xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 77b0c609)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113 
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/ifq_var.h>
121 #include <net/vlan/if_vlan_var.h>
122 #include <net/vlan/if_vlan_ether.h>
123 
124 #include <netinet/ip.h>
125 #include <netinet/tcp.h>
126 #include <netinet/udp.h>
127 
128 #include <bus/pci/pcivar.h>
129 #include <bus/pci/pcireg.h>
130 
131 #include <dev/netif/ig_hal/e1000_api.h>
132 #include <dev/netif/ig_hal/e1000_82571.h>
133 #include <dev/netif/em/if_em.h>
134 
135 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
136 #define EM_VER	" 7.2.4"
137 
138 #define _EM_DEVICE(id, ret)	\
139 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
140 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
141 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
142 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
143 
144 static const struct em_vendor_info em_vendor_info_array[] = {
145 	EM_DEVICE(82540EM),
146 	EM_DEVICE(82540EM_LOM),
147 	EM_DEVICE(82540EP),
148 	EM_DEVICE(82540EP_LOM),
149 	EM_DEVICE(82540EP_LP),
150 
151 	EM_DEVICE(82541EI),
152 	EM_DEVICE(82541ER),
153 	EM_DEVICE(82541ER_LOM),
154 	EM_DEVICE(82541EI_MOBILE),
155 	EM_DEVICE(82541GI),
156 	EM_DEVICE(82541GI_LF),
157 	EM_DEVICE(82541GI_MOBILE),
158 
159 	EM_DEVICE(82542),
160 
161 	EM_DEVICE(82543GC_FIBER),
162 	EM_DEVICE(82543GC_COPPER),
163 
164 	EM_DEVICE(82544EI_COPPER),
165 	EM_DEVICE(82544EI_FIBER),
166 	EM_DEVICE(82544GC_COPPER),
167 	EM_DEVICE(82544GC_LOM),
168 
169 	EM_DEVICE(82545EM_COPPER),
170 	EM_DEVICE(82545EM_FIBER),
171 	EM_DEVICE(82545GM_COPPER),
172 	EM_DEVICE(82545GM_FIBER),
173 	EM_DEVICE(82545GM_SERDES),
174 
175 	EM_DEVICE(82546EB_COPPER),
176 	EM_DEVICE(82546EB_FIBER),
177 	EM_DEVICE(82546EB_QUAD_COPPER),
178 	EM_DEVICE(82546GB_COPPER),
179 	EM_DEVICE(82546GB_FIBER),
180 	EM_DEVICE(82546GB_SERDES),
181 	EM_DEVICE(82546GB_PCIE),
182 	EM_DEVICE(82546GB_QUAD_COPPER),
183 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
184 
185 	EM_DEVICE(82547EI),
186 	EM_DEVICE(82547EI_MOBILE),
187 	EM_DEVICE(82547GI),
188 
189 	EM_EMX_DEVICE(82571EB_COPPER),
190 	EM_EMX_DEVICE(82571EB_FIBER),
191 	EM_EMX_DEVICE(82571EB_SERDES),
192 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
193 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
194 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
195 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
196 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
197 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
198 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
199 
200 	EM_EMX_DEVICE(82572EI_COPPER),
201 	EM_EMX_DEVICE(82572EI_FIBER),
202 	EM_EMX_DEVICE(82572EI_SERDES),
203 	EM_EMX_DEVICE(82572EI),
204 
205 	EM_EMX_DEVICE(82573E),
206 	EM_EMX_DEVICE(82573E_IAMT),
207 	EM_EMX_DEVICE(82573L),
208 
209 	EM_DEVICE(82583V),
210 
211 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
212 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
213 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
214 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
215 
216 	EM_DEVICE(ICH8_IGP_M_AMT),
217 	EM_DEVICE(ICH8_IGP_AMT),
218 	EM_DEVICE(ICH8_IGP_C),
219 	EM_DEVICE(ICH8_IFE),
220 	EM_DEVICE(ICH8_IFE_GT),
221 	EM_DEVICE(ICH8_IFE_G),
222 	EM_DEVICE(ICH8_IGP_M),
223 	EM_DEVICE(ICH8_82567V_3),
224 
225 	EM_DEVICE(ICH9_IGP_M_AMT),
226 	EM_DEVICE(ICH9_IGP_AMT),
227 	EM_DEVICE(ICH9_IGP_C),
228 	EM_DEVICE(ICH9_IGP_M),
229 	EM_DEVICE(ICH9_IGP_M_V),
230 	EM_DEVICE(ICH9_IFE),
231 	EM_DEVICE(ICH9_IFE_GT),
232 	EM_DEVICE(ICH9_IFE_G),
233 	EM_DEVICE(ICH9_BM),
234 
235 	EM_EMX_DEVICE(82574L),
236 	EM_EMX_DEVICE(82574LA),
237 
238 	EM_DEVICE(ICH10_R_BM_LM),
239 	EM_DEVICE(ICH10_R_BM_LF),
240 	EM_DEVICE(ICH10_R_BM_V),
241 	EM_DEVICE(ICH10_D_BM_LM),
242 	EM_DEVICE(ICH10_D_BM_LF),
243 	EM_DEVICE(ICH10_D_BM_V),
244 
245 	EM_DEVICE(PCH_M_HV_LM),
246 	EM_DEVICE(PCH_M_HV_LC),
247 	EM_DEVICE(PCH_D_HV_DM),
248 	EM_DEVICE(PCH_D_HV_DC),
249 
250 	EM_DEVICE(PCH2_LV_LM),
251 	EM_DEVICE(PCH2_LV_V),
252 
253 	/* required last entry */
254 	EM_DEVICE_NULL
255 };
256 
257 static int	em_probe(device_t);
258 static int	em_attach(device_t);
259 static int	em_detach(device_t);
260 static int	em_shutdown(device_t);
261 static int	em_suspend(device_t);
262 static int	em_resume(device_t);
263 
264 static void	em_init(void *);
265 static void	em_stop(struct adapter *);
266 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
267 static void	em_start(struct ifnet *);
268 #ifdef DEVICE_POLLING
269 static void	em_poll(struct ifnet *, enum poll_cmd, int);
270 #endif
271 static void	em_watchdog(struct ifnet *);
272 static void	em_media_status(struct ifnet *, struct ifmediareq *);
273 static int	em_media_change(struct ifnet *);
274 static void	em_timer(void *);
275 
276 static void	em_intr(void *);
277 static void	em_intr_mask(void *);
278 static void	em_intr_body(struct adapter *, boolean_t);
279 static void	em_rxeof(struct adapter *, int);
280 static void	em_txeof(struct adapter *);
281 static void	em_tx_collect(struct adapter *);
282 static void	em_tx_purge(struct adapter *);
283 static void	em_enable_intr(struct adapter *);
284 static void	em_disable_intr(struct adapter *);
285 
286 static int	em_dma_malloc(struct adapter *, bus_size_t,
287 		    struct em_dma_alloc *);
288 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
289 static void	em_init_tx_ring(struct adapter *);
290 static int	em_init_rx_ring(struct adapter *);
291 static int	em_create_tx_ring(struct adapter *);
292 static int	em_create_rx_ring(struct adapter *);
293 static void	em_destroy_tx_ring(struct adapter *, int);
294 static void	em_destroy_rx_ring(struct adapter *, int);
295 static int	em_newbuf(struct adapter *, int, int);
296 static int	em_encap(struct adapter *, struct mbuf **);
297 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
298 		    struct mbuf *);
299 static int	em_txcsum(struct adapter *, struct mbuf *,
300 		    uint32_t *, uint32_t *);
301 static int	em_tso_pullup(struct adapter *, struct mbuf **);
302 static int	em_tso_setup(struct adapter *, struct mbuf *,
303 		    uint32_t *, uint32_t *);
304 
305 static int	em_get_hw_info(struct adapter *);
306 static int 	em_is_valid_eaddr(const uint8_t *);
307 static int	em_alloc_pci_res(struct adapter *);
308 static void	em_free_pci_res(struct adapter *);
309 static int	em_reset(struct adapter *);
310 static void	em_setup_ifp(struct adapter *);
311 static void	em_init_tx_unit(struct adapter *);
312 static void	em_init_rx_unit(struct adapter *);
313 static void	em_update_stats(struct adapter *);
314 static void	em_set_promisc(struct adapter *);
315 static void	em_disable_promisc(struct adapter *);
316 static void	em_set_multi(struct adapter *);
317 static void	em_update_link_status(struct adapter *);
318 static void	em_smartspeed(struct adapter *);
319 static void	em_set_itr(struct adapter *, uint32_t);
320 static void	em_disable_aspm(struct adapter *);
321 
322 /* Hardware workarounds */
323 static int	em_82547_fifo_workaround(struct adapter *, int);
324 static void	em_82547_update_fifo_head(struct adapter *, int);
325 static int	em_82547_tx_fifo_reset(struct adapter *);
326 static void	em_82547_move_tail(void *);
327 static void	em_82547_move_tail_serialized(struct adapter *);
328 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
329 
330 static void	em_print_debug_info(struct adapter *);
331 static void	em_print_nvm_info(struct adapter *);
332 static void	em_print_hw_stats(struct adapter *);
333 
334 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
335 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
336 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
337 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
338 static void	em_add_sysctl(struct adapter *adapter);
339 
340 /* Management and WOL Support */
341 static void	em_get_mgmt(struct adapter *);
342 static void	em_rel_mgmt(struct adapter *);
343 static void	em_get_hw_control(struct adapter *);
344 static void	em_rel_hw_control(struct adapter *);
345 static void	em_enable_wol(device_t);
346 
347 static device_method_t em_methods[] = {
348 	/* Device interface */
349 	DEVMETHOD(device_probe,		em_probe),
350 	DEVMETHOD(device_attach,	em_attach),
351 	DEVMETHOD(device_detach,	em_detach),
352 	DEVMETHOD(device_shutdown,	em_shutdown),
353 	DEVMETHOD(device_suspend,	em_suspend),
354 	DEVMETHOD(device_resume,	em_resume),
355 	{ 0, 0 }
356 };
357 
358 static driver_t em_driver = {
359 	"em",
360 	em_methods,
361 	sizeof(struct adapter),
362 };
363 
364 static devclass_t em_devclass;
365 
366 DECLARE_DUMMY_MODULE(if_em);
367 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
368 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
369 
370 /*
371  * Tunables
372  */
373 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
374 static int	em_rxd = EM_DEFAULT_RXD;
375 static int	em_txd = EM_DEFAULT_TXD;
376 static int	em_smart_pwr_down = 0;
377 
378 /* Controls whether promiscuous also shows bad packets */
379 static int	em_debug_sbp = FALSE;
380 
381 static int	em_82573_workaround = 1;
382 static int	em_msi_enable = 1;
383 
384 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
385 TUNABLE_INT("hw.em.rxd", &em_rxd);
386 TUNABLE_INT("hw.em.txd", &em_txd);
387 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
388 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
389 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
390 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
391 
392 /* Global used in WOL setup with multiport cards */
393 static int	em_global_quad_port_a = 0;
394 
395 /* Set this to one to display debug statistics */
396 static int	em_display_debug_stats = 0;
397 
398 #if !defined(KTR_IF_EM)
399 #define KTR_IF_EM	KTR_ALL
400 #endif
401 KTR_INFO_MASTER(if_em);
402 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
403 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
404 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
405 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
406 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
407 #define logif(name)	KTR_LOG(if_em_ ## name)
408 
409 static int
410 em_probe(device_t dev)
411 {
412 	const struct em_vendor_info *ent;
413 	uint16_t vid, did;
414 
415 	vid = pci_get_vendor(dev);
416 	did = pci_get_device(dev);
417 
418 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
419 		if (vid == ent->vendor_id && did == ent->device_id) {
420 			device_set_desc(dev, ent->desc);
421 			device_set_async_attach(dev, TRUE);
422 			return (ent->ret);
423 		}
424 	}
425 	return (ENXIO);
426 }
427 
428 static int
429 em_attach(device_t dev)
430 {
431 	struct adapter *adapter = device_get_softc(dev);
432 	struct ifnet *ifp = &adapter->arpcom.ac_if;
433 	int tsize, rsize;
434 	int error = 0;
435 	uint16_t eeprom_data, device_id, apme_mask;
436 	driver_intr_t *intr_func;
437 
438 	adapter->dev = adapter->osdep.dev = dev;
439 
440 	callout_init_mp(&adapter->timer);
441 	callout_init_mp(&adapter->tx_fifo_timer);
442 
443 	/* Determine hardware and mac info */
444 	error = em_get_hw_info(adapter);
445 	if (error) {
446 		device_printf(dev, "Identify hardware failed\n");
447 		goto fail;
448 	}
449 
450 	/* Setup PCI resources */
451 	error = em_alloc_pci_res(adapter);
452 	if (error) {
453 		device_printf(dev, "Allocation of PCI resources failed\n");
454 		goto fail;
455 	}
456 
457 	/*
458 	 * For ICH8 and family we need to map the flash memory,
459 	 * and this must happen after the MAC is identified.
460 	 */
461 	if (adapter->hw.mac.type == e1000_ich8lan ||
462 	    adapter->hw.mac.type == e1000_ich9lan ||
463 	    adapter->hw.mac.type == e1000_ich10lan ||
464 	    adapter->hw.mac.type == e1000_pchlan ||
465 	    adapter->hw.mac.type == e1000_pch2lan) {
466 		adapter->flash_rid = EM_BAR_FLASH;
467 
468 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
469 					&adapter->flash_rid, RF_ACTIVE);
470 		if (adapter->flash == NULL) {
471 			device_printf(dev, "Mapping of Flash failed\n");
472 			error = ENXIO;
473 			goto fail;
474 		}
475 		adapter->osdep.flash_bus_space_tag =
476 		    rman_get_bustag(adapter->flash);
477 		adapter->osdep.flash_bus_space_handle =
478 		    rman_get_bushandle(adapter->flash);
479 
480 		/*
481 		 * This is used in the shared code
482 		 * XXX this goof is actually not used.
483 		 */
484 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
485 	}
486 
487 	switch (adapter->hw.mac.type) {
488 	case e1000_82571:
489 	case e1000_82572:
490 		/*
491 		 * Pullup extra 4bytes into the first data segment, see:
492 		 * 82571/82572 specification update errata #7
493 		 *
494 		 * NOTE:
495 		 * 4bytes instead of 2bytes, which are mentioned in the
496 		 * errata, are pulled; mainly to keep rest of the data
497 		 * properly aligned.
498 		 */
499 		adapter->flags |= EM_FLAG_TSO_PULLEX;
500 		/* FALL THROUGH */
501 
502 	case e1000_82573:
503 	case e1000_82574:
504 	case e1000_80003es2lan:
505 		adapter->flags |= EM_FLAG_TSO;
506 		break;
507 
508 	default:
509 		break;
510 	}
511 
512 	/* Do Shared Code initialization */
513 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
514 		device_printf(dev, "Setup of Shared code failed\n");
515 		error = ENXIO;
516 		goto fail;
517 	}
518 
519 	e1000_get_bus_info(&adapter->hw);
520 
521 	/*
522 	 * Validate number of transmit and receive descriptors.  It
523 	 * must not exceed hardware maximum, and must be multiple
524 	 * of E1000_DBA_ALIGN.
