xref: /dragonfly/sys/dev/netif/em/if_em.c (revision a32bc35d)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 /*
97  * NOTE:
98  *
99  * MSI-X MUST NOT be enabled on 82574:
100  *   <<82574 specification update>> errata #15
101  */
102 
103 #include "opt_polling.h"
104 
105 #include <sys/param.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/interrupt.h>
109 #include <sys/kernel.h>
110 #include <sys/ktr.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/proc.h>
114 #include <sys/rman.h>
115 #include <sys/serialize.h>
116 #include <sys/socket.h>
117 #include <sys/sockio.h>
118 #include <sys/sysctl.h>
119 #include <sys/systm.h>
120 
121 #include <net/bpf.h>
122 #include <net/ethernet.h>
123 #include <net/if.h>
124 #include <net/if_arp.h>
125 #include <net/if_dl.h>
126 #include <net/if_media.h>
127 #include <net/ifq_var.h>
128 #include <net/vlan/if_vlan_var.h>
129 #include <net/vlan/if_vlan_ether.h>
130 
131 #include <netinet/in_systm.h>
132 #include <netinet/in.h>
133 #include <netinet/ip.h>
134 #include <netinet/tcp.h>
135 #include <netinet/udp.h>
136 
137 #include <bus/pci/pcivar.h>
138 #include <bus/pci/pcireg.h>
139 
140 #include <dev/netif/ig_hal/e1000_api.h>
141 #include <dev/netif/ig_hal/e1000_82571.h>
142 #include <dev/netif/em/if_em.h>
143 
144 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
145 #define EM_VER	" 7.2.4"
146 
147 #define _EM_DEVICE(id, ret)	\
148 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
149 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
150 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
151 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
152 
153 static const struct em_vendor_info em_vendor_info_array[] = {
154 	EM_DEVICE(82540EM),
155 	EM_DEVICE(82540EM_LOM),
156 	EM_DEVICE(82540EP),
157 	EM_DEVICE(82540EP_LOM),
158 	EM_DEVICE(82540EP_LP),
159 
160 	EM_DEVICE(82541EI),
161 	EM_DEVICE(82541ER),
162 	EM_DEVICE(82541ER_LOM),
163 	EM_DEVICE(82541EI_MOBILE),
164 	EM_DEVICE(82541GI),
165 	EM_DEVICE(82541GI_LF),
166 	EM_DEVICE(82541GI_MOBILE),
167 
168 	EM_DEVICE(82542),
169 
170 	EM_DEVICE(82543GC_FIBER),
171 	EM_DEVICE(82543GC_COPPER),
172 
173 	EM_DEVICE(82544EI_COPPER),
174 	EM_DEVICE(82544EI_FIBER),
175 	EM_DEVICE(82544GC_COPPER),
176 	EM_DEVICE(82544GC_LOM),
177 
178 	EM_DEVICE(82545EM_COPPER),
179 	EM_DEVICE(82545EM_FIBER),
180 	EM_DEVICE(82545GM_COPPER),
181 	EM_DEVICE(82545GM_FIBER),
182 	EM_DEVICE(82545GM_SERDES),
183 
184 	EM_DEVICE(82546EB_COPPER),
185 	EM_DEVICE(82546EB_FIBER),
186 	EM_DEVICE(82546EB_QUAD_COPPER),
187 	EM_DEVICE(82546GB_COPPER),
188 	EM_DEVICE(82546GB_FIBER),
189 	EM_DEVICE(82546GB_SERDES),
190 	EM_DEVICE(82546GB_PCIE),
191 	EM_DEVICE(82546GB_QUAD_COPPER),
192 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
193 
194 	EM_DEVICE(82547EI),
195 	EM_DEVICE(82547EI_MOBILE),
196 	EM_DEVICE(82547GI),
197 
198 	EM_EMX_DEVICE(82571EB_COPPER),
199 	EM_EMX_DEVICE(82571EB_FIBER),
200 	EM_EMX_DEVICE(82571EB_SERDES),
201 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
202 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
203 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
204 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
205 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
206 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
207 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
208 
209 	EM_EMX_DEVICE(82572EI_COPPER),
210 	EM_EMX_DEVICE(82572EI_FIBER),
211 	EM_EMX_DEVICE(82572EI_SERDES),
212 	EM_EMX_DEVICE(82572EI),
213 
214 	EM_EMX_DEVICE(82573E),
215 	EM_EMX_DEVICE(82573E_IAMT),
216 	EM_EMX_DEVICE(82573L),
217 
218 	EM_DEVICE(82583V),
219 
220 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
221 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
222 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
223 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
224 
225 	EM_DEVICE(ICH8_IGP_M_AMT),
226 	EM_DEVICE(ICH8_IGP_AMT),
227 	EM_DEVICE(ICH8_IGP_C),
228 	EM_DEVICE(ICH8_IFE),
229 	EM_DEVICE(ICH8_IFE_GT),
230 	EM_DEVICE(ICH8_IFE_G),
231 	EM_DEVICE(ICH8_IGP_M),
232 	EM_DEVICE(ICH8_82567V_3),
233 
234 	EM_DEVICE(ICH9_IGP_M_AMT),
235 	EM_DEVICE(ICH9_IGP_AMT),
236 	EM_DEVICE(ICH9_IGP_C),
237 	EM_DEVICE(ICH9_IGP_M),
238 	EM_DEVICE(ICH9_IGP_M_V),
239 	EM_DEVICE(ICH9_IFE),
240 	EM_DEVICE(ICH9_IFE_GT),
241 	EM_DEVICE(ICH9_IFE_G),
242 	EM_DEVICE(ICH9_BM),
243 
244 	EM_EMX_DEVICE(82574L),
245 	EM_EMX_DEVICE(82574LA),
246 
247 	EM_DEVICE(ICH10_R_BM_LM),
248 	EM_DEVICE(ICH10_R_BM_LF),
249 	EM_DEVICE(ICH10_R_BM_V),
250 	EM_DEVICE(ICH10_D_BM_LM),
251 	EM_DEVICE(ICH10_D_BM_LF),
252 	EM_DEVICE(ICH10_D_BM_V),
253 
254 	EM_DEVICE(PCH_M_HV_LM),
255 	EM_DEVICE(PCH_M_HV_LC),
256 	EM_DEVICE(PCH_D_HV_DM),
257 	EM_DEVICE(PCH_D_HV_DC),
258 
259 	EM_DEVICE(PCH2_LV_LM),
260 	EM_DEVICE(PCH2_LV_V),
261 
262 	/* required last entry */
263 	EM_DEVICE_NULL
264 };
265 
266 static int	em_probe(device_t);
267 static int	em_attach(device_t);
268 static int	em_detach(device_t);
269 static int	em_shutdown(device_t);
270 static int	em_suspend(device_t);
271 static int	em_resume(device_t);
272 
273 static void	em_init(void *);
274 static void	em_stop(struct adapter *);
275 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
276 static void	em_start(struct ifnet *);
277 #ifdef DEVICE_POLLING
278 static void	em_poll(struct ifnet *, enum poll_cmd, int);
279 #endif
280 static void	em_watchdog(struct ifnet *);
281 static void	em_media_status(struct ifnet *, struct ifmediareq *);
282 static int	em_media_change(struct ifnet *);
283 static void	em_timer(void *);
284 
285 static void	em_intr(void *);
286 static void	em_rxeof(struct adapter *, int);
287 static void	em_txeof(struct adapter *);
288 static void	em_tx_collect(struct adapter *);
289 static void	em_tx_purge(struct adapter *);
290 static void	em_enable_intr(struct adapter *);
291 static void	em_disable_intr(struct adapter *);
292 
293 static int	em_dma_malloc(struct adapter *, bus_size_t,
294 		    struct em_dma_alloc *);
295 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
296 static void	em_init_tx_ring(struct adapter *);
297 static int	em_init_rx_ring(struct adapter *);
298 static int	em_create_tx_ring(struct adapter *);
299 static int	em_create_rx_ring(struct adapter *);
300 static void	em_destroy_tx_ring(struct adapter *, int);
301 static void	em_destroy_rx_ring(struct adapter *, int);
302 static int	em_newbuf(struct adapter *, int, int);
303 static int	em_encap(struct adapter *, struct mbuf **);
304 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
305 		    struct mbuf *);
306 static int	em_txcsum_pullup(struct adapter *, struct mbuf **);
307 static int	em_txcsum(struct adapter *, struct mbuf *,
308 		    uint32_t *, uint32_t *);
309 
310 static int	em_get_hw_info(struct adapter *);
311 static int 	em_is_valid_eaddr(const uint8_t *);
312 static int	em_alloc_pci_res(struct adapter *);
313 static void	em_free_pci_res(struct adapter *);
314 static int	em_reset(struct adapter *);
315 static void	em_setup_ifp(struct adapter *);
316 static void	em_init_tx_unit(struct adapter *);
317 static void	em_init_rx_unit(struct adapter *);
318 static void	em_update_stats(struct adapter *);
319 static void	em_set_promisc(struct adapter *);
320 static void	em_disable_promisc(struct adapter *);
321 static void	em_set_multi(struct adapter *);
322 static void	em_update_link_status(struct adapter *);
323 static void	em_smartspeed(struct adapter *);
324 static void	em_set_itr(struct adapter *, uint32_t);
325 static void	em_disable_aspm(struct adapter *);
326 
327 /* Hardware workarounds */
328 static int	em_82547_fifo_workaround(struct adapter *, int);
329 static void	em_82547_update_fifo_head(struct adapter *, int);
330 static int	em_82547_tx_fifo_reset(struct adapter *);
331 static void	em_82547_move_tail(void *);
332 static void	em_82547_move_tail_serialized(struct adapter *);
333 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
334 
335 static void	em_print_debug_info(struct adapter *);
336 static void	em_print_nvm_info(struct adapter *);
337 static void	em_print_hw_stats(struct adapter *);
338 
339 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
340 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
341 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
342 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
343 static void	em_add_sysctl(struct adapter *adapter);
344 
345 /* Management and WOL Support */
346 static void	em_get_mgmt(struct adapter *);
347 static void	em_rel_mgmt(struct adapter *);
348 static void	em_get_hw_control(struct adapter *);
349 static void	em_rel_hw_control(struct adapter *);
350 static void	em_enable_wol(device_t);
351 
352 static device_method_t em_methods[] = {
353 	/* Device interface */
354 	DEVMETHOD(device_probe,		em_probe),
355 	DEVMETHOD(device_attach,	em_attach),
356 	DEVMETHOD(device_detach,	em_detach),
357 	DEVMETHOD(device_shutdown,	em_shutdown),
358 	DEVMETHOD(device_suspend,	em_suspend),
359 	DEVMETHOD(device_resume,	em_resume),
360 	{ 0, 0 }
361 };
362 
363 static driver_t em_driver = {
364 	"em",
365 	em_methods,
366 	sizeof(struct adapter),
367 };
368 
369 static devclass_t em_devclass;
370 
371 DECLARE_DUMMY_MODULE(if_em);
372 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
373 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
374 
375 /*
376  * Tunables
377  */
378 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
379 static int	em_rxd = EM_DEFAULT_RXD;
380 static int	em_txd = EM_DEFAULT_TXD;
381 static int	em_smart_pwr_down = 0;
382 
383 /* Controls whether promiscuous also shows bad packets */
384 static int	em_debug_sbp = FALSE;
385 
386 static int	em_82573_workaround = 1;
387 static int	em_msi_enable = 1;
388 
389 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
390 TUNABLE_INT("hw.em.rxd", &em_rxd);
391 TUNABLE_INT("hw.em.txd", &em_txd);
392 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
393 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
394 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
395 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
396 
397 /* Global used in WOL setup with multiport cards */
398 static int	em_global_quad_port_a = 0;
399 
400 /* Set this to one to display debug statistics */
401 static int	em_display_debug_stats = 0;
402 
403 #if !defined(KTR_IF_EM)
404 #define KTR_IF_EM	KTR_ALL
405 #endif
406 KTR_INFO_MASTER(if_em);
407 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
408 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
409 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
410 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
411 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
412 #define logif(name)	KTR_LOG(if_em_ ## name)
413 
414 static int
415 em_probe(device_t dev)
416 {
417 	const struct em_vendor_info *ent;
418 	uint16_t vid, did;
419 
420 	vid = pci_get_vendor(dev);
421 	did = pci_get_device(dev);
422 
423 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
424 		if (vid == ent->vendor_id && did == ent->device_id) {
425 			device_set_desc(dev, ent->desc);
426 			device_set_async_attach(dev, TRUE);
427 			return (ent->ret);
428 		}
429 	}
430 	return (ENXIO);
431 }
432 
433 static int
434 em_attach(device_t dev)
435 {
436 	struct adapter *adapter = device_get_softc(dev);
437 	struct ifnet *ifp = &adapter->arpcom.ac_if;
438 	int tsize, rsize;
439 	int error = 0;
440 	uint16_t eeprom_data, device_id, apme_mask;
441 
442 	adapter->dev = adapter->osdep.dev = dev;
443 
444 	callout_init_mp(&adapter->timer);
445 	callout_init_mp(&adapter->tx_fifo_timer);
446 
447 	/* Determine hardware and mac info */
448 	error = em_get_hw_info(adapter);
449 	if (error) {
450 		device_printf(dev, "Identify hardware failed\n");
451 		goto fail;
452 	}
453 
454 	/* Setup PCI resources */
455 	error = em_alloc_pci_res(adapter);
456 	if (error) {
457 		device_printf(dev, "Allocation of PCI resources failed\n");
458 		goto fail;
459 	}
460 
461 	/*
462 	 * For ICH8 and family we need to map the flash memory,
463 	 * and this must happen after the MAC is identified.
464 	 */
465 	if (adapter->hw.mac.type == e1000_ich8lan ||
466 	    adapter->hw.mac.type == e1000_ich9lan ||
467 	    adapter->hw.mac.type == e1000_ich10lan ||
468 	    adapter->hw.mac.type == e1000_pchlan ||
469 	    adapter->hw.mac.type == e1000_pch2lan) {
470 		adapter->flash_rid = EM_BAR_FLASH;
471 
472 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
473 					&adapter->flash_rid, RF_ACTIVE);
474 		if (adapter->flash == NULL) {
475 			device_printf(dev, "Mapping of Flash failed\n");
476 			error = ENXIO;
477 			goto fail;
478 		}
479 		adapter->osdep.flash_bus_space_tag =
480 		    rman_get_bustag(adapter->flash);
481 		adapter->osdep.flash_bus_space_handle =
482 		    rman_get_bushandle(adapter->flash);
483 
484 		/*
485 		 * This is used in the shared code
486 		 * XXX this goof is actually not used.
487 		 */
488 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
489 	}
490 
491 	/* Do Shared Code initialization */
492 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
493 		device_printf(dev, "Setup of Shared code failed\n");
494 		error = ENXIO;
495 		goto fail;
496 	}
497 
498 	e1000_get_bus_info(&adapter->hw);
499 
500 	/*
501 	 * Validate number of transmit and receive descriptors.  It
502 	 * must not exceed hardware maximum, and must be multiple
503 	 * of E1000_DBA_ALIGN.
