xref: /dragonfly/sys/dev/netif/em/if_em.c (revision caaec4e3)
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2015, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75 
76 #include "opt_ifpoll.h"
77 
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93 
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104 
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108 
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111 
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/ig_hal/e1000_dragonfly.h>
115 #include <dev/netif/em/if_em.h>
116 
117 #define DEBUG_HW 0
118 
119 #define EM_NAME	"Intel(R) PRO/1000 Network Connection "
120 #define EM_VER	" 7.6.2"
121 
122 #define _EM_DEVICE(id, ret)	\
123 	{ EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
124 #define EM_EMX_DEVICE(id)	_EM_DEVICE(id, -100)
125 #define EM_DEVICE(id)		_EM_DEVICE(id, 0)
126 #define EM_DEVICE_NULL	{ 0, 0, 0, NULL }
127 
128 static const struct em_vendor_info em_vendor_info_array[] = {
129 	EM_DEVICE(82540EM),
130 	EM_DEVICE(82540EM_LOM),
131 	EM_DEVICE(82540EP),
132 	EM_DEVICE(82540EP_LOM),
133 	EM_DEVICE(82540EP_LP),
134 
135 	EM_DEVICE(82541EI),
136 	EM_DEVICE(82541ER),
137 	EM_DEVICE(82541ER_LOM),
138 	EM_DEVICE(82541EI_MOBILE),
139 	EM_DEVICE(82541GI),
140 	EM_DEVICE(82541GI_LF),
141 	EM_DEVICE(82541GI_MOBILE),
142 
143 	EM_DEVICE(82542),
144 
145 	EM_DEVICE(82543GC_FIBER),
146 	EM_DEVICE(82543GC_COPPER),
147 
148 	EM_DEVICE(82544EI_COPPER),
149 	EM_DEVICE(82544EI_FIBER),
150 	EM_DEVICE(82544GC_COPPER),
151 	EM_DEVICE(82544GC_LOM),
152 
153 	EM_DEVICE(82545EM_COPPER),
154 	EM_DEVICE(82545EM_FIBER),
155 	EM_DEVICE(82545GM_COPPER),
156 	EM_DEVICE(82545GM_FIBER),
157 	EM_DEVICE(82545GM_SERDES),
158 
159 	EM_DEVICE(82546EB_COPPER),
160 	EM_DEVICE(82546EB_FIBER),
161 	EM_DEVICE(82546EB_QUAD_COPPER),
162 	EM_DEVICE(82546GB_COPPER),
163 	EM_DEVICE(82546GB_FIBER),
164 	EM_DEVICE(82546GB_SERDES),
165 	EM_DEVICE(82546GB_PCIE),
166 	EM_DEVICE(82546GB_QUAD_COPPER),
167 	EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
168 
169 	EM_DEVICE(82547EI),
170 	EM_DEVICE(82547EI_MOBILE),
171 	EM_DEVICE(82547GI),
172 
173 	EM_EMX_DEVICE(82571EB_COPPER),
174 	EM_EMX_DEVICE(82571EB_FIBER),
175 	EM_EMX_DEVICE(82571EB_SERDES),
176 	EM_EMX_DEVICE(82571EB_SERDES_DUAL),
177 	EM_EMX_DEVICE(82571EB_SERDES_QUAD),
178 	EM_EMX_DEVICE(82571EB_QUAD_COPPER),
179 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
180 	EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
181 	EM_EMX_DEVICE(82571EB_QUAD_FIBER),
182 	EM_EMX_DEVICE(82571PT_QUAD_COPPER),
183 
184 	EM_EMX_DEVICE(82572EI_COPPER),
185 	EM_EMX_DEVICE(82572EI_FIBER),
186 	EM_EMX_DEVICE(82572EI_SERDES),
187 	EM_EMX_DEVICE(82572EI),
188 
189 	EM_EMX_DEVICE(82573E),
190 	EM_EMX_DEVICE(82573E_IAMT),
191 	EM_EMX_DEVICE(82573L),
192 
193 	EM_DEVICE(82583V),
194 
195 	EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
196 	EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
197 	EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
198 	EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
199 
200 	EM_DEVICE(ICH8_IGP_M_AMT),
201 	EM_DEVICE(ICH8_IGP_AMT),
202 	EM_DEVICE(ICH8_IGP_C),
203 	EM_DEVICE(ICH8_IFE),
204 	EM_DEVICE(ICH8_IFE_GT),
205 	EM_DEVICE(ICH8_IFE_G),
206 	EM_DEVICE(ICH8_IGP_M),
207 	EM_DEVICE(ICH8_82567V_3),
208 
209 	EM_DEVICE(ICH9_IGP_M_AMT),
210 	EM_DEVICE(ICH9_IGP_AMT),
211 	EM_DEVICE(ICH9_IGP_C),
212 	EM_DEVICE(ICH9_IGP_M),
213 	EM_DEVICE(ICH9_IGP_M_V),
214 	EM_DEVICE(ICH9_IFE),
215 	EM_DEVICE(ICH9_IFE_GT),
216 	EM_DEVICE(ICH9_IFE_G),
217 	EM_DEVICE(ICH9_BM),
218 
219 	EM_EMX_DEVICE(82574L),
220 	EM_EMX_DEVICE(82574LA),
221 
222 	EM_DEVICE(ICH10_R_BM_LM),
223 	EM_DEVICE(ICH10_R_BM_LF),
224 	EM_DEVICE(ICH10_R_BM_V),
225 	EM_DEVICE(ICH10_D_BM_LM),
226 	EM_DEVICE(ICH10_D_BM_LF),
227 	EM_DEVICE(ICH10_D_BM_V),
228 
229 	EM_DEVICE(PCH_M_HV_LM),
230 	EM_DEVICE(PCH_M_HV_LC),
231 	EM_DEVICE(PCH_D_HV_DM),
232 	EM_DEVICE(PCH_D_HV_DC),
233 
234 	EM_DEVICE(PCH2_LV_LM),
235 	EM_DEVICE(PCH2_LV_V),
236 
237 	EM_EMX_DEVICE(PCH_LPT_I217_LM),
238 	EM_EMX_DEVICE(PCH_LPT_I217_V),
239 	EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
240 	EM_EMX_DEVICE(PCH_LPTLP_I218_V),
241 	EM_EMX_DEVICE(PCH_I218_LM2),
242 	EM_EMX_DEVICE(PCH_I218_V2),
243 	EM_EMX_DEVICE(PCH_I218_LM3),
244 	EM_EMX_DEVICE(PCH_I218_V3),
245 	EM_EMX_DEVICE(PCH_SPT_I219_LM),
246 	EM_EMX_DEVICE(PCH_SPT_I219_V),
247 	EM_EMX_DEVICE(PCH_SPT_I219_LM2),
248 	EM_EMX_DEVICE(PCH_SPT_I219_V2),
249 	EM_EMX_DEVICE(PCH_LBG_I219_LM3),
250 	EM_EMX_DEVICE(PCH_SPT_I219_LM4),
251 	EM_EMX_DEVICE(PCH_SPT_I219_V4),
252 	EM_EMX_DEVICE(PCH_SPT_I219_LM5),
253 	EM_EMX_DEVICE(PCH_SPT_I219_V5),
254 
255 	/* required last entry */
256 	EM_DEVICE_NULL
257 };
258 
259 static int	em_probe(device_t);
260 static int	em_attach(device_t);
261 static int	em_detach(device_t);
262 static int	em_shutdown(device_t);
263 static int	em_suspend(device_t);
264 static int	em_resume(device_t);
265 
266 static void	em_init(void *);
267 static void	em_stop(struct adapter *);
268 static int	em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
269 static void	em_start(struct ifnet *, struct ifaltq_subque *);
270 #ifdef IFPOLL_ENABLE
271 static void	em_npoll(struct ifnet *, struct ifpoll_info *);
272 static void	em_npoll_compat(struct ifnet *, void *, int);
273 #endif
274 static void	em_watchdog(struct ifnet *);
275 static void	em_media_status(struct ifnet *, struct ifmediareq *);
276 static int	em_media_change(struct ifnet *);
277 static void	em_timer(void *);
278 
279 static void	em_intr(void *);
280 static void	em_intr_mask(void *);
281 static void	em_intr_body(struct adapter *, boolean_t);
282 static void	em_rxeof(struct adapter *, int);
283 static void	em_txeof(struct adapter *);
284 static void	em_tx_collect(struct adapter *, boolean_t);
285 static void	em_tx_purge(struct adapter *);
286 static void	em_txgc_timer(void *);
287 static void	em_enable_intr(struct adapter *);
288 static void	em_disable_intr(struct adapter *);
289 
290 static int	em_dma_malloc(struct adapter *, bus_size_t,
291 		    struct em_dma_alloc *);
292 static void	em_dma_free(struct adapter *, struct em_dma_alloc *);
293 static void	em_init_tx_ring(struct adapter *);
294 static int	em_init_rx_ring(struct adapter *);
295 static int	em_create_tx_ring(struct adapter *);
296 static int	em_create_rx_ring(struct adapter *);
297 static void	em_destroy_tx_ring(struct adapter *, int);
298 static void	em_destroy_rx_ring(struct adapter *, int);
299 static int	em_newbuf(struct adapter *, int, int);
300 static int	em_encap(struct adapter *, struct mbuf **, int *, int *);
301 static void	em_rxcsum(struct adapter *, struct e1000_rx_desc *,
302 		    struct mbuf *);
303 static int	em_txcsum(struct adapter *, struct mbuf *,
304 		    uint32_t *, uint32_t *);
305 static int	em_tso_pullup(struct adapter *, struct mbuf **);
306 static int	em_tso_setup(struct adapter *, struct mbuf *,
307 		    uint32_t *, uint32_t *);
308 
309 static int	em_get_hw_info(struct adapter *);
310 static int 	em_is_valid_eaddr(const uint8_t *);
311 static int	em_alloc_pci_res(struct adapter *);
312 static void	em_free_pci_res(struct adapter *);
313 static int	em_reset(struct adapter *);
314 static void	em_setup_ifp(struct adapter *);
315 static void	em_init_tx_unit(struct adapter *);
316 static void	em_init_rx_unit(struct adapter *);
317 static void	em_update_stats(struct adapter *);
318 static void	em_set_promisc(struct adapter *);
319 static void	em_disable_promisc(struct adapter *);
320 static void	em_set_multi(struct adapter *);
321 static void	em_update_link_status(struct adapter *);
322 static void	em_smartspeed(struct adapter *);
323 static void	em_set_itr(struct adapter *, uint32_t);
324 static void	em_disable_aspm(struct adapter *);
325 static void	em_flush_tx_ring(struct adapter *);
326 static void	em_flush_rx_ring(struct adapter *);
327 static void	em_flush_txrx_ring(struct adapter *);
328 
329 /* Hardware workarounds */
330 static int	em_82547_fifo_workaround(struct adapter *, int);
331 static void	em_82547_update_fifo_head(struct adapter *, int);
332 static int	em_82547_tx_fifo_reset(struct adapter *);
333 static void	em_82547_move_tail(void *);
334 static void	em_82547_move_tail_serialized(struct adapter *);
335 static uint32_t	em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
336 
337 static void	em_print_debug_info(struct adapter *);
338 static void	em_print_nvm_info(struct adapter *);
339 static void	em_print_hw_stats(struct adapter *);
340 
341 static int	em_sysctl_stats(SYSCTL_HANDLER_ARGS);
342 static int	em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
343 static int	em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
344 static int	em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
345 static void	em_add_sysctl(struct adapter *adapter);
346 
347 /* Management and WOL Support */
348 static void	em_get_mgmt(struct adapter *);
349 static void	em_rel_mgmt(struct adapter *);
350 static void	em_get_hw_control(struct adapter *);
351 static void	em_rel_hw_control(struct adapter *);
352 static void	em_enable_wol(device_t);
353 
354 static device_method_t em_methods[] = {
355 	/* Device interface */
356 	DEVMETHOD(device_probe,		em_probe),
357 	DEVMETHOD(device_attach,	em_attach),
358 	DEVMETHOD(device_detach,	em_detach),
359 	DEVMETHOD(device_shutdown,	em_shutdown),
360 	DEVMETHOD(device_suspend,	em_suspend),
361 	DEVMETHOD(device_resume,	em_resume),
362 	DEVMETHOD_END
363 };
364 
365 static driver_t em_driver = {
366 	"em",
367 	em_methods,
368 	sizeof(struct adapter),
369 };
370 
371 static devclass_t em_devclass;
372 
373 DECLARE_DUMMY_MODULE(if_em);
374 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
375 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
376 
377 /*
378  * Tunables
379  */
380 static int	em_int_throttle_ceil = EM_DEFAULT_ITR;
381 static int	em_rxd = EM_DEFAULT_RXD;
382 static int	em_txd = EM_DEFAULT_TXD;
383 static int	em_smart_pwr_down = 0;
384 
385 /* Controls whether promiscuous also shows bad packets */
386 static int	em_debug_sbp = FALSE;
387 
388 static int	em_82573_workaround = 1;
389 static int	em_msi_enable = 1;
390 
391 static char	em_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_NONE;
392 
393 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
394 TUNABLE_INT("hw.em.rxd", &em_rxd);
395 TUNABLE_INT("hw.em.txd", &em_txd);
396 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
397 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
398 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
399 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
400 TUNABLE_STR("hw.em.flow_ctrl", em_flowctrl, sizeof(em_flowctrl));
401 
402 /* Global used in WOL setup with multiport cards */
403 static int	em_global_quad_port_a = 0;
404 
405 /* Set this to one to display debug statistics */
406 static int	em_display_debug_stats = 0;
407 
408 #if !defined(KTR_IF_EM)
409 #define KTR_IF_EM	KTR_ALL
410 #endif
411 KTR_INFO_MASTER(if_em);
412 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
413 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
414 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
415 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
416 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
417 #define logif(name)	KTR_LOG(if_em_ ## name)
418 
419 static __inline void
420 em_tx_intr(struct adapter *adapter)
421 {
422 	struct ifnet *ifp = &adapter->arpcom.ac_if;
423 
424 	em_txeof(adapter);
425 	if (!ifq_is_empty(&ifp->if_snd))
426 		if_devstart(ifp);
427 }
428 
429 static __inline void
430 em_free_txbuffer(struct adapter *adapter, struct em_buffer *tx_buffer)
431 {
432 
433 	KKASSERT(tx_buffer->m_head != NULL);
434 	KKASSERT(adapter->tx_nmbuf > 0);
435 	adapter->tx_nmbuf--;
436 
437 	bus_dmamap_unload(adapter->txtag, tx_buffer->map);
438 	m_freem(tx_buffer->m_head);
439 	tx_buffer->m_head = NULL;
440 }
441 
442 static __inline void
443 em_try_txgc(struct adapter *adapter, int dec)
444 {
445 
446 	if (adapter->tx_running > 0) {
447 		adapter->tx_running -= dec;
448 		if (adapter->tx_running <= 0 && adapter->tx_nmbuf &&
449 		    adapter->num_tx_desc_avail < adapter->num_tx_desc &&
450 		    adapter->num_tx_desc_avail + adapter->tx_int_nsegs >
451 		    adapter->num_tx_desc)
452 			em_tx_collect(adapter, TRUE);
453 	}
454 }
455 
456 static void
457 em_txgc_timer(void *xadapter)
458 {
459 	struct adapter *adapter = xadapter;
460 	struct ifnet *ifp = &adapter->arpcom.ac_if;
461 
462 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
463 	    (IFF_RUNNING | IFF_UP))
464 		return;
465 
466 	if (!lwkt_serialize_try(ifp->if_serializer))
467 		goto done;
468 
469 	if ((ifp->if_flags & (IFF_RUNNING | IFF_UP | IFF_NPOLLING)) !=
470 	    (IFF_RUNNING | IFF_UP)) {
471 		lwkt_serialize_exit(ifp->if_serializer);
472 		return;
473 	}
474 	em_try_txgc(adapter, EM_TX_RUNNING_DEC);
475 
476 	lwkt_serialize_exit(ifp->if_serializer);
477 done:
478 	callout_reset(&adapter->tx_gc_timer, 1, em_txgc_timer, adapter);
479 }
480 
481 static int
482 em_probe(device_t dev)
483 {
484 	const struct em_vendor_info *ent;
485 	uint16_t vid, did;
486 
487 	vid = pci_get_vendor(dev);
488 	did = pci_get_device(dev);
489 
490 	for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
491 		if (vid == ent->vendor_id && did == ent->device_id) {
492 			device_set_desc(dev, ent->desc);
493 			device_set_async_attach(dev, TRUE);
494 			return (ent->ret);
495 		}
496 	}
497 	return (ENXIO);
498 }
499 
500 static int
501 em_attach(device_t dev)
502 {
503 	struct adapter *adapter = device_get_softc(dev);
504 	struct ifnet *ifp = &adapter->arpcom.ac_if;
505 	int tsize, rsize;
506 	int error = 0;
507 	int cap;
508 	uint16_t eeprom_data, device_id, apme_mask;
509 	driver_intr_t *intr_func;
510 	char flowctrl[IFM_ETH_FC_STRLEN];
511 
512 	adapter->dev = adapter->osdep.dev = dev;
513 
514 	/*
515 	 * Some versions of I219 only have PCI AF.