525 	 */
526 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
527 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
528 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
529 	    em_txd < EM_MIN_TXD) {
530 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
531 		    EM_DEFAULT_TXD, em_txd);
532 		adapter->num_tx_desc = EM_DEFAULT_TXD;
533 	} else {
534 		adapter->num_tx_desc = em_txd;
535 	}
536 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
537 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
538 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
539 	    em_rxd < EM_MIN_RXD) {
540 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
541 		    EM_DEFAULT_RXD, em_rxd);
542 		adapter->num_rx_desc = EM_DEFAULT_RXD;
543 	} else {
544 		adapter->num_rx_desc = em_rxd;
545 	}
546 
547 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
548 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
549 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
550 	adapter->rx_buffer_len = MCLBYTES;
551 
552 	/*
553 	 * Interrupt throttle rate
554 	 */
555 	if (em_int_throttle_ceil == 0) {
556 		adapter->int_throttle_ceil = 0;
557 	} else {
558 		int throttle = em_int_throttle_ceil;
559 
560 		if (throttle < 0)
561 			throttle = EM_DEFAULT_ITR;
562 
563 		/* Recalculate the tunable value to get the exact frequency. */
564 		throttle = 1000000000 / 256 / throttle;
565 
566 		/* Upper 16bits of ITR is reserved and should be zero */
567 		if (throttle & 0xffff0000)
568 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
569 
570 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
571 	}
572 
573 	e1000_init_script_state_82541(&adapter->hw, TRUE);
574 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
575 
576 	/* Copper options */
577 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
578 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
579 		adapter->hw.phy.disable_polarity_correction = FALSE;
580 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
581 	}
582 
583 	/* Set the frame limits assuming standard ethernet sized frames. */
584 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
585 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
586 
587 	/* This controls when hardware reports transmit completion status. */
588 	adapter->hw.mac.report_tx_early = 1;
589 
590 	/*
591 	 * Create top level busdma tag
592 	 */
593 	error = bus_dma_tag_create(NULL, 1, 0,
594 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
595 			NULL, NULL,
596 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
597 			0, &adapter->parent_dtag);
598 	if (error) {
599 		device_printf(dev, "could not create top level DMA tag\n");
600 		goto fail;
601 	}
602 
603 	/*
604 	 * Allocate Transmit Descriptor ring
605 	 */
606 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
607 			 EM_DBA_ALIGN);
608 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
609 	if (error) {
610 		device_printf(dev, "Unable to allocate tx_desc memory\n");
611 		goto fail;
612 	}
613 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
614 
615 	/*
616 	 * Allocate Receive Descriptor ring
617 	 */
618 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
619 			 EM_DBA_ALIGN);
620 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
621 	if (error) {
622 		device_printf(dev, "Unable to allocate rx_desc memory\n");
623 		goto fail;
624 	}
625 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
626 
627 	/* Allocate multicast array memory. */
628 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
629 	    M_DEVBUF, M_WAITOK);
630 
631 	/* Indicate SOL/IDER usage */
632 	if (e1000_check_reset_block(&adapter->hw)) {
633 		device_printf(dev,
634 		    "PHY reset is blocked due to SOL/IDER session.\n");
635 	}
636 
637 	/*
638 	 * Start from a known state, this is important in reading the
639 	 * nvm and mac from that.
640 	 */
641 	e1000_reset_hw(&adapter->hw);
642 
643 	/* Make sure we have a good EEPROM before we read from it */
644 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
645 		/*
646 		 * Some PCI-E parts fail the first check due to
647 		 * the link being in sleep state, call it again,
648 		 * if it fails a second time its a real issue.
649 		 */
650 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
651 			device_printf(dev,
652 			    "The EEPROM Checksum Is Not Valid\n");
653 			error = EIO;
654 			goto fail;
655 		}
656 	}
657 
658 	/* Copy the permanent MAC address out of the EEPROM */
659 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
660 		device_printf(dev, "EEPROM read error while reading MAC"
661 		    " address\n");
662 		error = EIO;
663 		goto fail;
664 	}
665 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
666 		device_printf(dev, "Invalid MAC address\n");
667 		error = EIO;
668 		goto fail;
669 	}
670 
671 	/* Allocate transmit descriptors and buffers */
672 	error = em_create_tx_ring(adapter);
673 	if (error) {
674 		device_printf(dev, "Could not setup transmit structures\n");
675 		goto fail;
676 	}
677 
678 	/* Allocate receive descriptors and buffers */
679 	error = em_create_rx_ring(adapter);
680 	if (error) {
681 		device_printf(dev, "Could not setup receive structures\n");
682 		goto fail;
683 	}
684 
685 	/* Manually turn off all interrupts */
686 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
687 
688 	/* Determine if we have to control management hardware */
689 	if (e1000_enable_mng_pass_thru(&adapter->hw))
690 		adapter->flags |= EM_FLAG_HAS_MGMT;
691 
692 	/*
693 	 * Setup Wake-on-Lan
694 	 */
695 	apme_mask = EM_EEPROM_APME;
696 	eeprom_data = 0;
697 	switch (adapter->hw.mac.type) {
698 	case e1000_82542:
699 	case e1000_82543:
700 		break;
701 
702 	case e1000_82573:
703 	case e1000_82583:
704 		adapter->flags |= EM_FLAG_HAS_AMT;
705 		/* FALL THROUGH */
706 
707 	case e1000_82546:
708 	case e1000_82546_rev_3:
709 	case e1000_82571:
710 	case e1000_82572:
711 	case e1000_80003es2lan:
712 		if (adapter->hw.bus.func == 1) {
713 			e1000_read_nvm(&adapter->hw,
714 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
715 		} else {
716 			e1000_read_nvm(&adapter->hw,
717 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
718 		}
719 		break;
720 
721 	case e1000_ich8lan:
722 	case e1000_ich9lan:
723 	case e1000_ich10lan:
724 	case e1000_pchlan:
725 	case e1000_pch2lan:
726 		apme_mask = E1000_WUC_APME;
727 		adapter->flags |= EM_FLAG_HAS_AMT;
728 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
729 		break;
730 
731 	default:
732 		e1000_read_nvm(&adapter->hw,
733 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
734 		break;
735 	}
736 	if (eeprom_data & apme_mask)
737 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
738 
739 	/*
740          * We have the eeprom settings, now apply the special cases
741          * where the eeprom may be wrong or the board won't support
742          * wake on lan on a particular port
743 	 */
744 	device_id = pci_get_device(dev);
745         switch (device_id) {
746 	case E1000_DEV_ID_82546GB_PCIE:
747 		adapter->wol = 0;
748 		break;
749 
750 	case E1000_DEV_ID_82546EB_FIBER:
751 	case E1000_DEV_ID_82546GB_FIBER:
752 	case E1000_DEV_ID_82571EB_FIBER:
753 		/*
754 		 * Wake events only supported on port A for dual fiber
755 		 * regardless of eeprom setting
756 		 */
757 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
758 		    E1000_STATUS_FUNC_1)
759 			adapter->wol = 0;
760 		break;
761 
762 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
763 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
764 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
765 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
766                 /* if quad port adapter, disable WoL on all but port A */
767 		if (em_global_quad_port_a != 0)
768 			adapter->wol = 0;
769 		/* Reset for multiple quad port adapters */
770 		if (++em_global_quad_port_a == 4)
771 			em_global_quad_port_a = 0;
772                 break;
773 	}
774 
775 	/* XXX disable wol */
776 	adapter->wol = 0;
777 
778 	/* Setup OS specific network interface */
779 	em_setup_ifp(adapter);
780 
781 	/* Add sysctl tree, must after em_setup_ifp() */
782 	em_add_sysctl(adapter);
783 
784 	/* Reset the hardware */
785 	error = em_reset(adapter);
786 	if (error) {
787 		device_printf(dev, "Unable to reset the hardware\n");
788 		goto fail;
789 	}
790 
791 	/* Initialize statistics */
792 	em_update_stats(adapter);
793 
794 	adapter->hw.mac.get_link_status = 1;
795 	em_update_link_status(adapter);
796 
797 	/* Do we need workaround for 82544 PCI-X adapter? */
798 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
799 	    adapter->hw.mac.type == e1000_82544)
800 		adapter->pcix_82544 = TRUE;
801 	else
802 		adapter->pcix_82544 = FALSE;
803 
804 	if (adapter->pcix_82544) {
805 		/*
806 		 * 82544 on PCI-X may split one TX segment
807 		 * into two TX descs, so we double its number
808 		 * of spare TX desc here.
809 		 */
810 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
811 	} else {
812 		adapter->spare_tx_desc = EM_TX_SPARE;
813 	}
814 	if (adapter->flags & EM_FLAG_TSO)
815 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
816 
817 	/*
818 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
819 	 * and tx_int_nsegs:
820 	 * (spare_tx_desc + EM_TX_RESERVED) <=
821 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
822 	 */
823 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
824 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
825 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
826 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
827 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
828 
829 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
830 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
831 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
832 
833 	/* Non-AMT based hardware can now take control from firmware */
834 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
835 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
836 		em_get_hw_control(adapter);
837 
838 	/*
839 	 * Missing Interrupt Following ICR read:
840 	 *
841 	 * 82571/82572 specification update errata #76
842 	 * 82573 specification update errata #31
843 	 * 82574 specification update errata #12
844 	 * 82583 specification update errata #4
845 	 */
846 	intr_func = em_intr;
847 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
848 	    (adapter->hw.mac.type == e1000_82571 ||
849 	     adapter->hw.mac.type == e1000_82572 ||
850 	     adapter->hw.mac.type == e1000_82573 ||
851 	     adapter->hw.mac.type == e1000_82574 ||
852 	     adapter->hw.mac.type == e1000_82583))
853 		intr_func = em_intr_mask;
854 
855 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
856 			       intr_func, adapter, &adapter->intr_tag,
857 			       ifp->if_serializer);
858 	if (error) {
859 		device_printf(dev, "Failed to register interrupt handler");
860 		ether_ifdetach(&adapter->arpcom.ac_if);
861 		goto fail;
862 	}
863 
864 	ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
865 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
866 	return (0);
867 fail:
868 	em_detach(dev);
869 	return (error);
870 }
871 
872 static int
873 em_detach(device_t dev)
874 {
875 	struct adapter *adapter = device_get_softc(dev);
876 
877 	if (device_is_attached(dev)) {
878 		struct ifnet *ifp = &adapter->arpcom.ac_if;
879 
880 		lwkt_serialize_enter(ifp->if_serializer);
881 
882 		em_stop(adapter);
883 
884 		e1000_phy_hw_reset(&adapter->hw);
885 
886 		em_rel_mgmt(adapter);
887 		em_rel_hw_control(adapter);
888 
889 		if (adapter->wol) {
890 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
891 					E1000_WUC_PME_EN);
892 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
893 			em_enable_wol(dev);
894 		}
895 
896 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
897 
898 		lwkt_serialize_exit(ifp->if_serializer);
899 
900 		ether_ifdetach(ifp);
901 	} else if (adapter->memory != NULL) {
902 		em_rel_hw_control(adapter);
903 	}
904 	bus_generic_detach(dev);
905 
906 	em_free_pci_res(adapter);
907 
908 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
909 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
910 
911 	/* Free Transmit Descriptor ring */
912 	if (adapter->tx_desc_base)
913 		em_dma_free(adapter, &adapter->txdma);
914 
915 	/* Free Receive Descriptor ring */
916 	if (adapter->rx_desc_base)
917 		em_dma_free(adapter, &adapter->rxdma);
918 
919 	/* Free top level busdma tag */
920 	if (adapter->parent_dtag != NULL)
921 		bus_dma_tag_destroy(adapter->parent_dtag);
922 
923 	/* Free sysctl tree */
924 	if (adapter->sysctl_tree != NULL)
925 		sysctl_ctx_free(&adapter->sysctl_ctx);
926 
927 	if (adapter->mta != NULL)
928 		kfree(adapter->mta, M_DEVBUF);
929 
930 	return (0);
931 }
932 
933 static int
934 em_shutdown(device_t dev)
935 {
936 	return em_suspend(dev);
937 }
938 
939 static int
940 em_suspend(device_t dev)
941 {
942 	struct adapter *adapter = device_get_softc(dev);
943 	struct ifnet *ifp = &adapter->arpcom.ac_if;
944 
945 	lwkt_serialize_enter(ifp->if_serializer);
946 
947 	em_stop(adapter);
948 
949 	em_rel_mgmt(adapter);
950 	em_rel_hw_control(adapter);
951 
952 	if (adapter->wol) {
953 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
954 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
955 		em_enable_wol(dev);
956 	}
957 
958 	lwkt_serialize_exit(ifp->if_serializer);
959 
960 	return bus_generic_suspend(dev);
961 }
962 
963 static int
964 em_resume(device_t dev)
965 {
966 	struct adapter *adapter = device_get_softc(dev);
967 	struct ifnet *ifp = &adapter->arpcom.ac_if;
968 
969 	lwkt_serialize_enter(ifp->if_serializer);
970 
971 	em_init(adapter);
972 	em_get_mgmt(adapter);
973 	if_devstart(ifp);
974 
975 	lwkt_serialize_exit(ifp->if_serializer);
976 
977 	return bus_generic_resume(dev);
978 }
979 
980 static void
981 em_start(struct ifnet *ifp)
982 {
983 	struct adapter *adapter = ifp->if_softc;
984 	struct mbuf *m_head;
985 
986 	ASSERT_SERIALIZED(ifp->if_serializer);
987 
988 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
989 		return;
990 
991 	if (!adapter->link_active) {
992 		ifq_purge(&ifp->if_snd);
993 		return;
994 	}
995 
996 	while (!ifq_is_empty(&ifp->if_snd)) {
997 		/* Now do we at least have a minimal? */
998 		if (EM_IS_OACTIVE(adapter)) {
999 			em_tx_collect(adapter);
1000 			if (EM_IS_OACTIVE(adapter)) {
1001 				ifp->if_flags |= IFF_OACTIVE;
1002 				adapter->no_tx_desc_avail1++;
1003 				break;
1004 			}
1005 		}
1006 
1007 		logif(pkt_txqueue);
1008 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
1009 		if (m_head == NULL)
1010 			break;
1011 
1012 		if (em_encap(adapter, &m_head)) {
1013 			ifp->if_oerrors++;
1014 			em_tx_collect(adapter);
1015 			continue;
1016 		}
1017 
1018 		/* Send a copy of the frame to the BPF listener */
1019 		ETHER_BPF_MTAP(ifp, m_head);
1020 
1021 		/* Set timeout in case hardware has problems transmitting. */
1022 		ifp->if_timer = EM_TX_TIMEOUT;
1023 	}
1024 }
1025 
1026 static int
1027 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1028 {
1029 	struct adapter *adapter = ifp->if_softc;
1030 	struct ifreq *ifr = (struct ifreq *)data;
1031 	uint16_t eeprom_data = 0;
1032 	int max_frame_size, mask, reinit;
1033 	int error = 0;
1034 
1035 	ASSERT_SERIALIZED(ifp->if_serializer);
1036 
1037 	switch (command) {
1038 	case SIOCSIFMTU:
1039 		switch (adapter->hw.mac.type) {
1040 		case e1000_82573:
1041 			/*
1042 			 * 82573 only supports jumbo frames
1043 			 * if ASPM is disabled.
