xref: /dragonfly/sys/dev/netif/em/if_em.c (revision bc3d4063)
1 /*
2  *
3  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 2001-2006, Intel Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  *  1. Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  *
14  *  2. Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  *
18  *  3. Neither the name of the Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived from
20  *     this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
36  *
37  * This code is derived from software contributed to The DragonFly Project
38  * by Matthew Dillon <dillon@backplane.com>
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  * 3. Neither the name of The DragonFly Project nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific, prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
57  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
58  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
59  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
60  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
61  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
62  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  *
67  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.78 2008/08/17 04:32:33 sephe Exp $
68  * $FreeBSD$
69  */
70 /*
71  * SERIALIZATION API RULES:
72  *
73  * - If the driver uses the same serializer for the interrupt as for the
74  *   ifnet, most of the serialization will be done automatically for the
75  *   driver.
76  *
77  * - ifmedia entry points will be serialized by the ifmedia code using the
78  *   ifnet serializer.
79  *
80  * - if_* entry points except for if_input will be serialized by the IF
81  *   and protocol layers.
82  *
83  * - The device driver must be sure to serialize access from timeout code
84  *   installed by the device driver.
85  *
86  * - The device driver typically holds the serializer at the time it wishes
87  *   to call if_input.  If so, it should pass the serializer to if_input and
88  *   note that the serializer might be dropped temporarily by if_input
89  *   (e.g. in case it has to bridge the packet to another interface).
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95 
96 #include "opt_polling.h"
97 #include "opt_inet.h"
98 #include "opt_serializer.h"
99 #include "opt_ethernet.h"
100 
101 #include <sys/param.h>
102 #include <sys/bus.h>
103 #include <sys/endian.h>
104 #include <sys/interrupt.h>
105 #include <sys/kernel.h>
106 #include <sys/ktr.h>
107 #include <sys/malloc.h>
108 #include <sys/mbuf.h>
109 #include <sys/module.h>
110 #include <sys/rman.h>
111 #include <sys/serialize.h>
112 #include <sys/socket.h>
113 #include <sys/sockio.h>
114 #include <sys/sysctl.h>
115 
116 #include <net/bpf.h>
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/if_arp.h>
120 #include <net/if_dl.h>
121 #include <net/if_media.h>
122 #include <net/if_types.h>
123 #include <net/ifq_var.h>
124 #include <net/vlan/if_vlan_var.h>
125 #include <net/vlan/if_vlan_ether.h>
126 
127 #ifdef INET
128 #include <netinet/in.h>
129 #include <netinet/in_systm.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip.h>
132 #include <netinet/tcp.h>
133 #include <netinet/udp.h>
134 #endif
135 
136 #include <dev/netif/em/if_em_hw.h>
137 #include <dev/netif/em/if_em.h>
138 
139 #define EM_X60_WORKAROUND
140 
141 /*********************************************************************
142  *  Set this to one to display debug statistics
143  *********************************************************************/
144 int	em_display_debug_stats = 0;
145 
146 /*********************************************************************
147  *  Driver version
148  *********************************************************************/
149 
150 char em_driver_version[] = "6.2.9";
151 
152 
153 /*********************************************************************
154  *  PCI Device ID Table
155  *
156  *  Used by probe to select devices to load on
157  *  Last field stores an index into em_strings
158  *  Last entry must be all 0s
159  *
160  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
161  *********************************************************************/
162 
163 static em_vendor_info_t em_vendor_info_array[] =
164 {
165 	/* Intel(R) PRO/1000 Network Connection */
166 	{ 0x8086, E1000_DEV_ID_82540EM,		PCI_ANY_ID, PCI_ANY_ID, 0},
167 	{ 0x8086, E1000_DEV_ID_82540EM_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
168 	{ 0x8086, E1000_DEV_ID_82540EP,		PCI_ANY_ID, PCI_ANY_ID, 0},
169 	{ 0x8086, E1000_DEV_ID_82540EP_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
170 	{ 0x8086, E1000_DEV_ID_82540EP_LP,	PCI_ANY_ID, PCI_ANY_ID, 0},
171 
172 	{ 0x8086, E1000_DEV_ID_82541EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
173 	{ 0x8086, E1000_DEV_ID_82541ER,		PCI_ANY_ID, PCI_ANY_ID, 0},
174 	{ 0x8086, E1000_DEV_ID_82541ER_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
175 	{ 0x8086, E1000_DEV_ID_82541EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
176 	{ 0x8086, E1000_DEV_ID_82541GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
177 	{ 0x8086, E1000_DEV_ID_82541GI_LF,	PCI_ANY_ID, PCI_ANY_ID, 0},
178 	{ 0x8086, E1000_DEV_ID_82541GI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
179 
180 	{ 0x8086, E1000_DEV_ID_82542,		PCI_ANY_ID, PCI_ANY_ID, 0},
181 
182 	{ 0x8086, E1000_DEV_ID_82543GC_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
183 	{ 0x8086, E1000_DEV_ID_82543GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
184 
185 	{ 0x8086, E1000_DEV_ID_82544EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
186 	{ 0x8086, E1000_DEV_ID_82544EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
187 	{ 0x8086, E1000_DEV_ID_82544GC_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
188 	{ 0x8086, E1000_DEV_ID_82544GC_LOM,	PCI_ANY_ID, PCI_ANY_ID, 0},
189 
190 	{ 0x8086, E1000_DEV_ID_82545EM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
191 	{ 0x8086, E1000_DEV_ID_82545EM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
192 	{ 0x8086, E1000_DEV_ID_82545GM_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
193 	{ 0x8086, E1000_DEV_ID_82545GM_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
194 	{ 0x8086, E1000_DEV_ID_82545GM_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
195 
196 	{ 0x8086, E1000_DEV_ID_82546EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
197 	{ 0x8086, E1000_DEV_ID_82546EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
198 	{ 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
199 	{ 0x8086, E1000_DEV_ID_82546GB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
200 	{ 0x8086, E1000_DEV_ID_82546GB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
201 	{ 0x8086, E1000_DEV_ID_82546GB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
202 	{ 0x8086, E1000_DEV_ID_82546GB_PCIE,	PCI_ANY_ID, PCI_ANY_ID, 0},
203 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
204 	{ 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
205 						PCI_ANY_ID, PCI_ANY_ID, 0},
206 
207 	{ 0x8086, E1000_DEV_ID_82547EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
208 	{ 0x8086, E1000_DEV_ID_82547EI_MOBILE,	PCI_ANY_ID, PCI_ANY_ID, 0},
209 	{ 0x8086, E1000_DEV_ID_82547GI,		PCI_ANY_ID, PCI_ANY_ID, 0},
210 
211 	{ 0x8086, E1000_DEV_ID_82571EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
212 	{ 0x8086, E1000_DEV_ID_82571EB_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
213 	{ 0x8086, E1000_DEV_ID_82571EB_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
214 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
215 						PCI_ANY_ID, PCI_ANY_ID, 0},
216 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE,
217 						PCI_ANY_ID, PCI_ANY_ID, 0},
218 
219 	{ 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
220 						PCI_ANY_ID, PCI_ANY_ID, 0},
221 	{ 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
222 						PCI_ANY_ID, PCI_ANY_ID, 0},
223 	{ 0x8086, E1000_DEV_ID_82572EI_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
224 	{ 0x8086, E1000_DEV_ID_82572EI_FIBER,	PCI_ANY_ID, PCI_ANY_ID, 0},
225 	{ 0x8086, E1000_DEV_ID_82572EI_SERDES,	PCI_ANY_ID, PCI_ANY_ID, 0},
226 	{ 0x8086, E1000_DEV_ID_82572EI,		PCI_ANY_ID, PCI_ANY_ID, 0},
227 
228 	{ 0x8086, E1000_DEV_ID_82573E,		PCI_ANY_ID, PCI_ANY_ID, 0},
229 	{ 0x8086, E1000_DEV_ID_82573E_IAMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
230 	{ 0x8086, E1000_DEV_ID_82573L,		PCI_ANY_ID, PCI_ANY_ID, 0},
231 
232 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
233 						PCI_ANY_ID, PCI_ANY_ID, 0},
234 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
235 						PCI_ANY_ID, PCI_ANY_ID, 0},
236 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
237 						PCI_ANY_ID, PCI_ANY_ID, 0},
238 	{ 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
239 						PCI_ANY_ID, PCI_ANY_ID, 0},
240 
241 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
242 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
243 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
244 	{ 0x8086, E1000_DEV_ID_ICH8_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
245 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
246 	{ 0x8086, E1000_DEV_ID_ICH8_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
247 	{ 0x8086, E1000_DEV_ID_ICH8_IGP_M,	PCI_ANY_ID, PCI_ANY_ID, 0},
248 
249 	{ 0x8086, E1000_DEV_ID_ICH9_IGP_AMT,	PCI_ANY_ID, PCI_ANY_ID, 0},
250 	{ 0x8086, E1000_DEV_ID_ICH9_IGP_C,	PCI_ANY_ID, PCI_ANY_ID, 0},
251 	{ 0x8086, E1000_DEV_ID_ICH9_IFE,	PCI_ANY_ID, PCI_ANY_ID, 0},
252 	{ 0x8086, E1000_DEV_ID_ICH9_IFE_GT,	PCI_ANY_ID, PCI_ANY_ID, 0},
253 	{ 0x8086, E1000_DEV_ID_ICH9_IFE_G,	PCI_ANY_ID, PCI_ANY_ID, 0},
254 
255 	{ 0x8086, E1000_DEV_ID_82575EB_COPPER,	PCI_ANY_ID, PCI_ANY_ID, 0},
256 	{ 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
257 						PCI_ANY_ID, PCI_ANY_ID, 0},
258 	{ 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
259 						PCI_ANY_ID, PCI_ANY_ID, 0},
260 	{ 0x8086, 0x101A, PCI_ANY_ID, PCI_ANY_ID, 0},
261 	{ 0x8086, 0x1014, PCI_ANY_ID, PCI_ANY_ID, 0},
262 	/* required last entry */
263 	{ 0, 0, 0, 0, 0}
264 };
265 
266 /*********************************************************************
267  *  Table of branding strings for all supported NICs.
268  *********************************************************************/
269 
270 static const char *em_strings[] = {
271 	"Intel(R) PRO/1000 Network Connection"
272 };
273 
274 /*********************************************************************
275  *  Function prototypes
276  *********************************************************************/
277 static int	em_probe(device_t);
278 static int	em_attach(device_t);
279 static int	em_detach(device_t);
280 static int	em_shutdown(device_t);
281 static void	em_intr(void *);
282 static int	em_suspend(device_t);
283 static int	em_resume(device_t);
284 static void	em_start(struct ifnet *);
285 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
286 static void	em_watchdog(struct ifnet *);
287 static void	em_init(void *);
288 static void	em_stop(void *);
289 static void	em_media_status(struct ifnet *, struct ifmediareq *);
290 static int	em_media_change(struct ifnet *);
291 static void	em_identify_hardware(struct adapter *);
292 static int	em_allocate_pci_resources(device_t);
293 static void	em_free_pci_resources(device_t);
294 static void	em_local_timer(void *);
295 static int	em_hardware_init(struct adapter *);
296 static void	em_setup_interface(device_t, struct adapter *);
297 static int	em_setup_transmit_structures(struct adapter *);
298 static void	em_initialize_transmit_unit(struct adapter *);
299 static int	em_setup_receive_structures(struct adapter *);
300 static void	em_initialize_receive_unit(struct adapter *);
301 static void	em_enable_intr(struct adapter *);
302 static void	em_disable_intr(struct adapter *);
303 static void	em_free_transmit_structures(struct adapter *);
304 static void	em_free_receive_structures(struct adapter *);
305 static void	em_update_stats_counters(struct adapter *);
306 static void	em_txeof(struct adapter *);
307 static int	em_allocate_receive_structures(struct adapter *);
308 static void	em_rxeof(struct adapter *, int);
309 static void	em_receive_checksum(struct adapter *, struct em_rx_desc *,
310 				    struct mbuf *);
311 static void	em_transmit_checksum_setup(struct adapter *, struct mbuf *,
312 					   uint32_t *, uint32_t *);
313 static void	em_set_promisc(struct adapter *);
314 static void	em_disable_promisc(struct adapter *);
315 static void	em_set_multi(struct adapter *);
316 static void	em_print_hw_stats(struct adapter *);
317 static void	em_update_link_status(struct adapter *);
318 static int	em_get_buf(int i, struct adapter *, struct mbuf *, int how);
319 static void	em_enable_vlans(struct adapter *);
320 static void	em_disable_vlans(struct adapter *) __unused;
321 static int	em_encap(struct adapter *, struct mbuf *);
322 static void	em_smartspeed(struct adapter *);
323 static int	em_82547_fifo_workaround(struct adapter *, int);
324 static void	em_82547_update_fifo_head(struct adapter *, int);
325 static int	em_82547_tx_fifo_reset(struct adapter *);
326 static void	em_82547_move_tail(void *);
327 static void	em_82547_move_tail_serialized(struct adapter *);
328 static int	em_dma_malloc(struct adapter *, bus_size_t,
329 			      struct em_dma_alloc *);
330 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
331 static void	em_print_debug_info(struct adapter *);
332 static int	em_is_valid_ether_addr(uint8_t *);
333 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
334 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
335 static uint32_t	em_fill_descriptors(bus_addr_t address, uint32_t length,
336 				   PDESC_ARRAY desc_array);
337 static int	em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
338 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
339 static void	em_add_int_delay_sysctl(struct adapter *, const char *,
340 					const char *,
341 					struct em_int_delay_info *, int, int);
342 
343 /*********************************************************************
344  *  FreeBSD Device Interface Entry Points
345  *********************************************************************/
346 
347 static device_method_t em_methods[] = {
348 	/* Device interface */
349 	DEVMETHOD(device_probe, em_probe),
350 	DEVMETHOD(device_attach, em_attach),
351 	DEVMETHOD(device_detach, em_detach),
352 	DEVMETHOD(device_shutdown, em_shutdown),
353 	DEVMETHOD(device_suspend, em_suspend),
354 	DEVMETHOD(device_resume, em_resume),
355 	{0, 0}
356 };
357 
358 static driver_t em_driver = {
359 	"em", em_methods, sizeof(struct adapter),
360 };
361 
362 static devclass_t em_devclass;
363 
364 DECLARE_DUMMY_MODULE(if_em);
365 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
366 
367 /*********************************************************************
368  *  Tunable default values.
369  *********************************************************************/
370 
371 #define E1000_TICKS_TO_USECS(ticks)	((1024 * (ticks) + 500) / 1000)
372 #define E1000_USECS_TO_TICKS(usecs)	((1000 * (usecs) + 512) / 1024)
373 
374 static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
375 static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
376 static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
377 static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
378 static int em_int_throttle_ceil = 10000;
379 static int em_rxd = EM_DEFAULT_RXD;
380 static int em_txd = EM_DEFAULT_TXD;
381 static int em_smart_pwr_down = FALSE;
382 
383 TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
384 TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
385 TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
386 TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
387 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
388 TUNABLE_INT("hw.em.rxd", &em_rxd);
389 TUNABLE_INT("hw.em.txd", &em_txd);
390 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
391 
392 /*
393  * Kernel trace for characterization of operations
394  */
395 #if !defined(KTR_IF_EM)
396 #define KTR_IF_EM	KTR_ALL
397 #endif
398 KTR_INFO_MASTER(if_em);
399 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
400 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
401 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
402 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
403 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
404 #define logif(name)	KTR_LOG(if_em_ ## name)
405 
406 /*********************************************************************
407  *  Device identification routine
408  *
409  *  em_probe determines if the driver should be loaded on
410  *  adapter based on PCI vendor/device id of the adapter.
