *m_head;
931 
932 	ASSERT_SERIALIZED(ifp->if_serializer);
933 
934 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
935 		return;
936 
937 	if (!adapter->link_active) {
938 		ifq_purge(&ifp->if_snd);
939 		return;
940 	}
941 
942 	while (!ifq_is_empty(&ifp->if_snd)) {
943 		/* Now do we at least have a minimal? */
944 		if (EM_IS_OACTIVE(adapter)) {
945 			em_tx_collect(adapter);
946 			if (EM_IS_OACTIVE(adapter)) {
947 				ifp->if_flags |= IFF_OACTIVE;
948 				adapter->no_tx_desc_avail1++;
949 				break;
950 			}
951 		}
952 
953 		logif(pkt_txqueue);
954 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
955 		if (m_head == NULL)
956 			break;
957 
958 		if (em_encap(adapter, &m_head)) {
959 			ifp->if_oerrors++;
960 			em_tx_collect(adapter);
961 			continue;
962 		}
963 
964 		/* Send a copy of the frame to the BPF listener */
965 		ETHER_BPF_MTAP(ifp, m_head);
966 
967 		/* Set timeout in case hardware has problems transmitting. */
968 		ifp->if_timer = EM_TX_TIMEOUT;
969 	}
970 }
971 
972 static int
973 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
974 {
975 	struct adapter *adapter = ifp->if_softc;
976 	struct ifreq *ifr = (struct ifreq *)data;
977 	uint16_t eeprom_data = 0;
978 	int max_frame_size, mask, reinit;
979 	int error = 0;
980 
981 	ASSERT_SERIALIZED(ifp->if_serializer);
982 
983 	switch (command) {
984 	case SIOCSIFMTU:
985 		switch (adapter->hw.mac.type) {
986 		case e1000_82573:
987 			/*
988 			 * 82573 only supports jumbo frames
989 			 * if ASPM is disabled.
990 			 */
991 			e1000_read_nvm(&adapter->hw,
992 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
993 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
994 				max_frame_size = ETHER_MAX_LEN;
995 				break;
996 			}
997 			/* FALL THROUGH */
998 
999 		/* Limit Jumbo Frame size */
1000 		case e1000_82571:
1001 		case e1000_82572:
1002 		case e1000_ich9lan:
1003 		case e1000_ich10lan:
1004 		case e1000_pch2lan:
1005 		case e1000_82574:
1006 		case e1000_80003es2lan:
1007 			max_frame_size = 9234;
1008 			break;
1009 
1010 		case e1000_pchlan:
1011 			max_frame_size = 4096;
1012 			break;
1013 
1014 		/* Adapters that do not support jumbo frames */
1015 		case e1000_82542:
1016 		case e1000_82583:
1017 		case e1000_ich8lan:
1018 			max_frame_size = ETHER_MAX_LEN;
1019 			break;
1020 
1021 		default:
1022 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1023 			break;
1024 		}
1025 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1026 		    ETHER_CRC_LEN) {
1027 			error = EINVAL;
1028 			break;
1029 		}
1030 
1031 		ifp->if_mtu = ifr->ifr_mtu;
1032 		adapter->max_frame_size =
1033 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1034 
1035 		if (ifp->if_flags & IFF_RUNNING)
1036 			em_init(adapter);
1037 		break;
1038 
1039 	case SIOCSIFFLAGS:
1040 		if (ifp->if_flags & IFF_UP) {
1041 			if ((ifp->if_flags & IFF_RUNNING)) {
1042 				if ((ifp->if_flags ^ adapter->if_flags) &
1043 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1044 					em_disable_promisc(adapter);
1045 					em_set_promisc(adapter);
1046 				}
1047 			} else {
1048 				em_init(adapter);
1049 			}
1050 		} else if (ifp->if_flags & IFF_RUNNING) {
1051 			em_stop(adapter);
1052 		}
1053 		adapter->if_flags = ifp->if_flags;
1054 		break;
1055 
1056 	case SIOCADDMULTI:
1057 	case SIOCDELMULTI:
1058 		if (ifp->if_flags & IFF_RUNNING) {
1059 			em_disable_intr(adapter);
1060 			em_set_multi(adapter);
1061 			if (adapter->hw.mac.type == e1000_82542 &&
1062 			    adapter->hw.revision_id == E1000_REVISION_2)
1063 				em_init_rx_unit(adapter);
1064 #ifdef DEVICE_POLLING
1065 			if (!(ifp->if_flags & IFF_POLLING))
1066 #endif
1067 				em_enable_intr(adapter);
1068 		}
1069 		break;
1070 
1071 	case SIOCSIFMEDIA:
1072 		/* Check SOL/IDER usage */
1073 		if (e1000_check_reset_block(&adapter->hw)) {
1074 			device_printf(adapter->dev, "Media change is"
1075 			    " blocked due to SOL/IDER session.\n");
1076 			break;
1077 		}
1078 		/* FALL THROUGH */
1079 
1080 	case SIOCGIFMEDIA:
1081 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1082 		break;
1083 
1084 	case SIOCSIFCAP:
1085 		reinit = 0;
1086 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1087 		if (mask & IFCAP_HWCSUM) {
1088 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1089 			reinit = 1;
1090 		}
1091 		if (mask & IFCAP_VLAN_HWTAGGING) {
1092 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1093 			reinit = 1;
1094 		}
1095 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1096 			em_init(adapter);
1097 		break;
1098 
1099 	default:
1100 		error = ether_ioctl(ifp, command, data);
1101 		break;
1102 	}
1103 	return (error);
1104 }
1105 
1106 static void
1107 em_watchdog(struct ifnet *ifp)
1108 {
1109 	struct adapter *adapter = ifp->if_softc;
1110 
1111 	ASSERT_SERIALIZED(ifp->if_serializer);
1112 
1113 	/*
1114 	 * The timer is set to 5 every time start queues a packet.
1115 	 * Then txeof keeps resetting it as long as it cleans at
1116 	 * least one descriptor.
1117 	 * Finally, anytime all descriptors are clean the timer is
1118 	 * set to 0.
1119 	 */
1120 
1121 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1122 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1123 		/*
1124 		 * If we reach here, all TX jobs are completed and
1125 		 * the TX engine should have been idled for some time.
1126 		 * We don't need to call if_devstart() here.
1127 		 */
1128 		ifp->if_flags &= ~IFF_OACTIVE;
1129 		ifp->if_timer = 0;
1130 		return;
1131 	}
1132 
1133 	/*
1134 	 * If we are in this routine because of pause frames, then
1135 	 * don't reset the hardware.
1136 	 */
1137 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1138 	    E1000_STATUS_TXOFF) {
1139 		ifp->if_timer = EM_TX_TIMEOUT;
1140 		return;
1141 	}
1142 
1143 	if (e1000_check_for_link(&adapter->hw) == 0)
1144 		if_printf(ifp, "watchdog timeout -- resetting\n");
1145 
1146 	ifp->if_oerrors++;
1147 	adapter->watchdog_events++;
1148 
1149 	em_init(adapter);
1150 
1151 	if (!ifq_is_empty(&ifp->if_snd))
1152 		if_devstart(ifp);
1153 }
1154 
1155 static void
1156 em_init(void *xsc)
1157 {
1158 	struct adapter *adapter = xsc;
1159 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1160 	device_t dev = adapter->dev;
1161 	uint32_t pba;
1162 
1163 	ASSERT_SERIALIZED(ifp->if_serializer);
1164 
1165 	em_stop(adapter);
1166 
1167 	/*
1168 	 * Packet Buffer Allocation (PBA)
1169 	 * Writing PBA sets the receive portion of the buffer
1170 	 * the remainder is used for the transmit buffer.
1171 	 *
1172 	 * Devices before the 82547 had a Packet Buffer of 64K.
1173 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1174 	 * After the 82547 the buffer was reduced to 40K.
1175 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1176 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1177 	 */
1178 	switch (adapter->hw.mac.type) {
1179 	case e1000_82547:
1180 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1181 		if (adapter->max_frame_size > 8192)
1182 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1183 		else
1184 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1185 		adapter->tx_fifo_head = 0;
1186 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1187 		adapter->tx_fifo_size =
1188 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1189 		break;
1190 
1191 	/* Total Packet Buffer on these is 48K */
1192 	case e1000_82571:
1193 	case e1000_82572:
1194 	case e1000_80003es2lan:
1195 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1196 		break;
1197 
1198 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1199 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1200 		break;
1201 
1202 	case e1000_82574:
1203 	case e1000_82583:
1204 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1205 		break;
1206 
1207 	case e1000_ich8lan:
1208 		pba = E1000_PBA_8K;
1209 		break;
1210 
1211 	case e1000_ich9lan:
1212 	case e1000_ich10lan:
1213 #define E1000_PBA_10K	0x000A
1214 		pba = E1000_PBA_10K;
1215 		break;
1216 
1217 	case e1000_pchlan:
1218 	case e1000_pch2lan:
1219 		pba = E1000_PBA_26K;
1220 		break;
1221 
1222 	default:
1223 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1224 		if (adapter->max_frame_size > 8192)
1225 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1226 		else
1227 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1228 	}
1229 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1230 
1231 	/* Get the latest mac address, User can use a LAA */
1232         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1233 
1234 	/* Put the address into the Receive Address Array */
1235 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1236 
1237 	/*
1238 	 * With the 82571 adapter, RAR[0] may be overwritten
1239 	 * when the other port is reset, we make a duplicate
1240 	 * in RAR[14] for that eventuality, this assures
1241 	 * the interface continues to function.
1242 	 */
1243 	if (adapter->hw.mac.type == e1000_82571) {
1244 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1245 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1246 		    E1000_RAR_ENTRIES - 1);
1247 	}
1248 
1249 	/* Reset the hardware */
1250 	if (em_reset(adapter)) {
1251 		device_printf(dev, "Unable to reset the hardware\n");
1252 		/* XXX em_stop()? */
1253 		return;
1254 	}
1255 	em_update_link_status(adapter);
1256 
1257 	/* Setup VLAN support, basic and offload if available */
1258 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1259 
1260 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1261 		uint32_t ctrl;
1262 
1263 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1264 		ctrl |= E1000_CTRL_VME;
1265 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1266 	}
1267 
1268 	/* Set hardware offload abilities */
1269 	if (ifp->if_capenable & IFCAP_TXCSUM)
1270 		ifp->if_hwassist = EM_CSUM_FEATURES;
1271 	else
1272 		ifp->if_hwassist = 0;
1273 
1274 	/* Configure for OS presence */
1275 	em_get_mgmt(adapter);
1276 
1277 	/* Prepare transmit descriptors and buffers */
1278 	em_init_tx_ring(adapter);
1279 	em_init_tx_unit(adapter);
1280 
1281 	/* Setup Multicast table */
1282 	em_set_multi(adapter);
1283 
1284 	/* Prepare receive descriptors and buffers */
1285 	if (em_init_rx_ring(adapter)) {
1286 		device_printf(dev, "Could not setup receive structures\n");
1287 		em_stop(adapter);
1288 		return;
1289 	}
1290 	em_init_rx_unit(adapter);
1291 
1292 	/* Don't lose promiscuous settings */
1293 	em_set_promisc(adapter);
1294 
1295 	ifp->if_flags |= IFF_RUNNING;
1296 	ifp->if_flags &= ~IFF_OACTIVE;
1297 
1298 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1299 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1300 
1301 	/* MSI/X configuration for 82574 */
1302 	if (adapter->hw.mac.type == e1000_82574) {
1303 		int tmp;
1304 
1305 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1306 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1307 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1308 		/*
1309 		 * XXX MSIX
1310 		 * Set the IVAR - interrupt vector routing.
1311 		 * Each nibble represents a vector, high bit
1312 		 * is enable, other 3 bits are the MSIX table
1313 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1314 		 * Link (other) to 2, hence the magic number.
1315 		 */
1316 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1317 	}
1318 
1319 #ifdef DEVICE_POLLING
1320 	/*
1321 	 * Only enable interrupts if we are not polling, make sure
1322 	 * they are off otherwise.