1044 			 */
1045 			e1000_read_nvm(&adapter->hw,
1046 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1047 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1048 				max_frame_size = ETHER_MAX_LEN;
1049 				break;
1050 			}
1051 			/* FALL THROUGH */
1052 
1053 		/* Limit Jumbo Frame size */
1054 		case e1000_82571:
1055 		case e1000_82572:
1056 		case e1000_ich9lan:
1057 		case e1000_ich10lan:
1058 		case e1000_pch2lan:
1059 		case e1000_82574:
1060 		case e1000_82583:
1061 		case e1000_80003es2lan:
1062 			max_frame_size = 9234;
1063 			break;
1064 
1065 		case e1000_pchlan:
1066 			max_frame_size = 4096;
1067 			break;
1068 
1069 		/* Adapters that do not support jumbo frames */
1070 		case e1000_82542:
1071 		case e1000_ich8lan:
1072 			max_frame_size = ETHER_MAX_LEN;
1073 			break;
1074 
1075 		default:
1076 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1077 			break;
1078 		}
1079 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1080 		    ETHER_CRC_LEN) {
1081 			error = EINVAL;
1082 			break;
1083 		}
1084 
1085 		ifp->if_mtu = ifr->ifr_mtu;
1086 		adapter->max_frame_size =
1087 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1088 
1089 		if (ifp->if_flags & IFF_RUNNING)
1090 			em_init(adapter);
1091 		break;
1092 
1093 	case SIOCSIFFLAGS:
1094 		if (ifp->if_flags & IFF_UP) {
1095 			if ((ifp->if_flags & IFF_RUNNING)) {
1096 				if ((ifp->if_flags ^ adapter->if_flags) &
1097 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1098 					em_disable_promisc(adapter);
1099 					em_set_promisc(adapter);
1100 				}
1101 			} else {
1102 				em_init(adapter);
1103 			}
1104 		} else if (ifp->if_flags & IFF_RUNNING) {
1105 			em_stop(adapter);
1106 		}
1107 		adapter->if_flags = ifp->if_flags;
1108 		break;
1109 
1110 	case SIOCADDMULTI:
1111 	case SIOCDELMULTI:
1112 		if (ifp->if_flags & IFF_RUNNING) {
1113 			em_disable_intr(adapter);
1114 			em_set_multi(adapter);
1115 			if (adapter->hw.mac.type == e1000_82542 &&
1116 			    adapter->hw.revision_id == E1000_REVISION_2)
1117 				em_init_rx_unit(adapter);
1118 #ifdef DEVICE_POLLING
1119 			if (!(ifp->if_flags & IFF_POLLING))
1120 #endif
1121 				em_enable_intr(adapter);
1122 		}
1123 		break;
1124 
1125 	case SIOCSIFMEDIA:
1126 		/* Check SOL/IDER usage */
1127 		if (e1000_check_reset_block(&adapter->hw)) {
1128 			device_printf(adapter->dev, "Media change is"
1129 			    " blocked due to SOL/IDER session.\n");
1130 			break;
1131 		}
1132 		/* FALL THROUGH */
1133 
1134 	case SIOCGIFMEDIA:
1135 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1136 		break;
1137 
1138 	case SIOCSIFCAP:
1139 		reinit = 0;
1140 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1141 		if (mask & IFCAP_RXCSUM) {
1142 			ifp->if_capenable ^= IFCAP_RXCSUM;
1143 			reinit = 1;
1144 		}
1145 		if (mask & IFCAP_TXCSUM) {
1146 			ifp->if_capenable ^= IFCAP_TXCSUM;
1147 			if (ifp->if_capenable & IFCAP_TXCSUM)
1148 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1149 			else
1150 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1151 		}
1152 		if (mask & IFCAP_TSO) {
1153 			ifp->if_capenable ^= IFCAP_TSO;
1154 			if (ifp->if_capenable & IFCAP_TSO)
1155 				ifp->if_hwassist |= CSUM_TSO;
1156 			else
1157 				ifp->if_hwassist &= ~CSUM_TSO;
1158 		}
1159 		if (mask & IFCAP_VLAN_HWTAGGING) {
1160 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1161 			reinit = 1;
1162 		}
1163 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1164 			em_init(adapter);
1165 		break;
1166 
1167 	default:
1168 		error = ether_ioctl(ifp, command, data);
1169 		break;
1170 	}
1171 	return (error);
1172 }
1173 
1174 static void
1175 em_watchdog(struct ifnet *ifp)
1176 {
1177 	struct adapter *adapter = ifp->if_softc;
1178 
1179 	ASSERT_SERIALIZED(ifp->if_serializer);
1180 
1181 	/*
1182 	 * The timer is set to 5 every time start queues a packet.
1183 	 * Then txeof keeps resetting it as long as it cleans at
1184 	 * least one descriptor.
1185 	 * Finally, anytime all descriptors are clean the timer is
1186 	 * set to 0.
1187 	 */
1188 
1189 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1190 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1191 		/*
1192 		 * If we reach here, all TX jobs are completed and
1193 		 * the TX engine should have been idled for some time.
1194 		 * We don't need to call if_devstart() here.
1195 		 */
1196 		ifp->if_flags &= ~IFF_OACTIVE;
1197 		ifp->if_timer = 0;
1198 		return;
1199 	}
1200 
1201 	/*
1202 	 * If we are in this routine because of pause frames, then
1203 	 * don't reset the hardware.
1204 	 */
1205 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1206 	    E1000_STATUS_TXOFF) {
1207 		ifp->if_timer = EM_TX_TIMEOUT;
1208 		return;
1209 	}
1210 
1211 	if (e1000_check_for_link(&adapter->hw) == 0)
1212 		if_printf(ifp, "watchdog timeout -- resetting\n");
1213 
1214 	ifp->if_oerrors++;
1215 	adapter->watchdog_events++;
1216 
1217 	em_init(adapter);
1218 
1219 	if (!ifq_is_empty(&ifp->if_snd))
1220 		if_devstart(ifp);
1221 }
1222 
1223 static void
1224 em_init(void *xsc)
1225 {
1226 	struct adapter *adapter = xsc;
1227 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1228 	device_t dev = adapter->dev;
1229 	uint32_t pba;
1230 
1231 	ASSERT_SERIALIZED(ifp->if_serializer);
1232 
1233 	em_stop(adapter);
1234 
1235 	/*
1236 	 * Packet Buffer Allocation (PBA)
1237 	 * Writing PBA sets the receive portion of the buffer
1238 	 * the remainder is used for the transmit buffer.
1239 	 *
1240 	 * Devices before the 82547 had a Packet Buffer of 64K.
1241 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1242 	 * After the 82547 the buffer was reduced to 40K.
1243 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1244 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1245 	 */
1246 	switch (adapter->hw.mac.type) {
1247 	case e1000_82547:
1248 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1249 		if (adapter->max_frame_size > 8192)
1250 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1251 		else
1252 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1253 		adapter->tx_fifo_head = 0;
1254 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1255 		adapter->tx_fifo_size =
1256 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1257 		break;
1258 
1259 	/* Total Packet Buffer on these is 48K */
1260 	case e1000_82571:
1261 	case e1000_82572:
1262 	case e1000_80003es2lan:
1263 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1264 		break;
1265 
1266 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1267 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1268 		break;
1269 
1270 	case e1000_82574:
1271 	case e1000_82583:
1272 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1273 		break;
1274 
1275 	case e1000_ich8lan:
1276 		pba = E1000_PBA_8K;
1277 		break;
1278 
1279 	case e1000_ich9lan:
1280 	case e1000_ich10lan:
1281 #define E1000_PBA_10K	0x000A
1282 		pba = E1000_PBA_10K;
1283 		break;
1284 
1285 	case e1000_pchlan:
1286 	case e1000_pch2lan:
1287 		pba = E1000_PBA_26K;
1288 		break;
1289 
1290 	default:
1291 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1292 		if (adapter->max_frame_size > 8192)
1293 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1294 		else
1295 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1296 	}
1297 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1298 
1299 	/* Get the latest mac address, User can use a LAA */
1300         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1301 
1302 	/* Put the address into the Receive Address Array */
1303 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1304 
1305 	/*
1306 	 * With the 82571 adapter, RAR[0] may be overwritten
1307 	 * when the other port is reset, we make a duplicate
1308 	 * in RAR[14] for that eventuality, this assures
1309 	 * the interface continues to function.
1310 	 */
1311 	if (adapter->hw.mac.type == e1000_82571) {
1312 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1313 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1314 		    E1000_RAR_ENTRIES - 1);
1315 	}
1316 
1317 	/* Reset the hardware */
1318 	if (em_reset(adapter)) {
1319 		device_printf(dev, "Unable to reset the hardware\n");
1320 		/* XXX em_stop()? */
1321 		return;
1322 	}
1323 	em_update_link_status(adapter);
1324 
1325 	/* Setup VLAN support, basic and offload if available */
1326 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1327 
1328 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1329 		uint32_t ctrl;
1330 
1331 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1332 		ctrl |= E1000_CTRL_VME;
1333 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1334 	}
1335 
1336 	/* Configure for OS presence */
1337 	em_get_mgmt(adapter);
1338 
1339 	/* Prepare transmit descriptors and buffers */
1340 	em_init_tx_ring(adapter);
1341 	em_init_tx_unit(adapter);
1342 
1343 	/* Setup Multicast table */
1344 	em_set_multi(adapter);
1345 
1346 	/* Prepare receive descriptors and buffers */
1347 	if (em_init_rx_ring(adapter)) {
1348 		device_printf(dev, "Could not setup receive structures\n");
1349 		em_stop(adapter);
1350 		return;
1351 	}
1352 	em_init_rx_unit(adapter);
1353 
1354 	/* Don't lose promiscuous settings */
1355 	em_set_promisc(adapter);
1356 
1357 	ifp->if_flags |= IFF_RUNNING;
1358 	ifp->if_flags &= ~IFF_OACTIVE;
1359 
1360 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1361 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1362 
1363 	/* MSI/X configuration for 82574 */
1364 	if (adapter->hw.mac.type == e1000_82574) {
1365 		int tmp;
1366 
1367 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1368 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1369 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1370 		/*
1371 		 * XXX MSIX
1372 		 * Set the IVAR - interrupt vector routing.
1373 		 * Each nibble represents a vector, high bit
1374 		 * is enable, other 3 bits are the MSIX table
1375 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1376 		 * Link (other) to 2, hence the magic number.
1377 		 */
1378 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1379 	}
1380 
1381 #ifdef DEVICE_POLLING
1382 	/*
1383 	 * Only enable interrupts if we are not polling, make sure
1384 	 * they are off otherwise.
1385 	 */
1386 	if (ifp->if_flags & IFF_POLLING)
1387 		em_disable_intr(adapter);
1388 	else
1389 #endif /* DEVICE_POLLING */
1390 		em_enable_intr(adapter);
1391 
1392 	/* AMT based hardware can now take control from firmware */
1393 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1394 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1395 	    adapter->hw.mac.type >= e1000_82571)
1396 		em_get_hw_control(adapter);
1397 
1398 	/* Don't reset the phy next time init gets called */
1399 	adapter->hw.phy.reset_disable = TRUE;
1400 }
1401 
1402 #ifdef DEVICE_POLLING
1403 
1404 static void
1405 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1406 {
1407 	struct adapter *adapter = ifp->if_softc;
1408 	uint32_t reg_icr;
1409 
1410 	ASSERT_SERIALIZED(ifp->if_serializer);
1411 
1412 	switch (cmd) {
1413 	case POLL_REGISTER:
1414 		em_disable_intr(adapter);
1415 		break;
1416 
1417 	case POLL_DEREGISTER:
1418 		em_enable_intr(adapter);
1419 		break;
1420 
1421 	case POLL_AND_CHECK_STATUS:
1422 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1423 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1424 			callout_stop(&adapter->timer);
1425 			adapter->hw.mac.get_link_status = 1;
1426 			em_update_link_status(adapter);
1427 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1428 		}
1429 		/* FALL THROUGH */
1430 	case POLL_ONLY:
1431 		if (ifp->if_flags & IFF_RUNNING) {
1432 			em_rxeof(adapter, count);
1433 			em_txeof(adapter);
1434 
1435 			if (!ifq_is_empty(&ifp->if_snd))
1436 				if_devstart(ifp);
1437 		}
1438 		break;
1439 	}
1440 }
1441 
1442 #endif /* DEVICE_POLLING */
1443 
1444 static void
1445 em_intr(void *xsc)
1446 {
1447 	em_intr_body(xsc, TRUE);
1448 }
1449 
1450 static void
1451 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1452 {
1453 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1454 	uint32_t reg_icr;
1455 
1456 	logif(intr_beg);
1457 	ASSERT_SERIALIZED(ifp->if_serializer);
1458 
1459 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1460 
1461 	if (chk_asserted &&
1462 	    ((adapter->hw.mac.type >= e1000_82571 &&
1463 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1464 	     reg_icr == 0)) {
1465 		logif(intr_end);
1466 		return;
1467 	}
1468 
1469 	/*
1470 	 * XXX: some laptops trigger several spurious interrupts
1471 	 * on em(4) when in the resume cycle. The ICR register
1472 	 * reports all-ones value in this case. Processing such
1473 	 * interrupts would lead to a freeze. I don't know why.
1474 	 */
1475 	if (reg_icr == 0xffffffff) {
1476 		logif(intr_end);
1477 		return;
1478 	}
1479 
1480 	if (ifp->if_flags & IFF_RUNNING) {
1481 		if (reg_icr &
1482 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1483 			em_rxeof(adapter, -1);
1484 		if (reg_icr & E1000_ICR_TXDW) {
1485 			em_txeof(adapter);
1486 			if (!ifq_is_empty(&ifp->if_snd))
1487 				if_devstart(ifp);
1488 		}
1489 	}
1490 
1491 	/* Link status change */
1492 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1493 		callout_stop(&adapter->timer);
1494 		adapter->hw.mac.get_link_status = 1;
1495 		em_update_link_status(adapter);
1496 
1497 		/* Deal with TX cruft when link lost */
1498 		em_tx_purge(adapter);
1499 
1500 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1501 	}
1502 
1503 	if (reg_icr & E1000_ICR_RXO)
1504 		adapter->rx_overruns++;
1505 
1506 	logif(intr_end);
1507 }
1508 
1509 static void
1510 em_intr_mask(void *xsc)
1511 {
1512 	struct adapter *adapter = xsc;
1513 
1514 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1515 	/*
1516 	 * NOTE:
1517 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1518 	 * so don't check it.
1519 	 */
1520 	em_intr_body(adapter, FALSE);
1521 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1522 }
1523 
1524 static void
1525 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1526 {
1527 	struct adapter *adapter = ifp->if_softc;
1528 	u_char fiber_type = IFM_1000_SX;
1529 
1530 	ASSERT_SERIALIZED(ifp->if_serializer);
1531 
1532 	em_update_link_status(adapter);
1533 
1534 	ifmr->ifm_status = IFM_AVALID;
1535 	ifmr->ifm_active = IFM_ETHER;
1536 
1537 	if (!adapter->link_active)
1538 		return;
1539 
1540 	ifmr->ifm_status |= IFM_ACTIVE;
1541 
1542 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1543 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1544 		if (adapter->hw.mac.type == e1000_82545)
1545 			fiber_type = IFM_1000_LX;
1546 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1547 	} else {
1548 		switch (adapter->link_speed) {
1549 		case 10:
1550 			ifmr->ifm_active |= IFM_10_T;
1551 			break;
1552 		case 100:
1553 			ifmr->ifm_active |= IFM_100_TX;
1554 			break;
1555 
1556 		case 1000:
1557 			ifmr->ifm_active |= IFM_1000_T;
1558 			break;
1559 		}
1560 		if (adapter->link_duplex == FULL_DUPLEX)
1561 			ifmr->ifm_active |= IFM_FDX;
1562 		else
1563 			ifmr->ifm_active |= IFM_HDX;
1564 	}
1565 }
1566 
1567 static int
1568 em_media_change(struct ifnet *ifp)
1569 {
1570 	struct adapter *adapter = ifp->if_softc;
1571 	struct ifmedia *ifm = &adapter->media;
1572 
1573 	ASSERT_SERIALIZED(ifp->if_serializer);
1574 
1575 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1576 		return (EINVAL);
1577 
1578 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1579 	case IFM_AUTO:
1580 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1581 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1582 		break;
1583 
1584 	case IFM_1000_LX:
1585 	case IFM_1000_SX:
1586 	case IFM_1000_T:
1587 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1588 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1589 		break;
1590 
1591 	case IFM_100_TX:
1592 		adapter->hw.mac.autoneg = FALSE;
1593 		adapter->hw.phy.autoneg_advertised = 0;
1594 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1595 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1596 		else
1597 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1598 		break;
1599 
1600 	case IFM_10_T:
1601 		adapter->hw.mac.autoneg = FALSE;
1602 		adapter->hw.phy.autoneg_advertised = 0;
1603 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1604 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1605 		else
1606 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1607 		break;
1608 
1609 	default:
1610 		if_printf(ifp, "Unsupported media type\n");
1611 		break;
1612 	}
1613 
1614 	/*
1615 	 * As the speed/duplex settings my have changed we need to
1616 	 * reset the PHY.
1617 	 */
1618 	adapter->hw.phy.reset_disable = FALSE;
1619 
1620 	em_init(adapter);
1621 
1622 	return (0);
1623 }
1624 
1625 static int
1626 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1627 {
1628 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1629 	bus_dmamap_t map;
1630 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1631 	struct e1000_tx_desc *ctxd = NULL;
1632 	struct mbuf *m_head = *m_headp;
1633 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1634 	int maxsegs, nsegs, i, j, first, last = 0, error;
1635 
1636 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1637 		error = em_tso_pullup(adapter, m_headp);
1638 		if (error)
1639 			return error;
1640 		m_head = *m_headp;
1641 	}
1642 
1643 	txd_upper = txd_lower = 0;
1644 	txd_used = 0;
1645 
1646 	/*
1647 	 * Capture the first descriptor index, this descriptor
1648 	 * will have the index of the EOP which is the only one
1649 	 * that now gets a DONE bit writeback.
