xref: /dragonfly/sys/dev/netif/em/if_em.c (revision 820c5b08)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2014, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
116 
117 #define DEBUG_HW 0
118 
119 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
120 #define EM_VER	" 7.4.2"
121 
122 #define _EM_DEVICE(id, ret)	\
123 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
125 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
127 
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 	EM_DEVICE(82540EM),
130 	EM_DEVICE(82540EM_LOM),
131 	EM_DEVICE(82540EP),
132 	EM_DEVICE(82540EP_LOM),
133 	EM_DEVICE(82540EP_LP),
134 
135 	EM_DEVICE(82541EI),
136 	EM_DEVICE(82541ER),
137 	EM_DEVICE(82541ER_LOM),
138 	EM_DEVICE(82541EI_MOBILE),
139 	EM_DEVICE(82541GI),
140 	EM_DEVICE(82541GI_LF),
141 	EM_DEVICE(82541GI_MOBILE),
142 
143 	EM_DEVICE(82542),
144 
145 	EM_DEVICE(82543GC_FIBER),
146 	EM_DEVICE(82543GC_COPPER),
147 
148 	EM_DEVICE(82544EI_COPPER),
149 	EM_DEVICE(82544EI_FIBER),
150 	EM_DEVICE(82544GC_COPPER),
151 	EM_DEVICE(82544GC_LOM),
152 
153 	EM_DEVICE(82545EM_COPPER),
154 	EM_DEVICE(82545EM_FIBER),
155 	EM_DEVICE(82545GM_COPPER),
156 	EM_DEVICE(82545GM_FIBER),
157 	EM_DEVICE(82545GM_SERDES),
158 
159 	EM_DEVICE(82546EB_COPPER),
160 	EM_DEVICE(82546EB_FIBER),
161 	EM_DEVICE(82546EB_QUAD_COPPER),
162 	EM_DEVICE(82546GB_COPPER),
163 	EM_DEVICE(82546GB_FIBER),
164 	EM_DEVICE(82546GB_SERDES),
165 	EM_DEVICE(82546GB_PCIE),
166 	EM_DEVICE(82546GB_QUAD_COPPER),
167 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 
169 	EM_DEVICE(82547EI),
170 	EM_DEVICE(82547EI_MOBILE),
171 	EM_DEVICE(82547GI),
172 
173 	EM_EMX_DEVICE(82571EB_COPPER),
174 	EM_EMX_DEVICE(82571EB_FIBER),
175 	EM_EMX_DEVICE(82571EB_SERDES),
176 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 
184 	EM_EMX_DEVICE(82572EI_COPPER),
185 	EM_EMX_DEVICE(82572EI_FIBER),
186 	EM_EMX_DEVICE(82572EI_SERDES),
187 	EM_EMX_DEVICE(82572EI),
188 
189 	EM_EMX_DEVICE(82573E),
190 	EM_EMX_DEVICE(82573E_IAMT),
191 	EM_EMX_DEVICE(82573L),
192 
193 	EM_DEVICE(82583V),
194 
195 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 
200 	EM_DEVICE(ICH8_IGP_M_AMT),
201 	EM_DEVICE(ICH8_IGP_AMT),
202 	EM_DEVICE(ICH8_IGP_C),
203 	EM_DEVICE(ICH8_IFE),
204 	EM_DEVICE(ICH8_IFE_GT),
205 	EM_DEVICE(ICH8_IFE_G),
206 	EM_DEVICE(ICH8_IGP_M),
207 	EM_DEVICE(ICH8_82567V_3),
208 
209 	EM_DEVICE(ICH9_IGP_M_AMT),
210 	EM_DEVICE(ICH9_IGP_AMT),
211 	EM_DEVICE(ICH9_IGP_C),
212 	EM_DEVICE(ICH9_IGP_M),
213 	EM_DEVICE(ICH9_IGP_M_V),
214 	EM_DEVICE(ICH9_IFE),
215 	EM_DEVICE(ICH9_IFE_GT),
216 	EM_DEVICE(ICH9_IFE_G),
217 	EM_DEVICE(ICH9_BM),
218 
219 	EM_EMX_DEVICE(82574L),
220 	EM_EMX_DEVICE(82574LA),
221 
222 	EM_DEVICE(ICH10_R_BM_LM),
223 	EM_DEVICE(ICH10_R_BM_LF),
224 	EM_DEVICE(ICH10_R_BM_V),
225 	EM_DEVICE(ICH10_D_BM_LM),
226 	EM_DEVICE(ICH10_D_BM_LF),
227 	EM_DEVICE(ICH10_D_BM_V),
228 
229 	EM_DEVICE(PCH_M_HV_LM),
230 	EM_DEVICE(PCH_M_HV_LC),
231 	EM_DEVICE(PCH_D_HV_DM),
232 	EM_DEVICE(PCH_D_HV_DC),
233 
234 	EM_DEVICE(PCH2_LV_LM),
235 	EM_DEVICE(PCH2_LV_V),
236 
237 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 	EM_EMX_DEVICE(PCH_LPT_I217_V),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 	EM_EMX_DEVICE(PCH_I218_LM2),
242 	EM_EMX_DEVICE(PCH_I218_V2),
243 	EM_EMX_DEVICE(PCH_I218_LM3),
244 	EM_EMX_DEVICE(PCH_I218_V3),
245 
246 	/* required last entry */
247 	EM_DEVICE_NULL
248 };
249 
250 static int	em_probe(device_t);
251 static int	em_attach(device_t);
252 static int	em_detach(device_t);
253 static int	em_shutdown(device_t);
254 static int	em_suspend(device_t);
255 static int	em_resume(device_t);
256 
257 static void	em_init(void *);
258 static void	em_stop(struct adapter *);
259 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
260 static void	em_start(struct ifnet *, struct ifaltq_subque *);
261 #ifdef IFPOLL_ENABLE
262 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
263 static void	em_npoll_compat(struct ifnet *, void *, int);
264 #endif
265 static void	em_watchdog(struct ifnet *);
266 static void	em_media_status(struct ifnet *, struct ifmediareq *);
267 static int	em_media_change(struct ifnet *);
268 static void	em_timer(void *);
269 
270 static void	em_intr(void *);
271 static void	em_intr_mask(void *);
272 static void	em_intr_body(struct adapter *, boolean_t);
273 static void	em_rxeof(struct adapter *, int);
274 static void	em_txeof(struct adapter *);
275 static void	em_tx_collect(struct adapter *);
276 static void	em_tx_purge(struct adapter *);
277 static void	em_enable_intr(struct adapter *);
278 static void	em_disable_intr(struct adapter *);
279 
280 static int	em_dma_malloc(struct adapter *, bus_size_t,
281 		    struct em_dma_alloc *);
282 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
283 static void	em_init_tx_ring(struct adapter *);
284 static int	em_init_rx_ring(struct adapter *);
285 static int	em_create_tx_ring(struct adapter *);
286 static int	em_create_rx_ring(struct adapter *);
287 static void	em_destroy_tx_ring(struct adapter *, int);
288 static void	em_destroy_rx_ring(struct adapter *, int);
289 static int	em_newbuf(struct adapter *, int, int);
290 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
291 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
292 		    struct mbuf *);
293 static int	em_txcsum(struct adapter *, struct mbuf *,
294 		    uint32_t *, uint32_t *);
295 static int	em_tso_pullup(struct adapter *, struct mbuf **);
296 static int	em_tso_setup(struct adapter *, struct mbuf *,
297 		    uint32_t *, uint32_t *);
298 
299 static int	em_get_hw_info(struct adapter *);
300 static int 	em_is_valid_eaddr(const uint8_t *);
301 static int	em_alloc_pci_res(struct adapter *);
302 static void	em_free_pci_res(struct adapter *);
303 static int	em_reset(struct adapter *);
304 static void	em_setup_ifp(struct adapter *);
305 static void	em_init_tx_unit(struct adapter *);
306 static void	em_init_rx_unit(struct adapter *);
307 static void	em_update_stats(struct adapter *);
308 static void	em_set_promisc(struct adapter *);
309 static void	em_disable_promisc(struct adapter *);
310 static void	em_set_multi(struct adapter *);
311 static void	em_update_link_status(struct adapter *);
312 static void	em_smartspeed(struct adapter *);
313 static void	em_set_itr(struct adapter *, uint32_t);
314 static void	em_disable_aspm(struct adapter *);
315 
316 /* Hardware workarounds */
317 static int	em_82547_fifo_workaround(struct adapter *, int);
318 static void	em_82547_update_fifo_head(struct adapter *, int);
319 static int	em_82547_tx_fifo_reset(struct adapter *);
320 static void	em_82547_move_tail(void *);
321 static void	em_82547_move_tail_serialized(struct adapter *);
322 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
323 
324 static void	em_print_debug_info(struct adapter *);
325 static void	em_print_nvm_info(struct adapter *);
326 static void	em_print_hw_stats(struct adapter *);
327 
328 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
329 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
330 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
331 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
332 static void	em_add_sysctl(struct adapter *adapter);
333 
334 /* Management and WOL Support */
335 static void	em_get_mgmt(struct adapter *);
336 static void	em_rel_mgmt(struct adapter *);
337 static void	em_get_hw_control(struct adapter *);
338 static void	em_rel_hw_control(struct adapter *);
339 static void	em_enable_wol(device_t);
340 
341 static device_method_t em_methods[] = {
342 	/* Device interface */
343 	DEVMETHOD(device_probe,		em_probe),
344 	DEVMETHOD(device_attach,	em_attach),
345 	DEVMETHOD(device_detach,	em_detach),
346 	DEVMETHOD(device_shutdown,	em_shutdown),
347 	DEVMETHOD(device_suspend,	em_suspend),
348 	DEVMETHOD(device_resume,	em_resume),
349 	DEVMETHOD_END
350 };
351 
352 static driver_t em_driver = {
353 	"em",
354 	em_methods,
355 	sizeof(struct adapter),
356 };
357 
358 static devclass_t em_devclass;
359 
360 DECLARE_DUMMY_MODULE(if_em);
361 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
362 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
363 
364 /*
365  * Tunables
366  */
367 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
368 static int	em_rxd = EM_DEFAULT_RXD;
369 static int	em_txd = EM_DEFAULT_TXD;
370 static int	em_smart_pwr_down = 0;
371 
372 /* Controls whether promiscuous also shows bad packets */
373 static int	em_debug_sbp = FALSE;
374 
375 static int	em_82573_workaround = 1;
376 static int	em_msi_enable = 1;
377 
378 static char	em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
379 
380 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
381 TUNABLE_INT("hw.em.rxd", &em_rxd);
382 TUNABLE_INT("hw.em.txd", &em_txd);
383 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
384 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
385 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
386 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
387 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
388 
389 /* Global used in WOL setup with multiport cards */
390 static int	em_global_quad_port_a = 0;
391 
392 /* Set this to one to display debug statistics */
393 static int	em_display_debug_stats = 0;
394 
395 #if !defined(KTR_IF_EM)
396 #define KTR_IF_EM	KTR_ALL
397 #endif
398 KTR_INFO_MASTER(if_em);
399 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
400 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
401 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
402 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
403 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
404 #define logif(name)	KTR_LOG(if_em_ ## name)
405 
406 static int
407 em_probe(device_t dev)
408 {
409 	const struct em_vendor_info *ent;
410 	uint16_t vid, did;
411 
412 	vid = pci_get_vendor(dev);
413 	did = pci_get_device(dev);
414 
415 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
416 		if (vid == ent->vendor_id && did == ent->device_id) {
417 			device_set_desc(dev, ent->desc);
418 			device_set_async_attach(dev, TRUE);
419 			return (ent->ret);
420 		}
421 	}
422 	return (ENXIO);
423 }
424 
425 static int
426 em_attach(device_t dev)
427 {
428 	struct adapter *adapter = device_get_softc(dev);
429 	struct ifnet *ifp = &adapter->arpcom.ac_if;
430 	int tsize, rsize;
431 	int error = 0;
432 	uint16_t eeprom_data, device_id, apme_mask;
433 	driver_intr_t *intr_func;
434 	char flowctrl[IFM_ETH_FC_STRLEN];
435 
436 	adapter->dev = adapter->osdep.dev = dev;
437 
438 	callout_init_mp(&adapter->timer);
439 	callout_init_mp(&adapter->tx_fifo_timer);
440 
441 	ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
442 	    em_media_change, em_media_status);
443 
444 	/* Determine hardware and mac info */
445 	error = em_get_hw_info(adapter);
446 	if (error) {
447 		device_printf(dev, "Identify hardware failed\n");
448 		goto fail;
449 	}
450 
451 	/* Setup PCI resources */
452 	error = em_alloc_pci_res(adapter);
453 	if (error) {
454 		device_printf(dev, "Allocation of PCI resources failed\n");
455 		goto fail;
456 	}
457 
458 	/*
459 	 * For ICH8 and family we need to map the flash memory,
460 	 * and this must happen after the MAC is identified.
461 	 */
462 	if (adapter->hw.mac.type == e1000_ich8lan ||
463 	    adapter->hw.mac.type == e1000_ich9lan ||
464 	    adapter->hw.mac.type == e1000_ich10lan ||
465 	    adapter->hw.mac.type == e1000_pchlan ||
466 	    adapter->hw.mac.type == e1000_pch2lan ||
467 	    adapter->hw.mac.type == e1000_pch_lpt) {
468 		adapter->flash_rid = EM_BAR_FLASH;
469 
470 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
471 					&adapter->flash_rid, RF_ACTIVE);
472 		if (adapter->flash == NULL) {
473 			device_printf(dev, "Mapping of Flash failed\n");
474 			error = ENXIO;
475 			goto fail;
476 		}
477 		adapter->osdep.flash_bus_space_tag =
478 		    rman_get_bustag(adapter->flash);
479 		adapter->osdep.flash_bus_space_handle =
480 		    rman_get_bushandle(adapter->flash);
481 
482 		/*
483 		 * This is used in the shared code
484 		 * XXX this goof is actually not used.
485 		 */
486 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
487 	}
488 
489 	switch (adapter->hw.mac.type) {
490 	case e1000_82571:
491 	case e1000_82572:
492 	case e1000_pch_lpt:
493 		/*
494 		 * Pullup extra 4bytes into the first data segment for
495 		 * TSO, see:
496 		 * 82571/82572 specification update errata #7
497 		 *
498 		 * Same applies to I217 (and maybe I218).
499 		 *
500 		 * NOTE:
501 		 * 4bytes instead of 2bytes, which are mentioned in the
502 		 * errata, are pulled; mainly to keep rest of the data
503 		 * properly aligned.
504 		 */
505 		adapter->flags |= EM_FLAG_TSO_PULLEX;
506 		/* FALL THROUGH */
507 
508 	default:
509 		if (pci_is_pcie(dev))
510 			adapter->flags |= EM_FLAG_TSO;
511 		break;
512 	}
513 
514 	/* Do Shared Code initialization */
515 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
516 		device_printf(dev, "Setup of Shared code failed\n");
517 		error = ENXIO;
518 		goto fail;
519 	}
520 
521 	e1000_get_bus_info(&adapter->hw);
522 
523 	/*
524 	 * Validate number of transmit and receive descriptors.  It
525 	 * must not exceed hardware maximum, and must be multiple
526 	 * of E1000_DBA_ALIGN.