1323 	 */
1324 	if (ifp->if_flags & IFF_POLLING)
1325 		em_disable_intr(adapter);
1326 	else
1327 #endif /* DEVICE_POLLING */
1328 		em_enable_intr(adapter);
1329 
1330 	/* AMT based hardware can now take control from firmware */
1331 	if (adapter->has_manage && adapter->has_amt &&
1332 	    adapter->hw.mac.type >= e1000_82571)
1333 		em_get_hw_control(adapter);
1334 
1335 	/* Don't reset the phy next time init gets called */
1336 	adapter->hw.phy.reset_disable = TRUE;
1337 }
1338 
1339 #ifdef DEVICE_POLLING
1340 
1341 static void
1342 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1343 {
1344 	struct adapter *adapter = ifp->if_softc;
1345 	uint32_t reg_icr;
1346 
1347 	ASSERT_SERIALIZED(ifp->if_serializer);
1348 
1349 	switch (cmd) {
1350 	case POLL_REGISTER:
1351 		em_disable_intr(adapter);
1352 		break;
1353 
1354 	case POLL_DEREGISTER:
1355 		em_enable_intr(adapter);
1356 		break;
1357 
1358 	case POLL_AND_CHECK_STATUS:
1359 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1360 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1361 			callout_stop(&adapter->timer);
1362 			adapter->hw.mac.get_link_status = 1;
1363 			em_update_link_status(adapter);
1364 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1365 		}
1366 		/* FALL THROUGH */
1367 	case POLL_ONLY:
1368 		if (ifp->if_flags & IFF_RUNNING) {
1369 			em_rxeof(adapter, count);
1370 			em_txeof(adapter);
1371 
1372 			if (!ifq_is_empty(&ifp->if_snd))
1373 				if_devstart(ifp);
1374 		}
1375 		break;
1376 	}
1377 }
1378 
1379 #endif /* DEVICE_POLLING */
1380 
1381 static void
1382 em_intr(void *xsc)
1383 {
1384 	struct adapter *adapter = xsc;
1385 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1386 	uint32_t reg_icr;
1387 
1388 	logif(intr_beg);
1389 	ASSERT_SERIALIZED(ifp->if_serializer);
1390 
1391 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1392 
1393 	if ((adapter->hw.mac.type >= e1000_82571 &&
1394 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1395 	    reg_icr == 0) {
1396 		logif(intr_end);
1397 		return;
1398 	}
1399 
1400 	/*
1401 	 * XXX: some laptops trigger several spurious interrupts
1402 	 * on em(4) when in the resume cycle. The ICR register
1403 	 * reports all-ones value in this case. Processing such
1404 	 * interrupts would lead to a freeze. I don't know why.
1405 	 */
1406 	if (reg_icr == 0xffffffff) {
1407 		logif(intr_end);
1408 		return;
1409 	}
1410 
1411 	if (ifp->if_flags & IFF_RUNNING) {
1412 		if (reg_icr &
1413 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1414 			em_rxeof(adapter, -1);
1415 		if (reg_icr & E1000_ICR_TXDW) {
1416 			em_txeof(adapter);
1417 			if (!ifq_is_empty(&ifp->if_snd))
1418 				if_devstart(ifp);
1419 		}
1420 	}
1421 
1422 	/* Link status change */
1423 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1424 		callout_stop(&adapter->timer);
1425 		adapter->hw.mac.get_link_status = 1;
1426 		em_update_link_status(adapter);
1427 
1428 		/* Deal with TX cruft when link lost */
1429 		em_tx_purge(adapter);
1430 
1431 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1432 	}
1433 
1434 	if (reg_icr & E1000_ICR_RXO)
1435 		adapter->rx_overruns++;
1436 
1437 	logif(intr_end);
1438 }
1439 
1440 static void
1441 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1442 {
1443 	struct adapter *adapter = ifp->if_softc;
1444 	u_char fiber_type = IFM_1000_SX;
1445 
1446 	ASSERT_SERIALIZED(ifp->if_serializer);
1447 
1448 	em_update_link_status(adapter);
1449 
1450 	ifmr->ifm_status = IFM_AVALID;
1451 	ifmr->ifm_active = IFM_ETHER;
1452 
1453 	if (!adapter->link_active)
1454 		return;
1455 
1456 	ifmr->ifm_status |= IFM_ACTIVE;
1457 
1458 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1459 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1460 		if (adapter->hw.mac.type == e1000_82545)
1461 			fiber_type = IFM_1000_LX;
1462 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1463 	} else {
1464 		switch (adapter->link_speed) {
1465 		case 10:
1466 			ifmr->ifm_active |= IFM_10_T;
1467 			break;
1468 		case 100:
1469 			ifmr->ifm_active |= IFM_100_TX;
1470 			break;
1471 
1472 		case 1000:
1473 			ifmr->ifm_active |= IFM_1000_T;
1474 			break;
1475 		}
1476 		if (adapter->link_duplex == FULL_DUPLEX)
1477 			ifmr->ifm_active |= IFM_FDX;
1478 		else
1479 			ifmr->ifm_active |= IFM_HDX;
1480 	}
1481 }
1482 
1483 static int
1484 em_media_change(struct ifnet *ifp)
1485 {
1486 	struct adapter *adapter = ifp->if_softc;
1487 	struct ifmedia *ifm = &adapter->media;
1488 
1489 	ASSERT_SERIALIZED(ifp->if_serializer);
1490 
1491 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1492 		return (EINVAL);
1493 
1494 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1495 	case IFM_AUTO:
1496 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1497 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1498 		break;
1499 
1500 	case IFM_1000_LX:
1501 	case IFM_1000_SX:
1502 	case IFM_1000_T:
1503 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1504 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1505 		break;
1506 
1507 	case IFM_100_TX:
1508 		adapter->hw.mac.autoneg = FALSE;
1509 		adapter->hw.phy.autoneg_advertised = 0;
1510 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1511 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1512 		else
1513 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1514 		break;
1515 
1516 	case IFM_10_T:
1517 		adapter->hw.mac.autoneg = FALSE;
1518 		adapter->hw.phy.autoneg_advertised = 0;
1519 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1520 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1521 		else
1522 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1523 		break;
1524 
1525 	default:
1526 		if_printf(ifp, "Unsupported media type\n");
1527 		break;
1528 	}
1529 
1530 	/*
1531 	 * As the speed/duplex settings my have changed we need to
1532 	 * reset the PHY.
1533 	 */
1534 	adapter->hw.phy.reset_disable = FALSE;
1535 
1536 	em_init(adapter);
1537 
1538 	return (0);
1539 }
1540 
1541 static int
1542 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1543 {
1544 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1545 	bus_dmamap_t map;
1546 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1547 	struct e1000_tx_desc *ctxd = NULL;
1548 	struct mbuf *m_head = *m_headp;
1549 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1550 	int maxsegs, nsegs, i, j, first, last = 0, error;
1551 
1552 	if (m_head->m_len < EM_TXCSUM_MINHL &&
1553 	    (m_head->m_flags & EM_CSUM_FEATURES)) {
1554 		/*
1555 		 * Make sure that ethernet header and ip.ip_hl are in
1556 		 * contiguous memory, since if TXCSUM is enabled, later
1557 		 * TX context descriptor's setup need to access ip.ip_hl.
1558 		 */
1559 		error = em_txcsum_pullup(adapter, m_headp);
1560 		if (error) {
1561 			KKASSERT(*m_headp == NULL);
1562 			return error;
1563 		}
1564 		m_head = *m_headp;
1565 	}
1566 
1567 	txd_upper = txd_lower = 0;
1568 	txd_used = 0;
1569 
1570 	/*
1571 	 * Capture the first descriptor index, this descriptor
1572 	 * will have the index of the EOP which is the only one
1573 	 * that now gets a DONE bit writeback.
1574 	 */
1575 	first = adapter->next_avail_tx_desc;
1576 	tx_buffer = &adapter->tx_buffer_area[first];
1577 	tx_buffer_mapped = tx_buffer;
1578 	map = tx_buffer->map;
1579 
1580 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1581 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1582 		("not enough spare TX desc\n"));
1583 	if (adapter->pcix_82544) {
1584 		/* Half it; see the comment in em_attach() */
1585 		maxsegs >>= 1;
1586 	}
1587 	if (maxsegs > EM_MAX_SCATTER)
1588 		maxsegs = EM_MAX_SCATTER;
1589 
1590 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1591 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1592 	if (error) {
1593 		if (error == ENOBUFS)
1594 			adapter->mbuf_alloc_failed++;
1595 		else
1596 			adapter->no_tx_dma_setup++;
1597 
1598 		m_freem(*m_headp);
1599 		*m_headp = NULL;
1600 		return error;
1601 	}
1602         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1603 
1604 	m_head = *m_headp;
1605 	adapter->tx_nsegs += nsegs;
1606 
1607 	if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1608 		/* TX csum offloading will consume one TX desc */
1609 		adapter->tx_nsegs += em_txcsum(adapter, m_head,
1610 					       &txd_upper, &txd_lower);
1611 	}
1612 	i = adapter->next_avail_tx_desc;
1613 
1614 	/* Set up our transmit descriptors */
1615 	for (j = 0; j < nsegs; j++) {
1616 		/* If adapter is 82544 and on PCIX bus */
1617 		if(adapter->pcix_82544) {
1618 			DESC_ARRAY desc_array;
1619 			uint32_t array_elements, counter;
1620 
1621 			/*
1622 			 * Check the Address and Length combination and
1623 			 * split the data accordingly
1624 			 */
1625 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1626 						segs[j].ds_len, &desc_array);
1627 			for (counter = 0; counter < array_elements; counter++) {
1628 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1629 
1630 				tx_buffer = &adapter->tx_buffer_area[i];
1631 				ctxd = &adapter->tx_desc_base[i];
1632 
1633 				ctxd->buffer_addr = htole64(
1634 				    desc_array.descriptor[counter].address);
1635 				ctxd->lower.data = htole32(
1636 				    E1000_TXD_CMD_IFCS | txd_lower |
1637 				    desc_array.descriptor[counter].length);
1638 				ctxd->upper.data = htole32(txd_upper);
1639 
1640 				last = i;
1641 				if (++i == adapter->num_tx_desc)
1642 					i = 0;
1643 
1644 				txd_used++;
1645                         }
1646 		} else {
1647 			tx_buffer = &adapter->tx_buffer_area[i];
1648 			ctxd = &adapter->tx_desc_base[i];
1649 
1650 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1651 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1652 						   txd_lower | segs[j].ds_len);
1653 			ctxd->upper.data = htole32(txd_upper);
1654 
1655 			last = i;
1656 			if (++i == adapter->num_tx_desc)
1657 				i = 0;
1658 		}
1659 	}
1660 
1661 	adapter->next_avail_tx_desc = i;
1662 	if (adapter->pcix_82544) {
1663 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1664 		adapter->num_tx_desc_avail -= txd_used;
1665 	} else {
1666 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1667 		adapter->num_tx_desc_avail -= nsegs;
1668 	}
1669 
1670         /* Handle VLAN tag */
1671 	if (m_head->m_flags & M_VLANTAG) {
1672 		/* Set the vlan id. */
1673 		ctxd->upper.fields.special =
1674 		    htole16(m_head->m_pkthdr.ether_vlantag);
1675 
1676 		/* Tell hardware to add tag */
1677 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1678 	}
1679 
1680 	tx_buffer->m_head = m_head;
1681 	tx_buffer_mapped->map = tx_buffer->map;
1682 	tx_buffer->map = map;
1683 
1684 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1685 		adapter->tx_nsegs = 0;
1686 
1687 		/*
1688 		 * Report Status (RS) is turned on
1689 		 * every tx_int_nsegs descriptors.
1690 		 */
1691 		cmd = E1000_TXD_CMD_RS;
1692 
1693 		/*
1694 		 * Keep track of the descriptor, which will
1695 		 * be written back by hardware.
1696 		 */
1697 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1698 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1699 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1700 	}
1701 
1702 	/*
1703 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1704 	 */
1705 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1706 
1707 	/*
1708 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1709 	 * that this frame is available to transmit.
1710 	 */
1711 	if (adapter->hw.mac.type == e1000_82547 &&
1712 	    adapter->link_duplex == HALF_DUPLEX) {
1713 		em_82547_move_tail_serialized(adapter);
1714 	} else {
1715 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1716 		if (adapter->hw.mac.type == e1000_82547) {
1717 			em_82547_update_fifo_head(adapter,
1718 			    m_head->m_pkthdr.len);
1719 		}
1720 	}
1721 	return (0);
1722 }
1723 
1724 /*
1725  * 82547 workaround to avoid controller hang in half-duplex environment.
