xref: /dragonfly/sys/dev/netif/em/if_em.c (revision afb4a8be)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2015, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
116 
117 #define DEBUG_HW 0
118 
119 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
120 #define EM_VER	" 7.6.2"
121 
122 #define _EM_DEVICE(id, ret)	\
123 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
125 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
127 
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 	EM_DEVICE(82540EM),
130 	EM_DEVICE(82540EM_LOM),
131 	EM_DEVICE(82540EP),
132 	EM_DEVICE(82540EP_LOM),
133 	EM_DEVICE(82540EP_LP),
134 
135 	EM_DEVICE(82541EI),
136 	EM_DEVICE(82541ER),
137 	EM_DEVICE(82541ER_LOM),
138 	EM_DEVICE(82541EI_MOBILE),
139 	EM_DEVICE(82541GI),
140 	EM_DEVICE(82541GI_LF),
141 	EM_DEVICE(82541GI_MOBILE),
142 
143 	EM_DEVICE(82542),
144 
145 	EM_DEVICE(82543GC_FIBER),
146 	EM_DEVICE(82543GC_COPPER),
147 
148 	EM_DEVICE(82544EI_COPPER),
149 	EM_DEVICE(82544EI_FIBER),
150 	EM_DEVICE(82544GC_COPPER),
151 	EM_DEVICE(82544GC_LOM),
152 
153 	EM_DEVICE(82545EM_COPPER),
154 	EM_DEVICE(82545EM_FIBER),
155 	EM_DEVICE(82545GM_COPPER),
156 	EM_DEVICE(82545GM_FIBER),
157 	EM_DEVICE(82545GM_SERDES),
158 
159 	EM_DEVICE(82546EB_COPPER),
160 	EM_DEVICE(82546EB_FIBER),
161 	EM_DEVICE(82546EB_QUAD_COPPER),
162 	EM_DEVICE(82546GB_COPPER),
163 	EM_DEVICE(82546GB_FIBER),
164 	EM_DEVICE(82546GB_SERDES),
165 	EM_DEVICE(82546GB_PCIE),
166 	EM_DEVICE(82546GB_QUAD_COPPER),
167 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 
169 	EM_DEVICE(82547EI),
170 	EM_DEVICE(82547EI_MOBILE),
171 	EM_DEVICE(82547GI),
172 
173 	EM_EMX_DEVICE(82571EB_COPPER),
174 	EM_EMX_DEVICE(82571EB_FIBER),
175 	EM_EMX_DEVICE(82571EB_SERDES),
176 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 
184 	EM_EMX_DEVICE(82572EI_COPPER),
185 	EM_EMX_DEVICE(82572EI_FIBER),
186 	EM_EMX_DEVICE(82572EI_SERDES),
187 	EM_EMX_DEVICE(82572EI),
188 
189 	EM_EMX_DEVICE(82573E),
190 	EM_EMX_DEVICE(82573E_IAMT),
191 	EM_EMX_DEVICE(82573L),
192 
193 	EM_DEVICE(82583V),
194 
195 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 
200 	EM_DEVICE(ICH8_IGP_M_AMT),
201 	EM_DEVICE(ICH8_IGP_AMT),
202 	EM_DEVICE(ICH8_IGP_C),
203 	EM_DEVICE(ICH8_IFE),
204 	EM_DEVICE(ICH8_IFE_GT),
205 	EM_DEVICE(ICH8_IFE_G),
206 	EM_DEVICE(ICH8_IGP_M),
207 	EM_DEVICE(ICH8_82567V_3),
208 
209 	EM_DEVICE(ICH9_IGP_M_AMT),
210 	EM_DEVICE(ICH9_IGP_AMT),
211 	EM_DEVICE(ICH9_IGP_C),
212 	EM_DEVICE(ICH9_IGP_M),
213 	EM_DEVICE(ICH9_IGP_M_V),
214 	EM_DEVICE(ICH9_IFE),
215 	EM_DEVICE(ICH9_IFE_GT),
216 	EM_DEVICE(ICH9_IFE_G),
217 	EM_DEVICE(ICH9_BM),
218 
219 	EM_EMX_DEVICE(82574L),
220 	EM_EMX_DEVICE(82574LA),
221 
222 	EM_DEVICE(ICH10_R_BM_LM),
223 	EM_DEVICE(ICH10_R_BM_LF),
224 	EM_DEVICE(ICH10_R_BM_V),
225 	EM_DEVICE(ICH10_D_BM_LM),
226 	EM_DEVICE(ICH10_D_BM_LF),
227 	EM_DEVICE(ICH10_D_BM_V),
228 
229 	EM_DEVICE(PCH_M_HV_LM),
230 	EM_DEVICE(PCH_M_HV_LC),
231 	EM_DEVICE(PCH_D_HV_DM),
232 	EM_DEVICE(PCH_D_HV_DC),
233 
234 	EM_DEVICE(PCH2_LV_LM),
235 	EM_DEVICE(PCH2_LV_V),
236 
237 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 	EM_EMX_DEVICE(PCH_LPT_I217_V),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 	EM_EMX_DEVICE(PCH_I218_LM2),
242 	EM_EMX_DEVICE(PCH_I218_V2),
243 	EM_EMX_DEVICE(PCH_I218_LM3),
244 	EM_EMX_DEVICE(PCH_I218_V3),
245 	EM_EMX_DEVICE(PCH_SPT_I219_LM),
246 	EM_EMX_DEVICE(PCH_SPT_I219_V),
247 	EM_EMX_DEVICE(PCH_SPT_I219_LM2),
248 	EM_EMX_DEVICE(PCH_SPT_I219_V2),
249 	EM_EMX_DEVICE(PCH_LBG_I219_LM3),
250 	EM_EMX_DEVICE(PCH_SPT_I219_LM4),
251 	EM_EMX_DEVICE(PCH_SPT_I219_V4),
252 	EM_EMX_DEVICE(PCH_SPT_I219_LM5),
253 	EM_EMX_DEVICE(PCH_SPT_I219_V5),
254 	EM_EMX_DEVICE(PCH_CNP_I219_LM6),
255 	EM_EMX_DEVICE(PCH_CNP_I219_V6),
256 	EM_EMX_DEVICE(PCH_CNP_I219_LM7),
257 	EM_EMX_DEVICE(PCH_CNP_I219_V7),
258 	EM_EMX_DEVICE(PCH_CNP_I219_LM8),
259 	EM_EMX_DEVICE(PCH_CNP_I219_V8),
260 	EM_EMX_DEVICE(PCH_CNP_I219_LM9),
261 	EM_EMX_DEVICE(PCH_CNP_I219_V9),
262 	EM_EMX_DEVICE(PCH_CNP_I219_LM10),
263 	EM_EMX_DEVICE(PCH_CNP_I219_V10),
264 	EM_EMX_DEVICE(PCH_CNP_I219_LM11),
265 	EM_EMX_DEVICE(PCH_CNP_I219_V11),
266 	EM_EMX_DEVICE(PCH_CNP_I219_LM12),
267 	EM_EMX_DEVICE(PCH_CNP_I219_V12),
268 	EM_EMX_DEVICE(PCH_CNP_I219_LM13),
269 	EM_EMX_DEVICE(PCH_CNP_I219_V13),
270 	EM_EMX_DEVICE(PCH_CNP_I219_LM14),
271 	EM_EMX_DEVICE(PCH_CNP_I219_V14),
272 
273 	/* required last entry */
274 	EM_DEVICE_NULL
275 };
276 
277 static int	em_probe(device_t);
278 static int	em_attach(device_t);
279 static int	em_detach(device_t);
280 static int	em_shutdown(device_t);
281 static int	em_suspend(device_t);
282 static int	em_resume(device_t);
283 
284 static void	em_init(void *);
285 static void	em_stop(struct adapter *);
286 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
287 static void	em_start(struct ifnet *, struct ifaltq_subque *);
288 #ifdef IFPOLL_ENABLE
289 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
290 static void	em_npoll_compat(struct ifnet *, void *, int);
291 #endif
292 static void	em_watchdog(struct ifnet *);
293 static void	em_media_status(struct ifnet *, struct ifmediareq *);
294 static int	em_media_change(struct ifnet *);
295 static void	em_timer(void *);
296 
297 static void	em_intr(void *);
298 static void	em_intr_mask(void *);
299 static void	em_intr_body(struct adapter *, boolean_t);
300 static void	em_rxeof(struct adapter *, int);
301 static void	em_txeof(struct adapter *);
302 static void	em_tx_collect(struct adapter *, boolean_t);
303 static void	em_tx_purge(struct adapter *);
304 static void	em_txgc_timer(void *);
305 static void	em_enable_intr(struct adapter *);
306 static void	em_disable_intr(struct adapter *);
307 
308 static int	em_dma_malloc(struct adapter *, bus_size_t,
309 		    struct em_dma_alloc *);
310 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
311 static void	em_init_tx_ring(struct adapter *);
312 static int	em_init_rx_ring(struct adapter *);
313 static int	em_create_tx_ring(struct adapter *);
314 static int	em_create_rx_ring(struct adapter *);
315 static void	em_destroy_tx_ring(struct adapter *, int);
316 static void	em_destroy_rx_ring(struct adapter *, int);
317 static int	em_newbuf(struct adapter *, int, int);
318 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
319 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
320 		    struct mbuf *);
321 static int	em_txcsum(struct adapter *, struct mbuf *,
322 		    uint32_t *, uint32_t *);
323 static int	em_tso_pullup(struct adapter *, struct mbuf **);
324 static int	em_tso_setup(struct adapter *, struct mbuf *,
325 		    uint32_t *, uint32_t *);
326 
327 static int	em_get_hw_info(struct adapter *);
328 static int 	em_is_valid_eaddr(const uint8_t *);
329 static int	em_alloc_pci_res(struct adapter *);
330 static void	em_free_pci_res(struct adapter *);
331 static int	em_reset(struct adapter *);
332 static void	em_setup_ifp(struct adapter *);
333 static void	em_init_tx_unit(struct adapter *);
334 static void	em_init_rx_unit(struct adapter *);
335 static void	em_update_stats(struct adapter *);
336 static void	em_set_promisc(struct adapter *);
337 static void	em_disable_promisc(struct adapter *);
338 static void	em_set_multi(struct adapter *);
339 static void	em_update_link_status(struct adapter *);
340 static void	em_smartspeed(struct adapter *);
341 static void	em_set_itr(struct adapter *, uint32_t);
342 static void	em_disable_aspm(struct adapter *);
343 static void	em_flush_tx_ring(struct adapter *);
344 static void	em_flush_rx_ring(struct adapter *);
345 static void	em_flush_txrx_ring(struct adapter *);
346 
347 /* Hardware workarounds */
348 static int	em_82547_fifo_workaround(struct adapter *, int);
349 static void	em_82547_update_fifo_head(struct adapter *, int);
350 static int	em_82547_tx_fifo_reset(struct adapter *);
351 static void	em_82547_move_tail(void *);
352 static void	em_82547_move_tail_serialized(struct adapter *);
353 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
354 
355 static void	em_print_debug_info(struct adapter *);
356 static void	em_print_nvm_info(struct adapter *);
357 static void	em_print_hw_stats(struct adapter *);
358 
359 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
360 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
361 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
362 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
363 static void	em_add_sysctl(struct adapter *adapter);
364 
365 /* Management and WOL Support */
366 static void	em_get_mgmt(struct adapter *);
367 static void	em_rel_mgmt(struct adapter *);
368 static void	em_get_hw_control(struct adapter *);
369 static void	em_rel_hw_control(struct adapter *);
370 static void	em_enable_wol(device_t);
371 
372 static device_method_t em_methods[] = {
373 	/* Device interface */
374 	DEVMETHOD(device_probe,		em_probe),
375 	DEVMETHOD(device_attach,	em_attach),
376 	DEVMETHOD(device_detach,	em_detach),
377 	DEVMETHOD(device_shutdown,	em_shutdown),
378 	DEVMETHOD(device_suspend,	em_suspend),
379 	DEVMETHOD(device_resume,	em_resume),
380 	DEVMETHOD_END
381 };
382 
383 static driver_t em_driver = {
384 	"em",
385 	em_methods,
386 	sizeof(struct adapter),
387 };
388 
389 static devclass_t em_devclass;
390 
391 DECLARE_DUMMY_MODULE(if_em);
392 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
393 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
394 
395 /*
396  * Tunables
397  */
398 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
399 static int	em_rxd = EM_DEFAULT_RXD;
400 static int	em_txd = EM_DEFAULT_TXD;
401 static int	em_smart_pwr_down = 0;
402 
403 /* Controls whether promiscuous also shows bad packets */
404 static int	em_debug_sbp = FALSE;
405 
406 static int	em_82573_workaround = 1;
407 static int	em_msi_enable = 1;
408 
409 static char	em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
410 
411 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
412 TUNABLE_INT("hw.em.rxd", &em_rxd);
413 TUNABLE_INT("hw.em.txd", &em_txd);
414 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
415 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
416 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
417 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
418 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
419 
420 /* Global used in WOL setup with multiport cards */
421 static int	em_global_quad_port_a = 0;
422 
423 /* Set this to one to display debug statistics */
424 static int	em_display_debug_stats = 0;
425 
426 #if !defined(KTR_IF_EM)
427 #define KTR_IF_EM	KTR_ALL
428 #endif
429 KTR_INFO_MASTER(if_em);
430 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
431 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
432 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
433 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
434 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
435 #define logif(name)	KTR_LOG(if_em_ ## name)
436 
437 static __inline void
438 em_tx_intr(struct adapter *adapter)
439 {
440 	struct ifnet *ifp = &adapter->arpcom.ac_if;
441 
442 	em_txeof(adapter);
443 	if (!ifq_is_empty(&ifp->if_snd))
444 		if_devstart(ifp);
445 }
446 
447 static __inline void
448 em_free_txbuffer(struct adapter *adapter, struct em_buffer *tx_buffer)
449 {
450 
451 	KKASSERT(tx_buffer->m_head != NULL);
452 	KKASSERT(adapter->tx_nmbuf > 0);
453 	adapter->tx_nmbuf--;
454 
455 	bus_dmamap_unload(adapter->txtag, tx_buffer->map);
456 	m_freem(tx_buffer->m_head);
457 	tx_buffer->m_head = NULL;
458 }
459 
460 static __inline void
461 em_try_txgc(struct adapter *adapter, int dec)
462 {
463 
464 	if (adapter->tx_running > 0) {
465 		adapter->tx_running -= dec;
466 		if (adapter->tx_running <= 0 && adapter->tx_nmbuf &&
467 		    adapter->num_tx_desc_avail < adapter->num_tx_desc &&
468 		    adapter->num_tx_desc_avail + adapter->tx_int_nsegs >
469 		    adapter->num_tx_desc)
470 			em_tx_collect(adapter, TRUE);
471 	}
472 }
473 
474 static void
475 em_txgc_timer(void *xadapter)
476 {
477 	struct adapter *adapter = xadapter;
478 	struct ifnet *ifp = &adapter->arpcom.ac_if;
479 
480 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
481 	    (IFF_RUNNING | IFF_UP))
482 		return;
483 
484 	if (!lwkt_serialize_try(ifp->if_serializer))
485 		goto done;
486 
487 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
488 	    (IFF_RUNNING | IFF_UP)) {
489 		lwkt_serialize_exit(ifp->if_serializer);
490 		return;
491 	}
492 	em_try_txgc(adapter, EM_TX_RUNNING_DEC);
493 
494 	lwkt_serialize_exit(ifp->if_serializer);
495 done:
496 	callout_reset(&adapter->tx_gc_timer, 1, em_txgc_timer, adapter);
497 }
498 
499 static int
500 em_probe(device_t dev)
501 {
502 	const struct em_vendor_info *ent;
503 	uint16_t vid, did;
504 
505 	vid = pci_get_vendor(dev);
506 	did = pci_get_device(dev);
507 
508 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
509 		if (vid == ent->vendor_id && did == ent->device_id) {
510 			device_set_desc(dev, ent->desc);
511 			device_set_async_attach(dev, TRUE);
512 			return (ent->ret);
513 		}
514 	}
515 	return (ENXIO);
516 }
517 
518 static int
519 em_attach(device_t dev)
520 {
521 	struct adapter *adapter = device_get_softc(dev);
522 	struct ifnet *ifp = &adapter->arpcom.ac_if;
523 	int tsize, rsize;
524 	int error = 0;
525 	int cap;
526 	uint16_t eeprom_data, device_id, apme_mask;
527 	driver_intr_t *intr_func;
528 	char flowctrl[IFM_ETH_FC_STRLEN];
529 
530 	adapter->dev = adapter->osdep.dev = dev;
531 
532 	/*
533 	 * Some versions of I219 only have PCI AF.
534 	 */
535 	if (pci_is_pcie(dev) || pci_find_extcap(dev, PCIY_PCIAF, &cap) == 0)
536 		adapter->flags |= EM_FLAG_GEN2;
537 
538 	callout_init_mp(&adapter->timer);
539 	callout_init_mp(&adapter->tx_fifo_timer);
540 	callout_init_mp(&adapter->tx_gc_timer);
541 
542 	ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
543 	    em_media_change, em_media_status);
544 
545 	/* Determine hardware and mac info */
546 	error = em_get_hw_info(adapter);
547 	if (error) {
548 		device_printf(dev, "Identify hardware failed\n");
549 		goto fail;
550 	}
551 
552 	/* Setup PCI resources */
553 	error = em_alloc_pci_res(adapter);
554 	if (error) {
555 		device_printf(dev, "Allocation of PCI resources failed\n");
556 		goto fail;
557 	}
558 
559 	/*
560 	 * For ICH8 and family we need to map the flash memory,
561 	 * and this must happen after the MAC is identified.
562 	 *
563 	 * (SPT does not map the flash with a separate BAR)
564 	 */
565 	if (adapter->hw.mac.type == e1000_ich8lan ||
566 	    adapter->hw.mac.type == e1000_ich9lan ||
567 	    adapter->hw.mac.type == e1000_ich10lan ||
568 	    adapter->hw.mac.type == e1000_pchlan ||
569 	    adapter->hw.mac.type == e1000_pch2lan ||
570 	    adapter->hw.mac.type == e1000_pch_lpt) {
571 		adapter->flash_rid = EM_BAR_FLASH;
572 
573 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
574 					&adapter->flash_rid, RF_ACTIVE);
575 		if (adapter->flash == NULL) {
576 			device_printf(dev, "Mapping of Flash failed\n");
577 			error = ENXIO;
578 			goto fail;
579 		}
580 		adapter->osdep.flash_bus_space_tag =
581 		    rman_get_bustag(adapter->flash);
582 		adapter->osdep.flash_bus_space_handle =
583 		    rman_get_bushandle(adapter->flash);
584 
585 		/*
586 		 * This is used in the shared code
587 		 * XXX this goof is actually not used.