504 	 */
505 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
506 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
507 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
508 	    em_txd < EM_MIN_TXD) {
509 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
510 		    EM_DEFAULT_TXD, em_txd);
511 		adapter->num_tx_desc = EM_DEFAULT_TXD;
512 	} else {
513 		adapter->num_tx_desc = em_txd;
514 	}
515 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
516 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
517 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
518 	    em_rxd < EM_MIN_RXD) {
519 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
520 		    EM_DEFAULT_RXD, em_rxd);
521 		adapter->num_rx_desc = EM_DEFAULT_RXD;
522 	} else {
523 		adapter->num_rx_desc = em_rxd;
524 	}
525 
526 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
527 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
528 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
529 	adapter->rx_buffer_len = MCLBYTES;
530 
531 	/*
532 	 * Interrupt throttle rate
533 	 */
534 	if (em_int_throttle_ceil == 0) {
535 		adapter->int_throttle_ceil = 0;
536 	} else {
537 		int throttle = em_int_throttle_ceil;
538 
539 		if (throttle < 0)
540 			throttle = EM_DEFAULT_ITR;
541 
542 		/* Recalculate the tunable value to get the exact frequency. */
543 		throttle = 1000000000 / 256 / throttle;
544 
545 		/* Upper 16bits of ITR is reserved and should be zero */
546 		if (throttle & 0xffff0000)
547 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
548 
549 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
550 	}
551 
552 	e1000_init_script_state_82541(&adapter->hw, TRUE);
553 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
554 
555 	/* Copper options */
556 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
557 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
558 		adapter->hw.phy.disable_polarity_correction = FALSE;
559 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
560 	}
561 
562 	/* Set the frame limits assuming standard ethernet sized frames. */
563 	adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
564 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
565 
566 	/* This controls when hardware reports transmit completion status. */
567 	adapter->hw.mac.report_tx_early = 1;
568 
569 	/*
570 	 * Create top level busdma tag
571 	 */
572 	error = bus_dma_tag_create(NULL, 1, 0,
573 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
574 			NULL, NULL,
575 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
576 			0, &adapter->parent_dtag);
577 	if (error) {
578 		device_printf(dev, "could not create top level DMA tag\n");
579 		goto fail;
580 	}
581 
582 	/*
583 	 * Allocate Transmit Descriptor ring
584 	 */
585 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
586 			 EM_DBA_ALIGN);
587 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
588 	if (error) {
589 		device_printf(dev, "Unable to allocate tx_desc memory\n");
590 		goto fail;
591 	}
592 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
593 
594 	/*
595 	 * Allocate Receive Descriptor ring
596 	 */
597 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
598 			 EM_DBA_ALIGN);
599 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
600 	if (error) {
601 		device_printf(dev, "Unable to allocate rx_desc memory\n");
602 		goto fail;
603 	}
604 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
605 
606 	/* Allocate multicast array memory. */
607 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
608 	    M_DEVBUF, M_WAITOK);
609 
610 	/* Indicate SOL/IDER usage */
611 	if (e1000_check_reset_block(&adapter->hw)) {
612 		device_printf(dev,
613 		    "PHY reset is blocked due to SOL/IDER session.\n");
614 	}
615 
616 	/*
617 	 * Start from a known state, this is important in reading the
618 	 * nvm and mac from that.
619 	 */
620 	e1000_reset_hw(&adapter->hw);
621 
622 	/* Make sure we have a good EEPROM before we read from it */
623 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
624 		/*
625 		 * Some PCI-E parts fail the first check due to
626 		 * the link being in sleep state, call it again,
627 		 * if it fails a second time its a real issue.
628 		 */
629 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
630 			device_printf(dev,
631 			    "The EEPROM Checksum Is Not Valid\n");
632 			error = EIO;
633 			goto fail;
634 		}
635 	}
636 
637 	/* Copy the permanent MAC address out of the EEPROM */
638 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
639 		device_printf(dev, "EEPROM read error while reading MAC"
640 		    " address\n");
641 		error = EIO;
642 		goto fail;
643 	}
644 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
645 		device_printf(dev, "Invalid MAC address\n");
646 		error = EIO;
647 		goto fail;
648 	}
649 
650 	/* Allocate transmit descriptors and buffers */
651 	error = em_create_tx_ring(adapter);
652 	if (error) {
653 		device_printf(dev, "Could not setup transmit structures\n");
654 		goto fail;
655 	}
656 
657 	/* Allocate receive descriptors and buffers */
658 	error = em_create_rx_ring(adapter);
659 	if (error) {
660 		device_printf(dev, "Could not setup receive structures\n");
661 		goto fail;
662 	}
663 
664 	/* Manually turn off all interrupts */
665 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
666 
667 	/* Determine if we have to control management hardware */
668 	adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
669 
670 	/*
671 	 * Setup Wake-on-Lan
672 	 */
673 	apme_mask = EM_EEPROM_APME;
674 	eeprom_data = 0;
675 	switch (adapter->hw.mac.type) {
676 	case e1000_82542:
677 	case e1000_82543:
678 		break;
679 
680 	case e1000_82573:
681 	case e1000_82583:
682 		adapter->has_amt = 1;
683 		/* FALL THROUGH */
684 
685 	case e1000_82546:
686 	case e1000_82546_rev_3:
687 	case e1000_82571:
688 	case e1000_82572:
689 	case e1000_80003es2lan:
690 		if (adapter->hw.bus.func == 1) {
691 			e1000_read_nvm(&adapter->hw,
692 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
693 		} else {
694 			e1000_read_nvm(&adapter->hw,
695 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
696 		}
697 		break;
698 
699 	case e1000_ich8lan:
700 	case e1000_ich9lan:
701 	case e1000_ich10lan:
702 	case e1000_pchlan:
703 	case e1000_pch2lan:
704 		apme_mask = E1000_WUC_APME;
705 		adapter->has_amt = TRUE;
706 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
707 		break;
708 
709 	default:
710 		e1000_read_nvm(&adapter->hw,
711 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
712 		break;
713 	}
714 	if (eeprom_data & apme_mask)
715 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
716 
717 	/*
718          * We have the eeprom settings, now apply the special cases
719          * where the eeprom may be wrong or the board won't support
720          * wake on lan on a particular port
721 	 */
722 	device_id = pci_get_device(dev);
723         switch (device_id) {
724 	case E1000_DEV_ID_82546GB_PCIE:
725 		adapter->wol = 0;
726 		break;
727 
728 	case E1000_DEV_ID_82546EB_FIBER:
729 	case E1000_DEV_ID_82546GB_FIBER:
730 	case E1000_DEV_ID_82571EB_FIBER:
731 		/*
732 		 * Wake events only supported on port A for dual fiber
733 		 * regardless of eeprom setting
734 		 */
735 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
736 		    E1000_STATUS_FUNC_1)
737 			adapter->wol = 0;
738 		break;
739 
740 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
741 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
742 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
743 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
744                 /* if quad port adapter, disable WoL on all but port A */
745 		if (em_global_quad_port_a != 0)
746 			adapter->wol = 0;
747 		/* Reset for multiple quad port adapters */
748 		if (++em_global_quad_port_a == 4)
749 			em_global_quad_port_a = 0;
750                 break;
751 	}
752 
753 	/* XXX disable wol */
754 	adapter->wol = 0;
755 
756 	/* Setup OS specific network interface */
757 	em_setup_ifp(adapter);
758 
759 	/* Add sysctl tree, must after em_setup_ifp() */
760 	em_add_sysctl(adapter);
761 
762 	/* Reset the hardware */
763 	error = em_reset(adapter);
764 	if (error) {
765 		device_printf(dev, "Unable to reset the hardware\n");
766 		goto fail;
767 	}
768 
769 	/* Initialize statistics */
770 	em_update_stats(adapter);
771 
772 	adapter->hw.mac.get_link_status = 1;
773 	em_update_link_status(adapter);
774 
775 	/* Do we need workaround for 82544 PCI-X adapter? */
776 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
777 	    adapter->hw.mac.type == e1000_82544)
778 		adapter->pcix_82544 = TRUE;
779 	else
780 		adapter->pcix_82544 = FALSE;
781 
782 	if (adapter->pcix_82544) {
783 		/*
784 		 * 82544 on PCI-X may split one TX segment
785 		 * into two TX descs, so we double its number
786 		 * of spare TX desc here.
787 		 */
788 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
789 	} else {
790 		adapter->spare_tx_desc = EM_TX_SPARE;
791 	}
792 
793 	/*
794 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
795 	 * and tx_int_nsegs:
796 	 * (spare_tx_desc + EM_TX_RESERVED) <=
797 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
798 	 */
799 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
800 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
801 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
802 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
803 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
804 
805 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
806 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
807 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
808 
809 	/* Non-AMT based hardware can now take control from firmware */
810 	if (adapter->has_manage && !adapter->has_amt &&
811 	    adapter->hw.mac.type >= e1000_82571)
812 		em_get_hw_control(adapter);
813 
814 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
815 			       em_intr, adapter, &adapter->intr_tag,
816 			       ifp->if_serializer);
817 	if (error) {
818 		device_printf(dev, "Failed to register interrupt handler");
819 		ether_ifdetach(&adapter->arpcom.ac_if);
820 		goto fail;
821 	}
822 
823 	ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
824 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
825 	return (0);
826 fail:
827 	em_detach(dev);
828 	return (error);
829 }
830 
831 static int
832 em_detach(device_t dev)
833 {
834 	struct adapter *adapter = device_get_softc(dev);
835 
836 	if (device_is_attached(dev)) {
837 		struct ifnet *ifp = &adapter->arpcom.ac_if;
838 
839 		lwkt_serialize_enter(ifp->if_serializer);
840 
841 		em_stop(adapter);
842 
843 		e1000_phy_hw_reset(&adapter->hw);
844 
845 		em_rel_mgmt(adapter);
846 		em_rel_hw_control(adapter);
847 
848 		if (adapter->wol) {
849 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
850 					E1000_WUC_PME_EN);
851 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
852 			em_enable_wol(dev);
853 		}
854 
855 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
856 
857 		lwkt_serialize_exit(ifp->if_serializer);
858 
859 		ether_ifdetach(ifp);
860 	} else {
861 		em_rel_hw_control(adapter);
862 	}
863 	bus_generic_detach(dev);
864 
865 	em_free_pci_res(adapter);
866 
867 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
868 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
869 
870 	/* Free Transmit Descriptor ring */
871 	if (adapter->tx_desc_base)
872 		em_dma_free(adapter, &adapter->txdma);
873 
874 	/* Free Receive Descriptor ring */
875 	if (adapter->rx_desc_base)
876 		em_dma_free(adapter, &adapter->rxdma);
877 
878 	/* Free top level busdma tag */
879 	if (adapter->parent_dtag != NULL)
880 		bus_dma_tag_destroy(adapter->parent_dtag);
881 
882 	/* Free sysctl tree */
883 	if (adapter->sysctl_tree != NULL)
884 		sysctl_ctx_free(&adapter->sysctl_ctx);
885 
886 	return (0);
887 }
888 
889 static int
890 em_shutdown(device_t dev)
891 {
892 	return em_suspend(dev);
893 }
894 
895 static int
896 em_suspend(device_t dev)
897 {
898 	struct adapter *adapter = device_get_softc(dev);
899 	struct ifnet *ifp = &adapter->arpcom.ac_if;
900 
901 	lwkt_serialize_enter(ifp->if_serializer);
902 
903 	em_stop(adapter);
904 
905 	em_rel_mgmt(adapter);
906 	em_rel_hw_control(adapter);
907 
908 	if (adapter->wol) {
909 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
910 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
911 		em_enable_wol(dev);
912 	}
913 
914 	lwkt_serialize_exit(ifp->if_serializer);
915 
916 	return bus_generic_suspend(dev);
917 }
918 
919 static int
920 em_resume(device_t dev)
921 {
922 	struct adapter *adapter = device_get_softc(dev);
923 	struct ifnet *ifp = &adapter->arpcom.ac_if;
924 
925 	lwkt_serialize_enter(ifp->if_serializer);
926 
927 	em_init(adapter);
928 	em_get_mgmt(adapter);
929 	if_devstart(ifp);
930 
931 	lwkt_serialize_exit(ifp->if_serializer);
932 
933 	return bus_generic_resume(dev);
934 }
935 
936 static void
937 em_start(struct ifnet *ifp)
938 {
939 	struct adapter *adapter = ifp->if_softc;
940 	struct mbuf *m_head;
941 
942 	ASSERT_SERIALIZED(ifp->if_serializer);
943 
944 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
945 		return;
946 
947 	if (!adapter->link_active) {
948 		ifq_purge(&ifp->if_snd);
949 		return;
950 	}
951 
952 	while (!ifq_is_empty(&ifp->if_snd)) {
953 		/* Now do we at least have a minimal? */
954 		if (EM_IS_OACTIVE(adapter)) {
955 			em_tx_collect(adapter);
956 			if (EM_IS_OACTIVE(adapter)) {
957 				ifp->if_flags |= IFF_OACTIVE;
958 				adapter->no_tx_desc_avail1++;
959 				break;
960 			}
961 		}
962 
963 		logif(pkt_txqueue);
964 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
965 		if (m_head == NULL)
966 			break;
967 
968 		if (em_encap(adapter, &m_head)) {
969 			ifp->if_oerrors++;
970 			em_tx_collect(adapter);
971 			continue;
972 		}
973 
974 		/* Send a copy of the frame to the BPF listener */
975 		ETHER_BPF_MTAP(ifp, m_head);
976 
977 		/* Set timeout in case hardware has problems transmitting. */
978 		ifp->if_timer = EM_TX_TIMEOUT;
979 	}
980 }
981 
982 static int
983 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
984 {
985 	struct adapter *adapter = ifp->if_softc;
986 	struct ifreq *ifr = (struct ifreq *)data;
987 	uint16_t eeprom_data = 0;
988 	int max_frame_size, mask, reinit;
989 	int error = 0;
990 
991 	ASSERT_SERIALIZED(ifp->if_serializer);
992 
993 	switch (command) {
994 	case SIOCSIFMTU:
995 		switch (adapter->hw.mac.type) {
996 		case e1000_82573:
997 			/*
998 			 * 82573 only supports jumbo frames
999 			 * if ASPM is disabled.
1000 			 */
1001 			e1000_read_nvm(&adapter->hw,
1002 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1003 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1004 				max_frame_size = ETHER_MAX_LEN;
1005 				break;
1006 			}
1007 			/* FALL THROUGH */
1008 
1009 		/* Limit Jumbo Frame size */
1010 		case e1000_82571:
1011 		case e1000_82572:
1012 		case e1000_ich9lan:
1013 		case e1000_ich10lan:
1014 		case e1000_pch2lan:
1015 		case e1000_82574:
1016 		case e1000_82583:
1017 		case e1000_80003es2lan:
1018 			max_frame_size = 9234;
1019 			break;
1020 
1021 		case e1000_pchlan:
1022 			max_frame_size = 4096;
1023 			break;
1024 
1025 		/* Adapters that do not support jumbo frames */
1026 		case e1000_82542:
1027 		case e1000_ich8lan:
1028 			max_frame_size = ETHER_MAX_LEN;
1029 			break;
1030 
1031 		default:
1032 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1033 			break;
1034 		}
1035 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1036 		    ETHER_CRC_LEN) {
1037 			error = EINVAL;
1038 			break;
1039 		}
1040 
1041 		ifp->if_mtu = ifr->ifr_mtu;
1042 		adapter->max_frame_size =
1043 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1044 
1045 		if (ifp->if_flags & IFF_RUNNING)
1046 			em_init(adapter);
1047 		break;
1048 
1049 	case SIOCSIFFLAGS:
1050 		if (ifp->if_flags & IFF_UP) {
1051 			if ((ifp->if_flags & IFF_RUNNING)) {
1052 				if ((ifp->if_flags ^ adapter->if_flags) &
1053 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1054 					em_disable_promisc(adapter);
1055 					em_set_promisc(adapter);
1056 				}
1057 			} else {
1058 				em_init(adapter);
1059 			}
1060 		} else if (ifp->if_flags & IFF_RUNNING) {
1061 			em_stop(adapter);
1062 		}
1063 		adapter->if_flags = ifp->if_flags;
1064 		break;
1065 
1066 	case SIOCADDMULTI:
1067 	case SIOCDELMULTI:
1068 		if (ifp->if_flags & IFF_RUNNING) {
1069 			em_disable_intr(adapter);
1070 			em_set_multi(adapter);
1071 			if (adapter->hw.mac.type == e1000_82542 &&
1072 			    adapter->hw.revision_id == E1000_REVISION_2)
1073 				em_init_rx_unit(adapter);
1074 #ifdef DEVICE_POLLING
1075 			if (!(ifp->if_flags & IFF_POLLING))
1076 #endif
1077 				em_enable_intr(adapter);
1078 		}
1079 		break;
1080 
1081 	case SIOCSIFMEDIA:
1082 		/* Check SOL/IDER usage */
1083 		if (e1000_check_reset_block(&adapter->hw)) {
1084 			device_printf(adapter->dev, "Media change is"
1085 			    " blocked due to SOL/IDER session.\n");
1086 			break;
1087 		}
1088 		/* FALL THROUGH */
1089 
1090 	case SIOCGIFMEDIA:
1091 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1092 		break;
1093 
1094 	case SIOCSIFCAP:
1095 		reinit = 0;
1096 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1097 		if (mask & IFCAP_HWCSUM) {
1098 			ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1099 			reinit = 1;
1100 		}
1101 		if (mask & IFCAP_VLAN_HWTAGGING) {
1102 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1103 			reinit = 1;
1104 		}
1105 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1106 			em_init(adapter);
1107 		break;
1108 
1109 	default:
1110 		error = ether_ioctl(ifp, command, data);
1111 		break;
1112 	}
1113 	return (error);
1114 }
1115 
1116 static void
1117 em_watchdog(struct ifnet *ifp)
1118 {
1119 	struct adapter *adapter = ifp->if_softc;
1120 
1121 	ASSERT_SERIALIZED(ifp->if_serializer);
1122 
1123 	/*
1124 	 * The timer is set to 5 every time start queues a packet.