411  *
412  *  return 0 on success, positive on failure
413  *********************************************************************/
414 
415 static int
416 em_probe(device_t dev)
417 {
418 	em_vendor_info_t *ent;
419 
420 	uint16_t pci_vendor_id = 0;
421 	uint16_t pci_device_id = 0;
422 	uint16_t pci_subvendor_id = 0;
423 	uint16_t pci_subdevice_id = 0;
424 	char adapter_name[60];
425 
426 	INIT_DEBUGOUT("em_probe: begin");
427 
428 	pci_vendor_id = pci_get_vendor(dev);
429 	if (pci_vendor_id != EM_VENDOR_ID)
430 		return (ENXIO);
431 
432 	pci_device_id = pci_get_device(dev);
433 	pci_subvendor_id = pci_get_subvendor(dev);
434 	pci_subdevice_id = pci_get_subdevice(dev);
435 
436 	ent = em_vendor_info_array;
437 	while (ent->vendor_id != 0) {
438 		if ((pci_vendor_id == ent->vendor_id) &&
439 		    (pci_device_id == ent->device_id) &&
440 
441 		    ((pci_subvendor_id == ent->subvendor_id) ||
442 		     (ent->subvendor_id == PCI_ANY_ID)) &&
443 
444 		    ((pci_subdevice_id == ent->subdevice_id) ||
445 		     (ent->subdevice_id == PCI_ANY_ID))) {
446 			ksnprintf(adapter_name, sizeof(adapter_name),
447 				 "%s, Version - %s",  em_strings[ent->index],
448 				 em_driver_version);
449 			device_set_desc_copy(dev, adapter_name);
450 			device_set_async_attach(dev, TRUE);
451 			return (0);
452 		}
453 		ent++;
454 	}
455 
456 	return (ENXIO);
457 }
458 
459 /*********************************************************************
460  *  Device initialization routine
461  *
462  *  The attach entry point is called when the driver is being loaded.
463  *  This routine identifies the type of hardware, allocates all resources
464  *  and initializes the hardware.
465  *
466  *  return 0 on success, positive on failure
467  *********************************************************************/
468 
469 static int
470 em_attach(device_t dev)
471 {
472 	struct adapter *adapter;
473 	struct ifnet *ifp;
474 	int tsize, rsize;
475 	int error = 0;
476 
477 	INIT_DEBUGOUT("em_attach: begin");
478 
479 	adapter = device_get_softc(dev);
480 	ifp = &adapter->interface_data.ac_if;
481 
482 	callout_init(&adapter->timer);
483 	callout_init(&adapter->tx_fifo_timer);
484 
485 	adapter->dev = dev;
486 	adapter->osdep.dev = dev;
487 
488 	/* SYSCTL stuff */
489 	sysctl_ctx_init(&adapter->sysctl_ctx);
490 	adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
491 					       SYSCTL_STATIC_CHILDREN(_hw),
492 					       OID_AUTO,
493 					       device_get_nameunit(dev),
494 					       CTLFLAG_RD,
495 					       0, "");
496 
497 	if (adapter->sysctl_tree == NULL) {
498 		device_printf(dev, "Unable to create sysctl tree\n");
499 		return EIO;
500 	}
501 
502 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
503 			SYSCTL_CHILDREN(adapter->sysctl_tree),
504 			OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW,
505 			(void *)adapter, 0,
506 			em_sysctl_debug_info, "I", "Debug Information");
507 
508 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
509 			SYSCTL_CHILDREN(adapter->sysctl_tree),
510 			OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW,
511 			(void *)adapter, 0,
512 			em_sysctl_stats, "I", "Statistics");
513 
514 	/* Determine hardware revision */
515 	em_identify_hardware(adapter);
516 
517 	/* Set up some sysctls for the tunable interrupt delays */
518 	em_add_int_delay_sysctl(adapter, "rx_int_delay",
519 				"receive interrupt delay in usecs",
520 				&adapter->rx_int_delay,
521 				E1000_REG_OFFSET(&adapter->hw, RDTR),
522 				em_rx_int_delay_dflt);
523 	em_add_int_delay_sysctl(adapter, "tx_int_delay",
524 				"transmit interrupt delay in usecs",
525 				&adapter->tx_int_delay,
526 				E1000_REG_OFFSET(&adapter->hw, TIDV),
527 				em_tx_int_delay_dflt);
528 	if (adapter->hw.mac_type >= em_82540) {
529 		em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
530 					"receive interrupt delay limit in usecs",
531 					&adapter->rx_abs_int_delay,
532 					E1000_REG_OFFSET(&adapter->hw, RADV),
533 					em_rx_abs_int_delay_dflt);
534 		em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
535 					"transmit interrupt delay limit in usecs",
536 					&adapter->tx_abs_int_delay,
537 					E1000_REG_OFFSET(&adapter->hw, TADV),
538 					em_tx_abs_int_delay_dflt);
539 		SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
540 			SYSCTL_CHILDREN(adapter->sysctl_tree),
541 			OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
542 			adapter, 0, em_sysctl_int_throttle, "I", NULL);
543 	}
544 
545 	/*
546 	 * Validate number of transmit and receive descriptors. It
547 	 * must not exceed hardware maximum, and must be multiple
548 	 * of EM_DBA_ALIGN.
549 	 */
550 	if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
551 	    (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
552 	    (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
553 	    (em_txd < EM_MIN_TXD)) {
554 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
555 			      EM_DEFAULT_TXD, em_txd);
556 		adapter->num_tx_desc = EM_DEFAULT_TXD;
557 	} else {
558 		adapter->num_tx_desc = em_txd;
559 	}
560 
561 	if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
562 	    (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
563 	    (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
564 	    (em_rxd < EM_MIN_RXD)) {
565 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
566 			      EM_DEFAULT_RXD, em_rxd);
567 		adapter->num_rx_desc = EM_DEFAULT_RXD;
568 	} else {
569 		adapter->num_rx_desc = em_rxd;
570 	}
571 
572 	SYSCTL_ADD_INT(&adapter->sysctl_ctx,
573 		       SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "rxd",
574 		       CTLFLAG_RD, &adapter->num_rx_desc, 0, NULL);
575 	SYSCTL_ADD_INT(&adapter->sysctl_ctx,
576 		       SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "txd",
577 		       CTLFLAG_RD, &adapter->num_tx_desc, 0, NULL);
578 
579 	adapter->hw.autoneg = DO_AUTO_NEG;
580 	adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
581 	adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
582 	adapter->hw.tbi_compatibility_en = TRUE;
583 	adapter->rx_buffer_len = EM_RXBUFFER_2048;
584 
585 	adapter->hw.phy_init_script = 1;
586 	adapter->hw.phy_reset_disable = FALSE;
587 
588 #ifndef EM_MASTER_SLAVE
589 	adapter->hw.master_slave = em_ms_hw_default;
590 #else
591 	adapter->hw.master_slave = EM_MASTER_SLAVE;
592 #endif
593 
594 	/*
595 	 * Set the max frame size assuming standard ethernet
596 	 * sized frames.
597 	 */
598 	adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
599 
600 	adapter->hw.min_frame_size =
601 	    MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
602 
603 	/*
604 	 * This controls when hardware reports transmit completion
605 	 * status.
606 	 */
607 	adapter->hw.report_tx_early = 1;
608 
609 	error = em_allocate_pci_resources(dev);
610 	if (error)
611 		goto fail;
612 
613 	/* Initialize eeprom parameters */
614 	em_init_eeprom_params(&adapter->hw);
615 
616 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
617 			 EM_DBA_ALIGN);
618 
619 	/* Allocate Transmit Descriptor ring */
620 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
621 	if (error) {
622 		device_printf(dev, "Unable to allocate TxDescriptor memory\n");
623 		goto fail;
624 	}
625 	adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
626 
627 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
628 			 EM_DBA_ALIGN);
629 
630 	/* Allocate Receive Descriptor ring */
631 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
632 	if (error) {
633 		device_printf(dev, "Unable to allocate rx_desc memory\n");
634 		goto fail;
635 	}
636 	adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
637 
638 	/* Initialize the hardware */
639 	if (em_hardware_init(adapter)) {
640 		device_printf(dev, "Unable to initialize the hardware\n");
641 		error = EIO;
642 		goto fail;
643 	}
644 
645 	/* Copy the permanent MAC address out of the EEPROM */
646 	if (em_read_mac_addr(&adapter->hw) < 0) {
647 		device_printf(dev,
648 			      "EEPROM read error while reading MAC address\n");
649 		error = EIO;
650 		goto fail;
651 	}
652 
653 	if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
654 		device_printf(dev, "Invalid MAC address\n");
655 		error = EIO;
656 		goto fail;
657 	}
658 
659 	/* Setup OS specific network interface */
660 	em_setup_interface(dev, adapter);
661 
662 	/* Initialize statistics */
663 	em_clear_hw_cntrs(&adapter->hw);
664 	em_update_stats_counters(adapter);
665 	adapter->hw.get_link_status = 1;
666 	em_update_link_status(adapter);
667 
668 	/* Indicate SOL/IDER usage */
669 	if (em_check_phy_reset_block(&adapter->hw)) {
670 		device_printf(dev, "PHY reset is blocked due to "
671 			      "SOL/IDER session.\n");
672 	}
673 
674 	/* Identify 82544 on PCIX */
675 	em_get_bus_info(&adapter->hw);
676 	if (adapter->hw.bus_type == em_bus_type_pcix &&
677 	    adapter->hw.mac_type == em_82544)
678 		adapter->pcix_82544 = TRUE;
679 	else
680 		adapter->pcix_82544 = FALSE;
681 
682 	error = bus_setup_intr(dev, adapter->res_interrupt, INTR_MPSAFE,
683 			   em_intr, adapter,
684 			   &adapter->int_handler_tag, ifp->if_serializer);
685 	if (error) {
686 		device_printf(dev, "Error registering interrupt handler!\n");
687 		ether_ifdetach(ifp);
688 		goto fail;
689 	}
690 
691 	ifp->if_cpuid = ithread_cpuid(rman_get_start(adapter->res_interrupt));
692 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
693 	INIT_DEBUGOUT("em_attach: end");
694 	return(0);
695 
696 fail:
697 	em_detach(dev);
698 	return(error);
699 }
700 
701 /*********************************************************************
702  *  Device removal routine
703  *
704  *  The detach entry point is called when the driver is being removed.
705  *  This routine stops the adapter and deallocates all the resources
706  *  that were allocated for driver operation.
707  *
708  *  return 0 on success, positive on failure
709  *********************************************************************/
710 
711 static int
712 em_detach(device_t dev)
713 {
714 	struct adapter *adapter = device_get_softc(dev);
715 
716 	INIT_DEBUGOUT("em_detach: begin");
717 
718 	if (device_is_attached(dev)) {
719 		struct ifnet *ifp = &adapter->interface_data.ac_if;
720 
721 		lwkt_serialize_enter(ifp->if_serializer);
722 		adapter->in_detach = 1;
723 		em_stop(adapter);
724 		em_phy_hw_reset(&adapter->hw);
725 		bus_teardown_intr(dev, adapter->res_interrupt,
726 				  adapter->int_handler_tag);
727 		lwkt_serialize_exit(ifp->if_serializer);
728 
729 		ether_ifdetach(ifp);
730 	}
731 	bus_generic_detach(dev);
732 
733 	em_free_pci_resources(dev);
734 
735 	/* Free Transmit Descriptor ring */
736 	if (adapter->tx_desc_base != NULL) {
737 		em_dma_free(adapter, &adapter->txdma);
738 		adapter->tx_desc_base = NULL;
739 	}
740 
741 	/* Free Receive Descriptor ring */
742 	if (adapter->rx_desc_base != NULL) {
743 		em_dma_free(adapter, &adapter->rxdma);
744 		adapter->rx_desc_base = NULL;
745 	}
746 
747 	/* Free sysctl tree */
748 	if (adapter->sysctl_tree != NULL) {
749 		adapter->sysctl_tree = NULL;
750 		sysctl_ctx_free(&adapter->sysctl_ctx);
751 	}
752 
753 	return (0);
754 }
755 
756 /*********************************************************************
757  *
758  *  Shutdown entry point
759  *
760  **********************************************************************/
761 
762 static int
763 em_shutdown(device_t dev)
764 {
765 	struct adapter *adapter = device_get_softc(dev);
766 	struct ifnet *ifp = &adapter->interface_data.ac_if;
767 
768 	lwkt_serialize_enter(ifp->if_serializer);
769 	em_stop(adapter);
770 	lwkt_serialize_exit(ifp->if_serializer);
771 
772 	return (0);
773 }
774 
775 /*
776  * Suspend/resume device methods.
777  */
778 static int
779 em_suspend(device_t dev)
780 {
781 	struct adapter *adapter = device_get_softc(dev);
782 	struct ifnet *ifp = &adapter->interface_data.ac_if;
783 
784 	lwkt_serialize_enter(ifp->if_serializer);
785 	em_stop(adapter);
786 	lwkt_serialize_exit(ifp->if_serializer);
787 	return (0);
788 }
789 
790 static int
791 em_resume(device_t dev)
792 {
793 	struct adapter *adapter = device_get_softc(dev);
794 	struct ifnet *ifp = &adapter->interface_data.ac_if;
795 
796 	lwkt_serialize_enter(ifp->if_serializer);
797 	ifp->if_flags &= ~IFF_RUNNING;
798 	em_init(adapter);
799 	if_devstart(ifp);
800 	lwkt_serialize_exit(ifp->if_serializer);
801 
802 	return bus_generic_resume(dev);
803 }
804 
805 /*********************************************************************
806  *  Transmit entry point
807  *
808  *  em_start is called by the stack to initiate a transmit.
809  *  The driver will remain in this routine as long as there are
810  *  packets to transmit and transmit resources are available.
811  *  In case resources are not available stack is notified and
812  *  the packet is requeued.
813  **********************************************************************/
814 
815 static void
816 em_start(struct ifnet *ifp)
817 {
818 	struct mbuf *m_head;
819 	struct adapter *adapter = ifp->if_softc;
820 
821 	ASSERT_SERIALIZED(ifp->if_serializer);
822 
823 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
824 		return;
825 	if (!adapter->link_active) {
826 		ifq_purge(&ifp->if_snd);
827 		return;
828 	}
829 	while (!ifq_is_empty(&ifp->if_snd)) {
830 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
831 		if (m_head == NULL)
832 			break;
833 
834 		logif(pkt_txqueue);
835 		if (em_encap(adapter, m_head)) {
836 			ifp->if_flags |= IFF_OACTIVE;
837 			ifq_prepend(&ifp->if_snd, m_head);
838 			break;
839 		}
840 
841 		/* Send a copy of the frame to the BPF listener */
842 		ETHER_BPF_MTAP(ifp, m_head);
843 
844 		/* Set timeout in case hardware has problems transmitting. */
845 		ifp->if_timer = EM_TX_TIMEOUT;
846 	}
847 }
848 
849 /*********************************************************************
850  *  Ioctl entry point
851  *
852  *  em_ioctl is called when the user wants to configure the
853  *  interface.
854  *
855  *  return 0 on success, positive on failure
856  **********************************************************************/
857 
858 static int
859 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
860 {
861 	int max_frame_size, mask, error = 0, reinit = 0;
862 	struct ifreq *ifr = (struct ifreq *) data;
863 	struct adapter *adapter = ifp->if_softc;
864 	uint16_t eeprom_data = 0;
865 
866 	ASSERT_SERIALIZED(ifp->if_serializer);
867 
868 	if (adapter->in_detach)
869 		return 0;
870 
871 	switch (command) {
872 	case SIOCSIFMTU:
873 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
874 		switch (adapter->hw.mac_type) {
875 		case em_82573:
876 			/*
877 			 * 82573 only supports jumbo frames
878 			 * if ASPM is disabled.
