xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 7d84b73d)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2015, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
116 
117 #define DEBUG_HW 0
118 
119 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
120 #define EM_VER	" 7.6.2"
121 
122 #define _EM_DEVICE(id, ret)	\
123 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
125 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
127 
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 	EM_DEVICE(82540EM),
130 	EM_DEVICE(82540EM_LOM),
131 	EM_DEVICE(82540EP),
132 	EM_DEVICE(82540EP_LOM),
133 	EM_DEVICE(82540EP_LP),
134 
135 	EM_DEVICE(82541EI),
136 	EM_DEVICE(82541ER),
137 	EM_DEVICE(82541ER_LOM),
138 	EM_DEVICE(82541EI_MOBILE),
139 	EM_DEVICE(82541GI),
140 	EM_DEVICE(82541GI_LF),
141 	EM_DEVICE(82541GI_MOBILE),
142 
143 	EM_DEVICE(82542),
144 
145 	EM_DEVICE(82543GC_FIBER),
146 	EM_DEVICE(82543GC_COPPER),
147 
148 	EM_DEVICE(82544EI_COPPER),
149 	EM_DEVICE(82544EI_FIBER),
150 	EM_DEVICE(82544GC_COPPER),
151 	EM_DEVICE(82544GC_LOM),
152 
153 	EM_DEVICE(82545EM_COPPER),
154 	EM_DEVICE(82545EM_FIBER),
155 	EM_DEVICE(82545GM_COPPER),
156 	EM_DEVICE(82545GM_FIBER),
157 	EM_DEVICE(82545GM_SERDES),
158 
159 	EM_DEVICE(82546EB_COPPER),
160 	EM_DEVICE(82546EB_FIBER),
161 	EM_DEVICE(82546EB_QUAD_COPPER),
162 	EM_DEVICE(82546GB_COPPER),
163 	EM_DEVICE(82546GB_FIBER),
164 	EM_DEVICE(82546GB_SERDES),
165 	EM_DEVICE(82546GB_PCIE),
166 	EM_DEVICE(82546GB_QUAD_COPPER),
167 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 
169 	EM_DEVICE(82547EI),
170 	EM_DEVICE(82547EI_MOBILE),
171 	EM_DEVICE(82547GI),
172 
173 	EM_EMX_DEVICE(82571EB_COPPER),
174 	EM_EMX_DEVICE(82571EB_FIBER),
175 	EM_EMX_DEVICE(82571EB_SERDES),
176 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 
184 	EM_EMX_DEVICE(82572EI_COPPER),
185 	EM_EMX_DEVICE(82572EI_FIBER),
186 	EM_EMX_DEVICE(82572EI_SERDES),
187 	EM_EMX_DEVICE(82572EI),
188 
189 	EM_EMX_DEVICE(82573E),
190 	EM_EMX_DEVICE(82573E_IAMT),
191 	EM_EMX_DEVICE(82573L),
192 
193 	EM_DEVICE(82583V),
194 
195 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 
200 	EM_DEVICE(ICH8_IGP_M_AMT),
201 	EM_DEVICE(ICH8_IGP_AMT),
202 	EM_DEVICE(ICH8_IGP_C),
203 	EM_DEVICE(ICH8_IFE),
204 	EM_DEVICE(ICH8_IFE_GT),
205 	EM_DEVICE(ICH8_IFE_G),
206 	EM_DEVICE(ICH8_IGP_M),
207 	EM_DEVICE(ICH8_82567V_3),
208 
209 	EM_DEVICE(ICH9_IGP_M_AMT),
210 	EM_DEVICE(ICH9_IGP_AMT),
211 	EM_DEVICE(ICH9_IGP_C),
212 	EM_DEVICE(ICH9_IGP_M),
213 	EM_DEVICE(ICH9_IGP_M_V),
214 	EM_DEVICE(ICH9_IFE),
215 	EM_DEVICE(ICH9_IFE_GT),
216 	EM_DEVICE(ICH9_IFE_G),
217 	EM_DEVICE(ICH9_BM),
218 
219 	EM_EMX_DEVICE(82574L),
220 	EM_EMX_DEVICE(82574LA),
221 
222 	EM_DEVICE(ICH10_R_BM_LM),
223 	EM_DEVICE(ICH10_R_BM_LF),
224 	EM_DEVICE(ICH10_R_BM_V),
225 	EM_DEVICE(ICH10_D_BM_LM),
226 	EM_DEVICE(ICH10_D_BM_LF),
227 	EM_DEVICE(ICH10_D_BM_V),
228 
229 	EM_DEVICE(PCH_M_HV_LM),
230 	EM_DEVICE(PCH_M_HV_LC),
231 	EM_DEVICE(PCH_D_HV_DM),
232 	EM_DEVICE(PCH_D_HV_DC),
233 
234 	EM_DEVICE(PCH2_LV_LM),
235 	EM_DEVICE(PCH2_LV_V),
236 
237 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 	EM_EMX_DEVICE(PCH_LPT_I217_V),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 	EM_EMX_DEVICE(PCH_I218_LM2),
242 	EM_EMX_DEVICE(PCH_I218_V2),
243 	EM_EMX_DEVICE(PCH_I218_LM3),
244 	EM_EMX_DEVICE(PCH_I218_V3),
245 	EM_EMX_DEVICE(PCH_SPT_I219_LM),
246 	EM_EMX_DEVICE(PCH_SPT_I219_V),
247 	EM_EMX_DEVICE(PCH_SPT_I219_LM2),
248 	EM_EMX_DEVICE(PCH_SPT_I219_V2),
249 	EM_EMX_DEVICE(PCH_LBG_I219_LM3),
250 	EM_EMX_DEVICE(PCH_SPT_I219_LM4),
251 	EM_EMX_DEVICE(PCH_SPT_I219_V4),
252 	EM_EMX_DEVICE(PCH_SPT_I219_LM5),
253 	EM_EMX_DEVICE(PCH_SPT_I219_V5),
254 	EM_EMX_DEVICE(PCH_CNP_I219_LM6),
255 	EM_EMX_DEVICE(PCH_CNP_I219_V6),
256 	EM_EMX_DEVICE(PCH_CNP_I219_LM7),
257 	EM_EMX_DEVICE(PCH_CNP_I219_V7),
258 	EM_EMX_DEVICE(PCH_ICP_I219_LM8),
259 	EM_EMX_DEVICE(PCH_ICP_I219_V8),
260 	EM_EMX_DEVICE(PCH_ICP_I219_LM9),
261 	EM_EMX_DEVICE(PCH_ICP_I219_V9),
262 	EM_EMX_DEVICE(PCH_CMP_I219_LM10),
263 	EM_EMX_DEVICE(PCH_CMP_I219_V10),
264 	EM_EMX_DEVICE(PCH_CMP_I219_LM11),
265 	EM_EMX_DEVICE(PCH_CMP_I219_V11),
266 	EM_EMX_DEVICE(PCH_CMP_I219_LM12),
267 	EM_EMX_DEVICE(PCH_CMP_I219_V12),
268 	EM_EMX_DEVICE(PCH_TGP_I219_LM13),
269 	EM_EMX_DEVICE(PCH_TGP_I219_V13),
270 	EM_EMX_DEVICE(PCH_TGP_I219_LM14),
271 	EM_EMX_DEVICE(PCH_TGP_I219_V14),
272 	EM_EMX_DEVICE(PCH_TGP_I219_LM15),
273 	EM_EMX_DEVICE(PCH_TGP_I219_V15),
274 	EM_EMX_DEVICE(PCH_ADP_I219_LM16),
275 	EM_EMX_DEVICE(PCH_ADP_I219_V16),
276 	EM_EMX_DEVICE(PCH_ADP_I219_LM17),
277 	EM_EMX_DEVICE(PCH_ADP_I219_V17),
278 	EM_EMX_DEVICE(PCH_MTP_I219_LM18),
279 	EM_EMX_DEVICE(PCH_MTP_I219_V18),
280 	EM_EMX_DEVICE(PCH_MTP_I219_LM19),
281 	EM_EMX_DEVICE(PCH_MTP_I219_V19),
282 
283 	/* required last entry */
284 	EM_DEVICE_NULL
285 };
286 
287 static int	em_probe(device_t);
288 static int	em_attach(device_t);
289 static int	em_detach(device_t);
290 static int	em_shutdown(device_t);
291 static int	em_suspend(device_t);
292 static int	em_resume(device_t);
293 
294 static void	em_init(void *);
295 static void	em_stop(struct adapter *);
296 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
297 static void	em_start(struct ifnet *, struct ifaltq_subque *);
298 #ifdef IFPOLL_ENABLE
299 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
300 static void	em_npoll_compat(struct ifnet *, void *, int);
301 #endif
302 static void	em_watchdog(struct ifnet *);
303 static void	em_media_status(struct ifnet *, struct ifmediareq *);
304 static int	em_media_change(struct ifnet *);
305 static void	em_timer(void *);
306 
307 static void	em_intr(void *);
308 static void	em_intr_mask(void *);
309 static void	em_intr_body(struct adapter *, boolean_t);
310 static void	em_rxeof(struct adapter *, int);
311 static void	em_txeof(struct adapter *);
312 static void	em_tx_collect(struct adapter *, boolean_t);
313 static void	em_tx_purge(struct adapter *);
314 static void	em_txgc_timer(void *);
315 static void	em_enable_intr(struct adapter *);
316 static void	em_disable_intr(struct adapter *);
317 
318 static int	em_dma_malloc(struct adapter *, bus_size_t,
319 		    struct em_dma_alloc *);
320 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
321 static void	em_init_tx_ring(struct adapter *);
322 static int	em_init_rx_ring(struct adapter *);
323 static int	em_create_tx_ring(struct adapter *);
324 static int	em_create_rx_ring(struct adapter *);
325 static void	em_destroy_tx_ring(struct adapter *, int);
326 static void	em_destroy_rx_ring(struct adapter *, int);
327 static int	em_newbuf(struct adapter *, int, int);
328 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
329 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
330 		    struct mbuf *);
331 static int	em_txcsum(struct adapter *, struct mbuf *,
332 		    uint32_t *, uint32_t *);
333 static int	em_tso_pullup(struct adapter *, struct mbuf **);
334 static int	em_tso_setup(struct adapter *, struct mbuf *,
335 		    uint32_t *, uint32_t *);
336 
337 static int	em_get_hw_info(struct adapter *);
338 static int 	em_is_valid_eaddr(const uint8_t *);
339 static int	em_alloc_pci_res(struct adapter *);
340 static void	em_free_pci_res(struct adapter *);
341 static int	em_reset(struct adapter *);
342 static void	em_setup_ifp(struct adapter *);
343 static void	em_init_tx_unit(struct adapter *);
344 static void	em_init_rx_unit(struct adapter *);
345 static void	em_update_stats(struct adapter *);
346 static void	em_set_promisc(struct adapter *);
347 static void	em_disable_promisc(struct adapter *);
348 static void	em_set_multi(struct adapter *);
349 static void	em_update_link_status(struct adapter *);
350 static void	em_smartspeed(struct adapter *);
351 static void	em_set_itr(struct adapter *, uint32_t);
352 static void	em_disable_aspm(struct adapter *);
353 static void	em_flush_tx_ring(struct adapter *);
354 static void	em_flush_rx_ring(struct adapter *);
355 static void	em_flush_txrx_ring(struct adapter *);
356 
357 /* Hardware workarounds */
358 static int	em_82547_fifo_workaround(struct adapter *, int);
359 static void	em_82547_update_fifo_head(struct adapter *, int);
360 static int	em_82547_tx_fifo_reset(struct adapter *);
361 static void	em_82547_move_tail(void *);
362 static void	em_82547_move_tail_serialized(struct adapter *);
363 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
364 
365 static void	em_print_debug_info(struct adapter *);
366 static void	em_print_nvm_info(struct adapter *);
367 static void	em_print_hw_stats(struct adapter *);
368 
369 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
370 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
371 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
372 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
373 static void	em_add_sysctl(struct adapter *adapter);
374 
375 /* Management and WOL Support */
376 static void	em_get_mgmt(struct adapter *);
377 static void	em_rel_mgmt(struct adapter *);
378 static void	em_get_hw_control(struct adapter *);
379 static void	em_rel_hw_control(struct adapter *);
380 static void	em_enable_wol(device_t);
381 
382 static device_method_t em_methods[] = {
383 	/* Device interface */
384 	DEVMETHOD(device_probe,		em_probe),
385 	DEVMETHOD(device_attach,	em_attach),
386 	DEVMETHOD(device_detach,	em_detach),
387 	DEVMETHOD(device_shutdown,	em_shutdown),
388 	DEVMETHOD(device_suspend,	em_suspend),
389 	DEVMETHOD(device_resume,	em_resume),
390 	DEVMETHOD_END
391 };
392 
393 static driver_t em_driver = {
394 	"em",
395 	em_methods,
396 	sizeof(struct adapter),
397 };
398 
399 static devclass_t em_devclass;
400 
401 DECLARE_DUMMY_MODULE(if_em);
402 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
403 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
404 
405 /*
406  * Tunables
407  */
408 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
409 static int	em_rxd = EM_DEFAULT_RXD;
410 static int	em_txd = EM_DEFAULT_TXD;
411 static int	em_smart_pwr_down = 0;
412 
413 /* Controls whether promiscuous also shows bad packets */
414 static int	em_debug_sbp = FALSE;
415 
416 static int	em_82573_workaround = 1;
417 static int	em_msi_enable = 1;
418 
419 static char	em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
420 
421 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
422 TUNABLE_INT("hw.em.rxd", &em_rxd);
423 TUNABLE_INT("hw.em.txd", &em_txd);
424 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
425 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
426 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
427 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
428 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
429 
430 /* Global used in WOL setup with multiport cards */
431 static int	em_global_quad_port_a = 0;
432 
433 /* Set this to one to display debug statistics */
434 static int	em_display_debug_stats = 0;
435 
436 #if !defined(KTR_IF_EM)
437 #define KTR_IF_EM	KTR_ALL
438 #endif
439 KTR_INFO_MASTER(if_em);
440 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
441 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
442 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
443 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
444 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
445 #define logif(name)	KTR_LOG(if_em_ ## name)
446 
447 static __inline void
448 em_tx_intr(struct adapter *adapter)
449 {
450 	struct ifnet *ifp = &adapter->arpcom.ac_if;
451 
452 	em_txeof(adapter);
453 	if (!ifq_is_empty(&ifp->if_snd))
454 		if_devstart(ifp);
455 }
456 
457 static __inline void
458 em_free_txbuffer(struct adapter *adapter, struct em_buffer *tx_buffer)
459 {
460 
461 	KKASSERT(tx_buffer->m_head != NULL);
462 	KKASSERT(adapter->tx_nmbuf > 0);
463 	adapter->tx_nmbuf--;
464 
465 	bus_dmamap_unload(adapter->txtag, tx_buffer->map);
466 	m_freem(tx_buffer->m_head);
467 	tx_buffer->m_head = NULL;
468 }
469 
470 static __inline void
471 em_try_txgc(struct adapter *adapter, int dec)
472 {
473 
474 	if (adapter->tx_running > 0) {
475 		adapter->tx_running -= dec;
476 		if (adapter->tx_running <= 0 && adapter->tx_nmbuf &&
477 		    adapter->num_tx_desc_avail < adapter->num_tx_desc &&
478 		    adapter->num_tx_desc_avail + adapter->tx_int_nsegs >
479 		    adapter->num_tx_desc)
480 			em_tx_collect(adapter, TRUE);
481 	}
482 }
483 
484 static void
485 em_txgc_timer(void *xadapter)
486 {
487 	struct adapter *adapter = xadapter;
488 	struct ifnet *ifp = &adapter->arpcom.ac_if;
489 
490 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
491 	    (IFF_RUNNING | IFF_UP))
492 		return;
493 
494 	if (!lwkt_serialize_try(ifp->if_serializer))
495 		goto done;
496 
497 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
498 	    (IFF_RUNNING | IFF_UP)) {
499 		lwkt_serialize_exit(ifp->if_serializer);
500 		return;
501 	}
502 	em_try_txgc(adapter, EM_TX_RUNNING_DEC);
503 
504 	lwkt_serialize_exit(ifp->if_serializer);
505 done:
506 	callout_reset(&adapter->tx_gc_timer, 1, em_txgc_timer, adapter);
507 }
508 
509 static int
510 em_probe(device_t dev)
511 {
512 	const struct em_vendor_info *ent;
513 	uint16_t vid, did;
514 
515 	vid = pci_get_vendor(dev);
516 	did = pci_get_device(dev);
517 
518 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
519 		if (vid == ent->vendor_id && did == ent->device_id) {
520 			device_set_desc(dev, ent->desc);
521 			device_set_async_attach(dev, TRUE);
522 			return (ent->ret);
523 		}
524 	}
525 	return (ENXIO);
526 }
527 
528 static int
529 em_attach(device_t dev)
530 {
531 	struct adapter *adapter = device_get_softc(dev);
532 	struct ifnet *ifp = &adapter->arpcom.ac_if;
533 	int tsize, rsize;
534 	int error = 0;
535 	int cap;
536 	uint16_t eeprom_data, device_id, apme_mask;
537 	driver_intr_t *intr_func;
538 	char flowctrl[IFM_ETH_FC_STRLEN];
539 
540 	adapter->dev = adapter->osdep.dev = dev;
541 
542 	/*
543 	 * Some versions of I219 only have PCI AF.
544 	 */
545 	if (pci_is_pcie(dev) || pci_find_extcap(dev, PCIY_PCIAF, &cap) == 0)
546 		adapter->flags |= EM_FLAG_GEN2;
547 
548 	callout_init_mp(&adapter->timer);
549 	callout_init_mp(&adapter->tx_fifo_timer);
550 	callout_init_mp(&adapter->tx_gc_timer);
551 
552 	ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
553 	    em_media_change, em_media_status);
554 
555 	/* Determine hardware and mac info */
556 	error = em_get_hw_info(adapter);
557 	if (error) {
558 		device_printf(dev, "Identify hardware failed\n");
559 		goto fail;
560 	}
561 
562 	/* Setup PCI resources */
563 	error = em_alloc_pci_res(adapter);
564 	if (error) {
565 		device_printf(dev, "Allocation of PCI resources failed\n");
566 		goto fail;
567 	}
568 
569 	/*
570 	 * For ICH8 and family we need to map the flash memory,
571 	 * and this must happen after the MAC is identified.