516 	 */
517 	if (pci_is_pcie(dev) || pci_find_extcap(dev, PCIY_PCIAF, &cap) == 0)
518 		adapter->flags |= EM_FLAG_GEN2;
519 
520 	callout_init_mp(&adapter->timer);
521 	callout_init_mp(&adapter->tx_fifo_timer);
522 	callout_init_mp(&adapter->tx_gc_timer);
523 
524 	ifmedia_init(&adapter->media, IFM_IMASK | IFM_ETH_FCMASK,
525 	    em_media_change, em_media_status);
526 
527 	/* Determine hardware and mac info */
528 	error = em_get_hw_info(adapter);
529 	if (error) {
530 		device_printf(dev, "Identify hardware failed\n");
531 		goto fail;
532 	}
533 
534 	/* Setup PCI resources */
535 	error = em_alloc_pci_res(adapter);
536 	if (error) {
537 		device_printf(dev, "Allocation of PCI resources failed\n");
538 		goto fail;
539 	}
540 
541 	/*
542 	 * For ICH8 and family we need to map the flash memory,
543 	 * and this must happen after the MAC is identified.
544 	 *
545 	 * (SPT does not map the flash with a separate BAR)
546 	 */
547 	if (adapter->hw.mac.type == e1000_ich8lan ||
548 	    adapter->hw.mac.type == e1000_ich9lan ||
549 	    adapter->hw.mac.type == e1000_ich10lan ||
550 	    adapter->hw.mac.type == e1000_pchlan ||
551 	    adapter->hw.mac.type == e1000_pch2lan ||
552 	    adapter->hw.mac.type == e1000_pch_lpt) {
553 		adapter->flash_rid = EM_BAR_FLASH;
554 
555 		adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
556 					&adapter->flash_rid, RF_ACTIVE);
557 		if (adapter->flash == NULL) {
558 			device_printf(dev, "Mapping of Flash failed\n");
559 			error = ENXIO;
560 			goto fail;
561 		}
562 		adapter->osdep.flash_bus_space_tag =
563 		    rman_get_bustag(adapter->flash);
564 		adapter->osdep.flash_bus_space_handle =
565 		    rman_get_bushandle(adapter->flash);
566 
567 		/*
568 		 * This is used in the shared code
569 		 * XXX this goof is actually not used.
570 		 */
571 		adapter->hw.flash_address = (uint8_t *)adapter->flash;
572 	} else if (adapter->hw.mac.type == e1000_pch_spt) {
573 		/*
574 		 * In the new SPT device flash is not a seperate BAR,
575 		 * rather it is also in BAR0, so use the same tag and
576 		 * an offset handle for the FLASH read/write macros
577 		 * in the shared code.
578 		 */
579 		adapter->osdep.flash_bus_space_tag =
580 		    adapter->osdep.mem_bus_space_tag;
581 		adapter->osdep.flash_bus_space_handle =
582 		    adapter->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
583 	}
584 
585 	switch (adapter->hw.mac.type) {
586 	case e1000_82571:
587 	case e1000_82572:
588 	case e1000_pch_lpt:
589 	case e1000_pch_spt:
590 		/*
591 		 * Pullup extra 4bytes into the first data segment for
592 		 * TSO, see:
593 		 * 82571/82572 specification update errata #7
594 		 *
595 		 * Same applies to I217 (and maybe I218 and I219).
596 		 *
597 		 * NOTE:
598 		 * 4bytes instead of 2bytes, which are mentioned in the
599 		 * errata, are pulled; mainly to keep rest of the data
600 		 * properly aligned.
601 		 */
602 		adapter->flags |= EM_FLAG_TSO_PULLEX;
603 		/* FALL THROUGH */
604 
605 	default:
606 		if (adapter->flags & EM_FLAG_GEN2)
607 			adapter->flags |= EM_FLAG_TSO;
608 		break;
609 	}
610 
611 	/* Do Shared Code initialization */
612 	if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
613 		device_printf(dev, "Setup of Shared code failed\n");
614 		error = ENXIO;
615 		goto fail;
616 	}
617 
618 	e1000_get_bus_info(&adapter->hw);
619 
620 	/*
621 	 * Validate number of transmit and receive descriptors.  It
622 	 * must not exceed hardware maximum, and must be multiple
623 	 * of E1000_DBA_ALIGN.
624 	 */
625 	if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
626 	    (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
627 	    (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
628 	    em_txd < EM_MIN_TXD) {
629 		if (adapter->hw.mac.type < e1000_82544)
630 			adapter->num_tx_desc = EM_MAX_TXD_82543;
631 		else
632 			adapter->num_tx_desc = EM_DEFAULT_TXD;
633 		device_printf(dev, "Using %d TX descriptors instead of %d!\n",
634 		    adapter->num_tx_desc, em_txd);
635 	} else {
636 		adapter->num_tx_desc = em_txd;
637 	}
638 	if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
639 	    (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
640 	    (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
641 	    em_rxd < EM_MIN_RXD) {
642 		if (adapter->hw.mac.type < e1000_82544)
643 			adapter->num_rx_desc = EM_MAX_RXD_82543;
644 		else
645 			adapter->num_rx_desc = EM_DEFAULT_RXD;
646 		device_printf(dev, "Using %d RX descriptors instead of %d!\n",
647 		    adapter->num_rx_desc, em_rxd);
648 	} else {
649 		adapter->num_rx_desc = em_rxd;
650 	}
651 
652 	adapter->hw.mac.autoneg = DO_AUTO_NEG;
653 	adapter->hw.phy.autoneg_wait_to_complete = FALSE;
654 	adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
655 	adapter->rx_buffer_len = MCLBYTES;
656 
657 	/*
658 	 * Interrupt throttle rate
659 	 */
660 	if (em_int_throttle_ceil == 0) {
661 		adapter->int_throttle_ceil = 0;
662 	} else {
663 		int throttle = em_int_throttle_ceil;
664 
665 		if (throttle < 0)
666 			throttle = EM_DEFAULT_ITR;
667 
668 		/* Recalculate the tunable value to get the exact frequency. */
669 		throttle = 1000000000 / 256 / throttle;
670 
671 		/* Upper 16bits of ITR is reserved and should be zero */
672 		if (throttle & 0xffff0000)
673 			throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
674 
675 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
676 	}
677 
678 	e1000_init_script_state_82541(&adapter->hw, TRUE);
679 	e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
680 
681 	/* Copper options */
682 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
683 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
684 		adapter->hw.phy.disable_polarity_correction = FALSE;
685 		adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
686 	}
687 
688 	/* Set the frame limits assuming standard ethernet sized frames. */
689 	adapter->hw.mac.max_frame_size =
690 	    ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
691 	adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
692 
693 	/* This controls when hardware reports transmit completion status. */
694 	adapter->hw.mac.report_tx_early = 1;
695 
696 	/*
697 	 * Create top level busdma tag
698 	 */
699 	error = bus_dma_tag_create(NULL, 1, 0,
700 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
701 			NULL, NULL,
702 			BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
703 			0, &adapter->parent_dtag);
704 	if (error) {
705 		device_printf(dev, "could not create top level DMA tag\n");
706 		goto fail;
707 	}
708 
709 	/*
710 	 * Allocate Transmit Descriptor ring
711 	 */
712 	tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
713 			 EM_DBA_ALIGN);
714 	error = em_dma_malloc(adapter, tsize, &adapter->txdma);
715 	if (error) {
716 		device_printf(dev, "Unable to allocate tx_desc memory\n");
717 		goto fail;
718 	}
719 	adapter->tx_desc_base = adapter->txdma.dma_vaddr;
720 
721 	/*
722 	 * Allocate Receive Descriptor ring
723 	 */
724 	rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
725 			 EM_DBA_ALIGN);
726 	error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
727 	if (error) {
728 		device_printf(dev, "Unable to allocate rx_desc memory\n");
729 		goto fail;
730 	}
731 	adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
732 
733 	/* Allocate multicast array memory. */
734 	adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
735 	    M_DEVBUF, M_WAITOK);
736 
737 	/* Indicate SOL/IDER usage */
738 	if (e1000_check_reset_block(&adapter->hw)) {
739 		device_printf(dev,
740 		    "PHY reset is blocked due to SOL/IDER session.\n");
741 	}
742 
743 	/* Disable EEE */
744 	adapter->hw.dev_spec.ich8lan.eee_disable = 1;
745 
746 	/*
747 	 * Start from a known state, this is important in reading the
748 	 * nvm and mac from that.
749 	 */
750 	e1000_reset_hw(&adapter->hw);
751 
752 	/* Make sure we have a good EEPROM before we read from it */
753 	if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
754 		/*
755 		 * Some PCI-E parts fail the first check due to
756 		 * the link being in sleep state, call it again,
757 		 * if it fails a second time its a real issue.
758 		 */
759 		if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
760 			device_printf(dev,
761 			    "The EEPROM Checksum Is Not Valid\n");
762 			error = EIO;
763 			goto fail;
764 		}
765 	}
766 
767 	/* Copy the permanent MAC address out of the EEPROM */
768 	if (e1000_read_mac_addr(&adapter->hw) < 0) {
769 		device_printf(dev, "EEPROM read error while reading MAC"
770 		    " address\n");
771 		error = EIO;
772 		goto fail;
773 	}
774 	if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
775 		device_printf(dev, "Invalid MAC address\n");
776 		error = EIO;
777 		goto fail;
778 	}
779 
780 	/* Disable ULP support */
781 	e1000_disable_ulp_lpt_lp(&adapter->hw, TRUE);
782 
783 	/* Allocate transmit descriptors and buffers */
784 	error = em_create_tx_ring(adapter);
785 	if (error) {
786 		device_printf(dev, "Could not setup transmit structures\n");
787 		goto fail;
788 	}
789 
790 	/* Allocate receive descriptors and buffers */
791 	error = em_create_rx_ring(adapter);
792 	if (error) {
793 		device_printf(dev, "Could not setup receive structures\n");
794 		goto fail;
795 	}
796 
797 	/* Manually turn off all interrupts */
798 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
799 
800 	/* Determine if we have to control management hardware */
801 	if (e1000_enable_mng_pass_thru(&adapter->hw))
802 		adapter->flags |= EM_FLAG_HAS_MGMT;
803 
804 	/*
805 	 * Setup Wake-on-Lan
806 	 */
807 	apme_mask = EM_EEPROM_APME;
808 	eeprom_data = 0;
809 	switch (adapter->hw.mac.type) {
810 	case e1000_82542:
811 	case e1000_82543:
812 		break;
813 
814 	case e1000_82573:
815 	case e1000_82583:
816 		adapter->flags |= EM_FLAG_HAS_AMT;
817 		/* FALL THROUGH */
818 
819 	case e1000_82546:
820 	case e1000_82546_rev_3:
821 	case e1000_82571:
822 	case e1000_82572:
823 	case e1000_80003es2lan:
824 		if (adapter->hw.bus.func == 1) {
825 			e1000_read_nvm(&adapter->hw,
826 			    NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
827 		} else {
828 			e1000_read_nvm(&adapter->hw,
829 			    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
830 		}
831 		break;
832 
833 	case e1000_ich8lan:
834 	case e1000_ich9lan:
835 	case e1000_ich10lan:
836 	case e1000_pchlan:
837 	case e1000_pch2lan:
838 		apme_mask = E1000_WUC_APME;
839 		adapter->flags |= EM_FLAG_HAS_AMT;
840 		eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
841 		break;
842 
843 	default:
844 		e1000_read_nvm(&adapter->hw,
845 		    NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
846 		break;
847 	}
848 	if (eeprom_data & apme_mask)
849 		adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
850 
851 	/*
852          * We have the eeprom settings, now apply the special cases
853          * where the eeprom may be wrong or the board won't support
854          * wake on lan on a particular port
855 	 */
856 	device_id = pci_get_device(dev);
857         switch (device_id) {
858 	case E1000_DEV_ID_82546GB_PCIE:
859 		adapter->wol = 0;
860 		break;
861 
862 	case E1000_DEV_ID_82546EB_FIBER:
863 	case E1000_DEV_ID_82546GB_FIBER:
864 	case E1000_DEV_ID_82571EB_FIBER:
865 		/*
866 		 * Wake events only supported on port A for dual fiber
867 		 * regardless of eeprom setting
868 		 */
869 		if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
870 		    E1000_STATUS_FUNC_1)
871 			adapter->wol = 0;
872 		break;
873 
874 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
875 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
876 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
877 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
878                 /* if quad port adapter, disable WoL on all but port A */
879 		if (em_global_quad_port_a != 0)
880 			adapter->wol = 0;
881 		/* Reset for multiple quad port adapters */
882 		if (++em_global_quad_port_a == 4)
883 			em_global_quad_port_a = 0;
884                 break;
885 	}
886 
887 	/* XXX disable wol */
888 	adapter->wol = 0;
889 
890 	/* Setup flow control. */
891 	device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
892 	    em_flowctrl);
893 	adapter->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
894 	if (adapter->hw.mac.type == e1000_pchlan) {
895 		/* Only PAUSE reception is supported on PCH */
896 		adapter->ifm_flowctrl &= ~IFM_ETH_TXPAUSE;
897 	}
898 
899 	/* Setup OS specific network interface */
900 	em_setup_ifp(adapter);
901 
902 	/* Add sysctl tree, must after em_setup_ifp() */
903 	em_add_sysctl(adapter);
904 
905 #ifdef IFPOLL_ENABLE
906 	/* Polling setup */
907 	ifpoll_compat_setup(&adapter->npoll,
908 	    device_get_sysctl_ctx(dev), device_get_sysctl_tree(dev),
909 	    device_get_unit(dev), ifp->if_serializer);
910 #endif
911 
912 	/* Reset the hardware */
913 	error = em_reset(adapter);
914 	if (error) {
915 		/*
916 		 * Some 82573 parts fail the first reset, call it again,
917 		 * if it fails a second time its a real issue.