588 		 */
589 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
590 	} else if (adapter->hw.mac.type >= e1000_pch_spt) {
591 		/*
592 		 * In the new SPT device flash is not a seperate BAR,
593 		 * rather it is also in BAR0, so use the same tag and
594 		 * an offset handle for the FLASH read/write macros
595 		 * in the shared code.
596 		 */
597 		adapter->osdep.flash_bus_space_tag =
598 		    adapter->osdep.mem_bus_space_tag;
599 		adapter->osdep.flash_bus_space_handle =
600 		    adapter->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
601 	}
602 
603 	switch (adapter->hw.mac.type) {
604 	case e1000_82571:
605 	case e1000_82572:
606 	case e1000_pch_lpt:
607 	case e1000_pch_spt:
608 	case e1000_pch_cnp:
609 		/*
610 		 * Pullup extra 4bytes into the first data segment for
611 		 * TSO, see:
612 		 * 82571/82572 specification update errata #7
613 		 *
614 		 * Same applies to I217 (and maybe I218 and I219).
615 		 *
616 		 * NOTE:
617 		 * 4bytes instead of 2bytes, which are mentioned in the
618 		 * errata, are pulled; mainly to keep rest of the data
619 		 * properly aligned.
620 		 */
621 		adapter->flags |= EM_FLAG_TSO_PULLEX;
622 		/* FALL THROUGH */
623 
624 	default:
625 		if (adapter->flags & EM_FLAG_GEN2)
626 			adapter->flags |= EM_FLAG_TSO;
627 		break;
628 	}
629 
630 	/* Do Shared Code initialization */
631 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
632 		device_printf(dev, "Setup of Shared code failed\n");
633 		error = ENXIO;
634 		goto fail;
635 	}
636 
637 	e1000_get_bus_info(&adapter->hw);
638 
639 	/*
640 	 * Validate number of transmit and receive descriptors.  It
641 	 * must not exceed hardware maximum, and must be multiple
642 	 * of E1000_DBA_ALIGN.
643 	 */
644 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
645 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
646 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
647 	    em_txd < EM_MIN_TXD) {
648 		if (adapter->hw.mac.type < e1000_82544)
649 			adapter->num_tx_desc = EM_MAX_TXD_82543;
650 		else
651 			adapter->num_tx_desc = EM_DEFAULT_TXD;
652 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
653 		    adapter->num_tx_desc, em_txd);
654 	} else {
655 		adapter->num_tx_desc = em_txd;
656 	}
657 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
658 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
659 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
660 	    em_rxd < EM_MIN_RXD) {
661 		if (adapter->hw.mac.type < e1000_82544)
662 			adapter->num_rx_desc = EM_MAX_RXD_82543;
663 		else
664 			adapter->num_rx_desc = EM_DEFAULT_RXD;
665 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
666 		    adapter->num_rx_desc, em_rxd);
667 	} else {
668 		adapter->num_rx_desc = em_rxd;
669 	}
670 
671 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
672 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
673 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
674 	adapter->rx_buffer_len = MCLBYTES;
675 
676 	/*
677 	 * Interrupt throttle rate
678 	 */
679 	if (em_int_throttle_ceil == 0) {
680 		adapter->int_throttle_ceil = 0;
681 	} else {
682 		int throttle = em_int_throttle_ceil;
683 
684 		if (throttle < 0)
685 			throttle = EM_DEFAULT_ITR;
686 
687 		/* Recalculate the tunable value to get the exact frequency. */
688 		throttle = 1000000000 / 256 / throttle;
689 
690 		/* Upper 16bits of ITR is reserved and should be zero */
691 		if (throttle & 0xffff0000)
692 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
693 
694 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
695 	}
696 
697 	e1000_init_script_state_82541(&adapter->hw, TRUE);
698 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
699 
700 	/* Copper options */
701 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
702 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
703 		adapter->hw.phy.disable_polarity_correction = FALSE;
704 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
705 	}
706 
707 	/* Set the frame limits assuming standard ethernet sized frames. */
708 	adapter->hw.mac.max_frame_size =
709 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
710 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
711 
712 	/* This controls when hardware reports transmit completion status. */
713 	adapter->hw.mac.report_tx_early = 1;
714 
715 	/*
716 	 * Create top level busdma tag
717 	 */
718 	error = bus_dma_tag_create(NULL, 1, 0,
719 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
720 			NULL, NULL,
721 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
722 			0, &adapter->parent_dtag);
723 	if (error) {
724 		device_printf(dev, "could not create top level DMA tag\n");
725 		goto fail;
726 	}
727 
728 	/*
729 	 * Allocate Transmit Descriptor ring
730 	 */
731 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
732 			 EM_DBA_ALIGN);
733 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
734 	if (error) {
735 		device_printf(dev, "Unable to allocate tx_desc memory\n");
736 		goto fail;
737 	}
738 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
739 
740 	/*
741 	 * Allocate Receive Descriptor ring
742 	 */
743 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
744 			 EM_DBA_ALIGN);
745 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
746 	if (error) {
747 		device_printf(dev, "Unable to allocate rx_desc memory\n");
748 		goto fail;
749 	}
750 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
751 
752 	/* Allocate multicast array memory. */
753 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
754 	    M_DEVBUF, M_WAITOK);
755 
756 	/* Indicate SOL/IDER usage */
757 	if (e1000_check_reset_block(&adapter->hw)) {
758 		device_printf(dev,
759 		    "PHY reset is blocked due to SOL/IDER session.\n");
760 	}
761 
762 	/* Disable EEE */
763 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
764 
765 	/*
766 	 * Start from a known state, this is important in reading the
767 	 * nvm and mac from that.
768 	 */
769 	e1000_reset_hw(&adapter->hw);
770 
771 	/* Make sure we have a good EEPROM before we read from it */
772 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
773 		/*
774 		 * Some PCI-E parts fail the first check due to
775 		 * the link being in sleep state, call it again,
776 		 * if it fails a second time its a real issue.
777 		 */
778 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
779 			device_printf(dev,
780 			    "The EEPROM Checksum Is Not Valid\n");
781 			error = EIO;
782 			goto fail;
783 		}
784 	}
785 
786 	/* Copy the permanent MAC address out of the EEPROM */
787 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
788 		device_printf(dev, "EEPROM read error while reading MAC"
789 		    " address\n");
790 		error = EIO;
791 		goto fail;
792 	}
793 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
794 		device_printf(dev, "Invalid MAC address\n");
795 		error = EIO;
796 		goto fail;
797 	}
798 
799 	/* Disable ULP support */
800 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
801 
802 	/* Allocate transmit descriptors and buffers */
803 	error = em_create_tx_ring(adapter);
804 	if (error) {
805 		device_printf(dev, "Could not setup transmit structures\n");
806 		goto fail;
807 	}
808 
809 	/* Allocate receive descriptors and buffers */
810 	error = em_create_rx_ring(adapter);
811 	if (error) {
812 		device_printf(dev, "Could not setup receive structures\n");
813 		goto fail;
814 	}
815 
816 	/* Manually turn off all interrupts */
817 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
818 
819 	/* Determine if we have to control management hardware */
820 	if (e1000_enable_mng_pass_thru(&adapter->hw))
821 		adapter->flags |= EM_FLAG_HAS_MGMT;
822 
823 	/*
824 	 * Setup Wake-on-Lan
825 	 */
826 	apme_mask = EM_EEPROM_APME;
827 	eeprom_data = 0;
828 	switch (adapter->hw.mac.type) {
829 	case e1000_82542:
830 	case e1000_82543:
831 		break;
832 
833 	case e1000_82573:
834 	case e1000_82583:
835 		adapter->flags |= EM_FLAG_HAS_AMT;
836 		/* FALL THROUGH */
837 
838 	case e1000_82546:
839 	case e1000_82546_rev_3:
840 	case e1000_82571:
841 	case e1000_82572:
842 	case e1000_80003es2lan:
843 		if (adapter->hw.bus.func == 1) {
844 			e1000_read_nvm(&adapter->hw,
845 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
846 		} else {
847 			e1000_read_nvm(&adapter->hw,
848 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
849 		}
850 		break;
851 
852 	case e1000_ich8lan:
853 	case e1000_ich9lan:
854 	case e1000_ich10lan:
855 	case e1000_pchlan:
856 	case e1000_pch2lan:
857 	case e1000_pch_lpt:
858 	case e1000_pch_spt:
859 	case e1000_pch_cnp:
860 		apme_mask = E1000_WUC_APME;
861 		adapter->flags |= EM_FLAG_HAS_AMT;
862 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
863 		break;
864 
865 	default:
866 		e1000_read_nvm(&adapter->hw,
867 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
868 		break;
869 	}
870 	if (eeprom_data & apme_mask)
871 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
872 
873 	/*
874          * We have the eeprom settings, now apply the special cases
875          * where the eeprom may be wrong or the board won't support
876          * wake on lan on a particular port
877 	 */
878 	device_id = pci_get_device(dev);
879         switch (device_id) {
880 	case E1000_DEV_ID_82546GB_PCIE:
881 		adapter->wol = 0;
882 		break;
883 
884 	case E1000_DEV_ID_82546EB_FIBER:
885 	case E1000_DEV_ID_82546GB_FIBER:
886 	case E1000_DEV_ID_82571EB_FIBER:
887 		/*
888 		 * Wake events only supported on port A for dual fiber
889 		 * regardless of eeprom setting
890 		 */
891 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
892 		    E1000_STATUS_FUNC_1)
893 			adapter->wol = 0;
894 		break;
895 
896 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
897 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
898 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
899 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
900                 /* if quad port adapter, disable WoL on all but port A */
901 		if (em_global_quad_port_a != 0)
902 			adapter->wol = 0;
903 		/* Reset for multiple quad port adapters */
904 		if (++em_global_quad_port_a == 4)
905 			em_global_quad_port_a = 0;
906                 break;
907 	}
908 
909 	/* XXX disable wol */
910 	adapter->wol = 0;
911 
912 	/* Setup flow control. */
913 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
914 	    em_flowctrl);
915 	adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
916 	if (adapter->hw.mac.type == e1000_pchlan) {
917 		/* Only PAUSE reception is supported on PCH */
918 		adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
919 	}
920 
921 	/* Setup OS specific network interface */
922 	em_setup_ifp(adapter);
923 
924 	/* Add sysctl tree, must after em_setup_ifp() */
925 	em_add_sysctl(adapter);
926 
927 #ifdef IFPOLL_ENABLE
928 	/* Polling setup */
929 	ifpoll_compat_setup(&adapter->npoll,
930 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
931 	    device_get_unit(dev), ifp->if_serializer);
932 #endif
933 
934 	/* Reset the hardware */
935 	error = em_reset(adapter);
936 	if (error) {
937 		/*
938 		 * Some 82573 parts fail the first reset, call it again,
939 		 * if it fails a second time its a real issue.
940 		 */
941 		error = em_reset(adapter);
942 		if (error) {
943 			device_printf(dev, "Unable to reset the hardware\n");
944 			ether_ifdetach(ifp);
945 			goto fail;
946 		}
947 	}
948 
949 	/* Initialize statistics */
950 	em_update_stats(adapter);
951 
952 	adapter->hw.mac.get_link_status = 1;
953 	em_update_link_status(adapter);
954 
955 	/* Do we need workaround for 82544 PCI-X adapter? */
956 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
957 	    adapter->hw.mac.type == e1000_82544)
958 		adapter->pcix_82544 = TRUE;
959 	else
960 		adapter->pcix_82544 = FALSE;
961 
962 	if (adapter->pcix_82544) {
963 		/*
964 		 * 82544 on PCI-X may split one TX segment
965 		 * into two TX descs, so we double its number
966 		 * of spare TX desc here.
967 		 */
968 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
969 	} else {
970 		adapter->spare_tx_desc = EM_TX_SPARE;
971 	}
972 	if (adapter->flags & EM_FLAG_TSO)
973 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
974 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
975 
976 	/*
977 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
978 	 * and tx_int_nsegs:
979 	 * (spare_tx_desc + EM_TX_RESERVED) <=
980 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
981 	 */
982 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
983 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
984 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
985 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
986 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
987 
988 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
989 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
990 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
991 
992 	/* Non-AMT based hardware can now take control from firmware */
993 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
994 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
995 		em_get_hw_control(adapter);
996 
997 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
998 
999 	/*
1000 	 * Missing Interrupt Following ICR read:
1001 	 *
1002 	 * 82571/82572 specification update errata #76
1003 	 * 82573 specification update errata #31
1004 	 * 82574 specification update errata #12
1005 	 * 82583 specification update errata #4
1006 	 */
1007 	intr_func = em_intr;
1008 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
1009 	    (adapter->hw.mac.type == e1000_82571 ||
1010 	     adapter->hw.mac.type == e1000_82572 ||
1011 	     adapter->hw.mac.type == e1000_82573 ||
1012 	     adapter->hw.mac.type == e1000_82574 ||
1013 	     adapter->hw.mac.type == e1000_82583))
1014 		intr_func = em_intr_mask;
1015 
1016 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
1017 			       intr_func, adapter, &adapter->intr_tag,
1018 			       ifp->if_serializer);
1019 	if (error) {
1020 		device_printf(dev, "Failed to register interrupt handler");
1021 		ether_ifdetach(ifp);
1022 		goto fail;
1023 	}
1024 	return (0);
1025 fail:
1026 	em_detach(dev);
1027 	return (error);
1028 }
1029 
1030 static int
1031 em_detach(device_t dev)
1032 {
1033 	struct adapter *adapter = device_get_softc(dev);
1034 
1035 	if (device_is_attached(dev)) {
1036 		struct ifnet *ifp = &adapter->arpcom.ac_if;
1037 
1038 		lwkt_serialize_enter(ifp->if_serializer);
1039 
1040 		em_stop(adapter);
1041 
1042 		e1000_phy_hw_reset(&adapter->hw);
1043 
1044 		em_rel_mgmt(adapter);
1045 		em_rel_hw_control(adapter);
1046 
1047 		if (adapter->wol) {
1048 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
1049 					E1000_WUC_PME_EN);
1050 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1051 			em_enable_wol(dev);
1052 		}
1053 
1054 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
1055 
1056 		lwkt_serialize_exit(ifp->if_serializer);
1057 
1058 		ether_ifdetach(ifp);
1059 	} else if (adapter->memory != NULL) {
1060 		em_rel_hw_control(adapter);
1061 	}
1062 
1063 	ifmedia_removeall(&adapter->media);
1064 	bus_generic_detach(dev);
1065 
1066 	em_free_pci_res(adapter);
1067 
1068 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
1069 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
1070 
1071 	/* Free Transmit Descriptor ring */
1072 	if (adapter->tx_desc_base)
1073 		em_dma_free(adapter, &adapter->txdma);
1074 
1075 	/* Free Receive Descriptor ring */
1076 	if (adapter->rx_desc_base)
1077 		em_dma_free(adapter, &adapter->rxdma);
1078 
1079 	/* Free top level busdma tag */
1080 	if (adapter->parent_dtag != NULL)
1081 		bus_dma_tag_destroy(adapter->parent_dtag);
1082 
1083 	if (adapter->mta != NULL)
1084 		kfree(adapter->mta, M_DEVBUF);
1085 
1086 	return (0);
1087 }
1088 
1089 static int
1090 em_shutdown(device_t dev)
1091 {
1092 	return em_suspend(dev);
1093 }
1094 
1095 static int
1096 em_suspend(device_t dev)
1097 {
1098 	struct adapter *adapter = device_get_softc(dev);
1099 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1100 
1101 	lwkt_serialize_enter(ifp->if_serializer);
1102 
1103 	em_stop(adapter);
1104 
1105 	em_rel_mgmt(adapter);
1106 	em_rel_hw_control(adapter);
1107 
1108 	if (adapter->wol) {
1109 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
1110 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1111 		em_enable_wol(dev);
1112 	}
1113 
1114 	lwkt_serialize_exit(ifp->if_serializer);
1115 
1116 	return bus_generic_suspend(dev);
1117 }
1118 
1119 static int
1120 em_resume(device_t dev)
1121 {
1122 	struct adapter *adapter = device_get_softc(dev);
1123 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1124 
1125 	lwkt_serialize_enter(ifp->if_serializer);
1126 
1127 	if (adapter->hw.mac.type == e1000_pch2lan)
1128 		e1000_resume_workarounds_pchlan(&adapter->hw);
1129 
1130 	em_init(adapter);
1131 	em_get_mgmt(adapter);
1132 	if_devstart(ifp);
1133 
1134 	lwkt_serialize_exit(ifp->if_serializer);
1135 
1136 	return bus_generic_resume(dev);
1137 }
1138 
1139 static void
1140 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1141 {
1142 	struct adapter *adapter = ifp->if_softc;
1143 	struct mbuf *m_head;
1144 	int idx = -1, nsegs = 0;
1145 
1146 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1147 	ASSERT_SERIALIZED(ifp->if_serializer);
1148 
1149 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1150 		return;
1151 
1152 	if (!adapter->link_active) {
1153 		ifq_purge(&ifp->if_snd);
1154 		return;
1155 	}
1156 
1157 	while (!ifq_is_empty(&ifp->if_snd)) {
1158 		/* Now do we at least have a minimal? */
1159 		if (EM_IS_OACTIVE(adapter)) {
1160 			em_tx_collect(adapter, FALSE);
1161 			if (EM_IS_OACTIVE(adapter)) {
1162 				ifq_set_oactive(&ifp->if_snd);
1163 				adapter->no_tx_desc_avail1++;
1164 				break;
1165 			}
1166 		}
1167 
1168 		logif(pkt_txqueue);
1169 		m_head = ifq_dequeue(&ifp->if_snd);
1170 		if (m_head == NULL)
1171 			break;
1172 
1173 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1174 			IFNET_STAT_INC(ifp, oerrors, 1);
1175 			em_tx_collect(adapter, FALSE);
1176 			continue;
1177 		}
1178 
1179 		/*
1180 		 * TX interrupt are aggressively aggregated, so increasing
1181 		 * opackets at TX interrupt time will make the opackets
1182 		 * statistics vastly inaccurate; we do the opackets increment
1183 		 * now.
1184 		 */
1185 		IFNET_STAT_INC(ifp, opackets, 1);
1186 
1187 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1188 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1189 			nsegs = 0;
1190 			idx = -1;
1191 		}
1192 
1193 		/* Send a copy of the frame to the BPF listener */
1194 		ETHER_BPF_MTAP(ifp, m_head);
1195 
1196 		/* Set timeout in case hardware has problems transmitting. */
1197 		ifp->if_timer = EM_TX_TIMEOUT;
1198 	}
1199 	if (idx >= 0)
1200 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1201 	adapter->tx_running = EM_TX_RUNNING;
1202 }
1203 
1204 static int
1205 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1206 {
1207 	struct adapter *adapter = ifp->if_softc;
1208 	struct ifreq *ifr = (struct ifreq *)data;
1209 	uint16_t eeprom_data = 0;
1210 	int max_frame_size, mask, reinit;
1211 	int error = 0;
1212 
1213 	ASSERT_SERIALIZED(ifp->if_serializer);
1214 
1215 	switch (command) {
1216 	case SIOCSIFMTU:
1217 		switch (adapter->hw.mac.type) {
1218 		case e1000_82573:
1219 			/*
1220 			 * 82573 only supports jumbo frames
1221 			 * if ASPM is disabled.