1125 	 * Then txeof keeps resetting it as long as it cleans at
1126 	 * least one descriptor.
1127 	 * Finally, anytime all descriptors are clean the timer is
1128 	 * set to 0.
1129 	 */
1130 
1131 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1132 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1133 		/*
1134 		 * If we reach here, all TX jobs are completed and
1135 		 * the TX engine should have been idled for some time.
1136 		 * We don't need to call if_devstart() here.
1137 		 */
1138 		ifp->if_flags &= ~IFF_OACTIVE;
1139 		ifp->if_timer = 0;
1140 		return;
1141 	}
1142 
1143 	/*
1144 	 * If we are in this routine because of pause frames, then
1145 	 * don't reset the hardware.
1146 	 */
1147 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1148 	    E1000_STATUS_TXOFF) {
1149 		ifp->if_timer = EM_TX_TIMEOUT;
1150 		return;
1151 	}
1152 
1153 	if (e1000_check_for_link(&adapter->hw) == 0)
1154 		if_printf(ifp, "watchdog timeout -- resetting\n");
1155 
1156 	ifp->if_oerrors++;
1157 	adapter->watchdog_events++;
1158 
1159 	em_init(adapter);
1160 
1161 	if (!ifq_is_empty(&ifp->if_snd))
1162 		if_devstart(ifp);
1163 }
1164 
1165 static void
1166 em_init(void *xsc)
1167 {
1168 	struct adapter *adapter = xsc;
1169 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1170 	device_t dev = adapter->dev;
1171 	uint32_t pba;
1172 
1173 	ASSERT_SERIALIZED(ifp->if_serializer);
1174 
1175 	em_stop(adapter);
1176 
1177 	/*
1178 	 * Packet Buffer Allocation (PBA)
1179 	 * Writing PBA sets the receive portion of the buffer
1180 	 * the remainder is used for the transmit buffer.
1181 	 *
1182 	 * Devices before the 82547 had a Packet Buffer of 64K.
1183 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1184 	 * After the 82547 the buffer was reduced to 40K.
1185 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1186 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1187 	 */
1188 	switch (adapter->hw.mac.type) {
1189 	case e1000_82547:
1190 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1191 		if (adapter->max_frame_size > 8192)
1192 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1193 		else
1194 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1195 		adapter->tx_fifo_head = 0;
1196 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1197 		adapter->tx_fifo_size =
1198 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1199 		break;
1200 
1201 	/* Total Packet Buffer on these is 48K */
1202 	case e1000_82571:
1203 	case e1000_82572:
1204 	case e1000_80003es2lan:
1205 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1206 		break;
1207 
1208 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1209 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1210 		break;
1211 
1212 	case e1000_82574:
1213 	case e1000_82583:
1214 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1215 		break;
1216 
1217 	case e1000_ich8lan:
1218 		pba = E1000_PBA_8K;
1219 		break;
1220 
1221 	case e1000_ich9lan:
1222 	case e1000_ich10lan:
1223 #define E1000_PBA_10K	0x000A
1224 		pba = E1000_PBA_10K;
1225 		break;
1226 
1227 	case e1000_pchlan:
1228 	case e1000_pch2lan:
1229 		pba = E1000_PBA_26K;
1230 		break;
1231 
1232 	default:
1233 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1234 		if (adapter->max_frame_size > 8192)
1235 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1236 		else
1237 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1238 	}
1239 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1240 
1241 	/* Get the latest mac address, User can use a LAA */
1242         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1243 
1244 	/* Put the address into the Receive Address Array */
1245 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1246 
1247 	/*
1248 	 * With the 82571 adapter, RAR[0] may be overwritten
1249 	 * when the other port is reset, we make a duplicate
1250 	 * in RAR[14] for that eventuality, this assures
1251 	 * the interface continues to function.
1252 	 */
1253 	if (adapter->hw.mac.type == e1000_82571) {
1254 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1255 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1256 		    E1000_RAR_ENTRIES - 1);
1257 	}
1258 
1259 	/* Reset the hardware */
1260 	if (em_reset(adapter)) {
1261 		device_printf(dev, "Unable to reset the hardware\n");
1262 		/* XXX em_stop()? */
1263 		return;
1264 	}
1265 	em_update_link_status(adapter);
1266 
1267 	/* Setup VLAN support, basic and offload if available */
1268 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1269 
1270 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1271 		uint32_t ctrl;
1272 
1273 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1274 		ctrl |= E1000_CTRL_VME;
1275 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1276 	}
1277 
1278 	/* Set hardware offload abilities */
1279 	if (ifp->if_capenable & IFCAP_TXCSUM)
1280 		ifp->if_hwassist = EM_CSUM_FEATURES;
1281 	else
1282 		ifp->if_hwassist = 0;
1283 
1284 	/* Configure for OS presence */
1285 	em_get_mgmt(adapter);
1286 
1287 	/* Prepare transmit descriptors and buffers */
1288 	em_init_tx_ring(adapter);
1289 	em_init_tx_unit(adapter);
1290 
1291 	/* Setup Multicast table */
1292 	em_set_multi(adapter);
1293 
1294 	/* Prepare receive descriptors and buffers */
1295 	if (em_init_rx_ring(adapter)) {
1296 		device_printf(dev, "Could not setup receive structures\n");
1297 		em_stop(adapter);
1298 		return;
1299 	}
1300 	em_init_rx_unit(adapter);
1301 
1302 	/* Don't lose promiscuous settings */
1303 	em_set_promisc(adapter);
1304 
1305 	ifp->if_flags |= IFF_RUNNING;
1306 	ifp->if_flags &= ~IFF_OACTIVE;
1307 
1308 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1309 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1310 
1311 	/* MSI/X configuration for 82574 */
1312 	if (adapter->hw.mac.type == e1000_82574) {
1313 		int tmp;
1314 
1315 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1316 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1317 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1318 		/*
1319 		 * XXX MSIX
1320 		 * Set the IVAR - interrupt vector routing.
1321 		 * Each nibble represents a vector, high bit
1322 		 * is enable, other 3 bits are the MSIX table
1323 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1324 		 * Link (other) to 2, hence the magic number.
1325 		 */
1326 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1327 	}
1328 
1329 #ifdef DEVICE_POLLING
1330 	/*
1331 	 * Only enable interrupts if we are not polling, make sure
1332 	 * they are off otherwise.
1333 	 */
1334 	if (ifp->if_flags & IFF_POLLING)
1335 		em_disable_intr(adapter);
1336 	else
1337 #endif /* DEVICE_POLLING */
1338 		em_enable_intr(adapter);
1339 
1340 	/* AMT based hardware can now take control from firmware */
1341 	if (adapter->has_manage && adapter->has_amt &&
1342 	    adapter->hw.mac.type >= e1000_82571)
1343 		em_get_hw_control(adapter);
1344 
1345 	/* Don't reset the phy next time init gets called */
1346 	adapter->hw.phy.reset_disable = TRUE;
1347 }
1348 
1349 #ifdef DEVICE_POLLING
1350 
1351 static void
1352 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1353 {
1354 	struct adapter *adapter = ifp->if_softc;
1355 	uint32_t reg_icr;
1356 
1357 	ASSERT_SERIALIZED(ifp->if_serializer);
1358 
1359 	switch (cmd) {
1360 	case POLL_REGISTER:
1361 		em_disable_intr(adapter);
1362 		break;
1363 
1364 	case POLL_DEREGISTER:
1365 		em_enable_intr(adapter);
1366 		break;
1367 
1368 	case POLL_AND_CHECK_STATUS:
1369 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1370 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1371 			callout_stop(&adapter->timer);
1372 			adapter->hw.mac.get_link_status = 1;
1373 			em_update_link_status(adapter);
1374 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1375 		}
1376 		/* FALL THROUGH */
1377 	case POLL_ONLY:
1378 		if (ifp->if_flags & IFF_RUNNING) {
1379 			em_rxeof(adapter, count);
1380 			em_txeof(adapter);
1381 
1382 			if (!ifq_is_empty(&ifp->if_snd))
1383 				if_devstart(ifp);
1384 		}
1385 		break;
1386 	}
1387 }
1388 
1389 #endif /* DEVICE_POLLING */
1390 
1391 static void
1392 em_intr(void *xsc)
1393 {
1394 	struct adapter *adapter = xsc;
1395 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1396 	uint32_t reg_icr;
1397 
1398 	logif(intr_beg);
1399 	ASSERT_SERIALIZED(ifp->if_serializer);
1400 
1401 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1402 
1403 	if ((adapter->hw.mac.type >= e1000_82571 &&
1404 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1405 	    reg_icr == 0) {
1406 		logif(intr_end);
1407 		return;
1408 	}
1409 
1410 	/*
1411 	 * XXX: some laptops trigger several spurious interrupts
1412 	 * on em(4) when in the resume cycle. The ICR register
1413 	 * reports all-ones value in this case. Processing such
1414 	 * interrupts would lead to a freeze. I don't know why.
1415 	 */
1416 	if (reg_icr == 0xffffffff) {
1417 		logif(intr_end);
1418 		return;
1419 	}
1420 
1421 	if (ifp->if_flags & IFF_RUNNING) {
1422 		if (reg_icr &
1423 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1424 			em_rxeof(adapter, -1);
1425 		if (reg_icr & E1000_ICR_TXDW) {
1426 			em_txeof(adapter);
1427 			if (!ifq_is_empty(&ifp->if_snd))
1428 				if_devstart(ifp);
1429 		}
1430 	}
1431 
1432 	/* Link status change */
1433 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1434 		callout_stop(&adapter->timer);
1435 		adapter->hw.mac.get_link_status = 1;
1436 		em_update_link_status(adapter);
1437 
1438 		/* Deal with TX cruft when link lost */
1439 		em_tx_purge(adapter);
1440 
1441 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1442 	}
1443 
1444 	if (reg_icr & E1000_ICR_RXO)
1445 		adapter->rx_overruns++;
1446 
1447 	logif(intr_end);
1448 }
1449 
1450 static void
1451 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1452 {
1453 	struct adapter *adapter = ifp->if_softc;
1454 	u_char fiber_type = IFM_1000_SX;
1455 
1456 	ASSERT_SERIALIZED(ifp->if_serializer);
1457 
1458 	em_update_link_status(adapter);
1459 
1460 	ifmr->ifm_status = IFM_AVALID;
1461 	ifmr->ifm_active = IFM_ETHER;
1462 
1463 	if (!adapter->link_active)
1464 		return;
1465 
1466 	ifmr->ifm_status |= IFM_ACTIVE;
1467 
1468 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1469 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1470 		if (adapter->hw.mac.type == e1000_82545)
1471 			fiber_type = IFM_1000_LX;
1472 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1473 	} else {
1474 		switch (adapter->link_speed) {
1475 		case 10:
1476 			ifmr->ifm_active |= IFM_10_T;
1477 			break;
1478 		case 100:
1479 			ifmr->ifm_active |= IFM_100_TX;
1480 			break;
1481 
1482 		case 1000:
1483 			ifmr->ifm_active |= IFM_1000_T;
1484 			break;
1485 		}
1486 		if (adapter->link_duplex == FULL_DUPLEX)
1487 			ifmr->ifm_active |= IFM_FDX;
1488 		else
1489 			ifmr->ifm_active |= IFM_HDX;
1490 	}
1491 }
1492 
1493 static int
1494 em_media_change(struct ifnet *ifp)
1495 {
1496 	struct adapter *adapter = ifp->if_softc;
1497 	struct ifmedia *ifm = &adapter->media;
1498 
1499 	ASSERT_SERIALIZED(ifp->if_serializer);
1500 
1501 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1502 		return (EINVAL);
1503 
1504 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1505 	case IFM_AUTO:
1506 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1507 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1508 		break;
1509 
1510 	case IFM_1000_LX:
1511 	case IFM_1000_SX:
1512 	case IFM_1000_T:
1513 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1514 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1515 		break;
1516 
1517 	case IFM_100_TX:
1518 		adapter->hw.mac.autoneg = FALSE;
1519 		adapter->hw.phy.autoneg_advertised = 0;
1520 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1521 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1522 		else
1523 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1524 		break;
1525 
1526 	case IFM_10_T:
1527 		adapter->hw.mac.autoneg = FALSE;
1528 		adapter->hw.phy.autoneg_advertised = 0;
1529 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1530 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1531 		else
1532 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1533 		break;
1534 
1535 	default:
1536 		if_printf(ifp, "Unsupported media type\n");
1537 		break;
1538 	}
1539 
1540 	/*
1541 	 * As the speed/duplex settings my have changed we need to
1542 	 * reset the PHY.
1543 	 */
1544 	adapter->hw.phy.reset_disable = FALSE;
1545 
1546 	em_init(adapter);
1547 
1548 	return (0);
1549 }
1550 
1551 static int
1552 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1553 {
1554 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1555 	bus_dmamap_t map;
1556 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1557 	struct e1000_tx_desc *ctxd = NULL;
1558 	struct mbuf *m_head = *m_headp;
1559 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1560 	int maxsegs, nsegs, i, j, first, last = 0, error;
1561 
1562 	if (m_head->m_len < EM_TXCSUM_MINHL &&
1563 	    (m_head->m_flags & EM_CSUM_FEATURES)) {
1564 		/*
1565 		 * Make sure that ethernet header and ip.ip_hl are in
1566 		 * contiguous memory, since if TXCSUM is enabled, later
1567 		 * TX context descriptor's setup need to access ip.ip_hl.
1568 		 */
1569 		error = em_txcsum_pullup(adapter, m_headp);
1570 		if (error) {
1571 			KKASSERT(*m_headp == NULL);
1572 			return error;
1573 		}
1574 		m_head = *m_headp;
1575 	}
1576 
1577 	txd_upper = txd_lower = 0;
1578 	txd_used = 0;
1579 
1580 	/*
1581 	 * Capture the first descriptor index, this descriptor
1582 	 * will have the index of the EOP which is the only one
1583 	 * that now gets a DONE bit writeback.