879 			 */
880 			em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3,
881 			    1, &eeprom_data);
882 			if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
883 				max_frame_size = ETHER_MAX_LEN;
884 				break;
885 			}
886 			/* Allow Jumbo frames */
887 			/* FALLTHROUGH */
888 		case em_82571:
889 		case em_82572:
890 		case em_ich9lan:
891 		case em_80003es2lan:	/* Limit Jumbo Frame size */
892 			max_frame_size = 9234;
893 			break;
894 		case em_ich8lan:
895 			/* ICH8 does not support jumbo frames */
896 			max_frame_size = ETHER_MAX_LEN;
897 			break;
898 		default:
899 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
900 			break;
901 		}
902 		if (ifr->ifr_mtu >
903 			max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
904 			error = EINVAL;
905 		} else {
906 			ifp->if_mtu = ifr->ifr_mtu;
907 			adapter->hw.max_frame_size =
908 			ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
909 			ifp->if_flags &= ~IFF_RUNNING;
910 			em_init(adapter);
911 		}
912 		break;
913 	case SIOCSIFFLAGS:
914 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS "
915 			       "(Set Interface Flags)");
916 		if (ifp->if_flags & IFF_UP) {
917 			if (!(ifp->if_flags & IFF_RUNNING)) {
918 				em_init(adapter);
919 			} else if ((ifp->if_flags ^ adapter->if_flags) &
920 				   (IFF_PROMISC | IFF_ALLMULTI)) {
921 				em_disable_promisc(adapter);
922 				em_set_promisc(adapter);
923 			}
924 		} else {
925 			if (ifp->if_flags & IFF_RUNNING)
926 				em_stop(adapter);
927 		}
928 		adapter->if_flags = ifp->if_flags;
929 		break;
930 	case SIOCADDMULTI:
931 	case SIOCDELMULTI:
932 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
933 		if (ifp->if_flags & IFF_RUNNING) {
934 			em_disable_intr(adapter);
935 			em_set_multi(adapter);
936 			if (adapter->hw.mac_type == em_82542_rev2_0)
937 				em_initialize_receive_unit(adapter);
938 #ifdef DEVICE_POLLING
939 			/* Do not enable interrupt if polling(4) is enabled */
940 			if ((ifp->if_flags & IFF_POLLING) == 0)
941 #endif
942 			em_enable_intr(adapter);
943 		}
944 		break;
945 	case SIOCSIFMEDIA:
946 		/* Check SOL/IDER usage */
947 		if (em_check_phy_reset_block(&adapter->hw)) {
948 			if_printf(ifp, "Media change is blocked due to "
949 				  "SOL/IDER session.\n");
950 			break;
951 		}
952 		/* FALLTHROUGH */
953 	case SIOCGIFMEDIA:
954 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA "
955 			       "(Get/Set Interface Media)");
956 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
957 		break;
958 	case SIOCSIFCAP:
959 		IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
960 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
961 		if (mask & IFCAP_HWCSUM) {
962 			ifp->if_capenable ^= IFCAP_HWCSUM;
963 			reinit = 1;
964 		}
965 		if (mask & IFCAP_VLAN_HWTAGGING) {
966 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
967 			reinit = 1;
968 		}
969 		if (reinit && (ifp->if_flags & IFF_RUNNING)) {
970 			ifp->if_flags &= ~IFF_RUNNING;
971 			em_init(adapter);
972 		}
973 		break;
974 	default:
975 		error = ether_ioctl(ifp, command, data);
976 		break;
977 	}
978 
979 	return (error);
980 }
981 
982 /*********************************************************************
983  *  Watchdog entry point
984  *
985  *  This routine is called whenever hardware quits transmitting.
986  *
987  **********************************************************************/
988 
989 static void
990 em_watchdog(struct ifnet *ifp)
991 {
992 	struct adapter *adapter = ifp->if_softc;
993 
994 	/*
995 	 * If we are in this routine because of pause frames, then
996 	 * don't reset the hardware.
997 	 */
998 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
999 		ifp->if_timer = EM_TX_TIMEOUT;
1000 		return;
1001 	}
1002 
1003 	if (em_check_for_link(&adapter->hw) == 0)
1004 		if_printf(ifp, "watchdog timeout -- resetting\n");
1005 
1006 	ifp->if_flags &= ~IFF_RUNNING;
1007 	em_init(adapter);
1008 
1009 	adapter->watchdog_timeouts++;
1010 }
1011 
1012 /*********************************************************************
1013  *  Init entry point
1014  *
1015  *  This routine is used in two ways. It is used by the stack as
1016  *  init entry point in network interface structure. It is also used
1017  *  by the driver as a hw/sw initialization routine to get to a
1018  *  consistent state.
1019  *
1020  *  return 0 on success, positive on failure
1021  **********************************************************************/
1022 
1023 static void
1024 em_init(void *arg)
1025 {
1026 	struct adapter *adapter = arg;
1027 	uint32_t pba;
1028 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1029 
1030 	ASSERT_SERIALIZED(ifp->if_serializer);
1031 
1032 	INIT_DEBUGOUT("em_init: begin");
1033 
1034 	if (ifp->if_flags & IFF_RUNNING)
1035 		return;
1036 
1037 	em_stop(adapter);
1038 
1039 	/*
1040 	 * Packet Buffer Allocation (PBA)
1041 	 * Writing PBA sets the receive portion of the buffer
1042 	 * the remainder is used for the transmit buffer.
1043 	 *
1044 	 * Devices before the 82547 had a Packet Buffer of 64K.
1045 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1046 	 * After the 82547 the buffer was reduced to 40K.
1047 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1048 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
1049 	 */
1050 	switch (adapter->hw.mac_type) {
1051 	case em_82547:
1052 	case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1053 		if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1054 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1055 		else
1056 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1057 
1058 		adapter->tx_fifo_head = 0;
1059 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1060 		adapter->tx_fifo_size =
1061 			(E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1062 		break;
1063 	/* Total Packet Buffer on these is 48K */
1064 	case em_82571:
1065 	case em_82572:
1066 	case em_80003es2lan:
1067 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1068 		break;
1069 	case em_82573: /* 82573: Total Packet Buffer is 32K */
1070 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1071 		break;
1072 	case em_ich8lan:
1073 		pba = E1000_PBA_8K;
1074 		break;
1075 	case em_ich9lan:
1076 #define E1000_PBA_10K   0x000A
1077 		pba = E1000_PBA_10K;
1078 		break;
1079 	default:
1080 		/* Devices before 82547 had a Packet Buffer of 64K.   */
1081 		if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1082 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1083 		else
1084 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1085 	}
1086 
1087 	INIT_DEBUGOUT1("em_init: pba=%dK",pba);
1088 	E1000_WRITE_REG(&adapter->hw, PBA, pba);
1089 
1090 	/* Get the latest mac address, User can use a LAA */
1091 	bcopy(adapter->interface_data.ac_enaddr, adapter->hw.mac_addr,
1092 	      ETHER_ADDR_LEN);
1093 
1094 	/* Initialize the hardware */
1095 	if (em_hardware_init(adapter)) {
1096 		if_printf(ifp, "Unable to initialize the hardware\n");
1097 		return;
1098 	}
1099 	em_update_link_status(adapter);
1100 
1101 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1102 		em_enable_vlans(adapter);
1103 
1104 	/* Set hardware offload abilities */
1105 	if (adapter->hw.mac_type >= em_82543) {
1106 		if (ifp->if_capenable & IFCAP_TXCSUM)
1107 			ifp->if_hwassist = EM_CHECKSUM_FEATURES;
1108 		else
1109 			ifp->if_hwassist = 0;
1110 	}
1111 
1112 	/* Prepare transmit descriptors and buffers */
1113 	if (em_setup_transmit_structures(adapter)) {
1114 		if_printf(ifp, "Could not setup transmit structures\n");
1115 		em_stop(adapter);
1116 		return;
1117 	}
1118 	em_initialize_transmit_unit(adapter);
1119 
1120 	/* Setup Multicast table */
1121 	em_set_multi(adapter);
1122 
1123 	/* Prepare receive descriptors and buffers */
1124 	if (em_setup_receive_structures(adapter)) {
1125 		if_printf(ifp, "Could not setup receive structures\n");
1126 		em_stop(adapter);
1127 		return;
1128 	}
1129 	em_initialize_receive_unit(adapter);
1130 
1131 	/* Don't lose promiscuous settings */
1132 	em_set_promisc(adapter);
1133 
1134 	ifp->if_flags |= IFF_RUNNING;
1135 	ifp->if_flags &= ~IFF_OACTIVE;
1136 
1137 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1138 	em_clear_hw_cntrs(&adapter->hw);
1139 
1140 #ifdef DEVICE_POLLING
1141 	/* Do not enable interrupt if polling(4) is enabled */
1142 	if (ifp->if_flags & IFF_POLLING)
1143 		em_disable_intr(adapter);
1144 	else
1145 #endif
1146 	em_enable_intr(adapter);
1147 
1148 	/* Don't reset the phy next time init gets called */
1149 	adapter->hw.phy_reset_disable = TRUE;
1150 }
1151 
1152 #ifdef DEVICE_POLLING
1153 
1154 static void
1155 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1156 {
1157 	struct adapter *adapter = ifp->if_softc;
1158 	uint32_t reg_icr;
1159 
1160 	ASSERT_SERIALIZED(ifp->if_serializer);
1161 
1162 	switch(cmd) {
1163 	case POLL_REGISTER:
1164 		em_disable_intr(adapter);
1165 		break;
1166 	case POLL_DEREGISTER:
1167 		em_enable_intr(adapter);
1168 		break;
1169 	case POLL_AND_CHECK_STATUS:
1170 		reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1171 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1172 			callout_stop(&adapter->timer);
1173 			adapter->hw.get_link_status = 1;
1174 			em_check_for_link(&adapter->hw);
1175 			em_update_link_status(adapter);
1176 			callout_reset(&adapter->timer, hz, em_local_timer,
1177 				      adapter);
1178 		}
1179 		/* fall through */
1180 	case POLL_ONLY:
1181 		if (ifp->if_flags & IFF_RUNNING) {
1182 			em_rxeof(adapter, count);
1183 			em_txeof(adapter);
1184 
1185 			if (!ifq_is_empty(&ifp->if_snd))
1186 				if_devstart(ifp);
1187 		}
1188 		break;
1189 	}
1190 }
1191 
1192 #endif /* DEVICE_POLLING */
1193 
1194 /*********************************************************************
1195  *
1196  *  Interrupt Service routine
1197  *
1198  *********************************************************************/
1199 static void
1200 em_intr(void *arg)
1201 {
1202 	uint32_t reg_icr;
1203 	struct ifnet *ifp;
1204 	struct adapter *adapter = arg;
1205 
1206 	ifp = &adapter->interface_data.ac_if;
1207 
1208 	logif(intr_beg);
1209 	ASSERT_SERIALIZED(ifp->if_serializer);
1210 
1211 	reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1212 	if ((adapter->hw.mac_type >= em_82571 &&
1213 	     (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1214 	    reg_icr == 0) {
1215 		logif(intr_end);
1216 		return;
1217 	}
1218 
1219 	/*
1220 	 * XXX: some laptops trigger several spurious interrupts on em(4)
1221 	 * when in the resume cycle. The ICR register reports all-ones
1222 	 * value in this case. Processing such interrupts would lead to
1223 	 * a freeze. I don't know why.
1224 	 */
1225 	if (reg_icr == 0xffffffff) {
1226 		logif(intr_end);
1227 		return;
1228 	}
1229 
1230 	/*
1231 	 * note: do not attempt to improve efficiency by looping.  This
1232 	 * only results in unnecessary piecemeal collection of received
1233 	 * packets and unnecessary piecemeal cleanups of the transmit ring.
1234 	 */
1235 	if (ifp->if_flags & IFF_RUNNING) {
1236 		em_rxeof(adapter, -1);
1237 		em_txeof(adapter);
1238 	}
1239 
1240 	/* Link status change */
1241 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1242 		callout_stop(&adapter->timer);
1243 		adapter->hw.get_link_status = 1;
1244 		em_check_for_link(&adapter->hw);
1245 		em_update_link_status(adapter);
1246 		callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1247 	}
1248 
1249 	if (reg_icr & E1000_ICR_RXO)
1250 		adapter->rx_overruns++;
1251 
1252 	if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1253 		if_devstart(ifp);
1254 
1255 	logif(intr_end);
1256 }
1257 
1258 /*********************************************************************
1259  *
1260  *  Media Ioctl callback
1261  *
1262  *  This routine is called whenever the user queries the status of
1263  *  the interface using ifconfig.
1264  *
1265  **********************************************************************/
1266 static void
1267 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1268 {
1269 	struct adapter *adapter = ifp->if_softc;
1270 	u_char fiber_type = IFM_1000_SX;
1271 
1272 	INIT_DEBUGOUT("em_media_status: begin");
1273 
1274 	ASSERT_SERIALIZED(ifp->if_serializer);
1275 
1276 	em_check_for_link(&adapter->hw);
1277 	em_update_link_status(adapter);
1278 
1279 	ifmr->ifm_status = IFM_AVALID;
1280 	ifmr->ifm_active = IFM_ETHER;
1281 
1282 	if (!adapter->link_active)
1283 		return;
1284 
1285 	ifmr->ifm_status |= IFM_ACTIVE;
1286 
1287 	if (adapter->hw.media_type == em_media_type_fiber ||
1288 	    adapter->hw.media_type == em_media_type_internal_serdes) {
1289 		if (adapter->hw.mac_type == em_82545)
1290 			fiber_type = IFM_1000_LX;
1291 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1292 	} else {
1293 		switch (adapter->link_speed) {
1294 		case 10:
1295 			ifmr->ifm_active |= IFM_10_T;
1296 			break;
1297 		case 100:
1298 			ifmr->ifm_active |= IFM_100_TX;
1299 			break;
1300 		case 1000:
1301 			ifmr->ifm_active |= IFM_1000_T;
1302 			break;
1303 		}
1304 		if (adapter->link_duplex == FULL_DUPLEX)
1305 			ifmr->ifm_active |= IFM_FDX;
1306 		else
1307 			ifmr->ifm_active |= IFM_HDX;
1308 	}
1309 }
1310 
1311 /*********************************************************************
1312  *
1313  *  Media Ioctl callback
1314  *
1315  *  This routine is called when the user changes speed/duplex using
1316  *  media/mediopt option with ifconfig.
1317  *
1318  **********************************************************************/
1319 static int
1320 em_media_change(struct ifnet *ifp)
1321 {
1322 	struct adapter *adapter = ifp->if_softc;
1323 	struct ifmedia *ifm = &adapter->media;
1324 
1325 	INIT_DEBUGOUT("em_media_change: begin");
1326 
1327 	ASSERT_SERIALIZED(ifp->if_serializer);
1328 
1329 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1330 		return (EINVAL);
1331 
1332 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1333 	case IFM_AUTO:
1334 		adapter->hw.autoneg = DO_AUTO_NEG;
1335 		adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1336 		break;
1337 	case IFM_1000_LX:
1338 	case IFM_1000_SX:
1339 	case IFM_1000_T:
1340 		adapter->hw.autoneg = DO_AUTO_NEG;
1341 		adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
1342 		break;
1343 	case IFM_100_TX:
1344 		adapter->hw.autoneg = FALSE;
1345 		adapter->hw.autoneg_advertised = 0;
1346 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1347 			adapter->hw.forced_speed_duplex = em_100_full;
1348 		else
1349 			adapter->hw.forced_speed_duplex = em_100_half;
1350 		break;
1351 	case IFM_10_T:
1352 		adapter->hw.autoneg = FALSE;
1353 		adapter->hw.autoneg_advertised = 0;
1354 		if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1355 			adapter->hw.forced_speed_duplex = em_10_full;
1356 		else
1357 			adapter->hw.forced_speed_duplex = em_10_half;
1358 		break;
1359 	default:
1360 		if_printf(ifp, "Unsupported media type\n");
1361 	}
1362 	/*
1363 	 * As the speed/duplex settings may have changed we need to
1364 	 * reset the PHY.