1222 			 */
1223 			e1000_read_nvm(&adapter->hw,
1224 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1225 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1226 				max_frame_size = ETHER_MAX_LEN;
1227 				break;
1228 			}
1229 			/* FALL THROUGH */
1230 
1231 		/* Limit Jumbo Frame size */
1232 		case e1000_82571:
1233 		case e1000_82572:
1234 		case e1000_ich9lan:
1235 		case e1000_ich10lan:
1236 		case e1000_pch2lan:
1237 		case e1000_pch_lpt:
1238 		case e1000_pch_spt:
1239 		case e1000_pch_cnp:
1240 		case e1000_82574:
1241 		case e1000_82583:
1242 		case e1000_80003es2lan:
1243 			max_frame_size = 9234;
1244 			break;
1245 
1246 		case e1000_pchlan:
1247 			max_frame_size = 4096;
1248 			break;
1249 
1250 		/* Adapters that do not support jumbo frames */
1251 		case e1000_82542:
1252 		case e1000_ich8lan:
1253 			max_frame_size = ETHER_MAX_LEN;
1254 			break;
1255 
1256 		default:
1257 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1258 			break;
1259 		}
1260 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1261 		    ETHER_CRC_LEN) {
1262 			error = EINVAL;
1263 			break;
1264 		}
1265 
1266 		ifp->if_mtu = ifr->ifr_mtu;
1267 		adapter->hw.mac.max_frame_size =
1268 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1269 
1270 		if (ifp->if_flags & IFF_RUNNING)
1271 			em_init(adapter);
1272 		break;
1273 
1274 	case SIOCSIFFLAGS:
1275 		if (ifp->if_flags & IFF_UP) {
1276 			if ((ifp->if_flags & IFF_RUNNING)) {
1277 				if ((ifp->if_flags ^ adapter->if_flags) &
1278 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1279 					em_disable_promisc(adapter);
1280 					em_set_promisc(adapter);
1281 				}
1282 			} else {
1283 				em_init(adapter);
1284 			}
1285 		} else if (ifp->if_flags & IFF_RUNNING) {
1286 			em_stop(adapter);
1287 		}
1288 		adapter->if_flags = ifp->if_flags;
1289 		break;
1290 
1291 	case SIOCADDMULTI:
1292 	case SIOCDELMULTI:
1293 		if (ifp->if_flags & IFF_RUNNING) {
1294 			em_disable_intr(adapter);
1295 			em_set_multi(adapter);
1296 			if (adapter->hw.mac.type == e1000_82542 &&
1297 			    adapter->hw.revision_id == E1000_REVISION_2)
1298 				em_init_rx_unit(adapter);
1299 #ifdef IFPOLL_ENABLE
1300 			if (!(ifp->if_flags & IFF_NPOLLING))
1301 #endif
1302 				em_enable_intr(adapter);
1303 		}
1304 		break;
1305 
1306 	case SIOCSIFMEDIA:
1307 		/* Check SOL/IDER usage */
1308 		if (e1000_check_reset_block(&adapter->hw)) {
1309 			device_printf(adapter->dev, "Media change is"
1310 			    " blocked due to SOL/IDER session.\n");
1311 			break;
1312 		}
1313 		/* FALL THROUGH */
1314 
1315 	case SIOCGIFMEDIA:
1316 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1317 		break;
1318 
1319 	case SIOCSIFCAP:
1320 		reinit = 0;
1321 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1322 		if (mask & IFCAP_RXCSUM) {
1323 			ifp->if_capenable ^= IFCAP_RXCSUM;
1324 			reinit = 1;
1325 		}
1326 		if (mask & IFCAP_TXCSUM) {
1327 			ifp->if_capenable ^= IFCAP_TXCSUM;
1328 			if (ifp->if_capenable & IFCAP_TXCSUM)
1329 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1330 			else
1331 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1332 		}
1333 		if (mask & IFCAP_TSO) {
1334 			ifp->if_capenable ^= IFCAP_TSO;
1335 			if (ifp->if_capenable & IFCAP_TSO)
1336 				ifp->if_hwassist |= CSUM_TSO;
1337 			else
1338 				ifp->if_hwassist &= ~CSUM_TSO;
1339 		}
1340 		if (mask & IFCAP_VLAN_HWTAGGING) {
1341 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1342 			reinit = 1;
1343 		}
1344 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1345 			em_init(adapter);
1346 		break;
1347 
1348 	default:
1349 		error = ether_ioctl(ifp, command, data);
1350 		break;
1351 	}
1352 	return (error);
1353 }
1354 
1355 static void
1356 em_watchdog(struct ifnet *ifp)
1357 {
1358 	struct adapter *adapter = ifp->if_softc;
1359 
1360 	ASSERT_SERIALIZED(ifp->if_serializer);
1361 
1362 	/*
1363 	 * The timer is set to 5 every time start queues a packet.
1364 	 * Then txeof keeps resetting it as long as it cleans at
1365 	 * least one descriptor.
1366 	 * Finally, anytime all descriptors are clean the timer is
1367 	 * set to 0.
1368 	 */
1369 
1370 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1371 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1372 		/*
1373 		 * If we reach here, all TX jobs are completed and
1374 		 * the TX engine should have been idled for some time.
1375 		 * We don't need to call if_devstart() here.
1376 		 */
1377 		ifq_clr_oactive(&ifp->if_snd);
1378 		ifp->if_timer = 0;
1379 		return;
1380 	}
1381 
1382 	/*
1383 	 * If we are in this routine because of pause frames, then
1384 	 * don't reset the hardware.
1385 	 */
1386 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1387 	    E1000_STATUS_TXOFF) {
1388 		ifp->if_timer = EM_TX_TIMEOUT;
1389 		return;
1390 	}
1391 
1392 	if (e1000_check_for_link(&adapter->hw) == 0)
1393 		if_printf(ifp, "watchdog timeout -- resetting\n");
1394 
1395 	IFNET_STAT_INC(ifp, oerrors, 1);
1396 	adapter->watchdog_events++;
1397 
1398 	em_init(adapter);
1399 
1400 	if (!ifq_is_empty(&ifp->if_snd))
1401 		if_devstart(ifp);
1402 }
1403 
1404 static void
1405 em_init(void *xsc)
1406 {
1407 	struct adapter *adapter = xsc;
1408 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1409 	device_t dev = adapter->dev;
1410 
1411 	ASSERT_SERIALIZED(ifp->if_serializer);
1412 
1413 	em_stop(adapter);
1414 
1415 	/* Get the latest mac address, User can use a LAA */
1416         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1417 
1418 	/* Put the address into the Receive Address Array */
1419 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1420 
1421 	/*
1422 	 * With the 82571 adapter, RAR[0] may be overwritten
1423 	 * when the other port is reset, we make a duplicate
1424 	 * in RAR[14] for that eventuality, this assures
1425 	 * the interface continues to function.
1426 	 */
1427 	if (adapter->hw.mac.type == e1000_82571) {
1428 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1429 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1430 		    E1000_RAR_ENTRIES - 1);
1431 	}
1432 
1433 	/* Reset the hardware */
1434 	if (em_reset(adapter)) {
1435 		device_printf(dev, "Unable to reset the hardware\n");
1436 		/* XXX em_stop()? */
1437 		return;
1438 	}
1439 	em_update_link_status(adapter);
1440 
1441 	/* Setup VLAN support, basic and offload if available */
1442 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1443 
1444 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1445 		uint32_t ctrl;
1446 
1447 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1448 		ctrl |= E1000_CTRL_VME;
1449 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1450 	}
1451 
1452 	/* Configure for OS presence */
1453 	em_get_mgmt(adapter);
1454 
1455 	/* Prepare transmit descriptors and buffers */
1456 	em_init_tx_ring(adapter);
1457 	em_init_tx_unit(adapter);
1458 
1459 	/* Setup Multicast table */
1460 	em_set_multi(adapter);
1461 
1462 	/* Prepare receive descriptors and buffers */
1463 	if (em_init_rx_ring(adapter)) {
1464 		device_printf(dev, "Could not setup receive structures\n");
1465 		em_stop(adapter);
1466 		return;
1467 	}
1468 	em_init_rx_unit(adapter);
1469 
1470 	/* Don't lose promiscuous settings */
1471 	em_set_promisc(adapter);
1472 
1473 	/* Reset hardware counters */
1474 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1475 
1476 	/* MSI/X configuration for 82574 */
1477 	if (adapter->hw.mac.type == e1000_82574) {
1478 		int tmp;
1479 
1480 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1481 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1482 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1483 		/*
1484 		 * XXX MSIX
1485 		 * Set the IVAR - interrupt vector routing.
1486 		 * Each nibble represents a vector, high bit
1487 		 * is enable, other 3 bits are the MSIX table
1488 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1489 		 * Link (other) to 2, hence the magic number.
1490 		 */
1491 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1492 	}
1493 
1494 #ifdef IFPOLL_ENABLE
1495 	/*
1496 	 * Only enable interrupts if we are not polling, make sure
1497 	 * they are off otherwise.
1498 	 */
1499 	if (ifp->if_flags & IFF_NPOLLING)
1500 		em_disable_intr(adapter);
1501 	else
1502 #endif /* IFPOLL_ENABLE */
1503 		em_enable_intr(adapter);
1504 
1505 	/* AMT based hardware can now take control from firmware */
1506 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1507 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1508 	    adapter->hw.mac.type >= e1000_82571)
1509 		em_get_hw_control(adapter);
1510 
1511 	ifp->if_flags |= IFF_RUNNING;
1512 	ifq_clr_oactive(&ifp->if_snd);
1513 
1514 #ifdef IFPOLL_ENABLE
1515 	if ((ifp->if_flags & IFF_NPOLLING) == 0)
1516 #endif
1517 	{
1518 		callout_reset_bycpu(&adapter->tx_gc_timer, 1,
1519 		    em_txgc_timer, adapter,
1520 		    rman_get_cpuid(adapter->intr_res));
1521 	}
1522 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1523 }
1524 
1525 #ifdef IFPOLL_ENABLE
1526 
1527 static void
1528 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1529 {
1530 	struct adapter *adapter = ifp->if_softc;
1531 
1532 	ASSERT_SERIALIZED(ifp->if_serializer);
1533 
1534 	if (adapter->npoll.ifpc_stcount-- == 0) {
1535 		uint32_t reg_icr;
1536 
1537 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1538 
1539 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1540 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1541 			callout_stop(&adapter->timer);
1542 			adapter->hw.mac.get_link_status = 1;
1543 			em_update_link_status(adapter);
1544 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1545 		}
1546 	}
1547 
1548 	em_rxeof(adapter, count);
1549 
1550 	em_tx_intr(adapter);
1551 	em_try_txgc(adapter, 1);
1552 }
1553 
1554 static void
1555 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1556 {
1557 	struct adapter *adapter = ifp->if_softc;
1558 
1559 	ASSERT_SERIALIZED(ifp->if_serializer);
1560 
1561 	if (info != NULL) {
1562 		int cpuid = adapter->npoll.ifpc_cpuid;
1563 
1564                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1565 		info->ifpi_rx[cpuid].arg = NULL;
1566 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1567 
1568 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1569 	} else {
1570 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1571 	}
1572 	if (ifp->if_flags & IFF_RUNNING)
1573 		em_init(adapter);
1574 }
1575 
1576 #endif /* IFPOLL_ENABLE */
1577 
1578 static void
1579 em_intr(void *xsc)
1580 {
1581 	em_intr_body(xsc, TRUE);
1582 }
1583 
1584 static void
1585 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1586 {
1587 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1588 	uint32_t reg_icr;
1589 
1590 	logif(intr_beg);
1591 	ASSERT_SERIALIZED(ifp->if_serializer);
1592 
1593 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1594 
1595 	if (chk_asserted &&
1596 	    ((adapter->hw.mac.type >= e1000_82571 &&
1597 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1598 	     reg_icr == 0)) {
1599 		logif(intr_end);
1600 		return;
1601 	}
1602 
1603 	/*
1604 	 * XXX: some laptops trigger several spurious interrupts
1605 	 * on em(4) when in the resume cycle. The ICR register
1606 	 * reports all-ones value in this case. Processing such
1607 	 * interrupts would lead to a freeze. I don't know why.
1608 	 */
1609 	if (reg_icr == 0xffffffff) {
1610 		logif(intr_end);
1611 		return;
1612 	}
1613 
1614 	if (ifp->if_flags & IFF_RUNNING) {
1615 		if (reg_icr &
1616 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1617 			em_rxeof(adapter, -1);
1618 		if (reg_icr & E1000_ICR_TXDW)
1619 			em_tx_intr(adapter);
1620 	}
1621 
1622 	/* Link status change */
1623 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1624 		callout_stop(&adapter->timer);
1625 		adapter->hw.mac.get_link_status = 1;
1626 		em_update_link_status(adapter);
1627 
1628 		/* Deal with TX cruft when link lost */
1629 		em_tx_purge(adapter);
1630 
1631 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1632 	}
1633 
1634 	if (reg_icr & E1000_ICR_RXO)
1635 		adapter->rx_overruns++;
1636 
1637 	logif(intr_end);
1638 }
1639 
1640 static void
1641 em_intr_mask(void *xsc)
1642 {
1643 	struct adapter *adapter = xsc;
1644 
1645 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1646 	/*
1647 	 * NOTE:
1648 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1649 	 * so don't check it.
1650 	 */
1651 	em_intr_body(adapter, FALSE);
1652 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1653 }
1654 
1655 static void
1656 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1657 {
1658 	struct adapter *adapter = ifp->if_softc;
1659 
1660 	ASSERT_SERIALIZED(ifp->if_serializer);
1661 
1662 	em_update_link_status(adapter);
1663 
1664 	ifmr->ifm_status = IFM_AVALID;
1665 	ifmr->ifm_active = IFM_ETHER;
1666 
1667 	if (!adapter->link_active) {
1668 		if (adapter->hw.mac.autoneg)
1669 			ifmr->ifm_active |= IFM_NONE;
1670 		else
1671 			ifmr->ifm_active = adapter->media.ifm_media;
1672 		return;
1673 	}
1674 
1675 	ifmr->ifm_status |= IFM_ACTIVE;
1676 	if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1677 		ifmr->ifm_active |= adapter->ifm_flowctrl;
1678 
1679 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1680 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1681 		u_char fiber_type = IFM_1000_SX;
1682 
1683 		if (adapter->hw.mac.type == e1000_82545)
1684 			fiber_type = IFM_1000_LX;
1685 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1686 	} else {
1687 		switch (adapter->link_speed) {
1688 		case 10:
1689 			ifmr->ifm_active |= IFM_10_T;
1690 			break;
1691 		case 100:
1692 			ifmr->ifm_active |= IFM_100_TX;
1693 			break;
1694 
1695 		case 1000:
1696 			ifmr->ifm_active |= IFM_1000_T;
1697 			break;
1698 		}
1699 		if (adapter->link_duplex == FULL_DUPLEX)
1700 			ifmr->ifm_active |= IFM_FDX;
1701 		else
1702 			ifmr->ifm_active |= IFM_HDX;
1703 	}
1704 	if (ifmr->ifm_active & IFM_FDX) {
1705 		ifmr->ifm_active |=
1706 		    e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1707 	}
1708 }
1709 
1710 static int
1711 em_media_change(struct ifnet *ifp)
1712 {
1713 	struct adapter *adapter = ifp->if_softc;
1714 	struct ifmedia *ifm = &adapter->media;
1715 
1716 	ASSERT_SERIALIZED(ifp->if_serializer);
1717 
1718 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1719 		return (EINVAL);
1720 
1721 	if (adapter->hw.mac.type == e1000_pchlan &&
1722 	    (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1723 		if (bootverbose)
1724 			if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1725 		return EINVAL;
1726 	}
1727 
1728 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1729 	case IFM_AUTO:
1730 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1731 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1732 		break;
1733 
1734 	case IFM_1000_LX:
1735 	case IFM_1000_SX:
1736 	case IFM_1000_T:
1737 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1738 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1739 		break;
1740 
1741 	case IFM_100_TX:
1742 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1743 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1744 		} else {
1745 			if (IFM_OPTIONS(ifm->ifm_media) &
1746 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1747 				if (bootverbose) {
1748 					if_printf(ifp, "Flow control is not "
1749 					    "allowed for half-duplex\n");
1750 				}
1751 				return EINVAL;
1752 			}
1753 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1754 		}
1755 		adapter->hw.mac.autoneg = FALSE;
1756 		adapter->hw.phy.autoneg_advertised = 0;
1757 		break;
1758 
1759 	case IFM_10_T:
1760 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1761 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1762 		} else {
1763 			if (IFM_OPTIONS(ifm->ifm_media) &
1764 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1765 				if (bootverbose) {
1766 					if_printf(ifp, "Flow control is not "
1767 					    "allowed for half-duplex\n");
1768 				}
1769 				return EINVAL;
1770 			}
1771 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1772 		}
1773 		adapter->hw.mac.autoneg = FALSE;
1774 		adapter->hw.phy.autoneg_advertised = 0;
1775 		break;
1776 
1777 	default:
1778 		if (bootverbose) {
1779 			if_printf(ifp, "Unsupported media type %d\n",
1780 			    IFM_SUBTYPE(ifm->ifm_media));
1781 		}
1782 		return EINVAL;
1783 	}
1784 	adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1785 
1786 	if (ifp->if_flags & IFF_RUNNING)
1787 		em_init(adapter);
1788 
1789 	return (0);
1790 }
1791 
1792 static int
1793 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1794     int *segs_used, int *idx)
1795 {
1796 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1797 	bus_dmamap_t map;
1798 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1799 	struct e1000_tx_desc *ctxd = NULL;
1800 	struct mbuf *m_head = *m_headp;
1801 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1802 	int maxsegs, nsegs, i, j, first, last = 0, error;
1803 
1804 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1805 		error = em_tso_pullup(adapter, m_headp);
1806 		if (error)
1807 			return error;
1808 		m_head = *m_headp;
1809 	}
1810 
1811 	txd_upper = txd_lower = 0;
1812 	txd_used = 0;
1813 
1814 	/*
1815 	 * Capture the first descriptor index, this descriptor
1816 	 * will have the index of the EOP which is the only one
1817 	 * that now gets a DONE bit writeback.