527 	 */
528 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
529 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
530 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
531 	    em_txd < EM_MIN_TXD) {
532 		if (adapter->hw.mac.type < e1000_82544)
533 			adapter->num_tx_desc = EM_MAX_TXD_82543;
534 		else
535 			adapter->num_tx_desc = EM_DEFAULT_TXD;
536 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
537 		    adapter->num_tx_desc, em_txd);
538 	} else {
539 		adapter->num_tx_desc = em_txd;
540 	}
541 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
542 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
543 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
544 	    em_rxd < EM_MIN_RXD) {
545 		if (adapter->hw.mac.type < e1000_82544)
546 			adapter->num_rx_desc = EM_MAX_RXD_82543;
547 		else
548 			adapter->num_rx_desc = EM_DEFAULT_RXD;
549 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
550 		    adapter->num_rx_desc, em_rxd);
551 	} else {
552 		adapter->num_rx_desc = em_rxd;
553 	}
554 
555 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
556 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
557 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
558 	adapter->rx_buffer_len = MCLBYTES;
559 
560 	/*
561 	 * Interrupt throttle rate
562 	 */
563 	if (em_int_throttle_ceil == 0) {
564 		adapter->int_throttle_ceil = 0;
565 	} else {
566 		int throttle = em_int_throttle_ceil;
567 
568 		if (throttle < 0)
569 			throttle = EM_DEFAULT_ITR;
570 
571 		/* Recalculate the tunable value to get the exact frequency. */
572 		throttle = 1000000000 / 256 / throttle;
573 
574 		/* Upper 16bits of ITR is reserved and should be zero */
575 		if (throttle & 0xffff0000)
576 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
577 
578 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
579 	}
580 
581 	e1000_init_script_state_82541(&adapter->hw, TRUE);
582 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
583 
584 	/* Copper options */
585 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
586 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
587 		adapter->hw.phy.disable_polarity_correction = FALSE;
588 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
589 	}
590 
591 	/* Set the frame limits assuming standard ethernet sized frames. */
592 	adapter->hw.mac.max_frame_size =
593 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
594 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
595 
596 	/* This controls when hardware reports transmit completion status. */
597 	adapter->hw.mac.report_tx_early = 1;
598 
599 	/*
600 	 * Create top level busdma tag
601 	 */
602 	error = bus_dma_tag_create(NULL, 1, 0,
603 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
604 			NULL, NULL,
605 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
606 			0, &adapter->parent_dtag);
607 	if (error) {
608 		device_printf(dev, "could not create top level DMA tag\n");
609 		goto fail;
610 	}
611 
612 	/*
613 	 * Allocate Transmit Descriptor ring
614 	 */
615 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
616 			 EM_DBA_ALIGN);
617 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
618 	if (error) {
619 		device_printf(dev, "Unable to allocate tx_desc memory\n");
620 		goto fail;
621 	}
622 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
623 
624 	/*
625 	 * Allocate Receive Descriptor ring
626 	 */
627 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
628 			 EM_DBA_ALIGN);
629 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
630 	if (error) {
631 		device_printf(dev, "Unable to allocate rx_desc memory\n");
632 		goto fail;
633 	}
634 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
635 
636 	/* Allocate multicast array memory. */
637 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
638 	    M_DEVBUF, M_WAITOK);
639 
640 	/* Indicate SOL/IDER usage */
641 	if (e1000_check_reset_block(&adapter->hw)) {
642 		device_printf(dev,
643 		    "PHY reset is blocked due to SOL/IDER session.\n");
644 	}
645 
646 	/* Disable EEE */
647 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
648 
649 	/*
650 	 * Start from a known state, this is important in reading the
651 	 * nvm and mac from that.
652 	 */
653 	e1000_reset_hw(&adapter->hw);
654 
655 	/* Make sure we have a good EEPROM before we read from it */
656 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
657 		/*
658 		 * Some PCI-E parts fail the first check due to
659 		 * the link being in sleep state, call it again,
660 		 * if it fails a second time its a real issue.
661 		 */
662 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
663 			device_printf(dev,
664 			    "The EEPROM Checksum Is Not Valid\n");
665 			error = EIO;
666 			goto fail;
667 		}
668 	}
669 
670 	/* Copy the permanent MAC address out of the EEPROM */
671 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
672 		device_printf(dev, "EEPROM read error while reading MAC"
673 		    " address\n");
674 		error = EIO;
675 		goto fail;
676 	}
677 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
678 		device_printf(dev, "Invalid MAC address\n");
679 		error = EIO;
680 		goto fail;
681 	}
682 
683 	/* Disable ULP support */
684 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
685 
686 	/* Allocate transmit descriptors and buffers */
687 	error = em_create_tx_ring(adapter);
688 	if (error) {
689 		device_printf(dev, "Could not setup transmit structures\n");
690 		goto fail;
691 	}
692 
693 	/* Allocate receive descriptors and buffers */
694 	error = em_create_rx_ring(adapter);
695 	if (error) {
696 		device_printf(dev, "Could not setup receive structures\n");
697 		goto fail;
698 	}
699 
700 	/* Manually turn off all interrupts */
701 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
702 
703 	/* Determine if we have to control management hardware */
704 	if (e1000_enable_mng_pass_thru(&adapter->hw))
705 		adapter->flags |= EM_FLAG_HAS_MGMT;
706 
707 	/*
708 	 * Setup Wake-on-Lan
709 	 */
710 	apme_mask = EM_EEPROM_APME;
711 	eeprom_data = 0;
712 	switch (adapter->hw.mac.type) {
713 	case e1000_82542:
714 	case e1000_82543:
715 		break;
716 
717 	case e1000_82573:
718 	case e1000_82583:
719 		adapter->flags |= EM_FLAG_HAS_AMT;
720 		/* FALL THROUGH */
721 
722 	case e1000_82546:
723 	case e1000_82546_rev_3:
724 	case e1000_82571:
725 	case e1000_82572:
726 	case e1000_80003es2lan:
727 		if (adapter->hw.bus.func == 1) {
728 			e1000_read_nvm(&adapter->hw,
729 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
730 		} else {
731 			e1000_read_nvm(&adapter->hw,
732 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
733 		}
734 		break;
735 
736 	case e1000_ich8lan:
737 	case e1000_ich9lan:
738 	case e1000_ich10lan:
739 	case e1000_pchlan:
740 	case e1000_pch2lan:
741 		apme_mask = E1000_WUC_APME;
742 		adapter->flags |= EM_FLAG_HAS_AMT;
743 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
744 		break;
745 
746 	default:
747 		e1000_read_nvm(&adapter->hw,
748 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
749 		break;
750 	}
751 	if (eeprom_data & apme_mask)
752 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
753 
754 	/*
755          * We have the eeprom settings, now apply the special cases
756          * where the eeprom may be wrong or the board won't support
757          * wake on lan on a particular port
758 	 */
759 	device_id = pci_get_device(dev);
760         switch (device_id) {
761 	case E1000_DEV_ID_82546GB_PCIE:
762 		adapter->wol = 0;
763 		break;
764 
765 	case E1000_DEV_ID_82546EB_FIBER:
766 	case E1000_DEV_ID_82546GB_FIBER:
767 	case E1000_DEV_ID_82571EB_FIBER:
768 		/*
769 		 * Wake events only supported on port A for dual fiber
770 		 * regardless of eeprom setting
771 		 */
772 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
773 		    E1000_STATUS_FUNC_1)
774 			adapter->wol = 0;
775 		break;
776 
777 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
778 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
779 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
780 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
781                 /* if quad port adapter, disable WoL on all but port A */
782 		if (em_global_quad_port_a != 0)
783 			adapter->wol = 0;
784 		/* Reset for multiple quad port adapters */
785 		if (++em_global_quad_port_a == 4)
786 			em_global_quad_port_a = 0;
787                 break;
788 	}
789 
790 	/* XXX disable wol */
791 	adapter->wol = 0;
792 
793 	/* Setup flow control. */
794 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
795 	    em_flowctrl);
796 	adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
797 	if (adapter->hw.mac.type == e1000_pchlan) {
798 		/* Only PAUSE reception is supported on PCH */
799 		adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
800 	}
801 
802 	/* Setup OS specific network interface */
803 	em_setup_ifp(adapter);
804 
805 	/* Add sysctl tree, must after em_setup_ifp() */
806 	em_add_sysctl(adapter);
807 
808 #ifdef IFPOLL_ENABLE
809 	/* Polling setup */
810 	ifpoll_compat_setup(&adapter->npoll,
811 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
812 	    device_get_unit(dev), ifp->if_serializer);
813 #endif
814 
815 	/* Reset the hardware */
816 	error = em_reset(adapter);
817 	if (error) {
818 		/*
819 		 * Some 82573 parts fail the first reset, call it again,
820 		 * if it fails a second time its a real issue.
821 		 */
822 		error = em_reset(adapter);
823 		if (error) {
824 			device_printf(dev, "Unable to reset the hardware\n");
825 			ether_ifdetach(ifp);
826 			goto fail;
827 		}
828 	}
829 
830 	/* Initialize statistics */
831 	em_update_stats(adapter);
832 
833 	adapter->hw.mac.get_link_status = 1;
834 	em_update_link_status(adapter);
835 
836 	/* Do we need workaround for 82544 PCI-X adapter? */
837 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
838 	    adapter->hw.mac.type == e1000_82544)
839 		adapter->pcix_82544 = TRUE;
840 	else
841 		adapter->pcix_82544 = FALSE;
842 
843 	if (adapter->pcix_82544) {
844 		/*
845 		 * 82544 on PCI-X may split one TX segment
846 		 * into two TX descs, so we double its number
847 		 * of spare TX desc here.
848 		 */
849 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
850 	} else {
851 		adapter->spare_tx_desc = EM_TX_SPARE;
852 	}
853 	if (adapter->flags & EM_FLAG_TSO)
854 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
855 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
856 
857 	/*
858 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
859 	 * and tx_int_nsegs:
860 	 * (spare_tx_desc + EM_TX_RESERVED) <=
861 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
862 	 */
863 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
864 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
865 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
866 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
867 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
868 
869 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
870 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
871 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
872 
873 	/* Non-AMT based hardware can now take control from firmware */
874 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
875 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
876 		em_get_hw_control(adapter);
877 
878 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
879 
880 	/*
881 	 * Missing Interrupt Following ICR read:
882 	 *
883 	 * 82571/82572 specification update errata #76
884 	 * 82573 specification update errata #31
885 	 * 82574 specification update errata #12
886 	 * 82583 specification update errata #4
887 	 */
888 	intr_func = em_intr;
889 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
890 	    (adapter->hw.mac.type == e1000_82571 ||
891 	     adapter->hw.mac.type == e1000_82572 ||
892 	     adapter->hw.mac.type == e1000_82573 ||
893 	     adapter->hw.mac.type == e1000_82574 ||
894 	     adapter->hw.mac.type == e1000_82583))
895 		intr_func = em_intr_mask;
896 
897 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
898 			       intr_func, adapter, &adapter->intr_tag,
899 			       ifp->if_serializer);
900 	if (error) {
901 		device_printf(dev, "Failed to register interrupt handler");
902 		ether_ifdetach(ifp);
903 		goto fail;
904 	}
905 	return (0);
906 fail:
907 	em_detach(dev);
908 	return (error);
909 }
910 
911 static int
912 em_detach(device_t dev)
913 {
914 	struct adapter *adapter = device_get_softc(dev);
915 
916 	if (device_is_attached(dev)) {
917 		struct ifnet *ifp = &adapter->arpcom.ac_if;
918 
919 		lwkt_serialize_enter(ifp->if_serializer);
920 
921 		em_stop(adapter);
922 
923 		e1000_phy_hw_reset(&adapter->hw);
924 
925 		em_rel_mgmt(adapter);
926 		em_rel_hw_control(adapter);
927 
928 		if (adapter->wol) {
929 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
930 					E1000_WUC_PME_EN);
931 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
932 			em_enable_wol(dev);
933 		}
934 
935 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
936 
937 		lwkt_serialize_exit(ifp->if_serializer);
938 
939 		ether_ifdetach(ifp);
940 	} else if (adapter->memory != NULL) {
941 		em_rel_hw_control(adapter);
942 	}
943 
944 	ifmedia_removeall(&adapter->media);
945 	bus_generic_detach(dev);
946 
947 	em_free_pci_res(adapter);
948 
949 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
950 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
951 
952 	/* Free Transmit Descriptor ring */
953 	if (adapter->tx_desc_base)
954 		em_dma_free(adapter, &adapter->txdma);
955 
956 	/* Free Receive Descriptor ring */
957 	if (adapter->rx_desc_base)
958 		em_dma_free(adapter, &adapter->rxdma);
959 
960 	/* Free top level busdma tag */
961 	if (adapter->parent_dtag != NULL)
962 		bus_dma_tag_destroy(adapter->parent_dtag);
963 
964 	if (adapter->mta != NULL)
965 		kfree(adapter->mta, M_DEVBUF);
966 
967 	return (0);
968 }
969 
970 static int
971 em_shutdown(device_t dev)
972 {
973 	return em_suspend(dev);
974 }
975 
976 static int
977 em_suspend(device_t dev)
978 {
979 	struct adapter *adapter = device_get_softc(dev);
980 	struct ifnet *ifp = &adapter->arpcom.ac_if;
981 
982 	lwkt_serialize_enter(ifp->if_serializer);
983 
984 	em_stop(adapter);
985 
986 	em_rel_mgmt(adapter);
987 	em_rel_hw_control(adapter);
988 
989 	if (adapter->wol) {
990 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
991 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
992 		em_enable_wol(dev);
993 	}
994 
995 	lwkt_serialize_exit(ifp->if_serializer);
996 
997 	return bus_generic_suspend(dev);
998 }
999 
1000 static int
1001 em_resume(device_t dev)
1002 {
1003 	struct adapter *adapter = device_get_softc(dev);
1004 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1005 
1006 	lwkt_serialize_enter(ifp->if_serializer);
1007 
1008 	if (adapter->hw.mac.type == e1000_pch2lan)
1009 		e1000_resume_workarounds_pchlan(&adapter->hw);
1010 
1011 	em_init(adapter);
1012 	em_get_mgmt(adapter);
1013 	if_devstart(ifp);
1014 
1015 	lwkt_serialize_exit(ifp->if_serializer);
1016 
1017 	return bus_generic_resume(dev);
1018 }
1019 
1020 static void
1021 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1022 {
1023 	struct adapter *adapter = ifp->if_softc;
1024 	struct mbuf *m_head;
1025 	int idx = -1, nsegs = 0;
1026 
1027 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1028 	ASSERT_SERIALIZED(ifp->if_serializer);
1029 
1030 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1031 		return;
1032 
1033 	if (!adapter->link_active) {
1034 		ifq_purge(&ifp->if_snd);
1035 		return;
1036 	}
1037 
1038 	while (!ifq_is_empty(&ifp->if_snd)) {
1039 		/* Now do we at least have a minimal? */
1040 		if (EM_IS_OACTIVE(adapter)) {
1041 			em_tx_collect(adapter);
1042 			if (EM_IS_OACTIVE(adapter)) {
1043 				ifq_set_oactive(&ifp->if_snd);
1044 				adapter->no_tx_desc_avail1++;
1045 				break;
1046 			}
1047 		}
1048 
1049 		logif(pkt_txqueue);
1050 		m_head = ifq_dequeue(&ifp->if_snd);
1051 		if (m_head == NULL)
1052 			break;
1053 
1054 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1055 			IFNET_STAT_INC(ifp, oerrors, 1);
1056 			em_tx_collect(adapter);
1057 			continue;
1058 		}
1059 
1060 		/*
1061 		 * TX interrupt are aggressively aggregated, so increasing
1062 		 * opackets at TX interrupt time will make the opackets
1063 		 * statistics vastly inaccurate; we do the opackets increment
1064 		 * now.
1065 		 */
1066 		IFNET_STAT_INC(ifp, opackets, 1);
1067 
1068 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1069 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1070 			nsegs = 0;
1071 			idx = -1;
1072 		}
1073 
1074 		/* Send a copy of the frame to the BPF listener */
1075 		ETHER_BPF_MTAP(ifp, m_head);
1076 
1077 		/* Set timeout in case hardware has problems transmitting. */
1078 		ifp->if_timer = EM_TX_TIMEOUT;
1079 	}
1080 	if (idx >= 0)
1081 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1082 }
1083 
1084 static int
1085 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1086 {
1087 	struct adapter *adapter = ifp->if_softc;
1088 	struct ifreq *ifr = (struct ifreq *)data;
1089 	uint16_t eeprom_data = 0;
1090 	int max_frame_size, mask, reinit;
1091 	int error = 0;
1092 
1093 	ASSERT_SERIALIZED(ifp->if_serializer);
1094 
1095 	switch (command) {
1096 	case SIOCSIFMTU:
1097 		switch (adapter->hw.mac.type) {
1098 		case e1000_82573:
1099 			/*
1100 			 * 82573 only supports jumbo frames
1101 			 * if ASPM is disabled.