572 	 *
573 	 * (SPT does not map the flash with a separate BAR)
574 	 */
575 	if (adapter->hw.mac.type == e1000_ich8lan ||
576 	    adapter->hw.mac.type == e1000_ich9lan ||
577 	    adapter->hw.mac.type == e1000_ich10lan ||
578 	    adapter->hw.mac.type == e1000_pchlan ||
579 	    adapter->hw.mac.type == e1000_pch2lan ||
580 	    adapter->hw.mac.type == e1000_pch_lpt) {
581 		adapter->flash_rid = EM_BAR_FLASH;
582 
583 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
584 					&adapter->flash_rid, RF_ACTIVE);
585 		if (adapter->flash == NULL) {
586 			device_printf(dev, "Mapping of Flash failed\n");
587 			error = ENXIO;
588 			goto fail;
589 		}
590 		adapter->osdep.flash_bus_space_tag =
591 		    rman_get_bustag(adapter->flash);
592 		adapter->osdep.flash_bus_space_handle =
593 		    rman_get_bushandle(adapter->flash);
594 
595 		/*
596 		 * This is used in the shared code
597 		 * XXX this goof is actually not used.
598 		 */
599 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
600 	} else if (adapter->hw.mac.type >= e1000_pch_spt) {
601 		/*
602 		 * In the new SPT device flash is not a seperate BAR,
603 		 * rather it is also in BAR0, so use the same tag and
604 		 * an offset handle for the FLASH read/write macros
605 		 * in the shared code.
606 		 */
607 		adapter->osdep.flash_bus_space_tag =
608 		    adapter->osdep.mem_bus_space_tag;
609 		adapter->osdep.flash_bus_space_handle =
610 		    adapter->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
611 	}
612 
613 	switch (adapter->hw.mac.type) {
614 	case e1000_82571:
615 	case e1000_82572:
616 	case e1000_pch_lpt:
617 	case e1000_pch_spt:
618 	case e1000_pch_cnp:
619 		/*
620 		 * Pullup extra 4bytes into the first data segment for
621 		 * TSO, see:
622 		 * 82571/82572 specification update errata #7
623 		 *
624 		 * Same applies to I217 (and maybe I218 and I219).
625 		 *
626 		 * NOTE:
627 		 * 4bytes instead of 2bytes, which are mentioned in the
628 		 * errata, are pulled; mainly to keep rest of the data
629 		 * properly aligned.
630 		 */
631 		adapter->flags |= EM_FLAG_TSO_PULLEX;
632 		/* FALL THROUGH */
633 
634 	default:
635 		if (adapter->flags & EM_FLAG_GEN2)
636 			adapter->flags |= EM_FLAG_TSO;
637 		break;
638 	}
639 
640 	/* Do Shared Code initialization */
641 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
642 		device_printf(dev, "Setup of Shared code failed\n");
643 		error = ENXIO;
644 		goto fail;
645 	}
646 
647 	e1000_get_bus_info(&adapter->hw);
648 
649 	/*
650 	 * Validate number of transmit and receive descriptors.  It
651 	 * must not exceed hardware maximum, and must be multiple
652 	 * of E1000_DBA_ALIGN.
653 	 */
654 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
655 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
656 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
657 	    em_txd < EM_MIN_TXD) {
658 		if (adapter->hw.mac.type < e1000_82544)
659 			adapter->num_tx_desc = EM_MAX_TXD_82543;
660 		else
661 			adapter->num_tx_desc = EM_DEFAULT_TXD;
662 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
663 		    adapter->num_tx_desc, em_txd);
664 	} else {
665 		adapter->num_tx_desc = em_txd;
666 	}
667 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
668 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
669 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
670 	    em_rxd < EM_MIN_RXD) {
671 		if (adapter->hw.mac.type < e1000_82544)
672 			adapter->num_rx_desc = EM_MAX_RXD_82543;
673 		else
674 			adapter->num_rx_desc = EM_DEFAULT_RXD;
675 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
676 		    adapter->num_rx_desc, em_rxd);
677 	} else {
678 		adapter->num_rx_desc = em_rxd;
679 	}
680 
681 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
682 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
683 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
684 	adapter->rx_buffer_len = MCLBYTES;
685 
686 	/*
687 	 * Interrupt throttle rate
688 	 */
689 	if (em_int_throttle_ceil == 0) {
690 		adapter->int_throttle_ceil = 0;
691 	} else {
692 		int throttle = em_int_throttle_ceil;
693 
694 		if (throttle < 0)
695 			throttle = EM_DEFAULT_ITR;
696 
697 		/* Recalculate the tunable value to get the exact frequency. */
698 		throttle = 1000000000 / 256 / throttle;
699 
700 		/* Upper 16bits of ITR is reserved and should be zero */
701 		if (throttle & 0xffff0000)
702 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
703 
704 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
705 	}
706 
707 	e1000_init_script_state_82541(&adapter->hw, TRUE);
708 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
709 
710 	/* Copper options */
711 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
712 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
713 		adapter->hw.phy.disable_polarity_correction = FALSE;
714 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
715 	}
716 
717 	/* Set the frame limits assuming standard ethernet sized frames. */
718 	adapter->hw.mac.max_frame_size =
719 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
720 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
721 
722 	/* This controls when hardware reports transmit completion status. */
723 	adapter->hw.mac.report_tx_early = 1;
724 
725 	/*
726 	 * Create top level busdma tag
727 	 */
728 	error = bus_dma_tag_create(NULL, 1, 0,
729 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
730 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
731 			0, &adapter->parent_dtag);
732 	if (error) {
733 		device_printf(dev, "could not create top level DMA tag\n");
734 		goto fail;
735 	}
736 
737 	/*
738 	 * Allocate Transmit Descriptor ring
739 	 */
740 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
741 			 EM_DBA_ALIGN);
742 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
743 	if (error) {
744 		device_printf(dev, "Unable to allocate tx_desc memory\n");
745 		goto fail;
746 	}
747 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
748 
749 	/*
750 	 * Allocate Receive Descriptor ring
751 	 */
752 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
753 			 EM_DBA_ALIGN);
754 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
755 	if (error) {
756 		device_printf(dev, "Unable to allocate rx_desc memory\n");
757 		goto fail;
758 	}
759 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
760 
761 	/* Allocate multicast array memory. */
762 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
763 	    M_DEVBUF, M_WAITOK);
764 
765 	/* Indicate SOL/IDER usage */
766 	if (e1000_check_reset_block(&adapter->hw)) {
767 		device_printf(dev,
768 		    "PHY reset is blocked due to SOL/IDER session.\n");
769 	}
770 
771 	/* Disable EEE */
772 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
773 
774 	/*
775 	 * Start from a known state, this is important in reading the
776 	 * nvm and mac from that.
777 	 */
778 	e1000_reset_hw(&adapter->hw);
779 
780 	/* Make sure we have a good EEPROM before we read from it */
781 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
782 		/*
783 		 * Some PCI-E parts fail the first check due to
784 		 * the link being in sleep state, call it again,
785 		 * if it fails a second time its a real issue.
786 		 */
787 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
788 			device_printf(dev,
789 			    "The EEPROM Checksum Is Not Valid\n");
790 			error = EIO;
791 			goto fail;
792 		}
793 	}
794 
795 	/* Copy the permanent MAC address out of the EEPROM */
796 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
797 		device_printf(dev, "EEPROM read error while reading MAC"
798 		    " address\n");
799 		error = EIO;
800 		goto fail;
801 	}
802 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
803 		device_printf(dev, "Invalid MAC address\n");
804 		error = EIO;
805 		goto fail;
806 	}
807 
808 	/* Disable ULP support */
809 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
810 
811 	/* Allocate transmit descriptors and buffers */
812 	error = em_create_tx_ring(adapter);
813 	if (error) {
814 		device_printf(dev, "Could not setup transmit structures\n");
815 		goto fail;
816 	}
817 
818 	/* Allocate receive descriptors and buffers */
819 	error = em_create_rx_ring(adapter);
820 	if (error) {
821 		device_printf(dev, "Could not setup receive structures\n");
822 		goto fail;
823 	}
824 
825 	/* Manually turn off all interrupts */
826 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
827 
828 	/* Determine if we have to control management hardware */
829 	if (e1000_enable_mng_pass_thru(&adapter->hw))
830 		adapter->flags |= EM_FLAG_HAS_MGMT;
831 
832 	/*
833 	 * Setup Wake-on-Lan
834 	 */
835 	apme_mask = EM_EEPROM_APME;
836 	eeprom_data = 0;
837 	switch (adapter->hw.mac.type) {
838 	case e1000_82542:
839 	case e1000_82543:
840 		break;
841 
842 	case e1000_82573:
843 	case e1000_82583:
844 		adapter->flags |= EM_FLAG_HAS_AMT;
845 		/* FALL THROUGH */
846 
847 	case e1000_82546:
848 	case e1000_82546_rev_3:
849 	case e1000_82571:
850 	case e1000_82572:
851 	case e1000_80003es2lan:
852 		if (adapter->hw.bus.func == 1) {
853 			e1000_read_nvm(&adapter->hw,
854 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
855 		} else {
856 			e1000_read_nvm(&adapter->hw,
857 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
858 		}
859 		break;
860 
861 	case e1000_ich8lan:
862 	case e1000_ich9lan:
863 	case e1000_ich10lan:
864 	case e1000_pchlan:
865 	case e1000_pch2lan:
866 	case e1000_pch_lpt:
867 	case e1000_pch_spt:
868 	case e1000_pch_cnp:
869 		apme_mask = E1000_WUC_APME;
870 		adapter->flags |= EM_FLAG_HAS_AMT;
871 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
872 		break;
873 
874 	default:
875 		e1000_read_nvm(&adapter->hw,
876 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
877 		break;
878 	}
879 	if (eeprom_data & apme_mask)
880 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
881 
882 	/*
883          * We have the eeprom settings, now apply the special cases
884          * where the eeprom may be wrong or the board won't support
885          * wake on lan on a particular port
886 	 */
887 	device_id = pci_get_device(dev);
888         switch (device_id) {
889 	case E1000_DEV_ID_82546GB_PCIE:
890 		adapter->wol = 0;
891 		break;
892 
893 	case E1000_DEV_ID_82546EB_FIBER:
894 	case E1000_DEV_ID_82546GB_FIBER:
895 	case E1000_DEV_ID_82571EB_FIBER:
896 		/*
897 		 * Wake events only supported on port A for dual fiber
898 		 * regardless of eeprom setting
899 		 */
900 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
901 		    E1000_STATUS_FUNC_1)
902 			adapter->wol = 0;
903 		break;
904 
905 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
906 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
907 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
908 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
909                 /* if quad port adapter, disable WoL on all but port A */
910 		if (em_global_quad_port_a != 0)
911 			adapter->wol = 0;
912 		/* Reset for multiple quad port adapters */
913 		if (++em_global_quad_port_a == 4)
914 			em_global_quad_port_a = 0;
915                 break;
916 	}
917 
918 	/* XXX disable wol */
919 	adapter->wol = 0;
920 
921 	/* Setup flow control. */
922 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
923 	    em_flowctrl);
924 	adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
925 	if (adapter->hw.mac.type == e1000_pchlan) {
926 		/* Only PAUSE reception is supported on PCH */
927 		adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
928 	}
929 
930 	/* Setup OS specific network interface */
931 	em_setup_ifp(adapter);
932 
933 	/* Add sysctl tree, must after em_setup_ifp() */
934 	em_add_sysctl(adapter);
935 
936 #ifdef IFPOLL_ENABLE
937 	/* Polling setup */
938 	ifpoll_compat_setup(&adapter->npoll,
939 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
940 	    device_get_unit(dev), ifp->if_serializer);
941 #endif
942 
943 	/* Reset the hardware */
944 	error = em_reset(adapter);
945 	if (error) {
946 		/*
947 		 * Some 82573 parts fail the first reset, call it again,
948 		 * if it fails a second time its a real issue.
949 		 */
950 		error = em_reset(adapter);
951 		if (error) {
952 			device_printf(dev, "Unable to reset the hardware\n");
953 			ether_ifdetach(ifp);
954 			goto fail;
955 		}
956 	}
957 
958 	/* Initialize statistics */
959 	em_update_stats(adapter);
960 
961 	adapter->hw.mac.get_link_status = 1;
962 	em_update_link_status(adapter);
963 
964 	/* Do we need workaround for 82544 PCI-X adapter? */
965 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
966 	    adapter->hw.mac.type == e1000_82544)
967 		adapter->pcix_82544 = TRUE;
968 	else
969 		adapter->pcix_82544 = FALSE;
970 
971 	if (adapter->pcix_82544) {
972 		/*
973 		 * 82544 on PCI-X may split one TX segment
974 		 * into two TX descs, so we double its number
975 		 * of spare TX desc here.
976 		 */
977 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
978 	} else {
979 		adapter->spare_tx_desc = EM_TX_SPARE;
980 	}
981 	if (adapter->flags & EM_FLAG_TSO)
982 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
983 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
984 
985 	/*
986 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
987 	 * and tx_int_nsegs:
988 	 * (spare_tx_desc + EM_TX_RESERVED) <=
989 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
990 	 */
991 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
992 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
993 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
994 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
995 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
996 
997 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
998 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
999 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
1000 
1001 	/* Non-AMT based hardware can now take control from firmware */
1002 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1003 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
1004 		em_get_hw_control(adapter);
1005 
1006 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1007 
1008 	/*
1009 	 * Missing Interrupt Following ICR read:
1010 	 *
1011 	 * 82571/82572 specification update errata #76
1012 	 * 82573 specification update errata #31
1013 	 * 82574 specification update errata #12
1014 	 * 82583 specification update errata #4
1015 	 */
1016 	intr_func = em_intr;
1017 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
1018 	    (adapter->hw.mac.type == e1000_82571 ||
1019 	     adapter->hw.mac.type == e1000_82572 ||
1020 	     adapter->hw.mac.type == e1000_82573 ||
1021 	     adapter->hw.mac.type == e1000_82574 ||
1022 	     adapter->hw.mac.type == e1000_82583))
1023 		intr_func = em_intr_mask;
1024 
1025 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
1026 			       intr_func, adapter, &adapter->intr_tag,
1027 			       ifp->if_serializer);
1028 	if (error) {
1029 		device_printf(dev, "Failed to register interrupt handler");
1030 		ether_ifdetach(ifp);
1031 		goto fail;
1032 	}
1033 	return (0);
1034 fail:
1035 	em_detach(dev);
1036 	return (error);
1037 }
1038 
1039 static int
1040 em_detach(device_t dev)
1041 {
1042 	struct adapter *adapter = device_get_softc(dev);
1043 
1044 	if (device_is_attached(dev)) {
1045 		struct ifnet *ifp = &adapter->arpcom.ac_if;
1046 
1047 		lwkt_serialize_enter(ifp->if_serializer);
1048 
1049 		em_stop(adapter);
1050 
1051 		e1000_phy_hw_reset(&adapter->hw);
1052 
1053 		em_rel_mgmt(adapter);
1054 		em_rel_hw_control(adapter);
1055 
1056 		if (adapter->wol) {
1057 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
1058 					E1000_WUC_PME_EN);
1059 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1060 			em_enable_wol(dev);
1061 		}
1062 
1063 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
1064 
1065 		lwkt_serialize_exit(ifp->if_serializer);
1066 
1067 		ether_ifdetach(ifp);
1068 	} else if (adapter->memory != NULL) {
1069 		em_rel_hw_control(adapter);
1070 	}
1071 
1072 	ifmedia_removeall(&adapter->media);
1073 	bus_generic_detach(dev);
1074 
1075 	em_free_pci_res(adapter);
1076 
1077 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
1078 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
1079 
1080 	/* Free Transmit Descriptor ring */
1081 	if (adapter->tx_desc_base)
1082 		em_dma_free(adapter, &adapter->txdma);
1083 
1084 	/* Free Receive Descriptor ring */
1085 	if (adapter->rx_desc_base)
1086 		em_dma_free(adapter, &adapter->rxdma);
1087 
1088 	/* Free top level busdma tag */
1089 	if (adapter->parent_dtag != NULL)
1090 		bus_dma_tag_destroy(adapter->parent_dtag);
1091 
1092 	if (adapter->mta != NULL)
1093 		kfree(adapter->mta, M_DEVBUF);
1094 
1095 	return (0);
1096 }
1097 
1098 static int
1099 em_shutdown(device_t dev)
1100 {
1101 	return em_suspend(dev);
1102 }
1103 
1104 static int
1105 em_suspend(device_t dev)
1106 {
1107 	struct adapter *adapter = device_get_softc(dev);
1108 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1109 
1110 	lwkt_serialize_enter(ifp->if_serializer);
1111 
1112 	em_stop(adapter);
1113 
1114 	em_rel_mgmt(adapter);
1115 	em_rel_hw_control(adapter);
1116 
1117 	if (adapter->wol) {
1118 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
1119 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1120 		em_enable_wol(dev);
1121 	}
1122 
1123 	lwkt_serialize_exit(ifp->if_serializer);
1124 
1125 	return bus_generic_suspend(dev);
1126 }
1127 
1128 static int
1129 em_resume(device_t dev)
1130 {
1131 	struct adapter *adapter = device_get_softc(dev);
1132 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1133 
1134 	lwkt_serialize_enter(ifp->if_serializer);
1135 
1136 	if (adapter->hw.mac.type == e1000_pch2lan)
1137 		e1000_resume_workarounds_pchlan(&adapter->hw);
1138 
1139 	em_init(adapter);
1140 	em_get_mgmt(adapter);
1141 	if_devstart(ifp);
1142 
1143 	lwkt_serialize_exit(ifp->if_serializer);
1144 
1145 	return bus_generic_resume(dev);
1146 }
1147 
1148 static void
1149 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1150 {
1151 	struct adapter *adapter = ifp->if_softc;
1152 	struct mbuf *m_head;
1153 	int idx = -1, nsegs = 0;
1154 
1155 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1156 	ASSERT_SERIALIZED(ifp->if_serializer);
1157 
1158 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1159 		return;
1160 
1161 	if (!adapter->link_active) {
1162 		ifq_purge(&ifp->if_snd);
1163 		return;
1164 	}
1165 
1166 	while (!ifq_is_empty(&ifp->if_snd)) {
1167 		/* Now do we at least have a minimal? */
1168 		if (EM_IS_OACTIVE(adapter)) {
1169 			em_tx_collect(adapter, FALSE);
1170 			if (EM_IS_OACTIVE(adapter)) {
1171 				ifq_set_oactive(&ifp->if_snd);
1172 				adapter->no_tx_desc_avail1++;
1173 				break;
1174 			}
1175 		}
1176 
1177 		logif(pkt_txqueue);
1178 		m_head = ifq_dequeue(&ifp->if_snd);
1179 		if (m_head == NULL)
1180 			break;
1181 
1182 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1183 			IFNET_STAT_INC(ifp, oerrors, 1);
1184 			em_tx_collect(adapter, FALSE);
1185 			continue;
1186 		}
1187 
1188 		/*
1189 		 * TX interrupt are aggressively aggregated, so increasing
1190 		 * opackets at TX interrupt time will make the opackets
1191 		 * statistics vastly inaccurate; we do the opackets increment
1192 		 * now.