1818 	 */
1819 	first = adapter->next_avail_tx_desc;
1820 	tx_buffer = &adapter->tx_buffer_area[first];
1821 	tx_buffer_mapped = tx_buffer;
1822 	map = tx_buffer->map;
1823 
1824 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1825 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1826 		("not enough spare TX desc"));
1827 	if (adapter->pcix_82544) {
1828 		/* Half it; see the comment in em_attach() */
1829 		maxsegs >>= 1;
1830 	}
1831 	if (maxsegs > EM_MAX_SCATTER)
1832 		maxsegs = EM_MAX_SCATTER;
1833 
1834 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1835 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1836 	if (error) {
1837 		if (error == ENOBUFS)
1838 			adapter->mbuf_alloc_failed++;
1839 		else
1840 			adapter->no_tx_dma_setup++;
1841 
1842 		m_freem(*m_headp);
1843 		*m_headp = NULL;
1844 		return error;
1845 	}
1846         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1847 
1848 	m_head = *m_headp;
1849 	adapter->tx_nsegs += nsegs;
1850 	*segs_used += nsegs;
1851 
1852 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1853 		/* TSO will consume one TX desc */
1854 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1855 		adapter->tx_nsegs += i;
1856 		*segs_used += i;
1857 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1858 		/* TX csum offloading will consume one TX desc */
1859 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1860 		adapter->tx_nsegs += i;
1861 		*segs_used += i;
1862 	}
1863 
1864         /* Handle VLAN tag */
1865 	if (m_head->m_flags & M_VLANTAG) {
1866 		/* Set the vlan id. */
1867 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1868 		/* Tell hardware to add tag */
1869 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1870 	}
1871 
1872 	i = adapter->next_avail_tx_desc;
1873 
1874 	/* Set up our transmit descriptors */
1875 	for (j = 0; j < nsegs; j++) {
1876 		/* If adapter is 82544 and on PCIX bus */
1877 		if(adapter->pcix_82544) {
1878 			DESC_ARRAY desc_array;
1879 			uint32_t array_elements, counter;
1880 
1881 			/*
1882 			 * Check the Address and Length combination and
1883 			 * split the data accordingly
1884 			 */
1885 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1886 						segs[j].ds_len, &desc_array);
1887 			for (counter = 0; counter < array_elements; counter++) {
1888 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1889 
1890 				tx_buffer = &adapter->tx_buffer_area[i];
1891 				ctxd = &adapter->tx_desc_base[i];
1892 
1893 				ctxd->buffer_addr = htole64(
1894 				    desc_array.descriptor[counter].address);
1895 				ctxd->lower.data = htole32(
1896 				    E1000_TXD_CMD_IFCS | txd_lower |
1897 				    desc_array.descriptor[counter].length);
1898 				ctxd->upper.data = htole32(txd_upper);
1899 
1900 				last = i;
1901 				if (++i == adapter->num_tx_desc)
1902 					i = 0;
1903 
1904 				txd_used++;
1905                         }
1906 		} else {
1907 			tx_buffer = &adapter->tx_buffer_area[i];
1908 			ctxd = &adapter->tx_desc_base[i];
1909 
1910 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1911 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1912 						   txd_lower | segs[j].ds_len);
1913 			ctxd->upper.data = htole32(txd_upper);
1914 
1915 			last = i;
1916 			if (++i == adapter->num_tx_desc)
1917 				i = 0;
1918 		}
1919 	}
1920 
1921 	adapter->next_avail_tx_desc = i;
1922 	if (adapter->pcix_82544) {
1923 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1924 		adapter->num_tx_desc_avail -= txd_used;
1925 	} else {
1926 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1927 		adapter->num_tx_desc_avail -= nsegs;
1928 	}
1929 	adapter->tx_nmbuf++;
1930 
1931 	tx_buffer->m_head = m_head;
1932 	tx_buffer_mapped->map = tx_buffer->map;
1933 	tx_buffer->map = map;
1934 
1935 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1936 		adapter->tx_nsegs = 0;
1937 
1938 		/*
1939 		 * Report Status (RS) is turned on
1940 		 * every tx_int_nsegs descriptors.
1941 		 */
1942 		cmd = E1000_TXD_CMD_RS;
1943 
1944 		/*
1945 		 * Keep track of the descriptor, which will
1946 		 * be written back by hardware.
1947 		 */
1948 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1949 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1950 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1951 	}
1952 
1953 	/*
1954 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1955 	 */
1956 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1957 
1958 	if (adapter->hw.mac.type == e1000_82547) {
1959 		/*
1960 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1961 		 * E1000 that this frame is available to transmit.
1962 		 */
1963 		if (adapter->link_duplex == HALF_DUPLEX) {
1964 			em_82547_move_tail_serialized(adapter);
1965 		} else {
1966 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1967 			em_82547_update_fifo_head(adapter,
1968 			    m_head->m_pkthdr.len);
1969 		}
1970 	} else {
1971 		/*
1972 		 * Defer TDT updating, until enough descriptors are setup
1973 		 */
1974 		*idx = i;
1975 	}
1976 	return (0);
1977 }
1978 
1979 /*
1980  * 82547 workaround to avoid controller hang in half-duplex environment.
1981  * The workaround is to avoid queuing a large packet that would span
1982  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1983  * in this case.  We do that only when FIFO is quiescent.
1984  */
1985 static void
1986 em_82547_move_tail_serialized(struct adapter *adapter)
1987 {
1988 	struct e1000_tx_desc *tx_desc;
1989 	uint16_t hw_tdt, sw_tdt, length = 0;
1990 	bool eop = 0;
1991 
1992 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1993 
1994 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1995 	sw_tdt = adapter->next_avail_tx_desc;
1996 
1997 	while (hw_tdt != sw_tdt) {
1998 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1999 		length += tx_desc->lower.flags.length;
2000 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
2001 		if (++hw_tdt == adapter->num_tx_desc)
2002 			hw_tdt = 0;
2003 
2004 		if (eop) {
2005 			if (em_82547_fifo_workaround(adapter, length)) {
2006 				adapter->tx_fifo_wrk_cnt++;
2007 				callout_reset(&adapter->tx_fifo_timer, 1,
2008 					em_82547_move_tail, adapter);
2009 				break;
2010 			}
2011 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
2012 			em_82547_update_fifo_head(adapter, length);
2013 			length = 0;
2014 		}
2015 	}
2016 }
2017 
2018 static void
2019 em_82547_move_tail(void *xsc)
2020 {
2021 	struct adapter *adapter = xsc;
2022 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2023 
2024 	lwkt_serialize_enter(ifp->if_serializer);
2025 	em_82547_move_tail_serialized(adapter);
2026 	lwkt_serialize_exit(ifp->if_serializer);
2027 }
2028 
2029 static int
2030 em_82547_fifo_workaround(struct adapter *adapter, int len)
2031 {
2032 	int fifo_space, fifo_pkt_len;
2033 
2034 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
2035 
2036 	if (adapter->link_duplex == HALF_DUPLEX) {
2037 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2038 
2039 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
2040 			if (em_82547_tx_fifo_reset(adapter))
2041 				return (0);
2042 			else
2043 				return (1);
2044 		}
2045 	}
2046 	return (0);
2047 }
2048 
2049 static void
2050 em_82547_update_fifo_head(struct adapter *adapter, int len)
2051 {
2052 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
2053 
2054 	/* tx_fifo_head is always 16 byte aligned */
2055 	adapter->tx_fifo_head += fifo_pkt_len;
2056 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2057 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
2058 }
2059 
2060 static int
2061 em_82547_tx_fifo_reset(struct adapter *adapter)
2062 {
2063 	uint32_t tctl;
2064 
2065 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
2066 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
2067 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
2068 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
2069 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
2070 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
2071 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
2072 		/* Disable TX unit */
2073 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2074 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
2075 		    tctl & ~E1000_TCTL_EN);
2076 
2077 		/* Reset FIFO pointers */
2078 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
2079 		    adapter->tx_head_addr);
2080 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
2081 		    adapter->tx_head_addr);
2082 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
2083 		    adapter->tx_head_addr);
2084 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
2085 		    adapter->tx_head_addr);
2086 
2087 		/* Re-enable TX unit */
2088 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2089 		E1000_WRITE_FLUSH(&adapter->hw);
2090 
2091 		adapter->tx_fifo_head = 0;
2092 		adapter->tx_fifo_reset_cnt++;
2093 
2094 		return (TRUE);
2095 	} else {
2096 		return (FALSE);
2097 	}
2098 }
2099 
2100 static void
2101 em_set_promisc(struct adapter *adapter)
2102 {
2103 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2104 	uint32_t reg_rctl;
2105 
2106 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2107 
2108 	if (ifp->if_flags & IFF_PROMISC) {
2109 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2110 		/* Turn this on if you want to see bad packets */
2111 		if (em_debug_sbp)
2112 			reg_rctl |= E1000_RCTL_SBP;
2113 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2114 	} else if (ifp->if_flags & IFF_ALLMULTI) {
2115 		reg_rctl |= E1000_RCTL_MPE;
2116 		reg_rctl &= ~E1000_RCTL_UPE;
2117 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2118 	}
2119 }
2120 
2121 static void
2122 em_disable_promisc(struct adapter *adapter)
2123 {
2124 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2125 	uint32_t reg_rctl;
2126 	int mcnt = 0;
2127 
2128 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2129 	reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
2130 
2131 	if (ifp->if_flags & IFF_ALLMULTI) {
2132 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2133 	} else {
2134 		const struct ifmultiaddr *ifma;
2135 
2136 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2137 			if (ifma->ifma_addr->sa_family != AF_LINK)
2138 				continue;
2139 			if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2140 				break;
2141 			mcnt++;
2142 		}
2143 	}
2144 	/* Don't disable if in MAX groups */
2145 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2146 		reg_rctl &= ~E1000_RCTL_MPE;
2147 
2148 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2149 }
2150 
2151 static void
2152 em_set_multi(struct adapter *adapter)
2153 {
2154 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2155 	struct ifmultiaddr *ifma;
2156 	uint32_t reg_rctl = 0;
2157 	uint8_t *mta;
2158 	int mcnt = 0;
2159 
2160 	mta = adapter->mta;
2161 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2162 
2163 	if (adapter->hw.mac.type == e1000_82542 &&
2164 	    adapter->hw.revision_id == E1000_REVISION_2) {
2165 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2166 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2167 			e1000_pci_clear_mwi(&adapter->hw);
2168 		reg_rctl |= E1000_RCTL_RST;
2169 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2170 		msec_delay(5);
2171 	}
2172 
2173 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2174 		if (ifma->ifma_addr->sa_family != AF_LINK)
2175 			continue;
2176 
2177 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2178 			break;
2179 
2180 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2181 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2182 		mcnt++;
2183 	}
2184 
2185 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2186 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2187 		reg_rctl |= E1000_RCTL_MPE;
2188 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2189 	} else {
2190 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2191 	}
2192 
2193 	if (adapter->hw.mac.type == e1000_82542 &&
2194 	    adapter->hw.revision_id == E1000_REVISION_2) {
2195 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2196 		reg_rctl &= ~E1000_RCTL_RST;
2197 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2198 		msec_delay(5);
2199 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2200 			e1000_pci_set_mwi(&adapter->hw);
2201 	}
2202 }
2203 
2204 /*
2205  * This routine checks for link status and updates statistics.
2206  */
2207 static void
2208 em_timer(void *xsc)
2209 {
2210 	struct adapter *adapter = xsc;
2211 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2212 
2213 	lwkt_serialize_enter(ifp->if_serializer);
2214 
2215 	em_update_link_status(adapter);
2216 	em_update_stats(adapter);
2217 
2218 	/* Reset LAA into RAR[0] on 82571 */
2219 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2220 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2221 
2222 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2223 		em_print_hw_stats(adapter);
2224 
2225 	em_smartspeed(adapter);
2226 
2227 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2228 
2229 	lwkt_serialize_exit(ifp->if_serializer);
2230 }
2231 
2232 static void
2233 em_update_link_status(struct adapter *adapter)
2234 {
2235 	struct e1000_hw *hw = &adapter->hw;
2236 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2237 	device_t dev = adapter->dev;
2238 	uint32_t link_check = 0;
2239 
2240 	/* Get the cached link value or read phy for real */
2241 	switch (hw->phy.media_type) {
2242 	case e1000_media_type_copper:
2243 		if (hw->mac.get_link_status) {
2244 			if (hw->mac.type >= e1000_pch_spt)
2245 				msec_delay(50);
2246 			/* Do the work to read phy */
2247 			e1000_check_for_link(hw);
2248 			link_check = !hw->mac.get_link_status;
2249 			if (link_check) /* ESB2 fix */
2250 				e1000_cfg_on_link_up(hw);
2251 		} else {
2252 			link_check = TRUE;
2253 		}
2254 		break;
2255 
2256 	case e1000_media_type_fiber:
2257 		e1000_check_for_link(hw);
2258 		link_check =
2259 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2260 		break;
2261 
2262 	case e1000_media_type_internal_serdes:
2263 		e1000_check_for_link(hw);
2264 		link_check = adapter->hw.mac.serdes_has_link;
2265 		break;
2266 
2267 	case e1000_media_type_unknown:
2268 	default:
2269 		break;
2270 	}
2271 
2272 	/* Now check for a transition */
2273 	if (link_check && adapter->link_active == 0) {
2274 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2275 		    &adapter->link_duplex);
2276 
2277 		/*
2278 		 * Check if we should enable/disable SPEED_MODE bit on
2279 		 * 82571/82572
2280 		 */
2281 		if (adapter->link_speed != SPEED_1000 &&
2282 		    (hw->mac.type == e1000_82571 ||
2283 		     hw->mac.type == e1000_82572)) {
2284 			int tarc0;
2285 
2286 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2287 			tarc0 &= ~TARC_SPEED_MODE_BIT;
2288 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2289 		}
2290 		if (bootverbose) {
2291 			char flowctrl[IFM_ETH_FC_STRLEN];
2292 
2293 			e1000_fc2str(hw->fc.current_mode, flowctrl,
2294 			    sizeof(flowctrl));
2295 			device_printf(dev, "Link is up %d Mbps %s, "
2296 			    "Flow control: %s\n",
2297 			    adapter->link_speed,
2298 			    (adapter->link_duplex == FULL_DUPLEX) ?
2299 			    "Full Duplex" : "Half Duplex",
2300 			    flowctrl);
2301 		}
2302 		if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2303 			e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2304 		adapter->link_active = 1;
2305 		adapter->smartspeed = 0;
2306 		ifp->if_baudrate = adapter->link_speed * 1000000;
2307 		ifp->if_link_state = LINK_STATE_UP;
2308 		if_link_state_change(ifp);
2309 	} else if (!link_check && adapter->link_active == 1) {
2310 		ifp->if_baudrate = adapter->link_speed = 0;
2311 		adapter->link_duplex = 0;
2312 		if (bootverbose)
2313 			device_printf(dev, "Link is Down\n");
2314 		adapter->link_active = 0;
2315 #if 0
2316 		/* Link down, disable watchdog */
2317 		if->if_timer = 0;
2318 #endif
2319 		ifp->if_link_state = LINK_STATE_DOWN;
2320 		if_link_state_change(ifp);
2321 	}
2322 }
2323 
2324 static void
2325 em_stop(struct adapter *adapter)
2326 {
2327 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2328 	int i;
2329 
2330 	ASSERT_SERIALIZED(ifp->if_serializer);
2331 
2332 	em_disable_intr(adapter);
2333 
2334 	callout_stop(&adapter->timer);
2335 	callout_stop(&adapter->tx_fifo_timer);
2336 
2337 	ifp->if_flags &= ~IFF_RUNNING;
2338 	ifq_clr_oactive(&ifp->if_snd);
2339 	ifp->if_timer = 0;
2340 	adapter->tx_running = 0;
2341 	callout_stop(&adapter->tx_gc_timer);
2342 
2343 	/* I219 needs some special flushing to avoid hangs */
2344 	if (adapter->hw.mac.type >= e1000_pch_spt)
2345 		em_flush_txrx_ring(adapter);
2346 
2347 	e1000_reset_hw(&adapter->hw);
2348 	if (adapter->hw.mac.type >= e1000_82544)
2349 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2350 
2351 	for (i = 0; i < adapter->num_tx_desc; i++) {
2352 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2353 
2354 		if (tx_buffer->m_head != NULL)
2355 			em_free_txbuffer(adapter, tx_buffer);
2356 	}
2357 
2358 	for (i = 0; i < adapter->num_rx_desc; i++) {
2359 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2360 
2361 		if (rx_buffer->m_head != NULL) {
2362 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2363 			m_freem(rx_buffer->m_head);
2364 			rx_buffer->m_head = NULL;
2365 		}
2366 	}
2367 
2368 	if (adapter->fmp != NULL)
2369 		m_freem(adapter->fmp);
2370 	adapter->fmp = NULL;
2371 	adapter->lmp = NULL;
2372 
2373 	adapter->csum_flags = 0;
2374 	adapter->csum_lhlen = 0;
2375 	adapter->csum_iphlen = 0;
2376 	adapter->csum_thlen = 0;
2377 	adapter->csum_mss = 0;
2378 	adapter->csum_pktlen = 0;
2379 
2380 	adapter->tx_dd_head = 0;
2381 	adapter->tx_dd_tail = 0;
2382 	adapter->tx_nsegs = 0;
2383 }
2384 
2385 static int
2386 em_get_hw_info(struct adapter *adapter)
2387 {
2388 	device_t dev = adapter->dev;
2389 
2390 	/* Save off the information about this board */
2391 	adapter->hw.vendor_id = pci_get_vendor(dev);
2392 	adapter->hw.device_id = pci_get_device(dev);
2393 	adapter->hw.revision_id = pci_get_revid(dev);
2394 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2395 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2396 
2397 	/* Do Shared Code Init and Setup */
2398 	if (e1000_set_mac_type(&adapter->hw))
2399 		return ENXIO;
2400 	return 0;
2401 }
2402 
2403 static int
2404 em_alloc_pci_res(struct adapter *adapter)
2405 {
2406 	device_t dev = adapter->dev;
2407 	u_int intr_flags;
2408 	int val, rid, msi_enable;
2409 
2410 	/* Enable bus mastering */
2411 	pci_enable_busmaster(dev);
2412 
2413 	adapter->memory_rid = EM_BAR_MEM;
2414 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2415 				&adapter->memory_rid, RF_ACTIVE);
2416 	if (adapter->memory == NULL) {
2417 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2418 		return (ENXIO);
2419 	}
2420 	adapter->osdep.mem_bus_space_tag =
2421 	    rman_get_bustag(adapter->memory);
2422 	adapter->osdep.mem_bus_space_handle =
2423 	    rman_get_bushandle(adapter->memory);
2424 
2425 	/* XXX This is quite goofy, it is not actually used */
2426 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2427 
2428 	/* Only older adapters use IO mapping */
2429 	if (adapter->hw.mac.type > e1000_82543 &&
2430 	    adapter->hw.mac.type < e1000_82571) {
2431 		/* Figure our where our IO BAR is ? */
2432 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2433 			val = pci_read_config(dev, rid, 4);
2434 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2435 				adapter->io_rid = rid;
2436 				break;
2437 			}
2438 			rid += 4;
2439 			/* check for 64bit BAR */
2440 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2441 				rid += 4;
2442 		}
2443 		if (rid >= PCIR_CARDBUSCIS) {
2444 			device_printf(dev, "Unable to locate IO BAR\n");
2445 			return (ENXIO);
2446 		}
2447 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2448 					&adapter->io_rid, RF_ACTIVE);
2449 		if (adapter->ioport == NULL) {
2450 			device_printf(dev, "Unable to allocate bus resource: "
2451 			    "ioport\n");
2452 			return (ENXIO);
2453 		}
2454 		adapter->hw.io_base = 0;
2455 		adapter->osdep.io_bus_space_tag =
2456 		    rman_get_bustag(adapter->ioport);
2457 		adapter->osdep.io_bus_space_handle =
2458 		    rman_get_bushandle(adapter->ioport);
2459 	}
2460 
2461 	/*
2462 	 * Don't enable MSI-X on 82574, see:
2463 	 * 82574 specification update errata #15
2464 	 *
2465 	 * Don't enable MSI on PCI/PCI-X chips, see:
2466 	 * 82540 specification update errata #6
2467 	 * 82545 specification update errata #4
2468 	 *
2469 	 * Don't enable MSI on 82571/82572, see:
2470 	 * 82571/82572 specification update errata #63
2471 	 */
2472 	msi_enable = em_msi_enable;
2473 	if (msi_enable &&
2474 	    ((adapter->flags & EM_FLAG_GEN2) == 0 ||
2475 	     adapter->hw.mac.type == e1000_82571 ||
2476 	     adapter->hw.mac.type == e1000_82572))
2477 		msi_enable = 0;
2478 again:
2479 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2480 	    &adapter->intr_rid, &intr_flags);
2481 
2482 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2483 		int unshared;
2484 
2485 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2486 		if (!unshared) {
2487 			adapter->flags |= EM_FLAG_SHARED_INTR;
2488 			if (bootverbose)
2489 				device_printf(dev, "IRQ shared\n");
2490 		} else {
2491 			intr_flags &= ~RF_SHAREABLE;
2492 			if (bootverbose)
2493 				device_printf(dev, "IRQ unshared\n");
2494 		}
2495 	}
2496 
2497 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2498 	    &adapter->intr_rid, intr_flags);
2499 	if (adapter->intr_res == NULL) {
2500 		device_printf(dev, "Unable to allocate bus resource: %s\n",
2501 		    adapter->intr_type == PCI_INTR_TYPE_MSI ?