1102 			 */
1103 			e1000_read_nvm(&adapter->hw,
1104 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1105 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1106 				max_frame_size = ETHER_MAX_LEN;
1107 				break;
1108 			}
1109 			/* FALL THROUGH */
1110 
1111 		/* Limit Jumbo Frame size */
1112 		case e1000_82571:
1113 		case e1000_82572:
1114 		case e1000_ich9lan:
1115 		case e1000_ich10lan:
1116 		case e1000_pch2lan:
1117 		case e1000_pch_lpt:
1118 		case e1000_82574:
1119 		case e1000_82583:
1120 		case e1000_80003es2lan:
1121 			max_frame_size = 9234;
1122 			break;
1123 
1124 		case e1000_pchlan:
1125 			max_frame_size = 4096;
1126 			break;
1127 
1128 		/* Adapters that do not support jumbo frames */
1129 		case e1000_82542:
1130 		case e1000_ich8lan:
1131 			max_frame_size = ETHER_MAX_LEN;
1132 			break;
1133 
1134 		default:
1135 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1136 			break;
1137 		}
1138 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1139 		    ETHER_CRC_LEN) {
1140 			error = EINVAL;
1141 			break;
1142 		}
1143 
1144 		ifp->if_mtu = ifr->ifr_mtu;
1145 		adapter->hw.mac.max_frame_size =
1146 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1147 
1148 		if (ifp->if_flags & IFF_RUNNING)
1149 			em_init(adapter);
1150 		break;
1151 
1152 	case SIOCSIFFLAGS:
1153 		if (ifp->if_flags & IFF_UP) {
1154 			if ((ifp->if_flags & IFF_RUNNING)) {
1155 				if ((ifp->if_flags ^ adapter->if_flags) &
1156 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1157 					em_disable_promisc(adapter);
1158 					em_set_promisc(adapter);
1159 				}
1160 			} else {
1161 				em_init(adapter);
1162 			}
1163 		} else if (ifp->if_flags & IFF_RUNNING) {
1164 			em_stop(adapter);
1165 		}
1166 		adapter->if_flags = ifp->if_flags;
1167 		break;
1168 
1169 	case SIOCADDMULTI:
1170 	case SIOCDELMULTI:
1171 		if (ifp->if_flags & IFF_RUNNING) {
1172 			em_disable_intr(adapter);
1173 			em_set_multi(adapter);
1174 			if (adapter->hw.mac.type == e1000_82542 &&
1175 			    adapter->hw.revision_id == E1000_REVISION_2)
1176 				em_init_rx_unit(adapter);
1177 #ifdef IFPOLL_ENABLE
1178 			if (!(ifp->if_flags & IFF_NPOLLING))
1179 #endif
1180 				em_enable_intr(adapter);
1181 		}
1182 		break;
1183 
1184 	case SIOCSIFMEDIA:
1185 		/* Check SOL/IDER usage */
1186 		if (e1000_check_reset_block(&adapter->hw)) {
1187 			device_printf(adapter->dev, "Media change is"
1188 			    " blocked due to SOL/IDER session.\n");
1189 			break;
1190 		}
1191 		/* FALL THROUGH */
1192 
1193 	case SIOCGIFMEDIA:
1194 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1195 		break;
1196 
1197 	case SIOCSIFCAP:
1198 		reinit = 0;
1199 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1200 		if (mask & IFCAP_RXCSUM) {
1201 			ifp->if_capenable ^= IFCAP_RXCSUM;
1202 			reinit = 1;
1203 		}
1204 		if (mask & IFCAP_TXCSUM) {
1205 			ifp->if_capenable ^= IFCAP_TXCSUM;
1206 			if (ifp->if_capenable & IFCAP_TXCSUM)
1207 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1208 			else
1209 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1210 		}
1211 		if (mask & IFCAP_TSO) {
1212 			ifp->if_capenable ^= IFCAP_TSO;
1213 			if (ifp->if_capenable & IFCAP_TSO)
1214 				ifp->if_hwassist |= CSUM_TSO;
1215 			else
1216 				ifp->if_hwassist &= ~CSUM_TSO;
1217 		}
1218 		if (mask & IFCAP_VLAN_HWTAGGING) {
1219 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1220 			reinit = 1;
1221 		}
1222 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1223 			em_init(adapter);
1224 		break;
1225 
1226 	default:
1227 		error = ether_ioctl(ifp, command, data);
1228 		break;
1229 	}
1230 	return (error);
1231 }
1232 
1233 static void
1234 em_watchdog(struct ifnet *ifp)
1235 {
1236 	struct adapter *adapter = ifp->if_softc;
1237 
1238 	ASSERT_SERIALIZED(ifp->if_serializer);
1239 
1240 	/*
1241 	 * The timer is set to 5 every time start queues a packet.
1242 	 * Then txeof keeps resetting it as long as it cleans at
1243 	 * least one descriptor.
1244 	 * Finally, anytime all descriptors are clean the timer is
1245 	 * set to 0.
1246 	 */
1247 
1248 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1249 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1250 		/*
1251 		 * If we reach here, all TX jobs are completed and
1252 		 * the TX engine should have been idled for some time.
1253 		 * We don't need to call if_devstart() here.
1254 		 */
1255 		ifq_clr_oactive(&ifp->if_snd);
1256 		ifp->if_timer = 0;
1257 		return;
1258 	}
1259 
1260 	/*
1261 	 * If we are in this routine because of pause frames, then
1262 	 * don't reset the hardware.
1263 	 */
1264 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1265 	    E1000_STATUS_TXOFF) {
1266 		ifp->if_timer = EM_TX_TIMEOUT;
1267 		return;
1268 	}
1269 
1270 	if (e1000_check_for_link(&adapter->hw) == 0)
1271 		if_printf(ifp, "watchdog timeout -- resetting\n");
1272 
1273 	IFNET_STAT_INC(ifp, oerrors, 1);
1274 	adapter->watchdog_events++;
1275 
1276 	em_init(adapter);
1277 
1278 	if (!ifq_is_empty(&ifp->if_snd))
1279 		if_devstart(ifp);
1280 }
1281 
1282 static void
1283 em_init(void *xsc)
1284 {
1285 	struct adapter *adapter = xsc;
1286 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1287 	device_t dev = adapter->dev;
1288 
1289 	ASSERT_SERIALIZED(ifp->if_serializer);
1290 
1291 	em_stop(adapter);
1292 
1293 	/* Get the latest mac address, User can use a LAA */
1294         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1295 
1296 	/* Put the address into the Receive Address Array */
1297 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1298 
1299 	/*
1300 	 * With the 82571 adapter, RAR[0] may be overwritten
1301 	 * when the other port is reset, we make a duplicate
1302 	 * in RAR[14] for that eventuality, this assures
1303 	 * the interface continues to function.
1304 	 */
1305 	if (adapter->hw.mac.type == e1000_82571) {
1306 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1307 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1308 		    E1000_RAR_ENTRIES - 1);
1309 	}
1310 
1311 	/* Reset the hardware */
1312 	if (em_reset(adapter)) {
1313 		device_printf(dev, "Unable to reset the hardware\n");
1314 		/* XXX em_stop()? */
1315 		return;
1316 	}
1317 	em_update_link_status(adapter);
1318 
1319 	/* Setup VLAN support, basic and offload if available */
1320 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1321 
1322 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1323 		uint32_t ctrl;
1324 
1325 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1326 		ctrl |= E1000_CTRL_VME;
1327 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1328 	}
1329 
1330 	/* Configure for OS presence */
1331 	em_get_mgmt(adapter);
1332 
1333 	/* Prepare transmit descriptors and buffers */
1334 	em_init_tx_ring(adapter);
1335 	em_init_tx_unit(adapter);
1336 
1337 	/* Setup Multicast table */
1338 	em_set_multi(adapter);
1339 
1340 	/* Prepare receive descriptors and buffers */
1341 	if (em_init_rx_ring(adapter)) {
1342 		device_printf(dev, "Could not setup receive structures\n");
1343 		em_stop(adapter);
1344 		return;
1345 	}
1346 	em_init_rx_unit(adapter);
1347 
1348 	/* Don't lose promiscuous settings */
1349 	em_set_promisc(adapter);
1350 
1351 	ifp->if_flags |= IFF_RUNNING;
1352 	ifq_clr_oactive(&ifp->if_snd);
1353 
1354 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1355 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1356 
1357 	/* MSI/X configuration for 82574 */
1358 	if (adapter->hw.mac.type == e1000_82574) {
1359 		int tmp;
1360 
1361 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1362 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1363 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1364 		/*
1365 		 * XXX MSIX
1366 		 * Set the IVAR - interrupt vector routing.
1367 		 * Each nibble represents a vector, high bit
1368 		 * is enable, other 3 bits are the MSIX table
1369 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1370 		 * Link (other) to 2, hence the magic number.
1371 		 */
1372 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1373 	}
1374 
1375 #ifdef IFPOLL_ENABLE
1376 	/*
1377 	 * Only enable interrupts if we are not polling, make sure
1378 	 * they are off otherwise.
1379 	 */
1380 	if (ifp->if_flags & IFF_NPOLLING)
1381 		em_disable_intr(adapter);
1382 	else
1383 #endif /* IFPOLL_ENABLE */
1384 		em_enable_intr(adapter);
1385 
1386 	/* AMT based hardware can now take control from firmware */
1387 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1388 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1389 	    adapter->hw.mac.type >= e1000_82571)
1390 		em_get_hw_control(adapter);
1391 }
1392 
1393 #ifdef IFPOLL_ENABLE
1394 
1395 static void
1396 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1397 {
1398 	struct adapter *adapter = ifp->if_softc;
1399 
1400 	ASSERT_SERIALIZED(ifp->if_serializer);
1401 
1402 	if (adapter->npoll.ifpc_stcount-- == 0) {
1403 		uint32_t reg_icr;
1404 
1405 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1406 
1407 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1408 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1409 			callout_stop(&adapter->timer);
1410 			adapter->hw.mac.get_link_status = 1;
1411 			em_update_link_status(adapter);
1412 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1413 		}
1414 	}
1415 
1416 	em_rxeof(adapter, count);
1417 	em_txeof(adapter);
1418 
1419 	if (!ifq_is_empty(&ifp->if_snd))
1420 		if_devstart(ifp);
1421 }
1422 
1423 static void
1424 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1425 {
1426 	struct adapter *adapter = ifp->if_softc;
1427 
1428 	ASSERT_SERIALIZED(ifp->if_serializer);
1429 
1430 	if (info != NULL) {
1431 		int cpuid = adapter->npoll.ifpc_cpuid;
1432 
1433                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1434 		info->ifpi_rx[cpuid].arg = NULL;
1435 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1436 
1437 		if (ifp->if_flags & IFF_RUNNING)
1438 			em_disable_intr(adapter);
1439 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1440 	} else {
1441 		if (ifp->if_flags & IFF_RUNNING)
1442 			em_enable_intr(adapter);
1443 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1444 	}
1445 }
1446 
1447 #endif /* IFPOLL_ENABLE */
1448 
1449 static void
1450 em_intr(void *xsc)
1451 {
1452 	em_intr_body(xsc, TRUE);
1453 }
1454 
1455 static void
1456 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1457 {
1458 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1459 	uint32_t reg_icr;
1460 
1461 	logif(intr_beg);
1462 	ASSERT_SERIALIZED(ifp->if_serializer);
1463 
1464 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1465 
1466 	if (chk_asserted &&
1467 	    ((adapter->hw.mac.type >= e1000_82571 &&
1468 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1469 	     reg_icr == 0)) {
1470 		logif(intr_end);
1471 		return;
1472 	}
1473 
1474 	/*
1475 	 * XXX: some laptops trigger several spurious interrupts
1476 	 * on em(4) when in the resume cycle. The ICR register
1477 	 * reports all-ones value in this case. Processing such
1478 	 * interrupts would lead to a freeze. I don't know why.
1479 	 */
1480 	if (reg_icr == 0xffffffff) {
1481 		logif(intr_end);
1482 		return;
1483 	}
1484 
1485 	if (ifp->if_flags & IFF_RUNNING) {
1486 		if (reg_icr &
1487 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1488 			em_rxeof(adapter, -1);
1489 		if (reg_icr & E1000_ICR_TXDW) {
1490 			em_txeof(adapter);
1491 			if (!ifq_is_empty(&ifp->if_snd))
1492 				if_devstart(ifp);
1493 		}
1494 	}
1495 
1496 	/* Link status change */
1497 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1498 		callout_stop(&adapter->timer);
1499 		adapter->hw.mac.get_link_status = 1;
1500 		em_update_link_status(adapter);
1501 
1502 		/* Deal with TX cruft when link lost */
1503 		em_tx_purge(adapter);
1504 
1505 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1506 	}
1507 
1508 	if (reg_icr & E1000_ICR_RXO)
1509 		adapter->rx_overruns++;
1510 
1511 	logif(intr_end);
1512 }
1513 
1514 static void
1515 em_intr_mask(void *xsc)
1516 {
1517 	struct adapter *adapter = xsc;
1518 
1519 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1520 	/*
1521 	 * NOTE:
1522 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1523 	 * so don't check it.
1524 	 */
1525 	em_intr_body(adapter, FALSE);
1526 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1527 }
1528 
1529 static void
1530 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1531 {
1532 	struct adapter *adapter = ifp->if_softc;
1533 	u_char fiber_type = IFM_1000_SX;
1534 
1535 	ASSERT_SERIALIZED(ifp->if_serializer);
1536 
1537 	em_update_link_status(adapter);
1538 
1539 	ifmr->ifm_status = IFM_AVALID;
1540 	ifmr->ifm_active = IFM_ETHER;
1541 
1542 	if (!adapter->link_active) {
1543 		ifmr->ifm_active |= IFM_NONE;
1544 		return;
1545 	}
1546 
1547 	ifmr->ifm_status |= IFM_ACTIVE;
1548 	if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1549 		ifmr->ifm_active |= IFM_ETH_FORCEPAUSE;
1550 
1551 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1552 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1553 		if (adapter->hw.mac.type == e1000_82545)
1554 			fiber_type = IFM_1000_LX;
1555 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1556 	} else {
1557 		switch (adapter->link_speed) {
1558 		case 10:
1559 			ifmr->ifm_active |= IFM_10_T;
1560 			break;
1561 		case 100:
1562 			ifmr->ifm_active |= IFM_100_TX;
1563 			break;
1564 
1565 		case 1000:
1566 			ifmr->ifm_active |= IFM_1000_T;
1567 			break;
1568 		}
1569 		if (adapter->link_duplex == FULL_DUPLEX)
1570 			ifmr->ifm_active |= IFM_FDX;
1571 		else
1572 			ifmr->ifm_active |= IFM_HDX;
1573 	}
1574 	if (ifmr->ifm_active & IFM_FDX) {
1575 		ifmr->ifm_active |=
1576 		    e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1577 	}
1578 }
1579 
1580 static int
1581 em_media_change(struct ifnet *ifp)
1582 {
1583 	struct adapter *adapter = ifp->if_softc;
1584 	struct ifmedia *ifm = &adapter->media;
1585 
1586 	ASSERT_SERIALIZED(ifp->if_serializer);
1587 
1588 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1589 		return (EINVAL);
1590 
1591 	if (adapter->hw.mac.type == e1000_pchlan &&
1592 	    (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1593 		if (bootverbose)
1594 			if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1595 		return EINVAL;
1596 	}
1597 
1598 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1599 	case IFM_AUTO:
1600 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1601 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1602 		break;
1603 
1604 	case IFM_1000_LX:
1605 	case IFM_1000_SX:
1606 	case IFM_1000_T:
1607 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1608 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1609 		break;
1610 
1611 	case IFM_100_TX:
1612 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1613 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1614 		} else {
1615 			if (IFM_OPTIONS(ifm->ifm_media) &
1616 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1617 				if (bootverbose) {
1618 					if_printf(ifp, "Flow control is not "
1619 					    "allowed for half-duplex\n");
1620 				}
1621 				return EINVAL;
1622 			}
1623 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1624 		}
1625 		adapter->hw.mac.autoneg = FALSE;
1626 		adapter->hw.phy.autoneg_advertised = 0;
1627 		break;
1628 
1629 	case IFM_10_T:
1630 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1631 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1632 		} else {
1633 			if (IFM_OPTIONS(ifm->ifm_media) &
1634 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1635 				if (bootverbose) {
1636 					if_printf(ifp, "Flow control is not "
1637 					    "allowed for half-duplex\n");
1638 				}
1639 				return EINVAL;
1640 			}
1641 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1642 		}
1643 		adapter->hw.mac.autoneg = FALSE;
1644 		adapter->hw.phy.autoneg_advertised = 0;
1645 		break;
1646 
1647 	default:
1648 		if (bootverbose) {
1649 			if_printf(ifp, "Unsupported media type %d\n",
1650 			    IFM_SUBTYPE(ifm->ifm_media));
1651 		}
1652 		return EINVAL;
1653 	}
1654 	adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1655 
1656 	if (ifp->if_flags & IFF_RUNNING)
1657 		em_init(adapter);
1658 
1659 	return (0);
1660 }
1661 
1662 static int
1663 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1664     int *segs_used, int *idx)
1665 {
1666 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1667 	bus_dmamap_t map;
1668 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1669 	struct e1000_tx_desc *ctxd = NULL;
1670 	struct mbuf *m_head = *m_headp;
1671 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1672 	int maxsegs, nsegs, i, j, first, last = 0, error;
1673 
1674 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1675 		error = em_tso_pullup(adapter, m_headp);
1676 		if (error)
1677 			return error;
1678 		m_head = *m_headp;
1679 	}
1680 
1681 	txd_upper = txd_lower = 0;
1682 	txd_used = 0;
1683 
1684 	/*
1685 	 * Capture the first descriptor index, this descriptor
1686 	 * will have the index of the EOP which is the only one
1687 	 * that now gets a DONE bit writeback.