1193 		 */
1194 		IFNET_STAT_INC(ifp, opackets, 1);
1195 
1196 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1197 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1198 			nsegs = 0;
1199 			idx = -1;
1200 		}
1201 
1202 		/* Send a copy of the frame to the BPF listener */
1203 		ETHER_BPF_MTAP(ifp, m_head);
1204 
1205 		/* Set timeout in case hardware has problems transmitting. */
1206 		ifp->if_timer = EM_TX_TIMEOUT;
1207 	}
1208 	if (idx >= 0)
1209 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1210 	adapter->tx_running = EM_TX_RUNNING;
1211 }
1212 
1213 static int
1214 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1215 {
1216 	struct adapter *adapter = ifp->if_softc;
1217 	struct ifreq *ifr = (struct ifreq *)data;
1218 	uint16_t eeprom_data = 0;
1219 	int max_frame_size, mask, reinit;
1220 	int error = 0;
1221 
1222 	ASSERT_SERIALIZED(ifp->if_serializer);
1223 
1224 	switch (command) {
1225 	case SIOCSIFMTU:
1226 		switch (adapter->hw.mac.type) {
1227 		case e1000_82573:
1228 			/*
1229 			 * 82573 only supports jumbo frames
1230 			 * if ASPM is disabled.
1231 			 */
1232 			e1000_read_nvm(&adapter->hw,
1233 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1234 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1235 				max_frame_size = ETHER_MAX_LEN;
1236 				break;
1237 			}
1238 			/* FALL THROUGH */
1239 
1240 		/* Limit Jumbo Frame size */
1241 		case e1000_82571:
1242 		case e1000_82572:
1243 		case e1000_ich9lan:
1244 		case e1000_ich10lan:
1245 		case e1000_pch2lan:
1246 		case e1000_pch_lpt:
1247 		case e1000_pch_spt:
1248 		case e1000_pch_cnp:
1249 		case e1000_82574:
1250 		case e1000_82583:
1251 		case e1000_80003es2lan:
1252 			max_frame_size = 9234;
1253 			break;
1254 
1255 		case e1000_pchlan:
1256 			max_frame_size = 4096;
1257 			break;
1258 
1259 		/* Adapters that do not support jumbo frames */
1260 		case e1000_82542:
1261 		case e1000_ich8lan:
1262 			max_frame_size = ETHER_MAX_LEN;
1263 			break;
1264 
1265 		default:
1266 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1267 			break;
1268 		}
1269 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1270 		    ETHER_CRC_LEN) {
1271 			error = EINVAL;
1272 			break;
1273 		}
1274 
1275 		ifp->if_mtu = ifr->ifr_mtu;
1276 		adapter->hw.mac.max_frame_size =
1277 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1278 
1279 		if (ifp->if_flags & IFF_RUNNING)
1280 			em_init(adapter);
1281 		break;
1282 
1283 	case SIOCSIFFLAGS:
1284 		if (ifp->if_flags & IFF_UP) {
1285 			if ((ifp->if_flags & IFF_RUNNING)) {
1286 				if ((ifp->if_flags ^ adapter->if_flags) &
1287 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1288 					em_disable_promisc(adapter);
1289 					em_set_promisc(adapter);
1290 				}
1291 			} else {
1292 				em_init(adapter);
1293 			}
1294 		} else if (ifp->if_flags & IFF_RUNNING) {
1295 			em_stop(adapter);
1296 		}
1297 		adapter->if_flags = ifp->if_flags;
1298 		break;
1299 
1300 	case SIOCADDMULTI:
1301 	case SIOCDELMULTI:
1302 		if (ifp->if_flags & IFF_RUNNING) {
1303 			em_disable_intr(adapter);
1304 			em_set_multi(adapter);
1305 			if (adapter->hw.mac.type == e1000_82542 &&
1306 			    adapter->hw.revision_id == E1000_REVISION_2)
1307 				em_init_rx_unit(adapter);
1308 #ifdef IFPOLL_ENABLE
1309 			if (!(ifp->if_flags & IFF_NPOLLING))
1310 #endif
1311 				em_enable_intr(adapter);
1312 		}
1313 		break;
1314 
1315 	case SIOCSIFMEDIA:
1316 		/* Check SOL/IDER usage */
1317 		if (e1000_check_reset_block(&adapter->hw)) {
1318 			device_printf(adapter->dev, "Media change is"
1319 			    " blocked due to SOL/IDER session.\n");
1320 			break;
1321 		}
1322 		/* FALL THROUGH */
1323 
1324 	case SIOCGIFMEDIA:
1325 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1326 		break;
1327 
1328 	case SIOCSIFCAP:
1329 		reinit = 0;
1330 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1331 		if (mask & IFCAP_RXCSUM) {
1332 			ifp->if_capenable ^= IFCAP_RXCSUM;
1333 			reinit = 1;
1334 		}
1335 		if (mask & IFCAP_TXCSUM) {
1336 			ifp->if_capenable ^= IFCAP_TXCSUM;
1337 			if (ifp->if_capenable & IFCAP_TXCSUM)
1338 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1339 			else
1340 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1341 		}
1342 		if (mask & IFCAP_TSO) {
1343 			ifp->if_capenable ^= IFCAP_TSO;
1344 			if (ifp->if_capenable & IFCAP_TSO)
1345 				ifp->if_hwassist |= CSUM_TSO;
1346 			else
1347 				ifp->if_hwassist &= ~CSUM_TSO;
1348 		}
1349 		if (mask & IFCAP_VLAN_HWTAGGING) {
1350 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1351 			reinit = 1;
1352 		}
1353 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1354 			em_init(adapter);
1355 		break;
1356 
1357 	default:
1358 		error = ether_ioctl(ifp, command, data);
1359 		break;
1360 	}
1361 	return (error);
1362 }
1363 
1364 static void
1365 em_watchdog(struct ifnet *ifp)
1366 {
1367 	struct adapter *adapter = ifp->if_softc;
1368 
1369 	ASSERT_SERIALIZED(ifp->if_serializer);
1370 
1371 	/*
1372 	 * The timer is set to 5 every time start queues a packet.
1373 	 * Then txeof keeps resetting it as long as it cleans at
1374 	 * least one descriptor.
1375 	 * Finally, anytime all descriptors are clean the timer is
1376 	 * set to 0.
1377 	 */
1378 
1379 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1380 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1381 		/*
1382 		 * If we reach here, all TX jobs are completed and
1383 		 * the TX engine should have been idled for some time.
1384 		 * We don't need to call if_devstart() here.
1385 		 */
1386 		ifq_clr_oactive(&ifp->if_snd);
1387 		ifp->if_timer = 0;
1388 		return;
1389 	}
1390 
1391 	/*
1392 	 * If we are in this routine because of pause frames, then
1393 	 * don't reset the hardware.
1394 	 */
1395 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1396 	    E1000_STATUS_TXOFF) {
1397 		ifp->if_timer = EM_TX_TIMEOUT;
1398 		return;
1399 	}
1400 
1401 	if (e1000_check_for_link(&adapter->hw) == 0)
1402 		if_printf(ifp, "watchdog timeout -- resetting\n");
1403 
1404 	IFNET_STAT_INC(ifp, oerrors, 1);
1405 	adapter->watchdog_events++;
1406 
1407 	em_init(adapter);
1408 
1409 	if (!ifq_is_empty(&ifp->if_snd))
1410 		if_devstart(ifp);
1411 }
1412 
1413 static void
1414 em_init(void *xsc)
1415 {
1416 	struct adapter *adapter = xsc;
1417 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1418 	device_t dev = adapter->dev;
1419 
1420 	ASSERT_SERIALIZED(ifp->if_serializer);
1421 
1422 	em_stop(adapter);
1423 
1424 	/* Get the latest mac address, User can use a LAA */
1425         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1426 
1427 	/* Put the address into the Receive Address Array */
1428 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1429 
1430 	/*
1431 	 * With the 82571 adapter, RAR[0] may be overwritten
1432 	 * when the other port is reset, we make a duplicate
1433 	 * in RAR[14] for that eventuality, this assures
1434 	 * the interface continues to function.
1435 	 */
1436 	if (adapter->hw.mac.type == e1000_82571) {
1437 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1438 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1439 		    E1000_RAR_ENTRIES - 1);
1440 	}
1441 
1442 	/* Reset the hardware */
1443 	if (em_reset(adapter)) {
1444 		device_printf(dev, "Unable to reset the hardware\n");
1445 		/* XXX em_stop()? */
1446 		return;
1447 	}
1448 	em_update_link_status(adapter);
1449 
1450 	/* Setup VLAN support, basic and offload if available */
1451 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1452 
1453 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1454 		uint32_t ctrl;
1455 
1456 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1457 		ctrl |= E1000_CTRL_VME;
1458 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1459 	}
1460 
1461 	/* Configure for OS presence */
1462 	em_get_mgmt(adapter);
1463 
1464 	/* Prepare transmit descriptors and buffers */
1465 	em_init_tx_ring(adapter);
1466 	em_init_tx_unit(adapter);
1467 
1468 	/* Setup Multicast table */
1469 	em_set_multi(adapter);
1470 
1471 	/* Prepare receive descriptors and buffers */
1472 	if (em_init_rx_ring(adapter)) {
1473 		device_printf(dev, "Could not setup receive structures\n");
1474 		em_stop(adapter);
1475 		return;
1476 	}
1477 	em_init_rx_unit(adapter);
1478 
1479 	/* Don't lose promiscuous settings */
1480 	em_set_promisc(adapter);
1481 
1482 	/* Reset hardware counters */
1483 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1484 
1485 	/* MSI/X configuration for 82574 */
1486 	if (adapter->hw.mac.type == e1000_82574) {
1487 		int tmp;
1488 
1489 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1490 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1491 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1492 		/*
1493 		 * XXX MSIX
1494 		 * Set the IVAR - interrupt vector routing.
1495 		 * Each nibble represents a vector, high bit
1496 		 * is enable, other 3 bits are the MSIX table
1497 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1498 		 * Link (other) to 2, hence the magic number.
1499 		 */
1500 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1501 	}
1502 
1503 #ifdef IFPOLL_ENABLE
1504 	/*
1505 	 * Only enable interrupts if we are not polling, make sure
1506 	 * they are off otherwise.
1507 	 */
1508 	if (ifp->if_flags & IFF_NPOLLING)
1509 		em_disable_intr(adapter);
1510 	else
1511 #endif /* IFPOLL_ENABLE */
1512 		em_enable_intr(adapter);
1513 
1514 	/* AMT based hardware can now take control from firmware */
1515 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1516 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1517 	    adapter->hw.mac.type >= e1000_82571)
1518 		em_get_hw_control(adapter);
1519 
1520 	ifp->if_flags |= IFF_RUNNING;
1521 	ifq_clr_oactive(&ifp->if_snd);
1522 
1523 #ifdef IFPOLL_ENABLE
1524 	if ((ifp->if_flags & IFF_NPOLLING) == 0)
1525 #endif
1526 	{
1527 		callout_reset_bycpu(&adapter->tx_gc_timer, 1,
1528 		    em_txgc_timer, adapter,
1529 		    rman_get_cpuid(adapter->intr_res));
1530 	}
1531 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1532 }
1533 
1534 #ifdef IFPOLL_ENABLE
1535 
1536 static void
1537 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1538 {
1539 	struct adapter *adapter = ifp->if_softc;
1540 
1541 	ASSERT_SERIALIZED(ifp->if_serializer);
1542 
1543 	if (adapter->npoll.ifpc_stcount-- == 0) {
1544 		uint32_t reg_icr;
1545 
1546 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1547 
1548 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1549 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1550 			callout_stop(&adapter->timer);
1551 			adapter->hw.mac.get_link_status = 1;
1552 			em_update_link_status(adapter);
1553 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1554 		}
1555 	}
1556 
1557 	em_rxeof(adapter, count);
1558 
1559 	em_tx_intr(adapter);
1560 	em_try_txgc(adapter, 1);
1561 }
1562 
1563 static void
1564 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1565 {
1566 	struct adapter *adapter = ifp->if_softc;
1567 
1568 	ASSERT_SERIALIZED(ifp->if_serializer);
1569 
1570 	if (info != NULL) {
1571 		int cpuid = adapter->npoll.ifpc_cpuid;
1572 
1573                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1574 		info->ifpi_rx[cpuid].arg = NULL;
1575 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1576 
1577 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1578 	} else {
1579 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1580 	}
1581 	if (ifp->if_flags & IFF_RUNNING)
1582 		em_init(adapter);
1583 }
1584 
1585 #endif /* IFPOLL_ENABLE */
1586 
1587 static void
1588 em_intr(void *xsc)
1589 {
1590 	em_intr_body(xsc, TRUE);
1591 }
1592 
1593 static void
1594 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1595 {
1596 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1597 	uint32_t reg_icr;
1598 
1599 	logif(intr_beg);
1600 	ASSERT_SERIALIZED(ifp->if_serializer);
1601 
1602 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1603 
1604 	if (chk_asserted &&
1605 	    ((adapter->hw.mac.type >= e1000_82571 &&
1606 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1607 	     reg_icr == 0)) {
1608 		logif(intr_end);
1609 		return;
1610 	}
1611 
1612 	/*
1613 	 * XXX: some laptops trigger several spurious interrupts
1614 	 * on em(4) when in the resume cycle. The ICR register
1615 	 * reports all-ones value in this case. Processing such
1616 	 * interrupts would lead to a freeze. I don't know why.
1617 	 */
1618 	if (reg_icr == 0xffffffff) {
1619 		logif(intr_end);
1620 		return;
1621 	}
1622 
1623 	if (ifp->if_flags & IFF_RUNNING) {
1624 		if (reg_icr &
1625 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1626 			em_rxeof(adapter, -1);
1627 		if (reg_icr & E1000_ICR_TXDW)
1628 			em_tx_intr(adapter);
1629 	}
1630 
1631 	/* Link status change */
1632 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1633 		callout_stop(&adapter->timer);
1634 		adapter->hw.mac.get_link_status = 1;
1635 		em_update_link_status(adapter);
1636 
1637 		/* Deal with TX cruft when link lost */
1638 		em_tx_purge(adapter);
1639 
1640 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1641 	}
1642 
1643 	if (reg_icr & E1000_ICR_RXO)
1644 		adapter->rx_overruns++;
1645 
1646 	logif(intr_end);
1647 }
1648 
1649 static void
1650 em_intr_mask(void *xsc)
1651 {
1652 	struct adapter *adapter = xsc;
1653 
1654 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1655 	/*
1656 	 * NOTE:
1657 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1658 	 * so don't check it.
1659 	 */
1660 	em_intr_body(adapter, FALSE);
1661 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1662 }
1663 
1664 static void
1665 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1666 {
1667 	struct adapter *adapter = ifp->if_softc;
1668 
1669 	ASSERT_SERIALIZED(ifp->if_serializer);
1670 
1671 	em_update_link_status(adapter);
1672 
1673 	ifmr->ifm_status = IFM_AVALID;
1674 	ifmr->ifm_active = IFM_ETHER;
1675 
1676 	if (!adapter->link_active) {
1677 		if (adapter->hw.mac.autoneg)
1678 			ifmr->ifm_active |= IFM_NONE;
1679 		else
1680 			ifmr->ifm_active = adapter->media.ifm_media;
1681 		return;
1682 	}
1683 
1684 	ifmr->ifm_status |= IFM_ACTIVE;
1685 	if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1686 		ifmr->ifm_active |= adapter->ifm_flowctrl;
1687 
1688 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1689 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1690 		u_char fiber_type = IFM_1000_SX;
1691 
1692 		if (adapter->hw.mac.type == e1000_82545)
1693 			fiber_type = IFM_1000_LX;
1694 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1695 	} else {
1696 		switch (adapter->link_speed) {
1697 		case 10:
1698 			ifmr->ifm_active |= IFM_10_T;
1699 			break;
1700 		case 100:
1701 			ifmr->ifm_active |= IFM_100_TX;
1702 			break;
1703 
1704 		case 1000:
1705 			ifmr->ifm_active |= IFM_1000_T;
1706 			break;
1707 		}
1708 		if (adapter->link_duplex == FULL_DUPLEX)
1709 			ifmr->ifm_active |= IFM_FDX;
1710 		else
1711 			ifmr->ifm_active |= IFM_HDX;
1712 	}
1713 	if (ifmr->ifm_active & IFM_FDX) {
1714 		ifmr->ifm_active |=
1715 		    e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1716 	}
1717 }
1718 
1719 static int
1720 em_media_change(struct ifnet *ifp)
1721 {
1722 	struct adapter *adapter = ifp->if_softc;
1723 	struct ifmedia *ifm = &adapter->media;
1724 
1725 	ASSERT_SERIALIZED(ifp->if_serializer);
1726 
1727 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1728 		return (EINVAL);
1729 
1730 	if (adapter->hw.mac.type == e1000_pchlan &&
1731 	    (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1732 		if (bootverbose)
1733 			if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1734 		return EINVAL;
1735 	}
1736 
1737 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1738 	case IFM_AUTO:
1739 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1740 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1741 		break;
1742 
1743 	case IFM_1000_LX:
1744 	case IFM_1000_SX:
1745 	case IFM_1000_T:
1746 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1747 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1748 		break;
1749 
1750 	case IFM_100_TX:
1751 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1752 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1753 		} else {
1754 			if (IFM_OPTIONS(ifm->ifm_media) &
1755 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1756 				if (bootverbose) {
1757 					if_printf(ifp, "Flow control is not "
1758 					    "allowed for half-duplex\n");
1759 				}
1760 				return EINVAL;
1761 			}
1762 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1763 		}
1764 		adapter->hw.mac.autoneg = FALSE;
1765 		adapter->hw.phy.autoneg_advertised = 0;
1766 		break;
1767 
1768 	case IFM_10_T:
1769 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1770 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1771 		} else {
1772 			if (IFM_OPTIONS(ifm->ifm_media) &
1773 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1774 				if (bootverbose) {
1775 					if_printf(ifp, "Flow control is not "
1776 					    "allowed for half-duplex\n");
1777 				}
1778 				return EINVAL;
1779 			}
1780 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1781 		}
1782 		adapter->hw.mac.autoneg = FALSE;
1783 		adapter->hw.phy.autoneg_advertised = 0;
1784 		break;
1785 
1786 	default:
1787 		if (bootverbose) {
1788 			if_printf(ifp, "Unsupported media type %d\n",
1789 			    IFM_SUBTYPE(ifm->ifm_media));
1790 		}
1791 		return EINVAL;
1792 	}
1793 	adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1794 
1795 	if (ifp->if_flags & IFF_RUNNING)
1796 		em_init(adapter);
1797 
1798 	return (0);
1799 }
1800 
1801 static int
1802 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1803     int *segs_used, int *idx)
1804 {
1805 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1806 	bus_dmamap_t map;
1807 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1808 	struct e1000_tx_desc *ctxd = NULL;
1809 	struct mbuf *m_head = *m_headp;
1810 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1811 	int maxsegs, nsegs, i, j, first, last = 0, error;
1812 
1813 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1814 		error = em_tso_pullup(adapter, m_headp);
1815 		if (error)
1816 			return error;
1817 		m_head = *m_headp;
1818 	}
1819 
1820 	txd_upper = txd_lower = 0;
1821 	txd_used = 0;
1822 
1823 	/*
1824 	 * Capture the first descriptor index, this descriptor
1825 	 * will have the index of the EOP which is the only one
1826 	 * that now gets a DONE bit writeback.