1584 	 */
1585 	first = adapter->next_avail_tx_desc;
1586 	tx_buffer = &adapter->tx_buffer_area[first];
1587 	tx_buffer_mapped = tx_buffer;
1588 	map = tx_buffer->map;
1589 
1590 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1591 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1592 		("not enough spare TX desc"));
1593 	if (adapter->pcix_82544) {
1594 		/* Half it; see the comment in em_attach() */
1595 		maxsegs >>= 1;
1596 	}
1597 	if (maxsegs > EM_MAX_SCATTER)
1598 		maxsegs = EM_MAX_SCATTER;
1599 
1600 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1601 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1602 	if (error) {
1603 		if (error == ENOBUFS)
1604 			adapter->mbuf_alloc_failed++;
1605 		else
1606 			adapter->no_tx_dma_setup++;
1607 
1608 		m_freem(*m_headp);
1609 		*m_headp = NULL;
1610 		return error;
1611 	}
1612         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1613 
1614 	m_head = *m_headp;
1615 	adapter->tx_nsegs += nsegs;
1616 
1617 	if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1618 		/* TX csum offloading will consume one TX desc */
1619 		adapter->tx_nsegs += em_txcsum(adapter, m_head,
1620 					       &txd_upper, &txd_lower);
1621 	}
1622 	i = adapter->next_avail_tx_desc;
1623 
1624 	/* Set up our transmit descriptors */
1625 	for (j = 0; j < nsegs; j++) {
1626 		/* If adapter is 82544 and on PCIX bus */
1627 		if(adapter->pcix_82544) {
1628 			DESC_ARRAY desc_array;
1629 			uint32_t array_elements, counter;
1630 
1631 			/*
1632 			 * Check the Address and Length combination and
1633 			 * split the data accordingly
1634 			 */
1635 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1636 						segs[j].ds_len, &desc_array);
1637 			for (counter = 0; counter < array_elements; counter++) {
1638 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1639 
1640 				tx_buffer = &adapter->tx_buffer_area[i];
1641 				ctxd = &adapter->tx_desc_base[i];
1642 
1643 				ctxd->buffer_addr = htole64(
1644 				    desc_array.descriptor[counter].address);
1645 				ctxd->lower.data = htole32(
1646 				    E1000_TXD_CMD_IFCS | txd_lower |
1647 				    desc_array.descriptor[counter].length);
1648 				ctxd->upper.data = htole32(txd_upper);
1649 
1650 				last = i;
1651 				if (++i == adapter->num_tx_desc)
1652 					i = 0;
1653 
1654 				txd_used++;
1655                         }
1656 		} else {
1657 			tx_buffer = &adapter->tx_buffer_area[i];
1658 			ctxd = &adapter->tx_desc_base[i];
1659 
1660 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1661 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1662 						   txd_lower | segs[j].ds_len);
1663 			ctxd->upper.data = htole32(txd_upper);
1664 
1665 			last = i;
1666 			if (++i == adapter->num_tx_desc)
1667 				i = 0;
1668 		}
1669 	}
1670 
1671 	adapter->next_avail_tx_desc = i;
1672 	if (adapter->pcix_82544) {
1673 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1674 		adapter->num_tx_desc_avail -= txd_used;
1675 	} else {
1676 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1677 		adapter->num_tx_desc_avail -= nsegs;
1678 	}
1679 
1680         /* Handle VLAN tag */
1681 	if (m_head->m_flags & M_VLANTAG) {
1682 		/* Set the vlan id. */
1683 		ctxd->upper.fields.special =
1684 		    htole16(m_head->m_pkthdr.ether_vlantag);
1685 
1686 		/* Tell hardware to add tag */
1687 		ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1688 	}
1689 
1690 	tx_buffer->m_head = m_head;
1691 	tx_buffer_mapped->map = tx_buffer->map;
1692 	tx_buffer->map = map;
1693 
1694 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1695 		adapter->tx_nsegs = 0;
1696 
1697 		/*
1698 		 * Report Status (RS) is turned on
1699 		 * every tx_int_nsegs descriptors.
1700 		 */
1701 		cmd = E1000_TXD_CMD_RS;
1702 
1703 		/*
1704 		 * Keep track of the descriptor, which will
1705 		 * be written back by hardware.
1706 		 */
1707 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1708 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1709 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1710 	}
1711 
1712 	/*
1713 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1714 	 */
1715 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1716 
1717 	/*
1718 	 * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1719 	 * that this frame is available to transmit.
1720 	 */
1721 	if (adapter->hw.mac.type == e1000_82547 &&
1722 	    adapter->link_duplex == HALF_DUPLEX) {
1723 		em_82547_move_tail_serialized(adapter);
1724 	} else {
1725 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1726 		if (adapter->hw.mac.type == e1000_82547) {
1727 			em_82547_update_fifo_head(adapter,
1728 			    m_head->m_pkthdr.len);
1729 		}
1730 	}
1731 	return (0);
1732 }
1733 
1734 /*
1735  * 82547 workaround to avoid controller hang in half-duplex environment.
1736  * The workaround is to avoid queuing a large packet that would span
1737  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1738  * in this case.  We do that only when FIFO is quiescent.
1739  */
1740 static void
1741 em_82547_move_tail_serialized(struct adapter *adapter)
1742 {
1743 	struct e1000_tx_desc *tx_desc;
1744 	uint16_t hw_tdt, sw_tdt, length = 0;
1745 	bool eop = 0;
1746 
1747 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1748 
1749 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1750 	sw_tdt = adapter->next_avail_tx_desc;
1751 
1752 	while (hw_tdt != sw_tdt) {
1753 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1754 		length += tx_desc->lower.flags.length;
1755 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1756 		if (++hw_tdt == adapter->num_tx_desc)
1757 			hw_tdt = 0;
1758 
1759 		if (eop) {
1760 			if (em_82547_fifo_workaround(adapter, length)) {
1761 				adapter->tx_fifo_wrk_cnt++;
1762 				callout_reset(&adapter->tx_fifo_timer, 1,
1763 					em_82547_move_tail, adapter);
1764 				break;
1765 			}
1766 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1767 			em_82547_update_fifo_head(adapter, length);
1768 			length = 0;
1769 		}
1770 	}
1771 }
1772 
1773 static void
1774 em_82547_move_tail(void *xsc)
1775 {
1776 	struct adapter *adapter = xsc;
1777 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1778 
1779 	lwkt_serialize_enter(ifp->if_serializer);
1780 	em_82547_move_tail_serialized(adapter);
1781 	lwkt_serialize_exit(ifp->if_serializer);
1782 }
1783 
1784 static int
1785 em_82547_fifo_workaround(struct adapter *adapter, int len)
1786 {
1787 	int fifo_space, fifo_pkt_len;
1788 
1789 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1790 
1791 	if (adapter->link_duplex == HALF_DUPLEX) {
1792 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1793 
1794 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1795 			if (em_82547_tx_fifo_reset(adapter))
1796 				return (0);
1797 			else
1798 				return (1);
1799 		}
1800 	}
1801 	return (0);
1802 }
1803 
1804 static void
1805 em_82547_update_fifo_head(struct adapter *adapter, int len)
1806 {
1807 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1808 
1809 	/* tx_fifo_head is always 16 byte aligned */
1810 	adapter->tx_fifo_head += fifo_pkt_len;
1811 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1812 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1813 }
1814 
1815 static int
1816 em_82547_tx_fifo_reset(struct adapter *adapter)
1817 {
1818 	uint32_t tctl;
1819 
1820 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1821 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1822 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
1823 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1824 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1825 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1826 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1827 		/* Disable TX unit */
1828 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1829 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1830 		    tctl & ~E1000_TCTL_EN);
1831 
1832 		/* Reset FIFO pointers */
1833 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1834 		    adapter->tx_head_addr);
1835 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1836 		    adapter->tx_head_addr);
1837 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1838 		    adapter->tx_head_addr);
1839 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1840 		    adapter->tx_head_addr);
1841 
1842 		/* Re-enable TX unit */
1843 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1844 		E1000_WRITE_FLUSH(&adapter->hw);
1845 
1846 		adapter->tx_fifo_head = 0;
1847 		adapter->tx_fifo_reset_cnt++;
1848 
1849 		return (TRUE);
1850 	} else {
1851 		return (FALSE);
1852 	}
1853 }
1854 
1855 static void
1856 em_set_promisc(struct adapter *adapter)
1857 {
1858 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1859 	uint32_t reg_rctl;
1860 
1861 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1862 
1863 	if (ifp->if_flags & IFF_PROMISC) {
1864 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1865 		/* Turn this on if you want to see bad packets */
1866 		if (em_debug_sbp)
1867 			reg_rctl |= E1000_RCTL_SBP;
1868 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1869 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1870 		reg_rctl |= E1000_RCTL_MPE;
1871 		reg_rctl &= ~E1000_RCTL_UPE;
1872 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1873 	}
1874 }
1875 
1876 static void
1877 em_disable_promisc(struct adapter *adapter)
1878 {
1879 	uint32_t reg_rctl;
1880 
1881 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1882 
1883 	reg_rctl &= ~E1000_RCTL_UPE;
1884 	reg_rctl &= ~E1000_RCTL_MPE;
1885 	reg_rctl &= ~E1000_RCTL_SBP;
1886 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1887 }
1888 
1889 static void
1890 em_set_multi(struct adapter *adapter)
1891 {
1892 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1893 	struct ifmultiaddr *ifma;
1894 	uint32_t reg_rctl = 0;
1895 	uint8_t *mta;
1896 	int mcnt = 0;
1897 
1898 	mta = adapter->mta;
1899 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1900 
1901 	if (adapter->hw.mac.type == e1000_82542 &&
1902 	    adapter->hw.revision_id == E1000_REVISION_2) {
1903 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1904 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1905 			e1000_pci_clear_mwi(&adapter->hw);
1906 		reg_rctl |= E1000_RCTL_RST;
1907 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1908 		msec_delay(5);
1909 	}
1910 
1911 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1912 		if (ifma->ifma_addr->sa_family != AF_LINK)
1913 			continue;
1914 
1915 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1916 			break;
1917 
1918 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1919 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1920 		mcnt++;
1921 	}
1922 
1923 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1924 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1925 		reg_rctl |= E1000_RCTL_MPE;
1926 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1927 	} else {
1928 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1929 	}
1930 
1931 	if (adapter->hw.mac.type == e1000_82542 &&
1932 	    adapter->hw.revision_id == E1000_REVISION_2) {
1933 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1934 		reg_rctl &= ~E1000_RCTL_RST;
1935 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1936 		msec_delay(5);
1937 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1938 			e1000_pci_set_mwi(&adapter->hw);
1939 	}
1940 }
1941 
1942 /*
1943  * This routine checks for link status and updates statistics.
1944  */
1945 static void
1946 em_timer(void *xsc)
1947 {
1948 	struct adapter *adapter = xsc;
1949 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1950 
1951 	lwkt_serialize_enter(ifp->if_serializer);
1952 
1953 	em_update_link_status(adapter);
1954 	em_update_stats(adapter);
1955 
1956 	/* Reset LAA into RAR[0] on 82571 */
1957 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1958 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1959 
1960 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1961 		em_print_hw_stats(adapter);
1962 
1963 	em_smartspeed(adapter);
1964 
1965 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1966 
1967 	lwkt_serialize_exit(ifp->if_serializer);
1968 }
1969 
1970 static void
1971 em_update_link_status(struct adapter *adapter)
1972 {
1973 	struct e1000_hw *hw = &adapter->hw;
1974 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1975 	device_t dev = adapter->dev;
1976 	uint32_t link_check = 0;
1977 
1978 	/* Get the cached link value or read phy for real */
1979 	switch (hw->phy.media_type) {
1980 	case e1000_media_type_copper:
1981 		if (hw->mac.get_link_status) {
1982 			/* Do the work to read phy */
1983 			e1000_check_for_link(hw);
1984 			link_check = !hw->mac.get_link_status;
1985 			if (link_check) /* ESB2 fix */
1986 				e1000_cfg_on_link_up(hw);
1987 		} else {
1988 			link_check = TRUE;
1989 		}
1990 		break;
1991 
1992 	case e1000_media_type_fiber:
1993 		e1000_check_for_link(hw);
1994 		link_check =
1995 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1996 		break;
1997 
1998 	case e1000_media_type_internal_serdes:
1999 		e1000_check_for_link(hw);
2000 		link_check = adapter->hw.mac.serdes_has_link;
2001 		break;
2002 
2003 	case e1000_media_type_unknown:
2004 	default:
2005 		break;
2006 	}
2007 
2008 	/* Now check for a transition */
2009 	if (link_check && adapter->link_active == 0) {
2010 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2011 		    &adapter->link_duplex);
2012 
2013 		/*
2014 		 * Check if we should enable/disable SPEED_MODE bit on
2015 		 * 82571/82572
2016 		 */
2017 		if (adapter->link_speed != SPEED_1000 &&
2018 		    (hw->mac.type == e1000_82571 ||
2019 		     hw->mac.type == e1000_82572)) {
2020 			int tarc0;
2021 
2022 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2023 			tarc0 &= ~SPEED_MODE_BIT;
2024 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2025 		}
2026 		if (bootverbose) {
2027 			device_printf(dev, "Link is up %d Mbps %s\n",
2028 			    adapter->link_speed,
2029 			    ((adapter->link_duplex == FULL_DUPLEX) ?