1688 	 */
1689 	first = adapter->next_avail_tx_desc;
1690 	tx_buffer = &adapter->tx_buffer_area[first];
1691 	tx_buffer_mapped = tx_buffer;
1692 	map = tx_buffer->map;
1693 
1694 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1695 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1696 		("not enough spare TX desc"));
1697 	if (adapter->pcix_82544) {
1698 		/* Half it; see the comment in em_attach() */
1699 		maxsegs >>= 1;
1700 	}
1701 	if (maxsegs > EM_MAX_SCATTER)
1702 		maxsegs = EM_MAX_SCATTER;
1703 
1704 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1705 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1706 	if (error) {
1707 		if (error == ENOBUFS)
1708 			adapter->mbuf_alloc_failed++;
1709 		else
1710 			adapter->no_tx_dma_setup++;
1711 
1712 		m_freem(*m_headp);
1713 		*m_headp = NULL;
1714 		return error;
1715 	}
1716         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1717 
1718 	m_head = *m_headp;
1719 	adapter->tx_nsegs += nsegs;
1720 	*segs_used += nsegs;
1721 
1722 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1723 		/* TSO will consume one TX desc */
1724 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1725 		adapter->tx_nsegs += i;
1726 		*segs_used += i;
1727 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1728 		/* TX csum offloading will consume one TX desc */
1729 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1730 		adapter->tx_nsegs += i;
1731 		*segs_used += i;
1732 	}
1733 
1734         /* Handle VLAN tag */
1735 	if (m_head->m_flags & M_VLANTAG) {
1736 		/* Set the vlan id. */
1737 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1738 		/* Tell hardware to add tag */
1739 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1740 	}
1741 
1742 	i = adapter->next_avail_tx_desc;
1743 
1744 	/* Set up our transmit descriptors */
1745 	for (j = 0; j < nsegs; j++) {
1746 		/* If adapter is 82544 and on PCIX bus */
1747 		if(adapter->pcix_82544) {
1748 			DESC_ARRAY desc_array;
1749 			uint32_t array_elements, counter;
1750 
1751 			/*
1752 			 * Check the Address and Length combination and
1753 			 * split the data accordingly
1754 			 */
1755 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1756 						segs[j].ds_len, &desc_array);
1757 			for (counter = 0; counter < array_elements; counter++) {
1758 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1759 
1760 				tx_buffer = &adapter->tx_buffer_area[i];
1761 				ctxd = &adapter->tx_desc_base[i];
1762 
1763 				ctxd->buffer_addr = htole64(
1764 				    desc_array.descriptor[counter].address);
1765 				ctxd->lower.data = htole32(
1766 				    E1000_TXD_CMD_IFCS | txd_lower |
1767 				    desc_array.descriptor[counter].length);
1768 				ctxd->upper.data = htole32(txd_upper);
1769 
1770 				last = i;
1771 				if (++i == adapter->num_tx_desc)
1772 					i = 0;
1773 
1774 				txd_used++;
1775                         }
1776 		} else {
1777 			tx_buffer = &adapter->tx_buffer_area[i];
1778 			ctxd = &adapter->tx_desc_base[i];
1779 
1780 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1781 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1782 						   txd_lower | segs[j].ds_len);
1783 			ctxd->upper.data = htole32(txd_upper);
1784 
1785 			last = i;
1786 			if (++i == adapter->num_tx_desc)
1787 				i = 0;
1788 		}
1789 	}
1790 
1791 	adapter->next_avail_tx_desc = i;
1792 	if (adapter->pcix_82544) {
1793 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1794 		adapter->num_tx_desc_avail -= txd_used;
1795 	} else {
1796 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1797 		adapter->num_tx_desc_avail -= nsegs;
1798 	}
1799 
1800 	tx_buffer->m_head = m_head;
1801 	tx_buffer_mapped->map = tx_buffer->map;
1802 	tx_buffer->map = map;
1803 
1804 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1805 		adapter->tx_nsegs = 0;
1806 
1807 		/*
1808 		 * Report Status (RS) is turned on
1809 		 * every tx_int_nsegs descriptors.
1810 		 */
1811 		cmd = E1000_TXD_CMD_RS;
1812 
1813 		/*
1814 		 * Keep track of the descriptor, which will
1815 		 * be written back by hardware.
1816 		 */
1817 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1818 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1819 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1820 	}
1821 
1822 	/*
1823 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1824 	 */
1825 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1826 
1827 	if (adapter->hw.mac.type == e1000_82547) {
1828 		/*
1829 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1830 		 * E1000 that this frame is available to transmit.
1831 		 */
1832 		if (adapter->link_duplex == HALF_DUPLEX) {
1833 			em_82547_move_tail_serialized(adapter);
1834 		} else {
1835 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1836 			em_82547_update_fifo_head(adapter,
1837 			    m_head->m_pkthdr.len);
1838 		}
1839 	} else {
1840 		/*
1841 		 * Defer TDT updating, until enough descriptors are setup
1842 		 */
1843 		*idx = i;
1844 	}
1845 	return (0);
1846 }
1847 
1848 /*
1849  * 82547 workaround to avoid controller hang in half-duplex environment.
1850  * The workaround is to avoid queuing a large packet that would span
1851  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1852  * in this case.  We do that only when FIFO is quiescent.
1853  */
1854 static void
1855 em_82547_move_tail_serialized(struct adapter *adapter)
1856 {
1857 	struct e1000_tx_desc *tx_desc;
1858 	uint16_t hw_tdt, sw_tdt, length = 0;
1859 	bool eop = 0;
1860 
1861 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1862 
1863 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1864 	sw_tdt = adapter->next_avail_tx_desc;
1865 
1866 	while (hw_tdt != sw_tdt) {
1867 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1868 		length += tx_desc->lower.flags.length;
1869 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1870 		if (++hw_tdt == adapter->num_tx_desc)
1871 			hw_tdt = 0;
1872 
1873 		if (eop) {
1874 			if (em_82547_fifo_workaround(adapter, length)) {
1875 				adapter->tx_fifo_wrk_cnt++;
1876 				callout_reset(&adapter->tx_fifo_timer, 1,
1877 					em_82547_move_tail, adapter);
1878 				break;
1879 			}
1880 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1881 			em_82547_update_fifo_head(adapter, length);
1882 			length = 0;
1883 		}
1884 	}
1885 }
1886 
1887 static void
1888 em_82547_move_tail(void *xsc)
1889 {
1890 	struct adapter *adapter = xsc;
1891 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1892 
1893 	lwkt_serialize_enter(ifp->if_serializer);
1894 	em_82547_move_tail_serialized(adapter);
1895 	lwkt_serialize_exit(ifp->if_serializer);
1896 }
1897 
1898 static int
1899 em_82547_fifo_workaround(struct adapter *adapter, int len)
1900 {
1901 	int fifo_space, fifo_pkt_len;
1902 
1903 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1904 
1905 	if (adapter->link_duplex == HALF_DUPLEX) {
1906 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1907 
1908 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1909 			if (em_82547_tx_fifo_reset(adapter))
1910 				return (0);
1911 			else
1912 				return (1);
1913 		}
1914 	}
1915 	return (0);
1916 }
1917 
1918 static void
1919 em_82547_update_fifo_head(struct adapter *adapter, int len)
1920 {
1921 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1922 
1923 	/* tx_fifo_head is always 16 byte aligned */
1924 	adapter->tx_fifo_head += fifo_pkt_len;
1925 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1926 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1927 }
1928 
1929 static int
1930 em_82547_tx_fifo_reset(struct adapter *adapter)
1931 {
1932 	uint32_t tctl;
1933 
1934 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1935 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1936 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1937 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1938 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1939 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1940 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1941 		/* Disable TX unit */
1942 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1943 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1944 		    tctl & ~E1000_TCTL_EN);
1945 
1946 		/* Reset FIFO pointers */
1947 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1948 		    adapter->tx_head_addr);
1949 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1950 		    adapter->tx_head_addr);
1951 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1952 		    adapter->tx_head_addr);
1953 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1954 		    adapter->tx_head_addr);
1955 
1956 		/* Re-enable TX unit */
1957 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1958 		E1000_WRITE_FLUSH(&adapter->hw);
1959 
1960 		adapter->tx_fifo_head = 0;
1961 		adapter->tx_fifo_reset_cnt++;
1962 
1963 		return (TRUE);
1964 	} else {
1965 		return (FALSE);
1966 	}
1967 }
1968 
1969 static void
1970 em_set_promisc(struct adapter *adapter)
1971 {
1972 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1973 	uint32_t reg_rctl;
1974 
1975 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1976 
1977 	if (ifp->if_flags & IFF_PROMISC) {
1978 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1979 		/* Turn this on if you want to see bad packets */
1980 		if (em_debug_sbp)
1981 			reg_rctl |= E1000_RCTL_SBP;
1982 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1983 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1984 		reg_rctl |= E1000_RCTL_MPE;
1985 		reg_rctl &= ~E1000_RCTL_UPE;
1986 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1987 	}
1988 }
1989 
1990 static void
1991 em_disable_promisc(struct adapter *adapter)
1992 {
1993 	uint32_t reg_rctl;
1994 
1995 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1996 
1997 	reg_rctl &= ~E1000_RCTL_UPE;
1998 	reg_rctl &= ~E1000_RCTL_MPE;
1999 	reg_rctl &= ~E1000_RCTL_SBP;
2000 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2001 }
2002 
2003 static void
2004 em_set_multi(struct adapter *adapter)
2005 {
2006 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2007 	struct ifmultiaddr *ifma;
2008 	uint32_t reg_rctl = 0;
2009 	uint8_t *mta;
2010 	int mcnt = 0;
2011 
2012 	mta = adapter->mta;
2013 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2014 
2015 	if (adapter->hw.mac.type == e1000_82542 &&
2016 	    adapter->hw.revision_id == E1000_REVISION_2) {
2017 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2018 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2019 			e1000_pci_clear_mwi(&adapter->hw);
2020 		reg_rctl |= E1000_RCTL_RST;
2021 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2022 		msec_delay(5);
2023 	}
2024 
2025 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2026 		if (ifma->ifma_addr->sa_family != AF_LINK)
2027 			continue;
2028 
2029 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2030 			break;
2031 
2032 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2033 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2034 		mcnt++;
2035 	}
2036 
2037 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2038 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2039 		reg_rctl |= E1000_RCTL_MPE;
2040 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2041 	} else {
2042 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2043 	}
2044 
2045 	if (adapter->hw.mac.type == e1000_82542 &&
2046 	    adapter->hw.revision_id == E1000_REVISION_2) {
2047 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2048 		reg_rctl &= ~E1000_RCTL_RST;
2049 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2050 		msec_delay(5);
2051 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2052 			e1000_pci_set_mwi(&adapter->hw);
2053 	}
2054 }
2055 
2056 /*
2057  * This routine checks for link status and updates statistics.
2058  */
2059 static void
2060 em_timer(void *xsc)
2061 {
2062 	struct adapter *adapter = xsc;
2063 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2064 
2065 	lwkt_serialize_enter(ifp->if_serializer);
2066 
2067 	em_update_link_status(adapter);
2068 	em_update_stats(adapter);
2069 
2070 	/* Reset LAA into RAR[0] on 82571 */
2071 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2072 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2073 
2074 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2075 		em_print_hw_stats(adapter);
2076 
2077 	em_smartspeed(adapter);
2078 
2079 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2080 
2081 	lwkt_serialize_exit(ifp->if_serializer);
2082 }
2083 
2084 static void
2085 em_update_link_status(struct adapter *adapter)
2086 {
2087 	struct e1000_hw *hw = &adapter->hw;
2088 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2089 	device_t dev = adapter->dev;
2090 	uint32_t link_check = 0;
2091 
2092 	/* Get the cached link value or read phy for real */
2093 	switch (hw->phy.media_type) {
2094 	case e1000_media_type_copper:
2095 		if (hw->mac.get_link_status) {
2096 			/* Do the work to read phy */
2097 			e1000_check_for_link(hw);
2098 			link_check = !hw->mac.get_link_status;
2099 			if (link_check) /* ESB2 fix */
2100 				e1000_cfg_on_link_up(hw);
2101 		} else {
2102 			link_check = TRUE;
2103 		}
2104 		break;
2105 
2106 	case e1000_media_type_fiber:
2107 		e1000_check_for_link(hw);
2108 		link_check =
2109 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2110 		break;
2111 
2112 	case e1000_media_type_internal_serdes:
2113 		e1000_check_for_link(hw);
2114 		link_check = adapter->hw.mac.serdes_has_link;
2115 		break;
2116 
2117 	case e1000_media_type_unknown:
2118 	default:
2119 		break;
2120 	}
2121 
2122 	/* Now check for a transition */
2123 	if (link_check && adapter->link_active == 0) {
2124 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2125 		    &adapter->link_duplex);
2126 
2127 		/*
2128 		 * Check if we should enable/disable SPEED_MODE bit on
2129 		 * 82571/82572
2130 		 */
2131 		if (adapter->link_speed != SPEED_1000 &&
2132 		    (hw->mac.type == e1000_82571 ||
2133 		     hw->mac.type == e1000_82572)) {
2134 			int tarc0;
2135 
2136 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2137 			tarc0 &= ~SPEED_MODE_BIT;
2138 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2139 		}
2140 		if (bootverbose) {
2141 			char flowctrl[IFM_ETH_FC_STRLEN];
2142 
2143 			e1000_fc2str(hw->fc.current_mode, flowctrl,
2144 			    sizeof(flowctrl));
2145 			device_printf(dev, "Link is up %d Mbps %s, "
2146 			    "Flow control: %s\n",
2147 			    adapter->link_speed,
2148 			    (adapter->link_duplex == FULL_DUPLEX) ?