918 		 */
919 		error = em_reset(adapter);
920 		if (error) {
921 			device_printf(dev, "Unable to reset the hardware\n");
922 			ether_ifdetach(ifp);
923 			goto fail;
924 		}
925 	}
926 
927 	/* Initialize statistics */
928 	em_update_stats(adapter);
929 
930 	adapter->hw.mac.get_link_status = 1;
931 	em_update_link_status(adapter);
932 
933 	/* Do we need workaround for 82544 PCI-X adapter? */
934 	if (adapter->hw.bus.type == e1000_bus_type_pcix &&
935 	    adapter->hw.mac.type == e1000_82544)
936 		adapter->pcix_82544 = TRUE;
937 	else
938 		adapter->pcix_82544 = FALSE;
939 
940 	if (adapter->pcix_82544) {
941 		/*
942 		 * 82544 on PCI-X may split one TX segment
943 		 * into two TX descs, so we double its number
944 		 * of spare TX desc here.
945 		 */
946 		adapter->spare_tx_desc = 2 * EM_TX_SPARE;
947 	} else {
948 		adapter->spare_tx_desc = EM_TX_SPARE;
949 	}
950 	if (adapter->flags & EM_FLAG_TSO)
951 		adapter->spare_tx_desc = EM_TX_SPARE_TSO;
952 	adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
953 
954 	/*
955 	 * Keep following relationship between spare_tx_desc, oact_tx_desc
956 	 * and tx_int_nsegs:
957 	 * (spare_tx_desc + EM_TX_RESERVED) <=
958 	 * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
959 	 */
960 	adapter->oact_tx_desc = adapter->num_tx_desc / 8;
961 	if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
962 		adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
963 	if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
964 		adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
965 
966 	adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
967 	if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
968 		adapter->tx_int_nsegs = adapter->oact_tx_desc;
969 
970 	/* Non-AMT based hardware can now take control from firmware */
971 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
972 	    EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
973 		em_get_hw_control(adapter);
974 
975 	ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
976 
977 	/*
978 	 * Missing Interrupt Following ICR read:
979 	 *
980 	 * 82571/82572 specification update errata #76
981 	 * 82573 specification update errata #31
982 	 * 82574 specification update errata #12
983 	 * 82583 specification update errata #4
984 	 */
985 	intr_func = em_intr;
986 	if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
987 	    (adapter->hw.mac.type == e1000_82571 ||
988 	     adapter->hw.mac.type == e1000_82572 ||
989 	     adapter->hw.mac.type == e1000_82573 ||
990 	     adapter->hw.mac.type == e1000_82574 ||
991 	     adapter->hw.mac.type == e1000_82583))
992 		intr_func = em_intr_mask;
993 
994 	error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
995 			       intr_func, adapter, &adapter->intr_tag,
996 			       ifp->if_serializer);
997 	if (error) {
998 		device_printf(dev, "Failed to register interrupt handler");
999 		ether_ifdetach(ifp);
1000 		goto fail;
1001 	}
1002 	return (0);
1003 fail:
1004 	em_detach(dev);
1005 	return (error);
1006 }
1007 
1008 static int
1009 em_detach(device_t dev)
1010 {
1011 	struct adapter *adapter = device_get_softc(dev);
1012 
1013 	if (device_is_attached(dev)) {
1014 		struct ifnet *ifp = &adapter->arpcom.ac_if;
1015 
1016 		lwkt_serialize_enter(ifp->if_serializer);
1017 
1018 		em_stop(adapter);
1019 
1020 		e1000_phy_hw_reset(&adapter->hw);
1021 
1022 		em_rel_mgmt(adapter);
1023 		em_rel_hw_control(adapter);
1024 
1025 		if (adapter->wol) {
1026 			E1000_WRITE_REG(&adapter->hw, E1000_WUC,
1027 					E1000_WUC_PME_EN);
1028 			E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1029 			em_enable_wol(dev);
1030 		}
1031 
1032 		bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
1033 
1034 		lwkt_serialize_exit(ifp->if_serializer);
1035 
1036 		ether_ifdetach(ifp);
1037 	} else if (adapter->memory != NULL) {
1038 		em_rel_hw_control(adapter);
1039 	}
1040 
1041 	ifmedia_removeall(&adapter->media);
1042 	bus_generic_detach(dev);
1043 
1044 	em_free_pci_res(adapter);
1045 
1046 	em_destroy_tx_ring(adapter, adapter->num_tx_desc);
1047 	em_destroy_rx_ring(adapter, adapter->num_rx_desc);
1048 
1049 	/* Free Transmit Descriptor ring */
1050 	if (adapter->tx_desc_base)
1051 		em_dma_free(adapter, &adapter->txdma);
1052 
1053 	/* Free Receive Descriptor ring */
1054 	if (adapter->rx_desc_base)
1055 		em_dma_free(adapter, &adapter->rxdma);
1056 
1057 	/* Free top level busdma tag */
1058 	if (adapter->parent_dtag != NULL)
1059 		bus_dma_tag_destroy(adapter->parent_dtag);
1060 
1061 	if (adapter->mta != NULL)
1062 		kfree(adapter->mta, M_DEVBUF);
1063 
1064 	return (0);
1065 }
1066 
1067 static int
1068 em_shutdown(device_t dev)
1069 {
1070 	return em_suspend(dev);
1071 }
1072 
1073 static int
1074 em_suspend(device_t dev)
1075 {
1076 	struct adapter *adapter = device_get_softc(dev);
1077 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1078 
1079 	lwkt_serialize_enter(ifp->if_serializer);
1080 
1081 	em_stop(adapter);
1082 
1083 	em_rel_mgmt(adapter);
1084 	em_rel_hw_control(adapter);
1085 
1086 	if (adapter->wol) {
1087 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
1088 		E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
1089 		em_enable_wol(dev);
1090 	}
1091 
1092 	lwkt_serialize_exit(ifp->if_serializer);
1093 
1094 	return bus_generic_suspend(dev);
1095 }
1096 
1097 static int
1098 em_resume(device_t dev)
1099 {
1100 	struct adapter *adapter = device_get_softc(dev);
1101 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1102 
1103 	lwkt_serialize_enter(ifp->if_serializer);
1104 
1105 	if (adapter->hw.mac.type == e1000_pch2lan)
1106 		e1000_resume_workarounds_pchlan(&adapter->hw);
1107 
1108 	em_init(adapter);
1109 	em_get_mgmt(adapter);
1110 	if_devstart(ifp);
1111 
1112 	lwkt_serialize_exit(ifp->if_serializer);
1113 
1114 	return bus_generic_resume(dev);
1115 }
1116 
1117 static void
1118 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1119 {
1120 	struct adapter *adapter = ifp->if_softc;
1121 	struct mbuf *m_head;
1122 	int idx = -1, nsegs = 0;
1123 
1124 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1125 	ASSERT_SERIALIZED(ifp->if_serializer);
1126 
1127 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1128 		return;
1129 
1130 	if (!adapter->link_active) {
1131 		ifq_purge(&ifp->if_snd);
1132 		return;
1133 	}
1134 
1135 	while (!ifq_is_empty(&ifp->if_snd)) {
1136 		/* Now do we at least have a minimal? */
1137 		if (EM_IS_OACTIVE(adapter)) {
1138 			em_tx_collect(adapter, FALSE);
1139 			if (EM_IS_OACTIVE(adapter)) {
1140 				ifq_set_oactive(&ifp->if_snd);
1141 				adapter->no_tx_desc_avail1++;
1142 				break;
1143 			}
1144 		}
1145 
1146 		logif(pkt_txqueue);
1147 		m_head = ifq_dequeue(&ifp->if_snd);
1148 		if (m_head == NULL)
1149 			break;
1150 
1151 		if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1152 			IFNET_STAT_INC(ifp, oerrors, 1);
1153 			em_tx_collect(adapter, FALSE);
1154 			continue;
1155 		}
1156 
1157 		/*
1158 		 * TX interrupt are aggressively aggregated, so increasing
1159 		 * opackets at TX interrupt time will make the opackets
1160 		 * statistics vastly inaccurate; we do the opackets increment
1161 		 * now.
1162 		 */
1163 		IFNET_STAT_INC(ifp, opackets, 1);
1164 
1165 		if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1166 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1167 			nsegs = 0;
1168 			idx = -1;
1169 		}
1170 
1171 		/* Send a copy of the frame to the BPF listener */
1172 		ETHER_BPF_MTAP(ifp, m_head);
1173 
1174 		/* Set timeout in case hardware has problems transmitting. */
1175 		ifp->if_timer = EM_TX_TIMEOUT;
1176 	}
1177 	if (idx >= 0)
1178 		E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1179 	adapter->tx_running = EM_TX_RUNNING;
1180 }
1181 
1182 static int
1183 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1184 {
1185 	struct adapter *adapter = ifp->if_softc;
1186 	struct ifreq *ifr = (struct ifreq *)data;
1187 	uint16_t eeprom_data = 0;
1188 	int max_frame_size, mask, reinit;
1189 	int error = 0;
1190 
1191 	ASSERT_SERIALIZED(ifp->if_serializer);
1192 
1193 	switch (command) {
1194 	case SIOCSIFMTU:
1195 		switch (adapter->hw.mac.type) {
1196 		case e1000_82573:
1197 			/*
1198 			 * 82573 only supports jumbo frames
1199 			 * if ASPM is disabled.
1200 			 */
1201 			e1000_read_nvm(&adapter->hw,
1202 			    NVM_INIT_3GIO_3, 1, &eeprom_data);
1203 			if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1204 				max_frame_size = ETHER_MAX_LEN;
1205 				break;
1206 			}
1207 			/* FALL THROUGH */
1208 
1209 		/* Limit Jumbo Frame size */
1210 		case e1000_82571:
1211 		case e1000_82572:
1212 		case e1000_ich9lan:
1213 		case e1000_ich10lan:
1214 		case e1000_pch2lan:
1215 		case e1000_pch_lpt:
1216 		case e1000_pch_spt:
1217 		case e1000_82574:
1218 		case e1000_82583:
1219 		case e1000_80003es2lan:
1220 			max_frame_size = 9234;
1221 			break;
1222 
1223 		case e1000_pchlan:
1224 			max_frame_size = 4096;
1225 			break;
1226 
1227 		/* Adapters that do not support jumbo frames */
1228 		case e1000_82542:
1229 		case e1000_ich8lan:
1230 			max_frame_size = ETHER_MAX_LEN;
1231 			break;
1232 
1233 		default:
1234 			max_frame_size = MAX_JUMBO_FRAME_SIZE;
1235 			break;
1236 		}
1237 		if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1238 		    ETHER_CRC_LEN) {
1239 			error = EINVAL;
1240 			break;
1241 		}
1242 
1243 		ifp->if_mtu = ifr->ifr_mtu;
1244 		adapter->hw.mac.max_frame_size =
1245 		    ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1246 
1247 		if (ifp->if_flags & IFF_RUNNING)
1248 			em_init(adapter);
1249 		break;
1250 
1251 	case SIOCSIFFLAGS:
1252 		if (ifp->if_flags & IFF_UP) {
1253 			if ((ifp->if_flags & IFF_RUNNING)) {
1254 				if ((ifp->if_flags ^ adapter->if_flags) &
1255 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1256 					em_disable_promisc(adapter);
1257 					em_set_promisc(adapter);
1258 				}
1259 			} else {
1260 				em_init(adapter);
1261 			}
1262 		} else if (ifp->if_flags & IFF_RUNNING) {
1263 			em_stop(adapter);
1264 		}
1265 		adapter->if_flags = ifp->if_flags;
1266 		break;
1267 
1268 	case SIOCADDMULTI:
1269 	case SIOCDELMULTI:
1270 		if (ifp->if_flags & IFF_RUNNING) {
1271 			em_disable_intr(adapter);
1272 			em_set_multi(adapter);
1273 			if (adapter->hw.mac.type == e1000_82542 &&
1274 			    adapter->hw.revision_id == E1000_REVISION_2)
1275 				em_init_rx_unit(adapter);
1276 #ifdef IFPOLL_ENABLE
1277 			if (!(ifp->if_flags & IFF_NPOLLING))
1278 #endif
1279 				em_enable_intr(adapter);
1280 		}
1281 		break;
1282 
1283 	case SIOCSIFMEDIA:
1284 		/* Check SOL/IDER usage */
1285 		if (e1000_check_reset_block(&adapter->hw)) {
1286 			device_printf(adapter->dev, "Media change is"
1287 			    " blocked due to SOL/IDER session.\n");
1288 			break;
1289 		}
1290 		/* FALL THROUGH */
1291 
1292 	case SIOCGIFMEDIA:
1293 		error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1294 		break;
1295 
1296 	case SIOCSIFCAP:
1297 		reinit = 0;
1298 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1299 		if (mask & IFCAP_RXCSUM) {
1300 			ifp->if_capenable ^= IFCAP_RXCSUM;
1301 			reinit = 1;
1302 		}
1303 		if (mask & IFCAP_TXCSUM) {
1304 			ifp->if_capenable ^= IFCAP_TXCSUM;
1305 			if (ifp->if_capenable & IFCAP_TXCSUM)
1306 				ifp->if_hwassist |= EM_CSUM_FEATURES;
1307 			else
1308 				ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1309 		}
1310 		if (mask & IFCAP_TSO) {
1311 			ifp->if_capenable ^= IFCAP_TSO;
1312 			if (ifp->if_capenable & IFCAP_TSO)
1313 				ifp->if_hwassist |= CSUM_TSO;
1314 			else
1315 				ifp->if_hwassist &= ~CSUM_TSO;
1316 		}
1317 		if (mask & IFCAP_VLAN_HWTAGGING) {
1318 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1319 			reinit = 1;
1320 		}
1321 		if (reinit && (ifp->if_flags & IFF_RUNNING))
1322 			em_init(adapter);
1323 		break;
1324 
1325 	default:
1326 		error = ether_ioctl(ifp, command, data);
1327 		break;
1328 	}
1329 	return (error);
1330 }
1331 
1332 static void
1333 em_watchdog(struct ifnet *ifp)
1334 {
1335 	struct adapter *adapter = ifp->if_softc;
1336 
1337 	ASSERT_SERIALIZED(ifp->if_serializer);
1338 
1339 	/*
1340 	 * The timer is set to 5 every time start queues a packet.