1650 	 */
1651 	first = adapter->next_avail_tx_desc;
1652 	tx_buffer = &adapter->tx_buffer_area[first];
1653 	tx_buffer_mapped = tx_buffer;
1654 	map = tx_buffer->map;
1655 
1656 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1657 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1658 		("not enough spare TX desc"));
1659 	if (adapter->pcix_82544) {
1660 		/* Half it; see the comment in em_attach() */
1661 		maxsegs >>= 1;
1662 	}
1663 	if (maxsegs > EM_MAX_SCATTER)
1664 		maxsegs = EM_MAX_SCATTER;
1665 
1666 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1667 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1668 	if (error) {
1669 		if (error == ENOBUFS)
1670 			adapter->mbuf_alloc_failed++;
1671 		else
1672 			adapter->no_tx_dma_setup++;
1673 
1674 		m_freem(*m_headp);
1675 		*m_headp = NULL;
1676 		return error;
1677 	}
1678         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1679 
1680 	m_head = *m_headp;
1681 	adapter->tx_nsegs += nsegs;
1682 
1683 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1684 		/* TSO will consume one TX desc */
1685 		adapter->tx_nsegs += em_tso_setup(adapter, m_head,
1686 		    &txd_upper, &txd_lower);
1687 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1688 		/* TX csum offloading will consume one TX desc */
1689 		adapter->tx_nsegs += em_txcsum(adapter, m_head,
1690 					       &txd_upper, &txd_lower);
1691 	}
1692 	i = adapter->next_avail_tx_desc;
1693 
1694 	/* Set up our transmit descriptors */
1695 	for (j = 0; j < nsegs; j++) {
1696 		/* If adapter is 82544 and on PCIX bus */
1697 		if(adapter->pcix_82544) {
1698 			DESC_ARRAY desc_array;
1699 			uint32_t array_elements, counter;
1700 
1701 			/*
1702 			 * Check the Address and Length combination and
1703 			 * split the data accordingly
1704 			 */
1705 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1706 						segs[j].ds_len, &desc_array);
1707 			for (counter = 0; counter < array_elements; counter++) {
1708 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1709 
1710 				tx_buffer = &adapter->tx_buffer_area[i];
1711 				ctxd = &adapter->tx_desc_base[i];
1712 
1713 				ctxd->buffer_addr = htole64(
1714 				    desc_array.descriptor[counter].address);
1715 				ctxd->lower.data = htole32(
1716 				    E1000_TXD_CMD_IFCS | txd_lower |
1717 				    desc_array.descriptor[counter].length);
1718 				ctxd->upper.data = htole32(txd_upper);
1719 
1720 				last = i;
1721 				if (++i == adapter->num_tx_desc)
1722 					i = 0;
1723 
1724 				txd_used++;
1725                         }
1726 		} else {
1727 			tx_buffer = &adapter->tx_buffer_area[i];
1728 			ctxd = &adapter->tx_desc_base[i];
1729 
1730 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1731 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1732 						   txd_lower | segs[j].ds_len);
1733 			ctxd->upper.data = htole32(txd_upper);
1734 
1735 			last = i;
1736 			if (++i == adapter->num_tx_desc)
1737 				i = 0;
1738 		}
1739 	}
1740 
1741 	adapter->next_avail_tx_desc = i;
1742 	if (adapter->pcix_82544) {
1743 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1744 		adapter->num_tx_desc_avail -= txd_used;
1745 	} else {
1746 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1747 		adapter->num_tx_desc_avail -= nsegs;
1748 	}
1749 
1750         /* Handle VLAN tag */
1751 	if (m_head->m_flags & M_VLANTAG) {
1752 		/* Set the vlan id. */
1753 		ctxd->upper.fields.special =
1754 		    htole16(m_head->m_pkthdr.ether_vlantag);
1755 
1756 		/* Tell hardware to add tag */
1757 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1758 	}
1759 
1760 	tx_buffer->m_head = m_head;
1761 	tx_buffer_mapped->map = tx_buffer->map;
1762 	tx_buffer->map = map;
1763 
1764 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1765 		adapter->tx_nsegs = 0;
1766 
1767 		/*
1768 		 * Report Status (RS) is turned on
1769 		 * every tx_int_nsegs descriptors.
1770 		 */
1771 		cmd = E1000_TXD_CMD_RS;
1772 
1773 		/*
1774 		 * Keep track of the descriptor, which will
1775 		 * be written back by hardware.
1776 		 */
1777 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1778 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1779 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1780 	}
1781 
1782 	/*
1783 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1784 	 */
1785 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1786 
1787 	/*
1788 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1789 	 * that this frame is available to transmit.
1790 	 */
1791 	if (adapter->hw.mac.type == e1000_82547 &&
1792 	    adapter->link_duplex == HALF_DUPLEX) {
1793 		em_82547_move_tail_serialized(adapter);
1794 	} else {
1795 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1796 		if (adapter->hw.mac.type == e1000_82547) {
1797 			em_82547_update_fifo_head(adapter,
1798 			    m_head->m_pkthdr.len);
1799 		}
1800 	}
1801 	return (0);
1802 }
1803 
1804 /*
1805  * 82547 workaround to avoid controller hang in half-duplex environment.
1806  * The workaround is to avoid queuing a large packet that would span
1807  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1808  * in this case.  We do that only when FIFO is quiescent.
1809  */
1810 static void
1811 em_82547_move_tail_serialized(struct adapter *adapter)
1812 {
1813 	struct e1000_tx_desc *tx_desc;
1814 	uint16_t hw_tdt, sw_tdt, length = 0;
1815 	bool eop = 0;
1816 
1817 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1818 
1819 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1820 	sw_tdt = adapter->next_avail_tx_desc;
1821 
1822 	while (hw_tdt != sw_tdt) {
1823 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1824 		length += tx_desc->lower.flags.length;
1825 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1826 		if (++hw_tdt == adapter->num_tx_desc)
1827 			hw_tdt = 0;
1828 
1829 		if (eop) {
1830 			if (em_82547_fifo_workaround(adapter, length)) {
1831 				adapter->tx_fifo_wrk_cnt++;
1832 				callout_reset(&adapter->tx_fifo_timer, 1,
1833 					em_82547_move_tail, adapter);
1834 				break;
1835 			}
1836 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1837 			em_82547_update_fifo_head(adapter, length);
1838 			length = 0;
1839 		}
1840 	}
1841 }
1842 
1843 static void
1844 em_82547_move_tail(void *xsc)
1845 {
1846 	struct adapter *adapter = xsc;
1847 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1848 
1849 	lwkt_serialize_enter(ifp->if_serializer);
1850 	em_82547_move_tail_serialized(adapter);
1851 	lwkt_serialize_exit(ifp->if_serializer);
1852 }
1853 
1854 static int
1855 em_82547_fifo_workaround(struct adapter *adapter, int len)
1856 {
1857 	int fifo_space, fifo_pkt_len;
1858 
1859 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1860 
1861 	if (adapter->link_duplex == HALF_DUPLEX) {
1862 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1863 
1864 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1865 			if (em_82547_tx_fifo_reset(adapter))
1866 				return (0);
1867 			else
1868 				return (1);
1869 		}
1870 	}
1871 	return (0);
1872 }
1873 
1874 static void
1875 em_82547_update_fifo_head(struct adapter *adapter, int len)
1876 {
1877 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1878 
1879 	/* tx_fifo_head is always 16 byte aligned */
1880 	adapter->tx_fifo_head += fifo_pkt_len;
1881 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1882 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1883 }
1884 
1885 static int
1886 em_82547_tx_fifo_reset(struct adapter *adapter)
1887 {
1888 	uint32_t tctl;
1889 
1890 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1891 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1892 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1893 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1894 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1895 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1896 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1897 		/* Disable TX unit */
1898 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1899 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1900 		    tctl & ~E1000_TCTL_EN);
1901 
1902 		/* Reset FIFO pointers */
1903 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1904 		    adapter->tx_head_addr);
1905 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1906 		    adapter->tx_head_addr);
1907 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1908 		    adapter->tx_head_addr);
1909 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1910 		    adapter->tx_head_addr);
1911 
1912 		/* Re-enable TX unit */
1913 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1914 		E1000_WRITE_FLUSH(&adapter->hw);
1915 
1916 		adapter->tx_fifo_head = 0;
1917 		adapter->tx_fifo_reset_cnt++;
1918 
1919 		return (TRUE);
1920 	} else {
1921 		return (FALSE);
1922 	}
1923 }
1924 
1925 static void
1926 em_set_promisc(struct adapter *adapter)
1927 {
1928 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1929 	uint32_t reg_rctl;
1930 
1931 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1932 
1933 	if (ifp->if_flags & IFF_PROMISC) {
1934 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1935 		/* Turn this on if you want to see bad packets */
1936 		if (em_debug_sbp)
1937 			reg_rctl |= E1000_RCTL_SBP;
1938 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1939 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1940 		reg_rctl |= E1000_RCTL_MPE;
1941 		reg_rctl &= ~E1000_RCTL_UPE;
1942 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1943 	}
1944 }
1945 
1946 static void
1947 em_disable_promisc(struct adapter *adapter)
1948 {
1949 	uint32_t reg_rctl;
1950 
1951 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1952 
1953 	reg_rctl &= ~E1000_RCTL_UPE;
1954 	reg_rctl &= ~E1000_RCTL_MPE;
1955 	reg_rctl &= ~E1000_RCTL_SBP;
1956 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1957 }
1958 
1959 static void
1960 em_set_multi(struct adapter *adapter)
1961 {
1962 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1963 	struct ifmultiaddr *ifma;
1964 	uint32_t reg_rctl = 0;
1965 	uint8_t *mta;
1966 	int mcnt = 0;
1967 
1968 	mta = adapter->mta;
1969 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1970 
1971 	if (adapter->hw.mac.type == e1000_82542 &&
1972 	    adapter->hw.revision_id == E1000_REVISION_2) {
1973 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1974 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1975 			e1000_pci_clear_mwi(&adapter->hw);
1976 		reg_rctl |= E1000_RCTL_RST;
1977 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1978 		msec_delay(5);
1979 	}
1980 
1981 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1982 		if (ifma->ifma_addr->sa_family != AF_LINK)
1983 			continue;
1984 
1985 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1986 			break;
1987 
1988 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1989 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1990 		mcnt++;
1991 	}
1992 
1993 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1994 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1995 		reg_rctl |= E1000_RCTL_MPE;
1996 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1997 	} else {
1998 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1999 	}
2000 
2001 	if (adapter->hw.mac.type == e1000_82542 &&
2002 	    adapter->hw.revision_id == E1000_REVISION_2) {
2003 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2004 		reg_rctl &= ~E1000_RCTL_RST;
2005 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2006 		msec_delay(5);
2007 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2008 			e1000_pci_set_mwi(&adapter->hw);
2009 	}
2010 }
2011 
2012 /*
2013  * This routine checks for link status and updates statistics.
2014  */
2015 static void
2016 em_timer(void *xsc)
2017 {
2018 	struct adapter *adapter = xsc;
2019 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2020 
2021 	lwkt_serialize_enter(ifp->if_serializer);
2022 
2023 	em_update_link_status(adapter);
2024 	em_update_stats(adapter);
2025 
2026 	/* Reset LAA into RAR[0] on 82571 */
2027 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2028 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2029 
2030 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2031 		em_print_hw_stats(adapter);
2032 
2033 	em_smartspeed(adapter);
2034 
2035 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2036 
2037 	lwkt_serialize_exit(ifp->if_serializer);
2038 }
2039 
2040 static void
2041 em_update_link_status(struct adapter *adapter)
2042 {
2043 	struct e1000_hw *hw = &adapter->hw;
2044 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2045 	device_t dev = adapter->dev;
2046 	uint32_t link_check = 0;
2047 
2048 	/* Get the cached link value or read phy for real */
2049 	switch (hw->phy.media_type) {
2050 	case e1000_media_type_copper:
2051 		if (hw->mac.get_link_status) {
2052 			/* Do the work to read phy */
2053 			e1000_check_for_link(hw);
2054 			link_check = !hw->mac.get_link_status;
2055 			if (link_check) /* ESB2 fix */
2056 				e1000_cfg_on_link_up(hw);
2057 		} else {
2058 			link_check = TRUE;
2059 		}
2060 		break;
2061 
2062 	case e1000_media_type_fiber:
2063 		e1000_check_for_link(hw);
2064 		link_check =
2065 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2066 		break;
2067 
2068 	case e1000_media_type_internal_serdes:
2069 		e1000_check_for_link(hw);
2070 		link_check = adapter->hw.mac.serdes_has_link;
2071 		break;
2072 
2073 	case e1000_media_type_unknown:
2074 	default:
2075 		break;
2076 	}
2077 
2078 	/* Now check for a transition */
2079 	if (link_check && adapter->link_active == 0) {
2080 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2081 		    &adapter->link_duplex);
2082 
2083 		/*
2084 		 * Check if we should enable/disable SPEED_MODE bit on
2085 		 * 82571/82572
2086 		 */
2087 		if (adapter->link_speed != SPEED_1000 &&
2088 		    (hw->mac.type == e1000_82571 ||
2089 		     hw->mac.type == e1000_82572)) {
2090 			int tarc0;
2091 
2092 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2093 			tarc0 &= ~SPEED_MODE_BIT;
2094 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2095 		}
2096 		if (bootverbose) {
2097 			device_printf(dev, "Link is up %d Mbps %s\n",
2098 			    adapter->link_speed,
2099 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2100 			    "Full Duplex" : "Half Duplex"));
2101 		}
2102 		adapter->link_active = 1;
2103 		adapter->smartspeed = 0;
2104 		ifp->if_baudrate = adapter->link_speed * 1000000;
2105 		ifp->if_link_state = LINK_STATE_UP;
2106 		if_link_state_change(ifp);
2107 	} else if (!link_check && adapter->link_active == 1) {
2108 		ifp->if_baudrate = adapter->link_speed = 0;
2109 		adapter->link_duplex = 0;
2110 		if (bootverbose)
2111 			device_printf(dev, "Link is Down\n");
2112 		adapter->link_active = 0;
2113 #if 0
2114 		/* Link down, disable watchdog */
2115 		if->if_timer = 0;
2116 #endif
2117 		ifp->if_link_state = LINK_STATE_DOWN;
2118 		if_link_state_change(ifp);
2119 	}
2120 }
2121 
2122 static void
2123 em_stop(struct adapter *adapter)
2124 {
2125 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2126 	int i;
2127 
2128 	ASSERT_SERIALIZED(ifp->if_serializer);
2129 
2130 	em_disable_intr(adapter);
2131 
2132 	callout_stop(&adapter->timer);
2133 	callout_stop(&adapter->tx_fifo_timer);
2134 
2135 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2136 	ifp->if_timer = 0;
2137 
2138 	e1000_reset_hw(&adapter->hw);
2139 	if (adapter->hw.mac.type >= e1000_82544)
2140 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2141 
2142 	for (i = 0; i < adapter->num_tx_desc; i++) {
2143 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2144 
2145 		if (tx_buffer->m_head != NULL) {
2146 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2147 			m_freem(tx_buffer->m_head);
2148 			tx_buffer->m_head = NULL;
2149 		}
2150 	}
2151 
2152 	for (i = 0; i < adapter->num_rx_desc; i++) {
2153 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2154 
2155 		if (rx_buffer->m_head != NULL) {
2156 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2157 			m_freem(rx_buffer->m_head);
2158 			rx_buffer->m_head = NULL;
2159 		}
2160 	}
2161 
2162 	if (adapter->fmp != NULL)
2163 		m_freem(adapter->fmp);
2164 	adapter->fmp = NULL;
2165 	adapter->lmp = NULL;
2166 
2167 	adapter->csum_flags = 0;
2168 	adapter->csum_lhlen = 0;
2169 	adapter->csum_iphlen = 0;
2170 	adapter->csum_thlen = 0;
2171 	adapter->csum_mss = 0;
2172 	adapter->csum_pktlen = 0;
2173 
2174 	adapter->tx_dd_head = 0;
2175 	adapter->tx_dd_tail = 0;
2176 	adapter->tx_nsegs = 0;
2177 }
2178 
2179 static int
2180 em_get_hw_info(struct adapter *adapter)
2181 {
2182 	device_t dev = adapter->dev;
2183 
2184 	/* Save off the information about this board */
2185 	adapter->hw.vendor_id = pci_get_vendor(dev);
2186 	adapter->hw.device_id = pci_get_device(dev);
2187 	adapter->hw.revision_id = pci_get_revid(dev);
2188 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2189 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2190 
2191 	/* Do Shared Code Init and Setup */
2192 	if (e1000_set_mac_type(&adapter->hw))
2193 		return ENXIO;
2194 	return 0;
2195 }
2196 
2197 static int
2198 em_alloc_pci_res(struct adapter *adapter)
2199 {
2200 	device_t dev = adapter->dev;
2201 	u_int intr_flags;
2202 	int val, rid, msi_enable;
2203 
2204 	/* Enable bus mastering */
2205 	pci_enable_busmaster(dev);
2206 
2207 	adapter->memory_rid = EM_BAR_MEM;
2208 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2209 				&adapter->memory_rid, RF_ACTIVE);
2210 	if (adapter->memory == NULL) {
2211 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2212 		return (ENXIO);
2213 	}
2214 	adapter->osdep.mem_bus_space_tag =
2215 	    rman_get_bustag(adapter->memory);
2216 	adapter->osdep.mem_bus_space_handle =
2217 	    rman_get_bushandle(adapter->memory);
2218 
2219 	/* XXX This is quite goofy, it is not actually used */
2220 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2221 