1365 	 */
1366 	adapter->hw.phy_reset_disable = FALSE;
1367 
1368 	ifp->if_flags &= ~IFF_RUNNING;
1369 	em_init(adapter);
1370 
1371 	return(0);
1372 }
1373 
1374 static void
1375 em_tx_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1376 	 int error)
1377 {
1378 	struct em_q *q = arg;
1379 
1380 	if (error)
1381 		return;
1382 	KASSERT(nsegs <= EM_MAX_SCATTER,
1383 		("Too many DMA segments returned when mapping tx packet"));
1384 	q->nsegs = nsegs;
1385 	bcopy(seg, q->segs, nsegs * sizeof(seg[0]));
1386 }
1387 
1388 /*********************************************************************
1389  *
1390  *  This routine maps the mbufs to tx descriptors.
1391  *
1392  *  return 0 on success, positive on failure
1393  **********************************************************************/
1394 static int
1395 em_encap(struct adapter *adapter, struct mbuf *m_head)
1396 {
1397 	uint32_t txd_upper = 0, txd_lower = 0, txd_used = 0, txd_saved = 0;
1398 	int i, j, error, last = 0;
1399 
1400 	struct em_q q;
1401 	struct em_buffer *tx_buffer = NULL, *tx_buffer_first;
1402 	bus_dmamap_t map;
1403 	struct em_tx_desc *current_tx_desc = NULL;
1404 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1405 
1406 	/*
1407 	 * Force a cleanup if number of TX descriptors
1408 	 * available hits the threshold
1409 	 */
1410 	if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1411 		em_txeof(adapter);
1412 		if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1413 			adapter->no_tx_desc_avail1++;
1414 			return (ENOBUFS);
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * Capture the first descriptor index, this descriptor will have
1420 	 * the index of the EOP which is the only one that now gets a
1421 	 * DONE bit writeback.
1422 	 */
1423 	tx_buffer_first = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
1424 
1425 	/*
1426 	 * Map the packet for DMA.
1427 	 */
1428 	map = tx_buffer_first->map;
1429 	error = bus_dmamap_load_mbuf(adapter->txtag, map, m_head, em_tx_cb,
1430 				     &q, BUS_DMA_NOWAIT);
1431 	if (error != 0) {
1432 		adapter->no_tx_dma_setup++;
1433 		return (error);
1434 	}
1435 	KASSERT(q.nsegs != 0, ("em_encap: empty packet"));
1436 
1437 	if (q.nsegs > (adapter->num_tx_desc_avail - 2)) {
1438 		adapter->no_tx_desc_avail2++;
1439 		error = ENOBUFS;
1440 		goto fail;
1441 	}
1442 
1443 	if (ifp->if_hwassist > 0) {
1444 		em_transmit_checksum_setup(adapter,  m_head,
1445 					   &txd_upper, &txd_lower);
1446 	}
1447 
1448 	i = adapter->next_avail_tx_desc;
1449 	if (adapter->pcix_82544)
1450 		txd_saved = i;
1451 
1452 	/* Set up our transmit descriptors */
1453 	for (j = 0; j < q.nsegs; j++) {
1454 		/* If adapter is 82544 and on PCIX bus */
1455 		if(adapter->pcix_82544) {
1456 			DESC_ARRAY desc_array;
1457 			uint32_t array_elements, counter;
1458 
1459 			/*
1460 			 * Check the Address and Length combination and
1461 			 * split the data accordingly
1462 			 */
1463 			array_elements = em_fill_descriptors(q.segs[j].ds_addr,
1464 						q.segs[j].ds_len, &desc_array);
1465 			for (counter = 0; counter < array_elements; counter++) {
1466 				if (txd_used == adapter->num_tx_desc_avail) {
1467 					adapter->next_avail_tx_desc = txd_saved;
1468 					adapter->no_tx_desc_avail2++;
1469 					error = ENOBUFS;
1470 					goto fail;
1471 				}
1472 				tx_buffer = &adapter->tx_buffer_area[i];
1473 				current_tx_desc = &adapter->tx_desc_base[i];
1474 				current_tx_desc->buffer_addr = htole64(
1475 					desc_array.descriptor[counter].address);
1476 				current_tx_desc->lower.data = htole32(
1477 					adapter->txd_cmd | txd_lower |
1478 					(uint16_t)desc_array.descriptor[counter].length);
1479 				current_tx_desc->upper.data = htole32(txd_upper);
1480 
1481 				last = i;
1482 				if (++i == adapter->num_tx_desc)
1483 					i = 0;
1484 
1485 				tx_buffer->m_head = NULL;
1486 				tx_buffer->next_eop = -1;
1487 				txd_used++;
1488 			}
1489 		} else {
1490 			tx_buffer = &adapter->tx_buffer_area[i];
1491 			current_tx_desc = &adapter->tx_desc_base[i];
1492 
1493 			current_tx_desc->buffer_addr = htole64(q.segs[j].ds_addr);
1494 			current_tx_desc->lower.data = htole32(
1495 				adapter->txd_cmd | txd_lower | q.segs[j].ds_len);
1496 			current_tx_desc->upper.data = htole32(txd_upper);
1497 
1498 			last = i;
1499 			if (++i == adapter->num_tx_desc)
1500 				i = 0;
1501 
1502 			tx_buffer->m_head = NULL;
1503 			tx_buffer->next_eop = -1;
1504 		}
1505 	}
1506 
1507 	adapter->next_avail_tx_desc = i;
1508 	if (adapter->pcix_82544)
1509 		adapter->num_tx_desc_avail -= txd_used;
1510 	else
1511 		adapter->num_tx_desc_avail -= q.nsegs;
1512 
1513 	/* Find out if we are in vlan mode */
1514 	if (m_head->m_flags & M_VLANTAG) {
1515 		/* Set the vlan id */
1516 		current_tx_desc->upper.fields.special =
1517 			htole16(m_head->m_pkthdr.ether_vlantag);
1518 
1519 		/* Tell hardware to add tag */
1520 		current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
1521 	}
1522 
1523 	tx_buffer->m_head = m_head;
1524 	tx_buffer_first->map = tx_buffer->map;
1525 	tx_buffer->map = map;
1526 	bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1527 
1528 	/*
1529 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1530 	 * and Report Status (RS)
1531 	 */
1532 	current_tx_desc->lower.data |=
1533 		htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
1534 
1535 	/*
1536 	 * Keep track in the first buffer which descriptor will be
1537 	 * written back.
1538 	 */
1539 	tx_buffer_first->next_eop = last;
1540 
1541 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
1542 			BUS_DMASYNC_PREWRITE);
1543 
1544 	/*
1545 	 * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
1546 	 * that this frame is available to transmit.
1547 	 */
1548 	if (adapter->hw.mac_type == em_82547 &&
1549 	    adapter->link_duplex == HALF_DUPLEX) {
1550 		em_82547_move_tail_serialized(adapter);
1551 	} else {
1552 		E1000_WRITE_REG(&adapter->hw, TDT, i);
1553 		if (adapter->hw.mac_type == em_82547) {
1554 			em_82547_update_fifo_head(adapter,
1555 						  m_head->m_pkthdr.len);
1556 		}
1557 	}
1558 
1559 	return (0);
1560 fail:
1561 	bus_dmamap_unload(adapter->txtag, map);
1562 	return error;
1563 }
1564 
1565 /*********************************************************************
1566  *
1567  * 82547 workaround to avoid controller hang in half-duplex environment.
1568  * The workaround is to avoid queuing a large packet that would span
1569  * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1570  * in this case. We do that only when FIFO is quiescent.
1571  *
1572  **********************************************************************/
1573 static void
1574 em_82547_move_tail(void *arg)
1575 {
1576 	struct adapter *adapter = arg;
1577 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1578 
1579 	lwkt_serialize_enter(ifp->if_serializer);
1580 	em_82547_move_tail_serialized(adapter);
1581 	lwkt_serialize_exit(ifp->if_serializer);
1582 }
1583 
1584 static void
1585 em_82547_move_tail_serialized(struct adapter *adapter)
1586 {
1587 	uint16_t hw_tdt;
1588 	uint16_t sw_tdt;
1589 	struct em_tx_desc *tx_desc;
1590 	uint16_t length = 0;
1591 	boolean_t eop = 0;
1592 
1593 	hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
1594 	sw_tdt = adapter->next_avail_tx_desc;
1595 
1596 	while (hw_tdt != sw_tdt) {
1597 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1598 		length += tx_desc->lower.flags.length;
1599 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1600 		if (++hw_tdt == adapter->num_tx_desc)
1601 			hw_tdt = 0;
1602 
1603 		if (eop) {
1604 			if (em_82547_fifo_workaround(adapter, length)) {
1605 				adapter->tx_fifo_wrk_cnt++;
1606 				callout_reset(&adapter->tx_fifo_timer, 1,
1607 					em_82547_move_tail, adapter);
1608 				break;
1609 			}
1610 			E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
1611 			em_82547_update_fifo_head(adapter, length);
1612 			length = 0;
1613 		}
1614 	}
1615 }
1616 
1617 static int
1618 em_82547_fifo_workaround(struct adapter *adapter, int len)
1619 {
1620 	int fifo_space, fifo_pkt_len;
1621 
1622 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1623 
1624 	if (adapter->link_duplex == HALF_DUPLEX) {
1625 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1626 
1627 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1628 			if (em_82547_tx_fifo_reset(adapter))
1629 				return (0);
1630 			else
1631 				return (1);
1632 		}
1633 	}
1634 
1635 	return (0);
1636 }
1637 
1638 static void
1639 em_82547_update_fifo_head(struct adapter *adapter, int len)
1640 {
1641 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1642 
1643 	/* tx_fifo_head is always 16 byte aligned */
1644 	adapter->tx_fifo_head += fifo_pkt_len;
1645 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1646 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
1647 }
1648 
1649 static int
1650 em_82547_tx_fifo_reset(struct adapter *adapter)
1651 {
1652 	uint32_t tctl;
1653 
1654 	if (E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH) &&
1655 	    E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH) &&
1656 	    E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS) &&
1657 	    E1000_READ_REG(&adapter->hw, TDFPC) == 0) {
1658 		/* Disable TX unit */
1659 		tctl = E1000_READ_REG(&adapter->hw, TCTL);
1660 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
1661 
1662 		/* Reset FIFO pointers */
1663 		E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
1664 		E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
1665 		E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
1666 		E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
1667 
1668 		/* Re-enable TX unit */
1669 		E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1670 		E1000_WRITE_FLUSH(&adapter->hw);
1671 
1672 		adapter->tx_fifo_head = 0;
1673 		adapter->tx_fifo_reset_cnt++;
1674 
1675 		return (TRUE);
1676 	} else {
1677 		return (FALSE);
1678 	}
1679 }
1680 
1681 static void
1682 em_set_promisc(struct adapter *adapter)
1683 {
1684 	uint32_t reg_rctl;
1685 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1686 
1687 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1688 
1689 	if (ifp->if_flags & IFF_PROMISC) {
1690 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1691 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1692 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1693 		reg_rctl |= E1000_RCTL_MPE;
1694 		reg_rctl &= ~E1000_RCTL_UPE;
1695 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1696 	}
1697 }
1698 
1699 static void
1700 em_disable_promisc(struct adapter *adapter)
1701 {
1702 	uint32_t reg_rctl;
1703 
1704 	reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1705 
1706 	reg_rctl &= (~E1000_RCTL_UPE);
1707 	reg_rctl &= (~E1000_RCTL_MPE);
1708 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1709 }
1710 
1711 /*********************************************************************
1712  *  Multicast Update
1713  *
1714  *  This routine is called whenever multicast address list is updated.
1715  *
1716  **********************************************************************/
1717 
1718 static void
1719 em_set_multi(struct adapter *adapter)
1720 {
1721 	uint32_t reg_rctl = 0;
1722 	uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
1723 	struct ifmultiaddr *ifma;
1724 	int mcnt = 0;
1725 	struct ifnet *ifp = &adapter->interface_data.ac_if;
1726 
1727 	IOCTL_DEBUGOUT("em_set_multi: begin");
1728 
1729 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1730 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1731 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1732 			em_pci_clear_mwi(&adapter->hw);
1733 		reg_rctl |= E1000_RCTL_RST;
1734 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1735 		msec_delay(5);
1736 	}
1737 
1738 	LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1739 		if (ifma->ifma_addr->sa_family != AF_LINK)
1740 			continue;
1741 
1742 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1743 			break;
1744 
1745 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1746 		      &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
1747 		mcnt++;
1748 	}
1749 
1750 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1751 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1752 		reg_rctl |= E1000_RCTL_MPE;
1753 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1754 	} else {
1755 		em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
1756 	}
1757 
1758 	if (adapter->hw.mac_type == em_82542_rev2_0) {
1759 		reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1760 		reg_rctl &= ~E1000_RCTL_RST;
1761 		E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1762 		msec_delay(5);
1763 		if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1764                         em_pci_set_mwi(&adapter->hw);
1765 	}
1766 }
1767 
1768 /*********************************************************************
1769  *  Timer routine
1770  *
1771  *  This routine checks for link status and updates statistics.
1772  *
1773  **********************************************************************/
1774 
1775 static void
1776 em_local_timer(void *arg)
1777 {
1778 	struct ifnet *ifp;
1779 	struct adapter *adapter = arg;
1780 	ifp = &adapter->interface_data.ac_if;
1781 
1782 	lwkt_serialize_enter(ifp->if_serializer);
1783 
1784 	em_check_for_link(&adapter->hw);
1785 	em_update_link_status(adapter);
1786 	em_update_stats_counters(adapter);
1787 	if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING)
1788 		em_print_hw_stats(adapter);
1789 	em_smartspeed(adapter);
1790 
1791 	callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1792 
1793 	lwkt_serialize_exit(ifp->if_serializer);
1794 }
1795 
1796 static void
1797 em_update_link_status(struct adapter *adapter)
1798 {
1799 	struct ifnet *ifp;
1800 	ifp = &adapter->interface_data.ac_if;
1801 
1802 	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1803 		if (adapter->link_active == 0) {
1804 			em_get_speed_and_duplex(&adapter->hw,
1805 						&adapter->link_speed,
1806 						&adapter->link_duplex);
1807 			/* Check if we may set SPEED_MODE bit on PCI-E */
1808 			if (adapter->link_speed == SPEED_1000 &&
1809 			    (adapter->hw.mac_type == em_82571 ||
1810 			     adapter->hw.mac_type == em_82572)) {
1811 				int tarc0;
1812 
1813 				tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
1814 				tarc0 |= SPEED_MODE_BIT;
1815 				E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
1816 			}
1817 			if (bootverbose) {
1818 				if_printf(&adapter->interface_data.ac_if,
1819 					  "Link is up %d Mbps %s\n",
1820 					  adapter->link_speed,
1821 					  adapter->link_duplex == FULL_DUPLEX ?
1822 						"Full Duplex" : "Half Duplex");
1823 			}
1824 			adapter->link_active = 1;
1825 			adapter->smartspeed = 0;
1826 			ifp->if_baudrate = adapter->link_speed * 1000000;
1827 			ifp->if_link_state = LINK_STATE_UP;
1828 			if_link_state_change(ifp);
1829 		}
1830 	} else {
1831 		if (adapter->link_active == 1) {
1832 			ifp->if_baudrate = 0;
1833 			adapter->link_speed = 0;
1834 			adapter->link_duplex = 0;
1835 			if (bootverbose) {
1836 				if_printf(&adapter->interface_data.ac_if,
1837 					  "Link is Down\n");
1838 			}
1839 			adapter->link_active = 0;
1840 			ifp->if_link_state = LINK_STATE_DOWN;
1841 			if_link_state_change(ifp);
1842 		}
1843 	}
1844 }
1845 
1846 /*********************************************************************
1847  *
1848  *  This routine disables all traffic on the adapter by issuing a
1849  *  global reset on the MAC and deallocates TX/RX buffers.