1726  * The workaround is to avoid queuing a large packet that would span
1727  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1728  * in this case.  We do that only when FIFO is quiescent.
1729  */
1730 static void
1731 em_82547_move_tail_serialized(struct adapter *adapter)
1732 {
1733 	struct e1000_tx_desc *tx_desc;
1734 	uint16_t hw_tdt, sw_tdt, length = 0;
1735 	bool eop = 0;
1736 
1737 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1738 
1739 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1740 	sw_tdt = adapter->next_avail_tx_desc;
1741 
1742 	while (hw_tdt != sw_tdt) {
1743 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1744 		length += tx_desc->lower.flags.length;
1745 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1746 		if (++hw_tdt == adapter->num_tx_desc)
1747 			hw_tdt = 0;
1748 
1749 		if (eop) {
1750 			if (em_82547_fifo_workaround(adapter, length)) {
1751 				adapter->tx_fifo_wrk_cnt++;
1752 				callout_reset(&adapter->tx_fifo_timer, 1,
1753 					em_82547_move_tail, adapter);
1754 				break;
1755 			}
1756 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1757 			em_82547_update_fifo_head(adapter, length);
1758 			length = 0;
1759 		}
1760 	}
1761 }
1762 
1763 static void
1764 em_82547_move_tail(void *xsc)
1765 {
1766 	struct adapter *adapter = xsc;
1767 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1768 
1769 	lwkt_serialize_enter(ifp->if_serializer);
1770 	em_82547_move_tail_serialized(adapter);
1771 	lwkt_serialize_exit(ifp->if_serializer);
1772 }
1773 
1774 static int
1775 em_82547_fifo_workaround(struct adapter *adapter, int len)
1776 {
1777 	int fifo_space, fifo_pkt_len;
1778 
1779 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1780 
1781 	if (adapter->link_duplex == HALF_DUPLEX) {
1782 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1783 
1784 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1785 			if (em_82547_tx_fifo_reset(adapter))
1786 				return (0);
1787 			else
1788 				return (1);
1789 		}
1790 	}
1791 	return (0);
1792 }
1793 
1794 static void
1795 em_82547_update_fifo_head(struct adapter *adapter, int len)
1796 {
1797 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1798 
1799 	/* tx_fifo_head is always 16 byte aligned */
1800 	adapter->tx_fifo_head += fifo_pkt_len;
1801 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1802 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1803 }
1804 
1805 static int
1806 em_82547_tx_fifo_reset(struct adapter *adapter)
1807 {
1808 	uint32_t tctl;
1809 
1810 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1811 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1812 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1813 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1814 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1815 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1816 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1817 		/* Disable TX unit */
1818 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1819 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1820 		    tctl & ~E1000_TCTL_EN);
1821 
1822 		/* Reset FIFO pointers */
1823 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1824 		    adapter->tx_head_addr);
1825 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1826 		    adapter->tx_head_addr);
1827 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1828 		    adapter->tx_head_addr);
1829 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1830 		    adapter->tx_head_addr);
1831 
1832 		/* Re-enable TX unit */
1833 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1834 		E1000_WRITE_FLUSH(&adapter->hw);
1835 
1836 		adapter->tx_fifo_head = 0;
1837 		adapter->tx_fifo_reset_cnt++;
1838 
1839 		return (TRUE);
1840 	} else {
1841 		return (FALSE);
1842 	}
1843 }
1844 
1845 static void
1846 em_set_promisc(struct adapter *adapter)
1847 {
1848 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1849 	uint32_t reg_rctl;
1850 
1851 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1852 
1853 	if (ifp->if_flags & IFF_PROMISC) {
1854 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1855 		/* Turn this on if you want to see bad packets */
1856 		if (em_debug_sbp)
1857 			reg_rctl |= E1000_RCTL_SBP;
1858 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1859 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1860 		reg_rctl |= E1000_RCTL_MPE;
1861 		reg_rctl &= ~E1000_RCTL_UPE;
1862 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1863 	}
1864 }
1865 
1866 static void
1867 em_disable_promisc(struct adapter *adapter)
1868 {
1869 	uint32_t reg_rctl;
1870 
1871 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1872 
1873 	reg_rctl &= ~E1000_RCTL_UPE;
1874 	reg_rctl &= ~E1000_RCTL_MPE;
1875 	reg_rctl &= ~E1000_RCTL_SBP;
1876 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1877 }
1878 
1879 static void
1880 em_set_multi(struct adapter *adapter)
1881 {
1882 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1883 	struct ifmultiaddr *ifma;
1884 	uint32_t reg_rctl = 0;
1885 	uint8_t *mta;
1886 	int mcnt = 0;
1887 
1888 	mta = adapter->mta;
1889 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1890 
1891 	if (adapter->hw.mac.type == e1000_82542 &&
1892 	    adapter->hw.revision_id == E1000_REVISION_2) {
1893 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1894 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1895 			e1000_pci_clear_mwi(&adapter->hw);
1896 		reg_rctl |= E1000_RCTL_RST;
1897 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1898 		msec_delay(5);
1899 	}
1900 
1901 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1902 		if (ifma->ifma_addr->sa_family != AF_LINK)
1903 			continue;
1904 
1905 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1906 			break;
1907 
1908 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1909 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1910 		mcnt++;
1911 	}
1912 
1913 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1914 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1915 		reg_rctl |= E1000_RCTL_MPE;
1916 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1917 	} else {
1918 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1919 	}
1920 
1921 	if (adapter->hw.mac.type == e1000_82542 &&
1922 	    adapter->hw.revision_id == E1000_REVISION_2) {
1923 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1924 		reg_rctl &= ~E1000_RCTL_RST;
1925 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1926 		msec_delay(5);
1927 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1928 			e1000_pci_set_mwi(&adapter->hw);
1929 	}
1930 }
1931 
1932 /*
1933  * This routine checks for link status and updates statistics.
1934  */
1935 static void
1936 em_timer(void *xsc)
1937 {
1938 	struct adapter *adapter = xsc;
1939 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1940 
1941 	lwkt_serialize_enter(ifp->if_serializer);
1942 
1943 	em_update_link_status(adapter);
1944 	em_update_stats(adapter);
1945 
1946 	/* Reset LAA into RAR[0] on 82571 */
1947 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1948 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1949 
1950 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1951 		em_print_hw_stats(adapter);
1952 
1953 	em_smartspeed(adapter);
1954 
1955 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1956 
1957 	lwkt_serialize_exit(ifp->if_serializer);
1958 }
1959 
1960 static void
1961 em_update_link_status(struct adapter *adapter)
1962 {
1963 	struct e1000_hw *hw = &adapter->hw;
1964 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1965 	device_t dev = adapter->dev;
1966 	uint32_t link_check = 0;
1967 
1968 	/* Get the cached link value or read phy for real */
1969 	switch (hw->phy.media_type) {
1970 	case e1000_media_type_copper:
1971 		if (hw->mac.get_link_status) {
1972 			/* Do the work to read phy */
1973 			e1000_check_for_link(hw);
1974 			link_check = !hw->mac.get_link_status;
1975 			if (link_check) /* ESB2 fix */
1976 				e1000_cfg_on_link_up(hw);
1977 		} else {
1978 			link_check = TRUE;
1979 		}
1980 		break;
1981 
1982 	case e1000_media_type_fiber:
1983 		e1000_check_for_link(hw);
1984 		link_check =
1985 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1986 		break;
1987 
1988 	case e1000_media_type_internal_serdes:
1989 		e1000_check_for_link(hw);
1990 		link_check = adapter->hw.mac.serdes_has_link;
1991 		break;
1992 
1993 	case e1000_media_type_unknown:
1994 	default:
1995 		break;
1996 	}
1997 
1998 	/* Now check for a transition */
1999 	if (link_check && adapter->link_active == 0) {
2000 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2001 		    &adapter->link_duplex);
2002 
2003 		/*
2004 		 * Check if we should enable/disable SPEED_MODE bit on
2005 		 * 82571/82572
2006 		 */
2007 		if (adapter->link_speed != SPEED_1000 &&
2008 		    (hw->mac.type == e1000_82571 ||
2009 		     hw->mac.type == e1000_82572)) {
2010 			int tarc0;
2011 
2012 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2013 			tarc0 &= ~SPEED_MODE_BIT;
2014 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2015 		}
2016 		if (bootverbose) {
2017 			device_printf(dev, "Link is up %d Mbps %s\n",
2018 			    adapter->link_speed,
2019 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2020 			    "Full Duplex" : "Half Duplex"));
2021 		}
2022 		adapter->link_active = 1;
2023 		adapter->smartspeed = 0;
2024 		ifp->if_baudrate = adapter->link_speed * 1000000;
2025 		ifp->if_link_state = LINK_STATE_UP;
2026 		if_link_state_change(ifp);
2027 	} else if (!link_check && adapter->link_active == 1) {
2028 		ifp->if_baudrate = adapter->link_speed = 0;
2029 		adapter->link_duplex = 0;
2030 		if (bootverbose)
2031 			device_printf(dev, "Link is Down\n");
2032 		adapter->link_active = 0;
2033 #if 0
2034 		/* Link down, disable watchdog */
2035 		if->if_timer = 0;
2036 #endif
2037 		ifp->if_link_state = LINK_STATE_DOWN;
2038 		if_link_state_change(ifp);
2039 	}
2040 }
2041 
2042 static void
2043 em_stop(struct adapter *adapter)
2044 {
2045 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2046 	int i;
2047 
2048 	ASSERT_SERIALIZED(ifp->if_serializer);
2049 
2050 	em_disable_intr(adapter);
2051 
2052 	callout_stop(&adapter->timer);
2053 	callout_stop(&adapter->tx_fifo_timer);
2054 
2055 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2056 	ifp->if_timer = 0;
2057 
2058 	e1000_reset_hw(&adapter->hw);
2059 	if (adapter->hw.mac.type >= e1000_82544)
2060 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2061 
2062 	for (i = 0; i < adapter->num_tx_desc; i++) {
2063 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2064 
2065 		if (tx_buffer->m_head != NULL) {
2066 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2067 			m_freem(tx_buffer->m_head);
2068 			tx_buffer->m_head = NULL;
2069 		}
2070 	}
2071 
2072 	for (i = 0; i < adapter->num_rx_desc; i++) {
2073 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2074 
2075 		if (rx_buffer->m_head != NULL) {
2076 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2077 			m_freem(rx_buffer->m_head);
2078 			rx_buffer->m_head = NULL;
2079 		}
2080 	}
2081 
2082 	if (adapter->fmp != NULL)
2083 		m_freem(adapter->fmp);
2084 	adapter->fmp = NULL;
2085 	adapter->lmp = NULL;
2086 
2087 	adapter->csum_flags = 0;
2088 	adapter->csum_ehlen = 0;
2089 	adapter->csum_iphlen = 0;
2090 
2091 	adapter->tx_dd_head = 0;
2092 	adapter->tx_dd_tail = 0;
2093 	adapter->tx_nsegs = 0;
2094 }
2095 
2096 static int
2097 em_get_hw_info(struct adapter *adapter)
2098 {
2099 	device_t dev = adapter->dev;
2100 
2101 	/* Save off the information about this board */
2102 	adapter->hw.vendor_id = pci_get_vendor(dev);
2103 	adapter->hw.device_id = pci_get_device(dev);
2104 	adapter->hw.revision_id = pci_get_revid(dev);
2105 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2106 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2107 
2108 	/* Do Shared Code Init and Setup */
2109 	if (e1000_set_mac_type(&adapter->hw))
2110 		return ENXIO;
2111 	return 0;
2112 }
2113 
2114 static int
2115 em_alloc_pci_res(struct adapter *adapter)
2116 {
2117 	device_t dev = adapter->dev;
2118 	int val, rid;
2119 
2120 	/* Enable bus mastering */
2121 	pci_enable_busmaster(dev);
2122 
2123 	adapter->memory_rid = EM_BAR_MEM;
2124 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2125 				&adapter->memory_rid, RF_ACTIVE);
2126 	if (adapter->memory == NULL) {
2127 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2128 		return (ENXIO);
2129 	}
2130 	adapter->osdep.mem_bus_space_tag =
2131 	    rman_get_bustag(adapter->memory);
2132 	adapter->osdep.mem_bus_space_handle =
2133 	    rman_get_bushandle(adapter->memory);
2134 
2135 	/* XXX This is quite goofy, it is not actually used */
2136 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2137 
2138 	/* Only older adapters use IO mapping */
2139 	if (adapter->hw.mac.type > e1000_82543 &&
2140 	    adapter->hw.mac.type < e1000_82571) {
2141 		/* Figure our where our IO BAR is ? */
2142 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2143 			val = pci_read_config(dev, rid, 4);
2144 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2145 				adapter->io_rid = rid;
2146 				break;
2147 			}