2222 	/* Only older adapters use IO mapping */
2223 	if (adapter->hw.mac.type > e1000_82543 &&
2224 	    adapter->hw.mac.type < e1000_82571) {
2225 		/* Figure our where our IO BAR is ? */
2226 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2227 			val = pci_read_config(dev, rid, 4);
2228 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2229 				adapter->io_rid = rid;
2230 				break;
2231 			}
2232 			rid += 4;
2233 			/* check for 64bit BAR */
2234 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2235 				rid += 4;
2236 		}
2237 		if (rid >= PCIR_CARDBUSCIS) {
2238 			device_printf(dev, "Unable to locate IO BAR\n");
2239 			return (ENXIO);
2240 		}
2241 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2242 					&adapter->io_rid, RF_ACTIVE);
2243 		if (adapter->ioport == NULL) {
2244 			device_printf(dev, "Unable to allocate bus resource: "
2245 			    "ioport\n");
2246 			return (ENXIO);
2247 		}
2248 		adapter->hw.io_base = 0;
2249 		adapter->osdep.io_bus_space_tag =
2250 		    rman_get_bustag(adapter->ioport);
2251 		adapter->osdep.io_bus_space_handle =
2252 		    rman_get_bushandle(adapter->ioport);
2253 	}
2254 
2255 	/*
2256 	 * Don't enable MSI-X on 82574, see:
2257 	 * 82574 specification update errata #15
2258 	 *
2259 	 * Don't enable MSI on PCI/PCI-X chips, see:
2260 	 * 82540 specification update errata #6
2261 	 * 82545 specification update errata #4
2262 	 *
2263 	 * Don't enable MSI on 82571/82572, see:
2264 	 * 82571/82572 specification update errata #63
2265 	 */
2266 	msi_enable = em_msi_enable;
2267 	if (msi_enable &&
2268 	    (!pci_is_pcie(dev) ||
2269 	     adapter->hw.mac.type == e1000_82571 ||
2270 	     adapter->hw.mac.type == e1000_82572))
2271 		msi_enable = 0;
2272 
2273 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2274 	    &adapter->intr_rid, &intr_flags);
2275 
2276 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2277 		int unshared;
2278 
2279 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2280 		if (!unshared) {
2281 			adapter->flags |= EM_FLAG_SHARED_INTR;
2282 			if (bootverbose)
2283 				device_printf(dev, "IRQ shared\n");
2284 		} else {
2285 			intr_flags &= ~RF_SHAREABLE;
2286 			if (bootverbose)
2287 				device_printf(dev, "IRQ unshared\n");
2288 		}
2289 	}
2290 
2291 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2292 	    &adapter->intr_rid, intr_flags);
2293 	if (adapter->intr_res == NULL) {
2294 		device_printf(dev, "Unable to allocate bus resource: "
2295 		    "interrupt\n");
2296 		return (ENXIO);
2297 	}
2298 
2299 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2300 	adapter->hw.back = &adapter->osdep;
2301 	return (0);
2302 }
2303 
2304 static void
2305 em_free_pci_res(struct adapter *adapter)
2306 {
2307 	device_t dev = adapter->dev;
2308 
2309 	if (adapter->intr_res != NULL) {
2310 		bus_release_resource(dev, SYS_RES_IRQ,
2311 		    adapter->intr_rid, adapter->intr_res);
2312 	}
2313 
2314 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2315 		pci_release_msi(dev);
2316 
2317 	if (adapter->memory != NULL) {
2318 		bus_release_resource(dev, SYS_RES_MEMORY,
2319 		    adapter->memory_rid, adapter->memory);
2320 	}
2321 
2322 	if (adapter->flash != NULL) {
2323 		bus_release_resource(dev, SYS_RES_MEMORY,
2324 		    adapter->flash_rid, adapter->flash);
2325 	}
2326 
2327 	if (adapter->ioport != NULL) {
2328 		bus_release_resource(dev, SYS_RES_IOPORT,
2329 		    adapter->io_rid, adapter->ioport);
2330 	}
2331 }
2332 
2333 static int
2334 em_reset(struct adapter *adapter)
2335 {
2336 	device_t dev = adapter->dev;
2337 	uint16_t rx_buffer_size;
2338 
2339 	/* When hardware is reset, fifo_head is also reset */
2340 	adapter->tx_fifo_head = 0;
2341 
2342 	/* Set up smart power down as default off on newer adapters. */
2343 	if (!em_smart_pwr_down &&
2344 	    (adapter->hw.mac.type == e1000_82571 ||
2345 	     adapter->hw.mac.type == e1000_82572)) {
2346 		uint16_t phy_tmp = 0;
2347 
2348 		/* Speed up time to link by disabling smart power down. */
2349 		e1000_read_phy_reg(&adapter->hw,
2350 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2351 		phy_tmp &= ~IGP02E1000_PM_SPD;
2352 		e1000_write_phy_reg(&adapter->hw,
2353 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2354 	}
2355 
2356 	/*
2357 	 * These parameters control the automatic generation (Tx) and
2358 	 * response (Rx) to Ethernet PAUSE frames.
2359 	 * - High water mark should allow for at least two frames to be
2360 	 *   received after sending an XOFF.
2361 	 * - Low water mark works best when it is very near the high water mark.
2362 	 *   This allows the receiver to restart by sending XON when it has
2363 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2364 	 *   restart after one full frame is pulled from the buffer. There
2365 	 *   could be several smaller frames in the buffer and if so they will
2366 	 *   not trigger the XON until their total number reduces the buffer
2367 	 *   by 1500.
2368 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2369 	 */
2370 	rx_buffer_size =
2371 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2372 
2373 	adapter->hw.fc.high_water = rx_buffer_size -
2374 				    roundup2(adapter->max_frame_size, 1024);
2375 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2376 
2377 	if (adapter->hw.mac.type == e1000_80003es2lan)
2378 		adapter->hw.fc.pause_time = 0xFFFF;
2379 	else
2380 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2381 
2382 	adapter->hw.fc.send_xon = TRUE;
2383 
2384 	adapter->hw.fc.requested_mode = e1000_fc_full;
2385 
2386 	/* Workaround: no TX flow ctrl for PCH */
2387 	if (adapter->hw.mac.type == e1000_pchlan)
2388 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2389 
2390 	/* Override - settings for PCH2LAN, ya its magic :) */
2391 	if (adapter->hw.mac.type == e1000_pch2lan) {
2392 		adapter->hw.fc.high_water = 0x5C20;
2393 		adapter->hw.fc.low_water = 0x5048;
2394 		adapter->hw.fc.pause_time = 0x0650;
2395 		adapter->hw.fc.refresh_time = 0x0400;
2396 
2397 		/* Jumbos need adjusted PBA */
2398 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2399 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2400 		else
2401 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2402 	}
2403 
2404 	/* Issue a global reset */
2405 	e1000_reset_hw(&adapter->hw);
2406 	if (adapter->hw.mac.type >= e1000_82544)
2407 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2408 	em_disable_aspm(adapter);
2409 
2410 	if (e1000_init_hw(&adapter->hw) < 0) {
2411 		device_printf(dev, "Hardware Initialization Failed\n");
2412 		return (EIO);
2413 	}
2414 
2415 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2416 	e1000_get_phy_info(&adapter->hw);
2417 	e1000_check_for_link(&adapter->hw);
2418 
2419 	return (0);
2420 }
2421 
2422 static void
2423 em_setup_ifp(struct adapter *adapter)
2424 {
2425 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2426 
2427 	if_initname(ifp, device_get_name(adapter->dev),
2428 		    device_get_unit(adapter->dev));
2429 	ifp->if_softc = adapter;
2430 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2431 	ifp->if_init =  em_init;
2432 	ifp->if_ioctl = em_ioctl;
2433 	ifp->if_start = em_start;
2434 #ifdef DEVICE_POLLING
2435 	ifp->if_poll = em_poll;
2436 #endif
2437 	ifp->if_watchdog = em_watchdog;
2438 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2439 	ifq_set_ready(&ifp->if_snd);
2440 
2441 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2442 
2443 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2444 	if (adapter->hw.mac.type >= e1000_82543)
2445 		ifp->if_capabilities |= IFCAP_HWCSUM;
2446 	if (adapter->flags & EM_FLAG_TSO)
2447 		ifp->if_capabilities |= IFCAP_TSO;
2448 	ifp->if_capenable = ifp->if_capabilities;
2449 
2450 	if (ifp->if_capenable & IFCAP_TXCSUM)
2451 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2452 	if (ifp->if_capenable & IFCAP_TSO)
2453 		ifp->if_hwassist |= CSUM_TSO;
2454 
2455 	/*
2456 	 * Tell the upper layer(s) we support long frames.
2457 	 */
2458 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2459 
2460 	/*
2461 	 * Specify the media types supported by this adapter and register
2462 	 * callbacks to update media and link information
2463 	 */
2464 	ifmedia_init(&adapter->media, IFM_IMASK,
2465 		     em_media_change, em_media_status);
2466 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2467 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2468 		u_char fiber_type = IFM_1000_SX; /* default type */
2469 
2470 		if (adapter->hw.mac.type == e1000_82545)
2471 			fiber_type = IFM_1000_LX;
2472 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2473 			    0, NULL);
2474 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2475 	} else {
2476 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2477 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2478 			    0, NULL);
2479 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2480 			    0, NULL);
2481 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2482 			    0, NULL);
2483 		if (adapter->hw.phy.type != e1000_phy_ife) {
2484 			ifmedia_add(&adapter->media,
2485 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2486 			ifmedia_add(&adapter->media,
2487 				IFM_ETHER | IFM_1000_T, 0, NULL);
2488 		}
2489 	}
2490 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2491 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2492 }
2493 
2494 
2495 /*
2496  * Workaround for SmartSpeed on 82541 and 82547 controllers
2497  */
2498 static void
2499 em_smartspeed(struct adapter *adapter)
2500 {
2501 	uint16_t phy_tmp;
2502 
2503 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2504 	    adapter->hw.mac.autoneg == 0 ||
2505 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2506 		return;
2507 
2508 	if (adapter->smartspeed == 0) {
2509 		/*
2510 		 * If Master/Slave config fault is asserted twice,
2511 		 * we assume back-to-back
2512 		 */
2513 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2514 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2515 			return;
2516 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2517 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2518 			e1000_read_phy_reg(&adapter->hw,
2519 			    PHY_1000T_CTRL, &phy_tmp);
2520 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2521 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2522 				e1000_write_phy_reg(&adapter->hw,
2523 				    PHY_1000T_CTRL, phy_tmp);
2524 				adapter->smartspeed++;
2525 				if (adapter->hw.mac.autoneg &&
2526 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2527 				    !e1000_read_phy_reg(&adapter->hw,
2528 				     PHY_CONTROL, &phy_tmp)) {
2529 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2530 						   MII_CR_RESTART_AUTO_NEG;
2531 					e1000_write_phy_reg(&adapter->hw,
2532 					    PHY_CONTROL, phy_tmp);
2533 				}
2534 			}
2535 		}
2536 		return;
2537 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2538 		/* If still no link, perhaps using 2/3 pair cable */
2539 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2540 		phy_tmp |= CR_1000T_MS_ENABLE;
2541 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2542 		if (adapter->hw.mac.autoneg &&
2543 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2544 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2545 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2546 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2547 		}
2548 	}
2549 
2550 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2551 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2552 		adapter->smartspeed = 0;
2553 }
2554 
2555 static int
2556 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2557 	      struct em_dma_alloc *dma)
2558 {
2559 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2560 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2561 				&dma->dma_tag, &dma->dma_map,
2562 				&dma->dma_paddr);
2563 	if (dma->dma_vaddr == NULL)
2564 		return ENOMEM;
2565 	else
2566 		return 0;
2567 }
2568 
2569 static void
2570 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2571 {
2572 	if (dma->dma_tag == NULL)
2573 		return;
2574 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2575 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2576 	bus_dma_tag_destroy(dma->dma_tag);
2577 }
2578 
2579 static int
2580 em_create_tx_ring(struct adapter *adapter)
2581 {
2582 	device_t dev = adapter->dev;
2583 	struct em_buffer *tx_buffer;
2584 	int error, i;
2585 
2586 	adapter->tx_buffer_area =
2587 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2588 			M_DEVBUF, M_WAITOK | M_ZERO);
2589 
2590 	/*
2591 	 * Create DMA tags for tx buffers
2592 	 */
2593 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2594 			1, 0,			/* alignment, bounds */
2595 			BUS_SPACE_MAXADDR,	/* lowaddr */
2596 			BUS_SPACE_MAXADDR,	/* highaddr */
2597 			NULL, NULL,		/* filter, filterarg */
2598 			EM_TSO_SIZE,		/* maxsize */
2599 			EM_MAX_SCATTER,		/* nsegments */
2600 			PAGE_SIZE,		/* maxsegsize */
2601 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2602 			BUS_DMA_ONEBPAGE,	/* flags */
2603 			&adapter->txtag);
2604 	if (error) {
2605 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2606 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2607 		adapter->tx_buffer_area = NULL;
2608 		return error;
2609 	}
2610 
2611 	/*
2612 	 * Create DMA maps for tx buffers
2613 	 */
2614 	for (i = 0; i < adapter->num_tx_desc; i++) {
2615 		tx_buffer = &adapter->tx_buffer_area[i];
2616 
2617 		error = bus_dmamap_create(adapter->txtag,
2618 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2619 					  &tx_buffer->map);
2620 		if (error) {
2621 			device_printf(dev, "Unable to create TX DMA map\n");
2622 			em_destroy_tx_ring(adapter, i);
2623 			return error;
2624 		}
2625 	}
2626 	return (0);
2627 }
2628 
2629 static void
2630 em_init_tx_ring(struct adapter *adapter)
2631 {
2632 	/* Clear the old ring contents */
2633 	bzero(adapter->tx_desc_base,
2634 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2635 
2636 	/* Reset state */
2637 	adapter->next_avail_tx_desc = 0;
2638 	adapter->next_tx_to_clean = 0;
2639 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2640 }
2641 
2642 static void
2643 em_init_tx_unit(struct adapter *adapter)
2644 {
2645 	uint32_t tctl, tarc, tipg = 0;
2646 	uint64_t bus_addr;
2647 
2648 	/* Setup the Base and Length of the Tx Descriptor Ring */
2649 	bus_addr = adapter->txdma.dma_paddr;
2650 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2651 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2652 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2653 	    (uint32_t)(bus_addr >> 32));
2654 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2655 	    (uint32_t)bus_addr);
2656 	/* Setup the HW Tx Head and Tail descriptor pointers */
2657 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2658 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2659 
2660 	/* Set the default values for the Tx Inter Packet Gap timer */
2661 	switch (adapter->hw.mac.type) {
2662 	case e1000_82542:
2663 		tipg = DEFAULT_82542_TIPG_IPGT;
2664 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2665 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2666 		break;
2667 
2668 	case e1000_80003es2lan:
2669 		tipg = DEFAULT_82543_TIPG_IPGR1;
2670 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2671 		    E1000_TIPG_IPGR2_SHIFT;
2672 		break;
2673 
2674 	default:
2675 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2676 		    adapter->hw.phy.media_type ==
2677 		    e1000_media_type_internal_serdes)
2678 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2679 		else
2680 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2681 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2682 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2683 		break;
2684 	}
2685 
2686 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2687 
2688 	/* NOTE: 0 is not allowed for TIDV */
2689 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2690 	if(adapter->hw.mac.type >= e1000_82540)
2691 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2692 
2693 	if (adapter->hw.mac.type == e1000_82571 ||
2694 	    adapter->hw.mac.type == e1000_82572) {
2695 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2696 		tarc |= SPEED_MODE_BIT;
2697 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2698 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2699 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2700 		tarc |= 1;
2701 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2702 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2703 		tarc |= 1;
2704 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2705 	}
2706 
2707 	/* Program the Transmit Control Register */
2708 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2709 	tctl &= ~E1000_TCTL_CT;
2710 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2711 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2712 
2713 	if (adapter->hw.mac.type >= e1000_82571)
2714 		tctl |= E1000_TCTL_MULR;
2715 
2716 	/* This write will effectively turn on the transmit unit. */
2717 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2718 }
2719 
2720 static void
2721 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2722 {
2723 	struct em_buffer *tx_buffer;
2724 	int i;
2725 
2726 	if (adapter->tx_buffer_area == NULL)
2727 		return;
2728 
2729 	for (i = 0; i < ndesc; i++) {
2730 		tx_buffer = &adapter->tx_buffer_area[i];
2731 
2732 		KKASSERT(tx_buffer->m_head == NULL);
2733 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2734 	}
2735 	bus_dma_tag_destroy(adapter->txtag);
2736 
2737 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2738 	adapter->tx_buffer_area = NULL;
2739 }
2740 
2741 /*
2742  * The offload context needs to be set when we transfer the first
2743  * packet of a particular protocol (TCP/UDP).  This routine has been
2744  * enhanced to deal with inserted VLAN headers.