2149 			    "Full Duplex" : "Half Duplex",
2150 			    flowctrl);
2151 		}
2152 		if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2153 			e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2154 		adapter->link_active = 1;
2155 		adapter->smartspeed = 0;
2156 		ifp->if_baudrate = adapter->link_speed * 1000000;
2157 		ifp->if_link_state = LINK_STATE_UP;
2158 		if_link_state_change(ifp);
2159 	} else if (!link_check && adapter->link_active == 1) {
2160 		ifp->if_baudrate = adapter->link_speed = 0;
2161 		adapter->link_duplex = 0;
2162 		if (bootverbose)
2163 			device_printf(dev, "Link is Down\n");
2164 		adapter->link_active = 0;
2165 #if 0
2166 		/* Link down, disable watchdog */
2167 		if->if_timer = 0;
2168 #endif
2169 		ifp->if_link_state = LINK_STATE_DOWN;
2170 		if_link_state_change(ifp);
2171 	}
2172 }
2173 
2174 static void
2175 em_stop(struct adapter *adapter)
2176 {
2177 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2178 	int i;
2179 
2180 	ASSERT_SERIALIZED(ifp->if_serializer);
2181 
2182 	em_disable_intr(adapter);
2183 
2184 	callout_stop(&adapter->timer);
2185 	callout_stop(&adapter->tx_fifo_timer);
2186 
2187 	ifp->if_flags &= ~IFF_RUNNING;
2188 	ifq_clr_oactive(&ifp->if_snd);
2189 	ifp->if_timer = 0;
2190 
2191 	e1000_reset_hw(&adapter->hw);
2192 	if (adapter->hw.mac.type >= e1000_82544)
2193 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2194 
2195 	for (i = 0; i < adapter->num_tx_desc; i++) {
2196 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2197 
2198 		if (tx_buffer->m_head != NULL) {
2199 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2200 			m_freem(tx_buffer->m_head);
2201 			tx_buffer->m_head = NULL;
2202 		}
2203 	}
2204 
2205 	for (i = 0; i < adapter->num_rx_desc; i++) {
2206 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2207 
2208 		if (rx_buffer->m_head != NULL) {
2209 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2210 			m_freem(rx_buffer->m_head);
2211 			rx_buffer->m_head = NULL;
2212 		}
2213 	}
2214 
2215 	if (adapter->fmp != NULL)
2216 		m_freem(adapter->fmp);
2217 	adapter->fmp = NULL;
2218 	adapter->lmp = NULL;
2219 
2220 	adapter->csum_flags = 0;
2221 	adapter->csum_lhlen = 0;
2222 	adapter->csum_iphlen = 0;
2223 	adapter->csum_thlen = 0;
2224 	adapter->csum_mss = 0;
2225 	adapter->csum_pktlen = 0;
2226 
2227 	adapter->tx_dd_head = 0;
2228 	adapter->tx_dd_tail = 0;
2229 	adapter->tx_nsegs = 0;
2230 }
2231 
2232 static int
2233 em_get_hw_info(struct adapter *adapter)
2234 {
2235 	device_t dev = adapter->dev;
2236 
2237 	/* Save off the information about this board */
2238 	adapter->hw.vendor_id = pci_get_vendor(dev);
2239 	adapter->hw.device_id = pci_get_device(dev);
2240 	adapter->hw.revision_id = pci_get_revid(dev);
2241 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2242 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2243 
2244 	/* Do Shared Code Init and Setup */
2245 	if (e1000_set_mac_type(&adapter->hw))
2246 		return ENXIO;
2247 	return 0;
2248 }
2249 
2250 static int
2251 em_alloc_pci_res(struct adapter *adapter)
2252 {
2253 	device_t dev = adapter->dev;
2254 	u_int intr_flags;
2255 	int val, rid, msi_enable;
2256 
2257 	/* Enable bus mastering */
2258 	pci_enable_busmaster(dev);
2259 
2260 	adapter->memory_rid = EM_BAR_MEM;
2261 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2262 				&adapter->memory_rid, RF_ACTIVE);
2263 	if (adapter->memory == NULL) {
2264 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2265 		return (ENXIO);
2266 	}
2267 	adapter->osdep.mem_bus_space_tag =
2268 	    rman_get_bustag(adapter->memory);
2269 	adapter->osdep.mem_bus_space_handle =
2270 	    rman_get_bushandle(adapter->memory);
2271 
2272 	/* XXX This is quite goofy, it is not actually used */
2273 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2274 
2275 	/* Only older adapters use IO mapping */
2276 	if (adapter->hw.mac.type > e1000_82543 &&
2277 	    adapter->hw.mac.type < e1000_82571) {
2278 		/* Figure our where our IO BAR is ? */
2279 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2280 			val = pci_read_config(dev, rid, 4);
2281 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2282 				adapter->io_rid = rid;
2283 				break;
2284 			}
2285 			rid += 4;
2286 			/* check for 64bit BAR */
2287 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2288 				rid += 4;
2289 		}
2290 		if (rid >= PCIR_CARDBUSCIS) {
2291 			device_printf(dev, "Unable to locate IO BAR\n");
2292 			return (ENXIO);
2293 		}
2294 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2295 					&adapter->io_rid, RF_ACTIVE);
2296 		if (adapter->ioport == NULL) {
2297 			device_printf(dev, "Unable to allocate bus resource: "
2298 			    "ioport\n");
2299 			return (ENXIO);
2300 		}
2301 		adapter->hw.io_base = 0;
2302 		adapter->osdep.io_bus_space_tag =
2303 		    rman_get_bustag(adapter->ioport);
2304 		adapter->osdep.io_bus_space_handle =
2305 		    rman_get_bushandle(adapter->ioport);
2306 	}
2307 
2308 	/*
2309 	 * Don't enable MSI-X on 82574, see:
2310 	 * 82574 specification update errata #15
2311 	 *
2312 	 * Don't enable MSI on PCI/PCI-X chips, see:
2313 	 * 82540 specification update errata #6
2314 	 * 82545 specification update errata #4
2315 	 *
2316 	 * Don't enable MSI on 82571/82572, see:
2317 	 * 82571/82572 specification update errata #63
2318 	 */
2319 	msi_enable = em_msi_enable;
2320 	if (msi_enable &&
2321 	    (!pci_is_pcie(dev) ||
2322 	     adapter->hw.mac.type == e1000_82571 ||
2323 	     adapter->hw.mac.type == e1000_82572))
2324 		msi_enable = 0;
2325 
2326 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2327 	    &adapter->intr_rid, &intr_flags);
2328 
2329 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2330 		int unshared;
2331 
2332 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2333 		if (!unshared) {
2334 			adapter->flags |= EM_FLAG_SHARED_INTR;
2335 			if (bootverbose)
2336 				device_printf(dev, "IRQ shared\n");
2337 		} else {
2338 			intr_flags &= ~RF_SHAREABLE;
2339 			if (bootverbose)
2340 				device_printf(dev, "IRQ unshared\n");
2341 		}
2342 	}
2343 
2344 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2345 	    &adapter->intr_rid, intr_flags);
2346 	if (adapter->intr_res == NULL) {
2347 		device_printf(dev, "Unable to allocate bus resource: "
2348 		    "interrupt\n");
2349 		return (ENXIO);
2350 	}
2351 
2352 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2353 	adapter->hw.back = &adapter->osdep;
2354 	return (0);
2355 }
2356 
2357 static void
2358 em_free_pci_res(struct adapter *adapter)
2359 {
2360 	device_t dev = adapter->dev;
2361 
2362 	if (adapter->intr_res != NULL) {
2363 		bus_release_resource(dev, SYS_RES_IRQ,
2364 		    adapter->intr_rid, adapter->intr_res);
2365 	}
2366 
2367 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2368 		pci_release_msi(dev);
2369 
2370 	if (adapter->memory != NULL) {
2371 		bus_release_resource(dev, SYS_RES_MEMORY,
2372 		    adapter->memory_rid, adapter->memory);
2373 	}
2374 
2375 	if (adapter->flash != NULL) {
2376 		bus_release_resource(dev, SYS_RES_MEMORY,
2377 		    adapter->flash_rid, adapter->flash);
2378 	}
2379 
2380 	if (adapter->ioport != NULL) {
2381 		bus_release_resource(dev, SYS_RES_IOPORT,
2382 		    adapter->io_rid, adapter->ioport);
2383 	}
2384 }
2385 
2386 static int
2387 em_reset(struct adapter *adapter)
2388 {
2389 	device_t dev = adapter->dev;
2390 	uint16_t rx_buffer_size;
2391 	uint32_t pba;
2392 
2393 	/* When hardware is reset, fifo_head is also reset */
2394 	adapter->tx_fifo_head = 0;
2395 
2396 	/* Set up smart power down as default off on newer adapters. */
2397 	if (!em_smart_pwr_down &&
2398 	    (adapter->hw.mac.type == e1000_82571 ||
2399 	     adapter->hw.mac.type == e1000_82572)) {
2400 		uint16_t phy_tmp = 0;
2401 
2402 		/* Speed up time to link by disabling smart power down. */
2403 		e1000_read_phy_reg(&adapter->hw,
2404 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2405 		phy_tmp &= ~IGP02E1000_PM_SPD;
2406 		e1000_write_phy_reg(&adapter->hw,
2407 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2408 	}
2409 
2410 	/*
2411 	 * Packet Buffer Allocation (PBA)
2412 	 * Writing PBA sets the receive portion of the buffer
2413 	 * the remainder is used for the transmit buffer.
2414 	 *
2415 	 * Devices before the 82547 had a Packet Buffer of 64K.
2416 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2417 	 * After the 82547 the buffer was reduced to 40K.
2418 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2419 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2420 	 */
2421 	switch (adapter->hw.mac.type) {
2422 	case e1000_82547:
2423 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2424 		if (adapter->hw.mac.max_frame_size > 8192)
2425 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2426 		else
2427 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2428 		adapter->tx_fifo_head = 0;
2429 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2430 		adapter->tx_fifo_size =
2431 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2432 		break;
2433 
2434 	/* Total Packet Buffer on these is 48K */
2435 	case e1000_82571:
2436 	case e1000_82572:
2437 	case e1000_80003es2lan:
2438 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2439 		break;
2440 
2441 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2442 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2443 		break;
2444 
2445 	case e1000_82574:
2446 	case e1000_82583:
2447 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2448 		break;
2449 
2450 	case e1000_ich8lan:
2451 		pba = E1000_PBA_8K;
2452 		break;
2453 
2454 	case e1000_ich9lan:
2455 	case e1000_ich10lan:
2456 #define E1000_PBA_10K	0x000A
2457 		pba = E1000_PBA_10K;
2458 		break;
2459 
2460 	case e1000_pchlan:
2461 	case e1000_pch2lan:
2462 	case e1000_pch_lpt:
2463 		pba = E1000_PBA_26K;
2464 		break;
2465 
2466 	default:
2467 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2468 		if (adapter->hw.mac.max_frame_size > 8192)
2469 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2470 		else
2471 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2472 	}
2473 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2474 
2475 	/*
2476 	 * These parameters control the automatic generation (Tx) and
2477 	 * response (Rx) to Ethernet PAUSE frames.
2478 	 * - High water mark should allow for at least two frames to be
2479 	 *   received after sending an XOFF.
2480 	 * - Low water mark works best when it is very near the high water mark.
2481 	 *   This allows the receiver to restart by sending XON when it has
2482 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2483 	 *   restart after one full frame is pulled from the buffer. There
2484 	 *   could be several smaller frames in the buffer and if so they will
2485 	 *   not trigger the XON until their total number reduces the buffer
2486 	 *   by 1500.
2487 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2488 	 */
2489 	rx_buffer_size =
2490 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2491 
2492 	adapter->hw.fc.high_water = rx_buffer_size -
2493 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2494 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2495 
2496 	if (adapter->hw.mac.type == e1000_80003es2lan)
2497 		adapter->hw.fc.pause_time = 0xFFFF;
2498 	else
2499 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2500 
2501 	adapter->hw.fc.send_xon = TRUE;
2502 
2503 	adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2504 
2505 	/*
2506 	 * Device specific overrides/settings
2507 	 */
2508 	switch (adapter->hw.mac.type) {
2509 	case e1000_pchlan:
2510 		KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2511 		    adapter->hw.fc.requested_mode == e1000_fc_none,
2512 		    ("unsupported flow control on PCH %d",
2513 		     adapter->hw.fc.requested_mode));
2514 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2515 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2516 			adapter->hw.fc.high_water = 0x3500;
2517 			adapter->hw.fc.low_water = 0x1500;
2518 		} else {
2519 			adapter->hw.fc.high_water = 0x5000;
2520 			adapter->hw.fc.low_water = 0x3000;
2521 		}
2522 		adapter->hw.fc.refresh_time = 0x1000;
2523 		break;
2524 
2525 	case e1000_pch2lan:
2526 	case e1000_pch_lpt:
2527 		adapter->hw.fc.high_water = 0x5C20;
2528 		adapter->hw.fc.low_water = 0x5048;
2529 		adapter->hw.fc.pause_time = 0x0650;
2530 		adapter->hw.fc.refresh_time = 0x0400;
2531 		/* Jumbos need adjusted PBA */
2532 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2533 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2534 		else
2535 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2536 		break;
2537 
2538 	case e1000_ich9lan:
2539 	case e1000_ich10lan:
2540 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2541 			adapter->hw.fc.high_water = 0x2800;
2542 			adapter->hw.fc.low_water =
2543 			    adapter->hw.fc.high_water - 8;
2544 			break;
2545 		}
2546 		/* FALL THROUGH */
2547 	default:
2548 		if (adapter->hw.mac.type == e1000_80003es2lan)
2549 			adapter->hw.fc.pause_time = 0xFFFF;
2550 		break;
2551 	}
2552 
2553 	/* Issue a global reset */
2554 	e1000_reset_hw(&adapter->hw);
2555 	if (adapter->hw.mac.type >= e1000_82544)
2556 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2557 	em_disable_aspm(adapter);
2558 
2559 	if (e1000_init_hw(&adapter->hw) < 0) {
2560 		device_printf(dev, "Hardware Initialization Failed\n");
2561 		return (EIO);
2562 	}
2563 
2564 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2565 	e1000_get_phy_info(&adapter->hw);
2566 	e1000_check_for_link(&adapter->hw);
2567 
2568 	return (0);
2569 }
2570 
2571 static void
2572 em_setup_ifp(struct adapter *adapter)
2573 {
2574 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2575 
2576 	if_initname(ifp, device_get_name(adapter->dev),
2577 		    device_get_unit(adapter->dev));
2578 	ifp->if_softc = adapter;
2579 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2580 	ifp->if_init =  em_init;
2581 	ifp->if_ioctl = em_ioctl;
2582 	ifp->if_start = em_start;
2583 #ifdef IFPOLL_ENABLE
2584 	ifp->if_npoll = em_npoll;
2585 #endif
2586 	ifp->if_watchdog = em_watchdog;
2587 	ifp->if_nmbclusters = adapter->num_rx_desc;
2588 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2589 	ifq_set_ready(&ifp->if_snd);
2590 
2591 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2592 
2593 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2594 	if (adapter->hw.mac.type >= e1000_82543)
2595 		ifp->if_capabilities |= IFCAP_HWCSUM;
2596 	if (adapter->flags & EM_FLAG_TSO)
2597 		ifp->if_capabilities |= IFCAP_TSO;
2598 	ifp->if_capenable = ifp->if_capabilities;
2599 
2600 	if (ifp->if_capenable & IFCAP_TXCSUM)
2601 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2602 	if (ifp->if_capenable & IFCAP_TSO)
2603 		ifp->if_hwassist |= CSUM_TSO;
2604 
2605 	/*
2606 	 * Tell the upper layer(s) we support long frames.
2607 	 */
2608 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2609 
2610 	/*
2611 	 * Specify the media types supported by this adapter and register
2612 	 * callbacks to update media and link information
2613 	 */
2614 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2615 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2616 		u_char fiber_type = IFM_1000_SX; /* default type */
2617 
2618 		if (adapter->hw.mac.type == e1000_82545)
2619 			fiber_type = IFM_1000_LX;
2620 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2621 			    0, NULL);
2622 	} else {
2623 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2624 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2625 			    0, NULL);
2626 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2627 			    0, NULL);
2628 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2629 			    0, NULL);
2630 		if (adapter->hw.phy.type != e1000_phy_ife) {
2631 			ifmedia_add(&adapter->media,
2632 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2633 		}
2634 	}
2635 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2636 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2637 	    adapter->ifm_flowctrl);
2638 }
2639 
2640 
2641 /*
2642  * Workaround for SmartSpeed on 82541 and 82547 controllers
2643  */
2644 static void
2645 em_smartspeed(struct adapter *adapter)
2646 {
2647 	uint16_t phy_tmp;
2648 
2649 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2650 	    adapter->hw.mac.autoneg == 0 ||
2651 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2652 		return;
2653 
2654 	if (adapter->smartspeed == 0) {
2655 		/*
2656 		 * If Master/Slave config fault is asserted twice,
2657 		 * we assume back-to-back
2658 		 */
2659 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2660 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2661 			return;
2662 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2663 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2664 			e1000_read_phy_reg(&adapter->hw,
2665 			    PHY_1000T_CTRL, &phy_tmp);
2666 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2667 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2668 				e1000_write_phy_reg(&adapter->hw,
2669 				    PHY_1000T_CTRL, phy_tmp);
2670 				adapter->smartspeed++;
2671 				if (adapter->hw.mac.autoneg &&
2672 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2673 				    !e1000_read_phy_reg(&adapter->hw,
2674 				     PHY_CONTROL, &phy_tmp)) {
2675 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2676 						   MII_CR_RESTART_AUTO_NEG;
2677 					e1000_write_phy_reg(&adapter->hw,
2678 					    PHY_CONTROL, phy_tmp);
2679 				}
2680 			}
2681 		}
2682 		return;
2683 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2684 		/* If still no link, perhaps using 2/3 pair cable */
2685 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2686 		phy_tmp |= CR_1000T_MS_ENABLE;
2687 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2688 		if (adapter->hw.mac.autoneg &&
2689 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2690 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2691 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2692 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2693 		}
2694 	}
2695 
2696 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2697 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2698 		adapter->smartspeed = 0;
2699 }
2700 
2701 static int
2702 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2703 	      struct em_dma_alloc *dma)
2704 {
2705 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2706 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2707 				&dma->dma_tag, &dma->dma_map,
2708 				&dma->dma_paddr);
2709 	if (dma->dma_vaddr == NULL)
2710 		return ENOMEM;
2711 	else
2712 		return 0;
2713 }
2714 
2715 static void
2716 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2717 {
2718 	if (dma->dma_tag == NULL)
2719 		return;
2720 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2721 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2722 	bus_dma_tag_destroy(dma->dma_tag);
2723 }
2724 
2725 static int
2726 em_create_tx_ring(struct adapter *adapter)
2727 {
2728 	device_t dev = adapter->dev;
2729 	struct em_buffer *tx_buffer;
2730 	int error, i;
2731 
2732 	adapter->tx_buffer_area =
2733 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2734 			M_DEVBUF, M_WAITOK | M_ZERO);
2735 
2736 	/*
2737 	 * Create DMA tags for tx buffers
2738 	 */
2739 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2740 			1, 0,			/* alignment, bounds */
2741 			BUS_SPACE_MAXADDR,	/* lowaddr */
2742 			BUS_SPACE_MAXADDR,	/* highaddr */
2743 			NULL, NULL,		/* filter, filterarg */
2744 			EM_TSO_SIZE,		/* maxsize */
2745 			EM_MAX_SCATTER,		/* nsegments */
2746 			PAGE_SIZE,		/* maxsegsize */
2747 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2748 			BUS_DMA_ONEBPAGE,	/* flags */
2749 			&adapter->txtag);
2750 	if (error) {
2751 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2752 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2753 		adapter->tx_buffer_area = NULL;
2754 		return error;
2755 	}
2756 
2757 	/*
2758 	 * Create DMA maps for tx buffers
2759 	 */
2760 	for (i = 0; i < adapter->num_tx_desc; i++) {
2761 		tx_buffer = &adapter->tx_buffer_area[i];
2762 
2763 		error = bus_dmamap_create(adapter->txtag,
2764 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2765 					  &tx_buffer->map);
2766 		if (error) {
2767 			device_printf(dev, "Unable to create TX DMA map\n");
2768 			em_destroy_tx_ring(adapter, i);
2769 			return error;
2770 		}
2771 	}
2772 	return (0);
2773 }
2774 
2775 static void
2776 em_init_tx_ring(struct adapter *adapter)
2777 {
2778 	/* Clear the old ring contents */
2779 	bzero(adapter->tx_desc_base,
2780 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2781 
2782 	/* Reset state */
2783 	adapter->next_avail_tx_desc = 0;
2784 	adapter->next_tx_to_clean = 0;
2785 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2786 }
2787 
2788 static void
2789 em_init_tx_unit(struct adapter *adapter)
2790 {
2791 	uint32_t tctl, tarc, tipg = 0;
2792 	uint64_t bus_addr;
2793 
2794 	/* Setup the Base and Length of the Tx Descriptor Ring */
2795 	bus_addr = adapter->txdma.dma_paddr;
2796 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2797 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2798 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2799 	    (uint32_t)(bus_addr >> 32));
2800 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2801 	    (uint32_t)bus_addr);
2802 	/* Setup the HW Tx Head and Tail descriptor pointers */
2803 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2804 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2805 
2806 	/* Set the default values for the Tx Inter Packet Gap timer */
2807 	switch (adapter->hw.mac.type) {
2808 	case e1000_82542:
2809 		tipg = DEFAULT_82542_TIPG_IPGT;
2810 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2811 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2812 		break;
2813 
2814 	case e1000_80003es2lan:
2815 		tipg = DEFAULT_82543_TIPG_IPGR1;
2816 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2817 		    E1000_TIPG_IPGR2_SHIFT;
2818 		break;
2819 
2820 	default:
2821 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2822 		    adapter->hw.phy.media_type ==
2823 		    e1000_media_type_internal_serdes)
2824 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2825 		else
2826 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2827 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2828 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2829 		break;
2830 	}
2831 
2832 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2833 
2834 	/* NOTE: 0 is not allowed for TIDV */
2835 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2836 	if(adapter->hw.mac.type >= e1000_82540)
2837 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2838 
2839 	if (adapter->hw.mac.type == e1000_82571 ||
2840 	    adapter->hw.mac.type == e1000_82572) {
2841 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2842 		tarc |= SPEED_MODE_BIT;
2843 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2844 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2845 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2846 		tarc |= 1;
2847 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2848 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2849 		tarc |= 1;
2850 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2851 	}
2852 
2853 	/* Program the Transmit Control Register */
2854 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2855 	tctl &= ~E1000_TCTL_CT;
2856 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2857 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2858 
2859 	if (adapter->hw.mac.type >= e1000_82571)
2860 		tctl |= E1000_TCTL_MULR;
2861 
2862 	/* This write will effectively turn on the transmit unit. */
2863 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2864 
2865 	if (adapter->hw.mac.type == e1000_82571 ||
2866 	    adapter->hw.mac.type == e1000_82572 ||
2867 	    adapter->hw.mac.type == e1000_80003es2lan) {
2868 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
2869 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2870 		tarc &= ~(1 << 28);
2871 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2872 	}
2873 }
2874 
2875 static void
2876 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2877 {
2878 	struct em_buffer *tx_buffer;
2879 	int i;
2880 
2881 	if (adapter->tx_buffer_area == NULL)
2882 		return;
2883 
2884 	for (i = 0; i < ndesc; i++) {
2885 		tx_buffer = &adapter->tx_buffer_area[i];
2886 
2887 		KKASSERT(tx_buffer->m_head == NULL);
2888 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2889 	}
2890 	bus_dma_tag_destroy(adapter->txtag);
2891 
2892 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2893 	adapter->tx_buffer_area = NULL;
2894 }
2895 
2896 /*
2897  * The offload context needs to be set when we transfer the first
2898  * packet of a particular protocol (TCP/UDP).  This routine has been
2899  * enhanced to deal with inserted VLAN headers.