2502 		    "MSI" : "legacy intr");
2503 		if (!msi_enable) {
2504 			/* Retry with MSI. */
2505 			msi_enable = 1;
2506 			adapter->flags &= ~EM_FLAG_SHARED_INTR;
2507 			goto again;
2508 		}
2509 		return (ENXIO);
2510 	}
2511 
2512 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2513 	adapter->hw.back = &adapter->osdep;
2514 	return (0);
2515 }
2516 
2517 static void
2518 em_free_pci_res(struct adapter *adapter)
2519 {
2520 	device_t dev = adapter->dev;
2521 
2522 	if (adapter->intr_res != NULL) {
2523 		bus_release_resource(dev, SYS_RES_IRQ,
2524 		    adapter->intr_rid, adapter->intr_res);
2525 	}
2526 
2527 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2528 		pci_release_msi(dev);
2529 
2530 	if (adapter->memory != NULL) {
2531 		bus_release_resource(dev, SYS_RES_MEMORY,
2532 		    adapter->memory_rid, adapter->memory);
2533 	}
2534 
2535 	if (adapter->flash != NULL) {
2536 		bus_release_resource(dev, SYS_RES_MEMORY,
2537 		    adapter->flash_rid, adapter->flash);
2538 	}
2539 
2540 	if (adapter->ioport != NULL) {
2541 		bus_release_resource(dev, SYS_RES_IOPORT,
2542 		    adapter->io_rid, adapter->ioport);
2543 	}
2544 }
2545 
2546 static int
2547 em_reset(struct adapter *adapter)
2548 {
2549 	device_t dev = adapter->dev;
2550 	uint16_t rx_buffer_size;
2551 	uint32_t pba;
2552 
2553 	/* When hardware is reset, fifo_head is also reset */
2554 	adapter->tx_fifo_head = 0;
2555 
2556 	/* Set up smart power down as default off on newer adapters. */
2557 	if (!em_smart_pwr_down &&
2558 	    (adapter->hw.mac.type == e1000_82571 ||
2559 	     adapter->hw.mac.type == e1000_82572)) {
2560 		uint16_t phy_tmp = 0;
2561 
2562 		/* Speed up time to link by disabling smart power down. */
2563 		e1000_read_phy_reg(&adapter->hw,
2564 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2565 		phy_tmp &= ~IGP02E1000_PM_SPD;
2566 		e1000_write_phy_reg(&adapter->hw,
2567 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2568 	}
2569 
2570 	/*
2571 	 * Packet Buffer Allocation (PBA)
2572 	 * Writing PBA sets the receive portion of the buffer
2573 	 * the remainder is used for the transmit buffer.
2574 	 *
2575 	 * Devices before the 82547 had a Packet Buffer of 64K.
2576 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2577 	 * After the 82547 the buffer was reduced to 40K.
2578 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2579 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2580 	 */
2581 	switch (adapter->hw.mac.type) {
2582 	case e1000_82547:
2583 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2584 		if (adapter->hw.mac.max_frame_size > 8192)
2585 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2586 		else
2587 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2588 		adapter->tx_fifo_head = 0;
2589 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2590 		adapter->tx_fifo_size =
2591 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2592 		break;
2593 
2594 	/* Total Packet Buffer on these is 48K */
2595 	case e1000_82571:
2596 	case e1000_82572:
2597 	case e1000_80003es2lan:
2598 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2599 		break;
2600 
2601 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2602 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2603 		break;
2604 
2605 	case e1000_82574:
2606 	case e1000_82583:
2607 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2608 		break;
2609 
2610 	case e1000_ich8lan:
2611 		pba = E1000_PBA_8K;
2612 		break;
2613 
2614 	case e1000_ich9lan:
2615 	case e1000_ich10lan:
2616 #define E1000_PBA_10K	0x000A
2617 		pba = E1000_PBA_10K;
2618 		break;
2619 
2620 	case e1000_pchlan:
2621 	case e1000_pch2lan:
2622 	case e1000_pch_lpt:
2623 	case e1000_pch_spt:
2624 	case e1000_pch_cnp:
2625 		pba = E1000_PBA_26K;
2626 		break;
2627 
2628 	default:
2629 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2630 		if (adapter->hw.mac.max_frame_size > 8192)
2631 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2632 		else
2633 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2634 	}
2635 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2636 
2637 	/*
2638 	 * These parameters control the automatic generation (Tx) and
2639 	 * response (Rx) to Ethernet PAUSE frames.
2640 	 * - High water mark should allow for at least two frames to be
2641 	 *   received after sending an XOFF.
2642 	 * - Low water mark works best when it is very near the high water mark.
2643 	 *   This allows the receiver to restart by sending XON when it has
2644 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2645 	 *   restart after one full frame is pulled from the buffer. There
2646 	 *   could be several smaller frames in the buffer and if so they will
2647 	 *   not trigger the XON until their total number reduces the buffer
2648 	 *   by 1500.
2649 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2650 	 */
2651 	rx_buffer_size =
2652 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2653 
2654 	adapter->hw.fc.high_water = rx_buffer_size -
2655 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2656 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2657 
2658 	if (adapter->hw.mac.type == e1000_80003es2lan)
2659 		adapter->hw.fc.pause_time = 0xFFFF;
2660 	else
2661 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2662 
2663 	adapter->hw.fc.send_xon = TRUE;
2664 
2665 	adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2666 
2667 	/*
2668 	 * Device specific overrides/settings
2669 	 */
2670 	switch (adapter->hw.mac.type) {
2671 	case e1000_pchlan:
2672 		KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2673 		    adapter->hw.fc.requested_mode == e1000_fc_none,
2674 		    ("unsupported flow control on PCH %d",
2675 		     adapter->hw.fc.requested_mode));
2676 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2677 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2678 			adapter->hw.fc.high_water = 0x3500;
2679 			adapter->hw.fc.low_water = 0x1500;
2680 		} else {
2681 			adapter->hw.fc.high_water = 0x5000;
2682 			adapter->hw.fc.low_water = 0x3000;
2683 		}
2684 		adapter->hw.fc.refresh_time = 0x1000;
2685 		break;
2686 
2687 	case e1000_pch2lan:
2688 	case e1000_pch_lpt:
2689 	case e1000_pch_spt:
2690 	case e1000_pch_cnp:
2691 		adapter->hw.fc.high_water = 0x5C20;
2692 		adapter->hw.fc.low_water = 0x5048;
2693 		adapter->hw.fc.pause_time = 0x0650;
2694 		adapter->hw.fc.refresh_time = 0x0400;
2695 		/* Jumbos need adjusted PBA */
2696 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2697 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2698 		else
2699 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2700 		break;
2701 
2702 	case e1000_ich9lan:
2703 	case e1000_ich10lan:
2704 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2705 			adapter->hw.fc.high_water = 0x2800;
2706 			adapter->hw.fc.low_water =
2707 			    adapter->hw.fc.high_water - 8;
2708 			break;
2709 		}
2710 		/* FALL THROUGH */
2711 	default:
2712 		if (adapter->hw.mac.type == e1000_80003es2lan)
2713 			adapter->hw.fc.pause_time = 0xFFFF;
2714 		break;
2715 	}
2716 
2717 	/* I219 needs some special flushing to avoid hangs */
2718 	if (adapter->hw.mac.type >= e1000_pch_spt)
2719 		em_flush_txrx_ring(adapter);
2720 
2721 	/* Issue a global reset */
2722 	e1000_reset_hw(&adapter->hw);
2723 	if (adapter->hw.mac.type >= e1000_82544)
2724 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2725 	em_disable_aspm(adapter);
2726 
2727 	if (e1000_init_hw(&adapter->hw) < 0) {
2728 		device_printf(dev, "Hardware Initialization Failed\n");
2729 		return (EIO);
2730 	}
2731 
2732 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2733 	e1000_get_phy_info(&adapter->hw);
2734 	e1000_check_for_link(&adapter->hw);
2735 
2736 	return (0);
2737 }
2738 
2739 static void
2740 em_setup_ifp(struct adapter *adapter)
2741 {
2742 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2743 
2744 	if_initname(ifp, device_get_name(adapter->dev),
2745 		    device_get_unit(adapter->dev));
2746 	ifp->if_softc = adapter;
2747 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2748 	ifp->if_init =  em_init;
2749 	ifp->if_ioctl = em_ioctl;
2750 	ifp->if_start = em_start;
2751 #ifdef IFPOLL_ENABLE
2752 	ifp->if_npoll = em_npoll;
2753 #endif
2754 	ifp->if_watchdog = em_watchdog;
2755 	ifp->if_nmbclusters = adapter->num_rx_desc;
2756 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2757 	ifq_set_ready(&ifp->if_snd);
2758 
2759 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2760 
2761 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2762 	if (adapter->hw.mac.type >= e1000_82543)
2763 		ifp->if_capabilities |= IFCAP_HWCSUM;
2764 	if (adapter->flags & EM_FLAG_TSO)
2765 		ifp->if_capabilities |= IFCAP_TSO;
2766 	ifp->if_capenable = ifp->if_capabilities;
2767 
2768 	if (ifp->if_capenable & IFCAP_TXCSUM)
2769 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2770 	if (ifp->if_capenable & IFCAP_TSO)
2771 		ifp->if_hwassist |= CSUM_TSO;
2772 
2773 	/*
2774 	 * Tell the upper layer(s) we support long frames.
2775 	 */
2776 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2777 
2778 	/*
2779 	 * Specify the media types supported by this adapter and register
2780 	 * callbacks to update media and link information
2781 	 */
2782 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2783 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2784 		u_char fiber_type = IFM_1000_SX; /* default type */
2785 
2786 		if (adapter->hw.mac.type == e1000_82545)
2787 			fiber_type = IFM_1000_LX;
2788 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2789 			    0, NULL);
2790 	} else {
2791 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2792 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2793 			    0, NULL);
2794 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2795 			    0, NULL);
2796 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2797 			    0, NULL);
2798 		if (adapter->hw.phy.type != e1000_phy_ife) {
2799 			ifmedia_add(&adapter->media,
2800 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2801 		}
2802 	}
2803 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2804 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2805 	    adapter->ifm_flowctrl);
2806 }
2807 
2808 
2809 /*
2810  * Workaround for SmartSpeed on 82541 and 82547 controllers
2811  */
2812 static void
2813 em_smartspeed(struct adapter *adapter)
2814 {
2815 	uint16_t phy_tmp;
2816 
2817 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2818 	    adapter->hw.mac.autoneg == 0 ||
2819 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2820 		return;
2821 
2822 	if (adapter->smartspeed == 0) {
2823 		/*
2824 		 * If Master/Slave config fault is asserted twice,
2825 		 * we assume back-to-back
2826 		 */
2827 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2828 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2829 			return;
2830 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2831 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2832 			e1000_read_phy_reg(&adapter->hw,
2833 			    PHY_1000T_CTRL, &phy_tmp);
2834 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2835 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2836 				e1000_write_phy_reg(&adapter->hw,
2837 				    PHY_1000T_CTRL, phy_tmp);
2838 				adapter->smartspeed++;
2839 				if (adapter->hw.mac.autoneg &&
2840 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2841 				    !e1000_read_phy_reg(&adapter->hw,
2842 				     PHY_CONTROL, &phy_tmp)) {
2843 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2844 						   MII_CR_RESTART_AUTO_NEG;
2845 					e1000_write_phy_reg(&adapter->hw,
2846 					    PHY_CONTROL, phy_tmp);
2847 				}
2848 			}
2849 		}
2850 		return;
2851 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2852 		/* If still no link, perhaps using 2/3 pair cable */
2853 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2854 		phy_tmp |= CR_1000T_MS_ENABLE;
2855 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2856 		if (adapter->hw.mac.autoneg &&
2857 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2858 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2859 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2860 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2861 		}
2862 	}
2863 
2864 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2865 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2866 		adapter->smartspeed = 0;
2867 }
2868 
2869 static int
2870 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2871 	      struct em_dma_alloc *dma)
2872 {
2873 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2874 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2875 				&dma->dma_tag, &dma->dma_map,
2876 				&dma->dma_paddr);
2877 	if (dma->dma_vaddr == NULL)
2878 		return ENOMEM;
2879 	else
2880 		return 0;
2881 }
2882 
2883 static void
2884 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2885 {
2886 	if (dma->dma_tag == NULL)
2887 		return;
2888 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2889 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2890 	bus_dma_tag_destroy(dma->dma_tag);
2891 }
2892 
2893 static int
2894 em_create_tx_ring(struct adapter *adapter)
2895 {
2896 	device_t dev = adapter->dev;
2897 	struct em_buffer *tx_buffer;
2898 	int error, i;
2899 
2900 	adapter->tx_buffer_area =
2901 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2902 			M_DEVBUF, M_WAITOK | M_ZERO);
2903 
2904 	/*
2905 	 * Create DMA tags for tx buffers
2906 	 */
2907 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2908 			1, 0,			/* alignment, bounds */
2909 			BUS_SPACE_MAXADDR,	/* lowaddr */
2910 			BUS_SPACE_MAXADDR,	/* highaddr */
2911 			NULL, NULL,		/* filter, filterarg */
2912 			EM_TSO_SIZE,		/* maxsize */
2913 			EM_MAX_SCATTER,		/* nsegments */
2914 			PAGE_SIZE,		/* maxsegsize */
2915 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2916 			BUS_DMA_ONEBPAGE,	/* flags */
2917 			&adapter->txtag);
2918 	if (error) {
2919 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2920 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2921 		adapter->tx_buffer_area = NULL;
2922 		return error;
2923 	}
2924 
2925 	/*
2926 	 * Create DMA maps for tx buffers
2927 	 */
2928 	for (i = 0; i < adapter->num_tx_desc; i++) {
2929 		tx_buffer = &adapter->tx_buffer_area[i];
2930 
2931 		error = bus_dmamap_create(adapter->txtag,
2932 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2933 					  &tx_buffer->map);
2934 		if (error) {
2935 			device_printf(dev, "Unable to create TX DMA map\n");
2936 			em_destroy_tx_ring(adapter, i);
2937 			return error;
2938 		}
2939 	}
2940 	return (0);
2941 }
2942 
2943 static void
2944 em_init_tx_ring(struct adapter *adapter)
2945 {
2946 	/* Clear the old ring contents */
2947 	bzero(adapter->tx_desc_base,
2948 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2949 
2950 	/* Reset state */
2951 	adapter->next_avail_tx_desc = 0;
2952 	adapter->next_tx_to_clean = 0;
2953 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2954 	adapter->tx_nmbuf = 0;
2955 	adapter->tx_running = 0;
2956 }
2957 
2958 static void
2959 em_init_tx_unit(struct adapter *adapter)
2960 {
2961 	uint32_t tctl, tarc, tipg = 0;
2962 	uint64_t bus_addr;
2963 
2964 	/* Setup the Base and Length of the Tx Descriptor Ring */
2965 	bus_addr = adapter->txdma.dma_paddr;
2966 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2967 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2968 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2969 	    (uint32_t)(bus_addr >> 32));
2970 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2971 	    (uint32_t)bus_addr);
2972 	/* Setup the HW Tx Head and Tail descriptor pointers */
2973 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2974 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2975 	if (adapter->flags & EM_FLAG_GEN2) {
2976 		uint32_t txdctl = 0;
2977 
2978 		txdctl |= 0x1f;		/* PTHRESH */
2979 		txdctl |= 1 << 8;	/* HTHRESH */
2980 		txdctl |= 1 << 16;	/* WTHRESH */
2981 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
2982 		txdctl |= E1000_TXDCTL_GRAN;
2983 		txdctl |= 1 << 25;	/* LWTHRESH */
2984 
2985 		E1000_WRITE_REG(&adapter->hw, E1000_TXDCTL(0), txdctl);
2986 	}
2987 
2988 	/* Set the default values for the Tx Inter Packet Gap timer */
2989 	switch (adapter->hw.mac.type) {
2990 	case e1000_82542:
2991 		tipg = DEFAULT_82542_TIPG_IPGT;
2992 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2993 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2994 		break;
2995 
2996 	case e1000_80003es2lan:
2997 		tipg = DEFAULT_82543_TIPG_IPGR1;
2998 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2999 		    E1000_TIPG_IPGR2_SHIFT;
3000 		break;
3001 
3002 	default:
3003 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3004 		    adapter->hw.phy.media_type ==
3005 		    e1000_media_type_internal_serdes)
3006 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3007 		else
3008 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3009 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3010 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3011 		break;
3012 	}
3013 
3014 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
3015 
3016 	/* NOTE: 0 is not allowed for TIDV */
3017 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
3018 	if(adapter->hw.mac.type >= e1000_82540)
3019 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
3020 
3021 	if (adapter->hw.mac.type == e1000_82571 ||
3022 	    adapter->hw.mac.type == e1000_82572) {
3023 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3024 		tarc |= TARC_SPEED_MODE_BIT;
3025 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3026 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3027 		/* errata: program both queues to unweighted RR */
3028 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3029 		tarc |= 1;
3030 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3031 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3032 		tarc |= 1;
3033 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3034 	} else if (adapter->hw.mac.type == e1000_82574) {
3035 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3036 		tarc |= TARC_ERRATA_BIT;
3037 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3038 	}
3039 
3040 	/* Program the Transmit Control Register */
3041 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3042 	tctl &= ~E1000_TCTL_CT;
3043 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3044 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3045 
3046 	if (adapter->hw.mac.type >= e1000_82571)
3047 		tctl |= E1000_TCTL_MULR;
3048 
3049 	/* This write will effectively turn on the transmit unit. */
3050 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3051 
3052 	if (adapter->hw.mac.type == e1000_82571 ||
3053 	    adapter->hw.mac.type == e1000_82572 ||
3054 	    adapter->hw.mac.type == e1000_80003es2lan) {
3055 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
3056 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3057 		tarc &= ~(1 << 28);
3058 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3059 	} else if (adapter->hw.mac.type >= e1000_pch_spt) {
3060 		uint32_t reg;
3061 
3062 		reg = E1000_READ_REG(&adapter->hw, E1000_IOSFPC);
3063 		reg |= E1000_RCTL_RDMTS_HEX;
3064 		E1000_WRITE_REG(&adapter->hw, E1000_IOSFPC, reg);
3065 		reg = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3066 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
3067 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), reg);
3068 	}
3069 }
3070 
3071 static void
3072 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
3073 {
3074 	struct em_buffer *tx_buffer;
3075 	int i;
3076 
3077 	if (adapter->tx_buffer_area == NULL)
3078 		return;
3079 
3080 	for (i = 0; i < ndesc; i++) {
3081 		tx_buffer = &adapter->tx_buffer_area[i];
3082 
3083 		KKASSERT(tx_buffer->m_head == NULL);
3084 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
3085 	}
3086 	bus_dma_tag_destroy(adapter->txtag);
3087 
3088 	kfree(adapter->tx_buffer_area, M_DEVBUF);
3089 	adapter->tx_buffer_area = NULL;
3090 }
3091 
3092 /*
3093  * The offload context needs to be set when we transfer the first
3094  * packet of a particular protocol (TCP/UDP).  This routine has been
3095  * enhanced to deal with inserted VLAN headers.