2745  *
2746  * If the new packet's ether header length, ip header length and
2747  * csum offloading type are same as the previous packet, we should
2748  * avoid allocating a new csum context descriptor; mainly to take
2749  * advantage of the pipeline effect of the TX data read request.
2750  *
2751  * This function returns number of TX descrptors allocated for
2752  * csum context.
2753  */
2754 static int
2755 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2756 	  uint32_t *txd_upper, uint32_t *txd_lower)
2757 {
2758 	struct e1000_context_desc *TXD;
2759 	int curr_txd, ehdrlen, csum_flags;
2760 	uint32_t cmd, hdr_len, ip_hlen;
2761 
2762 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2763 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2764 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2765 
2766 	if (adapter->csum_lhlen == ehdrlen &&
2767 	    adapter->csum_iphlen == ip_hlen &&
2768 	    adapter->csum_flags == csum_flags) {
2769 		/*
2770 		 * Same csum offload context as the previous packets;
2771 		 * just return.
2772 		 */
2773 		*txd_upper = adapter->csum_txd_upper;
2774 		*txd_lower = adapter->csum_txd_lower;
2775 		return 0;
2776 	}
2777 
2778 	/*
2779 	 * Setup a new csum offload context.
2780 	 */
2781 
2782 	curr_txd = adapter->next_avail_tx_desc;
2783 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2784 
2785 	cmd = 0;
2786 
2787 	/* Setup of IP header checksum. */
2788 	if (csum_flags & CSUM_IP) {
2789 		/*
2790 		 * Start offset for header checksum calculation.
2791 		 * End offset for header checksum calculation.
2792 		 * Offset of place to put the checksum.
2793 		 */
2794 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2795 		TXD->lower_setup.ip_fields.ipcse =
2796 		    htole16(ehdrlen + ip_hlen - 1);
2797 		TXD->lower_setup.ip_fields.ipcso =
2798 		    ehdrlen + offsetof(struct ip, ip_sum);
2799 		cmd |= E1000_TXD_CMD_IP;
2800 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2801 	}
2802 	hdr_len = ehdrlen + ip_hlen;
2803 
2804 	if (csum_flags & CSUM_TCP) {
2805 		/*
2806 		 * Start offset for payload checksum calculation.
2807 		 * End offset for payload checksum calculation.
2808 		 * Offset of place to put the checksum.
2809 		 */
2810 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2811 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2812 		TXD->upper_setup.tcp_fields.tucso =
2813 		    hdr_len + offsetof(struct tcphdr, th_sum);
2814 		cmd |= E1000_TXD_CMD_TCP;
2815 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2816 	} else if (csum_flags & CSUM_UDP) {
2817 		/*
2818 		 * Start offset for header checksum calculation.
2819 		 * End offset for header checksum calculation.
2820 		 * Offset of place to put the checksum.
2821 		 */
2822 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2823 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2824 		TXD->upper_setup.tcp_fields.tucso =
2825 		    hdr_len + offsetof(struct udphdr, uh_sum);
2826 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2827 	}
2828 
2829 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2830 		     E1000_TXD_DTYP_D;		/* Data descr */
2831 
2832 	/* Save the information for this csum offloading context */
2833 	adapter->csum_lhlen = ehdrlen;
2834 	adapter->csum_iphlen = ip_hlen;
2835 	adapter->csum_flags = csum_flags;
2836 	adapter->csum_txd_upper = *txd_upper;
2837 	adapter->csum_txd_lower = *txd_lower;
2838 
2839 	TXD->tcp_seg_setup.data = htole32(0);
2840 	TXD->cmd_and_length =
2841 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2842 
2843 	if (++curr_txd == adapter->num_tx_desc)
2844 		curr_txd = 0;
2845 
2846 	KKASSERT(adapter->num_tx_desc_avail > 0);
2847 	adapter->num_tx_desc_avail--;
2848 
2849 	adapter->next_avail_tx_desc = curr_txd;
2850 	return 1;
2851 }
2852 
2853 static void
2854 em_txeof(struct adapter *adapter)
2855 {
2856 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2857 	struct em_buffer *tx_buffer;
2858 	int first, num_avail;
2859 
2860 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2861 		return;
2862 
2863 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2864 		return;
2865 
2866 	num_avail = adapter->num_tx_desc_avail;
2867 	first = adapter->next_tx_to_clean;
2868 
2869 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2870 		struct e1000_tx_desc *tx_desc;
2871 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2872 
2873 		tx_desc = &adapter->tx_desc_base[dd_idx];
2874 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2875 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2876 
2877 			if (++dd_idx == adapter->num_tx_desc)
2878 				dd_idx = 0;
2879 
2880 			while (first != dd_idx) {
2881 				logif(pkt_txclean);
2882 
2883 				num_avail++;
2884 
2885 				tx_buffer = &adapter->tx_buffer_area[first];
2886 				if (tx_buffer->m_head) {
2887 					ifp->if_opackets++;
2888 					bus_dmamap_unload(adapter->txtag,
2889 							  tx_buffer->map);
2890 					m_freem(tx_buffer->m_head);
2891 					tx_buffer->m_head = NULL;
2892 				}
2893 
2894 				if (++first == adapter->num_tx_desc)
2895 					first = 0;
2896 			}
2897 		} else {
2898 			break;
2899 		}
2900 	}
2901 	adapter->next_tx_to_clean = first;
2902 	adapter->num_tx_desc_avail = num_avail;
2903 
2904 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2905 		adapter->tx_dd_head = 0;
2906 		adapter->tx_dd_tail = 0;
2907 	}
2908 
2909 	if (!EM_IS_OACTIVE(adapter)) {
2910 		ifp->if_flags &= ~IFF_OACTIVE;
2911 
2912 		/* All clean, turn off the timer */
2913 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2914 			ifp->if_timer = 0;
2915 	}
2916 }
2917 
2918 static void
2919 em_tx_collect(struct adapter *adapter)
2920 {
2921 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2922 	struct em_buffer *tx_buffer;
2923 	int tdh, first, num_avail, dd_idx = -1;
2924 
2925 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2926 		return;
2927 
2928 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2929 	if (tdh == adapter->next_tx_to_clean)
2930 		return;
2931 
2932 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2933 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2934 
2935 	num_avail = adapter->num_tx_desc_avail;
2936 	first = adapter->next_tx_to_clean;
2937 
2938 	while (first != tdh) {
2939 		logif(pkt_txclean);
2940 
2941 		num_avail++;
2942 
2943 		tx_buffer = &adapter->tx_buffer_area[first];
2944 		if (tx_buffer->m_head) {
2945 			ifp->if_opackets++;
2946 			bus_dmamap_unload(adapter->txtag,
2947 					  tx_buffer->map);
2948 			m_freem(tx_buffer->m_head);
2949 			tx_buffer->m_head = NULL;
2950 		}
2951 
2952 		if (first == dd_idx) {
2953 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2954 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2955 				adapter->tx_dd_head = 0;
2956 				adapter->tx_dd_tail = 0;
2957 				dd_idx = -1;
2958 			} else {
2959 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2960 			}
2961 		}
2962 
2963 		if (++first == adapter->num_tx_desc)
2964 			first = 0;
2965 	}
2966 	adapter->next_tx_to_clean = first;
2967 	adapter->num_tx_desc_avail = num_avail;
2968 
2969 	if (!EM_IS_OACTIVE(adapter)) {
2970 		ifp->if_flags &= ~IFF_OACTIVE;
2971 
2972 		/* All clean, turn off the timer */
2973 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2974 			ifp->if_timer = 0;
2975 	}
2976 }
2977 
2978 /*
2979  * When Link is lost sometimes there is work still in the TX ring
2980  * which will result in a watchdog, rather than allow that do an
2981  * attempted cleanup and then reinit here.  Note that this has been
2982  * seens mostly with fiber adapters.
2983  */
2984 static void
2985 em_tx_purge(struct adapter *adapter)
2986 {
2987 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2988 
2989 	if (!adapter->link_active && ifp->if_timer) {
2990 		em_tx_collect(adapter);
2991 		if (ifp->if_timer) {
2992 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2993 			ifp->if_timer = 0;
2994 			em_init(adapter);
2995 		}
2996 	}
2997 }
2998 
2999 static int
3000 em_newbuf(struct adapter *adapter, int i, int init)
3001 {
3002 	struct mbuf *m;
3003 	bus_dma_segment_t seg;
3004 	bus_dmamap_t map;
3005 	struct em_buffer *rx_buffer;
3006 	int error, nseg;
3007 
3008 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3009 	if (m == NULL) {
3010 		adapter->mbuf_cluster_failed++;
3011 		if (init) {
3012 			if_printf(&adapter->arpcom.ac_if,
3013 				  "Unable to allocate RX mbuf\n");
3014 		}
3015 		return (ENOBUFS);
3016 	}
3017 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3018 
3019 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3020 		m_adj(m, ETHER_ALIGN);
3021 
3022 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3023 			adapter->rx_sparemap, m,
3024 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3025 	if (error) {
3026 		m_freem(m);
3027 		if (init) {
3028 			if_printf(&adapter->arpcom.ac_if,
3029 				  "Unable to load RX mbuf\n");
3030 		}
3031 		return (error);
3032 	}
3033 
3034 	rx_buffer = &adapter->rx_buffer_area[i];
3035 	if (rx_buffer->m_head != NULL)
3036 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3037 
3038 	map = rx_buffer->map;
3039 	rx_buffer->map = adapter->rx_sparemap;
3040 	adapter->rx_sparemap = map;
3041 
3042 	rx_buffer->m_head = m;
3043 
3044 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3045 	return (0);
3046 }
3047 
3048 static int
3049 em_create_rx_ring(struct adapter *adapter)
3050 {
3051 	device_t dev = adapter->dev;
3052 	struct em_buffer *rx_buffer;
3053 	int i, error;
3054 
3055 	adapter->rx_buffer_area =
3056 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3057 			M_DEVBUF, M_WAITOK | M_ZERO);
3058 
3059 	/*
3060 	 * Create DMA tag for rx buffers
3061 	 */
3062 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3063 			1, 0,			/* alignment, bounds */
3064 			BUS_SPACE_MAXADDR,	/* lowaddr */
3065 			BUS_SPACE_MAXADDR,	/* highaddr */
3066 			NULL, NULL,		/* filter, filterarg */
3067 			MCLBYTES,		/* maxsize */
3068 			1,			/* nsegments */
3069 			MCLBYTES,		/* maxsegsize */
3070 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3071 			&adapter->rxtag);
3072 	if (error) {
3073 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3074 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3075 		adapter->rx_buffer_area = NULL;
3076 		return error;
3077 	}
3078 
3079 	/*
3080 	 * Create spare DMA map for rx buffers
3081 	 */
3082 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3083 				  &adapter->rx_sparemap);
3084 	if (error) {
3085 		device_printf(dev, "Unable to create spare RX DMA map\n");
3086 		bus_dma_tag_destroy(adapter->rxtag);
3087 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3088 		adapter->rx_buffer_area = NULL;
3089 		return error;
3090 	}
3091 
3092 	/*
3093 	 * Create DMA maps for rx buffers
3094 	 */
3095 	for (i = 0; i < adapter->num_rx_desc; i++) {
3096 		rx_buffer = &adapter->rx_buffer_area[i];
3097 
3098 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3099 					  &rx_buffer->map);
3100 		if (error) {
3101 			device_printf(dev, "Unable to create RX DMA map\n");
3102 			em_destroy_rx_ring(adapter, i);
3103 			return error;
3104 		}
3105 	}
3106 	return (0);
3107 }
3108 
3109 static int
3110 em_init_rx_ring(struct adapter *adapter)
3111 {
3112 	int i, error;
3113 
3114 	/* Reset descriptor ring */
3115 	bzero(adapter->rx_desc_base,
3116 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3117 
3118 	/* Allocate new ones. */
3119 	for (i = 0; i < adapter->num_rx_desc; i++) {
3120 		error = em_newbuf(adapter, i, 1);
3121 		if (error)
3122 			return (error);
3123 	}
3124 
3125 	/* Setup our descriptor pointers */
3126 	adapter->next_rx_desc_to_check = 0;
3127 
3128 	return (0);
3129 }
3130 
3131 static void
3132 em_init_rx_unit(struct adapter *adapter)
3133 {
3134 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3135 	uint64_t bus_addr;
3136 	uint32_t rctl;
3137 
3138 	/*
3139 	 * Make sure receives are disabled while setting
3140 	 * up the descriptor ring
3141 	 */
3142 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3143 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3144 
3145 	if (adapter->hw.mac.type >= e1000_82540) {
3146 		uint32_t itr;
3147 
3148 		/*
3149 		 * Set the interrupt throttling rate. Value is calculated
3150 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3151 		 */
3152 		if (adapter->int_throttle_ceil)
3153 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3154 		else
3155 			itr = 0;
3156 		em_set_itr(adapter, itr);
3157 	}
3158 
3159 	/* Disable accelerated ackknowledge */
3160 	if (adapter->hw.mac.type == e1000_82574) {
3161 		E1000_WRITE_REG(&adapter->hw,
3162 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3163 	}
3164 
3165 	/* Receive Checksum Offload for TCP and UDP */
3166 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3167 		uint32_t rxcsum;
3168 
3169 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3170 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3171 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3172 	}
3173 
3174 	/*
3175 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3176 	 * long latencies are observed, like Lenovo X60. This
3177 	 * change eliminates the problem, but since having positive
3178 	 * values in RDTR is a known source of problems on other
3179 	 * platforms another solution is being sought.