2148 			rid += 4;
2149 			/* check for 64bit BAR */
2150 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2151 				rid += 4;
2152 		}
2153 		if (rid >= PCIR_CARDBUSCIS) {
2154 			device_printf(dev, "Unable to locate IO BAR\n");
2155 			return (ENXIO);
2156 		}
2157 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2158 					&adapter->io_rid, RF_ACTIVE);
2159 		if (adapter->ioport == NULL) {
2160 			device_printf(dev, "Unable to allocate bus resource: "
2161 			    "ioport\n");
2162 			return (ENXIO);
2163 		}
2164 		adapter->hw.io_base = 0;
2165 		adapter->osdep.io_bus_space_tag =
2166 		    rman_get_bustag(adapter->ioport);
2167 		adapter->osdep.io_bus_space_handle =
2168 		    rman_get_bushandle(adapter->ioport);
2169 	}
2170 
2171 	adapter->intr_rid = 0;
2172 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2173 				&adapter->intr_rid,
2174 				RF_SHAREABLE | RF_ACTIVE);
2175 	if (adapter->intr_res == NULL) {
2176 		device_printf(dev, "Unable to allocate bus resource: "
2177 		    "interrupt\n");
2178 		return (ENXIO);
2179 	}
2180 
2181 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2182 	adapter->hw.back = &adapter->osdep;
2183 	return (0);
2184 }
2185 
2186 static void
2187 em_free_pci_res(struct adapter *adapter)
2188 {
2189 	device_t dev = adapter->dev;
2190 
2191 	if (adapter->intr_res != NULL) {
2192 		bus_release_resource(dev, SYS_RES_IRQ,
2193 		    adapter->intr_rid, adapter->intr_res);
2194 	}
2195 
2196 	if (adapter->memory != NULL) {
2197 		bus_release_resource(dev, SYS_RES_MEMORY,
2198 		    adapter->memory_rid, adapter->memory);
2199 	}
2200 
2201 	if (adapter->flash != NULL) {
2202 		bus_release_resource(dev, SYS_RES_MEMORY,
2203 		    adapter->flash_rid, adapter->flash);
2204 	}
2205 
2206 	if (adapter->ioport != NULL) {
2207 		bus_release_resource(dev, SYS_RES_IOPORT,
2208 		    adapter->io_rid, adapter->ioport);
2209 	}
2210 }
2211 
2212 static int
2213 em_reset(struct adapter *adapter)
2214 {
2215 	device_t dev = adapter->dev;
2216 	uint16_t rx_buffer_size;
2217 
2218 	/* When hardware is reset, fifo_head is also reset */
2219 	adapter->tx_fifo_head = 0;
2220 
2221 	/* Set up smart power down as default off on newer adapters. */
2222 	if (!em_smart_pwr_down &&
2223 	    (adapter->hw.mac.type == e1000_82571 ||
2224 	     adapter->hw.mac.type == e1000_82572)) {
2225 		uint16_t phy_tmp = 0;
2226 
2227 		/* Speed up time to link by disabling smart power down. */
2228 		e1000_read_phy_reg(&adapter->hw,
2229 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2230 		phy_tmp &= ~IGP02E1000_PM_SPD;
2231 		e1000_write_phy_reg(&adapter->hw,
2232 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2233 	}
2234 
2235 	/*
2236 	 * These parameters control the automatic generation (Tx) and
2237 	 * response (Rx) to Ethernet PAUSE frames.
2238 	 * - High water mark should allow for at least two frames to be
2239 	 *   received after sending an XOFF.
2240 	 * - Low water mark works best when it is very near the high water mark.
2241 	 *   This allows the receiver to restart by sending XON when it has
2242 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2243 	 *   restart after one full frame is pulled from the buffer. There
2244 	 *   could be several smaller frames in the buffer and if so they will
2245 	 *   not trigger the XON until their total number reduces the buffer
2246 	 *   by 1500.
2247 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2248 	 */
2249 	rx_buffer_size =
2250 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2251 
2252 	adapter->hw.fc.high_water = rx_buffer_size -
2253 				    roundup2(adapter->max_frame_size, 1024);
2254 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2255 
2256 	if (adapter->hw.mac.type == e1000_80003es2lan)
2257 		adapter->hw.fc.pause_time = 0xFFFF;
2258 	else
2259 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2260 
2261 	adapter->hw.fc.send_xon = TRUE;
2262 
2263 	adapter->hw.fc.requested_mode = e1000_fc_full;
2264 
2265 	/* Workaround: no TX flow ctrl for PCH */
2266 	if (adapter->hw.mac.type == e1000_pchlan)
2267 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2268 
2269 	/* Override - settings for PCH2LAN, ya its magic :) */
2270 	if (adapter->hw.mac.type == e1000_pch2lan) {
2271 		adapter->hw.fc.high_water = 0x5C20;
2272 		adapter->hw.fc.low_water = 0x5048;
2273 		adapter->hw.fc.pause_time = 0x0650;
2274 		adapter->hw.fc.refresh_time = 0x0400;
2275 
2276 		/* Jumbos need adjusted PBA */
2277 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2278 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2279 		else
2280 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2281 	}
2282 
2283 	/* Issue a global reset */
2284 	e1000_reset_hw(&adapter->hw);
2285 	if (adapter->hw.mac.type >= e1000_82544)
2286 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2287 
2288 	if (e1000_init_hw(&adapter->hw) < 0) {
2289 		device_printf(dev, "Hardware Initialization Failed\n");
2290 		return (EIO);
2291 	}
2292 
2293 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2294 	e1000_get_phy_info(&adapter->hw);
2295 	e1000_check_for_link(&adapter->hw);
2296 
2297 	return (0);
2298 }
2299 
2300 static void
2301 em_setup_ifp(struct adapter *adapter)
2302 {
2303 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2304 
2305 	if_initname(ifp, device_get_name(adapter->dev),
2306 		    device_get_unit(adapter->dev));
2307 	ifp->if_softc = adapter;
2308 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2309 	ifp->if_init =  em_init;
2310 	ifp->if_ioctl = em_ioctl;
2311 	ifp->if_start = em_start;
2312 #ifdef DEVICE_POLLING
2313 	ifp->if_poll = em_poll;
2314 #endif
2315 	ifp->if_watchdog = em_watchdog;
2316 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2317 	ifq_set_ready(&ifp->if_snd);
2318 
2319 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2320 
2321 	if (adapter->hw.mac.type >= e1000_82543)
2322 		ifp->if_capabilities = IFCAP_HWCSUM;
2323 
2324 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2325 	ifp->if_capenable = ifp->if_capabilities;
2326 
2327 	if (ifp->if_capenable & IFCAP_TXCSUM)
2328 		ifp->if_hwassist = EM_CSUM_FEATURES;
2329 
2330 	/*
2331 	 * Tell the upper layer(s) we support long frames.
2332 	 */
2333 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2334 
2335 	/*
2336 	 * Specify the media types supported by this adapter and register
2337 	 * callbacks to update media and link information
2338 	 */
2339 	ifmedia_init(&adapter->media, IFM_IMASK,
2340 		     em_media_change, em_media_status);
2341 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2342 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2343 		u_char fiber_type = IFM_1000_SX; /* default type */
2344 
2345 		if (adapter->hw.mac.type == e1000_82545)
2346 			fiber_type = IFM_1000_LX;
2347 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2348 			    0, NULL);
2349 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2350 	} else {
2351 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2352 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2353 			    0, NULL);
2354 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2355 			    0, NULL);
2356 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2357 			    0, NULL);
2358 		if (adapter->hw.phy.type != e1000_phy_ife) {
2359 			ifmedia_add(&adapter->media,
2360 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2361 			ifmedia_add(&adapter->media,
2362 				IFM_ETHER | IFM_1000_T, 0, NULL);
2363 		}
2364 	}
2365 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2366 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2367 }
2368 
2369 
2370 /*
2371  * Workaround for SmartSpeed on 82541 and 82547 controllers
2372  */
2373 static void
2374 em_smartspeed(struct adapter *adapter)
2375 {
2376 	uint16_t phy_tmp;
2377 
2378 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2379 	    adapter->hw.mac.autoneg == 0 ||
2380 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2381 		return;
2382 
2383 	if (adapter->smartspeed == 0) {
2384 		/*
2385 		 * If Master/Slave config fault is asserted twice,
2386 		 * we assume back-to-back
2387 		 */
2388 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2389 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2390 			return;
2391 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2392 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2393 			e1000_read_phy_reg(&adapter->hw,
2394 			    PHY_1000T_CTRL, &phy_tmp);
2395 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2396 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2397 				e1000_write_phy_reg(&adapter->hw,
2398 				    PHY_1000T_CTRL, phy_tmp);
2399 				adapter->smartspeed++;
2400 				if (adapter->hw.mac.autoneg &&
2401 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2402 				    !e1000_read_phy_reg(&adapter->hw,
2403 				     PHY_CONTROL, &phy_tmp)) {
2404 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2405 						   MII_CR_RESTART_AUTO_NEG;
2406 					e1000_write_phy_reg(&adapter->hw,
2407 					    PHY_CONTROL, phy_tmp);
2408 				}
2409 			}
2410 		}
2411 		return;
2412 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2413 		/* If still no link, perhaps using 2/3 pair cable */
2414 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2415 		phy_tmp |= CR_1000T_MS_ENABLE;
2416 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2417 		if (adapter->hw.mac.autoneg &&
2418 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2419 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2420 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2421 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2422 		}
2423 	}
2424 
2425 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2426 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2427 		adapter->smartspeed = 0;
2428 }
2429 
2430 static int
2431 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2432 	      struct em_dma_alloc *dma)
2433 {
2434 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2435 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2436 				&dma->dma_tag, &dma->dma_map,
2437 				&dma->dma_paddr);
2438 	if (dma->dma_vaddr == NULL)
2439 		return ENOMEM;
2440 	else
2441 		return 0;
2442 }
2443 
2444 static void
2445 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2446 {
2447 	if (dma->dma_tag == NULL)
2448 		return;
2449 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2450 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2451 	bus_dma_tag_destroy(dma->dma_tag);
2452 }
2453 
2454 static int
2455 em_create_tx_ring(struct adapter *adapter)
2456 {
2457 	device_t dev = adapter->dev;
2458 	struct em_buffer *tx_buffer;
2459 	int error, i;
2460 
2461 	adapter->tx_buffer_area =
2462 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2463 			M_DEVBUF, M_WAITOK | M_ZERO);
2464 
2465 	/*
2466 	 * Create DMA tags for tx buffers
2467 	 */
2468 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2469 			1, 0,			/* alignment, bounds */
2470 			BUS_SPACE_MAXADDR,	/* lowaddr */
2471 			BUS_SPACE_MAXADDR,	/* highaddr */
2472 			NULL, NULL,		/* filter, filterarg */
2473 			EM_TSO_SIZE,		/* maxsize */
2474 			EM_MAX_SCATTER,		/* nsegments */
2475 			EM_MAX_SEGSIZE,		/* maxsegsize */
2476 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2477 			BUS_DMA_ONEBPAGE,	/* flags */
2478 			&adapter->txtag);
2479 	if (error) {
2480 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2481 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2482 		adapter->tx_buffer_area = NULL;
2483 		return error;
2484 	}
2485 
2486 	/*
2487 	 * Create DMA maps for tx buffers
2488 	 */
2489 	for (i = 0; i < adapter->num_tx_desc; i++) {
2490 		tx_buffer = &adapter->tx_buffer_area[i];
2491 
2492 		error = bus_dmamap_create(adapter->txtag,
2493 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2494 					  &tx_buffer->map);
2495 		if (error) {
2496 			device_printf(dev, "Unable to create TX DMA map\n");
2497 			em_destroy_tx_ring(adapter, i);
2498 			return error;
2499 		}
2500 	}
2501 	return (0);
2502 }
2503 
2504 static void
2505 em_init_tx_ring(struct adapter *adapter)
2506 {
2507 	/* Clear the old ring contents */
2508 	bzero(adapter->tx_desc_base,
2509 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2510 
2511 	/* Reset state */
2512 	adapter->next_avail_tx_desc = 0;
2513 	adapter->next_tx_to_clean = 0;
2514 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2515 }
2516 
2517 static void
2518 em_init_tx_unit(struct adapter *adapter)
2519 {
2520 	uint32_t tctl, tarc, tipg = 0;
2521 	uint64_t bus_addr;
2522 
2523 	/* Setup the Base and Length of the Tx Descriptor Ring */
2524 	bus_addr = adapter->txdma.dma_paddr;
2525 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2526 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2527 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2528 	    (uint32_t)(bus_addr >> 32));
2529 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2530 	    (uint32_t)bus_addr);
2531 	/* Setup the HW Tx Head and Tail descriptor pointers */
2532 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2533 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2534 
2535 	/* Set the default values for the Tx Inter Packet Gap timer */