3096  *
3097  * If the new packet's ether header length, ip header length and
3098  * csum offloading type are same as the previous packet, we should
3099  * avoid allocating a new csum context descriptor; mainly to take
3100  * advantage of the pipeline effect of the TX data read request.
3101  *
3102  * This function returns number of TX descrptors allocated for
3103  * csum context.
3104  */
3105 static int
3106 em_txcsum(struct adapter *adapter, struct mbuf *mp,
3107 	  uint32_t *txd_upper, uint32_t *txd_lower)
3108 {
3109 	struct e1000_context_desc *TXD;
3110 	int curr_txd, ehdrlen, csum_flags;
3111 	uint32_t cmd, hdr_len, ip_hlen;
3112 
3113 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
3114 	ip_hlen = mp->m_pkthdr.csum_iphlen;
3115 	ehdrlen = mp->m_pkthdr.csum_lhlen;
3116 
3117 	if (adapter->csum_lhlen == ehdrlen &&
3118 	    adapter->csum_iphlen == ip_hlen &&
3119 	    adapter->csum_flags == csum_flags) {
3120 		/*
3121 		 * Same csum offload context as the previous packets;
3122 		 * just return.
3123 		 */
3124 		*txd_upper = adapter->csum_txd_upper;
3125 		*txd_lower = adapter->csum_txd_lower;
3126 		return 0;
3127 	}
3128 
3129 	/*
3130 	 * Setup a new csum offload context.
3131 	 */
3132 
3133 	curr_txd = adapter->next_avail_tx_desc;
3134 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
3135 
3136 	cmd = 0;
3137 
3138 	/* Setup of IP header checksum. */
3139 	if (csum_flags & CSUM_IP) {
3140 		/*
3141 		 * Start offset for header checksum calculation.
3142 		 * End offset for header checksum calculation.
3143 		 * Offset of place to put the checksum.
3144 		 */
3145 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
3146 		TXD->lower_setup.ip_fields.ipcse =
3147 		    htole16(ehdrlen + ip_hlen - 1);
3148 		TXD->lower_setup.ip_fields.ipcso =
3149 		    ehdrlen + offsetof(struct ip, ip_sum);
3150 		cmd |= E1000_TXD_CMD_IP;
3151 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3152 	}
3153 	hdr_len = ehdrlen + ip_hlen;
3154 
3155 	if (csum_flags & CSUM_TCP) {
3156 		/*
3157 		 * Start offset for payload checksum calculation.
3158 		 * End offset for payload checksum calculation.
3159 		 * Offset of place to put the checksum.
3160 		 */
3161 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3162 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3163 		TXD->upper_setup.tcp_fields.tucso =
3164 		    hdr_len + offsetof(struct tcphdr, th_sum);
3165 		cmd |= E1000_TXD_CMD_TCP;
3166 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3167 	} else if (csum_flags & CSUM_UDP) {
3168 		/*
3169 		 * Start offset for header checksum calculation.
3170 		 * End offset for header checksum calculation.
3171 		 * Offset of place to put the checksum.
3172 		 */
3173 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3174 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3175 		TXD->upper_setup.tcp_fields.tucso =
3176 		    hdr_len + offsetof(struct udphdr, uh_sum);
3177 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3178 	}
3179 
3180 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3181 		     E1000_TXD_DTYP_D;		/* Data descr */
3182 
3183 	/* Save the information for this csum offloading context */
3184 	adapter->csum_lhlen = ehdrlen;
3185 	adapter->csum_iphlen = ip_hlen;
3186 	adapter->csum_flags = csum_flags;
3187 	adapter->csum_txd_upper = *txd_upper;
3188 	adapter->csum_txd_lower = *txd_lower;
3189 
3190 	TXD->tcp_seg_setup.data = htole32(0);
3191 	TXD->cmd_and_length =
3192 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3193 
3194 	if (++curr_txd == adapter->num_tx_desc)
3195 		curr_txd = 0;
3196 
3197 	KKASSERT(adapter->num_tx_desc_avail > 0);
3198 	adapter->num_tx_desc_avail--;
3199 
3200 	adapter->next_avail_tx_desc = curr_txd;
3201 	return 1;
3202 }
3203 
3204 static void
3205 em_txeof(struct adapter *adapter)
3206 {
3207 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3208 	struct em_buffer *tx_buffer;
3209 	int first, num_avail;
3210 
3211 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
3212 		return;
3213 
3214 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3215 		return;
3216 
3217 	num_avail = adapter->num_tx_desc_avail;
3218 	first = adapter->next_tx_to_clean;
3219 
3220 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3221 		struct e1000_tx_desc *tx_desc;
3222 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3223 
3224 		tx_desc = &adapter->tx_desc_base[dd_idx];
3225 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3226 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3227 
3228 			if (++dd_idx == adapter->num_tx_desc)
3229 				dd_idx = 0;
3230 
3231 			while (first != dd_idx) {
3232 				logif(pkt_txclean);
3233 
3234 				KKASSERT(num_avail < adapter->num_tx_desc);
3235 				num_avail++;
3236 
3237 				tx_buffer = &adapter->tx_buffer_area[first];
3238 				if (tx_buffer->m_head != NULL)
3239 					em_free_txbuffer(adapter, tx_buffer);
3240 
3241 				if (++first == adapter->num_tx_desc)
3242 					first = 0;
3243 			}
3244 		} else {
3245 			break;
3246 		}
3247 	}
3248 	adapter->next_tx_to_clean = first;
3249 	adapter->num_tx_desc_avail = num_avail;
3250 
3251 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3252 		adapter->tx_dd_head = 0;
3253 		adapter->tx_dd_tail = 0;
3254 	}
3255 
3256 	if (!EM_IS_OACTIVE(adapter)) {
3257 		ifq_clr_oactive(&ifp->if_snd);
3258 
3259 		/* All clean, turn off the timer */
3260 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3261 			ifp->if_timer = 0;
3262 	}
3263 	adapter->tx_running = EM_TX_RUNNING;
3264 }
3265 
3266 static void
3267 em_tx_collect(struct adapter *adapter, boolean_t gc)
3268 {
3269 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3270 	struct em_buffer *tx_buffer;
3271 	int tdh, first, num_avail, dd_idx = -1;
3272 
3273 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3274 		return;
3275 
3276 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3277 	if (tdh == adapter->next_tx_to_clean) {
3278 		if (gc && adapter->tx_nmbuf > 0)
3279 			adapter->tx_running = EM_TX_RUNNING;
3280 		return;
3281 	}
3282 	if (gc)
3283 		adapter->tx_gc++;
3284 
3285 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3286 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3287 
3288 	num_avail = adapter->num_tx_desc_avail;
3289 	first = adapter->next_tx_to_clean;
3290 
3291 	while (first != tdh) {
3292 		logif(pkt_txclean);
3293 
3294 		KKASSERT(num_avail < adapter->num_tx_desc);
3295 		num_avail++;
3296 
3297 		tx_buffer = &adapter->tx_buffer_area[first];
3298 		if (tx_buffer->m_head != NULL)
3299 			em_free_txbuffer(adapter, tx_buffer);
3300 
3301 		if (first == dd_idx) {
3302 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3303 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3304 				adapter->tx_dd_head = 0;
3305 				adapter->tx_dd_tail = 0;
3306 				dd_idx = -1;
3307 			} else {
3308 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3309 			}
3310 		}
3311 
3312 		if (++first == adapter->num_tx_desc)
3313 			first = 0;
3314 	}
3315 	adapter->next_tx_to_clean = first;
3316 	adapter->num_tx_desc_avail = num_avail;
3317 
3318 	if (!EM_IS_OACTIVE(adapter)) {
3319 		ifq_clr_oactive(&ifp->if_snd);
3320 
3321 		/* All clean, turn off the timer */
3322 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3323 			ifp->if_timer = 0;
3324 	}
3325 	if (!gc || adapter->tx_nmbuf > 0)
3326 		adapter->tx_running = EM_TX_RUNNING;
3327 }
3328 
3329 /*
3330  * When Link is lost sometimes there is work still in the TX ring
3331  * which will result in a watchdog, rather than allow that do an
3332  * attempted cleanup and then reinit here.  Note that this has been
3333  * seens mostly with fiber adapters.
3334  */
3335 static void
3336 em_tx_purge(struct adapter *adapter)
3337 {
3338 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3339 
3340 	if (!adapter->link_active && ifp->if_timer) {
3341 		em_tx_collect(adapter, FALSE);
3342 		if (ifp->if_timer) {
3343 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3344 			ifp->if_timer = 0;
3345 			em_init(adapter);
3346 		}
3347 	}
3348 }
3349 
3350 static int
3351 em_newbuf(struct adapter *adapter, int i, int init)
3352 {
3353 	struct mbuf *m;
3354 	bus_dma_segment_t seg;
3355 	bus_dmamap_t map;
3356 	struct em_buffer *rx_buffer;
3357 	int error, nseg;
3358 
3359 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3360 	if (m == NULL) {
3361 		adapter->mbuf_cluster_failed++;
3362 		if (init) {
3363 			if_printf(&adapter->arpcom.ac_if,
3364 				  "Unable to allocate RX mbuf\n");
3365 		}
3366 		return (ENOBUFS);
3367 	}
3368 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3369 
3370 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3371 		m_adj(m, ETHER_ALIGN);
3372 
3373 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3374 			adapter->rx_sparemap, m,
3375 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3376 	if (error) {
3377 		m_freem(m);
3378 		if (init) {
3379 			if_printf(&adapter->arpcom.ac_if,
3380 				  "Unable to load RX mbuf\n");
3381 		}
3382 		return (error);
3383 	}
3384 
3385 	rx_buffer = &adapter->rx_buffer_area[i];
3386 	if (rx_buffer->m_head != NULL)
3387 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3388 
3389 	map = rx_buffer->map;
3390 	rx_buffer->map = adapter->rx_sparemap;
3391 	adapter->rx_sparemap = map;
3392 
3393 	rx_buffer->m_head = m;
3394 
3395 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3396 	return (0);
3397 }
3398 
3399 static int
3400 em_create_rx_ring(struct adapter *adapter)
3401 {
3402 	device_t dev = adapter->dev;
3403 	struct em_buffer *rx_buffer;
3404 	int i, error;
3405 
3406 	adapter->rx_buffer_area =
3407 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3408 			M_DEVBUF, M_WAITOK | M_ZERO);
3409 
3410 	/*
3411 	 * Create DMA tag for rx buffers
3412 	 */
3413 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3414 			1, 0,			/* alignment, bounds */
3415 			BUS_SPACE_MAXADDR,	/* lowaddr */
3416 			BUS_SPACE_MAXADDR,	/* highaddr */
3417 			NULL, NULL,		/* filter, filterarg */
3418 			MCLBYTES,		/* maxsize */
3419 			1,			/* nsegments */
3420 			MCLBYTES,		/* maxsegsize */
3421 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3422 			&adapter->rxtag);
3423 	if (error) {
3424 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3425 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3426 		adapter->rx_buffer_area = NULL;
3427 		return error;
3428 	}
3429 
3430 	/*
3431 	 * Create spare DMA map for rx buffers
3432 	 */
3433 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3434 				  &adapter->rx_sparemap);
3435 	if (error) {
3436 		device_printf(dev, "Unable to create spare RX DMA map\n");
3437 		bus_dma_tag_destroy(adapter->rxtag);
3438 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3439 		adapter->rx_buffer_area = NULL;
3440 		return error;
3441 	}
3442 
3443 	/*
3444 	 * Create DMA maps for rx buffers
3445 	 */
3446 	for (i = 0; i < adapter->num_rx_desc; i++) {
3447 		rx_buffer = &adapter->rx_buffer_area[i];
3448 
3449 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3450 					  &rx_buffer->map);
3451 		if (error) {
3452 			device_printf(dev, "Unable to create RX DMA map\n");
3453 			em_destroy_rx_ring(adapter, i);
3454 			return error;
3455 		}
3456 	}
3457 	return (0);
3458 }
3459 
3460 static int
3461 em_init_rx_ring(struct adapter *adapter)
3462 {
3463 	int i, error;
3464 
3465 	/* Reset descriptor ring */
3466 	bzero(adapter->rx_desc_base,
3467 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3468 
3469 	/* Allocate new ones. */
3470 	for (i = 0; i < adapter->num_rx_desc; i++) {
3471 		error = em_newbuf(adapter, i, 1);
3472 		if (error)
3473 			return (error);
3474 	}
3475 
3476 	/* Setup our descriptor pointers */
3477 	adapter->next_rx_desc_to_check = 0;
3478 
3479 	return (0);
3480 }
3481 
3482 static void
3483 em_init_rx_unit(struct adapter *adapter)
3484 {
3485 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3486 	uint64_t bus_addr;
3487 	uint32_t rctl, rxcsum;
3488 
3489 	/*
3490 	 * Make sure receives are disabled while setting
3491 	 * up the descriptor ring
3492 	 */
3493 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3494 	/* Do not disable if ever enabled on this hardware */
3495 	if (adapter->hw.mac.type != e1000_82574 &&
3496 	    adapter->hw.mac.type != e1000_82583)
3497 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3498 
3499 	if (adapter->hw.mac.type >= e1000_82540) {
3500 		uint32_t itr;
3501 
3502 		/*
3503 		 * Set the interrupt throttling rate. Value is calculated
3504 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3505 		 */
3506 		if (adapter->int_throttle_ceil)
3507 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3508 		else
3509 			itr = 0;
3510 		em_set_itr(adapter, itr);
3511 	}
3512 
3513 	/* Disable accelerated ackknowledge */
3514 	if (adapter->hw.mac.type == e1000_82574) {
3515 		uint32_t rfctl;
3516 
3517 		rfctl = E1000_READ_REG(&adapter->hw, E1000_RFCTL);
3518 		rfctl |= E1000_RFCTL_ACK_DIS;
3519 		E1000_WRITE_REG(&adapter->hw, E1000_RFCTL, rfctl);
3520 	}
3521 
3522 	/* Receive Checksum Offload for IP and TCP/UDP */
3523 	rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3524 	if (ifp->if_capenable & IFCAP_RXCSUM)
3525 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3526 	else
3527 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3528 	E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3529 
3530 	/*
3531 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3532 	 * long latencies are observed, like Lenovo X60. This
3533 	 * change eliminates the problem, but since having positive
3534 	 * values in RDTR is a known source of problems on other
3535 	 * platforms another solution is being sought.