1850  *
1851  **********************************************************************/
1852 
1853 static void
1854 em_stop(void *arg)
1855 {
1856 	struct ifnet   *ifp;
1857 	struct adapter * adapter = arg;
1858 	ifp = &adapter->interface_data.ac_if;
1859 
1860 	ASSERT_SERIALIZED(ifp->if_serializer);
1861 
1862 	INIT_DEBUGOUT("em_stop: begin");
1863 	em_disable_intr(adapter);
1864 	em_reset_hw(&adapter->hw);
1865 	callout_stop(&adapter->timer);
1866 	callout_stop(&adapter->tx_fifo_timer);
1867 	em_free_transmit_structures(adapter);
1868 	em_free_receive_structures(adapter);
1869 
1870 	/* Tell the stack that the interface is no longer active */
1871 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1872 	ifp->if_timer = 0;
1873 }
1874 
1875 /*********************************************************************
1876  *
1877  *  Determine hardware revision.
1878  *
1879  **********************************************************************/
1880 static void
1881 em_identify_hardware(struct adapter *adapter)
1882 {
1883 	device_t dev = adapter->dev;
1884 
1885 	/* Make sure our PCI config space has the necessary stuff set */
1886 	adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1887 	if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
1888 	      (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
1889 		device_printf(dev, "Memory Access and/or Bus Master bits "
1890 			      "were not set!\n");
1891 		adapter->hw.pci_cmd_word |= PCIM_CMD_BUSMASTEREN |
1892 					    PCIM_CMD_MEMEN;
1893 		pci_write_config(dev, PCIR_COMMAND,
1894 				 adapter->hw.pci_cmd_word, 2);
1895 	}
1896 
1897 	/* Save off the information about this board */
1898 	adapter->hw.vendor_id = pci_get_vendor(dev);
1899 	adapter->hw.device_id = pci_get_device(dev);
1900 	adapter->hw.revision_id = pci_get_revid(dev);
1901 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
1902 	adapter->hw.subsystem_id = pci_get_subdevice(dev);
1903 
1904 	/* Identify the MAC */
1905 	if (em_set_mac_type(&adapter->hw))
1906 		device_printf(dev, "Unknown MAC Type\n");
1907 
1908 	if (adapter->hw.mac_type == em_82541 ||
1909 	    adapter->hw.mac_type == em_82541_rev_2 ||
1910 	    adapter->hw.mac_type == em_82547 ||
1911 	    adapter->hw.mac_type == em_82547_rev_2)
1912 		adapter->hw.phy_init_script = TRUE;
1913 }
1914 
1915 static int
1916 em_allocate_pci_resources(device_t dev)
1917 {
1918 	struct adapter *adapter = device_get_softc(dev);
1919 	int rid;
1920 
1921 	rid = PCIR_BAR(0);
1922 	adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1923 						     &rid, RF_ACTIVE);
1924 	if (adapter->res_memory == NULL) {
1925 		device_printf(dev, "Unable to allocate bus resource: memory\n");
1926 		return ENXIO;
1927 	}
1928 	adapter->osdep.mem_bus_space_tag =
1929 		rman_get_bustag(adapter->res_memory);
1930 	adapter->osdep.mem_bus_space_handle =
1931 	    rman_get_bushandle(adapter->res_memory);
1932 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
1933 
1934 	if (adapter->hw.mac_type > em_82543) {
1935 		/* Figure our where our IO BAR is ? */
1936 		for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1937 			uint32_t val;
1938 
1939 			val = pci_read_config(dev, rid, 4);
1940 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1941 				adapter->io_rid = rid;
1942 				break;
1943 			}
1944 			rid += 4;
1945 			/* check for 64bit BAR */
1946 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1947 				rid += 4;
1948 		}
1949 		if (rid >= PCIR_CIS) {
1950 			device_printf(dev, "Unable to locate IO BAR\n");
1951 			return (ENXIO);
1952  		}
1953 
1954 		adapter->res_ioport = bus_alloc_resource_any(dev,
1955 		    SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1956 		if (!(adapter->res_ioport)) {
1957 			device_printf(dev, "Unable to allocate bus resource: "
1958 				      "ioport\n");
1959 			return ENXIO;
1960 		}
1961 		adapter->hw.io_base = 0;
1962 		adapter->osdep.io_bus_space_tag =
1963 			rman_get_bustag(adapter->res_ioport);
1964 		adapter->osdep.io_bus_space_handle =
1965 			rman_get_bushandle(adapter->res_ioport);
1966 	}
1967 
1968 	/* For ICH8 we need to find the flash memory. */
1969 	if ((adapter->hw.mac_type == em_ich8lan) ||
1970 	    (adapter->hw.mac_type == em_ich9lan)) {
1971 		rid = EM_FLASH;
1972 		adapter->flash_mem = bus_alloc_resource_any(dev,
1973 		    SYS_RES_MEMORY, &rid, RF_ACTIVE);
1974 		if (adapter->flash_mem == NULL) {
1975 			device_printf(dev, "Unable to allocate bus resource: "
1976 				      "flash memory\n");
1977 			return ENXIO;
1978 		}
1979 		adapter->osdep.flash_bus_space_tag =
1980 		    rman_get_bustag(adapter->flash_mem);
1981 		adapter->osdep.flash_bus_space_handle =
1982 		    rman_get_bushandle(adapter->flash_mem);
1983 	}
1984 
1985 	rid = 0x0;
1986 	adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1987 	    &rid, RF_SHAREABLE | RF_ACTIVE);
1988 	if (adapter->res_interrupt == NULL) {
1989 		device_printf(dev, "Unable to allocate bus resource: "
1990 			      "interrupt\n");
1991 		return ENXIO;
1992 	}
1993 
1994 	adapter->hw.back = &adapter->osdep;
1995 
1996 	return 0;
1997 }
1998 
1999 static void
2000 em_free_pci_resources(device_t dev)
2001 {
2002 	struct adapter *adapter = device_get_softc(dev);
2003 
2004 	if (adapter->res_interrupt != NULL) {
2005 		bus_release_resource(dev, SYS_RES_IRQ, 0,
2006 				     adapter->res_interrupt);
2007 	}
2008 	if (adapter->res_memory != NULL) {
2009 		bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
2010 				     adapter->res_memory);
2011 	}
2012 
2013 	if (adapter->res_ioport != NULL) {
2014 		bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid,
2015 				     adapter->res_ioport);
2016 	}
2017 
2018 	if (adapter->flash_mem != NULL) {
2019 		bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
2020 				     adapter->flash_mem);
2021 	}
2022 }
2023 
2024 /*********************************************************************
2025  *
2026  *  Initialize the hardware to a configuration as specified by the
2027  *  adapter structure. The controller is reset, the EEPROM is
2028  *  verified, the MAC address is set, then the shared initialization
2029  *  routines are called.
2030  *
2031  **********************************************************************/
2032 static int
2033 em_hardware_init(struct adapter *adapter)
2034 {
2035 	uint16_t	rx_buffer_size;
2036 
2037 	INIT_DEBUGOUT("em_hardware_init: begin");
2038 	/* Issue a global reset */
2039 	em_reset_hw(&adapter->hw);
2040 
2041 	/* When hardware is reset, fifo_head is also reset */
2042 	adapter->tx_fifo_head = 0;
2043 
2044 	/* Make sure we have a good EEPROM before we read from it */
2045 	if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2046 		if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2047 			device_printf(adapter->dev,
2048 				      "The EEPROM Checksum Is Not Valid\n");
2049 			return (EIO);
2050 		}
2051 	}
2052 
2053 	if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
2054 		device_printf(adapter->dev,
2055 			      "EEPROM read error while reading part number\n");
2056 		return (EIO);
2057 	}
2058 
2059 	/* Set up smart power down as default off on newer adapters. */
2060 	if (!em_smart_pwr_down &&
2061 	    (adapter->hw.mac_type == em_82571 ||
2062 	     adapter->hw.mac_type == em_82572)) {
2063 		uint16_t phy_tmp = 0;
2064 
2065 		/* Speed up time to link by disabling smart power down. */
2066 		em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2067 				&phy_tmp);
2068 		phy_tmp &= ~IGP02E1000_PM_SPD;
2069 		em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2070 				 phy_tmp);
2071 	}
2072 
2073 	/*
2074 	 * These parameters control the automatic generation (Tx) and
2075 	 * response (Rx) to Ethernet PAUSE frames.
2076 	 * - High water mark should allow for at least two frames to be
2077 	 *   received after sending an XOFF.
2078 	 * - Low water mark works best when it is very near the high water mark.
2079 	 *   This allows the receiver to restart by sending XON when it has
2080 	 *   drained a bit.  Here we use an arbitary value of 1500 which will
2081 	 *   restart after one full frame is pulled from the buffer.  There
2082 	 *   could be several smaller frames in the buffer and if so they will
2083 	 *   not trigger the XON until their total number reduces the buffer
2084 	 *   by 1500.
2085 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2086 	 */
2087 	rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10);
2088 
2089 	adapter->hw.fc_high_water =
2090 	    rx_buffer_size - roundup2(adapter->hw.max_frame_size, 1024);
2091 	adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
2092 	if (adapter->hw.mac_type == em_80003es2lan)
2093 		adapter->hw.fc_pause_time = 0xFFFF;
2094 	else
2095 		adapter->hw.fc_pause_time = 1000;
2096 	adapter->hw.fc_send_xon = TRUE;
2097 	adapter->hw.fc = E1000_FC_FULL;
2098 
2099 	if (em_init_hw(&adapter->hw) < 0) {
2100 		device_printf(adapter->dev, "Hardware Initialization Failed");
2101 		return (EIO);
2102 	}
2103 
2104 	em_check_for_link(&adapter->hw);
2105 
2106 	return (0);
2107 }
2108 
2109 /*********************************************************************
2110  *
2111  *  Setup networking device structure and register an interface.
2112  *
2113  **********************************************************************/
2114 static void
2115 em_setup_interface(device_t dev, struct adapter *adapter)
2116 {
2117 	struct ifnet *ifp;
2118 	u_char fiber_type = IFM_1000_SX;	/* default type */
2119 	INIT_DEBUGOUT("em_setup_interface: begin");
2120 
2121 	ifp = &adapter->interface_data.ac_if;
2122 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2123 	ifp->if_mtu = ETHERMTU;
2124 	ifp->if_baudrate = 1000000000;
2125 	ifp->if_init =  em_init;
2126 	ifp->if_softc = adapter;
2127 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2128 	ifp->if_ioctl = em_ioctl;
2129 	ifp->if_start = em_start;
2130 #ifdef DEVICE_POLLING
2131 	ifp->if_poll = em_poll;
2132 #endif
2133 	ifp->if_watchdog = em_watchdog;
2134 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2135 	ifq_set_ready(&ifp->if_snd);
2136 
2137 	if (adapter->hw.mac_type >= em_82543)
2138 		ifp->if_capabilities |= IFCAP_HWCSUM;
2139 
2140 	ifp->if_capenable = ifp->if_capabilities;
2141 
2142 	ether_ifattach(ifp, adapter->hw.mac_addr, NULL);
2143 
2144 #ifdef PROFILE_SERIALIZER
2145 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2146 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2147 			"serializer_sleep", CTLFLAG_RW,
2148 			&ifp->if_serializer->sleep_cnt, 0, NULL);
2149 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2150 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2151 			"serializer_tryfail", CTLFLAG_RW,
2152 			&ifp->if_serializer->tryfail_cnt, 0, NULL);
2153 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2154 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2155 			"serializer_enter", CTLFLAG_RW,
2156 			&ifp->if_serializer->enter_cnt, 0, NULL);
2157 	SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2158 			SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2159 			"serializer_try", CTLFLAG_RW,
2160 			&ifp->if_serializer->try_cnt, 0, NULL);
2161 #endif
2162 
2163 	/*
2164 	 * Tell the upper layer(s) we support long frames.
2165 	 */
2166 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2167 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2168 	ifp->if_capenable |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2169 
2170 	/*
2171 	 * Specify the media types supported by this adapter and register
2172 	 * callbacks to update media and link information
2173 	 */
2174 	ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
2175 		     em_media_status);
2176 	if (adapter->hw.media_type == em_media_type_fiber ||
2177 	    adapter->hw.media_type == em_media_type_internal_serdes) {
2178 		if (adapter->hw.mac_type == em_82545)
2179 			fiber_type = IFM_1000_LX;
2180 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2181 			    0, NULL);
2182 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2183 	} else {
2184 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2185 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2186 			    0, NULL);
2187 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2188 			    0, NULL);
2189 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2190 			    0, NULL);
2191 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
2192 			    0, NULL);
2193 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2194 	}
2195 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2196 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2197 }
2198 
2199 /*********************************************************************
2200  *
2201  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2202  *
2203  **********************************************************************/
2204 static void
2205 em_smartspeed(struct adapter *adapter)
2206 {
2207 	uint16_t phy_tmp;
2208 
2209 	if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
2210 	    !adapter->hw.autoneg ||
2211 	    !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2212 		return;
2213 
2214 	if (adapter->smartspeed == 0) {
2215 		/*
2216 		 * If Master/Slave config fault is asserted twice,
2217 		 * we assume back-to-back.
2218 		 */
2219 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2220 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2221 			return;
2222 		em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2223 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2224 			em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2225 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2226 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2227 				em_write_phy_reg(&adapter->hw,
2228 						 PHY_1000T_CTRL, phy_tmp);
2229 				adapter->smartspeed++;
2230 				if (adapter->hw.autoneg &&
2231 				    !em_phy_setup_autoneg(&adapter->hw) &&
2232 				    !em_read_phy_reg(&adapter->hw, PHY_CTRL,
2233 						     &phy_tmp)) {
2234 					phy_tmp |= (MII_CR_AUTO_NEG_EN |
2235 						    MII_CR_RESTART_AUTO_NEG);
2236 					em_write_phy_reg(&adapter->hw,
2237 							 PHY_CTRL, phy_tmp);
2238 				}
2239 			}
2240 		}
2241 		return;
2242 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2243 		/* If still no link, perhaps using 2/3 pair cable */
2244 		em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2245 		phy_tmp |= CR_1000T_MS_ENABLE;
2246 		em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2247 		if (adapter->hw.autoneg &&
2248 		    !em_phy_setup_autoneg(&adapter->hw) &&
2249 		    !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
2250 			phy_tmp |= (MII_CR_AUTO_NEG_EN |
2251 				    MII_CR_RESTART_AUTO_NEG);
2252 			em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
2253 		}
2254 	}
2255 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2256 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2257 		adapter->smartspeed = 0;
2258 }
2259 
2260 /*
2261  * Manage DMA'able memory.
2262  */
2263 static void
2264 em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2265 {
2266 	if (error)
2267 		return;
2268 	*(bus_addr_t *)arg = segs->ds_addr;
2269 }
2270 
2271 static int
2272 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2273 	      struct em_dma_alloc *dma)
2274 {
2275 	device_t dev = adapter->dev;
2276 	int error;
2277 
2278 	error = bus_dma_tag_create(NULL,		/* parent */
2279 				   EM_DBA_ALIGN, 0,	/* alignment, bounds */
2280 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2281 				   BUS_SPACE_MAXADDR,	/* highaddr */
2282 				   NULL, NULL,		/* filter, filterarg */
2283 				   size,		/* maxsize */
2284 				   1,			/* nsegments */
2285 				   size,		/* maxsegsize */
2286 				   0,			/* flags */
2287 				   &dma->dma_tag);
2288 	if (error) {
2289 		device_printf(dev, "%s: bus_dma_tag_create failed; error %d\n",
2290 			      __func__, error);
2291 		return error;
2292 	}
2293 
2294 	error = bus_dmamem_alloc(dma->dma_tag, (void**)&dma->dma_vaddr,
2295 				 BUS_DMA_WAITOK, &dma->dma_map);
2296 	if (error) {
2297 		device_printf(dev, "%s: bus_dmammem_alloc failed; "
2298 			      "size %llu, error %d\n",
2299 			      __func__, (uintmax_t)size, error);
2300 		goto fail;
2301 	}
2302 
2303 	error = bus_dmamap_load(dma->dma_tag, dma->dma_map,
2304 				dma->dma_vaddr, size,
2305 				em_dmamap_cb, &dma->dma_paddr,
2306 				BUS_DMA_WAITOK);
2307 	if (error) {
2308 		device_printf(dev, "%s: bus_dmamap_load failed; error %u\n",
2309 			      __func__, error);
2310 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2311 		goto fail;
2312 	}
2313 
2314 	return 0;
2315 fail:
2316 	bus_dma_tag_destroy(dma->dma_tag);
2317 	dma->dma_tag = NULL;
2318 	return error;
2319 }
2320 
2321 static void
2322 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2323 {
2324 	if (dma->dma_tag != NULL) {
2325 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2326 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2327 		bus_dma_tag_destroy(dma->dma_tag);
2328 		dma->dma_tag = NULL;
2329 	}
2330 }
2331 
2332 /*********************************************************************
2333  *
2334  *  Allocate and initialize transmit structures.