2536 	switch (adapter->hw.mac.type) {
2537 	case e1000_82542:
2538 		tipg = DEFAULT_82542_TIPG_IPGT;
2539 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2540 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2541 		break;
2542 
2543 	case e1000_80003es2lan:
2544 		tipg = DEFAULT_82543_TIPG_IPGR1;
2545 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2546 		    E1000_TIPG_IPGR2_SHIFT;
2547 		break;
2548 
2549 	default:
2550 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2551 		    adapter->hw.phy.media_type ==
2552 		    e1000_media_type_internal_serdes)
2553 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2554 		else
2555 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2556 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2557 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2558 		break;
2559 	}
2560 
2561 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2562 
2563 	/* NOTE: 0 is not allowed for TIDV */
2564 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2565 	if(adapter->hw.mac.type >= e1000_82540)
2566 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2567 
2568 	if (adapter->hw.mac.type == e1000_82571 ||
2569 	    adapter->hw.mac.type == e1000_82572) {
2570 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2571 		tarc |= SPEED_MODE_BIT;
2572 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2573 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2574 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2575 		tarc |= 1;
2576 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2577 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2578 		tarc |= 1;
2579 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2580 	}
2581 
2582 	/* Program the Transmit Control Register */
2583 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2584 	tctl &= ~E1000_TCTL_CT;
2585 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2586 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2587 
2588 	if (adapter->hw.mac.type >= e1000_82571)
2589 		tctl |= E1000_TCTL_MULR;
2590 
2591 	/* This write will effectively turn on the transmit unit. */
2592 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2593 }
2594 
2595 static void
2596 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2597 {
2598 	struct em_buffer *tx_buffer;
2599 	int i;
2600 
2601 	if (adapter->tx_buffer_area == NULL)
2602 		return;
2603 
2604 	for (i = 0; i < ndesc; i++) {
2605 		tx_buffer = &adapter->tx_buffer_area[i];
2606 
2607 		KKASSERT(tx_buffer->m_head == NULL);
2608 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2609 	}
2610 	bus_dma_tag_destroy(adapter->txtag);
2611 
2612 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2613 	adapter->tx_buffer_area = NULL;
2614 }
2615 
2616 /*
2617  * The offload context needs to be set when we transfer the first
2618  * packet of a particular protocol (TCP/UDP).  This routine has been
2619  * enhanced to deal with inserted VLAN headers.
2620  *
2621  * If the new packet's ether header length, ip header length and
2622  * csum offloading type are same as the previous packet, we should
2623  * avoid allocating a new csum context descriptor; mainly to take
2624  * advantage of the pipeline effect of the TX data read request.
2625  *
2626  * This function returns number of TX descrptors allocated for
2627  * csum context.
2628  */
2629 static int
2630 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2631 	  uint32_t *txd_upper, uint32_t *txd_lower)
2632 {
2633 	struct e1000_context_desc *TXD;
2634 	struct em_buffer *tx_buffer;
2635 	struct ether_vlan_header *eh;
2636 	struct ip *ip;
2637 	int curr_txd, ehdrlen, csum_flags;
2638 	uint32_t cmd, hdr_len, ip_hlen;
2639 	uint16_t etype;
2640 
2641 	/*
2642 	 * Determine where frame payload starts.
2643 	 * Jump over vlan headers if already present,
2644 	 * helpful for QinQ too.
2645 	 */
2646 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2647 		("em_txcsum_pullup is not called (eh)?\n"));
2648 	eh = mtod(mp, struct ether_vlan_header *);
2649 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2650 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2651 			("em_txcsum_pullup is not called (evh)?\n"));
2652 		etype = ntohs(eh->evl_proto);
2653 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2654 	} else {
2655 		etype = ntohs(eh->evl_encap_proto);
2656 		ehdrlen = ETHER_HDR_LEN;
2657 	}
2658 
2659 	/*
2660 	 * We only support TCP/UDP for IPv4 for the moment.
2661 	 * TODO: Support SCTP too when it hits the tree.
2662 	 */
2663 	if (etype != ETHERTYPE_IP)
2664 		return 0;
2665 
2666 	KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2667 		("em_txcsum_pullup is not called (eh+ip_vhl)?\n"));
2668 
2669 	/* NOTE: We could only safely access ip.ip_vhl part */
2670 	ip = (struct ip *)(mp->m_data + ehdrlen);
2671 	ip_hlen = ip->ip_hl << 2;
2672 
2673 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2674 
2675 	if (adapter->csum_ehlen == ehdrlen &&
2676 	    adapter->csum_iphlen == ip_hlen &&
2677 	    adapter->csum_flags == csum_flags) {
2678 		/*
2679 		 * Same csum offload context as the previous packets;
2680 		 * just return.
2681 		 */
2682 		*txd_upper = adapter->csum_txd_upper;
2683 		*txd_lower = adapter->csum_txd_lower;
2684 		return 0;
2685 	}
2686 
2687 	/*
2688 	 * Setup a new csum offload context.
2689 	 */
2690 
2691 	curr_txd = adapter->next_avail_tx_desc;
2692 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2693 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2694 
2695 	cmd = 0;
2696 
2697 	/* Setup of IP header checksum. */
2698 	if (csum_flags & CSUM_IP) {
2699 		/*
2700 		 * Start offset for header checksum calculation.
2701 		 * End offset for header checksum calculation.
2702 		 * Offset of place to put the checksum.
2703 		 */
2704 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2705 		TXD->lower_setup.ip_fields.ipcse =
2706 		    htole16(ehdrlen + ip_hlen - 1);
2707 		TXD->lower_setup.ip_fields.ipcso =
2708 		    ehdrlen + offsetof(struct ip, ip_sum);
2709 		cmd |= E1000_TXD_CMD_IP;
2710 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2711 	}
2712 	hdr_len = ehdrlen + ip_hlen;
2713 
2714 	if (csum_flags & CSUM_TCP) {
2715 		/*
2716 		 * Start offset for payload checksum calculation.
2717 		 * End offset for payload checksum calculation.
2718 		 * Offset of place to put the checksum.
2719 		 */
2720 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2721 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2722 		TXD->upper_setup.tcp_fields.tucso =
2723 		    hdr_len + offsetof(struct tcphdr, th_sum);
2724 		cmd |= E1000_TXD_CMD_TCP;
2725 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2726 	} else if (csum_flags & CSUM_UDP) {
2727 		/*
2728 		 * Start offset for header checksum calculation.
2729 		 * End offset for header checksum calculation.
2730 		 * Offset of place to put the checksum.
2731 		 */
2732 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2733 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2734 		TXD->upper_setup.tcp_fields.tucso =
2735 		    hdr_len + offsetof(struct udphdr, uh_sum);
2736 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2737 	}
2738 
2739 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2740 		     E1000_TXD_DTYP_D;		/* Data descr */
2741 
2742 	/* Save the information for this csum offloading context */
2743 	adapter->csum_ehlen = ehdrlen;
2744 	adapter->csum_iphlen = ip_hlen;
2745 	adapter->csum_flags = csum_flags;
2746 	adapter->csum_txd_upper = *txd_upper;
2747 	adapter->csum_txd_lower = *txd_lower;
2748 
2749 	TXD->tcp_seg_setup.data = htole32(0);
2750 	TXD->cmd_and_length =
2751 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2752 
2753 	if (++curr_txd == adapter->num_tx_desc)
2754 		curr_txd = 0;
2755 
2756 	KKASSERT(adapter->num_tx_desc_avail > 0);
2757 	adapter->num_tx_desc_avail--;
2758 
2759 	adapter->next_avail_tx_desc = curr_txd;
2760 	return 1;
2761 }
2762 
2763 static int
2764 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2765 {
2766 	struct mbuf *m = *m0;
2767 	struct ether_header *eh;
2768 	int len;
2769 
2770 	adapter->tx_csum_try_pullup++;
2771 
2772 	len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2773 
2774 	if (__predict_false(!M_WRITABLE(m))) {
2775 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2776 			adapter->tx_csum_drop1++;
2777 			m_freem(m);
2778 			*m0 = NULL;
2779 			return ENOBUFS;
2780 		}
2781 		eh = mtod(m, struct ether_header *);
2782 
2783 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2784 			len += EVL_ENCAPLEN;
2785 
2786 		if (m->m_len < len) {
2787 			adapter->tx_csum_drop2++;
2788 			m_freem(m);
2789 			*m0 = NULL;
2790 			return ENOBUFS;
2791 		}
2792 		return 0;
2793 	}
2794 
2795 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2796 		adapter->tx_csum_pullup1++;
2797 		m = m_pullup(m, ETHER_HDR_LEN);
2798 		if (m == NULL) {
2799 			adapter->tx_csum_pullup1_failed++;
2800 			*m0 = NULL;
2801 			return ENOBUFS;
2802 		}
2803 		*m0 = m;
2804 	}
2805 	eh = mtod(m, struct ether_header *);
2806 
2807 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2808 		len += EVL_ENCAPLEN;
2809 
2810 	if (m->m_len < len) {
2811 		adapter->tx_csum_pullup2++;
2812 		m = m_pullup(m, len);
2813 		if (m == NULL) {
2814 			adapter->tx_csum_pullup2_failed++;
2815 			*m0 = NULL;
2816 			return ENOBUFS;
2817 		}
2818 		*m0 = m;
2819 	}
2820 	return 0;
2821 }
2822 
2823 static void
2824 em_txeof(struct adapter *adapter)
2825 {
2826 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2827 	struct em_buffer *tx_buffer;
2828 	int first, num_avail;
2829 
2830 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2831 		return;
2832 
2833 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2834 		return;
2835 
2836 	num_avail = adapter->num_tx_desc_avail;
2837 	first = adapter->next_tx_to_clean;
2838 
2839 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2840 		struct e1000_tx_desc *tx_desc;
2841 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2842 
2843 		tx_desc = &adapter->tx_desc_base[dd_idx];
2844 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2845 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2846 
2847 			if (++dd_idx == adapter->num_tx_desc)
2848 				dd_idx = 0;
2849 
2850 			while (first != dd_idx) {
2851 				logif(pkt_txclean);
2852 
2853 				num_avail++;
2854 
2855 				tx_buffer = &adapter->tx_buffer_area[first];
2856 				if (tx_buffer->m_head) {
2857 					ifp->if_opackets++;
2858 					bus_dmamap_unload(adapter->txtag,
2859 							  tx_buffer->map);
2860 					m_freem(tx_buffer->m_head);
2861 					tx_buffer->m_head = NULL;
2862 				}
2863 
2864 				if (++first == adapter->num_tx_desc)
2865 					first = 0;
2866 			}
2867 		} else {
2868 			break;
2869 		}
2870 	}
2871 	adapter->next_tx_to_clean = first;
2872 	adapter->num_tx_desc_avail = num_avail;
2873 
2874 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2875 		adapter->tx_dd_head = 0;
2876 		adapter->tx_dd_tail = 0;
2877 	}
2878 
2879 	if (!EM_IS_OACTIVE(adapter)) {
2880 		ifp->if_flags &= ~IFF_OACTIVE;
2881 
2882 		/* All clean, turn off the timer */
2883 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2884 			ifp->if_timer = 0;
2885 	}
2886 }
2887 
2888 static void
2889 em_tx_collect(struct adapter *adapter)
2890 {
2891 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2892 	struct em_buffer *tx_buffer;
2893 	int tdh, first, num_avail, dd_idx = -1;
2894 
2895 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2896 		return;
2897 
2898 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2899 	if (tdh == adapter->next_tx_to_clean)
2900 		return;
2901 
2902 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2903 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2904 
2905 	num_avail = adapter->num_tx_desc_avail;
2906 	first = adapter->next_tx_to_clean;
2907 
2908 	while (first != tdh) {
2909 		logif(pkt_txclean);
2910 
2911 		num_avail++;
2912 
2913 		tx_buffer = &adapter->tx_buffer_area[first];
2914 		if (tx_buffer->m_head) {
2915 			ifp->if_opackets++;
2916 			bus_dmamap_unload(adapter->txtag,
2917 					  tx_buffer->map);
2918 			m_freem(tx_buffer->m_head);
2919 			tx_buffer->m_head = NULL;
2920 		}
2921 
2922 		if (first == dd_idx) {
2923 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2924 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2925 				adapter->tx_dd_head = 0;
2926 				adapter->tx_dd_tail = 0;
2927 				dd_idx = -1;
2928 			} else {
2929 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2930 			}
2931 		}
2932 
2933 		if (++first == adapter->num_tx_desc)
2934 			first = 0;
2935 	}
2936 	adapter->next_tx_to_clean = first;
2937 	adapter->num_tx_desc_avail = num_avail;
2938 
2939 	if (!EM_IS_OACTIVE(adapter)) {
2940 		ifp->if_flags &= ~IFF_OACTIVE;
2941 
2942 		/* All clean, turn off the timer */
2943 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2944 			ifp->if_timer = 0;
2945 	}
2946 }
2947 
2948 /*
2949  * When Link is lost sometimes there is work still in the TX ring
2950  * which will result in a watchdog, rather than allow that do an
2951  * attempted cleanup and then reinit here.  Note that this has been
2952  * seens mostly with fiber adapters.