1341 	 * Then txeof keeps resetting it as long as it cleans at
1342 	 * least one descriptor.
1343 	 * Finally, anytime all descriptors are clean the timer is
1344 	 * set to 0.
1345 	 */
1346 
1347 	if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1348 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1349 		/*
1350 		 * If we reach here, all TX jobs are completed and
1351 		 * the TX engine should have been idled for some time.
1352 		 * We don't need to call if_devstart() here.
1353 		 */
1354 		ifq_clr_oactive(&ifp->if_snd);
1355 		ifp->if_timer = 0;
1356 		return;
1357 	}
1358 
1359 	/*
1360 	 * If we are in this routine because of pause frames, then
1361 	 * don't reset the hardware.
1362 	 */
1363 	if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1364 	    E1000_STATUS_TXOFF) {
1365 		ifp->if_timer = EM_TX_TIMEOUT;
1366 		return;
1367 	}
1368 
1369 	if (e1000_check_for_link(&adapter->hw) == 0)
1370 		if_printf(ifp, "watchdog timeout -- resetting\n");
1371 
1372 	IFNET_STAT_INC(ifp, oerrors, 1);
1373 	adapter->watchdog_events++;
1374 
1375 	em_init(adapter);
1376 
1377 	if (!ifq_is_empty(&ifp->if_snd))
1378 		if_devstart(ifp);
1379 }
1380 
1381 static void
1382 em_init(void *xsc)
1383 {
1384 	struct adapter *adapter = xsc;
1385 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1386 	device_t dev = adapter->dev;
1387 
1388 	ASSERT_SERIALIZED(ifp->if_serializer);
1389 
1390 	em_stop(adapter);
1391 
1392 	/* Get the latest mac address, User can use a LAA */
1393         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1394 
1395 	/* Put the address into the Receive Address Array */
1396 	e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1397 
1398 	/*
1399 	 * With the 82571 adapter, RAR[0] may be overwritten
1400 	 * when the other port is reset, we make a duplicate
1401 	 * in RAR[14] for that eventuality, this assures
1402 	 * the interface continues to function.
1403 	 */
1404 	if (adapter->hw.mac.type == e1000_82571) {
1405 		e1000_set_laa_state_82571(&adapter->hw, TRUE);
1406 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1407 		    E1000_RAR_ENTRIES - 1);
1408 	}
1409 
1410 	/* Reset the hardware */
1411 	if (em_reset(adapter)) {
1412 		device_printf(dev, "Unable to reset the hardware\n");
1413 		/* XXX em_stop()? */
1414 		return;
1415 	}
1416 	em_update_link_status(adapter);
1417 
1418 	/* Setup VLAN support, basic and offload if available */
1419 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1420 
1421 	if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1422 		uint32_t ctrl;
1423 
1424 		ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1425 		ctrl |= E1000_CTRL_VME;
1426 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1427 	}
1428 
1429 	/* Configure for OS presence */
1430 	em_get_mgmt(adapter);
1431 
1432 	/* Prepare transmit descriptors and buffers */
1433 	em_init_tx_ring(adapter);
1434 	em_init_tx_unit(adapter);
1435 
1436 	/* Setup Multicast table */
1437 	em_set_multi(adapter);
1438 
1439 	/* Prepare receive descriptors and buffers */
1440 	if (em_init_rx_ring(adapter)) {
1441 		device_printf(dev, "Could not setup receive structures\n");
1442 		em_stop(adapter);
1443 		return;
1444 	}
1445 	em_init_rx_unit(adapter);
1446 
1447 	/* Don't lose promiscuous settings */
1448 	em_set_promisc(adapter);
1449 
1450 	/* Reset hardware counters */
1451 	e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1452 
1453 	/* MSI/X configuration for 82574 */
1454 	if (adapter->hw.mac.type == e1000_82574) {
1455 		int tmp;
1456 
1457 		tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1458 		tmp |= E1000_CTRL_EXT_PBA_CLR;
1459 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1460 		/*
1461 		 * XXX MSIX
1462 		 * Set the IVAR - interrupt vector routing.
1463 		 * Each nibble represents a vector, high bit
1464 		 * is enable, other 3 bits are the MSIX table
1465 		 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1466 		 * Link (other) to 2, hence the magic number.
1467 		 */
1468 		E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1469 	}
1470 
1471 #ifdef IFPOLL_ENABLE
1472 	/*
1473 	 * Only enable interrupts if we are not polling, make sure
1474 	 * they are off otherwise.
1475 	 */
1476 	if (ifp->if_flags & IFF_NPOLLING)
1477 		em_disable_intr(adapter);
1478 	else
1479 #endif /* IFPOLL_ENABLE */
1480 		em_enable_intr(adapter);
1481 
1482 	/* AMT based hardware can now take control from firmware */
1483 	if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1484 	    (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1485 	    adapter->hw.mac.type >= e1000_82571)
1486 		em_get_hw_control(adapter);
1487 
1488 	ifp->if_flags |= IFF_RUNNING;
1489 	ifq_clr_oactive(&ifp->if_snd);
1490 
1491 #ifdef IFPOLL_ENABLE
1492 	if ((ifp->if_flags & IFF_NPOLLING) == 0)
1493 #endif
1494 	{
1495 		callout_reset_bycpu(&adapter->tx_gc_timer, 1,
1496 		    em_txgc_timer, adapter,
1497 		    rman_get_cpuid(adapter->intr_res));
1498 	}
1499 	callout_reset(&adapter->timer, hz, em_timer, adapter);
1500 }
1501 
1502 #ifdef IFPOLL_ENABLE
1503 
1504 static void
1505 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1506 {
1507 	struct adapter *adapter = ifp->if_softc;
1508 
1509 	ASSERT_SERIALIZED(ifp->if_serializer);
1510 
1511 	if (adapter->npoll.ifpc_stcount-- == 0) {
1512 		uint32_t reg_icr;
1513 
1514 		adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1515 
1516 		reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1517 		if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1518 			callout_stop(&adapter->timer);
1519 			adapter->hw.mac.get_link_status = 1;
1520 			em_update_link_status(adapter);
1521 			callout_reset(&adapter->timer, hz, em_timer, adapter);
1522 		}
1523 	}
1524 
1525 	em_rxeof(adapter, count);
1526 
1527 	em_tx_intr(adapter);
1528 	em_try_txgc(adapter, 1);
1529 }
1530 
1531 static void
1532 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1533 {
1534 	struct adapter *adapter = ifp->if_softc;
1535 
1536 	ASSERT_SERIALIZED(ifp->if_serializer);
1537 
1538 	if (info != NULL) {
1539 		int cpuid = adapter->npoll.ifpc_cpuid;
1540 
1541                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1542 		info->ifpi_rx[cpuid].arg = NULL;
1543 		info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1544 
1545 		ifq_set_cpuid(&ifp->if_snd, cpuid);
1546 	} else {
1547 		ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1548 	}
1549 	if (ifp->if_flags & IFF_RUNNING)
1550 		em_init(adapter);
1551 }
1552 
1553 #endif /* IFPOLL_ENABLE */
1554 
1555 static void
1556 em_intr(void *xsc)
1557 {
1558 	em_intr_body(xsc, TRUE);
1559 }
1560 
1561 static void
1562 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1563 {
1564 	struct ifnet *ifp = &adapter->arpcom.ac_if;
1565 	uint32_t reg_icr;
1566 
1567 	logif(intr_beg);
1568 	ASSERT_SERIALIZED(ifp->if_serializer);
1569 
1570 	reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1571 
1572 	if (chk_asserted &&
1573 	    ((adapter->hw.mac.type >= e1000_82571 &&
1574 	      (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1575 	     reg_icr == 0)) {
1576 		logif(intr_end);
1577 		return;
1578 	}
1579 
1580 	/*
1581 	 * XXX: some laptops trigger several spurious interrupts
1582 	 * on em(4) when in the resume cycle. The ICR register
1583 	 * reports all-ones value in this case. Processing such
1584 	 * interrupts would lead to a freeze. I don't know why.
1585 	 */
1586 	if (reg_icr == 0xffffffff) {
1587 		logif(intr_end);
1588 		return;
1589 	}
1590 
1591 	if (ifp->if_flags & IFF_RUNNING) {
1592 		if (reg_icr &
1593 		    (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1594 			em_rxeof(adapter, -1);
1595 		if (reg_icr & E1000_ICR_TXDW)
1596 			em_tx_intr(adapter);
1597 	}
1598 
1599 	/* Link status change */
1600 	if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1601 		callout_stop(&adapter->timer);
1602 		adapter->hw.mac.get_link_status = 1;
1603 		em_update_link_status(adapter);
1604 
1605 		/* Deal with TX cruft when link lost */
1606 		em_tx_purge(adapter);
1607 
1608 		callout_reset(&adapter->timer, hz, em_timer, adapter);
1609 	}
1610 
1611 	if (reg_icr & E1000_ICR_RXO)
1612 		adapter->rx_overruns++;
1613 
1614 	logif(intr_end);
1615 }
1616 
1617 static void
1618 em_intr_mask(void *xsc)
1619 {
1620 	struct adapter *adapter = xsc;
1621 
1622 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1623 	/*
1624 	 * NOTE:
1625 	 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1626 	 * so don't check it.
1627 	 */
1628 	em_intr_body(adapter, FALSE);
1629 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1630 }
1631 
1632 static void
1633 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1634 {
1635 	struct adapter *adapter = ifp->if_softc;
1636 
1637 	ASSERT_SERIALIZED(ifp->if_serializer);
1638 
1639 	em_update_link_status(adapter);
1640 
1641 	ifmr->ifm_status = IFM_AVALID;
1642 	ifmr->ifm_active = IFM_ETHER;
1643 
1644 	if (!adapter->link_active) {
1645 		if (adapter->hw.mac.autoneg)
1646 			ifmr->ifm_active |= IFM_NONE;
1647 		else
1648 			ifmr->ifm_active = adapter->media.ifm_media;
1649 		return;
1650 	}
1651 
1652 	ifmr->ifm_status |= IFM_ACTIVE;
1653 	if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1654 		ifmr->ifm_active |= adapter->ifm_flowctrl;
1655 
1656 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1657 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1658 		u_char fiber_type = IFM_1000_SX;
1659 
1660 		if (adapter->hw.mac.type == e1000_82545)
1661 			fiber_type = IFM_1000_LX;
1662 		ifmr->ifm_active |= fiber_type | IFM_FDX;
1663 	} else {
1664 		switch (adapter->link_speed) {
1665 		case 10:
1666 			ifmr->ifm_active |= IFM_10_T;
1667 			break;
1668 		case 100:
1669 			ifmr->ifm_active |= IFM_100_TX;
1670 			break;
1671 
1672 		case 1000:
1673 			ifmr->ifm_active |= IFM_1000_T;
1674 			break;
1675 		}
1676 		if (adapter->link_duplex == FULL_DUPLEX)
1677 			ifmr->ifm_active |= IFM_FDX;
1678 		else
1679 			ifmr->ifm_active |= IFM_HDX;
1680 	}
1681 	if (ifmr->ifm_active & IFM_FDX) {
1682 		ifmr->ifm_active |=
1683 		    e1000_fc2ifmedia(adapter->hw.fc.current_mode);
1684 	}
1685 }
1686 
1687 static int
1688 em_media_change(struct ifnet *ifp)
1689 {
1690 	struct adapter *adapter = ifp->if_softc;
1691 	struct ifmedia *ifm = &adapter->media;
1692 
1693 	ASSERT_SERIALIZED(ifp->if_serializer);
1694 
1695 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1696 		return (EINVAL);
1697 
1698 	if (adapter->hw.mac.type == e1000_pchlan &&
1699 	    (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)) {
1700 		if (bootverbose)
1701 			if_printf(ifp, "TX PAUSE is not supported on PCH\n");
1702 		return EINVAL;
1703 	}
1704 
1705 	switch (IFM_SUBTYPE(ifm->ifm_media)) {
1706 	case IFM_AUTO:
1707 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1708 		adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1709 		break;
1710 
1711 	case IFM_1000_LX:
1712 	case IFM_1000_SX:
1713 	case IFM_1000_T:
1714 		adapter->hw.mac.autoneg = DO_AUTO_NEG;
1715 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1716 		break;
1717 
1718 	case IFM_100_TX:
1719 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1720 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1721 		} else {
1722 			if (IFM_OPTIONS(ifm->ifm_media) &
1723 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1724 				if (bootverbose) {
1725 					if_printf(ifp, "Flow control is not "
1726 					    "allowed for half-duplex\n");
1727 				}
1728 				return EINVAL;
1729 			}
1730 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1731 		}
1732 		adapter->hw.mac.autoneg = FALSE;
1733 		adapter->hw.phy.autoneg_advertised = 0;
1734 		break;
1735 
1736 	case IFM_10_T:
1737 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1738 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1739 		} else {
1740 			if (IFM_OPTIONS(ifm->ifm_media) &
1741 			    (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1742 				if (bootverbose) {
1743 					if_printf(ifp, "Flow control is not "
1744 					    "allowed for half-duplex\n");
1745 				}
1746 				return EINVAL;
1747 			}
1748 			adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1749 		}
1750 		adapter->hw.mac.autoneg = FALSE;
1751 		adapter->hw.phy.autoneg_advertised = 0;
1752 		break;
1753 
1754 	default:
1755 		if (bootverbose) {
1756 			if_printf(ifp, "Unsupported media type %d\n",
1757 			    IFM_SUBTYPE(ifm->ifm_media));
1758 		}
1759 		return EINVAL;
1760 	}
1761 	adapter->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1762 
1763 	if (ifp->if_flags & IFF_RUNNING)
1764 		em_init(adapter);
1765 
1766 	return (0);
1767 }
1768 
1769 static int
1770 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1771     int *segs_used, int *idx)
1772 {
1773 	bus_dma_segment_t segs[EM_MAX_SCATTER];
1774 	bus_dmamap_t map;
1775 	struct em_buffer *tx_buffer, *tx_buffer_mapped;
1776 	struct e1000_tx_desc *ctxd = NULL;
1777 	struct mbuf *m_head = *m_headp;
1778 	uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1779 	int maxsegs, nsegs, i, j, first, last = 0, error;
1780 
1781 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1782 		error = em_tso_pullup(adapter, m_headp);
1783 		if (error)
1784 			return error;
1785 		m_head = *m_headp;
1786 	}
1787 
1788 	txd_upper = txd_lower = 0;
1789 	txd_used = 0;
1790 
1791 	/*
1792 	 * Capture the first descriptor index, this descriptor
1793 	 * will have the index of the EOP which is the only one
1794 	 * that now gets a DONE bit writeback.