1827 	 */
1828 	first = adapter->next_avail_tx_desc;
1829 	tx_buffer = &adapter->tx_buffer_area[first];
1830 	tx_buffer_mapped = tx_buffer;
1831 	map = tx_buffer->map;
1832 
1833 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1834 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1835 		("not enough spare TX desc"));
1836 	if (adapter->pcix_82544) {
1837 		/* Half it; see the comment in em_attach() */
1838 		maxsegs >>= 1;
1839 	}
1840 	if (maxsegs > EM_MAX_SCATTER)
1841 		maxsegs = EM_MAX_SCATTER;
1842 
1843 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1844 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1845 	if (error) {
1846 		if (error == ENOBUFS)
1847 			adapter->mbuf_alloc_failed++;
1848 		else
1849 			adapter->no_tx_dma_setup++;
1850 
1851 		m_freem(*m_headp);
1852 		*m_headp = NULL;
1853 		return error;
1854 	}
1855         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1856 
1857 	m_head = *m_headp;
1858 	adapter->tx_nsegs += nsegs;
1859 	*segs_used += nsegs;
1860 
1861 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1862 		/* TSO will consume one TX desc */
1863 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1864 		adapter->tx_nsegs += i;
1865 		*segs_used += i;
1866 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1867 		/* TX csum offloading will consume one TX desc */
1868 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1869 		adapter->tx_nsegs += i;
1870 		*segs_used += i;
1871 	}
1872 
1873         /* Handle VLAN tag */
1874 	if (m_head->m_flags & M_VLANTAG) {
1875 		/* Set the vlan id. */
1876 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1877 		/* Tell hardware to add tag */
1878 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1879 	}
1880 
1881 	i = adapter->next_avail_tx_desc;
1882 
1883 	/* Set up our transmit descriptors */
1884 	for (j = 0; j < nsegs; j++) {
1885 		/* If adapter is 82544 and on PCIX bus */
1886 		if(adapter->pcix_82544) {
1887 			DESC_ARRAY desc_array;
1888 			uint32_t array_elements, counter;
1889 
1890 			/*
1891 			 * Check the Address and Length combination and
1892 			 * split the data accordingly
1893 			 */
1894 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1895 						segs[j].ds_len, &desc_array);
1896 			for (counter = 0; counter < array_elements; counter++) {
1897 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1898 
1899 				tx_buffer = &adapter->tx_buffer_area[i];
1900 				ctxd = &adapter->tx_desc_base[i];
1901 
1902 				ctxd->buffer_addr = htole64(
1903 				    desc_array.descriptor[counter].address);
1904 				ctxd->lower.data = htole32(
1905 				    E1000_TXD_CMD_IFCS | txd_lower |
1906 				    desc_array.descriptor[counter].length);
1907 				ctxd->upper.data = htole32(txd_upper);
1908 
1909 				last = i;
1910 				if (++i == adapter->num_tx_desc)
1911 					i = 0;
1912 
1913 				txd_used++;
1914                         }
1915 		} else {
1916 			tx_buffer = &adapter->tx_buffer_area[i];
1917 			ctxd = &adapter->tx_desc_base[i];
1918 
1919 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1920 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1921 						   txd_lower | segs[j].ds_len);
1922 			ctxd->upper.data = htole32(txd_upper);
1923 
1924 			last = i;
1925 			if (++i == adapter->num_tx_desc)
1926 				i = 0;
1927 		}
1928 	}
1929 
1930 	adapter->next_avail_tx_desc = i;
1931 	if (adapter->pcix_82544) {
1932 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1933 		adapter->num_tx_desc_avail -= txd_used;
1934 	} else {
1935 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1936 		adapter->num_tx_desc_avail -= nsegs;
1937 	}
1938 	adapter->tx_nmbuf++;
1939 
1940 	tx_buffer->m_head = m_head;
1941 	tx_buffer_mapped->map = tx_buffer->map;
1942 	tx_buffer->map = map;
1943 
1944 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1945 		adapter->tx_nsegs = 0;
1946 
1947 		/*
1948 		 * Report Status (RS) is turned on
1949 		 * every tx_int_nsegs descriptors.
1950 		 */
1951 		cmd = E1000_TXD_CMD_RS;
1952 
1953 		/*
1954 		 * Keep track of the descriptor, which will
1955 		 * be written back by hardware.
1956 		 */
1957 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1958 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1959 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1960 	}
1961 
1962 	/*
1963 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1964 	 */
1965 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1966 
1967 	if (adapter->hw.mac.type == e1000_82547) {
1968 		/*
1969 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1970 		 * E1000 that this frame is available to transmit.
1971 		 */
1972 		if (adapter->link_duplex == HALF_DUPLEX) {
1973 			em_82547_move_tail_serialized(adapter);
1974 		} else {
1975 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1976 			em_82547_update_fifo_head(adapter,
1977 			    m_head->m_pkthdr.len);
1978 		}
1979 	} else {
1980 		/*
1981 		 * Defer TDT updating, until enough descriptors are setup
1982 		 */
1983 		*idx = i;
1984 	}
1985 	return (0);
1986 }
1987 
1988 /*
1989  * 82547 workaround to avoid controller hang in half-duplex environment.
1990  * The workaround is to avoid queuing a large packet that would span
1991  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1992  * in this case.  We do that only when FIFO is quiescent.
1993  */
1994 static void
1995 em_82547_move_tail_serialized(struct adapter *adapter)
1996 {
1997 	struct e1000_tx_desc *tx_desc;
1998 	uint16_t hw_tdt, sw_tdt, length = 0;
1999 	bool eop = 0;
2000 
2001 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
2002 
2003 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
2004 	sw_tdt = adapter->next_avail_tx_desc;
2005 
2006 	while (hw_tdt != sw_tdt) {
2007 		tx_desc = &adapter->tx_desc_base[hw_tdt];
2008 		length += tx_desc->lower.flags.length;
2009 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
2010 		if (++hw_tdt == adapter->num_tx_desc)
2011 			hw_tdt = 0;
2012 
2013 		if (eop) {
2014 			if (em_82547_fifo_workaround(adapter, length)) {
2015 				adapter->tx_fifo_wrk_cnt++;
2016 				callout_reset(&adapter->tx_fifo_timer, 1,
2017 					em_82547_move_tail, adapter);
2018 				break;
2019 			}
2020 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
2021 			em_82547_update_fifo_head(adapter, length);
2022 			length = 0;
2023 		}
2024 	}
2025 }
2026 
2027 static void
2028 em_82547_move_tail(void *xsc)
2029 {
2030 	struct adapter *adapter = xsc;
2031 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2032 
2033 	lwkt_serialize_enter(ifp->if_serializer);
2034 	em_82547_move_tail_serialized(adapter);
2035 	lwkt_serialize_exit(ifp->if_serializer);
2036 }
2037 
2038 static int
2039 em_82547_fifo_workaround(struct adapter *adapter, int len)
2040 {
2041 	int fifo_space, fifo_pkt_len;
2042 
2043 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
2044 
2045 	if (adapter->link_duplex == HALF_DUPLEX) {
2046 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2047 
2048 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
2049 			if (em_82547_tx_fifo_reset(adapter))
2050 				return (0);
2051 			else
2052 				return (1);
2053 		}
2054 	}
2055 	return (0);
2056 }
2057 
2058 static void
2059 em_82547_update_fifo_head(struct adapter *adapter, int len)
2060 {
2061 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
2062 
2063 	/* tx_fifo_head is always 16 byte aligned */
2064 	adapter->tx_fifo_head += fifo_pkt_len;
2065 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2066 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
2067 }
2068 
2069 static int
2070 em_82547_tx_fifo_reset(struct adapter *adapter)
2071 {
2072 	uint32_t tctl;
2073 
2074 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
2075 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
2076 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
2077 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
2078 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
2079 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
2080 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
2081 		/* Disable TX unit */
2082 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2083 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
2084 		    tctl & ~E1000_TCTL_EN);
2085 
2086 		/* Reset FIFO pointers */
2087 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
2088 		    adapter->tx_head_addr);
2089 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
2090 		    adapter->tx_head_addr);
2091 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
2092 		    adapter->tx_head_addr);
2093 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
2094 		    adapter->tx_head_addr);
2095 
2096 		/* Re-enable TX unit */
2097 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2098 		E1000_WRITE_FLUSH(&adapter->hw);
2099 
2100 		adapter->tx_fifo_head = 0;
2101 		adapter->tx_fifo_reset_cnt++;
2102 
2103 		return (TRUE);
2104 	} else {
2105 		return (FALSE);
2106 	}
2107 }
2108 
2109 static void
2110 em_set_promisc(struct adapter *adapter)
2111 {
2112 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2113 	uint32_t reg_rctl;
2114 
2115 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2116 
2117 	if (ifp->if_flags & IFF_PROMISC) {
2118 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2119 		/* Turn this on if you want to see bad packets */
2120 		if (em_debug_sbp)
2121 			reg_rctl |= E1000_RCTL_SBP;
2122 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2123 	} else if (ifp->if_flags & IFF_ALLMULTI) {
2124 		reg_rctl |= E1000_RCTL_MPE;
2125 		reg_rctl &= ~E1000_RCTL_UPE;
2126 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2127 	}
2128 }
2129 
2130 static void
2131 em_disable_promisc(struct adapter *adapter)
2132 {
2133 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2134 	uint32_t reg_rctl;
2135 	int mcnt = 0;
2136 
2137 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2138 	reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
2139 
2140 	if (ifp->if_flags & IFF_ALLMULTI) {
2141 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2142 	} else {
2143 		const struct ifmultiaddr *ifma;
2144 
2145 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2146 			if (ifma->ifma_addr->sa_family != AF_LINK)
2147 				continue;
2148 			if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2149 				break;
2150 			mcnt++;
2151 		}
2152 	}
2153 	/* Don't disable if in MAX groups */
2154 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2155 		reg_rctl &= ~E1000_RCTL_MPE;
2156 
2157 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2158 }
2159 
2160 static void
2161 em_set_multi(struct adapter *adapter)
2162 {
2163 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2164 	struct ifmultiaddr *ifma;
2165 	uint32_t reg_rctl = 0;
2166 	uint8_t *mta;
2167 	int mcnt = 0;
2168 
2169 	mta = adapter->mta;
2170 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2171 
2172 	if (adapter->hw.mac.type == e1000_82542 &&
2173 	    adapter->hw.revision_id == E1000_REVISION_2) {
2174 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2175 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2176 			e1000_pci_clear_mwi(&adapter->hw);
2177 		reg_rctl |= E1000_RCTL_RST;
2178 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2179 		msec_delay(5);
2180 	}
2181 
2182 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2183 		if (ifma->ifma_addr->sa_family != AF_LINK)
2184 			continue;
2185 
2186 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2187 			break;
2188 
2189 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2190 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2191 		mcnt++;
2192 	}
2193 
2194 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2195 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2196 		reg_rctl |= E1000_RCTL_MPE;
2197 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2198 	} else {
2199 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2200 	}
2201 
2202 	if (adapter->hw.mac.type == e1000_82542 &&
2203 	    adapter->hw.revision_id == E1000_REVISION_2) {
2204 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2205 		reg_rctl &= ~E1000_RCTL_RST;
2206 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2207 		msec_delay(5);
2208 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2209 			e1000_pci_set_mwi(&adapter->hw);
2210 	}
2211 }
2212 
2213 /*
2214  * This routine checks for link status and updates statistics.
2215  */
2216 static void
2217 em_timer(void *xsc)
2218 {
2219 	struct adapter *adapter = xsc;
2220 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2221 
2222 	lwkt_serialize_enter(ifp->if_serializer);
2223 
2224 	em_update_link_status(adapter);
2225 	em_update_stats(adapter);
2226 
2227 	/* Reset LAA into RAR[0] on 82571 */
2228 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2229 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2230 
2231 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2232 		em_print_hw_stats(adapter);
2233 
2234 	em_smartspeed(adapter);
2235 
2236 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2237 
2238 	lwkt_serialize_exit(ifp->if_serializer);
2239 }
2240 
2241 static void
2242 em_update_link_status(struct adapter *adapter)
2243 {
2244 	struct e1000_hw *hw = &adapter->hw;
2245 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2246 	device_t dev = adapter->dev;
2247 	uint32_t link_check = 0;
2248 
2249 	/* Get the cached link value or read phy for real */
2250 	switch (hw->phy.media_type) {
2251 	case e1000_media_type_copper:
2252 		if (hw->mac.get_link_status) {
2253 			if (hw->mac.type >= e1000_pch_spt)
2254 				msec_delay(50);
2255 			/* Do the work to read phy */
2256 			e1000_check_for_link(hw);
2257 			link_check = !hw->mac.get_link_status;
2258 			if (link_check) /* ESB2 fix */
2259 				e1000_cfg_on_link_up(hw);
2260 		} else {
2261 			link_check = TRUE;
2262 		}
2263 		break;
2264 
2265 	case e1000_media_type_fiber:
2266 		e1000_check_for_link(hw);
2267 		link_check =
2268 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2269 		break;
2270 
2271 	case e1000_media_type_internal_serdes:
2272 		e1000_check_for_link(hw);
2273 		link_check = adapter->hw.mac.serdes_has_link;
2274 		break;
2275 
2276 	case e1000_media_type_unknown:
2277 	default:
2278 		break;
2279 	}
2280 
2281 	/* Now check for a transition */
2282 	if (link_check && adapter->link_active == 0) {
2283 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2284 		    &adapter->link_duplex);
2285 
2286 		/*
2287 		 * Check if we should enable/disable SPEED_MODE bit on
2288 		 * 82571/82572
2289 		 */
2290 		if (adapter->link_speed != SPEED_1000 &&
2291 		    (hw->mac.type == e1000_82571 ||
2292 		     hw->mac.type == e1000_82572)) {
2293 			int tarc0;
2294 
2295 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2296 			tarc0 &= ~TARC_SPEED_MODE_BIT;
2297 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2298 		}
2299 		if (bootverbose) {
2300 			char flowctrl[IFM_ETH_FC_STRLEN];
2301 
2302 			e1000_fc2str(hw->fc.current_mode, flowctrl,
2303 			    sizeof(flowctrl));
2304 			device_printf(dev, "Link is up %d Mbps %s, "
2305 			    "Flow control: %s\n",
2306 			    adapter->link_speed,
2307 			    (adapter->link_duplex == FULL_DUPLEX) ?
2308 			    "Full Duplex" : "Half Duplex",
2309 			    flowctrl);
2310 		}
2311 		if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2312 			e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2313 		adapter->link_active = 1;
2314 		adapter->smartspeed = 0;
2315 		ifp->if_baudrate = adapter->link_speed * 1000000;
2316 		ifp->if_link_state = LINK_STATE_UP;
2317 		if_link_state_change(ifp);
2318 	} else if (!link_check && adapter->link_active == 1) {
2319 		ifp->if_baudrate = adapter->link_speed = 0;
2320 		adapter->link_duplex = 0;
2321 		if (bootverbose)
2322 			device_printf(dev, "Link is Down\n");
2323 		adapter->link_active = 0;
2324 #if 0
2325 		/* Link down, disable watchdog */
2326 		if->if_timer = 0;
2327 #endif
2328 		ifp->if_link_state = LINK_STATE_DOWN;
2329 		if_link_state_change(ifp);
2330 	}
2331 }
2332 
2333 static void
2334 em_stop(struct adapter *adapter)
2335 {
2336 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2337 	int i;
2338 
2339 	ASSERT_SERIALIZED(ifp->if_serializer);
2340 
2341 	em_disable_intr(adapter);
2342 
2343 	callout_stop(&adapter->timer);
2344 	callout_stop(&adapter->tx_fifo_timer);
2345 
2346 	ifp->if_flags &= ~IFF_RUNNING;
2347 	ifq_clr_oactive(&ifp->if_snd);
2348 	ifp->if_timer = 0;
2349 	adapter->tx_running = 0;
2350 	callout_stop(&adapter->tx_gc_timer);
2351 
2352 	/* I219 needs some special flushing to avoid hangs */
2353 	if (adapter->hw.mac.type >= e1000_pch_spt)
2354 		em_flush_txrx_ring(adapter);
2355 
2356 	e1000_reset_hw(&adapter->hw);
2357 	if (adapter->hw.mac.type >= e1000_82544)
2358 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2359 
2360 	for (i = 0; i < adapter->num_tx_desc; i++) {
2361 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2362 
2363 		if (tx_buffer->m_head != NULL)
2364 			em_free_txbuffer(adapter, tx_buffer);
2365 	}
2366 
2367 	for (i = 0; i < adapter->num_rx_desc; i++) {
2368 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2369 
2370 		if (rx_buffer->m_head != NULL) {
2371 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2372 			m_freem(rx_buffer->m_head);
2373 			rx_buffer->m_head = NULL;
2374 		}
2375 	}
2376 
2377 	if (adapter->fmp != NULL)
2378 		m_freem(adapter->fmp);
2379 	adapter->fmp = NULL;
2380 	adapter->lmp = NULL;
2381 
2382 	adapter->csum_flags = 0;
2383 	adapter->csum_lhlen = 0;
2384 	adapter->csum_iphlen = 0;
2385 	adapter->csum_thlen = 0;
2386 	adapter->csum_mss = 0;
2387 	adapter->csum_pktlen = 0;
2388 
2389 	adapter->tx_dd_head = 0;
2390 	adapter->tx_dd_tail = 0;
2391 	adapter->tx_nsegs = 0;
2392 }
2393 
2394 static int
2395 em_get_hw_info(struct adapter *adapter)
2396 {
2397 	device_t dev = adapter->dev;
2398 
2399 	/* Save off the information about this board */
2400 	adapter->hw.vendor_id = pci_get_vendor(dev);
2401 	adapter->hw.device_id = pci_get_device(dev);
2402 	adapter->hw.revision_id = pci_get_revid(dev);
2403 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2404 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2405 
2406 	/* Do Shared Code Init and Setup */
2407 	if (e1000_set_mac_type(&adapter->hw))
2408 		return ENXIO;
2409 	return 0;
2410 }
2411 
2412 static int
2413 em_alloc_pci_res(struct adapter *adapter)
2414 {
2415 	device_t dev = adapter->dev;
2416 	u_int intr_flags;
2417 	int val, rid, msi_enable;
2418 
2419 	/* Enable bus mastering */
2420 	pci_enable_busmaster(dev);
2421 
2422 	adapter->memory_rid = EM_BAR_MEM;
2423 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2424 				&adapter->memory_rid, RF_ACTIVE);
2425 	if (adapter->memory == NULL) {
2426 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2427 		return (ENXIO);
2428 	}
2429 	adapter->osdep.mem_bus_space_tag =
2430 	    rman_get_bustag(adapter->memory);
2431 	adapter->osdep.mem_bus_space_handle =
2432 	    rman_get_bushandle(adapter->memory);
2433 
2434 	/* XXX This is quite goofy, it is not actually used */
2435 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2436 
2437 	/* Only older adapters use IO mapping */
2438 	if (adapter->hw.mac.type > e1000_82543 &&
2439 	    adapter->hw.mac.type < e1000_82571) {
2440 		/* Figure our where our IO BAR is ? */
2441 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2442 			val = pci_read_config(dev, rid, 4);
2443 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2444 				adapter->io_rid = rid;
2445 				break;
2446 			}
2447 			rid += 4;
2448 			/* check for 64bit BAR */
2449 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2450 				rid += 4;
2451 		}
2452 		if (rid >= PCIR_CARDBUSCIS) {
2453 			device_printf(dev, "Unable to locate IO BAR\n");
2454 			return (ENXIO);
2455 		}
2456 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2457 					&adapter->io_rid, RF_ACTIVE);
2458 		if (adapter->ioport == NULL) {
2459 			device_printf(dev, "Unable to allocate bus resource: "
2460 			    "ioport\n");
2461 			return (ENXIO);
2462 		}
2463 		adapter->hw.io_base = 0;
2464 		adapter->osdep.io_bus_space_tag =
2465 		    rman_get_bustag(adapter->ioport);
2466 		adapter->osdep.io_bus_space_handle =
2467 		    rman_get_bushandle(adapter->ioport);
2468 	}
2469 
2470 	/*
2471 	 * Don't enable MSI-X on 82574, see:
2472 	 * 82574 specification update errata #15
2473 	 *
2474 	 * Don't enable MSI on PCI/PCI-X chips, see:
2475 	 * 82540 specification update errata #6
2476 	 * 82545 specification update errata #4
2477 	 *
2478 	 * Don't enable MSI on 82571/82572, see:
2479 	 * 82571/82572 specification update errata #63
2480 	 */
2481 	msi_enable = em_msi_enable;
2482 	if (msi_enable &&
2483 	    ((adapter->flags & EM_FLAG_GEN2) == 0 ||
2484 	     adapter->hw.mac.type == e1000_82571 ||
2485 	     adapter->hw.mac.type == e1000_82572))
2486 		msi_enable = 0;
2487 again:
2488 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2489 	    &adapter->intr_rid, &intr_flags);
2490 
2491 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2492 		int unshared;
2493 
2494 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2495 		if (!unshared) {
2496 			adapter->flags |= EM_FLAG_SHARED_INTR;
2497 			if (bootverbose)
2498 				device_printf(dev, "IRQ shared\n");
2499 		} else {
2500 			intr_flags &= ~RF_SHAREABLE;
2501 			if (bootverbose)
2502 				device_printf(dev, "IRQ unshared\n");
2503 		}
2504 	}
2505 
2506 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2507 	    &adapter->intr_rid, intr_flags);
2508 	if (adapter->intr_res == NULL) {
2509 		device_printf(dev, "Unable to allocate bus resource: %s\n",
2510 		    adapter->intr_type == PCI_INTR_TYPE_MSI ?