2900  *
2901  * If the new packet's ether header length, ip header length and
2902  * csum offloading type are same as the previous packet, we should
2903  * avoid allocating a new csum context descriptor; mainly to take
2904  * advantage of the pipeline effect of the TX data read request.
2905  *
2906  * This function returns number of TX descrptors allocated for
2907  * csum context.
2908  */
2909 static int
2910 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2911 	  uint32_t *txd_upper, uint32_t *txd_lower)
2912 {
2913 	struct e1000_context_desc *TXD;
2914 	int curr_txd, ehdrlen, csum_flags;
2915 	uint32_t cmd, hdr_len, ip_hlen;
2916 
2917 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2918 	ip_hlen = mp->m_pkthdr.csum_iphlen;
2919 	ehdrlen = mp->m_pkthdr.csum_lhlen;
2920 
2921 	if (adapter->csum_lhlen == ehdrlen &&
2922 	    adapter->csum_iphlen == ip_hlen &&
2923 	    adapter->csum_flags == csum_flags) {
2924 		/*
2925 		 * Same csum offload context as the previous packets;
2926 		 * just return.
2927 		 */
2928 		*txd_upper = adapter->csum_txd_upper;
2929 		*txd_lower = adapter->csum_txd_lower;
2930 		return 0;
2931 	}
2932 
2933 	/*
2934 	 * Setup a new csum offload context.
2935 	 */
2936 
2937 	curr_txd = adapter->next_avail_tx_desc;
2938 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2939 
2940 	cmd = 0;
2941 
2942 	/* Setup of IP header checksum. */
2943 	if (csum_flags & CSUM_IP) {
2944 		/*
2945 		 * Start offset for header checksum calculation.
2946 		 * End offset for header checksum calculation.
2947 		 * Offset of place to put the checksum.
2948 		 */
2949 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2950 		TXD->lower_setup.ip_fields.ipcse =
2951 		    htole16(ehdrlen + ip_hlen - 1);
2952 		TXD->lower_setup.ip_fields.ipcso =
2953 		    ehdrlen + offsetof(struct ip, ip_sum);
2954 		cmd |= E1000_TXD_CMD_IP;
2955 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2956 	}
2957 	hdr_len = ehdrlen + ip_hlen;
2958 
2959 	if (csum_flags & CSUM_TCP) {
2960 		/*
2961 		 * Start offset for payload checksum calculation.
2962 		 * End offset for payload checksum calculation.
2963 		 * Offset of place to put the checksum.
2964 		 */
2965 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2966 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2967 		TXD->upper_setup.tcp_fields.tucso =
2968 		    hdr_len + offsetof(struct tcphdr, th_sum);
2969 		cmd |= E1000_TXD_CMD_TCP;
2970 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2971 	} else if (csum_flags & CSUM_UDP) {
2972 		/*
2973 		 * Start offset for header checksum calculation.
2974 		 * End offset for header checksum calculation.
2975 		 * Offset of place to put the checksum.
2976 		 */
2977 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2978 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2979 		TXD->upper_setup.tcp_fields.tucso =
2980 		    hdr_len + offsetof(struct udphdr, uh_sum);
2981 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2982 	}
2983 
2984 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2985 		     E1000_TXD_DTYP_D;		/* Data descr */
2986 
2987 	/* Save the information for this csum offloading context */
2988 	adapter->csum_lhlen = ehdrlen;
2989 	adapter->csum_iphlen = ip_hlen;
2990 	adapter->csum_flags = csum_flags;
2991 	adapter->csum_txd_upper = *txd_upper;
2992 	adapter->csum_txd_lower = *txd_lower;
2993 
2994 	TXD->tcp_seg_setup.data = htole32(0);
2995 	TXD->cmd_and_length =
2996 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2997 
2998 	if (++curr_txd == adapter->num_tx_desc)
2999 		curr_txd = 0;
3000 
3001 	KKASSERT(adapter->num_tx_desc_avail > 0);
3002 	adapter->num_tx_desc_avail--;
3003 
3004 	adapter->next_avail_tx_desc = curr_txd;
3005 	return 1;
3006 }
3007 
3008 static void
3009 em_txeof(struct adapter *adapter)
3010 {
3011 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3012 	struct em_buffer *tx_buffer;
3013 	int first, num_avail;
3014 
3015 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
3016 		return;
3017 
3018 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3019 		return;
3020 
3021 	num_avail = adapter->num_tx_desc_avail;
3022 	first = adapter->next_tx_to_clean;
3023 
3024 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3025 		struct e1000_tx_desc *tx_desc;
3026 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3027 
3028 		tx_desc = &adapter->tx_desc_base[dd_idx];
3029 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3030 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3031 
3032 			if (++dd_idx == adapter->num_tx_desc)
3033 				dd_idx = 0;
3034 
3035 			while (first != dd_idx) {
3036 				logif(pkt_txclean);
3037 
3038 				num_avail++;
3039 
3040 				tx_buffer = &adapter->tx_buffer_area[first];
3041 				if (tx_buffer->m_head) {
3042 					bus_dmamap_unload(adapter->txtag,
3043 							  tx_buffer->map);
3044 					m_freem(tx_buffer->m_head);
3045 					tx_buffer->m_head = NULL;
3046 				}
3047 
3048 				if (++first == adapter->num_tx_desc)
3049 					first = 0;
3050 			}
3051 		} else {
3052 			break;
3053 		}
3054 	}
3055 	adapter->next_tx_to_clean = first;
3056 	adapter->num_tx_desc_avail = num_avail;
3057 
3058 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3059 		adapter->tx_dd_head = 0;
3060 		adapter->tx_dd_tail = 0;
3061 	}
3062 
3063 	if (!EM_IS_OACTIVE(adapter)) {
3064 		ifq_clr_oactive(&ifp->if_snd);
3065 
3066 		/* All clean, turn off the timer */
3067 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3068 			ifp->if_timer = 0;
3069 	}
3070 }
3071 
3072 static void
3073 em_tx_collect(struct adapter *adapter)
3074 {
3075 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3076 	struct em_buffer *tx_buffer;
3077 	int tdh, first, num_avail, dd_idx = -1;
3078 
3079 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3080 		return;
3081 
3082 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3083 	if (tdh == adapter->next_tx_to_clean)
3084 		return;
3085 
3086 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3087 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3088 
3089 	num_avail = adapter->num_tx_desc_avail;
3090 	first = adapter->next_tx_to_clean;
3091 
3092 	while (first != tdh) {
3093 		logif(pkt_txclean);
3094 
3095 		num_avail++;
3096 
3097 		tx_buffer = &adapter->tx_buffer_area[first];
3098 		if (tx_buffer->m_head) {
3099 			bus_dmamap_unload(adapter->txtag,
3100 					  tx_buffer->map);
3101 			m_freem(tx_buffer->m_head);
3102 			tx_buffer->m_head = NULL;
3103 		}
3104 
3105 		if (first == dd_idx) {
3106 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3107 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3108 				adapter->tx_dd_head = 0;
3109 				adapter->tx_dd_tail = 0;
3110 				dd_idx = -1;
3111 			} else {
3112 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3113 			}
3114 		}
3115 
3116 		if (++first == adapter->num_tx_desc)
3117 			first = 0;
3118 	}
3119 	adapter->next_tx_to_clean = first;
3120 	adapter->num_tx_desc_avail = num_avail;
3121 
3122 	if (!EM_IS_OACTIVE(adapter)) {
3123 		ifq_clr_oactive(&ifp->if_snd);
3124 
3125 		/* All clean, turn off the timer */
3126 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3127 			ifp->if_timer = 0;
3128 	}
3129 }
3130 
3131 /*
3132  * When Link is lost sometimes there is work still in the TX ring
3133  * which will result in a watchdog, rather than allow that do an
3134  * attempted cleanup and then reinit here.  Note that this has been
3135  * seens mostly with fiber adapters.
3136  */
3137 static void
3138 em_tx_purge(struct adapter *adapter)
3139 {
3140 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3141 
3142 	if (!adapter->link_active && ifp->if_timer) {
3143 		em_tx_collect(adapter);
3144 		if (ifp->if_timer) {
3145 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3146 			ifp->if_timer = 0;
3147 			em_init(adapter);
3148 		}
3149 	}
3150 }
3151 
3152 static int
3153 em_newbuf(struct adapter *adapter, int i, int init)
3154 {
3155 	struct mbuf *m;
3156 	bus_dma_segment_t seg;
3157 	bus_dmamap_t map;
3158 	struct em_buffer *rx_buffer;
3159 	int error, nseg;
3160 
3161 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3162 	if (m == NULL) {
3163 		adapter->mbuf_cluster_failed++;
3164 		if (init) {
3165 			if_printf(&adapter->arpcom.ac_if,
3166 				  "Unable to allocate RX mbuf\n");
3167 		}
3168 		return (ENOBUFS);
3169 	}
3170 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3171 
3172 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3173 		m_adj(m, ETHER_ALIGN);
3174 
3175 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3176 			adapter->rx_sparemap, m,
3177 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3178 	if (error) {
3179 		m_freem(m);
3180 		if (init) {
3181 			if_printf(&adapter->arpcom.ac_if,
3182 				  "Unable to load RX mbuf\n");
3183 		}
3184 		return (error);
3185 	}
3186 
3187 	rx_buffer = &adapter->rx_buffer_area[i];
3188 	if (rx_buffer->m_head != NULL)
3189 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3190 
3191 	map = rx_buffer->map;
3192 	rx_buffer->map = adapter->rx_sparemap;
3193 	adapter->rx_sparemap = map;
3194 
3195 	rx_buffer->m_head = m;
3196 
3197 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3198 	return (0);
3199 }
3200 
3201 static int
3202 em_create_rx_ring(struct adapter *adapter)
3203 {
3204 	device_t dev = adapter->dev;
3205 	struct em_buffer *rx_buffer;
3206 	int i, error;
3207 
3208 	adapter->rx_buffer_area =
3209 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3210 			M_DEVBUF, M_WAITOK | M_ZERO);
3211 
3212 	/*
3213 	 * Create DMA tag for rx buffers
3214 	 */
3215 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3216 			1, 0,			/* alignment, bounds */
3217 			BUS_SPACE_MAXADDR,	/* lowaddr */
3218 			BUS_SPACE_MAXADDR,	/* highaddr */
3219 			NULL, NULL,		/* filter, filterarg */
3220 			MCLBYTES,		/* maxsize */
3221 			1,			/* nsegments */
3222 			MCLBYTES,		/* maxsegsize */
3223 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3224 			&adapter->rxtag);
3225 	if (error) {
3226 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3227 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3228 		adapter->rx_buffer_area = NULL;
3229 		return error;
3230 	}
3231 
3232 	/*
3233 	 * Create spare DMA map for rx buffers
3234 	 */
3235 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3236 				  &adapter->rx_sparemap);
3237 	if (error) {
3238 		device_printf(dev, "Unable to create spare RX DMA map\n");
3239 		bus_dma_tag_destroy(adapter->rxtag);
3240 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3241 		adapter->rx_buffer_area = NULL;
3242 		return error;
3243 	}
3244 
3245 	/*
3246 	 * Create DMA maps for rx buffers
3247 	 */
3248 	for (i = 0; i < adapter->num_rx_desc; i++) {
3249 		rx_buffer = &adapter->rx_buffer_area[i];
3250 
3251 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3252 					  &rx_buffer->map);
3253 		if (error) {
3254 			device_printf(dev, "Unable to create RX DMA map\n");
3255 			em_destroy_rx_ring(adapter, i);
3256 			return error;
3257 		}
3258 	}
3259 	return (0);
3260 }
3261 
3262 static int
3263 em_init_rx_ring(struct adapter *adapter)
3264 {
3265 	int i, error;
3266 
3267 	/* Reset descriptor ring */
3268 	bzero(adapter->rx_desc_base,
3269 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3270 
3271 	/* Allocate new ones. */
3272 	for (i = 0; i < adapter->num_rx_desc; i++) {
3273 		error = em_newbuf(adapter, i, 1);
3274 		if (error)
3275 			return (error);
3276 	}
3277 
3278 	/* Setup our descriptor pointers */
3279 	adapter->next_rx_desc_to_check = 0;
3280 
3281 	return (0);
3282 }
3283 
3284 static void
3285 em_init_rx_unit(struct adapter *adapter)
3286 {
3287 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3288 	uint64_t bus_addr;
3289 	uint32_t rctl;
3290 
3291 	/*
3292 	 * Make sure receives are disabled while setting
3293 	 * up the descriptor ring
3294 	 */
3295 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3296 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3297 
3298 	if (adapter->hw.mac.type >= e1000_82540) {
3299 		uint32_t itr;
3300 
3301 		/*
3302 		 * Set the interrupt throttling rate. Value is calculated
3303 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3304 		 */
3305 		if (adapter->int_throttle_ceil)
3306 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3307 		else
3308 			itr = 0;
3309 		em_set_itr(adapter, itr);
3310 	}
3311 
3312 	/* Disable accelerated ackknowledge */
3313 	if (adapter->hw.mac.type == e1000_82574) {
3314 		E1000_WRITE_REG(&adapter->hw,
3315 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3316 	}
3317 
3318 	/* Receive Checksum Offload for TCP and UDP */
3319 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3320 		uint32_t rxcsum;
3321 
3322 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3323 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3324 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3325 	}
3326 
3327 	/*
3328 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3329 	 * long latencies are observed, like Lenovo X60. This
3330 	 * change eliminates the problem, but since having positive
3331 	 * values in RDTR is a known source of problems on other
3332 	 * platforms another solution is being sought.