1795 	 */
1796 	first = adapter->next_avail_tx_desc;
1797 	tx_buffer = &adapter->tx_buffer_area[first];
1798 	tx_buffer_mapped = tx_buffer;
1799 	map = tx_buffer->map;
1800 
1801 	maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1802 	KASSERT(maxsegs >= adapter->spare_tx_desc,
1803 		("not enough spare TX desc"));
1804 	if (adapter->pcix_82544) {
1805 		/* Half it; see the comment in em_attach() */
1806 		maxsegs >>= 1;
1807 	}
1808 	if (maxsegs > EM_MAX_SCATTER)
1809 		maxsegs = EM_MAX_SCATTER;
1810 
1811 	error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1812 			segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1813 	if (error) {
1814 		if (error == ENOBUFS)
1815 			adapter->mbuf_alloc_failed++;
1816 		else
1817 			adapter->no_tx_dma_setup++;
1818 
1819 		m_freem(*m_headp);
1820 		*m_headp = NULL;
1821 		return error;
1822 	}
1823         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1824 
1825 	m_head = *m_headp;
1826 	adapter->tx_nsegs += nsegs;
1827 	*segs_used += nsegs;
1828 
1829 	if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1830 		/* TSO will consume one TX desc */
1831 		i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1832 		adapter->tx_nsegs += i;
1833 		*segs_used += i;
1834 	} else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1835 		/* TX csum offloading will consume one TX desc */
1836 		i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1837 		adapter->tx_nsegs += i;
1838 		*segs_used += i;
1839 	}
1840 
1841         /* Handle VLAN tag */
1842 	if (m_head->m_flags & M_VLANTAG) {
1843 		/* Set the vlan id. */
1844 		txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1845 		/* Tell hardware to add tag */
1846 		txd_lower |= htole32(E1000_TXD_CMD_VLE);
1847 	}
1848 
1849 	i = adapter->next_avail_tx_desc;
1850 
1851 	/* Set up our transmit descriptors */
1852 	for (j = 0; j < nsegs; j++) {
1853 		/* If adapter is 82544 and on PCIX bus */
1854 		if(adapter->pcix_82544) {
1855 			DESC_ARRAY desc_array;
1856 			uint32_t array_elements, counter;
1857 
1858 			/*
1859 			 * Check the Address and Length combination and
1860 			 * split the data accordingly
1861 			 */
1862 			array_elements = em_82544_fill_desc(segs[j].ds_addr,
1863 						segs[j].ds_len, &desc_array);
1864 			for (counter = 0; counter < array_elements; counter++) {
1865 				KKASSERT(txd_used < adapter->num_tx_desc_avail);
1866 
1867 				tx_buffer = &adapter->tx_buffer_area[i];
1868 				ctxd = &adapter->tx_desc_base[i];
1869 
1870 				ctxd->buffer_addr = htole64(
1871 				    desc_array.descriptor[counter].address);
1872 				ctxd->lower.data = htole32(
1873 				    E1000_TXD_CMD_IFCS | txd_lower |
1874 				    desc_array.descriptor[counter].length);
1875 				ctxd->upper.data = htole32(txd_upper);
1876 
1877 				last = i;
1878 				if (++i == adapter->num_tx_desc)
1879 					i = 0;
1880 
1881 				txd_used++;
1882                         }
1883 		} else {
1884 			tx_buffer = &adapter->tx_buffer_area[i];
1885 			ctxd = &adapter->tx_desc_base[i];
1886 
1887 			ctxd->buffer_addr = htole64(segs[j].ds_addr);
1888 			ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1889 						   txd_lower | segs[j].ds_len);
1890 			ctxd->upper.data = htole32(txd_upper);
1891 
1892 			last = i;
1893 			if (++i == adapter->num_tx_desc)
1894 				i = 0;
1895 		}
1896 	}
1897 
1898 	adapter->next_avail_tx_desc = i;
1899 	if (adapter->pcix_82544) {
1900 		KKASSERT(adapter->num_tx_desc_avail > txd_used);
1901 		adapter->num_tx_desc_avail -= txd_used;
1902 	} else {
1903 		KKASSERT(adapter->num_tx_desc_avail > nsegs);
1904 		adapter->num_tx_desc_avail -= nsegs;
1905 	}
1906 	adapter->tx_nmbuf++;
1907 
1908 	tx_buffer->m_head = m_head;
1909 	tx_buffer_mapped->map = tx_buffer->map;
1910 	tx_buffer->map = map;
1911 
1912 	if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1913 		adapter->tx_nsegs = 0;
1914 
1915 		/*
1916 		 * Report Status (RS) is turned on
1917 		 * every tx_int_nsegs descriptors.
1918 		 */
1919 		cmd = E1000_TXD_CMD_RS;
1920 
1921 		/*
1922 		 * Keep track of the descriptor, which will
1923 		 * be written back by hardware.
1924 		 */
1925 		adapter->tx_dd[adapter->tx_dd_tail] = last;
1926 		EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1927 		KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1928 	}
1929 
1930 	/*
1931 	 * Last Descriptor of Packet needs End Of Packet (EOP)
1932 	 */
1933 	ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1934 
1935 	if (adapter->hw.mac.type == e1000_82547) {
1936 		/*
1937 		 * Advance the Transmit Descriptor Tail (TDT), this tells the
1938 		 * E1000 that this frame is available to transmit.
1939 		 */
1940 		if (adapter->link_duplex == HALF_DUPLEX) {
1941 			em_82547_move_tail_serialized(adapter);
1942 		} else {
1943 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1944 			em_82547_update_fifo_head(adapter,
1945 			    m_head->m_pkthdr.len);
1946 		}
1947 	} else {
1948 		/*
1949 		 * Defer TDT updating, until enough descriptors are setup
1950 		 */
1951 		*idx = i;
1952 	}
1953 	return (0);
1954 }
1955 
1956 /*
1957  * 82547 workaround to avoid controller hang in half-duplex environment.
1958  * The workaround is to avoid queuing a large packet that would span
1959  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1960  * in this case.  We do that only when FIFO is quiescent.
1961  */
1962 static void
1963 em_82547_move_tail_serialized(struct adapter *adapter)
1964 {
1965 	struct e1000_tx_desc *tx_desc;
1966 	uint16_t hw_tdt, sw_tdt, length = 0;
1967 	bool eop = 0;
1968 
1969 	ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1970 
1971 	hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1972 	sw_tdt = adapter->next_avail_tx_desc;
1973 
1974 	while (hw_tdt != sw_tdt) {
1975 		tx_desc = &adapter->tx_desc_base[hw_tdt];
1976 		length += tx_desc->lower.flags.length;
1977 		eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1978 		if (++hw_tdt == adapter->num_tx_desc)
1979 			hw_tdt = 0;
1980 
1981 		if (eop) {
1982 			if (em_82547_fifo_workaround(adapter, length)) {
1983 				adapter->tx_fifo_wrk_cnt++;
1984 				callout_reset(&adapter->tx_fifo_timer, 1,
1985 					em_82547_move_tail, adapter);
1986 				break;
1987 			}
1988 			E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1989 			em_82547_update_fifo_head(adapter, length);
1990 			length = 0;
1991 		}
1992 	}
1993 }
1994 
1995 static void
1996 em_82547_move_tail(void *xsc)
1997 {
1998 	struct adapter *adapter = xsc;
1999 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2000 
2001 	lwkt_serialize_enter(ifp->if_serializer);
2002 	em_82547_move_tail_serialized(adapter);
2003 	lwkt_serialize_exit(ifp->if_serializer);
2004 }
2005 
2006 static int
2007 em_82547_fifo_workaround(struct adapter *adapter, int len)
2008 {
2009 	int fifo_space, fifo_pkt_len;
2010 
2011 	fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
2012 
2013 	if (adapter->link_duplex == HALF_DUPLEX) {
2014 		fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2015 
2016 		if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
2017 			if (em_82547_tx_fifo_reset(adapter))
2018 				return (0);
2019 			else
2020 				return (1);
2021 		}
2022 	}
2023 	return (0);
2024 }
2025 
2026 static void
2027 em_82547_update_fifo_head(struct adapter *adapter, int len)
2028 {
2029 	int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
2030 
2031 	/* tx_fifo_head is always 16 byte aligned */
2032 	adapter->tx_fifo_head += fifo_pkt_len;
2033 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2034 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
2035 }
2036 
2037 static int
2038 em_82547_tx_fifo_reset(struct adapter *adapter)
2039 {
2040 	uint32_t tctl;
2041 
2042 	if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
2043 	     E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
2044 	    (E1000_READ_REG(&adapter->hw, E1000_TDFT) ==
2045 	     E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
2046 	    (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
2047 	     E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
2048 	    (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
2049 		/* Disable TX unit */
2050 		tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2051 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
2052 		    tctl & ~E1000_TCTL_EN);
2053 
2054 		/* Reset FIFO pointers */
2055 		E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
2056 		    adapter->tx_head_addr);
2057 		E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
2058 		    adapter->tx_head_addr);
2059 		E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
2060 		    adapter->tx_head_addr);
2061 		E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
2062 		    adapter->tx_head_addr);
2063 
2064 		/* Re-enable TX unit */
2065 		E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2066 		E1000_WRITE_FLUSH(&adapter->hw);
2067 
2068 		adapter->tx_fifo_head = 0;
2069 		adapter->tx_fifo_reset_cnt++;
2070 
2071 		return (TRUE);
2072 	} else {
2073 		return (FALSE);
2074 	}
2075 }
2076 
2077 static void
2078 em_set_promisc(struct adapter *adapter)
2079 {
2080 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2081 	uint32_t reg_rctl;
2082 
2083 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2084 
2085 	if (ifp->if_flags & IFF_PROMISC) {
2086 		reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2087 		/* Turn this on if you want to see bad packets */
2088 		if (em_debug_sbp)
2089 			reg_rctl |= E1000_RCTL_SBP;
2090 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2091 	} else if (ifp->if_flags & IFF_ALLMULTI) {
2092 		reg_rctl |= E1000_RCTL_MPE;
2093 		reg_rctl &= ~E1000_RCTL_UPE;
2094 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2095 	}
2096 }
2097 
2098 static void
2099 em_disable_promisc(struct adapter *adapter)
2100 {
2101 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2102 	uint32_t reg_rctl;
2103 	int mcnt = 0;
2104 
2105 	reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2106 	reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
2107 
2108 	if (ifp->if_flags & IFF_ALLMULTI) {
2109 		mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2110 	} else {
2111 		const struct ifmultiaddr *ifma;
2112 
2113 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2114 			if (ifma->ifma_addr->sa_family != AF_LINK)
2115 				continue;
2116 			if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2117 				break;
2118 			mcnt++;
2119 		}
2120 	}
2121 	/* Don't disable if in MAX groups */
2122 	if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2123 		reg_rctl &= ~E1000_RCTL_MPE;
2124 
2125 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2126 }
2127 
2128 static void
2129 em_set_multi(struct adapter *adapter)
2130 {
2131 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2132 	struct ifmultiaddr *ifma;
2133 	uint32_t reg_rctl = 0;
2134 	uint8_t *mta;
2135 	int mcnt = 0;
2136 
2137 	mta = adapter->mta;
2138 	bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2139 
2140 	if (adapter->hw.mac.type == e1000_82542 &&
2141 	    adapter->hw.revision_id == E1000_REVISION_2) {
2142 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2143 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2144 			e1000_pci_clear_mwi(&adapter->hw);
2145 		reg_rctl |= E1000_RCTL_RST;
2146 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2147 		msec_delay(5);
2148 	}
2149 
2150 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2151 		if (ifma->ifma_addr->sa_family != AF_LINK)
2152 			continue;
2153 
2154 		if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2155 			break;
2156 
2157 		bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2158 		    &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2159 		mcnt++;
2160 	}
2161 
2162 	if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2163 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2164 		reg_rctl |= E1000_RCTL_MPE;
2165 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2166 	} else {
2167 		e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2168 	}
2169 
2170 	if (adapter->hw.mac.type == e1000_82542 &&
2171 	    adapter->hw.revision_id == E1000_REVISION_2) {
2172 		reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2173 		reg_rctl &= ~E1000_RCTL_RST;
2174 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2175 		msec_delay(5);
2176 		if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2177 			e1000_pci_set_mwi(&adapter->hw);
2178 	}
2179 }
2180 
2181 /*
2182  * This routine checks for link status and updates statistics.
2183  */
2184 static void
2185 em_timer(void *xsc)
2186 {
2187 	struct adapter *adapter = xsc;
2188 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2189 
2190 	lwkt_serialize_enter(ifp->if_serializer);
2191 
2192 	em_update_link_status(adapter);
2193 	em_update_stats(adapter);
2194 
2195 	/* Reset LAA into RAR[0] on 82571 */
2196 	if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2197 		e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2198 
2199 	if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2200 		em_print_hw_stats(adapter);
2201 
2202 	em_smartspeed(adapter);
2203 
2204 	callout_reset(&adapter->timer, hz, em_timer, adapter);
2205 
2206 	lwkt_serialize_exit(ifp->if_serializer);
2207 }
2208 
2209 static void
2210 em_update_link_status(struct adapter *adapter)
2211 {
2212 	struct e1000_hw *hw = &adapter->hw;
2213 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2214 	device_t dev = adapter->dev;
2215 	uint32_t link_check = 0;
2216 
2217 	/* Get the cached link value or read phy for real */
2218 	switch (hw->phy.media_type) {
2219 	case e1000_media_type_copper:
2220 		if (hw->mac.get_link_status) {
2221 			if (hw->mac.type == e1000_pch_spt)
2222 				msec_delay(50);
2223 			/* Do the work to read phy */
2224 			e1000_check_for_link(hw);
2225 			link_check = !hw->mac.get_link_status;
2226 			if (link_check) /* ESB2 fix */
2227 				e1000_cfg_on_link_up(hw);
2228 		} else {
2229 			link_check = TRUE;
2230 		}
2231 		break;
2232 
2233 	case e1000_media_type_fiber:
2234 		e1000_check_for_link(hw);
2235 		link_check =
2236 			E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2237 		break;
2238 
2239 	case e1000_media_type_internal_serdes:
2240 		e1000_check_for_link(hw);
2241 		link_check = adapter->hw.mac.serdes_has_link;
2242 		break;
2243 
2244 	case e1000_media_type_unknown:
2245 	default:
2246 		break;
2247 	}
2248 
2249 	/* Now check for a transition */
2250 	if (link_check && adapter->link_active == 0) {
2251 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2252 		    &adapter->link_duplex);
2253 
2254 		/*
2255 		 * Check if we should enable/disable SPEED_MODE bit on
2256 		 * 82571/82572
2257 		 */
2258 		if (adapter->link_speed != SPEED_1000 &&
2259 		    (hw->mac.type == e1000_82571 ||
2260 		     hw->mac.type == e1000_82572)) {
2261 			int tarc0;
2262 
2263 			tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2264 			tarc0 &= ~TARC_SPEED_MODE_BIT;
2265 			E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2266 		}
2267 		if (bootverbose) {
2268 			char flowctrl[IFM_ETH_FC_STRLEN];
2269 
2270 			e1000_fc2str(hw->fc.current_mode, flowctrl,
2271 			    sizeof(flowctrl));
2272 			device_printf(dev, "Link is up %d Mbps %s, "
2273 			    "Flow control: %s\n",
2274 			    adapter->link_speed,
2275 			    (adapter->link_duplex == FULL_DUPLEX) ?