2511 		    "MSI" : "legacy intr");
2512 		if (!msi_enable) {
2513 			/* Retry with MSI. */
2514 			msi_enable = 1;
2515 			adapter->flags &= ~EM_FLAG_SHARED_INTR;
2516 			goto again;
2517 		}
2518 		return (ENXIO);
2519 	}
2520 
2521 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2522 	adapter->hw.back = &adapter->osdep;
2523 	return (0);
2524 }
2525 
2526 static void
2527 em_free_pci_res(struct adapter *adapter)
2528 {
2529 	device_t dev = adapter->dev;
2530 
2531 	if (adapter->intr_res != NULL) {
2532 		bus_release_resource(dev, SYS_RES_IRQ,
2533 		    adapter->intr_rid, adapter->intr_res);
2534 	}
2535 
2536 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2537 		pci_release_msi(dev);
2538 
2539 	if (adapter->memory != NULL) {
2540 		bus_release_resource(dev, SYS_RES_MEMORY,
2541 		    adapter->memory_rid, adapter->memory);
2542 	}
2543 
2544 	if (adapter->flash != NULL) {
2545 		bus_release_resource(dev, SYS_RES_MEMORY,
2546 		    adapter->flash_rid, adapter->flash);
2547 	}
2548 
2549 	if (adapter->ioport != NULL) {
2550 		bus_release_resource(dev, SYS_RES_IOPORT,
2551 		    adapter->io_rid, adapter->ioport);
2552 	}
2553 }
2554 
2555 static int
2556 em_reset(struct adapter *adapter)
2557 {
2558 	device_t dev = adapter->dev;
2559 	uint16_t rx_buffer_size;
2560 	uint32_t pba;
2561 
2562 	/* When hardware is reset, fifo_head is also reset */
2563 	adapter->tx_fifo_head = 0;
2564 
2565 	/* Set up smart power down as default off on newer adapters. */
2566 	if (!em_smart_pwr_down &&
2567 	    (adapter->hw.mac.type == e1000_82571 ||
2568 	     adapter->hw.mac.type == e1000_82572)) {
2569 		uint16_t phy_tmp = 0;
2570 
2571 		/* Speed up time to link by disabling smart power down. */
2572 		e1000_read_phy_reg(&adapter->hw,
2573 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2574 		phy_tmp &= ~IGP02E1000_PM_SPD;
2575 		e1000_write_phy_reg(&adapter->hw,
2576 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2577 	}
2578 
2579 	/*
2580 	 * Packet Buffer Allocation (PBA)
2581 	 * Writing PBA sets the receive portion of the buffer
2582 	 * the remainder is used for the transmit buffer.
2583 	 *
2584 	 * Devices before the 82547 had a Packet Buffer of 64K.
2585 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2586 	 * After the 82547 the buffer was reduced to 40K.
2587 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2588 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2589 	 */
2590 	switch (adapter->hw.mac.type) {
2591 	case e1000_82547:
2592 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2593 		if (adapter->hw.mac.max_frame_size > 8192)
2594 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2595 		else
2596 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2597 		adapter->tx_fifo_head = 0;
2598 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2599 		adapter->tx_fifo_size =
2600 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2601 		break;
2602 
2603 	/* Total Packet Buffer on these is 48K */
2604 	case e1000_82571:
2605 	case e1000_82572:
2606 	case e1000_80003es2lan:
2607 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2608 		break;
2609 
2610 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2611 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2612 		break;
2613 
2614 	case e1000_82574:
2615 	case e1000_82583:
2616 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2617 		break;
2618 
2619 	case e1000_ich8lan:
2620 		pba = E1000_PBA_8K;
2621 		break;
2622 
2623 	case e1000_ich9lan:
2624 	case e1000_ich10lan:
2625 #define E1000_PBA_10K	0x000A
2626 		pba = E1000_PBA_10K;
2627 		break;
2628 
2629 	case e1000_pchlan:
2630 	case e1000_pch2lan:
2631 	case e1000_pch_lpt:
2632 	case e1000_pch_spt:
2633 	case e1000_pch_cnp:
2634 		pba = E1000_PBA_26K;
2635 		break;
2636 
2637 	default:
2638 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2639 		if (adapter->hw.mac.max_frame_size > 8192)
2640 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2641 		else
2642 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2643 	}
2644 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2645 
2646 	/*
2647 	 * These parameters control the automatic generation (Tx) and
2648 	 * response (Rx) to Ethernet PAUSE frames.
2649 	 * - High water mark should allow for at least two frames to be
2650 	 *   received after sending an XOFF.
2651 	 * - Low water mark works best when it is very near the high water mark.
2652 	 *   This allows the receiver to restart by sending XON when it has
2653 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2654 	 *   restart after one full frame is pulled from the buffer. There
2655 	 *   could be several smaller frames in the buffer and if so they will
2656 	 *   not trigger the XON until their total number reduces the buffer
2657 	 *   by 1500.
2658 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2659 	 */
2660 	rx_buffer_size =
2661 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2662 
2663 	adapter->hw.fc.high_water = rx_buffer_size -
2664 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2665 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2666 
2667 	if (adapter->hw.mac.type == e1000_80003es2lan)
2668 		adapter->hw.fc.pause_time = 0xFFFF;
2669 	else
2670 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2671 
2672 	adapter->hw.fc.send_xon = TRUE;
2673 
2674 	adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2675 
2676 	/*
2677 	 * Device specific overrides/settings
2678 	 */
2679 	switch (adapter->hw.mac.type) {
2680 	case e1000_pchlan:
2681 		KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2682 		    adapter->hw.fc.requested_mode == e1000_fc_none,
2683 		    ("unsupported flow control on PCH %d",
2684 		     adapter->hw.fc.requested_mode));
2685 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2686 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2687 			adapter->hw.fc.high_water = 0x3500;
2688 			adapter->hw.fc.low_water = 0x1500;
2689 		} else {
2690 			adapter->hw.fc.high_water = 0x5000;
2691 			adapter->hw.fc.low_water = 0x3000;
2692 		}
2693 		adapter->hw.fc.refresh_time = 0x1000;
2694 		break;
2695 
2696 	case e1000_pch2lan:
2697 	case e1000_pch_lpt:
2698 	case e1000_pch_spt:
2699 	case e1000_pch_cnp:
2700 		adapter->hw.fc.high_water = 0x5C20;
2701 		adapter->hw.fc.low_water = 0x5048;
2702 		adapter->hw.fc.pause_time = 0x0650;
2703 		adapter->hw.fc.refresh_time = 0x0400;
2704 		/* Jumbos need adjusted PBA */
2705 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2706 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2707 		else
2708 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2709 		break;
2710 
2711 	case e1000_ich9lan:
2712 	case e1000_ich10lan:
2713 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2714 			adapter->hw.fc.high_water = 0x2800;
2715 			adapter->hw.fc.low_water =
2716 			    adapter->hw.fc.high_water - 8;
2717 			break;
2718 		}
2719 		/* FALL THROUGH */
2720 	default:
2721 		if (adapter->hw.mac.type == e1000_80003es2lan)
2722 			adapter->hw.fc.pause_time = 0xFFFF;
2723 		break;
2724 	}
2725 
2726 	/* I219 needs some special flushing to avoid hangs */
2727 	if (adapter->hw.mac.type >= e1000_pch_spt)
2728 		em_flush_txrx_ring(adapter);
2729 
2730 	/* Issue a global reset */
2731 	e1000_reset_hw(&adapter->hw);
2732 	if (adapter->hw.mac.type >= e1000_82544)
2733 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2734 	em_disable_aspm(adapter);
2735 
2736 	if (e1000_init_hw(&adapter->hw) < 0) {
2737 		device_printf(dev, "Hardware Initialization Failed\n");
2738 		return (EIO);
2739 	}
2740 
2741 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2742 	e1000_get_phy_info(&adapter->hw);
2743 	e1000_check_for_link(&adapter->hw);
2744 
2745 	return (0);
2746 }
2747 
2748 static void
2749 em_setup_ifp(struct adapter *adapter)
2750 {
2751 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2752 
2753 	if_initname(ifp, device_get_name(adapter->dev),
2754 		    device_get_unit(adapter->dev));
2755 	ifp->if_softc = adapter;
2756 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2757 	ifp->if_init =  em_init;
2758 	ifp->if_ioctl = em_ioctl;
2759 	ifp->if_start = em_start;
2760 #ifdef IFPOLL_ENABLE
2761 	ifp->if_npoll = em_npoll;
2762 #endif
2763 	ifp->if_watchdog = em_watchdog;
2764 	ifp->if_nmbclusters = adapter->num_rx_desc;
2765 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2766 	ifq_set_ready(&ifp->if_snd);
2767 
2768 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2769 
2770 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2771 	if (adapter->hw.mac.type >= e1000_82543)
2772 		ifp->if_capabilities |= IFCAP_HWCSUM;
2773 	if (adapter->flags & EM_FLAG_TSO)
2774 		ifp->if_capabilities |= IFCAP_TSO;
2775 	ifp->if_capenable = ifp->if_capabilities;
2776 
2777 	if (ifp->if_capenable & IFCAP_TXCSUM)
2778 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2779 	if (ifp->if_capenable & IFCAP_TSO)
2780 		ifp->if_hwassist |= CSUM_TSO;
2781 
2782 	/*
2783 	 * Tell the upper layer(s) we support long frames.
2784 	 */
2785 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2786 
2787 	/*
2788 	 * Specify the media types supported by this adapter and register
2789 	 * callbacks to update media and link information
2790 	 */
2791 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2792 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2793 		u_char fiber_type = IFM_1000_SX; /* default type */
2794 
2795 		if (adapter->hw.mac.type == e1000_82545)
2796 			fiber_type = IFM_1000_LX;
2797 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2798 			    0, NULL);
2799 	} else {
2800 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2801 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2802 			    0, NULL);
2803 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2804 			    0, NULL);
2805 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2806 			    0, NULL);
2807 		if (adapter->hw.phy.type != e1000_phy_ife) {
2808 			ifmedia_add(&adapter->media,
2809 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2810 		}
2811 	}
2812 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2813 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2814 	    adapter->ifm_flowctrl);
2815 }
2816 
2817 
2818 /*
2819  * Workaround for SmartSpeed on 82541 and 82547 controllers
2820  */
2821 static void
2822 em_smartspeed(struct adapter *adapter)
2823 {
2824 	uint16_t phy_tmp;
2825 
2826 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2827 	    adapter->hw.mac.autoneg == 0 ||
2828 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2829 		return;
2830 
2831 	if (adapter->smartspeed == 0) {
2832 		/*
2833 		 * If Master/Slave config fault is asserted twice,
2834 		 * we assume back-to-back
2835 		 */
2836 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2837 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2838 			return;
2839 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2840 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2841 			e1000_read_phy_reg(&adapter->hw,
2842 			    PHY_1000T_CTRL, &phy_tmp);
2843 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2844 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2845 				e1000_write_phy_reg(&adapter->hw,
2846 				    PHY_1000T_CTRL, phy_tmp);
2847 				adapter->smartspeed++;
2848 				if (adapter->hw.mac.autoneg &&
2849 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2850 				    !e1000_read_phy_reg(&adapter->hw,
2851 				     PHY_CONTROL, &phy_tmp)) {
2852 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2853 						   MII_CR_RESTART_AUTO_NEG;
2854 					e1000_write_phy_reg(&adapter->hw,
2855 					    PHY_CONTROL, phy_tmp);
2856 				}
2857 			}
2858 		}
2859 		return;
2860 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2861 		/* If still no link, perhaps using 2/3 pair cable */
2862 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2863 		phy_tmp |= CR_1000T_MS_ENABLE;
2864 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2865 		if (adapter->hw.mac.autoneg &&
2866 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2867 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2868 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2869 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2870 		}
2871 	}
2872 
2873 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2874 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2875 		adapter->smartspeed = 0;
2876 }
2877 
2878 static int
2879 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2880 	      struct em_dma_alloc *dma)
2881 {
2882 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2883 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2884 				&dma->dma_tag, &dma->dma_map,
2885 				&dma->dma_paddr);
2886 	if (dma->dma_vaddr == NULL)
2887 		return ENOMEM;
2888 	else
2889 		return 0;
2890 }
2891 
2892 static void
2893 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2894 {
2895 	if (dma->dma_tag == NULL)
2896 		return;
2897 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2898 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2899 	bus_dma_tag_destroy(dma->dma_tag);
2900 }
2901 
2902 static int
2903 em_create_tx_ring(struct adapter *adapter)
2904 {
2905 	device_t dev = adapter->dev;
2906 	struct em_buffer *tx_buffer;
2907 	int error, i;
2908 
2909 	adapter->tx_buffer_area =
2910 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2911 			M_DEVBUF, M_WAITOK | M_ZERO);
2912 
2913 	/*
2914 	 * Create DMA tags for tx buffers
2915 	 */
2916 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2917 			1, 0,			/* alignment, bounds */
2918 			BUS_SPACE_MAXADDR,	/* lowaddr */
2919 			BUS_SPACE_MAXADDR,	/* highaddr */
2920 			EM_TSO_SIZE,		/* maxsize */
2921 			EM_MAX_SCATTER,		/* nsegments */
2922 			PAGE_SIZE,		/* maxsegsize */
2923 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2924 			BUS_DMA_ONEBPAGE,	/* flags */
2925 			&adapter->txtag);
2926 	if (error) {
2927 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2928 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2929 		adapter->tx_buffer_area = NULL;
2930 		return error;
2931 	}
2932 
2933 	/*
2934 	 * Create DMA maps for tx buffers
2935 	 */
2936 	for (i = 0; i < adapter->num_tx_desc; i++) {
2937 		tx_buffer = &adapter->tx_buffer_area[i];
2938 
2939 		error = bus_dmamap_create(adapter->txtag,
2940 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2941 					  &tx_buffer->map);
2942 		if (error) {
2943 			device_printf(dev, "Unable to create TX DMA map\n");
2944 			em_destroy_tx_ring(adapter, i);
2945 			return error;
2946 		}
2947 	}
2948 	return (0);
2949 }
2950 
2951 static void
2952 em_init_tx_ring(struct adapter *adapter)
2953 {
2954 	/* Clear the old ring contents */
2955 	bzero(adapter->tx_desc_base,
2956 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2957 
2958 	/* Reset state */
2959 	adapter->next_avail_tx_desc = 0;
2960 	adapter->next_tx_to_clean = 0;
2961 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2962 	adapter->tx_nmbuf = 0;
2963 	adapter->tx_running = 0;
2964 }
2965 
2966 static void
2967 em_init_tx_unit(struct adapter *adapter)
2968 {
2969 	uint32_t tctl, tarc, tipg = 0;
2970 	uint64_t bus_addr;
2971 
2972 	/* Setup the Base and Length of the Tx Descriptor Ring */
2973 	bus_addr = adapter->txdma.dma_paddr;
2974 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2975 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2976 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2977 	    (uint32_t)(bus_addr >> 32));
2978 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2979 	    (uint32_t)bus_addr);
2980 	/* Setup the HW Tx Head and Tail descriptor pointers */
2981 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2982 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2983 	if (adapter->flags & EM_FLAG_GEN2) {
2984 		uint32_t txdctl = 0;
2985 
2986 		txdctl |= 0x1f;		/* PTHRESH */
2987 		txdctl |= 1 << 8;	/* HTHRESH */
2988 		txdctl |= 1 << 16;	/* WTHRESH */
2989 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
2990 		txdctl |= E1000_TXDCTL_GRAN;
2991 		txdctl |= 1 << 25;	/* LWTHRESH */
2992 
2993 		E1000_WRITE_REG(&adapter->hw, E1000_TXDCTL(0), txdctl);
2994 	}
2995 
2996 	/* Set the default values for the Tx Inter Packet Gap timer */
2997 	switch (adapter->hw.mac.type) {
2998 	case e1000_82542:
2999 		tipg = DEFAULT_82542_TIPG_IPGT;
3000 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3001 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3002 		break;
3003 
3004 	case e1000_80003es2lan:
3005 		tipg = DEFAULT_82543_TIPG_IPGR1;
3006 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3007 		    E1000_TIPG_IPGR2_SHIFT;
3008 		break;
3009 
3010 	default:
3011 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3012 		    adapter->hw.phy.media_type ==
3013 		    e1000_media_type_internal_serdes)
3014 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3015 		else
3016 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3017 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3018 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3019 		break;
3020 	}
3021 
3022 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3023 
3024 	/* NOTE: 0 is not allowed for TIDV */
3025 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
3026 	if(adapter->hw.mac.type >= e1000_82540)
3027 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
3028 
3029 	if (adapter->hw.mac.type == e1000_82571 ||
3030 	    adapter->hw.mac.type == e1000_82572) {
3031 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3032 		tarc |= TARC_SPEED_MODE_BIT;
3033 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3034 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3035 		/* errata: program both queues to unweighted RR */
3036 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3037 		tarc |= 1;
3038 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3039 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3040 		tarc |= 1;
3041 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3042 	} else if (adapter->hw.mac.type == e1000_82574) {
3043 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3044 		tarc |= TARC_ERRATA_BIT;
3045 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3046 	}
3047 
3048 	/* Program the Transmit Control Register */
3049 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3050 	tctl &= ~E1000_TCTL_CT;
3051 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3052 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3053 
3054 	if (adapter->hw.mac.type >= e1000_82571)
3055 		tctl |= E1000_TCTL_MULR;
3056 
3057 	/* This write will effectively turn on the transmit unit. */
3058 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3059 
3060 	if (adapter->hw.mac.type == e1000_82571 ||
3061 	    adapter->hw.mac.type == e1000_82572 ||
3062 	    adapter->hw.mac.type == e1000_80003es2lan) {
3063 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
3064 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3065 		tarc &= ~(1 << 28);
3066 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3067 	} else if (adapter->hw.mac.type >= e1000_pch_spt) {
3068 		uint32_t reg;
3069 
3070 		reg = E1000_READ_REG(&adapter->hw, E1000_IOSFPC);
3071 		reg |= E1000_RCTL_RDMTS_HEX;
3072 		E1000_WRITE_REG(&adapter->hw, E1000_IOSFPC, reg);
3073 		reg = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3074 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
3075 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), reg);
3076 	}
3077 }
3078 
3079 static void
3080 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
3081 {
3082 	struct em_buffer *tx_buffer;
3083 	int i;
3084 
3085 	if (adapter->tx_buffer_area == NULL)
3086 		return;
3087 
3088 	for (i = 0; i < ndesc; i++) {
3089 		tx_buffer = &adapter->tx_buffer_area[i];
3090 
3091 		KKASSERT(tx_buffer->m_head == NULL);
3092 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
3093 	}
3094 	bus_dma_tag_destroy(adapter->txtag);
3095 
3096 	kfree(adapter->tx_buffer_area, M_DEVBUF);
3097 	adapter->tx_buffer_area = NULL;
3098 }
3099 
3100 /*
3101  * The offload context needs to be set when we transfer the first
3102  * packet of a particular protocol (TCP/UDP).  This routine has been
3103  * enhanced to deal with inserted VLAN headers.