3333 	 */
3334 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3335 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3336 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3337 	}
3338 
3339 	/*
3340 	 * Setup the Base and Length of the Rx Descriptor Ring
3341 	 */
3342 	bus_addr = adapter->rxdma.dma_paddr;
3343 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3344 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3345 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3346 	    (uint32_t)(bus_addr >> 32));
3347 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3348 	    (uint32_t)bus_addr);
3349 
3350 	/*
3351 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3352 	 */
3353 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3354 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3355 
3356 	/* Set PTHRESH for improved jumbo performance */
3357 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3358 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3359 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3360 	    (ifp->if_mtu > ETHERMTU)) {
3361 		uint32_t rxdctl;
3362 
3363 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3364 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3365 	}
3366 
3367 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3368 		if (ifp->if_mtu > ETHERMTU)
3369 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3370 		else
3371 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3372 	}
3373 
3374 	/* Setup the Receive Control Register */
3375 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3376 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3377 		E1000_RCTL_RDMTS_HALF |
3378 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3379 
3380 	/* Make sure VLAN Filters are off */
3381 	rctl &= ~E1000_RCTL_VFE;
3382 
3383 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3384 		rctl |= E1000_RCTL_SBP;
3385 	else
3386 		rctl &= ~E1000_RCTL_SBP;
3387 
3388 	switch (adapter->rx_buffer_len) {
3389 	default:
3390 	case 2048:
3391 		rctl |= E1000_RCTL_SZ_2048;
3392 		break;
3393 
3394 	case 4096:
3395 		rctl |= E1000_RCTL_SZ_4096 |
3396 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3397 		break;
3398 
3399 	case 8192:
3400 		rctl |= E1000_RCTL_SZ_8192 |
3401 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3402 		break;
3403 
3404 	case 16384:
3405 		rctl |= E1000_RCTL_SZ_16384 |
3406 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3407 		break;
3408 	}
3409 
3410 	if (ifp->if_mtu > ETHERMTU)
3411 		rctl |= E1000_RCTL_LPE;
3412 	else
3413 		rctl &= ~E1000_RCTL_LPE;
3414 
3415 	/* Enable Receives */
3416 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3417 }
3418 
3419 static void
3420 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3421 {
3422 	struct em_buffer *rx_buffer;
3423 	int i;
3424 
3425 	if (adapter->rx_buffer_area == NULL)
3426 		return;
3427 
3428 	for (i = 0; i < ndesc; i++) {
3429 		rx_buffer = &adapter->rx_buffer_area[i];
3430 
3431 		KKASSERT(rx_buffer->m_head == NULL);
3432 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3433 	}
3434 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3435 	bus_dma_tag_destroy(adapter->rxtag);
3436 
3437 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3438 	adapter->rx_buffer_area = NULL;
3439 }
3440 
3441 static void
3442 em_rxeof(struct adapter *adapter, int count)
3443 {
3444 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3445 	uint8_t status, accept_frame = 0, eop = 0;
3446 	uint16_t len, desc_len, prev_len_adj;
3447 	struct e1000_rx_desc *current_desc;
3448 	struct mbuf *mp;
3449 	int i;
3450 
3451 	i = adapter->next_rx_desc_to_check;
3452 	current_desc = &adapter->rx_desc_base[i];
3453 
3454 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3455 		return;
3456 
3457 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3458 		struct mbuf *m = NULL;
3459 
3460 		logif(pkt_receive);
3461 
3462 		mp = adapter->rx_buffer_area[i].m_head;
3463 
3464 		/*
3465 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3466 		 * needs to access the last received byte in the mbuf.
3467 		 */
3468 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3469 				BUS_DMASYNC_POSTREAD);
3470 
3471 		accept_frame = 1;
3472 		prev_len_adj = 0;
3473 		desc_len = le16toh(current_desc->length);
3474 		status = current_desc->status;
3475 		if (status & E1000_RXD_STAT_EOP) {
3476 			count--;
3477 			eop = 1;
3478 			if (desc_len < ETHER_CRC_LEN) {
3479 				len = 0;
3480 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3481 			} else {
3482 				len = desc_len - ETHER_CRC_LEN;
3483 			}
3484 		} else {
3485 			eop = 0;
3486 			len = desc_len;
3487 		}
3488 
3489 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3490 			uint8_t	last_byte;
3491 			uint32_t pkt_len = desc_len;
3492 
3493 			if (adapter->fmp != NULL)
3494 				pkt_len += adapter->fmp->m_pkthdr.len;
3495 
3496 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3497 			if (TBI_ACCEPT(&adapter->hw, status,
3498 			    current_desc->errors, pkt_len, last_byte,
3499 			    adapter->min_frame_size,
3500 			    adapter->hw.mac.max_frame_size)) {
3501 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3502 				    &adapter->stats, pkt_len,
3503 				    adapter->hw.mac.addr,
3504 				    adapter->hw.mac.max_frame_size);
3505 				if (len > 0)
3506 					len--;
3507 			} else {
3508 				accept_frame = 0;
3509 			}
3510 		}
3511 
3512 		if (accept_frame) {
3513 			if (em_newbuf(adapter, i, 0) != 0) {
3514 				IFNET_STAT_INC(ifp, iqdrops, 1);
3515 				goto discard;
3516 			}
3517 
3518 			/* Assign correct length to the current fragment */
3519 			mp->m_len = len;
3520 
3521 			if (adapter->fmp == NULL) {
3522 				mp->m_pkthdr.len = len;
3523 				adapter->fmp = mp; /* Store the first mbuf */
3524 				adapter->lmp = mp;
3525 			} else {
3526 				/*
3527 				 * Chain mbuf's together
3528 				 */
3529 
3530 				/*
3531 				 * Adjust length of previous mbuf in chain if
3532 				 * we received less than 4 bytes in the last
3533 				 * descriptor.
3534 				 */
3535 				if (prev_len_adj > 0) {
3536 					adapter->lmp->m_len -= prev_len_adj;
3537 					adapter->fmp->m_pkthdr.len -=
3538 					    prev_len_adj;
3539 				}
3540 				adapter->lmp->m_next = mp;
3541 				adapter->lmp = adapter->lmp->m_next;
3542 				adapter->fmp->m_pkthdr.len += len;
3543 			}
3544 
3545 			if (eop) {
3546 				adapter->fmp->m_pkthdr.rcvif = ifp;
3547 				IFNET_STAT_INC(ifp, ipackets, 1);
3548 
3549 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3550 					em_rxcsum(adapter, current_desc,
3551 						  adapter->fmp);
3552 				}
3553 
3554 				if (status & E1000_RXD_STAT_VP) {
3555 					adapter->fmp->m_pkthdr.ether_vlantag =
3556 					    (le16toh(current_desc->special) &
3557 					    E1000_RXD_SPC_VLAN_MASK);
3558 					adapter->fmp->m_flags |= M_VLANTAG;
3559 				}
3560 				m = adapter->fmp;
3561 				adapter->fmp = NULL;
3562 				adapter->lmp = NULL;
3563 			}
3564 		} else {
3565 			IFNET_STAT_INC(ifp, ierrors, 1);
3566 discard:
3567 #ifdef foo
3568 			/* Reuse loaded DMA map and just update mbuf chain */
3569 			mp = adapter->rx_buffer_area[i].m_head;
3570 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3571 			mp->m_data = mp->m_ext.ext_buf;
3572 			mp->m_next = NULL;
3573 			if (adapter->hw.mac.max_frame_size <=
3574 			    (MCLBYTES - ETHER_ALIGN))
3575 				m_adj(mp, ETHER_ALIGN);
3576 #endif
3577 			if (adapter->fmp != NULL) {
3578 				m_freem(adapter->fmp);
3579 				adapter->fmp = NULL;
3580 				adapter->lmp = NULL;
3581 			}
3582 			m = NULL;
3583 		}
3584 
3585 		/* Zero out the receive descriptors status. */
3586 		current_desc->status = 0;
3587 
3588 		if (m != NULL)
3589 			ifp->if_input(ifp, m, NULL, -1);
3590 
3591 		/* Advance our pointers to the next descriptor. */
3592 		if (++i == adapter->num_rx_desc)
3593 			i = 0;
3594 		current_desc = &adapter->rx_desc_base[i];
3595 	}
3596 	adapter->next_rx_desc_to_check = i;
3597 
3598 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3599 	if (--i < 0)
3600 		i = adapter->num_rx_desc - 1;
3601 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3602 }
3603 
3604 static void
3605 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3606 	  struct mbuf *mp)
3607 {
3608 	/* 82543 or newer only */
3609 	if (adapter->hw.mac.type < e1000_82543 ||
3610 	    /* Ignore Checksum bit is set */
3611 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3612 		return;
3613 
3614 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3615 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3616 		/* IP Checksum Good */
3617 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3618 	}
3619 
3620 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3621 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3622 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3623 					   CSUM_PSEUDO_HDR |
3624 					   CSUM_FRAG_NOT_CHECKED;
3625 		mp->m_pkthdr.csum_data = htons(0xffff);
3626 	}
3627 }
3628 
3629 static void
3630 em_enable_intr(struct adapter *adapter)
3631 {
3632 	uint32_t ims_mask = IMS_ENABLE_MASK;
3633 
3634 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3635 
3636 #if 0
3637 	/* XXX MSIX */
3638 	if (adapter->hw.mac.type == e1000_82574) {
3639 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3640 		ims_mask |= EM_MSIX_MASK;
3641         }
3642 #endif
3643 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3644 }
3645 
3646 static void
3647 em_disable_intr(struct adapter *adapter)
3648 {
3649 	uint32_t clear = 0xffffffff;
3650 
3651 	/*
3652 	 * The first version of 82542 had an errata where when link was forced
3653 	 * it would stay up even up even if the cable was disconnected.
3654 	 * Sequence errors were used to detect the disconnect and then the
3655 	 * driver would unforce the link.  This code in the in the ISR.  For
3656 	 * this to work correctly the Sequence error interrupt had to be
3657 	 * enabled all the time.
3658 	 */
3659 	if (adapter->hw.mac.type == e1000_82542 &&
3660 	    adapter->hw.revision_id == E1000_REVISION_2)
3661 		clear &= ~E1000_ICR_RXSEQ;
3662 	else if (adapter->hw.mac.type == e1000_82574)
3663 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3664 
3665 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3666 
3667 	adapter->npoll.ifpc_stcount = 0;
3668 
3669 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3670 }
3671 
3672 /*
3673  * Bit of a misnomer, what this really means is
3674  * to enable OS management of the system... aka
3675  * to disable special hardware management features
3676  */
3677 static void
3678 em_get_mgmt(struct adapter *adapter)
3679 {
3680 	/* A shared code workaround */
3681 #define E1000_82542_MANC2H E1000_MANC2H
3682 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3683 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3684 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3685 
3686 		/* disable hardware interception of ARP */
3687 		manc &= ~(E1000_MANC_ARP_EN);
3688 
3689                 /* enable receiving management packets to the host */
3690                 if (adapter->hw.mac.type >= e1000_82571) {
3691 			manc |= E1000_MANC_EN_MNG2HOST;
3692 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3693 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3694 			manc2h |= E1000_MNG2HOST_PORT_623;
3695 			manc2h |= E1000_MNG2HOST_PORT_664;
3696 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3697 		}
3698 
3699 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3700 	}
3701 }
3702 
3703 /*
3704  * Give control back to hardware management
3705  * controller if there is one.
3706  */
3707 static void
3708 em_rel_mgmt(struct adapter *adapter)
3709 {
3710 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3711 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3712 
3713 		/* re-enable hardware interception of ARP */
3714 		manc |= E1000_MANC_ARP_EN;
3715 
3716 		if (adapter->hw.mac.type >= e1000_82571)
3717 			manc &= ~E1000_MANC_EN_MNG2HOST;
3718 
3719 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3720 	}
3721 }
3722 
3723 /*
3724  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3725  * For ASF and Pass Through versions of f/w this means that
3726  * the driver is loaded.  For AMT version (only with 82573)
3727  * of the f/w this means that the network i/f is open.
3728  */
3729 static void
3730 em_get_hw_control(struct adapter *adapter)
3731 {
3732 	/* Let firmware know the driver has taken over */
3733 	if (adapter->hw.mac.type == e1000_82573) {
3734 		uint32_t swsm;
3735 
3736 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3737 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3738 		    swsm | E1000_SWSM_DRV_LOAD);
3739 	} else {
3740 		uint32_t ctrl_ext;
3741 
3742 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3743 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3744 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3745 	}
3746 	adapter->flags |= EM_FLAG_HW_CTRL;
3747 }
3748 
3749 /*
3750  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3751  * For ASF and Pass Through versions of f/w this means that the
3752  * driver is no longer loaded.  For AMT version (only with 82573)
3753  * of the f/w this means that the network i/f is closed.
3754  */
3755 static void
3756 em_rel_hw_control(struct adapter *adapter)
3757 {
3758 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3759 		return;
3760 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3761 
3762 	/* Let firmware taken over control of h/w */
3763 	if (adapter->hw.mac.type == e1000_82573) {
3764 		uint32_t swsm;
3765 
3766 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3767 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3768 		    swsm & ~E1000_SWSM_DRV_LOAD);
3769 	} else {
3770 		uint32_t ctrl_ext;
3771 
3772 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3773 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3774 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3775 	}
3776 }
3777 
3778 static int
3779 em_is_valid_eaddr(const uint8_t *addr)
3780 {
3781 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3782 
3783 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3784 		return (FALSE);
3785 
3786 	return (TRUE);
3787 }
3788 
3789 /*
3790  * Enable PCI Wake On Lan capability
3791  */
3792 void
3793 em_enable_wol(device_t dev)
3794 {
3795 	uint16_t cap, status;
3796 	uint8_t id;
3797 
3798 	/* First find the capabilities pointer*/
3799 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3800 
3801 	/* Read the PM Capabilities */
3802 	id = pci_read_config(dev, cap, 1);
3803 	if (id != PCIY_PMG)     /* Something wrong */
3804 		return;
3805 
3806 	/*
3807 	 * OK, we have the power capabilities,
3808 	 * so now get the status register
3809 	 */
3810 	cap += PCIR_POWER_STATUS;
3811 	status = pci_read_config(dev, cap, 2);
3812 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3813 	pci_write_config(dev, cap, status, 2);
3814 }
3815 
3816 
3817 /*
3818  * 82544 Coexistence issue workaround.
3819  *    There are 2 issues.
3820  *       1. Transmit Hang issue.
3821  *    To detect this issue, following equation can be used...
3822  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3823  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3824  *
3825  *       2. DAC issue.
3826  *    To detect this issue, following equation can be used...
3827  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3828  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3829  *
3830  *    WORKAROUND:
3831  *	  Make sure we do not have ending address
3832  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3833  */
3834 static uint32_t
3835 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3836 {
3837 	uint32_t safe_terminator;
3838 
3839 	/*
3840 	 * Since issue is sensitive to length and address.
3841 	 * Let us first check the address...