3536 	 */
3537 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3538 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3539 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3540 	}
3541 
3542 	/*
3543 	 * Setup the Base and Length of the Rx Descriptor Ring
3544 	 */
3545 	bus_addr = adapter->rxdma.dma_paddr;
3546 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3547 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3548 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3549 	    (uint32_t)(bus_addr >> 32));
3550 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3551 	    (uint32_t)bus_addr);
3552 
3553 	/*
3554 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3555 	 */
3556 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3557 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3558 
3559 	/* Set PTHRESH for improved jumbo performance */
3560 	if (ifp->if_mtu > ETHERMTU) {
3561 		uint32_t rxdctl;
3562 
3563 		if (adapter->hw.mac.type == e1000_ich9lan ||
3564 		    adapter->hw.mac.type == e1000_pch2lan ||
3565 		    adapter->hw.mac.type == e1000_ich10lan) {
3566 			rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3567 			E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0),
3568 			    rxdctl | 3);
3569 		} else if (adapter->hw.mac.type == e1000_82574) {
3570 			rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3571                 	rxdctl |= 0x20;		/* PTHRESH */
3572                 	rxdctl |= 4 << 8;	/* HTHRESH */
3573                 	rxdctl |= 4 << 16;	/* WTHRESH */
3574 			rxdctl |= 1 << 24;	/* Switch to granularity */
3575 			E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl);
3576 		}
3577 	}
3578 
3579 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3580 		if (ifp->if_mtu > ETHERMTU)
3581 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3582 		else
3583 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3584 	}
3585 
3586 	/* Setup the Receive Control Register */
3587 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3588 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3589 		E1000_RCTL_RDMTS_HALF |
3590 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3591 
3592 	/* Make sure VLAN Filters are off */
3593 	rctl &= ~E1000_RCTL_VFE;
3594 
3595 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3596 		rctl |= E1000_RCTL_SBP;
3597 	else
3598 		rctl &= ~E1000_RCTL_SBP;
3599 
3600 	switch (adapter->rx_buffer_len) {
3601 	default:
3602 	case 2048:
3603 		rctl |= E1000_RCTL_SZ_2048;
3604 		break;
3605 
3606 	case 4096:
3607 		rctl |= E1000_RCTL_SZ_4096 |
3608 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3609 		break;
3610 
3611 	case 8192:
3612 		rctl |= E1000_RCTL_SZ_8192 |
3613 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3614 		break;
3615 
3616 	case 16384:
3617 		rctl |= E1000_RCTL_SZ_16384 |
3618 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3619 		break;
3620 	}
3621 
3622 	if (ifp->if_mtu > ETHERMTU)
3623 		rctl |= E1000_RCTL_LPE;
3624 	else
3625 		rctl &= ~E1000_RCTL_LPE;
3626 
3627 	/* Enable Receives */
3628 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3629 }
3630 
3631 static void
3632 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3633 {
3634 	struct em_buffer *rx_buffer;
3635 	int i;
3636 
3637 	if (adapter->rx_buffer_area == NULL)
3638 		return;
3639 
3640 	for (i = 0; i < ndesc; i++) {
3641 		rx_buffer = &adapter->rx_buffer_area[i];
3642 
3643 		KKASSERT(rx_buffer->m_head == NULL);
3644 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3645 	}
3646 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3647 	bus_dma_tag_destroy(adapter->rxtag);
3648 
3649 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3650 	adapter->rx_buffer_area = NULL;
3651 }
3652 
3653 static void
3654 em_rxeof(struct adapter *adapter, int count)
3655 {
3656 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3657 	uint8_t status, accept_frame = 0, eop = 0;
3658 	uint16_t len, desc_len, prev_len_adj;
3659 	struct e1000_rx_desc *current_desc;
3660 	struct mbuf *mp;
3661 	int i;
3662 
3663 	i = adapter->next_rx_desc_to_check;
3664 	current_desc = &adapter->rx_desc_base[i];
3665 
3666 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3667 		return;
3668 
3669 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3670 		struct mbuf *m = NULL;
3671 
3672 		logif(pkt_receive);
3673 
3674 		mp = adapter->rx_buffer_area[i].m_head;
3675 
3676 		/*
3677 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3678 		 * needs to access the last received byte in the mbuf.
3679 		 */
3680 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3681 				BUS_DMASYNC_POSTREAD);
3682 
3683 		accept_frame = 1;
3684 		prev_len_adj = 0;
3685 		desc_len = le16toh(current_desc->length);
3686 		status = current_desc->status;
3687 		if (status & E1000_RXD_STAT_EOP) {
3688 			count--;
3689 			eop = 1;
3690 			if (desc_len < ETHER_CRC_LEN) {
3691 				len = 0;
3692 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3693 			} else {
3694 				len = desc_len - ETHER_CRC_LEN;
3695 			}
3696 		} else {
3697 			eop = 0;
3698 			len = desc_len;
3699 		}
3700 
3701 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3702 			uint8_t	last_byte;
3703 			uint32_t pkt_len = desc_len;
3704 
3705 			if (adapter->fmp != NULL)
3706 				pkt_len += adapter->fmp->m_pkthdr.len;
3707 
3708 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3709 			if (TBI_ACCEPT(&adapter->hw, status,
3710 			    current_desc->errors, pkt_len, last_byte,
3711 			    adapter->min_frame_size,
3712 			    adapter->hw.mac.max_frame_size)) {
3713 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3714 				    &adapter->stats, pkt_len,
3715 				    adapter->hw.mac.addr,
3716 				    adapter->hw.mac.max_frame_size);
3717 				if (len > 0)
3718 					len--;
3719 			} else {
3720 				accept_frame = 0;
3721 			}
3722 		}
3723 
3724 		if (accept_frame) {
3725 			if (em_newbuf(adapter, i, 0) != 0) {
3726 				IFNET_STAT_INC(ifp, iqdrops, 1);
3727 				goto discard;
3728 			}
3729 
3730 			/* Assign correct length to the current fragment */
3731 			mp->m_len = len;
3732 
3733 			if (adapter->fmp == NULL) {
3734 				mp->m_pkthdr.len = len;
3735 				adapter->fmp = mp; /* Store the first mbuf */
3736 				adapter->lmp = mp;
3737 			} else {
3738 				/*
3739 				 * Chain mbuf's together
3740 				 */
3741 
3742 				/*
3743 				 * Adjust length of previous mbuf in chain if
3744 				 * we received less than 4 bytes in the last
3745 				 * descriptor.
3746 				 */
3747 				if (prev_len_adj > 0) {
3748 					adapter->lmp->m_len -= prev_len_adj;
3749 					adapter->fmp->m_pkthdr.len -=
3750 					    prev_len_adj;
3751 				}
3752 				adapter->lmp->m_next = mp;
3753 				adapter->lmp = adapter->lmp->m_next;
3754 				adapter->fmp->m_pkthdr.len += len;
3755 			}
3756 
3757 			if (eop) {
3758 				adapter->fmp->m_pkthdr.rcvif = ifp;
3759 				IFNET_STAT_INC(ifp, ipackets, 1);
3760 
3761 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3762 					em_rxcsum(adapter, current_desc,
3763 						  adapter->fmp);
3764 				}
3765 
3766 				if (status & E1000_RXD_STAT_VP) {
3767 					adapter->fmp->m_pkthdr.ether_vlantag =
3768 					    (le16toh(current_desc->special) &
3769 					    E1000_RXD_SPC_VLAN_MASK);
3770 					adapter->fmp->m_flags |= M_VLANTAG;
3771 				}
3772 				m = adapter->fmp;
3773 				adapter->fmp = NULL;
3774 				adapter->lmp = NULL;
3775 			}
3776 		} else {
3777 			IFNET_STAT_INC(ifp, ierrors, 1);
3778 discard:
3779 #ifdef foo
3780 			/* Reuse loaded DMA map and just update mbuf chain */
3781 			mp = adapter->rx_buffer_area[i].m_head;
3782 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3783 			mp->m_data = mp->m_ext.ext_buf;
3784 			mp->m_next = NULL;
3785 			if (adapter->hw.mac.max_frame_size <=
3786 			    (MCLBYTES - ETHER_ALIGN))
3787 				m_adj(mp, ETHER_ALIGN);
3788 #endif
3789 			if (adapter->fmp != NULL) {
3790 				m_freem(adapter->fmp);
3791 				adapter->fmp = NULL;
3792 				adapter->lmp = NULL;
3793 			}
3794 			m = NULL;
3795 		}
3796 
3797 		/* Zero out the receive descriptors status. */
3798 		current_desc->status = 0;
3799 
3800 		if (m != NULL)
3801 			ifp->if_input(ifp, m, NULL, -1);
3802 
3803 		/* Advance our pointers to the next descriptor. */
3804 		if (++i == adapter->num_rx_desc)
3805 			i = 0;
3806 		current_desc = &adapter->rx_desc_base[i];
3807 	}
3808 	adapter->next_rx_desc_to_check = i;
3809 
3810 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3811 	if (--i < 0)
3812 		i = adapter->num_rx_desc - 1;
3813 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3814 }
3815 
3816 static void
3817 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3818 	  struct mbuf *mp)
3819 {
3820 	/* 82543 or newer only */
3821 	if (adapter->hw.mac.type < e1000_82543 ||
3822 	    /* Ignore Checksum bit is set */
3823 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3824 		return;
3825 
3826 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3827 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3828 		/* IP Checksum Good */
3829 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3830 	}
3831 
3832 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3833 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3834 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3835 					   CSUM_PSEUDO_HDR |
3836 					   CSUM_FRAG_NOT_CHECKED;
3837 		mp->m_pkthdr.csum_data = htons(0xffff);
3838 	}
3839 }
3840 
3841 static void
3842 em_enable_intr(struct adapter *adapter)
3843 {
3844 	uint32_t ims_mask = IMS_ENABLE_MASK;
3845 
3846 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3847 
3848 #if 0
3849 	/* XXX MSIX */
3850 	if (adapter->hw.mac.type == e1000_82574) {
3851 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3852 		ims_mask |= EM_MSIX_MASK;
3853         }
3854 #endif
3855 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3856 }
3857 
3858 static void
3859 em_disable_intr(struct adapter *adapter)
3860 {
3861 	uint32_t clear = 0xffffffff;
3862 
3863 	/*
3864 	 * The first version of 82542 had an errata where when link was forced
3865 	 * it would stay up even up even if the cable was disconnected.
3866 	 * Sequence errors were used to detect the disconnect and then the
3867 	 * driver would unforce the link.  This code in the in the ISR.  For
3868 	 * this to work correctly the Sequence error interrupt had to be
3869 	 * enabled all the time.
3870 	 */
3871 	if (adapter->hw.mac.type == e1000_82542 &&
3872 	    adapter->hw.revision_id == E1000_REVISION_2)
3873 		clear &= ~E1000_ICR_RXSEQ;
3874 	else if (adapter->hw.mac.type == e1000_82574)
3875 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3876 
3877 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3878 
3879 	adapter->npoll.ifpc_stcount = 0;
3880 
3881 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3882 }
3883 
3884 /*
3885  * Bit of a misnomer, what this really means is
3886  * to enable OS management of the system... aka
3887  * to disable special hardware management features
3888  */
3889 static void
3890 em_get_mgmt(struct adapter *adapter)
3891 {
3892 	/* A shared code workaround */
3893 #define E1000_82542_MANC2H E1000_MANC2H
3894 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3895 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3896 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3897 
3898 		/* disable hardware interception of ARP */
3899 		manc &= ~(E1000_MANC_ARP_EN);
3900 
3901                 /* enable receiving management packets to the host */
3902                 if (adapter->hw.mac.type >= e1000_82571) {
3903 			manc |= E1000_MANC_EN_MNG2HOST;
3904 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3905 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3906 			manc2h |= E1000_MNG2HOST_PORT_623;
3907 			manc2h |= E1000_MNG2HOST_PORT_664;
3908 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3909 		}
3910 
3911 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3912 	}
3913 }
3914 
3915 /*
3916  * Give control back to hardware management
3917  * controller if there is one.
3918  */
3919 static void
3920 em_rel_mgmt(struct adapter *adapter)
3921 {
3922 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3923 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3924 
3925 		/* re-enable hardware interception of ARP */
3926 		manc |= E1000_MANC_ARP_EN;
3927 
3928 		if (adapter->hw.mac.type >= e1000_82571)
3929 			manc &= ~E1000_MANC_EN_MNG2HOST;
3930 
3931 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3932 	}
3933 }
3934 
3935 /*
3936  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3937  * For ASF and Pass Through versions of f/w this means that
3938  * the driver is loaded.  For AMT version (only with 82573)
3939  * of the f/w this means that the network i/f is open.
3940  */
3941 static void
3942 em_get_hw_control(struct adapter *adapter)
3943 {
3944 	/* Let firmware know the driver has taken over */
3945 	if (adapter->hw.mac.type == e1000_82573) {
3946 		uint32_t swsm;
3947 
3948 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3949 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3950 		    swsm | E1000_SWSM_DRV_LOAD);
3951 	} else {
3952 		uint32_t ctrl_ext;
3953 
3954 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3955 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3956 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3957 	}
3958 	adapter->flags |= EM_FLAG_HW_CTRL;
3959 }
3960 
3961 /*
3962  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3963  * For ASF and Pass Through versions of f/w this means that the
3964  * driver is no longer loaded.  For AMT version (only with 82573)
3965  * of the f/w this means that the network i/f is closed.
3966  */
3967 static void
3968 em_rel_hw_control(struct adapter *adapter)
3969 {
3970 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3971 		return;
3972 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3973 
3974 	/* Let firmware taken over control of h/w */
3975 	if (adapter->hw.mac.type == e1000_82573) {
3976 		uint32_t swsm;
3977 
3978 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3979 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3980 		    swsm & ~E1000_SWSM_DRV_LOAD);
3981 	} else {
3982 		uint32_t ctrl_ext;
3983 
3984 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3985 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3986 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3987 	}
3988 }
3989 
3990 static int
3991 em_is_valid_eaddr(const uint8_t *addr)
3992 {
3993 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3994 
3995 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3996 		return (FALSE);
3997 
3998 	return (TRUE);
3999 }
4000 
4001 /*
4002  * Enable PCI Wake On Lan capability
4003  */
4004 static void
4005 em_enable_wol(device_t dev)
4006 {
4007 	uint16_t cap, status;
4008 	uint8_t id;
4009 
4010 	/* First find the capabilities pointer*/
4011 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
4012 
4013 	/* Read the PM Capabilities */
4014 	id = pci_read_config(dev, cap, 1);
4015 	if (id != PCIY_PMG)     /* Something wrong */
4016 		return;
4017 
4018 	/*
4019 	 * OK, we have the power capabilities,
4020 	 * so now get the status register
4021 	 */
4022 	cap += PCIR_POWER_STATUS;
4023 	status = pci_read_config(dev, cap, 2);
4024 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4025 	pci_write_config(dev, cap, status, 2);
4026 }
4027 
4028 
4029 /*
4030  * 82544 Coexistence issue workaround.
4031  *    There are 2 issues.
4032  *       1. Transmit Hang issue.
4033  *    To detect this issue, following equation can be used...
4034  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
4035  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
4036  *
4037  *       2. DAC issue.
4038  *    To detect this issue, following equation can be used...
4039  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
4040  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
4041  *
4042  *    WORKAROUND:
4043  *	  Make sure we do not have ending address
4044  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
4045  */
4046 static uint32_t
4047 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
4048 {
4049 	uint32_t safe_terminator;
4050 
4051 	/*
4052 	 * Since issue is sensitive to length and address.
4053 	 * Let us first check the address...
4054 	 */
4055 	if (length <= 4) {
4056 		desc_array->descriptor[0].address = address;
4057 		desc_array->descriptor[0].length = length;
4058 		desc_array->elements = 1;
4059 		return (desc_array->elements);
4060 	}
4061 
4062 	safe_terminator =
4063 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
4064 
4065 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
4066 	if (safe_terminator == 0 ||
4067 	    (safe_terminator > 4 && safe_terminator < 9) ||
4068 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
4069 		desc_array->descriptor[0].address = address;
4070 		desc_array->descriptor[0].length = length;
4071 		desc_array->elements = 1;
4072 		return (desc_array->elements);
4073 	}
4074 
4075 	desc_array->descriptor[0].address = address;
4076 	desc_array->descriptor[0].length = length - 4;
4077 	desc_array->descriptor[1].address = address + (length - 4);
4078 	desc_array->descriptor[1].length = 4;
4079 	desc_array->elements = 2;
4080 	return (desc_array->elements);
4081 }
4082 
4083 static void
4084 em_update_stats(struct adapter *adapter)
4085 {
4086 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4087 
4088 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
4089 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4090 		adapter->stats.symerrs +=
4091 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
4092 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
4093 	}
4094 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
4095 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
4096 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
4097 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
4098 
4099 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
4100 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
4101 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
4102 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
4103 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
4104 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
4105 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
4106 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
4107 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
4108 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
4109 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
4110 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
4111 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
4112 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
4113 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
4114 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
4115 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
4116 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
4117 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
4118 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
4119 
4120 	/* For the 64-bit byte counters the low dword must be read first. */
4121 	/* Both registers clear on the read of the high dword */
4122 
4123 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
4124 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
4125 
4126 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
4127 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
4128 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
4129 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
4130 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
4131 
4132 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
4133 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
4134 
4135 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
4136 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
4137 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
4138 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
4139 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
4140 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
4141 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4142 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4143 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4144 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4145 
4146 	if (adapter->hw.mac.type >= e1000_82543) {
4147 		adapter->stats.algnerrc +=
4148 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4149 		adapter->stats.rxerrc +=
4150 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4151 		adapter->stats.tncrs +=
4152 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4153 		adapter->stats.cexterr +=
4154 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4155 		adapter->stats.tsctc +=
4156 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4157 		adapter->stats.tsctfc +=
4158 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4159 	}
4160 
4161 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
4162 
4163 	/* Rx Errors */
4164 	IFNET_STAT_SET(ifp, ierrors,
4165 	    adapter->dropped_pkts + adapter->stats.rxerrc +
4166 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4167 	    adapter->stats.ruc + adapter->stats.roc +
4168 	    adapter->stats.mpc + adapter->stats.cexterr);
4169 
4170 	/* Tx Errors */
4171 	IFNET_STAT_SET(ifp, oerrors,
4172 	    adapter->stats.ecol + adapter->stats.latecol +
4173 	    adapter->watchdog_events);
4174 }
4175 
4176 static void
4177 em_print_debug_info(struct adapter *adapter)
4178 {
4179 	device_t dev = adapter->dev;
4180 	uint8_t *hw_addr = adapter->hw.hw_addr;
4181 
4182 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
4183 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
4184 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
4185 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
4186 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
4187 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
4188 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
4189 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
4190 	    adapter->hw.fc.high_water,
4191 	    adapter->hw.fc.low_water);
4192 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
4193 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
4194 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
4195 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
4196 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
4197 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
4198 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
4199 	    (long long)adapter->tx_fifo_wrk_cnt,
4200 	    (long long)adapter->tx_fifo_reset_cnt);
4201 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4202 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
4203 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
4204 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4205 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
4206 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
4207 	device_printf(dev, "Num Tx descriptors avail = %d\n",
4208 	    adapter->num_tx_desc_avail);
4209 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4210 	    adapter->no_tx_desc_avail1);
4211 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4212 	    adapter->no_tx_desc_avail2);
4213 	device_printf(dev, "Std mbuf failed = %ld\n",
4214 	    adapter->mbuf_alloc_failed);
4215 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
4216 	    adapter->mbuf_cluster_failed);
4217 	device_printf(dev, "Driver dropped packets = %ld\n",
4218 	    adapter->dropped_pkts);
4219 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4220 	    adapter->no_tx_dma_setup);
4221 }
4222 
4223 static void
4224 em_print_hw_stats(struct adapter *adapter)
4225 {
4226 	device_t dev = adapter->dev;
4227 
4228 	device_printf(dev, "Excessive collisions = %lld\n",
4229 	    (long long)adapter->stats.ecol);
4230 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
4231 	device_printf(dev, "Symbol errors = %lld\n",
4232 	    (long long)adapter->stats.symerrs);
4233 #endif
4234 	device_printf(dev, "Sequence errors = %lld\n",
4235 	    (long long)adapter->stats.sec);
4236 	device_printf(dev, "Defer count = %lld\n",
4237 	    (long long)adapter->stats.dc);
4238 	device_printf(dev, "Missed Packets = %lld\n",
4239 	    (long long)adapter->stats.mpc);
4240 	device_printf(dev, "Receive No Buffers = %lld\n",
4241 	    (long long)adapter->stats.rnbc);
4242 	/* RLEC is inaccurate on some hardware, calculate our own. */
4243 	device_printf(dev, "Receive Length Errors = %lld\n",
4244 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4245 	device_printf(dev, "Receive errors = %lld\n",
4246 	    (long long)adapter->stats.rxerrc);
4247 	device_printf(dev, "Crc errors = %lld\n",
4248 	    (long long)adapter->stats.crcerrs);
4249 	device_printf(dev, "Alignment errors = %lld\n",
4250 	    (long long)adapter->stats.algnerrc);
4251 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4252 	    (long long)adapter->stats.cexterr);
4253 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4254 	device_printf(dev, "watchdog timeouts = %ld\n",
4255 	    adapter->watchdog_events);
4256 	device_printf(dev, "XON Rcvd = %lld\n",
4257 	    (long long)adapter->stats.xonrxc);
4258 	device_printf(dev, "XON Xmtd = %lld\n",
4259 	    (long long)adapter->stats.xontxc);
4260 	device_printf(dev, "XOFF Rcvd = %lld\n",
4261 	    (long long)adapter->stats.xoffrxc);
4262 	device_printf(dev, "XOFF Xmtd = %lld\n",
4263 	    (long long)adapter->stats.xofftxc);
4264 	device_printf(dev, "Good Packets Rcvd = %lld\n",
4265 	    (long long)adapter->stats.gprc);
4266 	device_printf(dev, "Good Packets Xmtd = %lld\n",
4267 	    (long long)adapter->stats.gptc);
4268 }
4269 
4270 static void
4271 em_print_nvm_info(struct adapter *adapter)
4272 {
4273 	uint16_t eeprom_data;
4274 	int i, j, row = 0;
4275 
4276 	/* Its a bit crude, but it gets the job done */
4277 	kprintf("\nInterface EEPROM Dump:\n");
4278 	kprintf("Offset\n0x0000  ");
4279 	for (i = 0, j = 0; i < 32; i++, j++) {
4280 		if (j == 8) { /* Make the offset block */
4281 			j = 0; ++row;
4282 			kprintf("\n0x00%x0  ",row);
4283 		}
4284 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4285 		kprintf("%04x ", eeprom_data);
4286 	}
4287 	kprintf("\n");
4288 }
4289 
4290 static int
4291 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4292 {
4293 	struct adapter *adapter;
4294 	struct ifnet *ifp;
4295 	int error, result;
4296 
4297 	result = -1;
4298 	error = sysctl_handle_int(oidp, &result, 0, req);
4299 	if (error || !req->newptr)
4300 		return (error);
4301 
4302 	adapter = (struct adapter *)arg1;
4303 	ifp = &adapter->arpcom.ac_if;
4304 
4305 	lwkt_serialize_enter(ifp->if_serializer);
4306 
4307 	if (result == 1)
4308 		em_print_debug_info(adapter);
4309 
4310 	/*
4311 	 * This value will cause a hex dump of the
4312 	 * first 32 16-bit words of the EEPROM to
4313 	 * the screen.