3104  *
3105  * If the new packet's ether header length, ip header length and
3106  * csum offloading type are same as the previous packet, we should
3107  * avoid allocating a new csum context descriptor; mainly to take
3108  * advantage of the pipeline effect of the TX data read request.
3109  *
3110  * This function returns number of TX descrptors allocated for
3111  * csum context.
3112  */
3113 static int
3114 em_txcsum(struct adapter *adapter, struct mbuf *mp,
3115 	  uint32_t *txd_upper, uint32_t *txd_lower)
3116 {
3117 	struct e1000_context_desc *TXD;
3118 	int curr_txd, ehdrlen, csum_flags;
3119 	uint32_t cmd, hdr_len, ip_hlen;
3120 
3121 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
3122 	ip_hlen = mp->m_pkthdr.csum_iphlen;
3123 	ehdrlen = mp->m_pkthdr.csum_lhlen;
3124 
3125 	if (adapter->csum_lhlen == ehdrlen &&
3126 	    adapter->csum_iphlen == ip_hlen &&
3127 	    adapter->csum_flags == csum_flags) {
3128 		/*
3129 		 * Same csum offload context as the previous packets;
3130 		 * just return.
3131 		 */
3132 		*txd_upper = adapter->csum_txd_upper;
3133 		*txd_lower = adapter->csum_txd_lower;
3134 		return 0;
3135 	}
3136 
3137 	/*
3138 	 * Setup a new csum offload context.
3139 	 */
3140 
3141 	curr_txd = adapter->next_avail_tx_desc;
3142 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
3143 
3144 	cmd = 0;
3145 
3146 	/* Setup of IP header checksum. */
3147 	if (csum_flags & CSUM_IP) {
3148 		/*
3149 		 * Start offset for header checksum calculation.
3150 		 * End offset for header checksum calculation.
3151 		 * Offset of place to put the checksum.
3152 		 */
3153 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
3154 		TXD->lower_setup.ip_fields.ipcse =
3155 		    htole16(ehdrlen + ip_hlen - 1);
3156 		TXD->lower_setup.ip_fields.ipcso =
3157 		    ehdrlen + offsetof(struct ip, ip_sum);
3158 		cmd |= E1000_TXD_CMD_IP;
3159 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3160 	}
3161 	hdr_len = ehdrlen + ip_hlen;
3162 
3163 	if (csum_flags & CSUM_TCP) {
3164 		/*
3165 		 * Start offset for payload checksum calculation.
3166 		 * End offset for payload checksum calculation.
3167 		 * Offset of place to put the checksum.
3168 		 */
3169 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3170 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3171 		TXD->upper_setup.tcp_fields.tucso =
3172 		    hdr_len + offsetof(struct tcphdr, th_sum);
3173 		cmd |= E1000_TXD_CMD_TCP;
3174 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3175 	} else if (csum_flags & CSUM_UDP) {
3176 		/*
3177 		 * Start offset for header checksum calculation.
3178 		 * End offset for header checksum calculation.
3179 		 * Offset of place to put the checksum.
3180 		 */
3181 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3182 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3183 		TXD->upper_setup.tcp_fields.tucso =
3184 		    hdr_len + offsetof(struct udphdr, uh_sum);
3185 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3186 	}
3187 
3188 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3189 		     E1000_TXD_DTYP_D;		/* Data descr */
3190 
3191 	/* Save the information for this csum offloading context */
3192 	adapter->csum_lhlen = ehdrlen;
3193 	adapter->csum_iphlen = ip_hlen;
3194 	adapter->csum_flags = csum_flags;
3195 	adapter->csum_txd_upper = *txd_upper;
3196 	adapter->csum_txd_lower = *txd_lower;
3197 
3198 	TXD->tcp_seg_setup.data = htole32(0);
3199 	TXD->cmd_and_length =
3200 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3201 
3202 	if (++curr_txd == adapter->num_tx_desc)
3203 		curr_txd = 0;
3204 
3205 	KKASSERT(adapter->num_tx_desc_avail > 0);
3206 	adapter->num_tx_desc_avail--;
3207 
3208 	adapter->next_avail_tx_desc = curr_txd;
3209 	return 1;
3210 }
3211 
3212 static void
3213 em_txeof(struct adapter *adapter)
3214 {
3215 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3216 	struct em_buffer *tx_buffer;
3217 	int first, num_avail;
3218 
3219 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
3220 		return;
3221 
3222 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3223 		return;
3224 
3225 	num_avail = adapter->num_tx_desc_avail;
3226 	first = adapter->next_tx_to_clean;
3227 
3228 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3229 		struct e1000_tx_desc *tx_desc;
3230 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3231 
3232 		tx_desc = &adapter->tx_desc_base[dd_idx];
3233 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3234 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3235 
3236 			if (++dd_idx == adapter->num_tx_desc)
3237 				dd_idx = 0;
3238 
3239 			while (first != dd_idx) {
3240 				logif(pkt_txclean);
3241 
3242 				KKASSERT(num_avail < adapter->num_tx_desc);
3243 				num_avail++;
3244 
3245 				tx_buffer = &adapter->tx_buffer_area[first];
3246 				if (tx_buffer->m_head != NULL)
3247 					em_free_txbuffer(adapter, tx_buffer);
3248 
3249 				if (++first == adapter->num_tx_desc)
3250 					first = 0;
3251 			}
3252 		} else {
3253 			break;
3254 		}
3255 	}
3256 	adapter->next_tx_to_clean = first;
3257 	adapter->num_tx_desc_avail = num_avail;
3258 
3259 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3260 		adapter->tx_dd_head = 0;
3261 		adapter->tx_dd_tail = 0;
3262 	}
3263 
3264 	if (!EM_IS_OACTIVE(adapter)) {
3265 		ifq_clr_oactive(&ifp->if_snd);
3266 
3267 		/* All clean, turn off the timer */
3268 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3269 			ifp->if_timer = 0;
3270 	}
3271 	adapter->tx_running = EM_TX_RUNNING;
3272 }
3273 
3274 static void
3275 em_tx_collect(struct adapter *adapter, boolean_t gc)
3276 {
3277 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3278 	struct em_buffer *tx_buffer;
3279 	int tdh, first, num_avail, dd_idx = -1;
3280 
3281 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3282 		return;
3283 
3284 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3285 	if (tdh == adapter->next_tx_to_clean) {
3286 		if (gc && adapter->tx_nmbuf > 0)
3287 			adapter->tx_running = EM_TX_RUNNING;
3288 		return;
3289 	}
3290 	if (gc)
3291 		adapter->tx_gc++;
3292 
3293 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3294 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3295 
3296 	num_avail = adapter->num_tx_desc_avail;
3297 	first = adapter->next_tx_to_clean;
3298 
3299 	while (first != tdh) {
3300 		logif(pkt_txclean);
3301 
3302 		KKASSERT(num_avail < adapter->num_tx_desc);
3303 		num_avail++;
3304 
3305 		tx_buffer = &adapter->tx_buffer_area[first];
3306 		if (tx_buffer->m_head != NULL)
3307 			em_free_txbuffer(adapter, tx_buffer);
3308 
3309 		if (first == dd_idx) {
3310 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3311 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3312 				adapter->tx_dd_head = 0;
3313 				adapter->tx_dd_tail = 0;
3314 				dd_idx = -1;
3315 			} else {
3316 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3317 			}
3318 		}
3319 
3320 		if (++first == adapter->num_tx_desc)
3321 			first = 0;
3322 	}
3323 	adapter->next_tx_to_clean = first;
3324 	adapter->num_tx_desc_avail = num_avail;
3325 
3326 	if (!EM_IS_OACTIVE(adapter)) {
3327 		ifq_clr_oactive(&ifp->if_snd);
3328 
3329 		/* All clean, turn off the timer */
3330 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3331 			ifp->if_timer = 0;
3332 	}
3333 	if (!gc || adapter->tx_nmbuf > 0)
3334 		adapter->tx_running = EM_TX_RUNNING;
3335 }
3336 
3337 /*
3338  * When Link is lost sometimes there is work still in the TX ring
3339  * which will result in a watchdog, rather than allow that do an
3340  * attempted cleanup and then reinit here.  Note that this has been
3341  * seens mostly with fiber adapters.
3342  */
3343 static void
3344 em_tx_purge(struct adapter *adapter)
3345 {
3346 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3347 
3348 	if (!adapter->link_active && ifp->if_timer) {
3349 		em_tx_collect(adapter, FALSE);
3350 		if (ifp->if_timer) {
3351 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3352 			ifp->if_timer = 0;
3353 			em_init(adapter);
3354 		}
3355 	}
3356 }
3357 
3358 static int
3359 em_newbuf(struct adapter *adapter, int i, int init)
3360 {
3361 	struct mbuf *m;
3362 	bus_dma_segment_t seg;
3363 	bus_dmamap_t map;
3364 	struct em_buffer *rx_buffer;
3365 	int error, nseg;
3366 
3367 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3368 	if (m == NULL) {
3369 		adapter->mbuf_cluster_failed++;
3370 		if (init) {
3371 			if_printf(&adapter->arpcom.ac_if,
3372 				  "Unable to allocate RX mbuf\n");
3373 		}
3374 		return (ENOBUFS);
3375 	}
3376 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3377 
3378 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3379 		m_adj(m, ETHER_ALIGN);
3380 
3381 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3382 			adapter->rx_sparemap, m,
3383 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3384 	if (error) {
3385 		m_freem(m);
3386 		if (init) {
3387 			if_printf(&adapter->arpcom.ac_if,
3388 				  "Unable to load RX mbuf\n");
3389 		}
3390 		return (error);
3391 	}
3392 
3393 	rx_buffer = &adapter->rx_buffer_area[i];
3394 	if (rx_buffer->m_head != NULL)
3395 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3396 
3397 	map = rx_buffer->map;
3398 	rx_buffer->map = adapter->rx_sparemap;
3399 	adapter->rx_sparemap = map;
3400 
3401 	rx_buffer->m_head = m;
3402 
3403 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3404 	return (0);
3405 }
3406 
3407 static int
3408 em_create_rx_ring(struct adapter *adapter)
3409 {
3410 	device_t dev = adapter->dev;
3411 	struct em_buffer *rx_buffer;
3412 	int i, error;
3413 
3414 	adapter->rx_buffer_area =
3415 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3416 			M_DEVBUF, M_WAITOK | M_ZERO);
3417 
3418 	/*
3419 	 * Create DMA tag for rx buffers
3420 	 */
3421 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3422 			1, 0,			/* alignment, bounds */
3423 			BUS_SPACE_MAXADDR,	/* lowaddr */
3424 			BUS_SPACE_MAXADDR,	/* highaddr */
3425 			MCLBYTES,		/* maxsize */
3426 			1,			/* nsegments */
3427 			MCLBYTES,		/* maxsegsize */
3428 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3429 			&adapter->rxtag);
3430 	if (error) {
3431 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3432 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3433 		adapter->rx_buffer_area = NULL;
3434 		return error;
3435 	}
3436 
3437 	/*
3438 	 * Create spare DMA map for rx buffers
3439 	 */
3440 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3441 				  &adapter->rx_sparemap);
3442 	if (error) {
3443 		device_printf(dev, "Unable to create spare RX DMA map\n");
3444 		bus_dma_tag_destroy(adapter->rxtag);
3445 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3446 		adapter->rx_buffer_area = NULL;
3447 		return error;
3448 	}
3449 
3450 	/*
3451 	 * Create DMA maps for rx buffers
3452 	 */
3453 	for (i = 0; i < adapter->num_rx_desc; i++) {
3454 		rx_buffer = &adapter->rx_buffer_area[i];
3455 
3456 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3457 					  &rx_buffer->map);
3458 		if (error) {
3459 			device_printf(dev, "Unable to create RX DMA map\n");
3460 			em_destroy_rx_ring(adapter, i);
3461 			return error;
3462 		}
3463 	}
3464 	return (0);
3465 }
3466 
3467 static int
3468 em_init_rx_ring(struct adapter *adapter)
3469 {
3470 	int i, error;
3471 
3472 	/* Reset descriptor ring */
3473 	bzero(adapter->rx_desc_base,
3474 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3475 
3476 	/* Allocate new ones. */
3477 	for (i = 0; i < adapter->num_rx_desc; i++) {
3478 		error = em_newbuf(adapter, i, 1);
3479 		if (error)
3480 			return (error);
3481 	}
3482 
3483 	/* Setup our descriptor pointers */
3484 	adapter->next_rx_desc_to_check = 0;
3485 
3486 	return (0);
3487 }
3488 
3489 static void
3490 em_init_rx_unit(struct adapter *adapter)
3491 {
3492 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3493 	uint64_t bus_addr;
3494 	uint32_t rctl, rxcsum;
3495 
3496 	/*
3497 	 * Make sure receives are disabled while setting
3498 	 * up the descriptor ring
3499 	 */
3500 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3501 	/* Do not disable if ever enabled on this hardware */
3502 	if (adapter->hw.mac.type != e1000_82574 &&
3503 	    adapter->hw.mac.type != e1000_82583)
3504 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3505 
3506 	if (adapter->hw.mac.type >= e1000_82540) {
3507 		uint32_t itr;
3508 
3509 		/*
3510 		 * Set the interrupt throttling rate. Value is calculated
3511 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3512 		 */
3513 		if (adapter->int_throttle_ceil)
3514 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3515 		else
3516 			itr = 0;
3517 		em_set_itr(adapter, itr);
3518 	}
3519 
3520 	/* Disable accelerated ackknowledge */
3521 	if (adapter->hw.mac.type == e1000_82574) {
3522 		uint32_t rfctl;
3523 
3524 		rfctl = E1000_READ_REG(&adapter->hw, E1000_RFCTL);
3525 		rfctl |= E1000_RFCTL_ACK_DIS;
3526 		E1000_WRITE_REG(&adapter->hw, E1000_RFCTL, rfctl);
3527 	}
3528 
3529 	/* Receive Checksum Offload for IP and TCP/UDP */
3530 	rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3531 	if (ifp->if_capenable & IFCAP_RXCSUM)
3532 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3533 	else
3534 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3535 	E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3536 
3537 	/*
3538 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3539 	 * long latencies are observed, like Lenovo X60. This
3540 	 * change eliminates the problem, but since having positive
3541 	 * values in RDTR is a known source of problems on other
3542 	 * platforms another solution is being sought.