2953  */
2954 static void
2955 em_tx_purge(struct adapter *adapter)
2956 {
2957 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2958 
2959 	if (!adapter->link_active && ifp->if_timer) {
2960 		em_tx_collect(adapter);
2961 		if (ifp->if_timer) {
2962 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2963 			ifp->if_timer = 0;
2964 			em_init(adapter);
2965 		}
2966 	}
2967 }
2968 
2969 static int
2970 em_newbuf(struct adapter *adapter, int i, int init)
2971 {
2972 	struct mbuf *m;
2973 	bus_dma_segment_t seg;
2974 	bus_dmamap_t map;
2975 	struct em_buffer *rx_buffer;
2976 	int error, nseg;
2977 
2978 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2979 	if (m == NULL) {
2980 		adapter->mbuf_cluster_failed++;
2981 		if (init) {
2982 			if_printf(&adapter->arpcom.ac_if,
2983 				  "Unable to allocate RX mbuf\n");
2984 		}
2985 		return (ENOBUFS);
2986 	}
2987 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2988 
2989 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2990 		m_adj(m, ETHER_ALIGN);
2991 
2992 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
2993 			adapter->rx_sparemap, m,
2994 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
2995 	if (error) {
2996 		m_freem(m);
2997 		if (init) {
2998 			if_printf(&adapter->arpcom.ac_if,
2999 				  "Unable to load RX mbuf\n");
3000 		}
3001 		return (error);
3002 	}
3003 
3004 	rx_buffer = &adapter->rx_buffer_area[i];
3005 	if (rx_buffer->m_head != NULL)
3006 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3007 
3008 	map = rx_buffer->map;
3009 	rx_buffer->map = adapter->rx_sparemap;
3010 	adapter->rx_sparemap = map;
3011 
3012 	rx_buffer->m_head = m;
3013 
3014 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3015 	return (0);
3016 }
3017 
3018 static int
3019 em_create_rx_ring(struct adapter *adapter)
3020 {
3021 	device_t dev = adapter->dev;
3022 	struct em_buffer *rx_buffer;
3023 	int i, error;
3024 
3025 	adapter->rx_buffer_area =
3026 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3027 			M_DEVBUF, M_WAITOK | M_ZERO);
3028 
3029 	/*
3030 	 * Create DMA tag for rx buffers
3031 	 */
3032 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3033 			1, 0,			/* alignment, bounds */
3034 			BUS_SPACE_MAXADDR,	/* lowaddr */
3035 			BUS_SPACE_MAXADDR,	/* highaddr */
3036 			NULL, NULL,		/* filter, filterarg */
3037 			MCLBYTES,		/* maxsize */
3038 			1,			/* nsegments */
3039 			MCLBYTES,		/* maxsegsize */
3040 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3041 			&adapter->rxtag);
3042 	if (error) {
3043 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3044 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3045 		adapter->rx_buffer_area = NULL;
3046 		return error;
3047 	}
3048 
3049 	/*
3050 	 * Create spare DMA map for rx buffers
3051 	 */
3052 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3053 				  &adapter->rx_sparemap);
3054 	if (error) {
3055 		device_printf(dev, "Unable to create spare RX DMA map\n");
3056 		bus_dma_tag_destroy(adapter->rxtag);
3057 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3058 		adapter->rx_buffer_area = NULL;
3059 		return error;
3060 	}
3061 
3062 	/*
3063 	 * Create DMA maps for rx buffers
3064 	 */
3065 	for (i = 0; i < adapter->num_rx_desc; i++) {
3066 		rx_buffer = &adapter->rx_buffer_area[i];
3067 
3068 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3069 					  &rx_buffer->map);
3070 		if (error) {
3071 			device_printf(dev, "Unable to create RX DMA map\n");
3072 			em_destroy_rx_ring(adapter, i);
3073 			return error;
3074 		}
3075 	}
3076 	return (0);
3077 }
3078 
3079 static int
3080 em_init_rx_ring(struct adapter *adapter)
3081 {
3082 	int i, error;
3083 
3084 	/* Reset descriptor ring */
3085 	bzero(adapter->rx_desc_base,
3086 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3087 
3088 	/* Allocate new ones. */
3089 	for (i = 0; i < adapter->num_rx_desc; i++) {
3090 		error = em_newbuf(adapter, i, 1);
3091 		if (error)
3092 			return (error);
3093 	}
3094 
3095 	/* Setup our descriptor pointers */
3096 	adapter->next_rx_desc_to_check = 0;
3097 
3098 	return (0);
3099 }
3100 
3101 static void
3102 em_init_rx_unit(struct adapter *adapter)
3103 {
3104 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3105 	uint64_t bus_addr;
3106 	uint32_t rctl;
3107 
3108 	/*
3109 	 * Make sure receives are disabled while setting
3110 	 * up the descriptor ring
3111 	 */
3112 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3113 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3114 
3115 	if (adapter->hw.mac.type >= e1000_82540) {
3116 		uint32_t itr;
3117 
3118 		/*
3119 		 * Set the interrupt throttling rate. Value is calculated
3120 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3121 		 */
3122 		if (adapter->int_throttle_ceil)
3123 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3124 		else
3125 			itr = 0;
3126 		em_set_itr(adapter, itr);
3127 	}
3128 
3129 	/* Disable accelerated ackknowledge */
3130 	if (adapter->hw.mac.type == e1000_82574) {
3131 		E1000_WRITE_REG(&adapter->hw,
3132 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3133 	}
3134 
3135 	/* Receive Checksum Offload for TCP and UDP */
3136 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3137 		uint32_t rxcsum;
3138 
3139 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3140 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3141 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3142 	}
3143 
3144 	/*
3145 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3146 	 * long latencies are observed, like Lenovo X60. This
3147 	 * change eliminates the problem, but since having positive
3148 	 * values in RDTR is a known source of problems on other
3149 	 * platforms another solution is being sought.
3150 	 */
3151 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3152 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3153 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3154 	}
3155 
3156 	/*
3157 	 * Setup the Base and Length of the Rx Descriptor Ring
3158 	 */
3159 	bus_addr = adapter->rxdma.dma_paddr;
3160 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3161 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3162 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3163 	    (uint32_t)(bus_addr >> 32));
3164 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3165 	    (uint32_t)bus_addr);
3166 
3167 	/*
3168 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3169 	 */
3170 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3171 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3172 
3173 	/* Set early receive threshold on appropriate hw */
3174 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3175 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3176 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3177 	    (ifp->if_mtu > ETHERMTU)) {
3178 		uint32_t rxdctl;
3179 
3180 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3181 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3182 		E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3183 	}
3184 
3185 	if (adapter->hw.mac.type == e1000_pch2lan) {
3186 		if (ifp->if_mtu > ETHERMTU)
3187 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3188 		else
3189 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3190 	}
3191 
3192 	/* Setup the Receive Control Register */
3193 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3194 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3195 		E1000_RCTL_RDMTS_HALF |
3196 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3197 
3198 	/* Make sure VLAN Filters are off */
3199 	rctl &= ~E1000_RCTL_VFE;
3200 
3201 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3202 		rctl |= E1000_RCTL_SBP;
3203 	else
3204 		rctl &= ~E1000_RCTL_SBP;
3205 
3206 	switch (adapter->rx_buffer_len) {
3207 	default:
3208 	case 2048:
3209 		rctl |= E1000_RCTL_SZ_2048;
3210 		break;
3211 
3212 	case 4096:
3213 		rctl |= E1000_RCTL_SZ_4096 |
3214 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3215 		break;
3216 
3217 	case 8192:
3218 		rctl |= E1000_RCTL_SZ_8192 |
3219 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3220 		break;
3221 
3222 	case 16384:
3223 		rctl |= E1000_RCTL_SZ_16384 |
3224 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3225 		break;
3226 	}
3227 
3228 	if (ifp->if_mtu > ETHERMTU)
3229 		rctl |= E1000_RCTL_LPE;
3230 	else
3231 		rctl &= ~E1000_RCTL_LPE;
3232 
3233 	/* Enable Receives */
3234 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3235 }
3236 
3237 static void
3238 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3239 {
3240 	struct em_buffer *rx_buffer;
3241 	int i;
3242 
3243 	if (adapter->rx_buffer_area == NULL)
3244 		return;
3245 
3246 	for (i = 0; i < ndesc; i++) {
3247 		rx_buffer = &adapter->rx_buffer_area[i];
3248 
3249 		KKASSERT(rx_buffer->m_head == NULL);
3250 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3251 	}
3252 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3253 	bus_dma_tag_destroy(adapter->rxtag);
3254 
3255 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3256 	adapter->rx_buffer_area = NULL;
3257 }
3258 
3259 static void
3260 em_rxeof(struct adapter *adapter, int count)
3261 {
3262 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3263 	uint8_t status, accept_frame = 0, eop = 0;
3264 	uint16_t len, desc_len, prev_len_adj;
3265 	struct e1000_rx_desc *current_desc;
3266 	struct mbuf *mp;
3267 	int i;
3268 	struct mbuf_chain chain[MAXCPU];
3269 
3270 	i = adapter->next_rx_desc_to_check;
3271 	current_desc = &adapter->rx_desc_base[i];
3272 
3273 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3274 		return;
3275 
3276 	ether_input_chain_init(chain);
3277 
3278 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3279 		struct mbuf *m = NULL;
3280 
3281 		logif(pkt_receive);
3282 
3283 		mp = adapter->rx_buffer_area[i].m_head;
3284 
3285 		/*
3286 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3287 		 * needs to access the last received byte in the mbuf.