3180 	 */
3181 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3182 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3183 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3184 	}
3185 
3186 	/*
3187 	 * Setup the Base and Length of the Rx Descriptor Ring
3188 	 */
3189 	bus_addr = adapter->rxdma.dma_paddr;
3190 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3191 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3192 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3193 	    (uint32_t)(bus_addr >> 32));
3194 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3195 	    (uint32_t)bus_addr);
3196 
3197 	/*
3198 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3199 	 */
3200 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3201 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3202 
3203 	/* Set early receive threshold on appropriate hw */
3204 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3205 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3206 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3207 	    (ifp->if_mtu > ETHERMTU)) {
3208 		uint32_t rxdctl;
3209 
3210 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3211 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3212 		E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3213 	}
3214 
3215 	if (adapter->hw.mac.type == e1000_pch2lan) {
3216 		if (ifp->if_mtu > ETHERMTU)
3217 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3218 		else
3219 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3220 	}
3221 
3222 	/* Setup the Receive Control Register */
3223 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3224 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3225 		E1000_RCTL_RDMTS_HALF |
3226 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3227 
3228 	/* Make sure VLAN Filters are off */
3229 	rctl &= ~E1000_RCTL_VFE;
3230 
3231 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3232 		rctl |= E1000_RCTL_SBP;
3233 	else
3234 		rctl &= ~E1000_RCTL_SBP;
3235 
3236 	switch (adapter->rx_buffer_len) {
3237 	default:
3238 	case 2048:
3239 		rctl |= E1000_RCTL_SZ_2048;
3240 		break;
3241 
3242 	case 4096:
3243 		rctl |= E1000_RCTL_SZ_4096 |
3244 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3245 		break;
3246 
3247 	case 8192:
3248 		rctl |= E1000_RCTL_SZ_8192 |
3249 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3250 		break;
3251 
3252 	case 16384:
3253 		rctl |= E1000_RCTL_SZ_16384 |
3254 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3255 		break;
3256 	}
3257 
3258 	if (ifp->if_mtu > ETHERMTU)
3259 		rctl |= E1000_RCTL_LPE;
3260 	else
3261 		rctl &= ~E1000_RCTL_LPE;
3262 
3263 	/* Enable Receives */
3264 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3265 }
3266 
3267 static void
3268 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3269 {
3270 	struct em_buffer *rx_buffer;
3271 	int i;
3272 
3273 	if (adapter->rx_buffer_area == NULL)
3274 		return;
3275 
3276 	for (i = 0; i < ndesc; i++) {
3277 		rx_buffer = &adapter->rx_buffer_area[i];
3278 
3279 		KKASSERT(rx_buffer->m_head == NULL);
3280 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3281 	}
3282 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3283 	bus_dma_tag_destroy(adapter->rxtag);
3284 
3285 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3286 	adapter->rx_buffer_area = NULL;
3287 }
3288 
3289 static void
3290 em_rxeof(struct adapter *adapter, int count)
3291 {
3292 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3293 	uint8_t status, accept_frame = 0, eop = 0;
3294 	uint16_t len, desc_len, prev_len_adj;
3295 	struct e1000_rx_desc *current_desc;
3296 	struct mbuf *mp;
3297 	int i;
3298 
3299 	i = adapter->next_rx_desc_to_check;
3300 	current_desc = &adapter->rx_desc_base[i];
3301 
3302 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3303 		return;
3304 
3305 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3306 		struct mbuf *m = NULL;
3307 
3308 		logif(pkt_receive);
3309 
3310 		mp = adapter->rx_buffer_area[i].m_head;
3311 
3312 		/*
3313 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3314 		 * needs to access the last received byte in the mbuf.
3315 		 */
3316 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3317 				BUS_DMASYNC_POSTREAD);
3318 
3319 		accept_frame = 1;
3320 		prev_len_adj = 0;
3321 		desc_len = le16toh(current_desc->length);
3322 		status = current_desc->status;
3323 		if (status & E1000_RXD_STAT_EOP) {
3324 			count--;
3325 			eop = 1;
3326 			if (desc_len < ETHER_CRC_LEN) {
3327 				len = 0;
3328 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3329 			} else {
3330 				len = desc_len - ETHER_CRC_LEN;
3331 			}
3332 		} else {
3333 			eop = 0;
3334 			len = desc_len;
3335 		}
3336 
3337 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3338 			uint8_t	last_byte;
3339 			uint32_t pkt_len = desc_len;
3340 
3341 			if (adapter->fmp != NULL)
3342 				pkt_len += adapter->fmp->m_pkthdr.len;
3343 
3344 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3345 			if (TBI_ACCEPT(&adapter->hw, status,
3346 			    current_desc->errors, pkt_len, last_byte,
3347 			    adapter->min_frame_size, adapter->max_frame_size)) {
3348 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3349 				    &adapter->stats, pkt_len,
3350 				    adapter->hw.mac.addr,
3351 				    adapter->max_frame_size);
3352 				if (len > 0)
3353 					len--;
3354 			} else {
3355 				accept_frame = 0;
3356 			}
3357 		}
3358 
3359 		if (accept_frame) {
3360 			if (em_newbuf(adapter, i, 0) != 0) {
3361 				ifp->if_iqdrops++;
3362 				goto discard;
3363 			}
3364 
3365 			/* Assign correct length to the current fragment */
3366 			mp->m_len = len;
3367 
3368 			if (adapter->fmp == NULL) {
3369 				mp->m_pkthdr.len = len;
3370 				adapter->fmp = mp; /* Store the first mbuf */
3371 				adapter->lmp = mp;
3372 			} else {
3373 				/*
3374 				 * Chain mbuf's together
3375 				 */
3376 
3377 				/*
3378 				 * Adjust length of previous mbuf in chain if
3379 				 * we received less than 4 bytes in the last
3380 				 * descriptor.
3381 				 */
3382 				if (prev_len_adj > 0) {
3383 					adapter->lmp->m_len -= prev_len_adj;
3384 					adapter->fmp->m_pkthdr.len -=
3385 					    prev_len_adj;
3386 				}
3387 				adapter->lmp->m_next = mp;
3388 				adapter->lmp = adapter->lmp->m_next;
3389 				adapter->fmp->m_pkthdr.len += len;
3390 			}
3391 
3392 			if (eop) {
3393 				adapter->fmp->m_pkthdr.rcvif = ifp;
3394 				ifp->if_ipackets++;
3395 
3396 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3397 					em_rxcsum(adapter, current_desc,
3398 						  adapter->fmp);
3399 				}
3400 
3401 				if (status & E1000_RXD_STAT_VP) {
3402 					adapter->fmp->m_pkthdr.ether_vlantag =
3403 					    (le16toh(current_desc->special) &
3404 					    E1000_RXD_SPC_VLAN_MASK);
3405 					adapter->fmp->m_flags |= M_VLANTAG;
3406 				}
3407 				m = adapter->fmp;
3408 				adapter->fmp = NULL;
3409 				adapter->lmp = NULL;
3410 			}
3411 		} else {
3412 			ifp->if_ierrors++;
3413 discard:
3414 #ifdef foo
3415 			/* Reuse loaded DMA map and just update mbuf chain */
3416 			mp = adapter->rx_buffer_area[i].m_head;
3417 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3418 			mp->m_data = mp->m_ext.ext_buf;
3419 			mp->m_next = NULL;
3420 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3421 				m_adj(mp, ETHER_ALIGN);
3422 #endif
3423 			if (adapter->fmp != NULL) {
3424 				m_freem(adapter->fmp);
3425 				adapter->fmp = NULL;
3426 				adapter->lmp = NULL;
3427 			}
3428 			m = NULL;
3429 		}
3430 
3431 		/* Zero out the receive descriptors status. */
3432 		current_desc->status = 0;
3433 
3434 		if (m != NULL)
3435 			ifp->if_input(ifp, m);
3436 
3437 		/* Advance our pointers to the next descriptor. */
3438 		if (++i == adapter->num_rx_desc)
3439 			i = 0;
3440 		current_desc = &adapter->rx_desc_base[i];
3441 	}
3442 	adapter->next_rx_desc_to_check = i;
3443 
3444 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3445 	if (--i < 0)
3446 		i = adapter->num_rx_desc - 1;
3447 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3448 }
3449 
3450 static void
3451 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3452 	  struct mbuf *mp)
3453 {
3454 	/* 82543 or newer only */
3455 	if (adapter->hw.mac.type < e1000_82543 ||
3456 	    /* Ignore Checksum bit is set */
3457 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3458 		return;
3459 
3460 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3461 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3462 		/* IP Checksum Good */
3463 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3464 	}
3465 
3466 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3467 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3468 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3469 					   CSUM_PSEUDO_HDR |
3470 					   CSUM_FRAG_NOT_CHECKED;
3471 		mp->m_pkthdr.csum_data = htons(0xffff);
3472 	}
3473 }
3474 
3475 static void
3476 em_enable_intr(struct adapter *adapter)
3477 {
3478 	uint32_t ims_mask = IMS_ENABLE_MASK;
3479 
3480 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3481 
3482 #if 0
3483 	/* XXX MSIX */
3484 	if (adapter->hw.mac.type == e1000_82574) {
3485 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3486 		ims_mask |= EM_MSIX_MASK;
3487         }
3488 #endif
3489 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3490 }
3491 
3492 static void
3493 em_disable_intr(struct adapter *adapter)
3494 {
3495 	uint32_t clear = 0xffffffff;
3496 
3497 	/*
3498 	 * The first version of 82542 had an errata where when link was forced
3499 	 * it would stay up even up even if the cable was disconnected.
3500 	 * Sequence errors were used to detect the disconnect and then the
3501 	 * driver would unforce the link.  This code in the in the ISR.  For
3502 	 * this to work correctly the Sequence error interrupt had to be
3503 	 * enabled all the time.
3504 	 */
3505 	if (adapter->hw.mac.type == e1000_82542 &&
3506 	    adapter->hw.revision_id == E1000_REVISION_2)
3507 		clear &= ~E1000_ICR_RXSEQ;
3508 	else if (adapter->hw.mac.type == e1000_82574)
3509 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3510 
3511 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3512 
3513 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3514 }
3515 
3516 /*
3517  * Bit of a misnomer, what this really means is
3518  * to enable OS management of the system... aka
3519  * to disable special hardware management features
3520  */
3521 static void
3522 em_get_mgmt(struct adapter *adapter)
3523 {
3524 	/* A shared code workaround */
3525 #define E1000_82542_MANC2H E1000_MANC2H
3526 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3527 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3528 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3529 
3530 		/* disable hardware interception of ARP */
3531 		manc &= ~(E1000_MANC_ARP_EN);
3532 
3533                 /* enable receiving management packets to the host */
3534                 if (adapter->hw.mac.type >= e1000_82571) {
3535 			manc |= E1000_MANC_EN_MNG2HOST;
3536 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3537 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3538 			manc2h |= E1000_MNG2HOST_PORT_623;
3539 			manc2h |= E1000_MNG2HOST_PORT_664;
3540 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3541 		}
3542 
3543 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3544 	}
3545 }
3546 
3547 /*
3548  * Give control back to hardware management
3549  * controller if there is one.
3550  */
3551 static void
3552 em_rel_mgmt(struct adapter *adapter)
3553 {
3554 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3555 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3556 
3557 		/* re-enable hardware interception of ARP */
3558 		manc |= E1000_MANC_ARP_EN;
3559 
3560 		if (adapter->hw.mac.type >= e1000_82571)
3561 			manc &= ~E1000_MANC_EN_MNG2HOST;
3562 
3563 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3564 	}
3565 }
3566 
3567 /*
3568  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3569  * For ASF and Pass Through versions of f/w this means that
3570  * the driver is loaded.  For AMT version (only with 82573)
3571  * of the f/w this means that the network i/f is open.
3572  */
3573 static void
3574 em_get_hw_control(struct adapter *adapter)
3575 {
3576 	/* Let firmware know the driver has taken over */
3577 	if (adapter->hw.mac.type == e1000_82573) {
3578 		uint32_t swsm;
3579 
3580 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3581 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3582 		    swsm | E1000_SWSM_DRV_LOAD);
3583 	} else {
3584 		uint32_t ctrl_ext;
3585 
3586 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3587 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3588 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3589 	}
3590 	adapter->flags |= EM_FLAG_HW_CTRL;
3591 }
3592 
3593 /*
3594  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3595  * For ASF and Pass Through versions of f/w this means that the
3596  * driver is no longer loaded.  For AMT version (only with 82573)
3597  * of the f/w this means that the network i/f is closed.
3598  */
3599 static void
3600 em_rel_hw_control(struct adapter *adapter)
3601 {
3602 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3603 		return;
3604 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3605 
3606 	/* Let firmware taken over control of h/w */
3607 	if (adapter->hw.mac.type == e1000_82573) {
3608 		uint32_t swsm;
3609 
3610 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3611 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3612 		    swsm & ~E1000_SWSM_DRV_LOAD);
3613 	} else {
3614 		uint32_t ctrl_ext;
3615 
3616 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3617 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3618 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3619 	}
3620 }
3621 
3622 static int
3623 em_is_valid_eaddr(const uint8_t *addr)
3624 {
3625 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3626 
3627 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3628 		return (FALSE);
3629 
3630 	return (TRUE);
3631 }
3632 
3633 /*
3634  * Enable PCI Wake On Lan capability
3635  */
3636 void
3637 em_enable_wol(device_t dev)
3638 {
3639 	uint16_t cap, status;
3640 	uint8_t id;
3641 
3642 	/* First find the capabilities pointer*/
3643 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3644 
3645 	/* Read the PM Capabilities */
3646 	id = pci_read_config(dev, cap, 1);
3647 	if (id != PCIY_PMG)     /* Something wrong */
3648 		return;
3649 
3650 	/*
3651 	 * OK, we have the power capabilities,
3652 	 * so now get the status register
3653 	 */
3654 	cap += PCIR_POWER_STATUS;
3655 	status = pci_read_config(dev, cap, 2);
3656 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3657 	pci_write_config(dev, cap, status, 2);
3658 }
3659 
3660 
3661 /*
3662  * 82544 Coexistence issue workaround.
3663  *    There are 2 issues.
3664  *       1. Transmit Hang issue.
3665  *    To detect this issue, following equation can be used...
3666  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3667  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3668  *
3669  *       2. DAC issue.
3670  *    To detect this issue, following equation can be used...
3671  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3672  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3673  *
3674  *    WORKAROUND:
3675  *	  Make sure we do not have ending address
3676  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3677  */
3678 static uint32_t
3679 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3680 {
3681 	uint32_t safe_terminator;
3682 
3683 	/*
3684 	 * Since issue is sensitive to length and address.
3685 	 * Let us first check the address...