4314 	 */
4315 	if (result == 2)
4316 		em_print_nvm_info(adapter);
4317 
4318 	lwkt_serialize_exit(ifp->if_serializer);
4319 
4320 	return (error);
4321 }
4322 
4323 static int
4324 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4325 {
4326 	int error, result;
4327 
4328 	result = -1;
4329 	error = sysctl_handle_int(oidp, &result, 0, req);
4330 	if (error || !req->newptr)
4331 		return (error);
4332 
4333 	if (result == 1) {
4334 		struct adapter *adapter = (struct adapter *)arg1;
4335 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4336 
4337 		lwkt_serialize_enter(ifp->if_serializer);
4338 		em_print_hw_stats(adapter);
4339 		lwkt_serialize_exit(ifp->if_serializer);
4340 	}
4341 	return (error);
4342 }
4343 
4344 static void
4345 em_add_sysctl(struct adapter *adapter)
4346 {
4347 	struct sysctl_ctx_list *ctx;
4348 	struct sysctl_oid *tree;
4349 
4350 	ctx = device_get_sysctl_ctx(adapter->dev);
4351 	tree = device_get_sysctl_tree(adapter->dev);
4352 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4353 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4354 	    em_sysctl_debug_info, "I", "Debug Information");
4355 
4356 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4357 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4358 	    em_sysctl_stats, "I", "Statistics");
4359 
4360 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4361 	    OID_AUTO, "rxd", CTLFLAG_RD,
4362 	    &adapter->num_rx_desc, 0, NULL);
4363 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4364 	    OID_AUTO, "txd", CTLFLAG_RD,
4365 	    &adapter->num_tx_desc, 0, NULL);
4366 
4367 	if (adapter->hw.mac.type >= e1000_82540) {
4368 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4369 		    OID_AUTO, "int_throttle_ceil",
4370 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4371 		    em_sysctl_int_throttle, "I",
4372 		    "interrupt throttling rate");
4373 	}
4374 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4375 	    OID_AUTO, "int_tx_nsegs",
4376 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4377 	    em_sysctl_int_tx_nsegs, "I",
4378 	    "# segments per TX interrupt");
4379 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4380 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4381 	    &adapter->tx_wreg_nsegs, 0,
4382 	    "# segments before write to hardware register");
4383 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_nmbuf",
4384 	    CTLFLAG_RD, &adapter->tx_nmbuf, 0, "# of pending TX mbufs");
4385 	SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_gc",
4386 	    CTLFLAG_RW, &adapter->tx_gc, "# of TX GC");
4387 }
4388 
4389 static int
4390 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4391 {
4392 	struct adapter *adapter = (void *)arg1;
4393 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4394 	int error, throttle;
4395 
4396 	throttle = adapter->int_throttle_ceil;
4397 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4398 	if (error || req->newptr == NULL)
4399 		return error;
4400 	if (throttle < 0 || throttle > 1000000000 / 256)
4401 		return EINVAL;
4402 
4403 	if (throttle) {
4404 		/*
4405 		 * Set the interrupt throttling rate in 256ns increments,
4406 		 * recalculate sysctl value assignment to get exact frequency.
4407 		 */
4408 		throttle = 1000000000 / 256 / throttle;
4409 
4410 		/* Upper 16bits of ITR is reserved and should be zero */
4411 		if (throttle & 0xffff0000)
4412 			return EINVAL;
4413 	}
4414 
4415 	lwkt_serialize_enter(ifp->if_serializer);
4416 
4417 	if (throttle)
4418 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4419 	else
4420 		adapter->int_throttle_ceil = 0;
4421 
4422 	if (ifp->if_flags & IFF_RUNNING)
4423 		em_set_itr(adapter, throttle);
4424 
4425 	lwkt_serialize_exit(ifp->if_serializer);
4426 
4427 	if (bootverbose) {
4428 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4429 			  adapter->int_throttle_ceil);
4430 	}
4431 	return 0;
4432 }
4433 
4434 static int
4435 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4436 {
4437 	struct adapter *adapter = (void *)arg1;
4438 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4439 	int error, segs;
4440 
4441 	segs = adapter->tx_int_nsegs;
4442 	error = sysctl_handle_int(oidp, &segs, 0, req);
4443 	if (error || req->newptr == NULL)
4444 		return error;
4445 	if (segs <= 0)
4446 		return EINVAL;
4447 
4448 	lwkt_serialize_enter(ifp->if_serializer);
4449 
4450 	/*
4451 	 * Don't allow int_tx_nsegs to become:
4452 	 * o  Less the oact_tx_desc
4453 	 * o  Too large that no TX desc will cause TX interrupt to
4454 	 *    be generated (OACTIVE will never recover)
4455 	 * o  Too small that will cause tx_dd[] overflow
4456 	 */
4457 	if (segs < adapter->oact_tx_desc ||
4458 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4459 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4460 		error = EINVAL;
4461 	} else {
4462 		error = 0;
4463 		adapter->tx_int_nsegs = segs;
4464 	}
4465 
4466 	lwkt_serialize_exit(ifp->if_serializer);
4467 
4468 	return error;
4469 }
4470 
4471 static void
4472 em_set_itr(struct adapter *adapter, uint32_t itr)
4473 {
4474 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4475 	if (adapter->hw.mac.type == e1000_82574) {
4476 		int i;
4477 
4478 		/*
4479 		 * When using MSIX interrupts we need to
4480 		 * throttle using the EITR register
4481 		 */
4482 		for (i = 0; i < 4; ++i) {
4483 			E1000_WRITE_REG(&adapter->hw,
4484 			    E1000_EITR_82574(i), itr);
4485 		}
4486 	}
4487 }
4488 
4489 static void
4490 em_disable_aspm(struct adapter *adapter)
4491 {
4492 	uint16_t link_cap, link_ctrl, disable;
4493 	uint8_t pcie_ptr, reg;
4494 	device_t dev = adapter->dev;
4495 
4496 	switch (adapter->hw.mac.type) {
4497 	case e1000_82571:
4498 	case e1000_82572:
4499 	case e1000_82573:
4500 		/*
4501 		 * 82573 specification update
4502 		 * errata #8 disable L0s
4503 		 * errata #41 disable L1
4504 		 *
4505 		 * 82571/82572 specification update
4506 		 # errata #13 disable L1
4507 		 * errata #68 disable L0s
4508 		 */
4509 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4510 		break;
4511 
4512 	case e1000_82574:
4513 	case e1000_82583:
4514 		/*
4515 		 * 82574 specification update errata #20
4516 		 * 82583 specification update errata #9
4517 		 *
4518 		 * There is no need to disable L1
4519 		 */
4520 		disable = PCIEM_LNKCTL_ASPM_L0S;
4521 		break;
4522 
4523 	default:
4524 		return;
4525 	}
4526 
4527 	pcie_ptr = pci_get_pciecap_ptr(dev);
4528 	if (pcie_ptr == 0)
4529 		return;
4530 
4531 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4532 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4533 		return;
4534 
4535 	if (bootverbose) {
4536 		if_printf(&adapter->arpcom.ac_if,
4537 		    "disable ASPM %#02x\n", disable);
4538 	}
4539 
4540 	reg = pcie_ptr + PCIER_LINKCTRL;
4541 	link_ctrl = pci_read_config(dev, reg, 2);
4542 	link_ctrl &= ~disable;
4543 	pci_write_config(dev, reg, link_ctrl, 2);
4544 }
4545 
4546 static int
4547 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4548 {
4549 	int iphlen, hoff, thoff, ex = 0;
4550 	struct mbuf *m;
4551 	struct ip *ip;
4552 
4553 	m = *mp;
4554 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4555 
4556 	iphlen = m->m_pkthdr.csum_iphlen;
4557 	thoff = m->m_pkthdr.csum_thlen;
4558 	hoff = m->m_pkthdr.csum_lhlen;
4559 
4560 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4561 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4562 	KASSERT(hoff > 0, ("invalid ether hlen"));
4563 
4564 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4565 		ex = 4;
4566 
4567 	if (m->m_len < hoff + iphlen + thoff + ex) {
4568 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4569 		if (m == NULL) {
4570 			*mp = NULL;
4571 			return ENOBUFS;
4572 		}
4573 		*mp = m;
4574 	}
4575 	ip = mtodoff(m, struct ip *, hoff);
4576 	ip->ip_len = 0;
4577 
4578 	return 0;
4579 }
4580 
4581 static int
4582 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4583     uint32_t *txd_upper, uint32_t *txd_lower)
4584 {
4585 	struct e1000_context_desc *TXD;
4586 	int hoff, iphlen, thoff, hlen;
4587 	int mss, pktlen, curr_txd;
4588 
4589 	iphlen = mp->m_pkthdr.csum_iphlen;
4590 	thoff = mp->m_pkthdr.csum_thlen;
4591 	hoff = mp->m_pkthdr.csum_lhlen;
4592 	mss = mp->m_pkthdr.tso_segsz;
4593 	pktlen = mp->m_pkthdr.len;
4594 
4595 	if (adapter->csum_flags == CSUM_TSO &&
4596 	    adapter->csum_iphlen == iphlen &&
4597 	    adapter->csum_lhlen == hoff &&
4598 	    adapter->csum_thlen == thoff &&
4599 	    adapter->csum_mss == mss &&
4600 	    adapter->csum_pktlen == pktlen) {
4601 		*txd_upper = adapter->csum_txd_upper;
4602 		*txd_lower = adapter->csum_txd_lower;
4603 		return 0;
4604 	}
4605 	hlen = hoff + iphlen + thoff;
4606 
4607 	/*
4608 	 * Setup a new TSO context.
4609 	 */
4610 
4611 	curr_txd = adapter->next_avail_tx_desc;
4612 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4613 
4614 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4615 		     E1000_TXD_DTYP_D |		/* Data descr type */
4616 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4617 
4618 	/* IP and/or TCP header checksum calculation and insertion. */
4619 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4620 
4621 	/*
4622 	 * Start offset for header checksum calculation.
4623 	 * End offset for header checksum calculation.
4624 	 * Offset of place put the checksum.
4625 	 */
4626 	TXD->lower_setup.ip_fields.ipcss = hoff;
4627 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4628 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4629 
4630 	/*
4631 	 * Start offset for payload checksum calculation.
4632 	 * End offset for payload checksum calculation.
4633 	 * Offset of place to put the checksum.
4634 	 */
4635 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4636 	TXD->upper_setup.tcp_fields.tucse = 0;
4637 	TXD->upper_setup.tcp_fields.tucso =
4638 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4639 
4640 	/*
4641 	 * Payload size per packet w/o any headers.
4642 	 * Length of all headers up to payload.
4643 	 */
4644 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4645 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4646 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4647 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4648 				E1000_TXD_CMD_TSE |	/* TSE context */
4649 				E1000_TXD_CMD_IP |	/* Do IP csum */
4650 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4651 				(pktlen - hlen));	/* Total len */
4652 
4653 	/* Save the information for this TSO context */
4654 	adapter->csum_flags = CSUM_TSO;
4655 	adapter->csum_lhlen = hoff;
4656 	adapter->csum_iphlen = iphlen;
4657 	adapter->csum_thlen = thoff;
4658 	adapter->csum_mss = mss;
4659 	adapter->csum_pktlen = pktlen;
4660 	adapter->csum_txd_upper = *txd_upper;
4661 	adapter->csum_txd_lower = *txd_lower;
4662 
4663 	if (++curr_txd == adapter->num_tx_desc)
4664 		curr_txd = 0;
4665 
4666 	KKASSERT(adapter->num_tx_desc_avail > 0);
4667 	adapter->num_tx_desc_avail--;
4668 
4669 	adapter->next_avail_tx_desc = curr_txd;
4670 	return 1;
4671 }
4672 
4673 /*
4674  * Remove all descriptors from the TX ring.
4675  *
4676  * We want to clear all pending descriptors from the TX ring.  Zeroing
4677  * happens when the HW reads the regs.  We assign the ring itself as
4678  * the data of the next descriptor.  We don't care about the data we
4679  * are about to reset the HW.
4680  */
4681 static void
4682 em_flush_tx_ring(struct adapter *adapter)
4683 {
4684 	struct e1000_hw *hw = &adapter->hw;
4685 	struct e1000_tx_desc *txd;
4686 	uint32_t tctl;
4687 
4688 	tctl = E1000_READ_REG(hw, E1000_TCTL);
4689 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
4690 
4691 	txd = &adapter->tx_desc_base[adapter->next_avail_tx_desc++];
4692 	if (adapter->next_avail_tx_desc == adapter->num_tx_desc)
4693 		adapter->next_avail_tx_desc = 0;
4694 
4695 	/* Just use the ring as a dummy buffer addr */
4696 	txd->buffer_addr = adapter->txdma.dma_paddr;
4697 	txd->lower.data = htole32(E1000_TXD_CMD_IFCS | 512);
4698 	txd->upper.data = 0;
4699 
4700 	E1000_WRITE_REG(hw, E1000_TDT(0), adapter->next_avail_tx_desc);
4701 	usec_delay(250);
4702 }
4703 
4704 /*
4705  * Remove all descriptors from the RX ring.
4706  *
4707  * Mark all descriptors in the RX ring as consumed and disable the RX ring.
4708  */
4709 static void
4710 em_flush_rx_ring(struct adapter *adapter)
4711 {
4712 	struct e1000_hw	*hw = &adapter->hw;
4713 	uint32_t rctl, rxdctl;
4714 
4715 	rctl = E1000_READ_REG(hw, E1000_RCTL);
4716 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4717 	E1000_WRITE_FLUSH(hw);
4718 	usec_delay(150);
4719 
4720 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
4721 	/* Zero the lower 14 bits (prefetch and host thresholds) */
4722 	rxdctl &= 0xffffc000;
4723 	/*
4724 	 * Update thresholds: prefetch threshold to 31, host threshold to 1
4725 	 * and make sure the granularity is "descriptors" and not "cache
4726 	 * lines".
4727 	 */
4728 	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
4729 	E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
4730 
4731 	/* Momentarily enable the RX ring for the changes to take effect */
4732 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
4733 	E1000_WRITE_FLUSH(hw);
4734 	usec_delay(150);
4735 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4736 }
4737 
4738 /*
4739  * Remove all descriptors from the descriptor rings.
4740  *
4741  * In i219, the descriptor rings must be emptied before resetting the HW
4742  * or before changing the device state to D3 during runtime (runtime PM).
4743  *
4744  * Failure to do this will cause the HW to enter a unit hang state which
4745  * can only be released by PCI reset on the device.
4746  */
4747 static void
4748 em_flush_txrx_ring(struct adapter *adapter)
4749 {
4750 	struct e1000_hw *hw = &adapter->hw;
4751 	device_t dev = adapter->dev;
4752 	uint16_t hang_state;
4753 	uint32_t fext_nvm11;
4754 
4755 	/*
4756 	 * First, disable MULR fix in FEXTNVM11.
4757 	 */
4758 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
4759 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
4760 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
4761 
4762 	/*
4763 	 * Do nothing if we're not in faulty state, or if the queue is
4764 	 * empty.
4765 	 */
4766 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
4767 	if ((hang_state & FLUSH_DESC_REQUIRED) &&
4768 	    E1000_READ_REG(hw, E1000_TDLEN(0)))
4769 		em_flush_tx_ring(adapter);
4770 
4771 	/*
4772 	 * Recheck, maybe the fault is caused by the RX ring.
4773 	 */
4774 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
4775 	if (hang_state & FLUSH_DESC_REQUIRED)
4776 		em_flush_rx_ring(adapter);
4777 }
4778