3288 		 */
3289 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3290 				BUS_DMASYNC_POSTREAD);
3291 
3292 		accept_frame = 1;
3293 		prev_len_adj = 0;
3294 		desc_len = le16toh(current_desc->length);
3295 		status = current_desc->status;
3296 		if (status & E1000_RXD_STAT_EOP) {
3297 			count--;
3298 			eop = 1;
3299 			if (desc_len < ETHER_CRC_LEN) {
3300 				len = 0;
3301 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3302 			} else {
3303 				len = desc_len - ETHER_CRC_LEN;
3304 			}
3305 		} else {
3306 			eop = 0;
3307 			len = desc_len;
3308 		}
3309 
3310 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3311 			uint8_t	last_byte;
3312 			uint32_t pkt_len = desc_len;
3313 
3314 			if (adapter->fmp != NULL)
3315 				pkt_len += adapter->fmp->m_pkthdr.len;
3316 
3317 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3318 			if (TBI_ACCEPT(&adapter->hw, status,
3319 			    current_desc->errors, pkt_len, last_byte,
3320 			    adapter->min_frame_size, adapter->max_frame_size)) {
3321 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3322 				    &adapter->stats, pkt_len,
3323 				    adapter->hw.mac.addr,
3324 				    adapter->max_frame_size);
3325 				if (len > 0)
3326 					len--;
3327 			} else {
3328 				accept_frame = 0;
3329 			}
3330 		}
3331 
3332 		if (accept_frame) {
3333 			if (em_newbuf(adapter, i, 0) != 0) {
3334 				ifp->if_iqdrops++;
3335 				goto discard;
3336 			}
3337 
3338 			/* Assign correct length to the current fragment */
3339 			mp->m_len = len;
3340 
3341 			if (adapter->fmp == NULL) {
3342 				mp->m_pkthdr.len = len;
3343 				adapter->fmp = mp; /* Store the first mbuf */
3344 				adapter->lmp = mp;
3345 			} else {
3346 				/*
3347 				 * Chain mbuf's together
3348 				 */
3349 
3350 				/*
3351 				 * Adjust length of previous mbuf in chain if
3352 				 * we received less than 4 bytes in the last
3353 				 * descriptor.
3354 				 */
3355 				if (prev_len_adj > 0) {
3356 					adapter->lmp->m_len -= prev_len_adj;
3357 					adapter->fmp->m_pkthdr.len -=
3358 					    prev_len_adj;
3359 				}
3360 				adapter->lmp->m_next = mp;
3361 				adapter->lmp = adapter->lmp->m_next;
3362 				adapter->fmp->m_pkthdr.len += len;
3363 			}
3364 
3365 			if (eop) {
3366 				adapter->fmp->m_pkthdr.rcvif = ifp;
3367 				ifp->if_ipackets++;
3368 
3369 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3370 					em_rxcsum(adapter, current_desc,
3371 						  adapter->fmp);
3372 				}
3373 
3374 				if (status & E1000_RXD_STAT_VP) {
3375 					adapter->fmp->m_pkthdr.ether_vlantag =
3376 					    (le16toh(current_desc->special) &
3377 					    E1000_RXD_SPC_VLAN_MASK);
3378 					adapter->fmp->m_flags |= M_VLANTAG;
3379 				}
3380 				m = adapter->fmp;
3381 				adapter->fmp = NULL;
3382 				adapter->lmp = NULL;
3383 			}
3384 		} else {
3385 			ifp->if_ierrors++;
3386 discard:
3387 #ifdef foo
3388 			/* Reuse loaded DMA map and just update mbuf chain */
3389 			mp = adapter->rx_buffer_area[i].m_head;
3390 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3391 			mp->m_data = mp->m_ext.ext_buf;
3392 			mp->m_next = NULL;
3393 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3394 				m_adj(mp, ETHER_ALIGN);
3395 #endif
3396 			if (adapter->fmp != NULL) {
3397 				m_freem(adapter->fmp);
3398 				adapter->fmp = NULL;
3399 				adapter->lmp = NULL;
3400 			}
3401 			m = NULL;
3402 		}
3403 
3404 		/* Zero out the receive descriptors status. */
3405 		current_desc->status = 0;
3406 
3407 		if (m != NULL)
3408 			ether_input_chain(ifp, m, NULL, chain);
3409 
3410 		/* Advance our pointers to the next descriptor. */
3411 		if (++i == adapter->num_rx_desc)
3412 			i = 0;
3413 		current_desc = &adapter->rx_desc_base[i];
3414 	}
3415 	adapter->next_rx_desc_to_check = i;
3416 
3417 	ether_input_dispatch(chain);
3418 
3419 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3420 	if (--i < 0)
3421 		i = adapter->num_rx_desc - 1;
3422 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3423 }
3424 
3425 static void
3426 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3427 	  struct mbuf *mp)
3428 {
3429 	/* 82543 or newer only */
3430 	if (adapter->hw.mac.type < e1000_82543 ||
3431 	    /* Ignore Checksum bit is set */
3432 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3433 		return;
3434 
3435 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3436 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3437 		/* IP Checksum Good */
3438 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3439 	}
3440 
3441 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3442 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3443 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3444 					   CSUM_PSEUDO_HDR |
3445 					   CSUM_FRAG_NOT_CHECKED;
3446 		mp->m_pkthdr.csum_data = htons(0xffff);
3447 	}
3448 }
3449 
3450 static void
3451 em_enable_intr(struct adapter *adapter)
3452 {
3453 	uint32_t ims_mask = IMS_ENABLE_MASK;
3454 
3455 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3456 
3457 #if 0
3458 	/* XXX MSIX */
3459 	if (adapter->hw.mac.type == e1000_82574) {
3460 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3461 		ims_mask |= EM_MSIX_MASK;
3462         }
3463 #endif
3464 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3465 }
3466 
3467 static void
3468 em_disable_intr(struct adapter *adapter)
3469 {
3470 	uint32_t clear = 0xffffffff;
3471 
3472 	/*
3473 	 * The first version of 82542 had an errata where when link was forced
3474 	 * it would stay up even up even if the cable was disconnected.
3475 	 * Sequence errors were used to detect the disconnect and then the
3476 	 * driver would unforce the link.  This code in the in the ISR.  For
3477 	 * this to work correctly the Sequence error interrupt had to be
3478 	 * enabled all the time.
3479 	 */
3480 	if (adapter->hw.mac.type == e1000_82542 &&
3481 	    adapter->hw.revision_id == E1000_REVISION_2)
3482 		clear &= ~E1000_IMC_RXSEQ;
3483 	else if (adapter->hw.mac.type == e1000_82574)
3484 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3485 
3486 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3487 
3488 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3489 }
3490 
3491 /*
3492  * Bit of a misnomer, what this really means is
3493  * to enable OS management of the system... aka
3494  * to disable special hardware management features
3495  */
3496 static void
3497 em_get_mgmt(struct adapter *adapter)
3498 {
3499 	/* A shared code workaround */
3500 #define E1000_82542_MANC2H E1000_MANC2H
3501 	if (adapter->has_manage) {
3502 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3503 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3504 
3505 		/* disable hardware interception of ARP */
3506 		manc &= ~(E1000_MANC_ARP_EN);
3507 
3508                 /* enable receiving management packets to the host */
3509                 if (adapter->hw.mac.type >= e1000_82571) {
3510 			manc |= E1000_MANC_EN_MNG2HOST;
3511 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3512 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3513 			manc2h |= E1000_MNG2HOST_PORT_623;
3514 			manc2h |= E1000_MNG2HOST_PORT_664;
3515 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3516 		}
3517 
3518 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3519 	}
3520 }
3521 
3522 /*
3523  * Give control back to hardware management
3524  * controller if there is one.
3525  */
3526 static void
3527 em_rel_mgmt(struct adapter *adapter)
3528 {
3529 	if (adapter->has_manage) {
3530 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3531 
3532 		/* re-enable hardware interception of ARP */
3533 		manc |= E1000_MANC_ARP_EN;
3534 
3535 		if (adapter->hw.mac.type >= e1000_82571)
3536 			manc &= ~E1000_MANC_EN_MNG2HOST;
3537 
3538 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3539 	}
3540 }
3541 
3542 /*
3543  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3544  * For ASF and Pass Through versions of f/w this means that
3545  * the driver is loaded.  For AMT version (only with 82573)
3546  * of the f/w this means that the network i/f is open.
3547  */
3548 static void
3549 em_get_hw_control(struct adapter *adapter)
3550 {
3551 	/* Let firmware know the driver has taken over */
3552 	if (adapter->hw.mac.type == e1000_82573) {
3553 		uint32_t swsm;
3554 
3555 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3556 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3557 		    swsm | E1000_SWSM_DRV_LOAD);
3558 	} else {
3559 		uint32_t ctrl_ext;
3560 
3561 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3562 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3563 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3564 	}
3565 	adapter->control_hw = 1;
3566 }
3567 
3568 /*
3569  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3570  * For ASF and Pass Through versions of f/w this means that the
3571  * driver is no longer loaded.  For AMT version (only with 82573)
3572  * of the f/w this means that the network i/f is closed.
3573  */
3574 static void
3575 em_rel_hw_control(struct adapter *adapter)
3576 {
3577 	if (!adapter->control_hw)
3578 		return;
3579 	adapter->control_hw = 0;
3580 
3581 	/* Let firmware taken over control of h/w */
3582 	if (adapter->hw.mac.type == e1000_82573) {
3583 		uint32_t swsm;
3584 
3585 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3586 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3587 		    swsm & ~E1000_SWSM_DRV_LOAD);
3588 	} else {
3589 		uint32_t ctrl_ext;
3590 
3591 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3592 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3593 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3594 	}
3595 }
3596 
3597 static int
3598 em_is_valid_eaddr(const uint8_t *addr)
3599 {
3600 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3601 
3602 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3603 		return (FALSE);
3604 
3605 	return (TRUE);
3606 }
3607 
3608 /*
3609  * Enable PCI Wake On Lan capability
3610  */
3611 void
3612 em_enable_wol(device_t dev)
3613 {
3614 	uint16_t cap, status;
3615 	uint8_t id;
3616 
3617 	/* First find the capabilities pointer*/
3618 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3619 
3620 	/* Read the PM Capabilities */
3621 	id = pci_read_config(dev, cap, 1);
3622 	if (id != PCIY_PMG)     /* Something wrong */
3623 		return;
3624 
3625 	/*
3626 	 * OK, we have the power capabilities,
3627 	 * so now get the status register
3628 	 */
3629 	cap += PCIR_POWER_STATUS;
3630 	status = pci_read_config(dev, cap, 2);
3631 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3632 	pci_write_config(dev, cap, status, 2);
3633 }
3634 
3635 
3636 /*
3637  * 82544 Coexistence issue workaround.
3638  *    There are 2 issues.
3639  *       1. Transmit Hang issue.
3640  *    To detect this issue, following equation can be used...
3641  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3642  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3643  *
3644  *       2. DAC issue.
3645  *    To detect this issue, following equation can be used...
3646  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3647  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3648  *
3649  *    WORKAROUND:
3650  *	  Make sure we do not have ending address
3651  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3652  */
3653 static uint32_t
3654 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3655 {
3656 	uint32_t safe_terminator;
3657 
3658 	/*
3659 	 * Since issue is sensitive to length and address.
3660 	 * Let us first check the address...