3686 	 */
3687 	if (length <= 4) {
3688 		desc_array->descriptor[0].address = address;
3689 		desc_array->descriptor[0].length = length;
3690 		desc_array->elements = 1;
3691 		return (desc_array->elements);
3692 	}
3693 
3694 	safe_terminator =
3695 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3696 
3697 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3698 	if (safe_terminator == 0 ||
3699 	    (safe_terminator > 4 && safe_terminator < 9) ||
3700 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3701 		desc_array->descriptor[0].address = address;
3702 		desc_array->descriptor[0].length = length;
3703 		desc_array->elements = 1;
3704 		return (desc_array->elements);
3705 	}
3706 
3707 	desc_array->descriptor[0].address = address;
3708 	desc_array->descriptor[0].length = length - 4;
3709 	desc_array->descriptor[1].address = address + (length - 4);
3710 	desc_array->descriptor[1].length = 4;
3711 	desc_array->elements = 2;
3712 	return (desc_array->elements);
3713 }
3714 
3715 static void
3716 em_update_stats(struct adapter *adapter)
3717 {
3718 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3719 
3720 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3721 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3722 		adapter->stats.symerrs +=
3723 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3724 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3725 	}
3726 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3727 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3728 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3729 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3730 
3731 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3732 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3733 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3734 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3735 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3736 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3737 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3738 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3739 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3740 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3741 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3742 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3743 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3744 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3745 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3746 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3747 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3748 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3749 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3750 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3751 
3752 	/* For the 64-bit byte counters the low dword must be read first. */
3753 	/* Both registers clear on the read of the high dword */
3754 
3755 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3756 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3757 
3758 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3759 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3760 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3761 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3762 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3763 
3764 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3765 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3766 
3767 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3768 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3769 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3770 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3771 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3772 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3773 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3774 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3775 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3776 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3777 
3778 	if (adapter->hw.mac.type >= e1000_82543) {
3779 		adapter->stats.algnerrc +=
3780 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3781 		adapter->stats.rxerrc +=
3782 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3783 		adapter->stats.tncrs +=
3784 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3785 		adapter->stats.cexterr +=
3786 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3787 		adapter->stats.tsctc +=
3788 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3789 		adapter->stats.tsctfc +=
3790 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3791 	}
3792 
3793 	ifp->if_collisions = adapter->stats.colc;
3794 
3795 	/* Rx Errors */
3796 	ifp->if_ierrors =
3797 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3798 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3799 	    adapter->stats.ruc + adapter->stats.roc +
3800 	    adapter->stats.mpc + adapter->stats.cexterr;
3801 
3802 	/* Tx Errors */
3803 	ifp->if_oerrors =
3804 	    adapter->stats.ecol + adapter->stats.latecol +
3805 	    adapter->watchdog_events;
3806 }
3807 
3808 static void
3809 em_print_debug_info(struct adapter *adapter)
3810 {
3811 	device_t dev = adapter->dev;
3812 	uint8_t *hw_addr = adapter->hw.hw_addr;
3813 
3814 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3815 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3816 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3817 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3818 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3819 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3820 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3821 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3822 	    adapter->hw.fc.high_water,
3823 	    adapter->hw.fc.low_water);
3824 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3825 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3826 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3827 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3828 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3829 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3830 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3831 	    (long long)adapter->tx_fifo_wrk_cnt,
3832 	    (long long)adapter->tx_fifo_reset_cnt);
3833 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3834 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3835 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3836 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3837 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3838 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3839 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3840 	    adapter->num_tx_desc_avail);
3841 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3842 	    adapter->no_tx_desc_avail1);
3843 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3844 	    adapter->no_tx_desc_avail2);
3845 	device_printf(dev, "Std mbuf failed = %ld\n",
3846 	    adapter->mbuf_alloc_failed);
3847 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3848 	    adapter->mbuf_cluster_failed);
3849 	device_printf(dev, "Driver dropped packets = %ld\n",
3850 	    adapter->dropped_pkts);
3851 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3852 	    adapter->no_tx_dma_setup);
3853 }
3854 
3855 static void
3856 em_print_hw_stats(struct adapter *adapter)
3857 {
3858 	device_t dev = adapter->dev;
3859 
3860 	device_printf(dev, "Excessive collisions = %lld\n",
3861 	    (long long)adapter->stats.ecol);
3862 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3863 	device_printf(dev, "Symbol errors = %lld\n",
3864 	    (long long)adapter->stats.symerrs);
3865 #endif
3866 	device_printf(dev, "Sequence errors = %lld\n",
3867 	    (long long)adapter->stats.sec);
3868 	device_printf(dev, "Defer count = %lld\n",
3869 	    (long long)adapter->stats.dc);
3870 	device_printf(dev, "Missed Packets = %lld\n",
3871 	    (long long)adapter->stats.mpc);
3872 	device_printf(dev, "Receive No Buffers = %lld\n",
3873 	    (long long)adapter->stats.rnbc);
3874 	/* RLEC is inaccurate on some hardware, calculate our own. */
3875 	device_printf(dev, "Receive Length Errors = %lld\n",
3876 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3877 	device_printf(dev, "Receive errors = %lld\n",
3878 	    (long long)adapter->stats.rxerrc);
3879 	device_printf(dev, "Crc errors = %lld\n",
3880 	    (long long)adapter->stats.crcerrs);
3881 	device_printf(dev, "Alignment errors = %lld\n",
3882 	    (long long)adapter->stats.algnerrc);
3883 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3884 	    (long long)adapter->stats.cexterr);
3885 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3886 	device_printf(dev, "watchdog timeouts = %ld\n",
3887 	    adapter->watchdog_events);
3888 	device_printf(dev, "XON Rcvd = %lld\n",
3889 	    (long long)adapter->stats.xonrxc);
3890 	device_printf(dev, "XON Xmtd = %lld\n",
3891 	    (long long)adapter->stats.xontxc);
3892 	device_printf(dev, "XOFF Rcvd = %lld\n",
3893 	    (long long)adapter->stats.xoffrxc);
3894 	device_printf(dev, "XOFF Xmtd = %lld\n",
3895 	    (long long)adapter->stats.xofftxc);
3896 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3897 	    (long long)adapter->stats.gprc);
3898 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3899 	    (long long)adapter->stats.gptc);
3900 }
3901 
3902 static void
3903 em_print_nvm_info(struct adapter *adapter)
3904 {
3905 	uint16_t eeprom_data;
3906 	int i, j, row = 0;
3907 
3908 	/* Its a bit crude, but it gets the job done */
3909 	kprintf("\nInterface EEPROM Dump:\n");
3910 	kprintf("Offset\n0x0000  ");
3911 	for (i = 0, j = 0; i < 32; i++, j++) {
3912 		if (j == 8) { /* Make the offset block */
3913 			j = 0; ++row;
3914 			kprintf("\n0x00%x0  ",row);
3915 		}
3916 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3917 		kprintf("%04x ", eeprom_data);
3918 	}
3919 	kprintf("\n");
3920 }
3921 
3922 static int
3923 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3924 {
3925 	struct adapter *adapter;
3926 	struct ifnet *ifp;
3927 	int error, result;
3928 
3929 	result = -1;
3930 	error = sysctl_handle_int(oidp, &result, 0, req);
3931 	if (error || !req->newptr)
3932 		return (error);
3933 
3934 	adapter = (struct adapter *)arg1;
3935 	ifp = &adapter->arpcom.ac_if;
3936 
3937 	lwkt_serialize_enter(ifp->if_serializer);
3938 
3939 	if (result == 1)
3940 		em_print_debug_info(adapter);
3941 
3942 	/*
3943 	 * This value will cause a hex dump of the
3944 	 * first 32 16-bit words of the EEPROM to
3945 	 * the screen.
3946 	 */
3947 	if (result == 2)
3948 		em_print_nvm_info(adapter);
3949 
3950 	lwkt_serialize_exit(ifp->if_serializer);
3951 
3952 	return (error);
3953 }
3954 
3955 static int
3956 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3957 {
3958 	int error, result;
3959 
3960 	result = -1;
3961 	error = sysctl_handle_int(oidp, &result, 0, req);
3962 	if (error || !req->newptr)
3963 		return (error);
3964 
3965 	if (result == 1) {
3966 		struct adapter *adapter = (struct adapter *)arg1;
3967 		struct ifnet *ifp = &adapter->arpcom.ac_if;
3968 
3969 		lwkt_serialize_enter(ifp->if_serializer);
3970 		em_print_hw_stats(adapter);
3971 		lwkt_serialize_exit(ifp->if_serializer);
3972 	}
3973 	return (error);
3974 }
3975 
3976 static void
3977 em_add_sysctl(struct adapter *adapter)
3978 {
3979 	sysctl_ctx_init(&adapter->sysctl_ctx);
3980 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
3981 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3982 					device_get_nameunit(adapter->dev),
3983 					CTLFLAG_RD, 0, "");
3984 	if (adapter->sysctl_tree == NULL) {
3985 		device_printf(adapter->dev, "can't add sysctl node\n");
3986 	} else {
3987 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3988 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3989 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3990 		    em_sysctl_debug_info, "I", "Debug Information");
3991 
3992 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3993 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3994 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3995 		    em_sysctl_stats, "I", "Statistics");
3996 
3997 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3998 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3999 		    OID_AUTO, "rxd", CTLFLAG_RD,
4000 		    &adapter->num_rx_desc, 0, NULL);
4001 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4002 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4003 		    OID_AUTO, "txd", CTLFLAG_RD,
4004 		    &adapter->num_tx_desc, 0, NULL);
4005 
4006 		if (adapter->hw.mac.type >= e1000_82540) {
4007 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4008 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4009 			    OID_AUTO, "int_throttle_ceil",
4010 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4011 			    em_sysctl_int_throttle, "I",
4012 			    "interrupt throttling rate");
4013 		}
4014 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4015 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4016 		    OID_AUTO, "int_tx_nsegs",
4017 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4018 		    em_sysctl_int_tx_nsegs, "I",
4019 		    "# segments per TX interrupt");
4020 	}
4021 }
4022 
4023 static int
4024 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4025 {
4026 	struct adapter *adapter = (void *)arg1;
4027 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4028 	int error, throttle;
4029 
4030 	throttle = adapter->int_throttle_ceil;
4031 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4032 	if (error || req->newptr == NULL)
4033 		return error;
4034 	if (throttle < 0 || throttle > 1000000000 / 256)
4035 		return EINVAL;
4036 
4037 	if (throttle) {
4038 		/*
4039 		 * Set the interrupt throttling rate in 256ns increments,
4040 		 * recalculate sysctl value assignment to get exact frequency.
4041 		 */
4042 		throttle = 1000000000 / 256 / throttle;
4043 
4044 		/* Upper 16bits of ITR is reserved and should be zero */
4045 		if (throttle & 0xffff0000)
4046 			return EINVAL;
4047 	}
4048 
4049 	lwkt_serialize_enter(ifp->if_serializer);
4050 
4051 	if (throttle)
4052 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4053 	else
4054 		adapter->int_throttle_ceil = 0;
4055 
4056 	if (ifp->if_flags & IFF_RUNNING)
4057 		em_set_itr(adapter, throttle);
4058 
4059 	lwkt_serialize_exit(ifp->if_serializer);
4060 
4061 	if (bootverbose) {
4062 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4063 			  adapter->int_throttle_ceil);
4064 	}
4065 	return 0;
4066 }
4067 
4068 static int
4069 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4070 {
4071 	struct adapter *adapter = (void *)arg1;
4072 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4073 	int error, segs;
4074 
4075 	segs = adapter->tx_int_nsegs;
4076 	error = sysctl_handle_int(oidp, &segs, 0, req);
4077 	if (error || req->newptr == NULL)
4078 		return error;
4079 	if (segs <= 0)
4080 		return EINVAL;
4081 
4082 	lwkt_serialize_enter(ifp->if_serializer);
4083 
4084 	/*
4085 	 * Don't allow int_tx_nsegs to become:
4086 	 * o  Less the oact_tx_desc
4087 	 * o  Too large that no TX desc will cause TX interrupt to
4088 	 *    be generated (OACTIVE will never recover)
4089 	 * o  Too small that will cause tx_dd[] overflow
4090 	 */
4091 	if (segs < adapter->oact_tx_desc ||
4092 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4093 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4094 		error = EINVAL;
4095 	} else {
4096 		error = 0;
4097 		adapter->tx_int_nsegs = segs;
4098 	}
4099 
4100 	lwkt_serialize_exit(ifp->if_serializer);
4101 
4102 	return error;
4103 }
4104 
4105 static void
4106 em_set_itr(struct adapter *adapter, uint32_t itr)
4107 {
4108 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4109 	if (adapter->hw.mac.type == e1000_82574) {
4110 		int i;
4111 
4112 		/*
4113 		 * When using MSIX interrupts we need to
4114 		 * throttle using the EITR register
4115 		 */
4116 		for (i = 0; i < 4; ++i) {
4117 			E1000_WRITE_REG(&adapter->hw,
4118 			    E1000_EITR_82574(i), itr);
4119 		}
4120 	}
4121 }
4122 
4123 static void
4124 em_disable_aspm(struct adapter *adapter)
4125 {
4126 	uint16_t link_cap, link_ctrl, disable;
4127 	uint8_t pcie_ptr, reg;
4128 	device_t dev = adapter->dev;
4129 
4130 	switch (adapter->hw.mac.type) {
4131 	case e1000_82571:
4132 	case e1000_82572:
4133 	case e1000_82573:
4134 		/*
4135 		 * 82573 specification update
4136 		 * errata #8 disable L0s
4137 		 * errata #41 disable L1
4138 		 *
4139 		 * 82571/82572 specification update
4140 		 # errata #13 disable L1
4141 		 * errata #68 disable L0s
4142 		 */
4143 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4144 		break;
4145 
4146 	case e1000_82574:
4147 	case e1000_82583:
4148 		/*
4149 		 * 82574 specification update errata #20
4150 		 * 82583 specification update errata #9
4151 		 *
4152 		 * There is no need to disable L1
4153 		 */
4154 		disable = PCIEM_LNKCTL_ASPM_L0S;
4155 		break;
4156 
4157 	default:
4158 		return;
4159 	}
4160 
4161 	pcie_ptr = pci_get_pciecap_ptr(dev);
4162 	if (pcie_ptr == 0)
4163 		return;
4164 
4165 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4166 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4167 		return;
4168 
4169 	if (bootverbose) {
4170 		if_printf(&adapter->arpcom.ac_if,
4171 		    "disable ASPM %#02x\n", disable);
4172 	}
4173 
4174 	reg = pcie_ptr + PCIER_LINKCTRL;
4175 	link_ctrl = pci_read_config(dev, reg, 2);
4176 	link_ctrl &= ~disable;
4177 	pci_write_config(dev, reg, link_ctrl, 2);
4178 }
4179 
4180 static int
4181 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4182 {
4183 	int iphlen, hoff, thoff, ex = 0;
4184 	struct mbuf *m;
4185 	struct ip *ip;
4186 
4187 	m = *mp;
4188 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4189 
4190 	iphlen = m->m_pkthdr.csum_iphlen;
4191 	thoff = m->m_pkthdr.csum_thlen;
4192 	hoff = m->m_pkthdr.csum_lhlen;
4193 
4194 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4195 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4196 	KASSERT(hoff > 0, ("invalid ether hlen"));
4197 
4198 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4199 		ex = 4;
4200 
4201 	if (m->m_len < hoff + iphlen + thoff + ex) {
4202 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4203 		if (m == NULL) {
4204 			*mp = NULL;
4205 			return ENOBUFS;
4206 		}
4207 		*mp = m;
4208 	}
4209 	ip = mtodoff(m, struct ip *, hoff);
4210 	ip->ip_len = 0;
4211 
4212 	return 0;
4213 }
4214 
4215 static int
4216 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4217     uint32_t *txd_upper, uint32_t *txd_lower)
4218 {
4219 	struct e1000_context_desc *TXD;
4220 	int hoff, iphlen, thoff, hlen;
4221 	int mss, pktlen, curr_txd;
4222 
4223 	iphlen = mp->m_pkthdr.csum_iphlen;
4224 	thoff = mp->m_pkthdr.csum_thlen;
4225 	hoff = mp->m_pkthdr.csum_lhlen;
4226 	mss = mp->m_pkthdr.tso_segsz;
4227 	pktlen = mp->m_pkthdr.len;
4228 
4229 	if (adapter->csum_flags == CSUM_TSO &&
4230 	    adapter->csum_iphlen == iphlen &&
4231 	    adapter->csum_lhlen == hoff &&
4232 	    adapter->csum_thlen == thoff &&
4233 	    adapter->csum_mss == mss &&
4234 	    adapter->csum_pktlen == pktlen) {
4235 		*txd_upper = adapter->csum_txd_upper;
4236 		*txd_lower = adapter->csum_txd_lower;
4237 		return 0;
4238 	}
4239 	hlen = hoff + iphlen + thoff;
4240 
4241 	/*
4242 	 * Setup a new TSO context.
4243 	 */
4244 
4245 	curr_txd = adapter->next_avail_tx_desc;
4246 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4247 
4248 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4249 		     E1000_TXD_DTYP_D |		/* Data descr type */
4250 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4251 
4252 	/* IP and/or TCP header checksum calculation and insertion. */
4253 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4254 
4255 	/*
4256 	 * Start offset for header checksum calculation.
4257 	 * End offset for header checksum calculation.
4258 	 * Offset of place put the checksum.
4259 	 */
4260 	TXD->lower_setup.ip_fields.ipcss = hoff;
4261 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4262 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4263 
4264 	/*
4265 	 * Start offset for payload checksum calculation.
4266 	 * End offset for payload checksum calculation.
4267 	 * Offset of place to put the checksum.
4268 	 */
4269 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4270 	TXD->upper_setup.tcp_fields.tucse = 0;
4271 	TXD->upper_setup.tcp_fields.tucso =
4272 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4273 
4274 	/*
4275 	 * Payload size per packet w/o any headers.
4276 	 * Length of all headers up to payload.
4277 	 */
4278 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4279 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4280 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4281 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4282 				E1000_TXD_CMD_TSE |	/* TSE context */
4283 				E1000_TXD_CMD_IP |	/* Do IP csum */
4284 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4285 				(pktlen - hlen));	/* Total len */
4286 
4287 	/* Save the information for this TSO context */
4288 	adapter->csum_flags = CSUM_TSO;
4289 	adapter->csum_lhlen = hoff;
4290 	adapter->csum_iphlen = iphlen;
4291 	adapter->csum_thlen = thoff;
4292 	adapter->csum_mss = mss;
4293 	adapter->csum_pktlen = pktlen;
4294 	adapter->csum_txd_upper = *txd_upper;
4295 	adapter->csum_txd_lower = *txd_lower;
4296 
4297 	if (++curr_txd == adapter->num_tx_desc)
4298 		curr_txd = 0;
4299 
4300 	KKASSERT(adapter->num_tx_desc_avail > 0);
4301 	adapter->num_tx_desc_avail--;
4302 
4303 	adapter->next_avail_tx_desc = curr_txd;
4304 	return 1;
4305 }
4306