2276 			    "Full Duplex" : "Half Duplex",
2277 			    flowctrl);
2278 		}
2279 		if (adapter->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
2280 			e1000_force_flowctrl(hw, adapter->ifm_flowctrl);
2281 		adapter->link_active = 1;
2282 		adapter->smartspeed = 0;
2283 		ifp->if_baudrate = adapter->link_speed * 1000000;
2284 		ifp->if_link_state = LINK_STATE_UP;
2285 		if_link_state_change(ifp);
2286 	} else if (!link_check && adapter->link_active == 1) {
2287 		ifp->if_baudrate = adapter->link_speed = 0;
2288 		adapter->link_duplex = 0;
2289 		if (bootverbose)
2290 			device_printf(dev, "Link is Down\n");
2291 		adapter->link_active = 0;
2292 #if 0
2293 		/* Link down, disable watchdog */
2294 		if->if_timer = 0;
2295 #endif
2296 		ifp->if_link_state = LINK_STATE_DOWN;
2297 		if_link_state_change(ifp);
2298 	}
2299 }
2300 
2301 static void
2302 em_stop(struct adapter *adapter)
2303 {
2304 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2305 	int i;
2306 
2307 	ASSERT_SERIALIZED(ifp->if_serializer);
2308 
2309 	em_disable_intr(adapter);
2310 
2311 	callout_stop(&adapter->timer);
2312 	callout_stop(&adapter->tx_fifo_timer);
2313 
2314 	ifp->if_flags &= ~IFF_RUNNING;
2315 	ifq_clr_oactive(&ifp->if_snd);
2316 	ifp->if_timer = 0;
2317 	adapter->tx_running = 0;
2318 	callout_stop(&adapter->tx_gc_timer);
2319 
2320 	/* I219 needs some special flushing to avoid hangs */
2321 	if (adapter->hw.mac.type == e1000_pch_spt)
2322 		em_flush_txrx_ring(adapter);
2323 
2324 	e1000_reset_hw(&adapter->hw);
2325 	if (adapter->hw.mac.type >= e1000_82544)
2326 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2327 
2328 	for (i = 0; i < adapter->num_tx_desc; i++) {
2329 		struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2330 
2331 		if (tx_buffer->m_head != NULL)
2332 			em_free_txbuffer(adapter, tx_buffer);
2333 	}
2334 
2335 	for (i = 0; i < adapter->num_rx_desc; i++) {
2336 		struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2337 
2338 		if (rx_buffer->m_head != NULL) {
2339 			bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2340 			m_freem(rx_buffer->m_head);
2341 			rx_buffer->m_head = NULL;
2342 		}
2343 	}
2344 
2345 	if (adapter->fmp != NULL)
2346 		m_freem(adapter->fmp);
2347 	adapter->fmp = NULL;
2348 	adapter->lmp = NULL;
2349 
2350 	adapter->csum_flags = 0;
2351 	adapter->csum_lhlen = 0;
2352 	adapter->csum_iphlen = 0;
2353 	adapter->csum_thlen = 0;
2354 	adapter->csum_mss = 0;
2355 	adapter->csum_pktlen = 0;
2356 
2357 	adapter->tx_dd_head = 0;
2358 	adapter->tx_dd_tail = 0;
2359 	adapter->tx_nsegs = 0;
2360 }
2361 
2362 static int
2363 em_get_hw_info(struct adapter *adapter)
2364 {
2365 	device_t dev = adapter->dev;
2366 
2367 	/* Save off the information about this board */
2368 	adapter->hw.vendor_id = pci_get_vendor(dev);
2369 	adapter->hw.device_id = pci_get_device(dev);
2370 	adapter->hw.revision_id = pci_get_revid(dev);
2371 	adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2372 	adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2373 
2374 	/* Do Shared Code Init and Setup */
2375 	if (e1000_set_mac_type(&adapter->hw))
2376 		return ENXIO;
2377 	return 0;
2378 }
2379 
2380 static int
2381 em_alloc_pci_res(struct adapter *adapter)
2382 {
2383 	device_t dev = adapter->dev;
2384 	u_int intr_flags;
2385 	int val, rid, msi_enable;
2386 
2387 	/* Enable bus mastering */
2388 	pci_enable_busmaster(dev);
2389 
2390 	adapter->memory_rid = EM_BAR_MEM;
2391 	adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2392 				&adapter->memory_rid, RF_ACTIVE);
2393 	if (adapter->memory == NULL) {
2394 		device_printf(dev, "Unable to allocate bus resource: memory\n");
2395 		return (ENXIO);
2396 	}
2397 	adapter->osdep.mem_bus_space_tag =
2398 	    rman_get_bustag(adapter->memory);
2399 	adapter->osdep.mem_bus_space_handle =
2400 	    rman_get_bushandle(adapter->memory);
2401 
2402 	/* XXX This is quite goofy, it is not actually used */
2403 	adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2404 
2405 	/* Only older adapters use IO mapping */
2406 	if (adapter->hw.mac.type > e1000_82543 &&
2407 	    adapter->hw.mac.type < e1000_82571) {
2408 		/* Figure our where our IO BAR is ? */
2409 		for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2410 			val = pci_read_config(dev, rid, 4);
2411 			if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2412 				adapter->io_rid = rid;
2413 				break;
2414 			}
2415 			rid += 4;
2416 			/* check for 64bit BAR */
2417 			if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2418 				rid += 4;
2419 		}
2420 		if (rid >= PCIR_CARDBUSCIS) {
2421 			device_printf(dev, "Unable to locate IO BAR\n");
2422 			return (ENXIO);
2423 		}
2424 		adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2425 					&adapter->io_rid, RF_ACTIVE);
2426 		if (adapter->ioport == NULL) {
2427 			device_printf(dev, "Unable to allocate bus resource: "
2428 			    "ioport\n");
2429 			return (ENXIO);
2430 		}
2431 		adapter->hw.io_base = 0;
2432 		adapter->osdep.io_bus_space_tag =
2433 		    rman_get_bustag(adapter->ioport);
2434 		adapter->osdep.io_bus_space_handle =
2435 		    rman_get_bushandle(adapter->ioport);
2436 	}
2437 
2438 	/*
2439 	 * Don't enable MSI-X on 82574, see:
2440 	 * 82574 specification update errata #15
2441 	 *
2442 	 * Don't enable MSI on PCI/PCI-X chips, see:
2443 	 * 82540 specification update errata #6
2444 	 * 82545 specification update errata #4
2445 	 *
2446 	 * Don't enable MSI on 82571/82572, see:
2447 	 * 82571/82572 specification update errata #63
2448 	 */
2449 	msi_enable = em_msi_enable;
2450 	if (msi_enable &&
2451 	    ((adapter->flags & EM_FLAG_GEN2) == 0 ||
2452 	     adapter->hw.mac.type == e1000_82571 ||
2453 	     adapter->hw.mac.type == e1000_82572))
2454 		msi_enable = 0;
2455 again:
2456 	adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2457 	    &adapter->intr_rid, &intr_flags);
2458 
2459 	if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2460 		int unshared;
2461 
2462 		unshared = device_getenv_int(dev, "irq.unshared", 0);
2463 		if (!unshared) {
2464 			adapter->flags |= EM_FLAG_SHARED_INTR;
2465 			if (bootverbose)
2466 				device_printf(dev, "IRQ shared\n");
2467 		} else {
2468 			intr_flags &= ~RF_SHAREABLE;
2469 			if (bootverbose)
2470 				device_printf(dev, "IRQ unshared\n");
2471 		}
2472 	}
2473 
2474 	adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2475 	    &adapter->intr_rid, intr_flags);
2476 	if (adapter->intr_res == NULL) {
2477 		device_printf(dev, "Unable to allocate bus resource: %s\n",
2478 		    adapter->intr_type == PCI_INTR_TYPE_MSI ?
2479 		    "MSI" : "legacy intr");
2480 		if (!msi_enable) {
2481 			/* Retry with MSI. */
2482 			msi_enable = 1;
2483 			adapter->flags &= ~EM_FLAG_SHARED_INTR;
2484 			goto again;
2485 		}
2486 		return (ENXIO);
2487 	}
2488 
2489 	adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2490 	adapter->hw.back = &adapter->osdep;
2491 	return (0);
2492 }
2493 
2494 static void
2495 em_free_pci_res(struct adapter *adapter)
2496 {
2497 	device_t dev = adapter->dev;
2498 
2499 	if (adapter->intr_res != NULL) {
2500 		bus_release_resource(dev, SYS_RES_IRQ,
2501 		    adapter->intr_rid, adapter->intr_res);
2502 	}
2503 
2504 	if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2505 		pci_release_msi(dev);
2506 
2507 	if (adapter->memory != NULL) {
2508 		bus_release_resource(dev, SYS_RES_MEMORY,
2509 		    adapter->memory_rid, adapter->memory);
2510 	}
2511 
2512 	if (adapter->flash != NULL) {
2513 		bus_release_resource(dev, SYS_RES_MEMORY,
2514 		    adapter->flash_rid, adapter->flash);
2515 	}
2516 
2517 	if (adapter->ioport != NULL) {
2518 		bus_release_resource(dev, SYS_RES_IOPORT,
2519 		    adapter->io_rid, adapter->ioport);
2520 	}
2521 }
2522 
2523 static int
2524 em_reset(struct adapter *adapter)
2525 {
2526 	device_t dev = adapter->dev;
2527 	uint16_t rx_buffer_size;
2528 	uint32_t pba;
2529 
2530 	/* When hardware is reset, fifo_head is also reset */
2531 	adapter->tx_fifo_head = 0;
2532 
2533 	/* Set up smart power down as default off on newer adapters. */
2534 	if (!em_smart_pwr_down &&
2535 	    (adapter->hw.mac.type == e1000_82571 ||
2536 	     adapter->hw.mac.type == e1000_82572)) {
2537 		uint16_t phy_tmp = 0;
2538 
2539 		/* Speed up time to link by disabling smart power down. */
2540 		e1000_read_phy_reg(&adapter->hw,
2541 		    IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2542 		phy_tmp &= ~IGP02E1000_PM_SPD;
2543 		e1000_write_phy_reg(&adapter->hw,
2544 		    IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2545 	}
2546 
2547 	/*
2548 	 * Packet Buffer Allocation (PBA)
2549 	 * Writing PBA sets the receive portion of the buffer
2550 	 * the remainder is used for the transmit buffer.
2551 	 *
2552 	 * Devices before the 82547 had a Packet Buffer of 64K.
2553 	 *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2554 	 * After the 82547 the buffer was reduced to 40K.
2555 	 *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2556 	 *   Note: default does not leave enough room for Jumbo Frame >10k.
2557 	 */
2558 	switch (adapter->hw.mac.type) {
2559 	case e1000_82547:
2560 	case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2561 		if (adapter->hw.mac.max_frame_size > 8192)
2562 			pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2563 		else
2564 			pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2565 		adapter->tx_fifo_head = 0;
2566 		adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2567 		adapter->tx_fifo_size =
2568 		    (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2569 		break;
2570 
2571 	/* Total Packet Buffer on these is 48K */
2572 	case e1000_82571:
2573 	case e1000_82572:
2574 	case e1000_80003es2lan:
2575 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2576 		break;
2577 
2578 	case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2579 		pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2580 		break;
2581 
2582 	case e1000_82574:
2583 	case e1000_82583:
2584 		pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2585 		break;
2586 
2587 	case e1000_ich8lan:
2588 		pba = E1000_PBA_8K;
2589 		break;
2590 
2591 	case e1000_ich9lan:
2592 	case e1000_ich10lan:
2593 #define E1000_PBA_10K	0x000A
2594 		pba = E1000_PBA_10K;
2595 		break;
2596 
2597 	case e1000_pchlan:
2598 	case e1000_pch2lan:
2599 	case e1000_pch_lpt:
2600 	case e1000_pch_spt:
2601 		pba = E1000_PBA_26K;
2602 		break;
2603 
2604 	default:
2605 		/* Devices before 82547 had a Packet Buffer of 64K.   */
2606 		if (adapter->hw.mac.max_frame_size > 8192)
2607 			pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2608 		else
2609 			pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2610 	}
2611 	E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2612 
2613 	/*
2614 	 * These parameters control the automatic generation (Tx) and
2615 	 * response (Rx) to Ethernet PAUSE frames.
2616 	 * - High water mark should allow for at least two frames to be
2617 	 *   received after sending an XOFF.
2618 	 * - Low water mark works best when it is very near the high water mark.
2619 	 *   This allows the receiver to restart by sending XON when it has
2620 	 *   drained a bit. Here we use an arbitary value of 1500 which will
2621 	 *   restart after one full frame is pulled from the buffer. There
2622 	 *   could be several smaller frames in the buffer and if so they will
2623 	 *   not trigger the XON until their total number reduces the buffer
2624 	 *   by 1500.