2030 			    "Full Duplex" : "Half Duplex"));
2031 		}
2032 		adapter->link_active = 1;
2033 		adapter->smartspeed = 0;
2034 		ifp->if_baudrate = adapter->link_speed * 1000000;
2035 		ifp->if_link_state = LINK_STATE_UP;
2036 		if_link_state_change(ifp);
2037 	} else if (!link_check && adapter->link_active == 1) {
2038 		ifp->if_baudrate = adapter->link_speed = 0;
2039 		adapter->link_duplex = 0;
2040 		if (bootverbose)
2041 			device_printf(dev, "Link is Down\n");
2042 		adapter->link_active = 0;
2043 #if 0
2044 		/* Link down, disable watchdog */
2045 		if->if_timer = 0;
2046 #endif
2047 		ifp->if_link_state = LINK_STATE_DOWN;
2048 		if_link_state_change(ifp);
2049 	}
2050 }
2051 
2052 static void
2053 em_stop(struct adapter *adapter)
2054 {
2055 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2056 	int i;
2057 
2058 	ASSERT_SERIALIZED(ifp->if_serializer);
2059 
2060 	em_disable_intr(adapter);
2061 
2062 	callout_stop(&adapter->timer);
2063 	callout_stop(&adapter->tx_fifo_timer);
2064 
2065 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2066 	ifp->if_timer = 0;
2067 
2068 	e1000_reset_hw(&adapter->hw);
2069 	if (adapter->hw.mac.type >= e1000_82544)
2070 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2071 
2072 	for (i = 0; i < adapter->num_tx_desc; i++) {
2073 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2074 
2075 		if (tx_buffer->m_head != NULL) {
2076 			bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2077 			m_freem(tx_buffer->m_head);
2078 			tx_buffer->m_head = NULL;
2079 		}
2080 	}
2081 
2082 	for (i = 0; i < adapter->num_rx_desc; i++) {
2083 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2084 
2085 		if (rx_buffer->m_head != NULL) {
2086 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2087 			m_freem(rx_buffer->m_head);
2088 			rx_buffer->m_head = NULL;
2089 		}
2090 	}
2091 
2092 	if (adapter->fmp != NULL)
2093 		m_freem(adapter->fmp);
2094 	adapter->fmp = NULL;
2095 	adapter->lmp = NULL;
2096 
2097 	adapter->csum_flags = 0;
2098 	adapter->csum_ehlen = 0;
2099 	adapter->csum_iphlen = 0;
2100 
2101 	adapter->tx_dd_head = 0;
2102 	adapter->tx_dd_tail = 0;
2103 	adapter->tx_nsegs = 0;
2104 }
2105 
2106 static int
2107 em_get_hw_info(struct adapter *adapter)
2108 {
2109 	device_t dev = adapter->dev;
2110 
2111 	/* Save off the information about this board */
2112 	adapter->hw.vendor_id = pci_get_vendor(dev);
2113 	adapter->hw.device_id = pci_get_device(dev);
2114 	adapter->hw.revision_id = pci_get_revid(dev);
2115 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2116 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2117 
2118 	/* Do Shared Code Init and Setup */
2119 	if (e1000_set_mac_type(&adapter->hw))
2120 		return ENXIO;
2121 	return 0;
2122 }
2123 
2124 static int
2125 em_alloc_pci_res(struct adapter *adapter)
2126 {
2127 	device_t dev = adapter->dev;
2128 	u_int intr_flags;
2129 	int val, rid;
2130 
2131 	/* Enable bus mastering */
2132 	pci_enable_busmaster(dev);
2133 
2134 	adapter->memory_rid = EM_BAR_MEM;
2135 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2136 				&adapter->memory_rid, RF_ACTIVE);
2137 	if (adapter->memory == NULL) {
2138 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2139 		return (ENXIO);
2140 	}
2141 	adapter->osdep.mem_bus_space_tag =
2142 	    rman_get_bustag(adapter->memory);
2143 	adapter->osdep.mem_bus_space_handle =
2144 	    rman_get_bushandle(adapter->memory);
2145 
2146 	/* XXX This is quite goofy, it is not actually used */
2147 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2148 
2149 	/* Only older adapters use IO mapping */
2150 	if (adapter->hw.mac.type > e1000_82543 &&
2151 	    adapter->hw.mac.type < e1000_82571) {
2152 		/* Figure our where our IO BAR is ? */
2153 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2154 			val = pci_read_config(dev, rid, 4);
2155 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2156 				adapter->io_rid = rid;
2157 				break;
2158 			}
2159 			rid += 4;
2160 			/* check for 64bit BAR */
2161 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2162 				rid += 4;
2163 		}
2164 		if (rid >= PCIR_CARDBUSCIS) {
2165 			device_printf(dev, "Unable to locate IO BAR\n");
2166 			return (ENXIO);
2167 		}
2168 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2169 					&adapter->io_rid, RF_ACTIVE);
2170 		if (adapter->ioport == NULL) {
2171 			device_printf(dev, "Unable to allocate bus resource: "
2172 			    "ioport\n");
2173 			return (ENXIO);
2174 		}
2175 		adapter->hw.io_base = 0;
2176 		adapter->osdep.io_bus_space_tag =
2177 		    rman_get_bustag(adapter->ioport);
2178 		adapter->osdep.io_bus_space_handle =
2179 		    rman_get_bushandle(adapter->ioport);
2180 	}
2181 
2182 	adapter->intr_type = pci_alloc_1intr(dev, em_msi_enable,
2183 	    &adapter->intr_rid, &intr_flags);
2184 
2185 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2186 	    &adapter->intr_rid, intr_flags);
2187 	if (adapter->intr_res == NULL) {
2188 		device_printf(dev, "Unable to allocate bus resource: "
2189 		    "interrupt\n");
2190 		return (ENXIO);
2191 	}
2192 
2193 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2194 	adapter->hw.back = &adapter->osdep;
2195 	return (0);
2196 }
2197 
2198 static void
2199 em_free_pci_res(struct adapter *adapter)
2200 {
2201 	device_t dev = adapter->dev;
2202 
2203 	if (adapter->intr_res != NULL) {
2204 		bus_release_resource(dev, SYS_RES_IRQ,
2205 		    adapter->intr_rid, adapter->intr_res);
2206 	}
2207 
2208 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2209 		pci_release_msi(dev);
2210 
2211 	if (adapter->memory != NULL) {
2212 		bus_release_resource(dev, SYS_RES_MEMORY,
2213 		    adapter->memory_rid, adapter->memory);
2214 	}
2215 
2216 	if (adapter->flash != NULL) {
2217 		bus_release_resource(dev, SYS_RES_MEMORY,
2218 		    adapter->flash_rid, adapter->flash);
2219 	}
2220 
2221 	if (adapter->ioport != NULL) {
2222 		bus_release_resource(dev, SYS_RES_IOPORT,
2223 		    adapter->io_rid, adapter->ioport);
2224 	}
2225 }
2226 
2227 static int
2228 em_reset(struct adapter *adapter)
2229 {
2230 	device_t dev = adapter->dev;
2231 	uint16_t rx_buffer_size;
2232 
2233 	/* When hardware is reset, fifo_head is also reset */
2234 	adapter->tx_fifo_head = 0;
2235 
2236 	/* Set up smart power down as default off on newer adapters. */
2237 	if (!em_smart_pwr_down &&
2238 	    (adapter->hw.mac.type == e1000_82571 ||
2239 	     adapter->hw.mac.type == e1000_82572)) {
2240 		uint16_t phy_tmp = 0;
2241 
2242 		/* Speed up time to link by disabling smart power down. */
2243 		e1000_read_phy_reg(&adapter->hw,
2244 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2245 		phy_tmp &= ~IGP02E1000_PM_SPD;
2246 		e1000_write_phy_reg(&adapter->hw,
2247 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2248 	}
2249 
2250 	/*
2251 	 * These parameters control the automatic generation (Tx) and
2252 	 * response (Rx) to Ethernet PAUSE frames.
2253 	 * - High water mark should allow for at least two frames to be
2254 	 *   received after sending an XOFF.
2255 	 * - Low water mark works best when it is very near the high water mark.
2256 	 *   This allows the receiver to restart by sending XON when it has
2257 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2258 	 *   restart after one full frame is pulled from the buffer. There
2259 	 *   could be several smaller frames in the buffer and if so they will
2260 	 *   not trigger the XON until their total number reduces the buffer
2261 	 *   by 1500.
2262 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2263 	 */
2264 	rx_buffer_size =
2265 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2266 
2267 	adapter->hw.fc.high_water = rx_buffer_size -
2268 				    roundup2(adapter->max_frame_size, 1024);
2269 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2270 
2271 	if (adapter->hw.mac.type == e1000_80003es2lan)
2272 		adapter->hw.fc.pause_time = 0xFFFF;
2273 	else
2274 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2275 
2276 	adapter->hw.fc.send_xon = TRUE;
2277 
2278 	adapter->hw.fc.requested_mode = e1000_fc_full;
2279 
2280 	/* Workaround: no TX flow ctrl for PCH */
2281 	if (adapter->hw.mac.type == e1000_pchlan)
2282 		adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2283 
2284 	/* Override - settings for PCH2LAN, ya its magic :) */
2285 	if (adapter->hw.mac.type == e1000_pch2lan) {
2286 		adapter->hw.fc.high_water = 0x5C20;
2287 		adapter->hw.fc.low_water = 0x5048;
2288 		adapter->hw.fc.pause_time = 0x0650;
2289 		adapter->hw.fc.refresh_time = 0x0400;
2290 
2291 		/* Jumbos need adjusted PBA */
2292 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2293 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2294 		else
2295 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2296 	}
2297 
2298 	/* Issue a global reset */
2299 	e1000_reset_hw(&adapter->hw);
2300 	if (adapter->hw.mac.type >= e1000_82544)
2301 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2302 	em_disable_aspm(adapter);
2303 
2304 	if (e1000_init_hw(&adapter->hw) < 0) {
2305 		device_printf(dev, "Hardware Initialization Failed\n");
2306 		return (EIO);
2307 	}
2308 
2309 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2310 	e1000_get_phy_info(&adapter->hw);
2311 	e1000_check_for_link(&adapter->hw);
2312 
2313 	return (0);
2314 }
2315 
2316 static void
2317 em_setup_ifp(struct adapter *adapter)
2318 {
2319 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2320 
2321 	if_initname(ifp, device_get_name(adapter->dev),
2322 		    device_get_unit(adapter->dev));
2323 	ifp->if_softc = adapter;
2324 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2325 	ifp->if_init =  em_init;
2326 	ifp->if_ioctl = em_ioctl;
2327 	ifp->if_start = em_start;
2328 #ifdef DEVICE_POLLING
2329 	ifp->if_poll = em_poll;
2330 #endif
2331 	ifp->if_watchdog = em_watchdog;
2332 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2333 	ifq_set_ready(&ifp->if_snd);
2334 
2335 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2336 
2337 	if (adapter->hw.mac.type >= e1000_82543)
2338 		ifp->if_capabilities = IFCAP_HWCSUM;
2339 
2340 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2341 	ifp->if_capenable = ifp->if_capabilities;
2342 
2343 	if (ifp->if_capenable & IFCAP_TXCSUM)
2344 		ifp->if_hwassist = EM_CSUM_FEATURES;
2345 
2346 	/*
2347 	 * Tell the upper layer(s) we support long frames.
2348 	 */
2349 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2350 
2351 	/*
2352 	 * Specify the media types supported by this adapter and register
2353 	 * callbacks to update media and link information
2354 	 */
2355 	ifmedia_init(&adapter->media, IFM_IMASK,
2356 		     em_media_change, em_media_status);
2357 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2358 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2359 		u_char fiber_type = IFM_1000_SX; /* default type */
2360 
2361 		if (adapter->hw.mac.type == e1000_82545)
2362 			fiber_type = IFM_1000_LX;
2363 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2364 			    0, NULL);
2365 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2366 	} else {
2367 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2368 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2369 			    0, NULL);
2370 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2371 			    0, NULL);
2372 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2373 			    0, NULL);
2374 		if (adapter->hw.phy.type != e1000_phy_ife) {
2375 			ifmedia_add(&adapter->media,
2376 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2377 			ifmedia_add(&adapter->media,
2378 				IFM_ETHER | IFM_1000_T, 0, NULL);
2379 		}
2380 	}
2381 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2382 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2383 }
2384 
2385 
2386 /*
2387  * Workaround for SmartSpeed on 82541 and 82547 controllers
2388  */
2389 static void
2390 em_smartspeed(struct adapter *adapter)
2391 {
2392 	uint16_t phy_tmp;
2393 
2394 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2395 	    adapter->hw.mac.autoneg == 0 ||
2396 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2397 		return;
2398 
2399 	if (adapter->smartspeed == 0) {
2400 		/*
2401 		 * If Master/Slave config fault is asserted twice,
2402 		 * we assume back-to-back
2403 		 */
2404 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2405 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2406 			return;
2407 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2408 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2409 			e1000_read_phy_reg(&adapter->hw,
2410 			    PHY_1000T_CTRL, &phy_tmp);
2411 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2412 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2413 				e1000_write_phy_reg(&adapter->hw,
2414 				    PHY_1000T_CTRL, phy_tmp);
2415 				adapter->smartspeed++;
2416 				if (adapter->hw.mac.autoneg &&
2417 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2418 				    !e1000_read_phy_reg(&adapter->hw,
2419 				     PHY_CONTROL, &phy_tmp)) {
2420 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2421 						   MII_CR_RESTART_AUTO_NEG;
2422 					e1000_write_phy_reg(&adapter->hw,
2423 					    PHY_CONTROL, phy_tmp);
2424 				}
2425 			}
2426 		}
2427 		return;
2428 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2429 		/* If still no link, perhaps using 2/3 pair cable */
2430 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2431 		phy_tmp |= CR_1000T_MS_ENABLE;
2432 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2433 		if (adapter->hw.mac.autoneg &&
2434 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2435 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2436 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2437 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2438 		}
2439 	}
2440 
2441 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2442 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2443 		adapter->smartspeed = 0;
2444 }
2445 
2446 static int
2447 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2448 	      struct em_dma_alloc *dma)
2449 {
2450 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2451 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2452 				&dma->dma_tag, &dma->dma_map,
2453 				&dma->dma_paddr);
2454 	if (dma->dma_vaddr == NULL)
2455 		return ENOMEM;
2456 	else
2457 		return 0;
2458 }
2459 
2460 static void
2461 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2462 {
2463 	if (dma->dma_tag == NULL)
2464 		return;
2465 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2466 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2467 	bus_dma_tag_destroy(dma->dma_tag);
2468 }
2469 
2470 static int
2471 em_create_tx_ring(struct adapter *adapter)
2472 {
2473 	device_t dev = adapter->dev;
2474 	struct em_buffer *tx_buffer;
2475 	int error, i;
2476 
2477 	adapter->tx_buffer_area =
2478 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2479 			M_DEVBUF, M_WAITOK | M_ZERO);
2480 
2481 	/*
2482 	 * Create DMA tags for tx buffers
2483 	 */
2484 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2485 			1, 0,			/* alignment, bounds */
2486 			BUS_SPACE_MAXADDR,	/* lowaddr */
2487 			BUS_SPACE_MAXADDR,	/* highaddr */
2488 			NULL, NULL,		/* filter, filterarg */
2489 			EM_TSO_SIZE,		/* maxsize */
2490 			EM_MAX_SCATTER,		/* nsegments */
2491 			EM_MAX_SEGSIZE,		/* maxsegsize */
2492 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2493 			BUS_DMA_ONEBPAGE,	/* flags */
2494 			&adapter->txtag);
2495 	if (error) {
2496 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2497 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2498 		adapter->tx_buffer_area = NULL;
2499 		return error;
2500 	}
2501 
2502 	/*
2503 	 * Create DMA maps for tx buffers
2504 	 */
2505 	for (i = 0; i < adapter->num_tx_desc; i++) {
2506 		tx_buffer = &adapter->tx_buffer_area[i];
2507 
2508 		error = bus_dmamap_create(adapter->txtag,
2509 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2510 					  &tx_buffer->map);
2511 		if (error) {
2512 			device_printf(dev, "Unable to create TX DMA map\n");
2513 			em_destroy_tx_ring(adapter, i);
2514 			return error;
2515 		}
2516 	}
2517 	return (0);
2518 }
2519 
2520 static void
2521 em_init_tx_ring(struct adapter *adapter)
2522 {
2523 	/* Clear the old ring contents */
2524 	bzero(adapter->tx_desc_base,
2525 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2526 
2527 	/* Reset state */
2528 	adapter->next_avail_tx_desc = 0;
2529 	adapter->next_tx_to_clean = 0;
2530 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2531 }
2532 
2533 static void
2534 em_init_tx_unit(struct adapter *adapter)
2535 {
2536 	uint32_t tctl, tarc, tipg = 0;
2537 	uint64_t bus_addr;
2538 
2539 	/* Setup the Base and Length of the Tx Descriptor Ring */
2540 	bus_addr = adapter->txdma.dma_paddr;
2541 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2542 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2543 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2544 	    (uint32_t)(bus_addr >> 32));
2545 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2546 	    (uint32_t)bus_addr);
2547 	/* Setup the HW Tx Head and Tail descriptor pointers */
2548 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2549 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2550 
2551 	/* Set the default values for the Tx Inter Packet Gap timer */
2552 	switch (adapter->hw.mac.type) {
2553 	case e1000_82542:
2554 		tipg = DEFAULT_82542_TIPG_IPGT;
2555 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2556 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2557 		break;
2558 
2559 	case e1000_80003es2lan:
2560 		tipg = DEFAULT_82543_TIPG_IPGR1;
2561 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2562 		    E1000_TIPG_IPGR2_SHIFT;
2563 		break;
2564 
2565 	default:
2566 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2567 		    adapter->hw.phy.media_type ==
2568 		    e1000_media_type_internal_serdes)
2569 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2570 		else
2571 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2572 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2573 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2574 		break;
2575 	}
2576 
2577 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2578 
2579 	/* NOTE: 0 is not allowed for TIDV */
2580 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2581 	if(adapter->hw.mac.type >= e1000_82540)
2582 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2583 
2584 	if (adapter->hw.mac.type == e1000_82571 ||
2585 	    adapter->hw.mac.type == e1000_82572) {
2586 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2587 		tarc |= SPEED_MODE_BIT;
2588 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2589 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
2590 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2591 		tarc |= 1;
2592 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2593 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2594 		tarc |= 1;
2595 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2596 	}
2597 
2598 	/* Program the Transmit Control Register */
2599 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2600 	tctl &= ~E1000_TCTL_CT;
2601 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2602 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2603 
2604 	if (adapter->hw.mac.type >= e1000_82571)
2605 		tctl |= E1000_TCTL_MULR;
2606 
2607 	/* This write will effectively turn on the transmit unit. */
2608 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2609 }
2610 
2611 static void
2612 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2613 {
2614 	struct em_buffer *tx_buffer;
2615 	int i;
2616 
2617 	if (adapter->tx_buffer_area == NULL)
2618 		return;
2619 
2620 	for (i = 0; i < ndesc; i++) {
2621 		tx_buffer = &adapter->tx_buffer_area[i];
2622 
2623 		KKASSERT(tx_buffer->m_head == NULL);
2624 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2625 	}
2626 	bus_dma_tag_destroy(adapter->txtag);
2627 
2628 	kfree(adapter->tx_buffer_area, M_DEVBUF);
2629 	adapter->tx_buffer_area = NULL;
2630 }
2631 
2632 /*
2633  * The offload context needs to be set when we transfer the first
2634  * packet of a particular protocol (TCP/UDP).  This routine has been
2635  * enhanced to deal with inserted VLAN headers.