2335  *
2336  **********************************************************************/
2337 static int
2338 em_setup_transmit_structures(struct adapter *adapter)
2339 {
2340 	struct em_buffer *tx_buffer;
2341 	bus_size_t size;
2342 	int error, i;
2343 
2344 	/*
2345 	 * Setup DMA descriptor areas.
2346 	 */
2347 	size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
2348 	if (bus_dma_tag_create(NULL,			/* parent */
2349 			       1, 0,			/* alignment, bounds */
2350 			       BUS_SPACE_MAXADDR,	/* lowaddr */
2351 			       BUS_SPACE_MAXADDR,	/* highaddr */
2352 			       NULL, NULL,		/* filter, filterarg */
2353 			       size,			/* maxsize */
2354 			       EM_MAX_SCATTER,		/* nsegments */
2355 			       size,			/* maxsegsize */
2356 			       0,			/* flags */
2357 			       &adapter->txtag)) {
2358 		device_printf(adapter->dev, "Unable to allocate TX DMA tag\n");
2359 		return(ENOMEM);
2360 	}
2361 
2362 	adapter->tx_buffer_area =
2363 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2364 			M_DEVBUF, M_WAITOK | M_ZERO);
2365 
2366 	bzero(adapter->tx_desc_base,
2367 	      sizeof(struct em_tx_desc) * adapter->num_tx_desc);
2368 	tx_buffer = adapter->tx_buffer_area;
2369 	for (i = 0; i < adapter->num_tx_desc; i++) {
2370 		error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
2371 		if (error) {
2372 			device_printf(adapter->dev,
2373 				      "Unable to create TX DMA map\n");
2374 			goto fail;
2375 		}
2376 		tx_buffer++;
2377 	}
2378 
2379 	adapter->next_avail_tx_desc = 0;
2380 	adapter->next_tx_to_clean = 0;
2381 
2382 	/* Set number of descriptors available */
2383 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2384 
2385 	/* Set checksum context */
2386 	adapter->active_checksum_context = OFFLOAD_NONE;
2387 
2388 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2389 			BUS_DMASYNC_PREWRITE);
2390 
2391 	return (0);
2392 fail:
2393 	em_free_transmit_structures(adapter);
2394 	return (error);
2395 }
2396 
2397 /*********************************************************************
2398  *
2399  *  Enable transmit unit.
2400  *
2401  **********************************************************************/
2402 static void
2403 em_initialize_transmit_unit(struct adapter *adapter)
2404 {
2405 	uint32_t reg_tctl;
2406 	uint32_t reg_tipg = 0;
2407 	uint64_t bus_addr;
2408 
2409 	INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2410 
2411 	/* Setup the Base and Length of the Tx Descriptor Ring */
2412 	bus_addr = adapter->txdma.dma_paddr;
2413 	E1000_WRITE_REG(&adapter->hw, TDLEN,
2414 			adapter->num_tx_desc * sizeof(struct em_tx_desc));
2415 	E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
2416 	E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
2417 
2418 	/* Setup the HW Tx Head and Tail descriptor pointers */
2419 	E1000_WRITE_REG(&adapter->hw, TDT, 0);
2420 	E1000_WRITE_REG(&adapter->hw, TDH, 0);
2421 
2422 	HW_DEBUGOUT2("Base = %x, Length = %x\n",
2423 		     E1000_READ_REG(&adapter->hw, TDBAL),
2424 		     E1000_READ_REG(&adapter->hw, TDLEN));
2425 
2426 	/* Set the default values for the Tx Inter Packet Gap timer */
2427 	switch (adapter->hw.mac_type) {
2428 	case em_82542_rev2_0:
2429 	case em_82542_rev2_1:
2430 		reg_tipg = DEFAULT_82542_TIPG_IPGT;
2431 		reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2432 		reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2433 		break;
2434 	case em_80003es2lan:
2435 		reg_tipg = DEFAULT_82543_TIPG_IPGR1;
2436 		reg_tipg |=
2437 		    DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2438 		break;
2439 	default:
2440 		if (adapter->hw.media_type == em_media_type_fiber ||
2441 		    adapter->hw.media_type == em_media_type_internal_serdes)
2442 			reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2443 		else
2444 			reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2445 		reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2446 		reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2447 	}
2448 
2449 	E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
2450 	E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
2451 	if (adapter->hw.mac_type >= em_82540) {
2452 		E1000_WRITE_REG(&adapter->hw, TADV,
2453 				adapter->tx_abs_int_delay.value);
2454 	}
2455 
2456 	/* Program the Transmit Control Register */
2457 	reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
2458 		   (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2459 	if (adapter->hw.mac_type >= em_82571)
2460 		reg_tctl |= E1000_TCTL_MULR;
2461 	if (adapter->link_duplex == 1)
2462 		reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2463 	else
2464 		reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2465 
2466 	/* This write will effectively turn on the transmit unit. */
2467 	E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
2468 
2469 	/* Setup Transmit Descriptor Base Settings */
2470 	adapter->txd_cmd = E1000_TXD_CMD_IFCS;
2471 
2472 	if (adapter->tx_int_delay.value > 0)
2473 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2474 }
2475 
2476 /*********************************************************************
2477  *
2478  *  Free all transmit related data structures.
2479  *
2480  **********************************************************************/
2481 static void
2482 em_free_transmit_structures(struct adapter *adapter)
2483 {
2484 	struct em_buffer *tx_buffer;
2485 	int i;
2486 
2487 	INIT_DEBUGOUT("free_transmit_structures: begin");
2488 
2489 	if (adapter->tx_buffer_area != NULL) {
2490 		tx_buffer = adapter->tx_buffer_area;
2491 		for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
2492 			if (tx_buffer->m_head != NULL) {
2493 				bus_dmamap_unload(adapter->txtag,
2494 						  tx_buffer->map);
2495 				m_freem(tx_buffer->m_head);
2496 			}
2497 
2498 			if (tx_buffer->map != NULL) {
2499 				bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2500 				tx_buffer->map = NULL;
2501  			}
2502 			tx_buffer->m_head = NULL;
2503 		}
2504 	}
2505 	if (adapter->tx_buffer_area != NULL) {
2506 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2507 		adapter->tx_buffer_area = NULL;
2508 	}
2509 	if (adapter->txtag != NULL) {
2510 		bus_dma_tag_destroy(adapter->txtag);
2511 		adapter->txtag = NULL;
2512 	}
2513 }
2514 
2515 /*********************************************************************
2516  *
2517  *  The offload context needs to be set when we transfer the first
2518  *  packet of a particular protocol (TCP/UDP). We change the
2519  *  context only if the protocol type changes.
2520  *
2521  **********************************************************************/
2522 static void
2523 em_transmit_checksum_setup(struct adapter *adapter,
2524 			   struct mbuf *mp,
2525 			   uint32_t *txd_upper,
2526 			   uint32_t *txd_lower)
2527 {
2528 	struct em_context_desc *TXD;
2529 	struct em_buffer *tx_buffer;
2530 	int curr_txd;
2531 
2532 	if (mp->m_pkthdr.csum_flags) {
2533 		if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
2534 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2535 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2536 			if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
2537 				return;
2538 			else
2539 				adapter->active_checksum_context = OFFLOAD_TCP_IP;
2540 		} else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
2541 			*txd_upper = E1000_TXD_POPTS_TXSM << 8;
2542 			*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2543 			if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
2544 				return;
2545 			else
2546 				adapter->active_checksum_context = OFFLOAD_UDP_IP;
2547 		} else {
2548 			*txd_upper = 0;
2549 			*txd_lower = 0;
2550 			return;
2551 		}
2552 	} else {
2553 		*txd_upper = 0;
2554 		*txd_lower = 0;
2555 		return;
2556 	}
2557 
2558 	/*
2559 	 * If we reach this point, the checksum offload context
2560 	 * needs to be reset.
2561 	 */
2562 	curr_txd = adapter->next_avail_tx_desc;
2563 	tx_buffer = &adapter->tx_buffer_area[curr_txd];
2564 	TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
2565 
2566 	TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
2567 	TXD->lower_setup.ip_fields.ipcso =
2568 	    ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
2569 	TXD->lower_setup.ip_fields.ipcse =
2570 	    htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
2571 
2572 	TXD->upper_setup.tcp_fields.tucss =
2573 	    ETHER_HDR_LEN + sizeof(struct ip);
2574 	TXD->upper_setup.tcp_fields.tucse = htole16(0);
2575 
2576 	if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
2577 		TXD->upper_setup.tcp_fields.tucso =
2578 			ETHER_HDR_LEN + sizeof(struct ip) +
2579 			offsetof(struct tcphdr, th_sum);
2580 	} else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
2581 		TXD->upper_setup.tcp_fields.tucso =
2582 			ETHER_HDR_LEN + sizeof(struct ip) +
2583 			offsetof(struct udphdr, uh_sum);
2584 	}
2585 
2586 	TXD->tcp_seg_setup.data = htole32(0);
2587 	TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
2588 
2589 	tx_buffer->m_head = NULL;
2590 	tx_buffer->next_eop = -1;
2591 
2592 	if (++curr_txd == adapter->num_tx_desc)
2593 		curr_txd = 0;
2594 
2595 	adapter->num_tx_desc_avail--;
2596 	adapter->next_avail_tx_desc = curr_txd;
2597 }
2598 
2599 /**********************************************************************
2600  *
2601  *  Examine each tx_buffer in the used queue. If the hardware is done
2602  *  processing the packet then free associated resources. The
2603  *  tx_buffer is put back on the free queue.
2604  *
2605  **********************************************************************/
2606 
2607 static void
2608 em_txeof(struct adapter *adapter)
2609 {
2610 	int first, last, done, num_avail;
2611 	struct em_buffer *tx_buffer;
2612 	struct em_tx_desc *tx_desc, *eop_desc;
2613 	struct ifnet *ifp = &adapter->interface_data.ac_if;
2614 
2615 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2616 		return;
2617 
2618 	num_avail = adapter->num_tx_desc_avail;
2619 	first = adapter->next_tx_to_clean;
2620 	tx_desc = &adapter->tx_desc_base[first];
2621 	tx_buffer = &adapter->tx_buffer_area[first];
2622 	last = tx_buffer->next_eop;
2623 	KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2624 	eop_desc = &adapter->tx_desc_base[last];
2625 
2626 	/*
2627 	 * Now caculate the terminating index for the cleanup loop below
2628 	 */
2629 	if (++last == adapter->num_tx_desc)
2630 		last = 0;
2631 	done = last;
2632 
2633 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2634 			BUS_DMASYNC_POSTREAD);
2635 
2636 	while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2637 		while (first != done) {
2638 			tx_desc->upper.data = 0;
2639 			tx_desc->lower.data = 0;
2640 			num_avail++;
2641 
2642 			logif(pkt_txclean);
2643 
2644 			if (tx_buffer->m_head) {
2645 				ifp->if_opackets++;
2646 				bus_dmamap_sync(adapter->txtag, tx_buffer->map,
2647 						BUS_DMASYNC_POSTWRITE);
2648 				bus_dmamap_unload(adapter->txtag,
2649 						  tx_buffer->map);
2650 
2651 				m_freem(tx_buffer->m_head);
2652 				tx_buffer->m_head = NULL;
2653 			}
2654 			tx_buffer->next_eop = -1;
2655 
2656 			if (++first == adapter->num_tx_desc)
2657 				first = 0;
2658 
2659 			tx_buffer = &adapter->tx_buffer_area[first];
2660 			tx_desc = &adapter->tx_desc_base[first];
2661 		}
2662 		/* See if we can continue to the next packet */
2663 		last = tx_buffer->next_eop;
2664 		if (last != -1) {
2665 			KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2666 			eop_desc = &adapter->tx_desc_base[last];
2667 			if (++last == adapter->num_tx_desc)
2668 				last = 0;
2669 			done = last;
2670 		} else {
2671 			break;
2672 		}
2673 	}
2674 
2675 	bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2676 			BUS_DMASYNC_PREWRITE);
2677 
2678 	adapter->next_tx_to_clean = first;
2679 
2680 	/*
2681 	 * If we have enough room, clear IFF_OACTIVE to tell the stack
2682 	 * that it is OK to send packets.
2683 	 * If there are no pending descriptors, clear the timeout. Otherwise,
2684 	 * if some descriptors have been freed, restart the timeout.
2685 	 */
2686 	if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
2687 		ifp->if_flags &= ~IFF_OACTIVE;
2688 		if (num_avail == adapter->num_tx_desc)
2689 			ifp->if_timer = 0;
2690 		else if (num_avail == adapter->num_tx_desc_avail)
2691 			ifp->if_timer = EM_TX_TIMEOUT;
2692 	}
2693 	adapter->num_tx_desc_avail = num_avail;
2694 }
2695 
2696 /*********************************************************************
2697  *
2698  *  Get a buffer from system mbuf buffer pool.
2699  *
2700  **********************************************************************/
2701 static int
2702 em_get_buf(int i, struct adapter *adapter, struct mbuf *nmp, int how)
2703 {
2704 	struct mbuf *mp = nmp;
2705 	struct em_buffer *rx_buffer;
2706 	struct ifnet *ifp;
2707 	bus_addr_t paddr;
2708 	int error;
2709 
2710 	ifp = &adapter->interface_data.ac_if;
2711 
2712 	if (mp == NULL) {
2713 		mp = m_getcl(how, MT_DATA, M_PKTHDR);
2714 		if (mp == NULL) {
2715 			adapter->mbuf_cluster_failed++;
2716 			return (ENOBUFS);
2717 		}
2718 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2719 	} else {
2720 		mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2721 		mp->m_data = mp->m_ext.ext_buf;
2722 		mp->m_next = NULL;
2723 	}
2724 
2725 	if (ifp->if_mtu <= ETHERMTU)
2726 		m_adj(mp, ETHER_ALIGN);
2727 
2728 	rx_buffer = &adapter->rx_buffer_area[i];
2729 
2730 	/*
2731 	 * Using memory from the mbuf cluster pool, invoke the
2732 	 * bus_dma machinery to arrange the memory mapping.
2733 	 */
2734 	error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
2735 				mtod(mp, void *), mp->m_len,
2736 				em_dmamap_cb, &paddr, 0);
2737 	if (error) {
2738 		m_freem(mp);
2739 		return (error);
2740 	}
2741 	rx_buffer->m_head = mp;
2742 	adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
2743 	bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
2744 
2745 	return (0);
2746 }
2747 
2748 /*********************************************************************
2749  *
2750  *  Allocate memory for rx_buffer structures. Since we use one
2751  *  rx_buffer per received packet, the maximum number of rx_buffer's
2752  *  that we'll need is equal to the number of receive descriptors
2753  *  that we've allocated.