3661 	 */
3662 	if (length <= 4) {
3663 		desc_array->descriptor[0].address = address;
3664 		desc_array->descriptor[0].length = length;
3665 		desc_array->elements = 1;
3666 		return (desc_array->elements);
3667 	}
3668 
3669 	safe_terminator =
3670 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3671 
3672 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3673 	if (safe_terminator == 0 ||
3674 	    (safe_terminator > 4 && safe_terminator < 9) ||
3675 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3676 		desc_array->descriptor[0].address = address;
3677 		desc_array->descriptor[0].length = length;
3678 		desc_array->elements = 1;
3679 		return (desc_array->elements);
3680 	}
3681 
3682 	desc_array->descriptor[0].address = address;
3683 	desc_array->descriptor[0].length = length - 4;
3684 	desc_array->descriptor[1].address = address + (length - 4);
3685 	desc_array->descriptor[1].length = 4;
3686 	desc_array->elements = 2;
3687 	return (desc_array->elements);
3688 }
3689 
3690 static void
3691 em_update_stats(struct adapter *adapter)
3692 {
3693 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3694 
3695 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3696 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3697 		adapter->stats.symerrs +=
3698 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3699 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3700 	}
3701 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3702 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3703 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3704 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3705 
3706 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3707 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3708 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3709 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3710 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3711 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3712 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3713 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3714 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3715 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3716 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3717 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3718 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3719 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3720 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3721 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3722 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3723 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3724 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3725 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3726 
3727 	/* For the 64-bit byte counters the low dword must be read first. */
3728 	/* Both registers clear on the read of the high dword */
3729 
3730 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3731 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3732 
3733 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3734 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3735 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3736 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3737 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3738 
3739 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3740 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3741 
3742 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3743 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3744 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3745 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3746 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3747 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3748 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3749 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3750 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3751 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3752 
3753 	if (adapter->hw.mac.type >= e1000_82543) {
3754 		adapter->stats.algnerrc +=
3755 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3756 		adapter->stats.rxerrc +=
3757 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3758 		adapter->stats.tncrs +=
3759 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3760 		adapter->stats.cexterr +=
3761 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3762 		adapter->stats.tsctc +=
3763 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3764 		adapter->stats.tsctfc +=
3765 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3766 	}
3767 
3768 	ifp->if_collisions = adapter->stats.colc;
3769 
3770 	/* Rx Errors */
3771 	ifp->if_ierrors =
3772 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3773 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3774 	    adapter->stats.ruc + adapter->stats.roc +
3775 	    adapter->stats.mpc + adapter->stats.cexterr;
3776 
3777 	/* Tx Errors */
3778 	ifp->if_oerrors =
3779 	    adapter->stats.ecol + adapter->stats.latecol +
3780 	    adapter->watchdog_events;
3781 }
3782 
3783 static void
3784 em_print_debug_info(struct adapter *adapter)
3785 {
3786 	device_t dev = adapter->dev;
3787 	uint8_t *hw_addr = adapter->hw.hw_addr;
3788 
3789 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3790 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3791 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3792 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3793 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3794 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3795 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3796 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3797 	    adapter->hw.fc.high_water,
3798 	    adapter->hw.fc.low_water);
3799 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3800 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3801 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3802 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3803 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3804 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3805 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3806 	    (long long)adapter->tx_fifo_wrk_cnt,
3807 	    (long long)adapter->tx_fifo_reset_cnt);
3808 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3809 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3810 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3811 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3812 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3813 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3814 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3815 	    adapter->num_tx_desc_avail);
3816 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3817 	    adapter->no_tx_desc_avail1);
3818 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3819 	    adapter->no_tx_desc_avail2);
3820 	device_printf(dev, "Std mbuf failed = %ld\n",
3821 	    adapter->mbuf_alloc_failed);
3822 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3823 	    adapter->mbuf_cluster_failed);
3824 	device_printf(dev, "Driver dropped packets = %ld\n",
3825 	    adapter->dropped_pkts);
3826 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3827 	    adapter->no_tx_dma_setup);
3828 
3829 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3830 	    adapter->tx_csum_try_pullup);
3831 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3832 	    adapter->tx_csum_pullup1);
3833 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3834 	    adapter->tx_csum_pullup1_failed);
3835 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3836 	    adapter->tx_csum_pullup2);
3837 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3838 	    adapter->tx_csum_pullup2_failed);
3839 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3840 	    adapter->tx_csum_drop1);
3841 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3842 	    adapter->tx_csum_drop2);
3843 }
3844 
3845 static void
3846 em_print_hw_stats(struct adapter *adapter)
3847 {
3848 	device_t dev = adapter->dev;
3849 
3850 	device_printf(dev, "Excessive collisions = %lld\n",
3851 	    (long long)adapter->stats.ecol);
3852 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3853 	device_printf(dev, "Symbol errors = %lld\n",
3854 	    (long long)adapter->stats.symerrs);
3855 #endif
3856 	device_printf(dev, "Sequence errors = %lld\n",
3857 	    (long long)adapter->stats.sec);
3858 	device_printf(dev, "Defer count = %lld\n",
3859 	    (long long)adapter->stats.dc);
3860 	device_printf(dev, "Missed Packets = %lld\n",
3861 	    (long long)adapter->stats.mpc);
3862 	device_printf(dev, "Receive No Buffers = %lld\n",
3863 	    (long long)adapter->stats.rnbc);
3864 	/* RLEC is inaccurate on some hardware, calculate our own. */
3865 	device_printf(dev, "Receive Length Errors = %lld\n",
3866 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3867 	device_printf(dev, "Receive errors = %lld\n",
3868 	    (long long)adapter->stats.rxerrc);
3869 	device_printf(dev, "Crc errors = %lld\n",
3870 	    (long long)adapter->stats.crcerrs);
3871 	device_printf(dev, "Alignment errors = %lld\n",
3872 	    (long long)adapter->stats.algnerrc);
3873 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3874 	    (long long)adapter->stats.cexterr);
3875 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3876 	device_printf(dev, "watchdog timeouts = %ld\n",
3877 	    adapter->watchdog_events);
3878 	device_printf(dev, "XON Rcvd = %lld\n",
3879 	    (long long)adapter->stats.xonrxc);
3880 	device_printf(dev, "XON Xmtd = %lld\n",
3881 	    (long long)adapter->stats.xontxc);
3882 	device_printf(dev, "XOFF Rcvd = %lld\n",
3883 	    (long long)adapter->stats.xoffrxc);
3884 	device_printf(dev, "XOFF Xmtd = %lld\n",
3885 	    (long long)adapter->stats.xofftxc);
3886 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3887 	    (long long)adapter->stats.gprc);
3888 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3889 	    (long long)adapter->stats.gptc);
3890 }
3891 
3892 static void
3893 em_print_nvm_info(struct adapter *adapter)
3894 {
3895 	uint16_t eeprom_data;
3896 	int i, j, row = 0;
3897 
3898 	/* Its a bit crude, but it gets the job done */
3899 	kprintf("\nInterface EEPROM Dump:\n");
3900 	kprintf("Offset\n0x0000  ");
3901 	for (i = 0, j = 0; i < 32; i++, j++) {
3902 		if (j == 8) { /* Make the offset block */
3903 			j = 0; ++row;
3904 			kprintf("\n0x00%x0  ",row);
3905 		}
3906 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3907 		kprintf("%04x ", eeprom_data);
3908 	}
3909 	kprintf("\n");
3910 }
3911 
3912 static int
3913 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3914 {
3915 	struct adapter *adapter;
3916 	struct ifnet *ifp;
3917 	int error, result;
3918 
3919 	result = -1;
3920 	error = sysctl_handle_int(oidp, &result, 0, req);
3921 	if (error || !req->newptr)
3922 		return (error);
3923 
3924 	adapter = (struct adapter *)arg1;
3925 	ifp = &adapter->arpcom.ac_if;
3926 
3927 	lwkt_serialize_enter(ifp->if_serializer);
3928 
3929 	if (result == 1)
3930 		em_print_debug_info(adapter);
3931 
3932 	/*
3933 	 * This value will cause a hex dump of the
3934 	 * first 32 16-bit words of the EEPROM to
3935 	 * the screen.
3936 	 */
3937 	if (result == 2)
3938 		em_print_nvm_info(adapter);
3939 
3940 	lwkt_serialize_exit(ifp->if_serializer);
3941 
3942 	return (error);
3943 }
3944 
3945 static int
3946 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3947 {
3948 	int error, result;
3949 
3950 	result = -1;
3951 	error = sysctl_handle_int(oidp, &result, 0, req);
3952 	if (error || !req->newptr)
3953 		return (error);
3954 
3955 	if (result == 1) {
3956 		struct adapter *adapter = (struct adapter *)arg1;
3957 		struct ifnet *ifp = &adapter->arpcom.ac_if;
3958 
3959 		lwkt_serialize_enter(ifp->if_serializer);
3960 		em_print_hw_stats(adapter);
3961 		lwkt_serialize_exit(ifp->if_serializer);
3962 	}
3963 	return (error);
3964 }
3965 
3966 static void
3967 em_add_sysctl(struct adapter *adapter)
3968 {
3969 	sysctl_ctx_init(&adapter->sysctl_ctx);
3970 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
3971 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3972 					device_get_nameunit(adapter->dev),
3973 					CTLFLAG_RD, 0, "");
3974 	if (adapter->sysctl_tree == NULL) {
3975 		device_printf(adapter->dev, "can't add sysctl node\n");
3976 	} else {
3977 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3978 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3979 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3980 		    em_sysctl_debug_info, "I", "Debug Information");
3981 
3982 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3983 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3984 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3985 		    em_sysctl_stats, "I", "Statistics");
3986 
3987 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3988 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3989 		    OID_AUTO, "rxd", CTLFLAG_RD,
3990 		    &adapter->num_rx_desc, 0, NULL);
3991 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3992 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3993 		    OID_AUTO, "txd", CTLFLAG_RD,
3994 		    &adapter->num_tx_desc, 0, NULL);
3995 
3996 		if (adapter->hw.mac.type >= e1000_82540) {
3997 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3998 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
3999 			    OID_AUTO, "int_throttle_ceil",
4000 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4001 			    em_sysctl_int_throttle, "I",
4002 			    "interrupt throttling rate");
4003 		}
4004 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4005 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4006 		    OID_AUTO, "int_tx_nsegs",
4007 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4008 		    em_sysctl_int_tx_nsegs, "I",
4009 		    "# segments per TX interrupt");
4010 	}
4011 }
4012 
4013 static int
4014 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4015 {
4016 	struct adapter *adapter = (void *)arg1;
4017 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4018 	int error, throttle;
4019 
4020 	throttle = adapter->int_throttle_ceil;
4021 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4022 	if (error || req->newptr == NULL)
4023 		return error;
4024 	if (throttle < 0 || throttle > 1000000000 / 256)
4025 		return EINVAL;
4026 
4027 	if (throttle) {
4028 		/*
4029 		 * Set the interrupt throttling rate in 256ns increments,
4030 		 * recalculate sysctl value assignment to get exact frequency.
4031 		 */
4032 		throttle = 1000000000 / 256 / throttle;
4033 
4034 		/* Upper 16bits of ITR is reserved and should be zero */
4035 		if (throttle & 0xffff0000)
4036 			return EINVAL;
4037 	}
4038 
4039 	lwkt_serialize_enter(ifp->if_serializer);
4040 
4041 	if (throttle)
4042 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4043 	else
4044 		adapter->int_throttle_ceil = 0;
4045 
4046 	if (ifp->if_flags & IFF_RUNNING)
4047 		em_set_itr(adapter, throttle);
4048 
4049 	lwkt_serialize_exit(ifp->if_serializer);
4050 
4051 	if (bootverbose) {
4052 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4053 			  adapter->int_throttle_ceil);
4054 	}
4055 	return 0;
4056 }
4057 
4058 static int
4059 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4060 {
4061 	struct adapter *adapter = (void *)arg1;
4062 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4063 	int error, segs;
4064 
4065 	segs = adapter->tx_int_nsegs;
4066 	error = sysctl_handle_int(oidp, &segs, 0, req);
4067 	if (error || req->newptr == NULL)
4068 		return error;
4069 	if (segs <= 0)
4070 		return EINVAL;
4071 
4072 	lwkt_serialize_enter(ifp->if_serializer);
4073 
4074 	/*
4075 	 * Don't allow int_tx_nsegs to become:
4076 	 * o  Less the oact_tx_desc
4077 	 * o  Too large that no TX desc will cause TX interrupt to
4078 	 *    be generated (OACTIVE will never recover)
4079 	 * o  Too small that will cause tx_dd[] overflow
4080 	 */
4081 	if (segs < adapter->oact_tx_desc ||
4082 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4083 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4084 		error = EINVAL;
4085 	} else {
4086 		error = 0;
4087 		adapter->tx_int_nsegs = segs;
4088 	}
4089 
4090 	lwkt_serialize_exit(ifp->if_serializer);
4091 
4092 	return error;
4093 }
4094 
4095 static void
4096 em_set_itr(struct adapter *adapter, uint32_t itr)
4097 {
4098 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4099 	if (adapter->hw.mac.type == e1000_82574) {
4100 		int i;
4101 
4102 		/*
4103 		 * When using MSIX interrupts we need to
4104 		 * throttle using the EITR register
4105 		 */
4106 		for (i = 0; i < 4; ++i) {
4107 			E1000_WRITE_REG(&adapter->hw,
4108 			    E1000_EITR_82574(i), itr);
4109 		}
4110 	}
4111 }
4112