3842 	 */
3843 	if (length <= 4) {
3844 		desc_array->descriptor[0].address = address;
3845 		desc_array->descriptor[0].length = length;
3846 		desc_array->elements = 1;
3847 		return (desc_array->elements);
3848 	}
3849 
3850 	safe_terminator =
3851 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3852 
3853 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3854 	if (safe_terminator == 0 ||
3855 	    (safe_terminator > 4 && safe_terminator < 9) ||
3856 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3857 		desc_array->descriptor[0].address = address;
3858 		desc_array->descriptor[0].length = length;
3859 		desc_array->elements = 1;
3860 		return (desc_array->elements);
3861 	}
3862 
3863 	desc_array->descriptor[0].address = address;
3864 	desc_array->descriptor[0].length = length - 4;
3865 	desc_array->descriptor[1].address = address + (length - 4);
3866 	desc_array->descriptor[1].length = 4;
3867 	desc_array->elements = 2;
3868 	return (desc_array->elements);
3869 }
3870 
3871 static void
3872 em_update_stats(struct adapter *adapter)
3873 {
3874 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3875 
3876 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3877 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3878 		adapter->stats.symerrs +=
3879 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3880 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3881 	}
3882 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3883 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3884 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3885 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3886 
3887 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3888 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3889 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3890 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3891 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3892 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3893 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3894 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3895 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3896 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3897 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3898 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3899 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3900 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3901 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3902 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3903 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3904 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3905 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3906 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3907 
3908 	/* For the 64-bit byte counters the low dword must be read first. */
3909 	/* Both registers clear on the read of the high dword */
3910 
3911 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3912 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3913 
3914 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3915 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3916 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3917 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3918 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3919 
3920 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3921 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3922 
3923 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3924 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3925 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3926 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3927 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3928 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3929 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3930 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3931 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3932 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3933 
3934 	if (adapter->hw.mac.type >= e1000_82543) {
3935 		adapter->stats.algnerrc +=
3936 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3937 		adapter->stats.rxerrc +=
3938 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3939 		adapter->stats.tncrs +=
3940 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3941 		adapter->stats.cexterr +=
3942 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3943 		adapter->stats.tsctc +=
3944 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3945 		adapter->stats.tsctfc +=
3946 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3947 	}
3948 
3949 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3950 
3951 	/* Rx Errors */
3952 	IFNET_STAT_SET(ifp, ierrors,
3953 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3954 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3955 	    adapter->stats.ruc + adapter->stats.roc +
3956 	    adapter->stats.mpc + adapter->stats.cexterr);
3957 
3958 	/* Tx Errors */
3959 	IFNET_STAT_SET(ifp, oerrors,
3960 	    adapter->stats.ecol + adapter->stats.latecol +
3961 	    adapter->watchdog_events);
3962 }
3963 
3964 static void
3965 em_print_debug_info(struct adapter *adapter)
3966 {
3967 	device_t dev = adapter->dev;
3968 	uint8_t *hw_addr = adapter->hw.hw_addr;
3969 
3970 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3971 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3972 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3973 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3974 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3975 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3976 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3977 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3978 	    adapter->hw.fc.high_water,
3979 	    adapter->hw.fc.low_water);
3980 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3981 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3982 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3983 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3984 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3985 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3986 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3987 	    (long long)adapter->tx_fifo_wrk_cnt,
3988 	    (long long)adapter->tx_fifo_reset_cnt);
3989 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3990 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3991 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3992 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3993 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3994 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3995 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3996 	    adapter->num_tx_desc_avail);
3997 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3998 	    adapter->no_tx_desc_avail1);
3999 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4000 	    adapter->no_tx_desc_avail2);
4001 	device_printf(dev, "Std mbuf failed = %ld\n",
4002 	    adapter->mbuf_alloc_failed);
4003 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
4004 	    adapter->mbuf_cluster_failed);
4005 	device_printf(dev, "Driver dropped packets = %ld\n",
4006 	    adapter->dropped_pkts);
4007 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4008 	    adapter->no_tx_dma_setup);
4009 }
4010 
4011 static void
4012 em_print_hw_stats(struct adapter *adapter)
4013 {
4014 	device_t dev = adapter->dev;
4015 
4016 	device_printf(dev, "Excessive collisions = %lld\n",
4017 	    (long long)adapter->stats.ecol);
4018 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
4019 	device_printf(dev, "Symbol errors = %lld\n",
4020 	    (long long)adapter->stats.symerrs);
4021 #endif
4022 	device_printf(dev, "Sequence errors = %lld\n",
4023 	    (long long)adapter->stats.sec);
4024 	device_printf(dev, "Defer count = %lld\n",
4025 	    (long long)adapter->stats.dc);
4026 	device_printf(dev, "Missed Packets = %lld\n",
4027 	    (long long)adapter->stats.mpc);
4028 	device_printf(dev, "Receive No Buffers = %lld\n",
4029 	    (long long)adapter->stats.rnbc);
4030 	/* RLEC is inaccurate on some hardware, calculate our own. */
4031 	device_printf(dev, "Receive Length Errors = %lld\n",
4032 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4033 	device_printf(dev, "Receive errors = %lld\n",
4034 	    (long long)adapter->stats.rxerrc);
4035 	device_printf(dev, "Crc errors = %lld\n",
4036 	    (long long)adapter->stats.crcerrs);
4037 	device_printf(dev, "Alignment errors = %lld\n",
4038 	    (long long)adapter->stats.algnerrc);
4039 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4040 	    (long long)adapter->stats.cexterr);
4041 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4042 	device_printf(dev, "watchdog timeouts = %ld\n",
4043 	    adapter->watchdog_events);
4044 	device_printf(dev, "XON Rcvd = %lld\n",
4045 	    (long long)adapter->stats.xonrxc);
4046 	device_printf(dev, "XON Xmtd = %lld\n",
4047 	    (long long)adapter->stats.xontxc);
4048 	device_printf(dev, "XOFF Rcvd = %lld\n",
4049 	    (long long)adapter->stats.xoffrxc);
4050 	device_printf(dev, "XOFF Xmtd = %lld\n",
4051 	    (long long)adapter->stats.xofftxc);
4052 	device_printf(dev, "Good Packets Rcvd = %lld\n",
4053 	    (long long)adapter->stats.gprc);
4054 	device_printf(dev, "Good Packets Xmtd = %lld\n",
4055 	    (long long)adapter->stats.gptc);
4056 }
4057 
4058 static void
4059 em_print_nvm_info(struct adapter *adapter)
4060 {
4061 	uint16_t eeprom_data;
4062 	int i, j, row = 0;
4063 
4064 	/* Its a bit crude, but it gets the job done */
4065 	kprintf("\nInterface EEPROM Dump:\n");
4066 	kprintf("Offset\n0x0000  ");
4067 	for (i = 0, j = 0; i < 32; i++, j++) {
4068 		if (j == 8) { /* Make the offset block */
4069 			j = 0; ++row;
4070 			kprintf("\n0x00%x0  ",row);
4071 		}
4072 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4073 		kprintf("%04x ", eeprom_data);
4074 	}
4075 	kprintf("\n");
4076 }
4077 
4078 static int
4079 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4080 {
4081 	struct adapter *adapter;
4082 	struct ifnet *ifp;
4083 	int error, result;
4084 
4085 	result = -1;
4086 	error = sysctl_handle_int(oidp, &result, 0, req);
4087 	if (error || !req->newptr)
4088 		return (error);
4089 
4090 	adapter = (struct adapter *)arg1;
4091 	ifp = &adapter->arpcom.ac_if;
4092 
4093 	lwkt_serialize_enter(ifp->if_serializer);
4094 
4095 	if (result == 1)
4096 		em_print_debug_info(adapter);
4097 
4098 	/*
4099 	 * This value will cause a hex dump of the
4100 	 * first 32 16-bit words of the EEPROM to
4101 	 * the screen.
4102 	 */
4103 	if (result == 2)
4104 		em_print_nvm_info(adapter);
4105 
4106 	lwkt_serialize_exit(ifp->if_serializer);
4107 
4108 	return (error);
4109 }
4110 
4111 static int
4112 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4113 {
4114 	int error, result;
4115 
4116 	result = -1;
4117 	error = sysctl_handle_int(oidp, &result, 0, req);
4118 	if (error || !req->newptr)
4119 		return (error);
4120 
4121 	if (result == 1) {
4122 		struct adapter *adapter = (struct adapter *)arg1;
4123 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4124 
4125 		lwkt_serialize_enter(ifp->if_serializer);
4126 		em_print_hw_stats(adapter);
4127 		lwkt_serialize_exit(ifp->if_serializer);
4128 	}
4129 	return (error);
4130 }
4131 
4132 static void
4133 em_add_sysctl(struct adapter *adapter)
4134 {
4135 	struct sysctl_ctx_list *ctx;
4136 	struct sysctl_oid *tree;
4137 
4138 	ctx = device_get_sysctl_ctx(adapter->dev);
4139 	tree = device_get_sysctl_tree(adapter->dev);
4140 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4141 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4142 	    em_sysctl_debug_info, "I", "Debug Information");
4143 
4144 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4145 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4146 	    em_sysctl_stats, "I", "Statistics");
4147 
4148 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4149 	    OID_AUTO, "rxd", CTLFLAG_RD,
4150 	    &adapter->num_rx_desc, 0, NULL);
4151 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4152 	    OID_AUTO, "txd", CTLFLAG_RD,
4153 	    &adapter->num_tx_desc, 0, NULL);
4154 
4155 	if (adapter->hw.mac.type >= e1000_82540) {
4156 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4157 		    OID_AUTO, "int_throttle_ceil",
4158 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4159 		    em_sysctl_int_throttle, "I",
4160 		    "interrupt throttling rate");
4161 	}
4162 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4163 	    OID_AUTO, "int_tx_nsegs",
4164 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4165 	    em_sysctl_int_tx_nsegs, "I",
4166 	    "# segments per TX interrupt");
4167 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4168 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4169 	    &adapter->tx_wreg_nsegs, 0,
4170 	    "# segments before write to hardware register");
4171 }
4172 
4173 static int
4174 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4175 {
4176 	struct adapter *adapter = (void *)arg1;
4177 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4178 	int error, throttle;
4179 
4180 	throttle = adapter->int_throttle_ceil;
4181 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4182 	if (error || req->newptr == NULL)
4183 		return error;
4184 	if (throttle < 0 || throttle > 1000000000 / 256)
4185 		return EINVAL;
4186 
4187 	if (throttle) {
4188 		/*
4189 		 * Set the interrupt throttling rate in 256ns increments,
4190 		 * recalculate sysctl value assignment to get exact frequency.
4191 		 */
4192 		throttle = 1000000000 / 256 / throttle;
4193 
4194 		/* Upper 16bits of ITR is reserved and should be zero */
4195 		if (throttle & 0xffff0000)
4196 			return EINVAL;
4197 	}
4198 
4199 	lwkt_serialize_enter(ifp->if_serializer);
4200 
4201 	if (throttle)
4202 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4203 	else
4204 		adapter->int_throttle_ceil = 0;
4205 
4206 	if (ifp->if_flags & IFF_RUNNING)
4207 		em_set_itr(adapter, throttle);
4208 
4209 	lwkt_serialize_exit(ifp->if_serializer);
4210 
4211 	if (bootverbose) {
4212 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4213 			  adapter->int_throttle_ceil);
4214 	}
4215 	return 0;
4216 }
4217 
4218 static int
4219 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4220 {
4221 	struct adapter *adapter = (void *)arg1;
4222 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4223 	int error, segs;
4224 
4225 	segs = adapter->tx_int_nsegs;
4226 	error = sysctl_handle_int(oidp, &segs, 0, req);
4227 	if (error || req->newptr == NULL)
4228 		return error;
4229 	if (segs <= 0)
4230 		return EINVAL;
4231 
4232 	lwkt_serialize_enter(ifp->if_serializer);
4233 
4234 	/*
4235 	 * Don't allow int_tx_nsegs to become:
4236 	 * o  Less the oact_tx_desc
4237 	 * o  Too large that no TX desc will cause TX interrupt to
4238 	 *    be generated (OACTIVE will never recover)
4239 	 * o  Too small that will cause tx_dd[] overflow
4240 	 */
4241 	if (segs < adapter->oact_tx_desc ||
4242 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4243 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4244 		error = EINVAL;
4245 	} else {
4246 		error = 0;
4247 		adapter->tx_int_nsegs = segs;
4248 	}
4249 
4250 	lwkt_serialize_exit(ifp->if_serializer);
4251 
4252 	return error;
4253 }
4254 
4255 static void
4256 em_set_itr(struct adapter *adapter, uint32_t itr)
4257 {
4258 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4259 	if (adapter->hw.mac.type == e1000_82574) {
4260 		int i;
4261 
4262 		/*
4263 		 * When using MSIX interrupts we need to
4264 		 * throttle using the EITR register
4265 		 */
4266 		for (i = 0; i < 4; ++i) {
4267 			E1000_WRITE_REG(&adapter->hw,
4268 			    E1000_EITR_82574(i), itr);
4269 		}
4270 	}
4271 }
4272 
4273 static void
4274 em_disable_aspm(struct adapter *adapter)
4275 {
4276 	uint16_t link_cap, link_ctrl, disable;
4277 	uint8_t pcie_ptr, reg;
4278 	device_t dev = adapter->dev;
4279 
4280 	switch (adapter->hw.mac.type) {
4281 	case e1000_82571:
4282 	case e1000_82572:
4283 	case e1000_82573:
4284 		/*
4285 		 * 82573 specification update
4286 		 * errata #8 disable L0s
4287 		 * errata #41 disable L1
4288 		 *
4289 		 * 82571/82572 specification update
4290 		 # errata #13 disable L1
4291 		 * errata #68 disable L0s
4292 		 */
4293 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4294 		break;
4295 
4296 	case e1000_82574:
4297 	case e1000_82583:
4298 		/*
4299 		 * 82574 specification update errata #20
4300 		 * 82583 specification update errata #9
4301 		 *
4302 		 * There is no need to disable L1
4303 		 */
4304 		disable = PCIEM_LNKCTL_ASPM_L0S;
4305 		break;
4306 
4307 	default:
4308 		return;
4309 	}
4310 
4311 	pcie_ptr = pci_get_pciecap_ptr(dev);
4312 	if (pcie_ptr == 0)
4313 		return;
4314 
4315 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4316 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4317 		return;
4318 
4319 	if (bootverbose) {
4320 		if_printf(&adapter->arpcom.ac_if,
4321 		    "disable ASPM %#02x\n", disable);
4322 	}
4323 
4324 	reg = pcie_ptr + PCIER_LINKCTRL;
4325 	link_ctrl = pci_read_config(dev, reg, 2);
4326 	link_ctrl &= ~disable;
4327 	pci_write_config(dev, reg, link_ctrl, 2);
4328 }
4329 
4330 static int
4331 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4332 {
4333 	int iphlen, hoff, thoff, ex = 0;
4334 	struct mbuf *m;
4335 	struct ip *ip;
4336 
4337 	m = *mp;
4338 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4339 
4340 	iphlen = m->m_pkthdr.csum_iphlen;
4341 	thoff = m->m_pkthdr.csum_thlen;
4342 	hoff = m->m_pkthdr.csum_lhlen;
4343 
4344 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4345 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4346 	KASSERT(hoff > 0, ("invalid ether hlen"));
4347 
4348 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4349 		ex = 4;
4350 
4351 	if (m->m_len < hoff + iphlen + thoff + ex) {
4352 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4353 		if (m == NULL) {
4354 			*mp = NULL;
4355 			return ENOBUFS;
4356 		}
4357 		*mp = m;
4358 	}
4359 	ip = mtodoff(m, struct ip *, hoff);
4360 	ip->ip_len = 0;
4361 
4362 	return 0;
4363 }
4364 
4365 static int
4366 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4367     uint32_t *txd_upper, uint32_t *txd_lower)
4368 {
4369 	struct e1000_context_desc *TXD;
4370 	int hoff, iphlen, thoff, hlen;
4371 	int mss, pktlen, curr_txd;
4372 
4373 	iphlen = mp->m_pkthdr.csum_iphlen;
4374 	thoff = mp->m_pkthdr.csum_thlen;
4375 	hoff = mp->m_pkthdr.csum_lhlen;
4376 	mss = mp->m_pkthdr.tso_segsz;
4377 	pktlen = mp->m_pkthdr.len;
4378 
4379 	if (adapter->csum_flags == CSUM_TSO &&
4380 	    adapter->csum_iphlen == iphlen &&
4381 	    adapter->csum_lhlen == hoff &&
4382 	    adapter->csum_thlen == thoff &&
4383 	    adapter->csum_mss == mss &&
4384 	    adapter->csum_pktlen == pktlen) {
4385 		*txd_upper = adapter->csum_txd_upper;
4386 		*txd_lower = adapter->csum_txd_lower;
4387 		return 0;
4388 	}
4389 	hlen = hoff + iphlen + thoff;
4390 
4391 	/*
4392 	 * Setup a new TSO context.
4393 	 */
4394 
4395 	curr_txd = adapter->next_avail_tx_desc;
4396 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4397 
4398 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4399 		     E1000_TXD_DTYP_D |		/* Data descr type */
4400 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4401 
4402 	/* IP and/or TCP header checksum calculation and insertion. */
4403 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4404 
4405 	/*
4406 	 * Start offset for header checksum calculation.
4407 	 * End offset for header checksum calculation.
4408 	 * Offset of place put the checksum.
4409 	 */
4410 	TXD->lower_setup.ip_fields.ipcss = hoff;
4411 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4412 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4413 
4414 	/*
4415 	 * Start offset for payload checksum calculation.
4416 	 * End offset for payload checksum calculation.
4417 	 * Offset of place to put the checksum.
4418 	 */
4419 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4420 	TXD->upper_setup.tcp_fields.tucse = 0;
4421 	TXD->upper_setup.tcp_fields.tucso =
4422 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4423 
4424 	/*
4425 	 * Payload size per packet w/o any headers.
4426 	 * Length of all headers up to payload.
4427 	 */
4428 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4429 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4430 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4431 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4432 				E1000_TXD_CMD_TSE |	/* TSE context */
4433 				E1000_TXD_CMD_IP |	/* Do IP csum */
4434 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4435 				(pktlen - hlen));	/* Total len */
4436 
4437 	/* Save the information for this TSO context */
4438 	adapter->csum_flags = CSUM_TSO;
4439 	adapter->csum_lhlen = hoff;
4440 	adapter->csum_iphlen = iphlen;
4441 	adapter->csum_thlen = thoff;
4442 	adapter->csum_mss = mss;
4443 	adapter->csum_pktlen = pktlen;
4444 	adapter->csum_txd_upper = *txd_upper;
4445 	adapter->csum_txd_lower = *txd_lower;
4446 
4447 	if (++curr_txd == adapter->num_tx_desc)
4448 		curr_txd = 0;
4449 
4450 	KKASSERT(adapter->num_tx_desc_avail > 0);
4451 	adapter->num_tx_desc_avail--;
4452 
4453 	adapter->next_avail_tx_desc = curr_txd;
4454 	return 1;
4455 }
4456