2636  *
2637  * If the new packet's ether header length, ip header length and
2638  * csum offloading type are same as the previous packet, we should
2639  * avoid allocating a new csum context descriptor; mainly to take
2640  * advantage of the pipeline effect of the TX data read request.
2641  *
2642  * This function returns number of TX descrptors allocated for
2643  * csum context.
2644  */
2645 static int
2646 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2647 	  uint32_t *txd_upper, uint32_t *txd_lower)
2648 {
2649 	struct e1000_context_desc *TXD;
2650 	struct em_buffer *tx_buffer;
2651 	struct ether_vlan_header *eh;
2652 	struct ip *ip;
2653 	int curr_txd, ehdrlen, csum_flags;
2654 	uint32_t cmd, hdr_len, ip_hlen;
2655 	uint16_t etype;
2656 
2657 	/*
2658 	 * Determine where frame payload starts.
2659 	 * Jump over vlan headers if already present,
2660 	 * helpful for QinQ too.
2661 	 */
2662 	KASSERT(mp->m_len >= ETHER_HDR_LEN,
2663 		("em_txcsum_pullup is not called (eh)?"));
2664 	eh = mtod(mp, struct ether_vlan_header *);
2665 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2666 		KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2667 			("em_txcsum_pullup is not called (evh)?"));
2668 		etype = ntohs(eh->evl_proto);
2669 		ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2670 	} else {
2671 		etype = ntohs(eh->evl_encap_proto);
2672 		ehdrlen = ETHER_HDR_LEN;
2673 	}
2674 
2675 	/*
2676 	 * We only support TCP/UDP for IPv4 for the moment.
2677 	 * TODO: Support SCTP too when it hits the tree.
2678 	 */
2679 	if (etype != ETHERTYPE_IP)
2680 		return 0;
2681 
2682 	KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2683 		("em_txcsum_pullup is not called (eh+ip_vhl)?"));
2684 
2685 	/* NOTE: We could only safely access ip.ip_vhl part */
2686 	ip = (struct ip *)(mp->m_data + ehdrlen);
2687 	ip_hlen = ip->ip_hl << 2;
2688 
2689 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2690 
2691 	if (adapter->csum_ehlen == ehdrlen &&
2692 	    adapter->csum_iphlen == ip_hlen &&
2693 	    adapter->csum_flags == csum_flags) {
2694 		/*
2695 		 * Same csum offload context as the previous packets;
2696 		 * just return.
2697 		 */
2698 		*txd_upper = adapter->csum_txd_upper;
2699 		*txd_lower = adapter->csum_txd_lower;
2700 		return 0;
2701 	}
2702 
2703 	/*
2704 	 * Setup a new csum offload context.
2705 	 */
2706 
2707 	curr_txd = adapter->next_avail_tx_desc;
2708 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2709 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2710 
2711 	cmd = 0;
2712 
2713 	/* Setup of IP header checksum. */
2714 	if (csum_flags & CSUM_IP) {
2715 		/*
2716 		 * Start offset for header checksum calculation.
2717 		 * End offset for header checksum calculation.
2718 		 * Offset of place to put the checksum.
2719 		 */
2720 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2721 		TXD->lower_setup.ip_fields.ipcse =
2722 		    htole16(ehdrlen + ip_hlen - 1);
2723 		TXD->lower_setup.ip_fields.ipcso =
2724 		    ehdrlen + offsetof(struct ip, ip_sum);
2725 		cmd |= E1000_TXD_CMD_IP;
2726 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2727 	}
2728 	hdr_len = ehdrlen + ip_hlen;
2729 
2730 	if (csum_flags & CSUM_TCP) {
2731 		/*
2732 		 * Start offset for payload checksum calculation.
2733 		 * End offset for payload checksum calculation.
2734 		 * Offset of place to put the checksum.
2735 		 */
2736 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2737 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2738 		TXD->upper_setup.tcp_fields.tucso =
2739 		    hdr_len + offsetof(struct tcphdr, th_sum);
2740 		cmd |= E1000_TXD_CMD_TCP;
2741 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2742 	} else if (csum_flags & CSUM_UDP) {
2743 		/*
2744 		 * Start offset for header checksum calculation.
2745 		 * End offset for header checksum calculation.
2746 		 * Offset of place to put the checksum.
2747 		 */
2748 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
2749 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
2750 		TXD->upper_setup.tcp_fields.tucso =
2751 		    hdr_len + offsetof(struct udphdr, uh_sum);
2752 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2753 	}
2754 
2755 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
2756 		     E1000_TXD_DTYP_D;		/* Data descr */
2757 
2758 	/* Save the information for this csum offloading context */
2759 	adapter->csum_ehlen = ehdrlen;
2760 	adapter->csum_iphlen = ip_hlen;
2761 	adapter->csum_flags = csum_flags;
2762 	adapter->csum_txd_upper = *txd_upper;
2763 	adapter->csum_txd_lower = *txd_lower;
2764 
2765 	TXD->tcp_seg_setup.data = htole32(0);
2766 	TXD->cmd_and_length =
2767 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2768 
2769 	if (++curr_txd == adapter->num_tx_desc)
2770 		curr_txd = 0;
2771 
2772 	KKASSERT(adapter->num_tx_desc_avail > 0);
2773 	adapter->num_tx_desc_avail--;
2774 
2775 	adapter->next_avail_tx_desc = curr_txd;
2776 	return 1;
2777 }
2778 
2779 static int
2780 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2781 {
2782 	struct mbuf *m = *m0;
2783 	struct ether_header *eh;
2784 	int len;
2785 
2786 	adapter->tx_csum_try_pullup++;
2787 
2788 	len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2789 
2790 	if (__predict_false(!M_WRITABLE(m))) {
2791 		if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2792 			adapter->tx_csum_drop1++;
2793 			m_freem(m);
2794 			*m0 = NULL;
2795 			return ENOBUFS;
2796 		}
2797 		eh = mtod(m, struct ether_header *);
2798 
2799 		if (eh->ether_type == htons(ETHERTYPE_VLAN))
2800 			len += EVL_ENCAPLEN;
2801 
2802 		if (m->m_len < len) {
2803 			adapter->tx_csum_drop2++;
2804 			m_freem(m);
2805 			*m0 = NULL;
2806 			return ENOBUFS;
2807 		}
2808 		return 0;
2809 	}
2810 
2811 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2812 		adapter->tx_csum_pullup1++;
2813 		m = m_pullup(m, ETHER_HDR_LEN);
2814 		if (m == NULL) {
2815 			adapter->tx_csum_pullup1_failed++;
2816 			*m0 = NULL;
2817 			return ENOBUFS;
2818 		}
2819 		*m0 = m;
2820 	}
2821 	eh = mtod(m, struct ether_header *);
2822 
2823 	if (eh->ether_type == htons(ETHERTYPE_VLAN))
2824 		len += EVL_ENCAPLEN;
2825 
2826 	if (m->m_len < len) {
2827 		adapter->tx_csum_pullup2++;
2828 		m = m_pullup(m, len);
2829 		if (m == NULL) {
2830 			adapter->tx_csum_pullup2_failed++;
2831 			*m0 = NULL;
2832 			return ENOBUFS;
2833 		}
2834 		*m0 = m;
2835 	}
2836 	return 0;
2837 }
2838 
2839 static void
2840 em_txeof(struct adapter *adapter)
2841 {
2842 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2843 	struct em_buffer *tx_buffer;
2844 	int first, num_avail;
2845 
2846 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
2847 		return;
2848 
2849 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2850 		return;
2851 
2852 	num_avail = adapter->num_tx_desc_avail;
2853 	first = adapter->next_tx_to_clean;
2854 
2855 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2856 		struct e1000_tx_desc *tx_desc;
2857 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2858 
2859 		tx_desc = &adapter->tx_desc_base[dd_idx];
2860 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2861 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2862 
2863 			if (++dd_idx == adapter->num_tx_desc)
2864 				dd_idx = 0;
2865 
2866 			while (first != dd_idx) {
2867 				logif(pkt_txclean);
2868 
2869 				num_avail++;
2870 
2871 				tx_buffer = &adapter->tx_buffer_area[first];
2872 				if (tx_buffer->m_head) {
2873 					ifp->if_opackets++;
2874 					bus_dmamap_unload(adapter->txtag,
2875 							  tx_buffer->map);
2876 					m_freem(tx_buffer->m_head);
2877 					tx_buffer->m_head = NULL;
2878 				}
2879 
2880 				if (++first == adapter->num_tx_desc)
2881 					first = 0;
2882 			}
2883 		} else {
2884 			break;
2885 		}
2886 	}
2887 	adapter->next_tx_to_clean = first;
2888 	adapter->num_tx_desc_avail = num_avail;
2889 
2890 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2891 		adapter->tx_dd_head = 0;
2892 		adapter->tx_dd_tail = 0;
2893 	}
2894 
2895 	if (!EM_IS_OACTIVE(adapter)) {
2896 		ifp->if_flags &= ~IFF_OACTIVE;
2897 
2898 		/* All clean, turn off the timer */
2899 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2900 			ifp->if_timer = 0;
2901 	}
2902 }
2903 
2904 static void
2905 em_tx_collect(struct adapter *adapter)
2906 {
2907 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2908 	struct em_buffer *tx_buffer;
2909 	int tdh, first, num_avail, dd_idx = -1;
2910 
2911 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2912 		return;
2913 
2914 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2915 	if (tdh == adapter->next_tx_to_clean)
2916 		return;
2917 
2918 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
2919 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2920 
2921 	num_avail = adapter->num_tx_desc_avail;
2922 	first = adapter->next_tx_to_clean;
2923 
2924 	while (first != tdh) {
2925 		logif(pkt_txclean);
2926 
2927 		num_avail++;
2928 
2929 		tx_buffer = &adapter->tx_buffer_area[first];
2930 		if (tx_buffer->m_head) {
2931 			ifp->if_opackets++;
2932 			bus_dmamap_unload(adapter->txtag,
2933 					  tx_buffer->map);
2934 			m_freem(tx_buffer->m_head);
2935 			tx_buffer->m_head = NULL;
2936 		}
2937 
2938 		if (first == dd_idx) {
2939 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
2940 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2941 				adapter->tx_dd_head = 0;
2942 				adapter->tx_dd_tail = 0;
2943 				dd_idx = -1;
2944 			} else {
2945 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2946 			}
2947 		}
2948 
2949 		if (++first == adapter->num_tx_desc)
2950 			first = 0;
2951 	}
2952 	adapter->next_tx_to_clean = first;
2953 	adapter->num_tx_desc_avail = num_avail;
2954 
2955 	if (!EM_IS_OACTIVE(adapter)) {
2956 		ifp->if_flags &= ~IFF_OACTIVE;
2957 
2958 		/* All clean, turn off the timer */
2959 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2960 			ifp->if_timer = 0;
2961 	}
2962 }
2963 
2964 /*
2965  * When Link is lost sometimes there is work still in the TX ring
2966  * which will result in a watchdog, rather than allow that do an
2967  * attempted cleanup and then reinit here.  Note that this has been
2968  * seens mostly with fiber adapters.
2969  */
2970 static void
2971 em_tx_purge(struct adapter *adapter)
2972 {
2973 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2974 
2975 	if (!adapter->link_active && ifp->if_timer) {
2976 		em_tx_collect(adapter);
2977 		if (ifp->if_timer) {
2978 			if_printf(ifp, "Link lost, TX pending, reinit\n");
2979 			ifp->if_timer = 0;
2980 			em_init(adapter);
2981 		}
2982 	}
2983 }
2984 
2985 static int
2986 em_newbuf(struct adapter *adapter, int i, int init)
2987 {
2988 	struct mbuf *m;
2989 	bus_dma_segment_t seg;
2990 	bus_dmamap_t map;
2991 	struct em_buffer *rx_buffer;
2992 	int error, nseg;
2993 
2994 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2995 	if (m == NULL) {
2996 		adapter->mbuf_cluster_failed++;
2997 		if (init) {
2998 			if_printf(&adapter->arpcom.ac_if,
2999 				  "Unable to allocate RX mbuf\n");
3000 		}
3001 		return (ENOBUFS);
3002 	}
3003 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3004 
3005 	if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3006 		m_adj(m, ETHER_ALIGN);
3007 
3008 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3009 			adapter->rx_sparemap, m,
3010 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3011 	if (error) {
3012 		m_freem(m);
3013 		if (init) {
3014 			if_printf(&adapter->arpcom.ac_if,
3015 				  "Unable to load RX mbuf\n");
3016 		}
3017 		return (error);
3018 	}
3019 
3020 	rx_buffer = &adapter->rx_buffer_area[i];
3021 	if (rx_buffer->m_head != NULL)
3022 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3023 
3024 	map = rx_buffer->map;
3025 	rx_buffer->map = adapter->rx_sparemap;
3026 	adapter->rx_sparemap = map;
3027 
3028 	rx_buffer->m_head = m;
3029 
3030 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3031 	return (0);
3032 }
3033 
3034 static int
3035 em_create_rx_ring(struct adapter *adapter)
3036 {
3037 	device_t dev = adapter->dev;
3038 	struct em_buffer *rx_buffer;
3039 	int i, error;
3040 
3041 	adapter->rx_buffer_area =
3042 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3043 			M_DEVBUF, M_WAITOK | M_ZERO);
3044 
3045 	/*
3046 	 * Create DMA tag for rx buffers
3047 	 */
3048 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3049 			1, 0,			/* alignment, bounds */
3050 			BUS_SPACE_MAXADDR,	/* lowaddr */
3051 			BUS_SPACE_MAXADDR,	/* highaddr */
3052 			NULL, NULL,		/* filter, filterarg */
3053 			MCLBYTES,		/* maxsize */
3054 			1,			/* nsegments */
3055 			MCLBYTES,		/* maxsegsize */
3056 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3057 			&adapter->rxtag);
3058 	if (error) {
3059 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3060 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3061 		adapter->rx_buffer_area = NULL;
3062 		return error;
3063 	}
3064 
3065 	/*
3066 	 * Create spare DMA map for rx buffers
3067 	 */
3068 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3069 				  &adapter->rx_sparemap);
3070 	if (error) {
3071 		device_printf(dev, "Unable to create spare RX DMA map\n");
3072 		bus_dma_tag_destroy(adapter->rxtag);
3073 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3074 		adapter->rx_buffer_area = NULL;
3075 		return error;
3076 	}
3077 
3078 	/*
3079 	 * Create DMA maps for rx buffers
3080 	 */
3081 	for (i = 0; i < adapter->num_rx_desc; i++) {
3082 		rx_buffer = &adapter->rx_buffer_area[i];
3083 
3084 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3085 					  &rx_buffer->map);
3086 		if (error) {
3087 			device_printf(dev, "Unable to create RX DMA map\n");
3088 			em_destroy_rx_ring(adapter, i);
3089 			return error;
3090 		}
3091 	}
3092 	return (0);
3093 }
3094 
3095 static int
3096 em_init_rx_ring(struct adapter *adapter)
3097 {
3098 	int i, error;
3099 
3100 	/* Reset descriptor ring */
3101 	bzero(adapter->rx_desc_base,
3102 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3103 
3104 	/* Allocate new ones. */
3105 	for (i = 0; i < adapter->num_rx_desc; i++) {
3106 		error = em_newbuf(adapter, i, 1);
3107 		if (error)
3108 			return (error);
3109 	}
3110 
3111 	/* Setup our descriptor pointers */
3112 	adapter->next_rx_desc_to_check = 0;
3113 
3114 	return (0);
3115 }
3116 
3117 static void
3118 em_init_rx_unit(struct adapter *adapter)
3119 {
3120 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3121 	uint64_t bus_addr;
3122 	uint32_t rctl;
3123 
3124 	/*
3125 	 * Make sure receives are disabled while setting
3126 	 * up the descriptor ring
3127 	 */
3128 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3129 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3130 
3131 	if (adapter->hw.mac.type >= e1000_82540) {
3132 		uint32_t itr;
3133 
3134 		/*
3135 		 * Set the interrupt throttling rate. Value is calculated
3136 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3137 		 */
3138 		if (adapter->int_throttle_ceil)
3139 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3140 		else
3141 			itr = 0;
3142 		em_set_itr(adapter, itr);
3143 	}
3144 
3145 	/* Disable accelerated ackknowledge */
3146 	if (adapter->hw.mac.type == e1000_82574) {
3147 		E1000_WRITE_REG(&adapter->hw,
3148 		    E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3149 	}
3150 
3151 	/* Receive Checksum Offload for TCP and UDP */
3152 	if (ifp->if_capenable & IFCAP_RXCSUM) {
3153 		uint32_t rxcsum;
3154 
3155 		rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3156 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3157 		E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3158 	}
3159 
3160 	/*
3161 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3162 	 * long latencies are observed, like Lenovo X60. This
3163 	 * change eliminates the problem, but since having positive
3164 	 * values in RDTR is a known source of problems on other
3165 	 * platforms another solution is being sought.