2754  *
2755  **********************************************************************/
2756 static int
2757 em_allocate_receive_structures(struct adapter *adapter)
2758 {
2759 	int i, error, size;
2760 	struct em_buffer *rx_buffer;
2761 
2762 	size = adapter->num_rx_desc * sizeof(struct em_buffer);
2763 	adapter->rx_buffer_area = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
2764 
2765 	error = bus_dma_tag_create(NULL,		/* parent */
2766 				   1, 0,		/* alignment, bounds */
2767 				   BUS_SPACE_MAXADDR,	/* lowaddr */
2768 				   BUS_SPACE_MAXADDR,	/* highaddr */
2769 				   NULL, NULL,		/* filter, filterarg */
2770 				   MCLBYTES,		/* maxsize */
2771 				   1,			/* nsegments */
2772 				   MCLBYTES,		/* maxsegsize */
2773 				   0,			/* flags */
2774 				   &adapter->rxtag);
2775 	if (error) {
2776 		device_printf(adapter->dev, "%s: bus_dma_tag_create failed; "
2777 			      "error %u\n", __func__, error);
2778 		goto fail;
2779 	}
2780 
2781 	rx_buffer = adapter->rx_buffer_area;
2782 	for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2783 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
2784 					  &rx_buffer->map);
2785 		if (error) {
2786 			device_printf(adapter->dev,
2787 				      "%s: bus_dmamap_create failed; "
2788 				      "error %u\n", __func__, error);
2789 			goto fail;
2790 		}
2791 	}
2792 
2793 	for (i = 0; i < adapter->num_rx_desc; i++) {
2794 		error = em_get_buf(i, adapter, NULL, MB_DONTWAIT);
2795 		if (error)
2796 			goto fail;
2797 	}
2798 
2799 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2800 			BUS_DMASYNC_PREWRITE);
2801 
2802 	return (0);
2803 fail:
2804 	em_free_receive_structures(adapter);
2805 	return (error);
2806 }
2807 
2808 /*********************************************************************
2809  *
2810  *  Allocate and initialize receive structures.
2811  *
2812  **********************************************************************/
2813 static int
2814 em_setup_receive_structures(struct adapter *adapter)
2815 {
2816 	int error;
2817 
2818 	bzero(adapter->rx_desc_base,
2819 	      sizeof(struct em_rx_desc) * adapter->num_rx_desc);
2820 
2821 	error = em_allocate_receive_structures(adapter);
2822 	if (error)
2823 		return (error);
2824 
2825 	/* Setup our descriptor pointers */
2826 	adapter->next_rx_desc_to_check = 0;
2827 
2828 	return (0);
2829 }
2830 
2831 /*********************************************************************
2832  *
2833  *  Enable receive unit.
2834  *
2835  **********************************************************************/
2836 static void
2837 em_initialize_receive_unit(struct adapter *adapter)
2838 {
2839 	uint32_t reg_rctl;
2840 	uint32_t reg_rxcsum;
2841 	struct ifnet *ifp;
2842 	uint64_t bus_addr;
2843 
2844 	INIT_DEBUGOUT("em_initialize_receive_unit: begin");
2845 
2846 	ifp = &adapter->interface_data.ac_if;
2847 
2848 	/*
2849 	 * Make sure receives are disabled while setting
2850 	 * up the descriptor ring
2851 	 */
2852 	E1000_WRITE_REG(&adapter->hw, RCTL, 0);
2853 
2854 	/* Set the Receive Delay Timer Register */
2855 	E1000_WRITE_REG(&adapter->hw, RDTR,
2856 			adapter->rx_int_delay.value | E1000_RDT_FPDB);
2857 
2858 	if(adapter->hw.mac_type >= em_82540) {
2859 		E1000_WRITE_REG(&adapter->hw, RADV,
2860 				adapter->rx_abs_int_delay.value);
2861 
2862 		/* Set the interrupt throttling rate in 256ns increments */
2863 		if (em_int_throttle_ceil) {
2864 			E1000_WRITE_REG(&adapter->hw, ITR,
2865 				1000000000 / 256 / em_int_throttle_ceil);
2866 		} else {
2867 			E1000_WRITE_REG(&adapter->hw, ITR, 0);
2868 		}
2869 	}
2870 
2871 	/* Setup the Base and Length of the Rx Descriptor Ring */
2872 	bus_addr = adapter->rxdma.dma_paddr;
2873 	E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
2874 			sizeof(struct em_rx_desc));
2875 	E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
2876 	E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
2877 
2878 	/* Setup the Receive Control Register */
2879 	reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2880 		   E1000_RCTL_RDMTS_HALF |
2881 		   (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
2882 
2883 	if (adapter->hw.tbi_compatibility_on == TRUE)
2884 		reg_rctl |= E1000_RCTL_SBP;
2885 
2886 	switch (adapter->rx_buffer_len) {
2887 	default:
2888 	case EM_RXBUFFER_2048:
2889 		reg_rctl |= E1000_RCTL_SZ_2048;
2890 		break;
2891 	case EM_RXBUFFER_4096:
2892 		reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX |
2893 			    E1000_RCTL_LPE;
2894 		break;
2895 	case EM_RXBUFFER_8192:
2896 		reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX |
2897 			    E1000_RCTL_LPE;
2898 		break;
2899 	case EM_RXBUFFER_16384:
2900 		reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX |
2901 			    E1000_RCTL_LPE;
2902 		break;
2903 	}
2904 
2905 	if (ifp->if_mtu > ETHERMTU)
2906 		reg_rctl |= E1000_RCTL_LPE;
2907 
2908 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
2909 	if ((adapter->hw.mac_type >= em_82543) &&
2910 	    (ifp->if_capenable & IFCAP_RXCSUM)) {
2911 		reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2912 		reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2913 		E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
2914 	}
2915 
2916 #ifdef EM_X60_WORKAROUND
2917 	if (adapter->hw.mac_type == em_82573)
2918 		E1000_WRITE_REG(&adapter->hw, RDTR, 32);
2919 #endif
2920 
2921 	/* Enable Receives */
2922 	E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
2923 
2924 	/* Setup the HW Rx Head and Tail Descriptor Pointers */
2925 	E1000_WRITE_REG(&adapter->hw, RDH, 0);
2926 	E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
2927 }
2928 
2929 /*********************************************************************
2930  *
2931  *  Free receive related data structures.
2932  *
2933  **********************************************************************/
2934 static void
2935 em_free_receive_structures(struct adapter *adapter)
2936 {
2937 	struct em_buffer *rx_buffer;
2938 	int i;
2939 
2940 	INIT_DEBUGOUT("free_receive_structures: begin");
2941 
2942 	if (adapter->rx_buffer_area != NULL) {
2943 		rx_buffer = adapter->rx_buffer_area;
2944 		for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2945 			if (rx_buffer->m_head != NULL) {
2946 				bus_dmamap_unload(adapter->rxtag,
2947 						  rx_buffer->map);
2948 				m_freem(rx_buffer->m_head);
2949 				rx_buffer->m_head = NULL;
2950 			}
2951 			if (rx_buffer->map != NULL) {
2952 				bus_dmamap_destroy(adapter->rxtag,
2953 						   rx_buffer->map);
2954 				rx_buffer->map = NULL;
2955 			}
2956 		}
2957 	}
2958 	if (adapter->rx_buffer_area != NULL) {
2959 		kfree(adapter->rx_buffer_area, M_DEVBUF);
2960 		adapter->rx_buffer_area = NULL;
2961 	}
2962 	if (adapter->rxtag != NULL) {
2963 		bus_dma_tag_destroy(adapter->rxtag);
2964 		adapter->rxtag = NULL;
2965 	}
2966 }
2967 
2968 /*********************************************************************
2969  *
2970  *  This routine executes in interrupt context. It replenishes
2971  *  the mbufs in the descriptor and sends data which has been
2972  *  dma'ed into host memory to upper layer.
2973  *
2974  *  We loop at most count times if count is > 0, or until done if
2975  *  count < 0.
2976  *
2977  *********************************************************************/
2978 static void
2979 em_rxeof(struct adapter *adapter, int count)
2980 {
2981 	struct ifnet *ifp;
2982 	struct mbuf *mp;
2983 	uint8_t accept_frame = 0;
2984 	uint8_t eop = 0;
2985 	uint16_t len, desc_len, prev_len_adj;
2986 	int i;
2987 #ifdef ETHER_INPUT_CHAIN
2988 	struct mbuf_chain chain[MAXCPU];
2989 #endif
2990 
2991 	/* Pointer to the receive descriptor being examined. */
2992 	struct em_rx_desc *current_desc;
2993 
2994 	ifp = &adapter->interface_data.ac_if;
2995 	i = adapter->next_rx_desc_to_check;
2996 	current_desc = &adapter->rx_desc_base[i];
2997 
2998 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2999 			BUS_DMASYNC_POSTREAD);
3000 
3001 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3002 		return;
3003 
3004 #ifdef ETHER_INPUT_CHAIN
3005 	ether_input_chain_init(chain);
3006 #endif
3007 
3008 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3009 		logif(pkt_receive);
3010 		mp = adapter->rx_buffer_area[i].m_head;
3011 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3012 				BUS_DMASYNC_POSTREAD);
3013 		bus_dmamap_unload(adapter->rxtag,
3014 				  adapter->rx_buffer_area[i].map);
3015 
3016 		accept_frame = 1;
3017 		prev_len_adj = 0;
3018 		desc_len = le16toh(current_desc->length);
3019 		if (current_desc->status & E1000_RXD_STAT_EOP) {
3020 			count--;
3021 			eop = 1;
3022 			if (desc_len < ETHER_CRC_LEN) {
3023 				len = 0;
3024 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3025 			} else {
3026 				len = desc_len - ETHER_CRC_LEN;
3027 			}
3028 		} else {
3029 			eop = 0;
3030 			len = desc_len;
3031 		}
3032 
3033 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3034 			uint8_t last_byte;
3035 			uint32_t pkt_len = desc_len;
3036 
3037 			if (adapter->fmp != NULL)
3038 				pkt_len += adapter->fmp->m_pkthdr.len;
3039 
3040 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3041 
3042 			if (TBI_ACCEPT(&adapter->hw, current_desc->status,
3043 				       current_desc->errors,
3044 				       pkt_len, last_byte)) {
3045 				em_tbi_adjust_stats(&adapter->hw,
3046 						    &adapter->stats,
3047 						    pkt_len,
3048 						    adapter->hw.mac_addr);
3049 				if (len > 0)
3050 					len--;
3051 			} else {
3052 				accept_frame = 0;
3053 			}
3054 		}
3055 
3056 		if (accept_frame) {
3057 			if (em_get_buf(i, adapter, NULL, MB_DONTWAIT) == ENOBUFS) {
3058 				adapter->dropped_pkts++;
3059 				em_get_buf(i, adapter, mp, MB_DONTWAIT);
3060 				if (adapter->fmp != NULL)
3061 					m_freem(adapter->fmp);
3062 				adapter->fmp = NULL;
3063 				adapter->lmp = NULL;
3064 				goto skip;
3065 			}
3066 
3067 			/* Assign correct length to the current fragment */
3068 			mp->m_len = len;
3069 
3070 			if (adapter->fmp == NULL) {
3071 				mp->m_pkthdr.len = len;
3072 				adapter->fmp = mp;	 /* Store the first mbuf */
3073 				adapter->lmp = mp;
3074 			} else {
3075 				/* Chain mbuf's together */
3076 				/*
3077 				 * Adjust length of previous mbuf in chain if
3078 				 * we received less than 4 bytes in the last
3079 				 * descriptor.
3080 				 */
3081 				if (prev_len_adj > 0) {
3082 					adapter->lmp->m_len -= prev_len_adj;
3083 					adapter->fmp->m_pkthdr.len -= prev_len_adj;
3084 				}
3085 				adapter->lmp->m_next = mp;
3086 				adapter->lmp = adapter->lmp->m_next;
3087 				adapter->fmp->m_pkthdr.len += len;
3088 			}
3089 
3090 			if (eop) {
3091 				adapter->fmp->m_pkthdr.rcvif = ifp;
3092 				ifp->if_ipackets++;
3093 
3094 				em_receive_checksum(adapter, current_desc,
3095 						    adapter->fmp);
3096 				if (current_desc->status & E1000_RXD_STAT_VP) {
3097 					adapter->fmp->m_flags |= M_VLANTAG;
3098 					adapter->fmp->m_pkthdr.ether_vlantag =
3099 						(current_desc->special &
3100 						 E1000_RXD_SPC_VLAN_MASK);
3101 				}
3102 #ifdef ETHER_INPUT_CHAIN
3103 				ether_input_chain2(ifp, adapter->fmp, chain);
3104 #else
3105 				ifp->if_input(ifp, adapter->fmp);
3106 #endif
3107 				adapter->fmp = NULL;
3108 				adapter->lmp = NULL;
3109 			}
3110 		} else {
3111 			adapter->dropped_pkts++;
3112 			em_get_buf(i, adapter, mp, MB_DONTWAIT);
3113 			if (adapter->fmp != NULL)
3114 				m_freem(adapter->fmp);
3115 			adapter->fmp = NULL;
3116 			adapter->lmp = NULL;
3117 		}
3118 
3119 skip:
3120 		/* Zero out the receive descriptors status. */
3121 		current_desc->status = 0;
3122 
3123 		/* Advance our pointers to the next descriptor. */
3124 		if (++i == adapter->num_rx_desc) {
3125 			i = 0;
3126 			current_desc = adapter->rx_desc_base;
3127 		} else {
3128 			current_desc++;
3129 		}
3130 	}
3131 
3132 #ifdef ETHER_INPUT_CHAIN
3133 	ether_input_dispatch(chain);
3134 #endif
3135 
3136 	bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3137 			BUS_DMASYNC_PREWRITE);
3138 
3139 	adapter->next_rx_desc_to_check = i;
3140 
3141 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3142 	if (--i < 0)
3143 		i = adapter->num_rx_desc - 1;
3144 
3145 	E1000_WRITE_REG(&adapter->hw, RDT, i);
3146 }
3147 
3148 /*********************************************************************
3149  *
3150  *  Verify that the hardware indicated that the checksum is valid.
3151  *  Inform the stack about the status of checksum so that stack
3152  *  doesn't spend time verifying the checksum.
3153  *
3154  *********************************************************************/
3155 static void
3156 em_receive_checksum(struct adapter *adapter,
3157 		    struct em_rx_desc *rx_desc,
3158 		    struct mbuf *mp)
3159 {
3160 	/* 82543 or newer only */
3161 	if ((adapter->hw.mac_type < em_82543) ||
3162 	    /* Ignore Checksum bit is set */
3163 	    (rx_desc->status & E1000_RXD_STAT_IXSM)) {
3164 		mp->m_pkthdr.csum_flags = 0;
3165 		return;
3166 	}
3167 
3168 	if (rx_desc->status & E1000_RXD_STAT_IPCS) {
3169 		/* Did it pass? */
3170 		if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3171 			/* IP Checksum Good */
3172 			mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
3173 			mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3174 		} else {
3175 			mp->m_pkthdr.csum_flags = 0;
3176 		}
3177 	}
3178 
3179 	if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
3180 		/* Did it pass? */
3181 		if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3182 			mp->m_pkthdr.csum_flags |=
3183 			(CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3184 			 CSUM_FRAG_NOT_CHECKED);
3185 			mp->m_pkthdr.csum_data = htons(0xffff);
3186 		}
3187 	}
3188 }
3189 
3190 
3191 static void
3192 em_enable_vlans(struct adapter *adapter)
3193 {
3194 	uint32_t ctrl;
3195 
3196 	E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
3197 
3198 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3199 	ctrl |= E1000_CTRL_VME;
3200 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3201 }
3202 
3203 static void
3204 em_disable_vlans(struct adapter *adapter)
3205 {
3206 	uint32_t ctrl;
3207 
3208 	ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3209 	ctrl &= ~E1000_CTRL_VME;
3210 	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3211 }
3212 
3213 /*
3214  * note: we must call bus_enable_intr() prior to enabling the hardware
3215  * interrupt and bus_disable_intr() after disabling the hardware interrupt
3216  * in order to avoid handler execution races from scheduled interrupt
3217  * threads.