3543 	 */
3544 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3545 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3546 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3547 	}
3548 
3549 	/*
3550 	 * Setup the Base and Length of the Rx Descriptor Ring
3551 	 */
3552 	bus_addr = adapter->rxdma.dma_paddr;
3553 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3554 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3555 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3556 	    (uint32_t)(bus_addr >> 32));
3557 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3558 	    (uint32_t)bus_addr);
3559 
3560 	/*
3561 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3562 	 */
3563 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3564 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3565 
3566 	/* Set PTHRESH for improved jumbo performance */
3567 	if (ifp->if_mtu > ETHERMTU) {
3568 		uint32_t rxdctl;
3569 
3570 		if (adapter->hw.mac.type == e1000_ich9lan ||
3571 		    adapter->hw.mac.type == e1000_pch2lan ||
3572 		    adapter->hw.mac.type == e1000_ich10lan) {
3573 			rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3574 			E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0),
3575 			    rxdctl | 3);
3576 		} else if (adapter->hw.mac.type == e1000_82574) {
3577 			rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3578                 	rxdctl |= 0x20;		/* PTHRESH */
3579                 	rxdctl |= 4 << 8;	/* HTHRESH */
3580                 	rxdctl |= 4 << 16;	/* WTHRESH */
3581 			rxdctl |= 1 << 24;	/* Switch to granularity */
3582 			E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl);
3583 		}
3584 	}
3585 
3586 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3587 		if (ifp->if_mtu > ETHERMTU)
3588 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3589 		else
3590 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3591 	}
3592 
3593 	/* Setup the Receive Control Register */
3594 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3595 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3596 		E1000_RCTL_RDMTS_HALF |
3597 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3598 
3599 	/* Make sure VLAN Filters are off */
3600 	rctl &= ~E1000_RCTL_VFE;
3601 
3602 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3603 		rctl |= E1000_RCTL_SBP;
3604 	else
3605 		rctl &= ~E1000_RCTL_SBP;
3606 
3607 	switch (adapter->rx_buffer_len) {
3608 	default:
3609 	case 2048:
3610 		rctl |= E1000_RCTL_SZ_2048;
3611 		break;
3612 
3613 	case 4096:
3614 		rctl |= E1000_RCTL_SZ_4096 |
3615 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3616 		break;
3617 
3618 	case 8192:
3619 		rctl |= E1000_RCTL_SZ_8192 |
3620 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3621 		break;
3622 
3623 	case 16384:
3624 		rctl |= E1000_RCTL_SZ_16384 |
3625 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3626 		break;
3627 	}
3628 
3629 	if (ifp->if_mtu > ETHERMTU)
3630 		rctl |= E1000_RCTL_LPE;
3631 	else
3632 		rctl &= ~E1000_RCTL_LPE;
3633 
3634 	/* Enable Receives */
3635 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3636 }
3637 
3638 static void
3639 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3640 {
3641 	struct em_buffer *rx_buffer;
3642 	int i;
3643 
3644 	if (adapter->rx_buffer_area == NULL)
3645 		return;
3646 
3647 	for (i = 0; i < ndesc; i++) {
3648 		rx_buffer = &adapter->rx_buffer_area[i];
3649 
3650 		KKASSERT(rx_buffer->m_head == NULL);
3651 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3652 	}
3653 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3654 	bus_dma_tag_destroy(adapter->rxtag);
3655 
3656 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3657 	adapter->rx_buffer_area = NULL;
3658 }
3659 
3660 static void
3661 em_rxeof(struct adapter *adapter, int count)
3662 {
3663 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3664 	uint8_t status, accept_frame = 0, eop = 0;
3665 	uint16_t len, desc_len, prev_len_adj;
3666 	struct e1000_rx_desc *current_desc;
3667 	struct mbuf *mp;
3668 	int i;
3669 
3670 	i = adapter->next_rx_desc_to_check;
3671 	current_desc = &adapter->rx_desc_base[i];
3672 
3673 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3674 		return;
3675 
3676 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3677 		struct mbuf *m = NULL;
3678 
3679 		logif(pkt_receive);
3680 
3681 		mp = adapter->rx_buffer_area[i].m_head;
3682 
3683 		/*
3684 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3685 		 * needs to access the last received byte in the mbuf.
3686 		 */
3687 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3688 				BUS_DMASYNC_POSTREAD);
3689 
3690 		accept_frame = 1;
3691 		prev_len_adj = 0;
3692 		desc_len = le16toh(current_desc->length);
3693 		status = current_desc->status;
3694 		if (status & E1000_RXD_STAT_EOP) {
3695 			count--;
3696 			eop = 1;
3697 			if (desc_len < ETHER_CRC_LEN) {
3698 				len = 0;
3699 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3700 			} else {
3701 				len = desc_len - ETHER_CRC_LEN;
3702 			}
3703 		} else {
3704 			eop = 0;
3705 			len = desc_len;
3706 		}
3707 
3708 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3709 			uint8_t	last_byte;
3710 			uint32_t pkt_len = desc_len;
3711 
3712 			if (adapter->fmp != NULL)
3713 				pkt_len += adapter->fmp->m_pkthdr.len;
3714 
3715 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3716 			if (TBI_ACCEPT(&adapter->hw, status,
3717 			    current_desc->errors, pkt_len, last_byte,
3718 			    adapter->min_frame_size,
3719 			    adapter->hw.mac.max_frame_size)) {
3720 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3721 				    &adapter->stats, pkt_len,
3722 				    adapter->hw.mac.addr,
3723 				    adapter->hw.mac.max_frame_size);
3724 				if (len > 0)
3725 					len--;
3726 			} else {
3727 				accept_frame = 0;
3728 			}
3729 		}
3730 
3731 		if (accept_frame) {
3732 			if (em_newbuf(adapter, i, 0) != 0) {
3733 				IFNET_STAT_INC(ifp, iqdrops, 1);
3734 				goto discard;
3735 			}
3736 
3737 			/* Assign correct length to the current fragment */
3738 			mp->m_len = len;
3739 
3740 			if (adapter->fmp == NULL) {
3741 				mp->m_pkthdr.len = len;
3742 				adapter->fmp = mp; /* Store the first mbuf */
3743 				adapter->lmp = mp;
3744 			} else {
3745 				/*
3746 				 * Chain mbuf's together
3747 				 */
3748 
3749 				/*
3750 				 * Adjust length of previous mbuf in chain if
3751 				 * we received less than 4 bytes in the last
3752 				 * descriptor.
3753 				 */
3754 				if (prev_len_adj > 0) {
3755 					adapter->lmp->m_len -= prev_len_adj;
3756 					adapter->fmp->m_pkthdr.len -=
3757 					    prev_len_adj;
3758 				}
3759 				adapter->lmp->m_next = mp;
3760 				adapter->lmp = adapter->lmp->m_next;
3761 				adapter->fmp->m_pkthdr.len += len;
3762 			}
3763 
3764 			if (eop) {
3765 				adapter->fmp->m_pkthdr.rcvif = ifp;
3766 				IFNET_STAT_INC(ifp, ipackets, 1);
3767 
3768 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3769 					em_rxcsum(adapter, current_desc,
3770 						  adapter->fmp);
3771 				}
3772 
3773 				if (status & E1000_RXD_STAT_VP) {
3774 					adapter->fmp->m_pkthdr.ether_vlantag =
3775 					    (le16toh(current_desc->special) &
3776 					    E1000_RXD_SPC_VLAN_MASK);
3777 					adapter->fmp->m_flags |= M_VLANTAG;
3778 				}
3779 				m = adapter->fmp;
3780 				adapter->fmp = NULL;
3781 				adapter->lmp = NULL;
3782 			}
3783 		} else {
3784 			IFNET_STAT_INC(ifp, ierrors, 1);
3785 discard:
3786 #ifdef foo
3787 			/* Reuse loaded DMA map and just update mbuf chain */
3788 			mp = adapter->rx_buffer_area[i].m_head;
3789 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3790 			mp->m_data = mp->m_ext.ext_buf;
3791 			mp->m_next = NULL;
3792 			if (adapter->hw.mac.max_frame_size <=
3793 			    (MCLBYTES - ETHER_ALIGN))
3794 				m_adj(mp, ETHER_ALIGN);
3795 #endif
3796 			if (adapter->fmp != NULL) {
3797 				m_freem(adapter->fmp);
3798 				adapter->fmp = NULL;
3799 				adapter->lmp = NULL;
3800 			}
3801 			m = NULL;
3802 		}
3803 
3804 		/* Zero out the receive descriptors status. */
3805 		current_desc->status = 0;
3806 
3807 		if (m != NULL)
3808 			ifp->if_input(ifp, m, NULL, -1);
3809 
3810 		/* Advance our pointers to the next descriptor. */
3811 		if (++i == adapter->num_rx_desc)
3812 			i = 0;
3813 		current_desc = &adapter->rx_desc_base[i];
3814 	}
3815 	adapter->next_rx_desc_to_check = i;
3816 
3817 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3818 	if (--i < 0)
3819 		i = adapter->num_rx_desc - 1;
3820 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3821 }
3822 
3823 static void
3824 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3825 	  struct mbuf *mp)
3826 {
3827 	/* 82543 or newer only */
3828 	if (adapter->hw.mac.type < e1000_82543 ||
3829 	    /* Ignore Checksum bit is set */
3830 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3831 		return;
3832 
3833 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3834 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3835 		/* IP Checksum Good */
3836 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3837 	}
3838 
3839 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3840 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3841 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3842 					   CSUM_PSEUDO_HDR |
3843 					   CSUM_FRAG_NOT_CHECKED;
3844 		mp->m_pkthdr.csum_data = htons(0xffff);
3845 	}
3846 }
3847 
3848 static void
3849 em_enable_intr(struct adapter *adapter)
3850 {
3851 	uint32_t ims_mask = IMS_ENABLE_MASK;
3852 
3853 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3854 
3855 #if 0
3856 	/* XXX MSIX */
3857 	if (adapter->hw.mac.type == e1000_82574) {
3858 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3859 		ims_mask |= EM_MSIX_MASK;
3860         }
3861 #endif
3862 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3863 }
3864 
3865 static void
3866 em_disable_intr(struct adapter *adapter)
3867 {
3868 	uint32_t clear = 0xffffffff;
3869 
3870 	/*
3871 	 * The first version of 82542 had an errata where when link was forced
3872 	 * it would stay up even up even if the cable was disconnected.
3873 	 * Sequence errors were used to detect the disconnect and then the
3874 	 * driver would unforce the link.  This code in the in the ISR.  For
3875 	 * this to work correctly the Sequence error interrupt had to be
3876 	 * enabled all the time.
3877 	 */
3878 	if (adapter->hw.mac.type == e1000_82542 &&
3879 	    adapter->hw.revision_id == E1000_REVISION_2)
3880 		clear &= ~E1000_ICR_RXSEQ;
3881 	else if (adapter->hw.mac.type == e1000_82574)
3882 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3883 
3884 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3885 
3886 	adapter->npoll.ifpc_stcount = 0;
3887 
3888 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3889 }
3890 
3891 /*
3892  * Bit of a misnomer, what this really means is
3893  * to enable OS management of the system... aka
3894  * to disable special hardware management features
3895  */
3896 static void
3897 em_get_mgmt(struct adapter *adapter)
3898 {
3899 	/* A shared code workaround */
3900 #define E1000_82542_MANC2H E1000_MANC2H
3901 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3902 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3903 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3904 
3905 		/* disable hardware interception of ARP */
3906 		manc &= ~(E1000_MANC_ARP_EN);
3907 
3908                 /* enable receiving management packets to the host */
3909                 if (adapter->hw.mac.type >= e1000_82571) {
3910 			manc |= E1000_MANC_EN_MNG2HOST;
3911 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3912 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3913 			manc2h |= E1000_MNG2HOST_PORT_623;
3914 			manc2h |= E1000_MNG2HOST_PORT_664;
3915 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3916 		}
3917 
3918 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3919 	}
3920 }
3921 
3922 /*
3923  * Give control back to hardware management
3924  * controller if there is one.
3925  */
3926 static void
3927 em_rel_mgmt(struct adapter *adapter)
3928 {
3929 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3930 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3931 
3932 		/* re-enable hardware interception of ARP */
3933 		manc |= E1000_MANC_ARP_EN;
3934 
3935 		if (adapter->hw.mac.type >= e1000_82571)
3936 			manc &= ~E1000_MANC_EN_MNG2HOST;
3937 
3938 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3939 	}
3940 }
3941 
3942 /*
3943  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3944  * For ASF and Pass Through versions of f/w this means that
3945  * the driver is loaded.  For AMT version (only with 82573)
3946  * of the f/w this means that the network i/f is open.
3947  */
3948 static void
3949 em_get_hw_control(struct adapter *adapter)
3950 {
3951 	/* Let firmware know the driver has taken over */
3952 	if (adapter->hw.mac.type == e1000_82573) {
3953 		uint32_t swsm;
3954 
3955 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3956 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3957 		    swsm | E1000_SWSM_DRV_LOAD);
3958 	} else {
3959 		uint32_t ctrl_ext;
3960 
3961 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3962 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3963 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3964 	}
3965 	adapter->flags |= EM_FLAG_HW_CTRL;
3966 }
3967 
3968 /*
3969  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3970  * For ASF and Pass Through versions of f/w this means that the
3971  * driver is no longer loaded.  For AMT version (only with 82573)
3972  * of the f/w this means that the network i/f is closed.
3973  */
3974 static void
3975 em_rel_hw_control(struct adapter *adapter)
3976 {
3977 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3978 		return;
3979 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3980 
3981 	/* Let firmware taken over control of h/w */
3982 	if (adapter->hw.mac.type == e1000_82573) {
3983 		uint32_t swsm;
3984 
3985 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3986 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3987 		    swsm & ~E1000_SWSM_DRV_LOAD);
3988 	} else {
3989 		uint32_t ctrl_ext;
3990 
3991 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3992 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3993 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3994 	}
3995 }
3996 
3997 static int
3998 em_is_valid_eaddr(const uint8_t *addr)
3999 {
4000 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
4001 
4002 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
4003 		return (FALSE);
4004 
4005 	return (TRUE);
4006 }
4007 
4008 /*
4009  * Enable PCI Wake On Lan capability
4010  */
4011 static void
4012 em_enable_wol(device_t dev)
4013 {
4014 	uint16_t cap, status;
4015 	uint8_t id;
4016 
4017 	/* First find the capabilities pointer*/
4018 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
4019 
4020 	/* Read the PM Capabilities */
4021 	id = pci_read_config(dev, cap, 1);
4022 	if (id != PCIY_PMG)     /* Something wrong */
4023 		return;
4024 
4025 	/*
4026 	 * OK, we have the power capabilities,
4027 	 * so now get the status register
4028 	 */
4029 	cap += PCIR_POWER_STATUS;
4030 	status = pci_read_config(dev, cap, 2);
4031 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4032 	pci_write_config(dev, cap, status, 2);
4033 }
4034 
4035 
4036 /*
4037  * 82544 Coexistence issue workaround.
4038  *    There are 2 issues.
4039  *       1. Transmit Hang issue.
4040  *    To detect this issue, following equation can be used...
4041  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
4042  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
4043  *
4044  *       2. DAC issue.
4045  *    To detect this issue, following equation can be used...
4046  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
4047  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
4048  *
4049  *    WORKAROUND:
4050  *	  Make sure we do not have ending address
4051  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
4052  */
4053 static uint32_t
4054 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
4055 {
4056 	uint32_t safe_terminator;
4057 
4058 	/*
4059 	 * Since issue is sensitive to length and address.
4060 	 * Let us first check the address...
4061 	 */
4062 	if (length <= 4) {
4063 		desc_array->descriptor[0].address = address;
4064 		desc_array->descriptor[0].length = length;
4065 		desc_array->elements = 1;
4066 		return (desc_array->elements);
4067 	}
4068 
4069 	safe_terminator =
4070 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
4071 
4072 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
4073 	if (safe_terminator == 0 ||
4074 	    (safe_terminator > 4 && safe_terminator < 9) ||
4075 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
4076 		desc_array->descriptor[0].address = address;
4077 		desc_array->descriptor[0].length = length;
4078 		desc_array->elements = 1;
4079 		return (desc_array->elements);
4080 	}
4081 
4082 	desc_array->descriptor[0].address = address;
4083 	desc_array->descriptor[0].length = length - 4;
4084 	desc_array->descriptor[1].address = address + (length - 4);
4085 	desc_array->descriptor[1].length = 4;
4086 	desc_array->elements = 2;
4087 	return (desc_array->elements);
4088 }
4089 
4090 static void
4091 em_update_stats(struct adapter *adapter)
4092 {
4093 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4094 
4095 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
4096 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4097 		adapter->stats.symerrs +=
4098 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
4099 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
4100 	}
4101 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
4102 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
4103 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
4104 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
4105 
4106 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
4107 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
4108 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
4109 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
4110 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
4111 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
4112 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
4113 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
4114 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
4115 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
4116 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
4117 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
4118 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
4119 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
4120 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
4121 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
4122 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
4123 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
4124 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
4125 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
4126 
4127 	/* For the 64-bit byte counters the low dword must be read first. */
4128 	/* Both registers clear on the read of the high dword */
4129 
4130 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
4131 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
4132 
4133 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
4134 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
4135 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
4136 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
4137 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
4138 
4139 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
4140 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
4141 
4142 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
4143 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
4144 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
4145 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
4146 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
4147 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
4148 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4149 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4150 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4151 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4152 
4153 	if (adapter->hw.mac.type >= e1000_82543) {
4154 		adapter->stats.algnerrc +=
4155 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4156 		adapter->stats.rxerrc +=
4157 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4158 		adapter->stats.tncrs +=
4159 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4160 		adapter->stats.cexterr +=
4161 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4162 		adapter->stats.tsctc +=
4163 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4164 		adapter->stats.tsctfc +=
4165 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4166 	}
4167 
4168 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
4169 
4170 	/* Rx Errors */
4171 	IFNET_STAT_SET(ifp, ierrors,
4172 	    adapter->dropped_pkts + adapter->stats.rxerrc +
4173 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4174 	    adapter->stats.ruc + adapter->stats.roc +
4175 	    adapter->stats.mpc + adapter->stats.cexterr);
4176 
4177 	/* Tx Errors */
4178 	IFNET_STAT_SET(ifp, oerrors,
4179 	    adapter->stats.ecol + adapter->stats.latecol +
4180 	    adapter->watchdog_events);
4181 }
4182 
4183 static void
4184 em_print_debug_info(struct adapter *adapter)
4185 {
4186 	device_t dev = adapter->dev;
4187 	uint8_t *hw_addr = adapter->hw.hw_addr;
4188 
4189 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
4190 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
4191 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
4192 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
4193 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
4194 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
4195 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
4196 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
4197 	    adapter->hw.fc.high_water,
4198 	    adapter->hw.fc.low_water);
4199 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
4200 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
4201 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
4202 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
4203 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
4204 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
4205 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
4206 	    (long long)adapter->tx_fifo_wrk_cnt,
4207 	    (long long)adapter->tx_fifo_reset_cnt);
4208 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4209 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
4210 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
4211 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4212 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
4213 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
4214 	device_printf(dev, "Num Tx descriptors avail = %d\n",
4215 	    adapter->num_tx_desc_avail);
4216 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4217 	    adapter->no_tx_desc_avail1);
4218 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4219 	    adapter->no_tx_desc_avail2);
4220 	device_printf(dev, "Std mbuf failed = %ld\n",
4221 	    adapter->mbuf_alloc_failed);
4222 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
4223 	    adapter->mbuf_cluster_failed);
4224 	device_printf(dev, "Driver dropped packets = %ld\n",
4225 	    adapter->dropped_pkts);
4226 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4227 	    adapter->no_tx_dma_setup);
4228 }
4229 
4230 static void
4231 em_print_hw_stats(struct adapter *adapter)
4232 {
4233 	device_t dev = adapter->dev;
4234 
4235 	device_printf(dev, "Excessive collisions = %lld\n",
4236 	    (long long)adapter->stats.ecol);
4237 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
4238 	device_printf(dev, "Symbol errors = %lld\n",
4239 	    (long long)adapter->stats.symerrs);
4240 #endif
4241 	device_printf(dev, "Sequence errors = %lld\n",
4242 	    (long long)adapter->stats.sec);
4243 	device_printf(dev, "Defer count = %lld\n",
4244 	    (long long)adapter->stats.dc);
4245 	device_printf(dev, "Missed Packets = %lld\n",
4246 	    (long long)adapter->stats.mpc);
4247 	device_printf(dev, "Receive No Buffers = %lld\n",
4248 	    (long long)adapter->stats.rnbc);
4249 	/* RLEC is inaccurate on some hardware, calculate our own. */
4250 	device_printf(dev, "Receive Length Errors = %lld\n",
4251 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4252 	device_printf(dev, "Receive errors = %lld\n",
4253 	    (long long)adapter->stats.rxerrc);
4254 	device_printf(dev, "Crc errors = %lld\n",
4255 	    (long long)adapter->stats.crcerrs);
4256 	device_printf(dev, "Alignment errors = %lld\n",
4257 	    (long long)adapter->stats.algnerrc);
4258 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4259 	    (long long)adapter->stats.cexterr);
4260 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4261 	device_printf(dev, "watchdog timeouts = %ld\n",
4262 	    adapter->watchdog_events);
4263 	device_printf(dev, "XON Rcvd = %lld\n",
4264 	    (long long)adapter->stats.xonrxc);
4265 	device_printf(dev, "XON Xmtd = %lld\n",
4266 	    (long long)adapter->stats.xontxc);
4267 	device_printf(dev, "XOFF Rcvd = %lld\n",
4268 	    (long long)adapter->stats.xoffrxc);
4269 	device_printf(dev, "XOFF Xmtd = %lld\n",
4270 	    (long long)adapter->stats.xofftxc);
4271 	device_printf(dev, "Good Packets Rcvd = %lld\n",
4272 	    (long long)adapter->stats.gprc);
4273 	device_printf(dev, "Good Packets Xmtd = %lld\n",
4274 	    (long long)adapter->stats.gptc);
4275 }
4276 
4277 static void
4278 em_print_nvm_info(struct adapter *adapter)
4279 {
4280 	uint16_t eeprom_data;
4281 	int i, j, row = 0;
4282 
4283 	/* Its a bit crude, but it gets the job done */
4284 	kprintf("\nInterface EEPROM Dump:\n");
4285 	kprintf("Offset\n0x0000  ");
4286 	for (i = 0, j = 0; i < 32; i++, j++) {
4287 		if (j == 8) { /* Make the offset block */
4288 			j = 0; ++row;
4289 			kprintf("\n0x00%x0  ",row);
4290 		}
4291 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4292 		kprintf("%04x ", eeprom_data);
4293 	}
4294 	kprintf("\n");
4295 }
4296 
4297 static int
4298 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4299 {
4300 	struct adapter *adapter;
4301 	struct ifnet *ifp;
4302 	int error, result;
4303 
4304 	result = -1;
4305 	error = sysctl_handle_int(oidp, &result, 0, req);
4306 	if (error || !req->newptr)
4307 		return (error);
4308 
4309 	adapter = (struct adapter *)arg1;
4310 	ifp = &adapter->arpcom.ac_if;
4311 
4312 	lwkt_serialize_enter(ifp->if_serializer);
4313 
4314 	if (result == 1)
4315 		em_print_debug_info(adapter);
4316 
4317 	/*
4318 	 * This value will cause a hex dump of the
4319 	 * first 32 16-bit words of the EEPROM to
4320 	 * the screen.