3166 	 */
3167 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3168 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3169 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3170 	}
3171 
3172 	/*
3173 	 * Setup the Base and Length of the Rx Descriptor Ring
3174 	 */
3175 	bus_addr = adapter->rxdma.dma_paddr;
3176 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3177 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3178 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3179 	    (uint32_t)(bus_addr >> 32));
3180 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3181 	    (uint32_t)bus_addr);
3182 
3183 	/*
3184 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3185 	 */
3186 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3187 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3188 
3189 	/* Set early receive threshold on appropriate hw */
3190 	if (((adapter->hw.mac.type == e1000_ich9lan) ||
3191 	    (adapter->hw.mac.type == e1000_pch2lan) ||
3192 	    (adapter->hw.mac.type == e1000_ich10lan)) &&
3193 	    (ifp->if_mtu > ETHERMTU)) {
3194 		uint32_t rxdctl;
3195 
3196 		rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3197 		E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3198 		E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3199 	}
3200 
3201 	if (adapter->hw.mac.type == e1000_pch2lan) {
3202 		if (ifp->if_mtu > ETHERMTU)
3203 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3204 		else
3205 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3206 	}
3207 
3208 	/* Setup the Receive Control Register */
3209 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3210 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3211 		E1000_RCTL_RDMTS_HALF |
3212 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3213 
3214 	/* Make sure VLAN Filters are off */
3215 	rctl &= ~E1000_RCTL_VFE;
3216 
3217 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3218 		rctl |= E1000_RCTL_SBP;
3219 	else
3220 		rctl &= ~E1000_RCTL_SBP;
3221 
3222 	switch (adapter->rx_buffer_len) {
3223 	default:
3224 	case 2048:
3225 		rctl |= E1000_RCTL_SZ_2048;
3226 		break;
3227 
3228 	case 4096:
3229 		rctl |= E1000_RCTL_SZ_4096 |
3230 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3231 		break;
3232 
3233 	case 8192:
3234 		rctl |= E1000_RCTL_SZ_8192 |
3235 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3236 		break;
3237 
3238 	case 16384:
3239 		rctl |= E1000_RCTL_SZ_16384 |
3240 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3241 		break;
3242 	}
3243 
3244 	if (ifp->if_mtu > ETHERMTU)
3245 		rctl |= E1000_RCTL_LPE;
3246 	else
3247 		rctl &= ~E1000_RCTL_LPE;
3248 
3249 	/* Enable Receives */
3250 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3251 }
3252 
3253 static void
3254 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3255 {
3256 	struct em_buffer *rx_buffer;
3257 	int i;
3258 
3259 	if (adapter->rx_buffer_area == NULL)
3260 		return;
3261 
3262 	for (i = 0; i < ndesc; i++) {
3263 		rx_buffer = &adapter->rx_buffer_area[i];
3264 
3265 		KKASSERT(rx_buffer->m_head == NULL);
3266 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3267 	}
3268 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3269 	bus_dma_tag_destroy(adapter->rxtag);
3270 
3271 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3272 	adapter->rx_buffer_area = NULL;
3273 }
3274 
3275 static void
3276 em_rxeof(struct adapter *adapter, int count)
3277 {
3278 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3279 	uint8_t status, accept_frame = 0, eop = 0;
3280 	uint16_t len, desc_len, prev_len_adj;
3281 	struct e1000_rx_desc *current_desc;
3282 	struct mbuf *mp;
3283 	int i;
3284 
3285 	i = adapter->next_rx_desc_to_check;
3286 	current_desc = &adapter->rx_desc_base[i];
3287 
3288 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3289 		return;
3290 
3291 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3292 		struct mbuf *m = NULL;
3293 
3294 		logif(pkt_receive);
3295 
3296 		mp = adapter->rx_buffer_area[i].m_head;
3297 
3298 		/*
3299 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3300 		 * needs to access the last received byte in the mbuf.
3301 		 */
3302 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3303 				BUS_DMASYNC_POSTREAD);
3304 
3305 		accept_frame = 1;
3306 		prev_len_adj = 0;
3307 		desc_len = le16toh(current_desc->length);
3308 		status = current_desc->status;
3309 		if (status & E1000_RXD_STAT_EOP) {
3310 			count--;
3311 			eop = 1;
3312 			if (desc_len < ETHER_CRC_LEN) {
3313 				len = 0;
3314 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3315 			} else {
3316 				len = desc_len - ETHER_CRC_LEN;
3317 			}
3318 		} else {
3319 			eop = 0;
3320 			len = desc_len;
3321 		}
3322 
3323 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3324 			uint8_t	last_byte;
3325 			uint32_t pkt_len = desc_len;
3326 
3327 			if (adapter->fmp != NULL)
3328 				pkt_len += adapter->fmp->m_pkthdr.len;
3329 
3330 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3331 			if (TBI_ACCEPT(&adapter->hw, status,
3332 			    current_desc->errors, pkt_len, last_byte,
3333 			    adapter->min_frame_size, adapter->max_frame_size)) {
3334 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3335 				    &adapter->stats, pkt_len,
3336 				    adapter->hw.mac.addr,
3337 				    adapter->max_frame_size);
3338 				if (len > 0)
3339 					len--;
3340 			} else {
3341 				accept_frame = 0;
3342 			}
3343 		}
3344 
3345 		if (accept_frame) {
3346 			if (em_newbuf(adapter, i, 0) != 0) {
3347 				ifp->if_iqdrops++;
3348 				goto discard;
3349 			}
3350 
3351 			/* Assign correct length to the current fragment */
3352 			mp->m_len = len;
3353 
3354 			if (adapter->fmp == NULL) {
3355 				mp->m_pkthdr.len = len;
3356 				adapter->fmp = mp; /* Store the first mbuf */
3357 				adapter->lmp = mp;
3358 			} else {
3359 				/*
3360 				 * Chain mbuf's together
3361 				 */
3362 
3363 				/*
3364 				 * Adjust length of previous mbuf in chain if
3365 				 * we received less than 4 bytes in the last
3366 				 * descriptor.
3367 				 */
3368 				if (prev_len_adj > 0) {
3369 					adapter->lmp->m_len -= prev_len_adj;
3370 					adapter->fmp->m_pkthdr.len -=
3371 					    prev_len_adj;
3372 				}
3373 				adapter->lmp->m_next = mp;
3374 				adapter->lmp = adapter->lmp->m_next;
3375 				adapter->fmp->m_pkthdr.len += len;
3376 			}
3377 
3378 			if (eop) {
3379 				adapter->fmp->m_pkthdr.rcvif = ifp;
3380 				ifp->if_ipackets++;
3381 
3382 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3383 					em_rxcsum(adapter, current_desc,
3384 						  adapter->fmp);
3385 				}
3386 
3387 				if (status & E1000_RXD_STAT_VP) {
3388 					adapter->fmp->m_pkthdr.ether_vlantag =
3389 					    (le16toh(current_desc->special) &
3390 					    E1000_RXD_SPC_VLAN_MASK);
3391 					adapter->fmp->m_flags |= M_VLANTAG;
3392 				}
3393 				m = adapter->fmp;
3394 				adapter->fmp = NULL;
3395 				adapter->lmp = NULL;
3396 			}
3397 		} else {
3398 			ifp->if_ierrors++;
3399 discard:
3400 #ifdef foo
3401 			/* Reuse loaded DMA map and just update mbuf chain */
3402 			mp = adapter->rx_buffer_area[i].m_head;
3403 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3404 			mp->m_data = mp->m_ext.ext_buf;
3405 			mp->m_next = NULL;
3406 			if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3407 				m_adj(mp, ETHER_ALIGN);
3408 #endif
3409 			if (adapter->fmp != NULL) {
3410 				m_freem(adapter->fmp);
3411 				adapter->fmp = NULL;
3412 				adapter->lmp = NULL;
3413 			}
3414 			m = NULL;
3415 		}
3416 
3417 		/* Zero out the receive descriptors status. */
3418 		current_desc->status = 0;
3419 
3420 		if (m != NULL)
3421 			ifp->if_input(ifp, m);
3422 
3423 		/* Advance our pointers to the next descriptor. */
3424 		if (++i == adapter->num_rx_desc)
3425 			i = 0;
3426 		current_desc = &adapter->rx_desc_base[i];
3427 	}
3428 	adapter->next_rx_desc_to_check = i;
3429 
3430 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3431 	if (--i < 0)
3432 		i = adapter->num_rx_desc - 1;
3433 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3434 }
3435 
3436 static void
3437 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3438 	  struct mbuf *mp)
3439 {
3440 	/* 82543 or newer only */
3441 	if (adapter->hw.mac.type < e1000_82543 ||
3442 	    /* Ignore Checksum bit is set */
3443 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3444 		return;
3445 
3446 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3447 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3448 		/* IP Checksum Good */
3449 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3450 	}
3451 
3452 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3453 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3454 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3455 					   CSUM_PSEUDO_HDR |
3456 					   CSUM_FRAG_NOT_CHECKED;
3457 		mp->m_pkthdr.csum_data = htons(0xffff);
3458 	}
3459 }
3460 
3461 static void
3462 em_enable_intr(struct adapter *adapter)
3463 {
3464 	uint32_t ims_mask = IMS_ENABLE_MASK;
3465 
3466 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3467 
3468 #if 0
3469 	/* XXX MSIX */
3470 	if (adapter->hw.mac.type == e1000_82574) {
3471 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3472 		ims_mask |= EM_MSIX_MASK;
3473         }
3474 #endif
3475 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3476 }
3477 
3478 static void
3479 em_disable_intr(struct adapter *adapter)
3480 {
3481 	uint32_t clear = 0xffffffff;
3482 
3483 	/*
3484 	 * The first version of 82542 had an errata where when link was forced
3485 	 * it would stay up even up even if the cable was disconnected.
3486 	 * Sequence errors were used to detect the disconnect and then the
3487 	 * driver would unforce the link.  This code in the in the ISR.  For
3488 	 * this to work correctly the Sequence error interrupt had to be
3489 	 * enabled all the time.
3490 	 */
3491 	if (adapter->hw.mac.type == e1000_82542 &&
3492 	    adapter->hw.revision_id == E1000_REVISION_2)
3493 		clear &= ~E1000_ICR_RXSEQ;
3494 	else if (adapter->hw.mac.type == e1000_82574)
3495 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3496 
3497 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3498 
3499 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3500 }
3501 
3502 /*
3503  * Bit of a misnomer, what this really means is
3504  * to enable OS management of the system... aka
3505  * to disable special hardware management features
3506  */
3507 static void
3508 em_get_mgmt(struct adapter *adapter)
3509 {
3510 	/* A shared code workaround */
3511 #define E1000_82542_MANC2H E1000_MANC2H
3512 	if (adapter->has_manage) {
3513 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3514 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3515 
3516 		/* disable hardware interception of ARP */
3517 		manc &= ~(E1000_MANC_ARP_EN);
3518 
3519                 /* enable receiving management packets to the host */
3520                 if (adapter->hw.mac.type >= e1000_82571) {
3521 			manc |= E1000_MANC_EN_MNG2HOST;
3522 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3523 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3524 			manc2h |= E1000_MNG2HOST_PORT_623;
3525 			manc2h |= E1000_MNG2HOST_PORT_664;
3526 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3527 		}
3528 
3529 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3530 	}
3531 }
3532 
3533 /*
3534  * Give control back to hardware management
3535  * controller if there is one.
3536  */
3537 static void
3538 em_rel_mgmt(struct adapter *adapter)
3539 {
3540 	if (adapter->has_manage) {
3541 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3542 
3543 		/* re-enable hardware interception of ARP */
3544 		manc |= E1000_MANC_ARP_EN;
3545 
3546 		if (adapter->hw.mac.type >= e1000_82571)
3547 			manc &= ~E1000_MANC_EN_MNG2HOST;
3548 
3549 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3550 	}
3551 }
3552 
3553 /*
3554  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3555  * For ASF and Pass Through versions of f/w this means that
3556  * the driver is loaded.  For AMT version (only with 82573)
3557  * of the f/w this means that the network i/f is open.
3558  */
3559 static void
3560 em_get_hw_control(struct adapter *adapter)
3561 {
3562 	/* Let firmware know the driver has taken over */
3563 	if (adapter->hw.mac.type == e1000_82573) {
3564 		uint32_t swsm;
3565 
3566 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3567 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3568 		    swsm | E1000_SWSM_DRV_LOAD);
3569 	} else {
3570 		uint32_t ctrl_ext;
3571 
3572 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3573 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3574 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3575 	}
3576 	adapter->control_hw = 1;
3577 }
3578 
3579 /*
3580  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3581  * For ASF and Pass Through versions of f/w this means that the
3582  * driver is no longer loaded.  For AMT version (only with 82573)
3583  * of the f/w this means that the network i/f is closed.
3584  */
3585 static void
3586 em_rel_hw_control(struct adapter *adapter)
3587 {
3588 	if (!adapter->control_hw)
3589 		return;
3590 	adapter->control_hw = 0;
3591 
3592 	/* Let firmware taken over control of h/w */
3593 	if (adapter->hw.mac.type == e1000_82573) {
3594 		uint32_t swsm;
3595 
3596 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3597 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3598 		    swsm & ~E1000_SWSM_DRV_LOAD);
3599 	} else {
3600 		uint32_t ctrl_ext;
3601 
3602 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3603 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3604 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3605 	}
3606 }
3607 
3608 static int
3609 em_is_valid_eaddr(const uint8_t *addr)
3610 {
3611 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3612 
3613 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3614 		return (FALSE);
3615 
3616 	return (TRUE);
3617 }
3618 
3619 /*
3620  * Enable PCI Wake On Lan capability
3621  */
3622 void
3623 em_enable_wol(device_t dev)
3624 {
3625 	uint16_t cap, status;
3626 	uint8_t id;
3627 
3628 	/* First find the capabilities pointer*/
3629 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3630 
3631 	/* Read the PM Capabilities */
3632 	id = pci_read_config(dev, cap, 1);
3633 	if (id != PCIY_PMG)     /* Something wrong */
3634 		return;
3635 
3636 	/*
3637 	 * OK, we have the power capabilities,
3638 	 * so now get the status register
3639 	 */
3640 	cap += PCIR_POWER_STATUS;
3641 	status = pci_read_config(dev, cap, 2);
3642 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3643 	pci_write_config(dev, cap, status, 2);
3644 }
3645 
3646 
3647 /*
3648  * 82544 Coexistence issue workaround.