3218  */
3219 static void
3220 em_enable_intr(struct adapter *adapter)
3221 {
3222 	struct ifnet *ifp = &adapter->interface_data.ac_if;
3223 
3224 	if ((ifp->if_flags & IFF_POLLING) == 0) {
3225 		lwkt_serialize_handler_enable(ifp->if_serializer);
3226 		E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
3227 	}
3228 }
3229 
3230 static void
3231 em_disable_intr(struct adapter *adapter)
3232 {
3233 	/*
3234 	 * The first version of 82542 had an errata where when link was forced
3235 	 * it would stay up even up even if the cable was disconnected.
3236 	 * Sequence errors were used to detect the disconnect and then the
3237 	 * driver would unforce the link.  This code in the in the ISR.  For
3238 	 * this to work correctly the Sequence error interrupt had to be
3239 	 * enabled all the time.
3240 	 */
3241 	if (adapter->hw.mac_type == em_82542_rev2_0) {
3242 		E1000_WRITE_REG(&adapter->hw, IMC,
3243 				(0xffffffff & ~E1000_IMC_RXSEQ));
3244 	} else {
3245 		E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
3246 	}
3247 
3248 	lwkt_serialize_handler_disable(adapter->interface_data.ac_if.if_serializer);
3249 }
3250 
3251 static int
3252 em_is_valid_ether_addr(uint8_t *addr)
3253 {
3254 	static const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3255 
3256 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3257 		return (FALSE);
3258 	else
3259 		return (TRUE);
3260 }
3261 
3262 void
3263 em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3264 {
3265 	pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
3266 }
3267 
3268 void
3269 em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3270 {
3271 	*value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
3272 }
3273 
3274 void
3275 em_pci_set_mwi(struct em_hw *hw)
3276 {
3277 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3278 			 (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
3279 }
3280 
3281 void
3282 em_pci_clear_mwi(struct em_hw *hw)
3283 {
3284 	pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3285 			 (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
3286 }
3287 
3288 uint32_t
3289 em_io_read(struct em_hw *hw, unsigned long port)
3290 {
3291 	struct em_osdep *io = hw->back;
3292 
3293 	return bus_space_read_4(io->io_bus_space_tag,
3294 				io->io_bus_space_handle, port);
3295 }
3296 
3297 void
3298 em_io_write(struct em_hw *hw, unsigned long port, uint32_t value)
3299 {
3300 	struct em_osdep *io = hw->back;
3301 
3302 	bus_space_write_4(io->io_bus_space_tag,
3303 			  io->io_bus_space_handle, port, value);
3304 }
3305 
3306 /*
3307  * We may eventually really do this, but its unnecessary
3308  * for now so we just return unsupported.
3309  */
3310 int32_t
3311 em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3312 {
3313 	return (0);
3314 }
3315 
3316 
3317 /*********************************************************************
3318  * 82544 Coexistence issue workaround.
3319  *    There are 2 issues.
3320  *	1. Transmit Hang issue.
3321  *    To detect this issue, following equation can be used...
3322  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3323  *          If SUM[3:0] is in between 1 to 4, we will have this issue.
3324  *
3325  *	2. DAC issue.
3326  *    To detect this issue, following equation can be used...
3327  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3328  *          If SUM[3:0] is in between 9 to c, we will have this issue.
3329  *
3330  *
3331  *    WORKAROUND:
3332  *          Make sure we do not have ending address as 1,2,3,4(Hang) or
3333  *          9,a,b,c (DAC)
3334  *
3335 *************************************************************************/
3336 static uint32_t
3337 em_fill_descriptors(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3338 {
3339 	/* Since issue is sensitive to length and address.*/
3340 	/* Let us first check the address...*/
3341 	uint32_t safe_terminator;
3342 	if (length <= 4) {
3343 		desc_array->descriptor[0].address = address;
3344 		desc_array->descriptor[0].length = length;
3345 		desc_array->elements = 1;
3346 		return (desc_array->elements);
3347 	}
3348 	safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3349 	/* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3350 	if (safe_terminator == 0 ||
3351 	    (safe_terminator > 4 && safe_terminator < 9) ||
3352 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3353 		desc_array->descriptor[0].address = address;
3354 		desc_array->descriptor[0].length = length;
3355 		desc_array->elements = 1;
3356 		return (desc_array->elements);
3357 	}
3358 
3359 	desc_array->descriptor[0].address = address;
3360 	desc_array->descriptor[0].length = length - 4;
3361 	desc_array->descriptor[1].address = address + (length - 4);
3362 	desc_array->descriptor[1].length = 4;
3363 	desc_array->elements = 2;
3364 	return (desc_array->elements);
3365 }
3366 
3367 /**********************************************************************
3368  *
3369  *  Update the board statistics counters.
3370  *
3371  **********************************************************************/
3372 static void
3373 em_update_stats_counters(struct adapter *adapter)
3374 {
3375 	struct ifnet   *ifp;
3376 
3377 	if (adapter->hw.media_type == em_media_type_copper ||
3378 	    (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
3379 		adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
3380 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
3381 	}
3382 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
3383 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
3384 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
3385 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
3386 
3387 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
3388 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
3389 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
3390 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
3391 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
3392 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
3393 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
3394 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
3395 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
3396 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
3397 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
3398 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
3399 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
3400 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
3401 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
3402 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
3403 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
3404 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
3405 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
3406 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
3407 
3408 	/* For the 64-bit byte counters the low dword must be read first. */
3409 	/* Both registers clear on the read of the high dword */
3410 
3411 	adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
3412 	adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
3413 	adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
3414 	adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
3415 
3416 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
3417 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
3418 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
3419 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
3420 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
3421 
3422 	adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
3423 	adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
3424 	adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
3425 	adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
3426 
3427 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
3428 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
3429 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
3430 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
3431 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
3432 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
3433 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
3434 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
3435 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
3436 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
3437 
3438 	if (adapter->hw.mac_type >= em_82543) {
3439 		adapter->stats.algnerrc +=
3440 		    E1000_READ_REG(&adapter->hw, ALGNERRC);
3441 		adapter->stats.rxerrc +=
3442 		    E1000_READ_REG(&adapter->hw, RXERRC);
3443 		adapter->stats.tncrs +=
3444 		    E1000_READ_REG(&adapter->hw, TNCRS);
3445 		adapter->stats.cexterr +=
3446 		    E1000_READ_REG(&adapter->hw, CEXTERR);
3447 		adapter->stats.tsctc +=
3448 		    E1000_READ_REG(&adapter->hw, TSCTC);
3449 		adapter->stats.tsctfc +=
3450 		    E1000_READ_REG(&adapter->hw, TSCTFC);
3451 	}
3452 	ifp = &adapter->interface_data.ac_if;
3453 
3454 	/* Fill out the OS statistics structure */
3455 	ifp->if_collisions = adapter->stats.colc;
3456 
3457 	/* Rx Errors */
3458 	ifp->if_ierrors =
3459 		adapter->dropped_pkts +
3460 		adapter->stats.rxerrc +
3461 		adapter->stats.crcerrs +
3462 		adapter->stats.algnerrc +
3463 		adapter->stats.ruc + adapter->stats.roc +
3464 		adapter->stats.mpc + adapter->stats.cexterr +
3465 		adapter->rx_overruns;
3466 
3467 	/* Tx Errors */
3468 	ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
3469 			  adapter->watchdog_timeouts;
3470 }
3471 
3472 
3473 /**********************************************************************
3474  *
3475  *  This routine is called only when em_display_debug_stats is enabled.
3476  *  This routine provides a way to take a look at important statistics
3477  *  maintained by the driver and hardware.
3478  *
3479  **********************************************************************/
3480 static void
3481 em_print_debug_info(struct adapter *adapter)
3482 {
3483 	device_t dev= adapter->dev;
3484 	uint8_t *hw_addr = adapter->hw.hw_addr;
3485 
3486 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3487 	device_printf(dev, "CTRL  = 0x%x RCTL = 0x%x\n",
3488 		      E1000_READ_REG(&adapter->hw, CTRL),
3489 		      E1000_READ_REG(&adapter->hw, RCTL));
3490 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk\n",
3491 		      ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),
3492 		      (E1000_READ_REG(&adapter->hw, PBA) & 0xffff));
3493 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3494 		      adapter->hw.fc_high_water, adapter->hw.fc_low_water);
3495 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3496 		      E1000_READ_REG(&adapter->hw, TIDV),
3497 		      E1000_READ_REG(&adapter->hw, TADV));
3498 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3499 		      E1000_READ_REG(&adapter->hw, RDTR),
3500 		      E1000_READ_REG(&adapter->hw, RADV));
3501 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3502 		      (long long)adapter->tx_fifo_wrk_cnt,
3503 		      (long long)adapter->tx_fifo_reset_cnt);
3504 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3505 		      E1000_READ_REG(&adapter->hw, TDH),
3506 		      E1000_READ_REG(&adapter->hw, TDT));
3507 	device_printf(dev, "Num Tx descriptors avail = %d\n",
3508 		      adapter->num_tx_desc_avail);
3509 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3510 		      adapter->no_tx_desc_avail1);
3511 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3512 		      adapter->no_tx_desc_avail2);
3513 	device_printf(dev, "Std mbuf failed = %ld\n",
3514 		      adapter->mbuf_alloc_failed);
3515 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
3516 		      adapter->mbuf_cluster_failed);
3517 	device_printf(dev, "Driver dropped packets = %ld\n",
3518 		      adapter->dropped_pkts);
3519 }
3520 
3521 static void
3522 em_print_hw_stats(struct adapter *adapter)
3523 {
3524 	device_t dev= adapter->dev;
3525 
3526 	device_printf(dev, "Excessive collisions = %lld\n",
3527 		      (long long)adapter->stats.ecol);
3528 	device_printf(dev, "Symbol errors = %lld\n",
3529 		      (long long)adapter->stats.symerrs);
3530 	device_printf(dev, "Sequence errors = %lld\n",
3531 		      (long long)adapter->stats.sec);
3532 	device_printf(dev, "Defer count = %lld\n",
3533 		      (long long)adapter->stats.dc);
3534 
3535 	device_printf(dev, "Missed Packets = %lld\n",
3536 		      (long long)adapter->stats.mpc);
3537 	device_printf(dev, "Receive No Buffers = %lld\n",
3538 		      (long long)adapter->stats.rnbc);
3539 	/* RLEC is inaccurate on some hardware, calculate our own. */
3540 	device_printf(dev, "Receive Length errors = %lld\n",
3541 		      (long long)adapter->stats.roc +
3542 		      (long long)adapter->stats.ruc);
3543 	device_printf(dev, "Receive errors = %lld\n",
3544 		      (long long)adapter->stats.rxerrc);
3545 	device_printf(dev, "Crc errors = %lld\n",
3546 		      (long long)adapter->stats.crcerrs);
3547 	device_printf(dev, "Alignment errors = %lld\n",
3548 		      (long long)adapter->stats.algnerrc);
3549 	device_printf(dev, "Carrier extension errors = %lld\n",
3550 		      (long long)adapter->stats.cexterr);
3551 	device_printf(dev, "RX overruns = %lu\n", adapter->rx_overruns);
3552 	device_printf(dev, "Watchdog timeouts = %lu\n",
3553 		      adapter->watchdog_timeouts);
3554 
3555 	device_printf(dev, "XON Rcvd = %lld\n",
3556 		      (long long)adapter->stats.xonrxc);
3557 	device_printf(dev, "XON Xmtd = %lld\n",
3558 		      (long long)adapter->stats.xontxc);
3559 	device_printf(dev, "XOFF Rcvd = %lld\n",
3560 		      (long long)adapter->stats.xoffrxc);
3561 	device_printf(dev, "XOFF Xmtd = %lld\n",
3562 		      (long long)adapter->stats.xofftxc);
3563 
3564 	device_printf(dev, "Good Packets Rcvd = %lld\n",
3565 		      (long long)adapter->stats.gprc);
3566 	device_printf(dev, "Good Packets Xmtd = %lld\n",
3567 		      (long long)adapter->stats.gptc);
3568 }
3569 
3570 static int
3571 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3572 {
3573 	int error;
3574 	int result;
3575 	struct adapter *adapter;
3576 
3577 	result = -1;
3578 	error = sysctl_handle_int(oidp, &result, 0, req);
3579 
3580 	if (error || !req->newptr)
3581 		return (error);
3582 
3583 	if (result == 1) {
3584 		adapter = (struct adapter *)arg1;
3585 		em_print_debug_info(adapter);
3586 	}
3587 
3588 	return (error);
3589 }
3590 
3591 static int
3592 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3593 {
3594 	int error;
3595 	int result;
3596 	struct adapter *adapter;
3597 
3598 	result = -1;
3599 	error = sysctl_handle_int(oidp, &result, 0, req);
3600 
3601 	if (error || !req->newptr)
3602 		return (error);
3603 
3604 	if (result == 1) {
3605 		adapter = (struct adapter *)arg1;
3606 		em_print_hw_stats(adapter);
3607 	}
3608 
3609 	return (error);
3610 }
3611 
3612 static int
3613 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
3614 {
3615 	struct em_int_delay_info *info;
3616 	struct adapter *adapter;
3617 	uint32_t regval;
3618 	int error;
3619 	int usecs;
3620 	int ticks;
3621 
3622 	info = (struct em_int_delay_info *)arg1;
3623 	adapter = info->adapter;
3624 	usecs = info->value;
3625 	error = sysctl_handle_int(oidp, &usecs, 0, req);
3626 	if (error != 0 || req->newptr == NULL)
3627 		return (error);
3628 	if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
3629 		return (EINVAL);
3630 	info->value = usecs;
3631 	ticks = E1000_USECS_TO_TICKS(usecs);
3632 
3633 	lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3634 	regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
3635 	regval = (regval & ~0xffff) | (ticks & 0xffff);
3636 	/* Handle a few special cases. */
3637 	switch (info->offset) {
3638 	case E1000_RDTR:
3639 	case E1000_82542_RDTR:
3640 		regval |= E1000_RDT_FPDB;
3641 		break;
3642 	case E1000_TIDV:
3643 	case E1000_82542_TIDV:
3644 		if (ticks == 0) {
3645 			adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
3646 			/* Don't write 0 into the TIDV register. */
3647 			regval++;
3648 		} else
3649 			adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3650 		break;
3651 	}
3652 	E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
3653 	lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3654 	return (0);
3655 }
3656 
3657 static void
3658 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
3659 			const char *description, struct em_int_delay_info *info,
3660 			int offset, int value)
3661 {
3662 	info->adapter = adapter;
3663 	info->offset = offset;
3664 	info->value = value;
3665 	SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3666 			SYSCTL_CHILDREN(adapter->sysctl_tree),
3667 			OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
3668 			info, 0, em_sysctl_int_delay, "I", description);
3669 }
3670 
3671 static int
3672 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3673 {
3674 	struct adapter *adapter = (void *)arg1;
3675 	int error;
3676 	int throttle;
3677 
3678 	throttle = em_int_throttle_ceil;
3679 	error = sysctl_handle_int(oidp, &throttle, 0, req);
3680 	if (error || req->newptr == NULL)
3681 		return error;
3682 	if (throttle < 0 || throttle > 1000000000 / 256)
3683 		return EINVAL;
3684 	if (throttle) {
3685 		/*
3686 		 * Set the interrupt throttling rate in 256ns increments,
3687 		 * recalculate sysctl value assignment to get exact frequency.
3688 		 */
3689 		throttle = 1000000000 / 256 / throttle;
3690 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3691 		em_int_throttle_ceil = 1000000000 / 256 / throttle;
3692 		E1000_WRITE_REG(&adapter->hw, ITR, throttle);
3693 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3694 	} else {
3695 		lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3696 		em_int_throttle_ceil = 0;
3697 		E1000_WRITE_REG(&adapter->hw, ITR, 0);
3698 		lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3699 	}
3700 	device_printf(adapter->dev, "Interrupt moderation set to %d/sec\n",
3701 			em_int_throttle_ceil);
3702 	return 0;
3703 }
3704