4321 	 */
4322 	if (result == 2)
4323 		em_print_nvm_info(adapter);
4324 
4325 	lwkt_serialize_exit(ifp->if_serializer);
4326 
4327 	return (error);
4328 }
4329 
4330 static int
4331 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4332 {
4333 	int error, result;
4334 
4335 	result = -1;
4336 	error = sysctl_handle_int(oidp, &result, 0, req);
4337 	if (error || !req->newptr)
4338 		return (error);
4339 
4340 	if (result == 1) {
4341 		struct adapter *adapter = (struct adapter *)arg1;
4342 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4343 
4344 		lwkt_serialize_enter(ifp->if_serializer);
4345 		em_print_hw_stats(adapter);
4346 		lwkt_serialize_exit(ifp->if_serializer);
4347 	}
4348 	return (error);
4349 }
4350 
4351 static void
4352 em_add_sysctl(struct adapter *adapter)
4353 {
4354 	struct sysctl_ctx_list *ctx;
4355 	struct sysctl_oid *tree;
4356 
4357 	ctx = device_get_sysctl_ctx(adapter->dev);
4358 	tree = device_get_sysctl_tree(adapter->dev);
4359 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4360 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4361 	    em_sysctl_debug_info, "I", "Debug Information");
4362 
4363 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4364 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4365 	    em_sysctl_stats, "I", "Statistics");
4366 
4367 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4368 	    OID_AUTO, "rxd", CTLFLAG_RD,
4369 	    &adapter->num_rx_desc, 0, NULL);
4370 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4371 	    OID_AUTO, "txd", CTLFLAG_RD,
4372 	    &adapter->num_tx_desc, 0, NULL);
4373 
4374 	if (adapter->hw.mac.type >= e1000_82540) {
4375 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4376 		    OID_AUTO, "int_throttle_ceil",
4377 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4378 		    em_sysctl_int_throttle, "I",
4379 		    "interrupt throttling rate");
4380 	}
4381 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4382 	    OID_AUTO, "int_tx_nsegs",
4383 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4384 	    em_sysctl_int_tx_nsegs, "I",
4385 	    "# segments per TX interrupt");
4386 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4387 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4388 	    &adapter->tx_wreg_nsegs, 0,
4389 	    "# segments before write to hardware register");
4390 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_nmbuf",
4391 	    CTLFLAG_RD, &adapter->tx_nmbuf, 0, "# of pending TX mbufs");
4392 	SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_gc",
4393 	    CTLFLAG_RW, &adapter->tx_gc, "# of TX GC");
4394 }
4395 
4396 static int
4397 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4398 {
4399 	struct adapter *adapter = (void *)arg1;
4400 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4401 	int error, throttle;
4402 
4403 	throttle = adapter->int_throttle_ceil;
4404 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4405 	if (error || req->newptr == NULL)
4406 		return error;
4407 	if (throttle < 0 || throttle > 1000000000 / 256)
4408 		return EINVAL;
4409 
4410 	if (throttle) {
4411 		/*
4412 		 * Set the interrupt throttling rate in 256ns increments,
4413 		 * recalculate sysctl value assignment to get exact frequency.
4414 		 */
4415 		throttle = 1000000000 / 256 / throttle;
4416 
4417 		/* Upper 16bits of ITR is reserved and should be zero */
4418 		if (throttle & 0xffff0000)
4419 			return EINVAL;
4420 	}
4421 
4422 	lwkt_serialize_enter(ifp->if_serializer);
4423 
4424 	if (throttle)
4425 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4426 	else
4427 		adapter->int_throttle_ceil = 0;
4428 
4429 	if (ifp->if_flags & IFF_RUNNING)
4430 		em_set_itr(adapter, throttle);
4431 
4432 	lwkt_serialize_exit(ifp->if_serializer);
4433 
4434 	if (bootverbose) {
4435 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4436 			  adapter->int_throttle_ceil);
4437 	}
4438 	return 0;
4439 }
4440 
4441 static int
4442 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4443 {
4444 	struct adapter *adapter = (void *)arg1;
4445 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4446 	int error, segs;
4447 
4448 	segs = adapter->tx_int_nsegs;
4449 	error = sysctl_handle_int(oidp, &segs, 0, req);
4450 	if (error || req->newptr == NULL)
4451 		return error;
4452 	if (segs <= 0)
4453 		return EINVAL;
4454 
4455 	lwkt_serialize_enter(ifp->if_serializer);
4456 
4457 	/*
4458 	 * Don't allow int_tx_nsegs to become:
4459 	 * o  Less the oact_tx_desc
4460 	 * o  Too large that no TX desc will cause TX interrupt to
4461 	 *    be generated (OACTIVE will never recover)
4462 	 * o  Too small that will cause tx_dd[] overflow
4463 	 */
4464 	if (segs < adapter->oact_tx_desc ||
4465 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4466 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4467 		error = EINVAL;
4468 	} else {
4469 		error = 0;
4470 		adapter->tx_int_nsegs = segs;
4471 	}
4472 
4473 	lwkt_serialize_exit(ifp->if_serializer);
4474 
4475 	return error;
4476 }
4477 
4478 static void
4479 em_set_itr(struct adapter *adapter, uint32_t itr)
4480 {
4481 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4482 	if (adapter->hw.mac.type == e1000_82574) {
4483 		int i;
4484 
4485 		/*
4486 		 * When using MSIX interrupts we need to
4487 		 * throttle using the EITR register
4488 		 */
4489 		for (i = 0; i < 4; ++i) {
4490 			E1000_WRITE_REG(&adapter->hw,
4491 			    E1000_EITR_82574(i), itr);
4492 		}
4493 	}
4494 }
4495 
4496 static void
4497 em_disable_aspm(struct adapter *adapter)
4498 {
4499 	uint16_t link_cap, link_ctrl, disable;
4500 	uint8_t pcie_ptr, reg;
4501 	device_t dev = adapter->dev;
4502 
4503 	switch (adapter->hw.mac.type) {
4504 	case e1000_82571:
4505 	case e1000_82572:
4506 	case e1000_82573:
4507 		/*
4508 		 * 82573 specification update
4509 		 * errata #8 disable L0s
4510 		 * errata #41 disable L1
4511 		 *
4512 		 * 82571/82572 specification update
4513 		 # errata #13 disable L1
4514 		 * errata #68 disable L0s
4515 		 */
4516 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4517 		break;
4518 
4519 	case e1000_82574:
4520 	case e1000_82583:
4521 		/*
4522 		 * 82574 specification update errata #20
4523 		 * 82583 specification update errata #9
4524 		 *
4525 		 * There is no need to disable L1
4526 		 */
4527 		disable = PCIEM_LNKCTL_ASPM_L0S;
4528 		break;
4529 
4530 	default:
4531 		return;
4532 	}
4533 
4534 	pcie_ptr = pci_get_pciecap_ptr(dev);
4535 	if (pcie_ptr == 0)
4536 		return;
4537 
4538 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4539 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4540 		return;
4541 
4542 	if (bootverbose) {
4543 		if_printf(&adapter->arpcom.ac_if,
4544 		    "disable ASPM %#02x\n", disable);
4545 	}
4546 
4547 	reg = pcie_ptr + PCIER_LINKCTRL;
4548 	link_ctrl = pci_read_config(dev, reg, 2);
4549 	link_ctrl &= ~disable;
4550 	pci_write_config(dev, reg, link_ctrl, 2);
4551 }
4552 
4553 static int
4554 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4555 {
4556 	int iphlen, hoff, thoff, ex = 0;
4557 	struct mbuf *m;
4558 	struct ip *ip;
4559 
4560 	m = *mp;
4561 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4562 
4563 	iphlen = m->m_pkthdr.csum_iphlen;
4564 	thoff = m->m_pkthdr.csum_thlen;
4565 	hoff = m->m_pkthdr.csum_lhlen;
4566 
4567 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4568 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4569 	KASSERT(hoff > 0, ("invalid ether hlen"));
4570 
4571 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4572 		ex = 4;
4573 
4574 	if (m->m_len < hoff + iphlen + thoff + ex) {
4575 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4576 		if (m == NULL) {
4577 			*mp = NULL;
4578 			return ENOBUFS;
4579 		}
4580 		*mp = m;
4581 	}
4582 	ip = mtodoff(m, struct ip *, hoff);
4583 	ip->ip_len = 0;
4584 
4585 	return 0;
4586 }
4587 
4588 static int
4589 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4590     uint32_t *txd_upper, uint32_t *txd_lower)
4591 {
4592 	struct e1000_context_desc *TXD;
4593 	int hoff, iphlen, thoff, hlen;
4594 	int mss, pktlen, curr_txd;
4595 
4596 	iphlen = mp->m_pkthdr.csum_iphlen;
4597 	thoff = mp->m_pkthdr.csum_thlen;
4598 	hoff = mp->m_pkthdr.csum_lhlen;
4599 	mss = mp->m_pkthdr.tso_segsz;
4600 	pktlen = mp->m_pkthdr.len;
4601 
4602 	if (adapter->csum_flags == CSUM_TSO &&
4603 	    adapter->csum_iphlen == iphlen &&
4604 	    adapter->csum_lhlen == hoff &&
4605 	    adapter->csum_thlen == thoff &&
4606 	    adapter->csum_mss == mss &&
4607 	    adapter->csum_pktlen == pktlen) {
4608 		*txd_upper = adapter->csum_txd_upper;
4609 		*txd_lower = adapter->csum_txd_lower;
4610 		return 0;
4611 	}
4612 	hlen = hoff + iphlen + thoff;
4613 
4614 	/*
4615 	 * Setup a new TSO context.
4616 	 */
4617 
4618 	curr_txd = adapter->next_avail_tx_desc;
4619 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4620 
4621 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4622 		     E1000_TXD_DTYP_D |		/* Data descr type */
4623 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4624 
4625 	/* IP and/or TCP header checksum calculation and insertion. */
4626 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4627 
4628 	/*
4629 	 * Start offset for header checksum calculation.
4630 	 * End offset for header checksum calculation.
4631 	 * Offset of place put the checksum.
4632 	 */
4633 	TXD->lower_setup.ip_fields.ipcss = hoff;
4634 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4635 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4636 
4637 	/*
4638 	 * Start offset for payload checksum calculation.
4639 	 * End offset for payload checksum calculation.
4640 	 * Offset of place to put the checksum.
4641 	 */
4642 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4643 	TXD->upper_setup.tcp_fields.tucse = 0;
4644 	TXD->upper_setup.tcp_fields.tucso =
4645 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4646 
4647 	/*
4648 	 * Payload size per packet w/o any headers.
4649 	 * Length of all headers up to payload.
4650 	 */
4651 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4652 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4653 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4654 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4655 				E1000_TXD_CMD_TSE |	/* TSE context */
4656 				E1000_TXD_CMD_IP |	/* Do IP csum */
4657 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4658 				(pktlen - hlen));	/* Total len */
4659 
4660 	/* Save the information for this TSO context */
4661 	adapter->csum_flags = CSUM_TSO;
4662 	adapter->csum_lhlen = hoff;
4663 	adapter->csum_iphlen = iphlen;
4664 	adapter->csum_thlen = thoff;
4665 	adapter->csum_mss = mss;
4666 	adapter->csum_pktlen = pktlen;
4667 	adapter->csum_txd_upper = *txd_upper;
4668 	adapter->csum_txd_lower = *txd_lower;
4669 
4670 	if (++curr_txd == adapter->num_tx_desc)
4671 		curr_txd = 0;
4672 
4673 	KKASSERT(adapter->num_tx_desc_avail > 0);
4674 	adapter->num_tx_desc_avail--;
4675 
4676 	adapter->next_avail_tx_desc = curr_txd;
4677 	return 1;
4678 }
4679 
4680 /*
4681  * Remove all descriptors from the TX ring.
4682  *
4683  * We want to clear all pending descriptors from the TX ring.  Zeroing
4684  * happens when the HW reads the regs.  We assign the ring itself as
4685  * the data of the next descriptor.  We don't care about the data we
4686  * are about to reset the HW.
4687  */
4688 static void
4689 em_flush_tx_ring(struct adapter *adapter)
4690 {
4691 	struct e1000_hw *hw = &adapter->hw;
4692 	struct e1000_tx_desc *txd;
4693 	uint32_t tctl;
4694 
4695 	tctl = E1000_READ_REG(hw, E1000_TCTL);
4696 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
4697 
4698 	txd = &adapter->tx_desc_base[adapter->next_avail_tx_desc++];
4699 	if (adapter->next_avail_tx_desc == adapter->num_tx_desc)
4700 		adapter->next_avail_tx_desc = 0;
4701 
4702 	/* Just use the ring as a dummy buffer addr */
4703 	txd->buffer_addr = adapter->txdma.dma_paddr;
4704 	txd->lower.data = htole32(E1000_TXD_CMD_IFCS | 512);
4705 	txd->upper.data = 0;
4706 
4707 	E1000_WRITE_REG(hw, E1000_TDT(0), adapter->next_avail_tx_desc);
4708 	usec_delay(250);
4709 }
4710 
4711 /*
4712  * Remove all descriptors from the RX ring.
4713  *
4714  * Mark all descriptors in the RX ring as consumed and disable the RX ring.
4715  */
4716 static void
4717 em_flush_rx_ring(struct adapter *adapter)
4718 {
4719 	struct e1000_hw	*hw = &adapter->hw;
4720 	uint32_t rctl, rxdctl;
4721 
4722 	rctl = E1000_READ_REG(hw, E1000_RCTL);
4723 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4724 	E1000_WRITE_FLUSH(hw);
4725 	usec_delay(150);
4726 
4727 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
4728 	/* Zero the lower 14 bits (prefetch and host thresholds) */
4729 	rxdctl &= 0xffffc000;
4730 	/*
4731 	 * Update thresholds: prefetch threshold to 31, host threshold to 1
4732 	 * and make sure the granularity is "descriptors" and not "cache
4733 	 * lines".
4734 	 */
4735 	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
4736 	E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
4737 
4738 	/* Momentarily enable the RX ring for the changes to take effect */
4739 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
4740 	E1000_WRITE_FLUSH(hw);
4741 	usec_delay(150);
4742 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4743 }
4744 
4745 /*
4746  * Remove all descriptors from the descriptor rings.
4747  *
4748  * In i219, the descriptor rings must be emptied before resetting the HW
4749  * or before changing the device state to D3 during runtime (runtime PM).
4750  *
4751  * Failure to do this will cause the HW to enter a unit hang state which
4752  * can only be released by PCI reset on the device.
4753  */
4754 static void
4755 em_flush_txrx_ring(struct adapter *adapter)
4756 {
4757 	struct e1000_hw *hw = &adapter->hw;
4758 	device_t dev = adapter->dev;
4759 	uint16_t hang_state;
4760 	uint32_t fext_nvm11;
4761 
4762 	/*
4763 	 * First, disable MULR fix in FEXTNVM11.
4764 	 */
4765 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
4766 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
4767 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
4768 
4769 	/*
4770 	 * Do nothing if we're not in faulty state, or if the queue is
4771 	 * empty.
4772 	 */
4773 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
4774 	if ((hang_state & FLUSH_DESC_REQUIRED) &&
4775 	    E1000_READ_REG(hw, E1000_TDLEN(0)))
4776 		em_flush_tx_ring(adapter);
4777 
4778 	/*
4779 	 * Recheck, maybe the fault is caused by the RX ring.
4780 	 */
4781 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
4782 	if (hang_state & FLUSH_DESC_REQUIRED)
4783 		em_flush_rx_ring(adapter);
4784 }
4785