3649  *    There are 2 issues.
3650  *       1. Transmit Hang issue.
3651  *    To detect this issue, following equation can be used...
3652  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3653  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
3654  *
3655  *       2. DAC issue.
3656  *    To detect this issue, following equation can be used...
3657  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3658  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
3659  *
3660  *    WORKAROUND:
3661  *	  Make sure we do not have ending address
3662  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3663  */
3664 static uint32_t
3665 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3666 {
3667 	uint32_t safe_terminator;
3668 
3669 	/*
3670 	 * Since issue is sensitive to length and address.
3671 	 * Let us first check the address...
3672 	 */
3673 	if (length <= 4) {
3674 		desc_array->descriptor[0].address = address;
3675 		desc_array->descriptor[0].length = length;
3676 		desc_array->elements = 1;
3677 		return (desc_array->elements);
3678 	}
3679 
3680 	safe_terminator =
3681 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3682 
3683 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3684 	if (safe_terminator == 0 ||
3685 	    (safe_terminator > 4 && safe_terminator < 9) ||
3686 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3687 		desc_array->descriptor[0].address = address;
3688 		desc_array->descriptor[0].length = length;
3689 		desc_array->elements = 1;
3690 		return (desc_array->elements);
3691 	}
3692 
3693 	desc_array->descriptor[0].address = address;
3694 	desc_array->descriptor[0].length = length - 4;
3695 	desc_array->descriptor[1].address = address + (length - 4);
3696 	desc_array->descriptor[1].length = 4;
3697 	desc_array->elements = 2;
3698 	return (desc_array->elements);
3699 }
3700 
3701 static void
3702 em_update_stats(struct adapter *adapter)
3703 {
3704 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3705 
3706 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3707 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3708 		adapter->stats.symerrs +=
3709 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3710 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3711 	}
3712 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3713 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3714 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3715 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3716 
3717 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3718 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3719 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3720 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3721 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3722 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3723 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3724 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3725 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3726 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3727 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3728 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3729 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3730 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3731 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3732 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3733 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3734 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3735 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3736 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3737 
3738 	/* For the 64-bit byte counters the low dword must be read first. */
3739 	/* Both registers clear on the read of the high dword */
3740 
3741 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3742 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3743 
3744 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3745 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3746 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3747 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3748 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3749 
3750 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3751 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3752 
3753 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3754 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3755 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3756 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3757 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3758 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3759 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3760 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3761 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3762 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3763 
3764 	if (adapter->hw.mac.type >= e1000_82543) {
3765 		adapter->stats.algnerrc +=
3766 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3767 		adapter->stats.rxerrc +=
3768 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3769 		adapter->stats.tncrs +=
3770 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3771 		adapter->stats.cexterr +=
3772 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3773 		adapter->stats.tsctc +=
3774 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3775 		adapter->stats.tsctfc +=
3776 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3777 	}
3778 
3779 	ifp->if_collisions = adapter->stats.colc;
3780 
3781 	/* Rx Errors */
3782 	ifp->if_ierrors =
3783 	    adapter->dropped_pkts + adapter->stats.rxerrc +
3784 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
3785 	    adapter->stats.ruc + adapter->stats.roc +
3786 	    adapter->stats.mpc + adapter->stats.cexterr;
3787 
3788 	/* Tx Errors */
3789 	ifp->if_oerrors =
3790 	    adapter->stats.ecol + adapter->stats.latecol +
3791 	    adapter->watchdog_events;
3792 }
3793 
3794 static void
3795 em_print_debug_info(struct adapter *adapter)
3796 {
3797 	device_t dev = adapter->dev;
3798 	uint8_t *hw_addr = adapter->hw.hw_addr;
3799 
3800 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3801 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3802 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
3803 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
3804 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3805 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3806 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3807 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3808 	    adapter->hw.fc.high_water,
3809 	    adapter->hw.fc.low_water);
3810 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3811 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
3812 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
3813 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3814 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
3815 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
3816 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3817 	    (long long)adapter->tx_fifo_wrk_cnt,
3818 	    (long long)adapter->tx_fifo_reset_cnt);
3819 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3820 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3821 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3822 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3823 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3824 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3825 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3826 	    adapter->num_tx_desc_avail);
3827 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3828 	    adapter->no_tx_desc_avail1);
3829 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3830 	    adapter->no_tx_desc_avail2);
3831 	device_printf(dev, "Std mbuf failed = %ld\n",
3832 	    adapter->mbuf_alloc_failed);
3833 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3834 	    adapter->mbuf_cluster_failed);
3835 	device_printf(dev, "Driver dropped packets = %ld\n",
3836 	    adapter->dropped_pkts);
3837 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3838 	    adapter->no_tx_dma_setup);
3839 
3840 	device_printf(dev, "TXCSUM try pullup = %lu\n",
3841 	    adapter->tx_csum_try_pullup);
3842 	device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3843 	    adapter->tx_csum_pullup1);
3844 	device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3845 	    adapter->tx_csum_pullup1_failed);
3846 	device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3847 	    adapter->tx_csum_pullup2);
3848 	device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3849 	    adapter->tx_csum_pullup2_failed);
3850 	device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3851 	    adapter->tx_csum_drop1);
3852 	device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3853 	    adapter->tx_csum_drop2);
3854 }
3855 
3856 static void
3857 em_print_hw_stats(struct adapter *adapter)
3858 {
3859 	device_t dev = adapter->dev;
3860 
3861 	device_printf(dev, "Excessive collisions = %lld\n",
3862 	    (long long)adapter->stats.ecol);
3863 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3864 	device_printf(dev, "Symbol errors = %lld\n",
3865 	    (long long)adapter->stats.symerrs);
3866 #endif
3867 	device_printf(dev, "Sequence errors = %lld\n",
3868 	    (long long)adapter->stats.sec);
3869 	device_printf(dev, "Defer count = %lld\n",
3870 	    (long long)adapter->stats.dc);
3871 	device_printf(dev, "Missed Packets = %lld\n",
3872 	    (long long)adapter->stats.mpc);
3873 	device_printf(dev, "Receive No Buffers = %lld\n",
3874 	    (long long)adapter->stats.rnbc);
3875 	/* RLEC is inaccurate on some hardware, calculate our own. */
3876 	device_printf(dev, "Receive Length Errors = %lld\n",
3877 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3878 	device_printf(dev, "Receive errors = %lld\n",
3879 	    (long long)adapter->stats.rxerrc);
3880 	device_printf(dev, "Crc errors = %lld\n",
3881 	    (long long)adapter->stats.crcerrs);
3882 	device_printf(dev, "Alignment errors = %lld\n",
3883 	    (long long)adapter->stats.algnerrc);
3884 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3885 	    (long long)adapter->stats.cexterr);
3886 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3887 	device_printf(dev, "watchdog timeouts = %ld\n",
3888 	    adapter->watchdog_events);
3889 	device_printf(dev, "XON Rcvd = %lld\n",
3890 	    (long long)adapter->stats.xonrxc);
3891 	device_printf(dev, "XON Xmtd = %lld\n",
3892 	    (long long)adapter->stats.xontxc);
3893 	device_printf(dev, "XOFF Rcvd = %lld\n",
3894 	    (long long)adapter->stats.xoffrxc);
3895 	device_printf(dev, "XOFF Xmtd = %lld\n",
3896 	    (long long)adapter->stats.xofftxc);
3897 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3898 	    (long long)adapter->stats.gprc);
3899 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3900 	    (long long)adapter->stats.gptc);
3901 }
3902 
3903 static void
3904 em_print_nvm_info(struct adapter *adapter)
3905 {
3906 	uint16_t eeprom_data;
3907 	int i, j, row = 0;
3908 
3909 	/* Its a bit crude, but it gets the job done */
3910 	kprintf("\nInterface EEPROM Dump:\n");
3911 	kprintf("Offset\n0x0000  ");
3912 	for (i = 0, j = 0; i < 32; i++, j++) {
3913 		if (j == 8) { /* Make the offset block */
3914 			j = 0; ++row;
3915 			kprintf("\n0x00%x0  ",row);
3916 		}
3917 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3918 		kprintf("%04x ", eeprom_data);
3919 	}
3920 	kprintf("\n");
3921 }
3922 
3923 static int
3924 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3925 {
3926 	struct adapter *adapter;
3927 	struct ifnet *ifp;
3928 	int error, result;
3929 
3930 	result = -1;
3931 	error = sysctl_handle_int(oidp, &result, 0, req);
3932 	if (error || !req->newptr)
3933 		return (error);
3934 
3935 	adapter = (struct adapter *)arg1;
3936 	ifp = &adapter->arpcom.ac_if;
3937 
3938 	lwkt_serialize_enter(ifp->if_serializer);
3939 
3940 	if (result == 1)
3941 		em_print_debug_info(adapter);
3942 
3943 	/*
3944 	 * This value will cause a hex dump of the
3945 	 * first 32 16-bit words of the EEPROM to
3946 	 * the screen.
3947 	 */
3948 	if (result == 2)
3949 		em_print_nvm_info(adapter);
3950 
3951 	lwkt_serialize_exit(ifp->if_serializer);
3952 
3953 	return (error);
3954 }
3955 
3956 static int
3957 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3958 {
3959 	int error, result;
3960 
3961 	result = -1;
3962 	error = sysctl_handle_int(oidp, &result, 0, req);
3963 	if (error || !req->newptr)
3964 		return (error);
3965 
3966 	if (result == 1) {
3967 		struct adapter *adapter = (struct adapter *)arg1;
3968 		struct ifnet *ifp = &adapter->arpcom.ac_if;
3969 
3970 		lwkt_serialize_enter(ifp->if_serializer);
3971 		em_print_hw_stats(adapter);
3972 		lwkt_serialize_exit(ifp->if_serializer);
3973 	}
3974 	return (error);
3975 }
3976 
3977 static void
3978 em_add_sysctl(struct adapter *adapter)
3979 {
3980 	sysctl_ctx_init(&adapter->sysctl_ctx);
3981 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
3982 					SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3983 					device_get_nameunit(adapter->dev),
3984 					CTLFLAG_RD, 0, "");
3985 	if (adapter->sysctl_tree == NULL) {
3986 		device_printf(adapter->dev, "can't add sysctl node\n");
3987 	} else {
3988 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3989 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3990 		    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3991 		    em_sysctl_debug_info, "I", "Debug Information");
3992 
3993 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3994 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
3995 		    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
3996 		    em_sysctl_stats, "I", "Statistics");
3997 
3998 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
3999 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4000 		    OID_AUTO, "rxd", CTLFLAG_RD,
4001 		    &adapter->num_rx_desc, 0, NULL);
4002 		SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4003 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4004 		    OID_AUTO, "txd", CTLFLAG_RD,
4005 		    &adapter->num_tx_desc, 0, NULL);
4006 
4007 		if (adapter->hw.mac.type >= e1000_82540) {
4008 			SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4009 			    SYSCTL_CHILDREN(adapter->sysctl_tree),
4010 			    OID_AUTO, "int_throttle_ceil",
4011 			    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4012 			    em_sysctl_int_throttle, "I",
4013 			    "interrupt throttling rate");
4014 		}
4015 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4016 		    SYSCTL_CHILDREN(adapter->sysctl_tree),
4017 		    OID_AUTO, "int_tx_nsegs",
4018 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4019 		    em_sysctl_int_tx_nsegs, "I",
4020 		    "# segments per TX interrupt");
4021 	}
4022 }
4023 
4024 static int
4025 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4026 {
4027 	struct adapter *adapter = (void *)arg1;
4028 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4029 	int error, throttle;
4030 
4031 	throttle = adapter->int_throttle_ceil;
4032 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4033 	if (error || req->newptr == NULL)
4034 		return error;
4035 	if (throttle < 0 || throttle > 1000000000 / 256)
4036 		return EINVAL;
4037 
4038 	if (throttle) {
4039 		/*
4040 		 * Set the interrupt throttling rate in 256ns increments,
4041 		 * recalculate sysctl value assignment to get exact frequency.
4042 		 */
4043 		throttle = 1000000000 / 256 / throttle;
4044 
4045 		/* Upper 16bits of ITR is reserved and should be zero */
4046 		if (throttle & 0xffff0000)
4047 			return EINVAL;
4048 	}
4049 
4050 	lwkt_serialize_enter(ifp->if_serializer);
4051 
4052 	if (throttle)
4053 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4054 	else
4055 		adapter->int_throttle_ceil = 0;
4056 
4057 	if (ifp->if_flags & IFF_RUNNING)
4058 		em_set_itr(adapter, throttle);
4059 
4060 	lwkt_serialize_exit(ifp->if_serializer);
4061 
4062 	if (bootverbose) {
4063 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4064 			  adapter->int_throttle_ceil);
4065 	}
4066 	return 0;
4067 }
4068 
4069 static int
4070 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4071 {
4072 	struct adapter *adapter = (void *)arg1;
4073 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4074 	int error, segs;
4075 
4076 	segs = adapter->tx_int_nsegs;
4077 	error = sysctl_handle_int(oidp, &segs, 0, req);
4078 	if (error || req->newptr == NULL)
4079 		return error;
4080 	if (segs <= 0)
4081 		return EINVAL;
4082 
4083 	lwkt_serialize_enter(ifp->if_serializer);
4084 
4085 	/*
4086 	 * Don't allow int_tx_nsegs to become:
4087 	 * o  Less the oact_tx_desc
4088 	 * o  Too large that no TX desc will cause TX interrupt to
4089 	 *    be generated (OACTIVE will never recover)
4090 	 * o  Too small that will cause tx_dd[] overflow
4091 	 */
4092 	if (segs < adapter->oact_tx_desc ||
4093 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4094 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4095 		error = EINVAL;
4096 	} else {
4097 		error = 0;
4098 		adapter->tx_int_nsegs = segs;
4099 	}
4100 
4101 	lwkt_serialize_exit(ifp->if_serializer);
4102 
4103 	return error;
4104 }
4105 
4106 static void
4107 em_set_itr(struct adapter *adapter, uint32_t itr)
4108 {
4109 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4110 	if (adapter->hw.mac.type == e1000_82574) {
4111 		int i;
4112 
4113 		/*
4114 		 * When using MSIX interrupts we need to
4115 		 * throttle using the EITR register
4116 		 */
4117 		for (i = 0; i < 4; ++i) {
4118 			E1000_WRITE_REG(&adapter->hw,
4119 			    E1000_EITR_82574(i), itr);
4120 		}
4121 	}
4122 }
4123 
4124 /*
4125  * Disable the L0s, Errata #20
4126  */
4127 static void
4128 em_disable_aspm(struct adapter *adapter)
4129 {
4130 	uint16_t link_cap, link_ctrl;
4131 	uint8_t pcie_ptr, reg;
4132 	device_t dev = adapter->dev;
4133 
4134 	switch (adapter->hw.mac.type) {
4135 	case e1000_82573:
4136 	case e1000_82574:
4137 	case e1000_82583:
4138 		break;
4139 
4140 	default:
4141 		return;
4142 	}
4143 
4144 	pcie_ptr = pci_get_pciecap_ptr(dev);
4145 	if (pcie_ptr == 0)
4146 		return;
4147 
4148 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4149 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4150 		return;
4151 
4152 	if (bootverbose)
4153 		if_printf(&adapter->arpcom.ac_if, "disable L0s\n");
4154 
4155 	reg = pcie_ptr + PCIER_LINKCTRL;
4156 	link_ctrl = pci_read_config(dev, reg, 2);
4157 	link_ctrl &= ~PCIEM_LNKCTL_ASPM_L0S;
4158 	pci_write_config(dev, reg, link_ctrl, 2);
4159 }
4160