2625 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2626 	 */
2627 	rx_buffer_size =
2628 		(E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2629 
2630 	adapter->hw.fc.high_water = rx_buffer_size -
2631 	    roundup2(adapter->hw.mac.max_frame_size, 1024);
2632 	adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2633 
2634 	if (adapter->hw.mac.type == e1000_80003es2lan)
2635 		adapter->hw.fc.pause_time = 0xFFFF;
2636 	else
2637 		adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2638 
2639 	adapter->hw.fc.send_xon = TRUE;
2640 
2641 	adapter->hw.fc.requested_mode = e1000_ifmedia2fc(adapter->ifm_flowctrl);
2642 
2643 	/*
2644 	 * Device specific overrides/settings
2645 	 */
2646 	switch (adapter->hw.mac.type) {
2647 	case e1000_pchlan:
2648 		KASSERT(adapter->hw.fc.requested_mode == e1000_fc_rx_pause ||
2649 		    adapter->hw.fc.requested_mode == e1000_fc_none,
2650 		    ("unsupported flow control on PCH %d",
2651 		     adapter->hw.fc.requested_mode));
2652 		adapter->hw.fc.pause_time = 0xFFFF; /* override */
2653 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2654 			adapter->hw.fc.high_water = 0x3500;
2655 			adapter->hw.fc.low_water = 0x1500;
2656 		} else {
2657 			adapter->hw.fc.high_water = 0x5000;
2658 			adapter->hw.fc.low_water = 0x3000;
2659 		}
2660 		adapter->hw.fc.refresh_time = 0x1000;
2661 		break;
2662 
2663 	case e1000_pch2lan:
2664 	case e1000_pch_lpt:
2665 	case e1000_pch_spt:
2666 		adapter->hw.fc.high_water = 0x5C20;
2667 		adapter->hw.fc.low_water = 0x5048;
2668 		adapter->hw.fc.pause_time = 0x0650;
2669 		adapter->hw.fc.refresh_time = 0x0400;
2670 		/* Jumbos need adjusted PBA */
2671 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2672 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2673 		else
2674 			E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2675 		break;
2676 
2677 	case e1000_ich9lan:
2678 	case e1000_ich10lan:
2679 		if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2680 			adapter->hw.fc.high_water = 0x2800;
2681 			adapter->hw.fc.low_water =
2682 			    adapter->hw.fc.high_water - 8;
2683 			break;
2684 		}
2685 		/* FALL THROUGH */
2686 	default:
2687 		if (adapter->hw.mac.type == e1000_80003es2lan)
2688 			adapter->hw.fc.pause_time = 0xFFFF;
2689 		break;
2690 	}
2691 
2692 	/* I219 needs some special flushing to avoid hangs */
2693 	if (adapter->hw.mac.type == e1000_pch_spt)
2694 		em_flush_txrx_ring(adapter);
2695 
2696 	/* Issue a global reset */
2697 	e1000_reset_hw(&adapter->hw);
2698 	if (adapter->hw.mac.type >= e1000_82544)
2699 		E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2700 	em_disable_aspm(adapter);
2701 
2702 	if (e1000_init_hw(&adapter->hw) < 0) {
2703 		device_printf(dev, "Hardware Initialization Failed\n");
2704 		return (EIO);
2705 	}
2706 
2707 	E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2708 	e1000_get_phy_info(&adapter->hw);
2709 	e1000_check_for_link(&adapter->hw);
2710 
2711 	return (0);
2712 }
2713 
2714 static void
2715 em_setup_ifp(struct adapter *adapter)
2716 {
2717 	struct ifnet *ifp = &adapter->arpcom.ac_if;
2718 
2719 	if_initname(ifp, device_get_name(adapter->dev),
2720 		    device_get_unit(adapter->dev));
2721 	ifp->if_softc = adapter;
2722 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2723 	ifp->if_init =  em_init;
2724 	ifp->if_ioctl = em_ioctl;
2725 	ifp->if_start = em_start;
2726 #ifdef IFPOLL_ENABLE
2727 	ifp->if_npoll = em_npoll;
2728 #endif
2729 	ifp->if_watchdog = em_watchdog;
2730 	ifp->if_nmbclusters = adapter->num_rx_desc;
2731 	ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2732 	ifq_set_ready(&ifp->if_snd);
2733 
2734 	ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2735 
2736 	ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2737 	if (adapter->hw.mac.type >= e1000_82543)
2738 		ifp->if_capabilities |= IFCAP_HWCSUM;
2739 	if (adapter->flags & EM_FLAG_TSO)
2740 		ifp->if_capabilities |= IFCAP_TSO;
2741 	ifp->if_capenable = ifp->if_capabilities;
2742 
2743 	if (ifp->if_capenable & IFCAP_TXCSUM)
2744 		ifp->if_hwassist |= EM_CSUM_FEATURES;
2745 	if (ifp->if_capenable & IFCAP_TSO)
2746 		ifp->if_hwassist |= CSUM_TSO;
2747 
2748 	/*
2749 	 * Tell the upper layer(s) we support long frames.
2750 	 */
2751 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2752 
2753 	/*
2754 	 * Specify the media types supported by this adapter and register
2755 	 * callbacks to update media and link information
2756 	 */
2757 	if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2758 	    adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2759 		u_char fiber_type = IFM_1000_SX; /* default type */
2760 
2761 		if (adapter->hw.mac.type == e1000_82545)
2762 			fiber_type = IFM_1000_LX;
2763 		ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX,
2764 			    0, NULL);
2765 	} else {
2766 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2767 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2768 			    0, NULL);
2769 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2770 			    0, NULL);
2771 		ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2772 			    0, NULL);
2773 		if (adapter->hw.phy.type != e1000_phy_ife) {
2774 			ifmedia_add(&adapter->media,
2775 				IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2776 		}
2777 	}
2778 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2779 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO |
2780 	    adapter->ifm_flowctrl);
2781 }
2782 
2783 
2784 /*
2785  * Workaround for SmartSpeed on 82541 and 82547 controllers
2786  */
2787 static void
2788 em_smartspeed(struct adapter *adapter)
2789 {
2790 	uint16_t phy_tmp;
2791 
2792 	if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2793 	    adapter->hw.mac.autoneg == 0 ||
2794 	    (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2795 		return;
2796 
2797 	if (adapter->smartspeed == 0) {
2798 		/*
2799 		 * If Master/Slave config fault is asserted twice,
2800 		 * we assume back-to-back
2801 		 */
2802 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2803 		if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2804 			return;
2805 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2806 		if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2807 			e1000_read_phy_reg(&adapter->hw,
2808 			    PHY_1000T_CTRL, &phy_tmp);
2809 			if (phy_tmp & CR_1000T_MS_ENABLE) {
2810 				phy_tmp &= ~CR_1000T_MS_ENABLE;
2811 				e1000_write_phy_reg(&adapter->hw,
2812 				    PHY_1000T_CTRL, phy_tmp);
2813 				adapter->smartspeed++;
2814 				if (adapter->hw.mac.autoneg &&
2815 				    !e1000_phy_setup_autoneg(&adapter->hw) &&
2816 				    !e1000_read_phy_reg(&adapter->hw,
2817 				     PHY_CONTROL, &phy_tmp)) {
2818 					phy_tmp |= MII_CR_AUTO_NEG_EN |
2819 						   MII_CR_RESTART_AUTO_NEG;
2820 					e1000_write_phy_reg(&adapter->hw,
2821 					    PHY_CONTROL, phy_tmp);
2822 				}
2823 			}
2824 		}
2825 		return;
2826 	} else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2827 		/* If still no link, perhaps using 2/3 pair cable */
2828 		e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2829 		phy_tmp |= CR_1000T_MS_ENABLE;
2830 		e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2831 		if (adapter->hw.mac.autoneg &&
2832 		    !e1000_phy_setup_autoneg(&adapter->hw) &&
2833 		    !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2834 			phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2835 			e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2836 		}
2837 	}
2838 
2839 	/* Restart process after EM_SMARTSPEED_MAX iterations */
2840 	if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2841 		adapter->smartspeed = 0;
2842 }
2843 
2844 static int
2845 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2846 	      struct em_dma_alloc *dma)
2847 {
2848 	dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2849 				EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2850 				&dma->dma_tag, &dma->dma_map,
2851 				&dma->dma_paddr);
2852 	if (dma->dma_vaddr == NULL)
2853 		return ENOMEM;
2854 	else
2855 		return 0;
2856 }
2857 
2858 static void
2859 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2860 {
2861 	if (dma->dma_tag == NULL)
2862 		return;
2863 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2864 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2865 	bus_dma_tag_destroy(dma->dma_tag);
2866 }
2867 
2868 static int
2869 em_create_tx_ring(struct adapter *adapter)
2870 {
2871 	device_t dev = adapter->dev;
2872 	struct em_buffer *tx_buffer;
2873 	int error, i;
2874 
2875 	adapter->tx_buffer_area =
2876 		kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2877 			M_DEVBUF, M_WAITOK | M_ZERO);
2878 
2879 	/*
2880 	 * Create DMA tags for tx buffers
2881 	 */
2882 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2883 			1, 0,			/* alignment, bounds */
2884 			BUS_SPACE_MAXADDR,	/* lowaddr */
2885 			BUS_SPACE_MAXADDR,	/* highaddr */
2886 			NULL, NULL,		/* filter, filterarg */
2887 			EM_TSO_SIZE,		/* maxsize */
2888 			EM_MAX_SCATTER,		/* nsegments */
2889 			PAGE_SIZE,		/* maxsegsize */
2890 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2891 			BUS_DMA_ONEBPAGE,	/* flags */
2892 			&adapter->txtag);
2893 	if (error) {
2894 		device_printf(dev, "Unable to allocate TX DMA tag\n");
2895 		kfree(adapter->tx_buffer_area, M_DEVBUF);
2896 		adapter->tx_buffer_area = NULL;
2897 		return error;
2898 	}
2899 
2900 	/*
2901 	 * Create DMA maps for tx buffers
2902 	 */
2903 	for (i = 0; i < adapter->num_tx_desc; i++) {
2904 		tx_buffer = &adapter->tx_buffer_area[i];
2905 
2906 		error = bus_dmamap_create(adapter->txtag,
2907 					  BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2908 					  &tx_buffer->map);
2909 		if (error) {
2910 			device_printf(dev, "Unable to create TX DMA map\n");
2911 			em_destroy_tx_ring(adapter, i);
2912 			return error;
2913 		}
2914 	}
2915 	return (0);
2916 }
2917 
2918 static void
2919 em_init_tx_ring(struct adapter *adapter)
2920 {
2921 	/* Clear the old ring contents */
2922 	bzero(adapter->tx_desc_base,
2923 	    (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2924 
2925 	/* Reset state */
2926 	adapter->next_avail_tx_desc = 0;
2927 	adapter->next_tx_to_clean = 0;
2928 	adapter->num_tx_desc_avail = adapter->num_tx_desc;
2929 	adapter->tx_nmbuf = 0;
2930 	adapter->tx_running = 0;
2931 }
2932 
2933 static void
2934 em_init_tx_unit(struct adapter *adapter)
2935 {
2936 	uint32_t tctl, tarc, tipg = 0;
2937 	uint64_t bus_addr;
2938 
2939 	/* Setup the Base and Length of the Tx Descriptor Ring */
2940 	bus_addr = adapter->txdma.dma_paddr;
2941 	E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2942 	    adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2943 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2944 	    (uint32_t)(bus_addr >> 32));
2945 	E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2946 	    (uint32_t)bus_addr);
2947 	/* Setup the HW Tx Head and Tail descriptor pointers */
2948 	E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2949 	E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2950 	if (adapter->flags & EM_FLAG_GEN2) {
2951 		uint32_t txdctl = 0;
2952 
2953 		txdctl |= 0x1f;		/* PTHRESH */
2954 		txdctl |= 1 << 8;	/* HTHRESH */
2955 		txdctl |= 1 << 16;	/* WTHRESH */
2956 		txdctl |= 1 << 22;	/* Reserved bit 22 must always be 1 */
2957 		txdctl |= E1000_TXDCTL_GRAN;
2958 		txdctl |= 1 << 25;	/* LWTHRESH */
2959 
2960 		E1000_WRITE_REG(&adapter->hw, E1000_TXDCTL(0), txdctl);
2961 	}
2962 
2963 	/* Set the default values for the Tx Inter Packet Gap timer */
2964 	switch (adapter->hw.mac.type) {
2965 	case e1000_82542:
2966 		tipg = DEFAULT_82542_TIPG_IPGT;
2967 		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2968 		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2969 		break;
2970 
2971 	case e1000_80003es2lan:
2972 		tipg = DEFAULT_82543_TIPG_IPGR1;
2973 		tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2974 		    E1000_TIPG_IPGR2_SHIFT;
2975 		break;
2976 
2977 	default:
2978 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2979 		    adapter->hw.phy.media_type ==
2980 		    e1000_media_type_internal_serdes)
2981 			tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2982 		else
2983 			tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2984 		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2985 		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2986 		break;
2987 	}
2988 
2989 	E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2990 
2991 	/* NOTE: 0 is not allowed for TIDV */
2992 	E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2993 	if(adapter->hw.mac.type >= e1000_82540)
2994 		E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2995 
2996 	if (adapter->hw.mac.type == e1000_82571 ||
2997 	    adapter->hw.mac.type == e1000_82572) {
2998 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2999 		tarc |= TARC_SPEED_MODE_BIT;
3000 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3001 	} else if (adapter->hw.mac.type == e1000_80003es2lan) {
3002 		/* errata: program both queues to unweighted RR */
3003 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3004 		tarc |= 1;
3005 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3006 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3007 		tarc |= 1;
3008 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3009 	} else if (adapter->hw.mac.type == e1000_82574) {
3010 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3011 		tarc |= TARC_ERRATA_BIT;
3012 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
3013 	}
3014 
3015 	/* Program the Transmit Control Register */
3016 	tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
3017 	tctl &= ~E1000_TCTL_CT;
3018 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3019 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3020 
3021 	if (adapter->hw.mac.type >= e1000_82571)
3022 		tctl |= E1000_TCTL_MULR;
3023 
3024 	/* This write will effectively turn on the transmit unit. */
3025 	E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
3026 
3027 	if (adapter->hw.mac.type == e1000_82571 ||
3028 	    adapter->hw.mac.type == e1000_82572 ||
3029 	    adapter->hw.mac.type == e1000_80003es2lan) {
3030 		/* Bit 28 of TARC1 must be cleared when MULR is enabled */
3031 		tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
3032 		tarc &= ~(1 << 28);
3033 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
3034 	} else if (adapter->hw.mac.type == e1000_pch_spt) {
3035 		uint32_t reg;
3036 
3037 		reg = E1000_READ_REG(&adapter->hw, E1000_IOSFPC);
3038 		reg |= E1000_RCTL_RDMTS_HEX;
3039 		E1000_WRITE_REG(&adapter->hw, E1000_IOSFPC, reg);
3040 		reg = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
3041 		reg |= E1000_TARC0_CB_MULTIQ_3_REQ;
3042 		E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), reg);
3043 	}
3044 }
3045 
3046 static void
3047 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
3048 {
3049 	struct em_buffer *tx_buffer;
3050 	int i;
3051 
3052 	if (adapter->tx_buffer_area == NULL)
3053 		return;
3054 
3055 	for (i = 0; i < ndesc; i++) {
3056 		tx_buffer = &adapter->tx_buffer_area[i];
3057 
3058 		KKASSERT(tx_buffer->m_head == NULL);
3059 		bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
3060 	}
3061 	bus_dma_tag_destroy(adapter->txtag);
3062 
3063 	kfree(adapter->tx_buffer_area, M_DEVBUF);
3064 	adapter->tx_buffer_area = NULL;
3065 }
3066 
3067 /*
3068  * The offload context needs to be set when we transfer the first
3069  * packet of a particular protocol (TCP/UDP).  This routine has been
3070  * enhanced to deal with inserted VLAN headers.
3071  *
3072  * If the new packet's ether header length, ip header length and
3073  * csum offloading type are same as the previous packet, we should
3074  * avoid allocating a new csum context descriptor; mainly to take
3075  * advantage of the pipeline effect of the TX data read request.
3076  *
3077  * This function returns number of TX descrptors allocated for
3078  * csum context.
3079  */
3080 static int
3081 em_txcsum(struct adapter *adapter, struct mbuf *mp,
3082 	  uint32_t *txd_upper, uint32_t *txd_lower)
3083 {
3084 	struct e1000_context_desc *TXD;
3085 	int curr_txd, ehdrlen, csum_flags;
3086 	uint32_t cmd, hdr_len, ip_hlen;
3087 
3088 	csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
3089 	ip_hlen = mp->m_pkthdr.csum_iphlen;
3090 	ehdrlen = mp->m_pkthdr.csum_lhlen;
3091 
3092 	if (adapter->csum_lhlen == ehdrlen &&
3093 	    adapter->csum_iphlen == ip_hlen &&
3094 	    adapter->csum_flags == csum_flags) {
3095 		/*
3096 		 * Same csum offload context as the previous packets;
3097 		 * just return.
3098 		 */
3099 		*txd_upper = adapter->csum_txd_upper;
3100 		*txd_lower = adapter->csum_txd_lower;
3101 		return 0;
3102 	}
3103 
3104 	/*
3105 	 * Setup a new csum offload context.
3106 	 */
3107 
3108 	curr_txd = adapter->next_avail_tx_desc;
3109 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
3110 
3111 	cmd = 0;
3112 
3113 	/* Setup of IP header checksum. */
3114 	if (csum_flags & CSUM_IP) {
3115 		/*
3116 		 * Start offset for header checksum calculation.
3117 		 * End offset for header checksum calculation.
3118 		 * Offset of place to put the checksum.
3119 		 */
3120 		TXD->lower_setup.ip_fields.ipcss = ehdrlen;
3121 		TXD->lower_setup.ip_fields.ipcse =
3122 		    htole16(ehdrlen + ip_hlen - 1);
3123 		TXD->lower_setup.ip_fields.ipcso =
3124 		    ehdrlen + offsetof(struct ip, ip_sum);
3125 		cmd |= E1000_TXD_CMD_IP;
3126 		*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3127 	}
3128 	hdr_len = ehdrlen + ip_hlen;
3129 
3130 	if (csum_flags & CSUM_TCP) {
3131 		/*
3132 		 * Start offset for payload checksum calculation.
3133 		 * End offset for payload checksum calculation.
3134 		 * Offset of place to put the checksum.
3135 		 */
3136 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3137 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3138 		TXD->upper_setup.tcp_fields.tucso =
3139 		    hdr_len + offsetof(struct tcphdr, th_sum);
3140 		cmd |= E1000_TXD_CMD_TCP;
3141 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3142 	} else if (csum_flags & CSUM_UDP) {
3143 		/*
3144 		 * Start offset for header checksum calculation.
3145 		 * End offset for header checksum calculation.
3146 		 * Offset of place to put the checksum.
3147 		 */
3148 		TXD->upper_setup.tcp_fields.tucss = hdr_len;
3149 		TXD->upper_setup.tcp_fields.tucse = htole16(0);
3150 		TXD->upper_setup.tcp_fields.tucso =
3151 		    hdr_len + offsetof(struct udphdr, uh_sum);
3152 		*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3153 	}
3154 
3155 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
3156 		     E1000_TXD_DTYP_D;		/* Data descr */
3157 
3158 	/* Save the information for this csum offloading context */
3159 	adapter->csum_lhlen = ehdrlen;
3160 	adapter->csum_iphlen = ip_hlen;
3161 	adapter->csum_flags = csum_flags;
3162 	adapter->csum_txd_upper = *txd_upper;
3163 	adapter->csum_txd_lower = *txd_lower;
3164 
3165 	TXD->tcp_seg_setup.data = htole32(0);
3166 	TXD->cmd_and_length =
3167 	    htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
3168 
3169 	if (++curr_txd == adapter->num_tx_desc)
3170 		curr_txd = 0;
3171 
3172 	KKASSERT(adapter->num_tx_desc_avail > 0);
3173 	adapter->num_tx_desc_avail--;
3174 
3175 	adapter->next_avail_tx_desc = curr_txd;
3176 	return 1;
3177 }
3178 
3179 static void
3180 em_txeof(struct adapter *adapter)
3181 {
3182 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3183 	struct em_buffer *tx_buffer;
3184 	int first, num_avail;
3185 
3186 	if (adapter->tx_dd_head == adapter->tx_dd_tail)
3187 		return;
3188 
3189 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3190 		return;
3191 
3192 	num_avail = adapter->num_tx_desc_avail;
3193 	first = adapter->next_tx_to_clean;
3194 
3195 	while (adapter->tx_dd_head != adapter->tx_dd_tail) {
3196 		struct e1000_tx_desc *tx_desc;
3197 		int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3198 
3199 		tx_desc = &adapter->tx_desc_base[dd_idx];
3200 		if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
3201 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3202 
3203 			if (++dd_idx == adapter->num_tx_desc)
3204 				dd_idx = 0;
3205 
3206 			while (first != dd_idx) {
3207 				logif(pkt_txclean);
3208 
3209 				KKASSERT(num_avail < adapter->num_tx_desc);
3210 				num_avail++;
3211 
3212 				tx_buffer = &adapter->tx_buffer_area[first];
3213 				if (tx_buffer->m_head != NULL)
3214 					em_free_txbuffer(adapter, tx_buffer);
3215 
3216 				if (++first == adapter->num_tx_desc)
3217 					first = 0;
3218 			}
3219 		} else {
3220 			break;
3221 		}
3222 	}
3223 	adapter->next_tx_to_clean = first;
3224 	adapter->num_tx_desc_avail = num_avail;
3225 
3226 	if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3227 		adapter->tx_dd_head = 0;
3228 		adapter->tx_dd_tail = 0;
3229 	}
3230 
3231 	if (!EM_IS_OACTIVE(adapter)) {
3232 		ifq_clr_oactive(&ifp->if_snd);
3233 
3234 		/* All clean, turn off the timer */
3235 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3236 			ifp->if_timer = 0;
3237 	}
3238 	adapter->tx_running = EM_TX_RUNNING;
3239 }
3240 
3241 static void
3242 em_tx_collect(struct adapter *adapter, boolean_t gc)
3243 {
3244 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3245 	struct em_buffer *tx_buffer;
3246 	int tdh, first, num_avail, dd_idx = -1;
3247 
3248 	if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3249 		return;
3250 
3251 	tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
3252 	if (tdh == adapter->next_tx_to_clean) {
3253 		if (gc && adapter->tx_nmbuf > 0)
3254 			adapter->tx_running = EM_TX_RUNNING;
3255 		return;
3256 	}
3257 	if (gc)
3258 		adapter->tx_gc++;
3259 
3260 	if (adapter->tx_dd_head != adapter->tx_dd_tail)
3261 		dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3262 
3263 	num_avail = adapter->num_tx_desc_avail;
3264 	first = adapter->next_tx_to_clean;
3265 
3266 	while (first != tdh) {
3267 		logif(pkt_txclean);
3268 
3269 		KKASSERT(num_avail < adapter->num_tx_desc);
3270 		num_avail++;
3271 
3272 		tx_buffer = &adapter->tx_buffer_area[first];
3273 		if (tx_buffer->m_head != NULL)
3274 			em_free_txbuffer(adapter, tx_buffer);
3275 
3276 		if (first == dd_idx) {
3277 			EM_INC_TXDD_IDX(adapter->tx_dd_head);
3278 			if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3279 				adapter->tx_dd_head = 0;
3280 				adapter->tx_dd_tail = 0;
3281 				dd_idx = -1;
3282 			} else {
3283 				dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3284 			}
3285 		}
3286 
3287 		if (++first == adapter->num_tx_desc)
3288 			first = 0;
3289 	}
3290 	adapter->next_tx_to_clean = first;
3291 	adapter->num_tx_desc_avail = num_avail;
3292 
3293 	if (!EM_IS_OACTIVE(adapter)) {
3294 		ifq_clr_oactive(&ifp->if_snd);
3295 
3296 		/* All clean, turn off the timer */
3297 		if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3298 			ifp->if_timer = 0;
3299 	}
3300 	if (!gc || adapter->tx_nmbuf > 0)
3301 		adapter->tx_running = EM_TX_RUNNING;
3302 }
3303 
3304 /*
3305  * When Link is lost sometimes there is work still in the TX ring
3306  * which will result in a watchdog, rather than allow that do an
3307  * attempted cleanup and then reinit here.  Note that this has been
3308  * seens mostly with fiber adapters.
3309  */
3310 static void
3311 em_tx_purge(struct adapter *adapter)
3312 {
3313 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3314 
3315 	if (!adapter->link_active && ifp->if_timer) {
3316 		em_tx_collect(adapter, FALSE);
3317 		if (ifp->if_timer) {
3318 			if_printf(ifp, "Link lost, TX pending, reinit\n");
3319 			ifp->if_timer = 0;
3320 			em_init(adapter);
3321 		}
3322 	}
3323 }
3324 
3325 static int
3326 em_newbuf(struct adapter *adapter, int i, int init)
3327 {
3328 	struct mbuf *m;
3329 	bus_dma_segment_t seg;
3330 	bus_dmamap_t map;
3331 	struct em_buffer *rx_buffer;
3332 	int error, nseg;
3333 
3334 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
3335 	if (m == NULL) {
3336 		adapter->mbuf_cluster_failed++;
3337 		if (init) {
3338 			if_printf(&adapter->arpcom.ac_if,
3339 				  "Unable to allocate RX mbuf\n");
3340 		}
3341 		return (ENOBUFS);
3342 	}
3343 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3344 
3345 	if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3346 		m_adj(m, ETHER_ALIGN);
3347 
3348 	error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3349 			adapter->rx_sparemap, m,
3350 			&seg, 1, &nseg, BUS_DMA_NOWAIT);
3351 	if (error) {
3352 		m_freem(m);
3353 		if (init) {
3354 			if_printf(&adapter->arpcom.ac_if,
3355 				  "Unable to load RX mbuf\n");
3356 		}
3357 		return (error);
3358 	}
3359 
3360 	rx_buffer = &adapter->rx_buffer_area[i];
3361 	if (rx_buffer->m_head != NULL)
3362 		bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3363 
3364 	map = rx_buffer->map;
3365 	rx_buffer->map = adapter->rx_sparemap;
3366 	adapter->rx_sparemap = map;
3367 
3368 	rx_buffer->m_head = m;
3369 
3370 	adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3371 	return (0);
3372 }
3373 
3374 static int
3375 em_create_rx_ring(struct adapter *adapter)
3376 {
3377 	device_t dev = adapter->dev;
3378 	struct em_buffer *rx_buffer;
3379 	int i, error;
3380 
3381 	adapter->rx_buffer_area =
3382 		kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3383 			M_DEVBUF, M_WAITOK | M_ZERO);
3384 
3385 	/*
3386 	 * Create DMA tag for rx buffers
3387 	 */
3388 	error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3389 			1, 0,			/* alignment, bounds */
3390 			BUS_SPACE_MAXADDR,	/* lowaddr */
3391 			BUS_SPACE_MAXADDR,	/* highaddr */
3392 			NULL, NULL,		/* filter, filterarg */
3393 			MCLBYTES,		/* maxsize */
3394 			1,			/* nsegments */
3395 			MCLBYTES,		/* maxsegsize */
3396 			BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3397 			&adapter->rxtag);
3398 	if (error) {
3399 		device_printf(dev, "Unable to allocate RX DMA tag\n");
3400 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3401 		adapter->rx_buffer_area = NULL;
3402 		return error;
3403 	}
3404 
3405 	/*
3406 	 * Create spare DMA map for rx buffers
3407 	 */
3408 	error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3409 				  &adapter->rx_sparemap);
3410 	if (error) {
3411 		device_printf(dev, "Unable to create spare RX DMA map\n");
3412 		bus_dma_tag_destroy(adapter->rxtag);
3413 		kfree(adapter->rx_buffer_area, M_DEVBUF);
3414 		adapter->rx_buffer_area = NULL;
3415 		return error;
3416 	}
3417 
3418 	/*
3419 	 * Create DMA maps for rx buffers
3420 	 */
3421 	for (i = 0; i < adapter->num_rx_desc; i++) {
3422 		rx_buffer = &adapter->rx_buffer_area[i];
3423 
3424 		error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3425 					  &rx_buffer->map);
3426 		if (error) {
3427 			device_printf(dev, "Unable to create RX DMA map\n");
3428 			em_destroy_rx_ring(adapter, i);
3429 			return error;
3430 		}
3431 	}
3432 	return (0);
3433 }
3434 
3435 static int
3436 em_init_rx_ring(struct adapter *adapter)
3437 {
3438 	int i, error;
3439 
3440 	/* Reset descriptor ring */
3441 	bzero(adapter->rx_desc_base,
3442 	    (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3443 
3444 	/* Allocate new ones. */
3445 	for (i = 0; i < adapter->num_rx_desc; i++) {
3446 		error = em_newbuf(adapter, i, 1);
3447 		if (error)
3448 			return (error);
3449 	}
3450 
3451 	/* Setup our descriptor pointers */
3452 	adapter->next_rx_desc_to_check = 0;
3453 
3454 	return (0);
3455 }
3456 
3457 static void
3458 em_init_rx_unit(struct adapter *adapter)
3459 {
3460 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3461 	uint64_t bus_addr;
3462 	uint32_t rctl, rxcsum;
3463 
3464 	/*
3465 	 * Make sure receives are disabled while setting
3466 	 * up the descriptor ring
3467 	 */
3468 	rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3469 	/* Do not disable if ever enabled on this hardware */
3470 	if (adapter->hw.mac.type != e1000_82574 &&
3471 	    adapter->hw.mac.type != e1000_82583)
3472 		E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3473 
3474 	if (adapter->hw.mac.type >= e1000_82540) {
3475 		uint32_t itr;
3476 
3477 		/*
3478 		 * Set the interrupt throttling rate. Value is calculated
3479 		 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3480 		 */
3481 		if (adapter->int_throttle_ceil)
3482 			itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3483 		else
3484 			itr = 0;
3485 		em_set_itr(adapter, itr);
3486 	}
3487 
3488 	/* Disable accelerated ackknowledge */
3489 	if (adapter->hw.mac.type == e1000_82574) {
3490 		uint32_t rfctl;
3491 
3492 		rfctl = E1000_READ_REG(&adapter->hw, E1000_RFCTL);
3493 		rfctl |= E1000_RFCTL_ACK_DIS;
3494 		E1000_WRITE_REG(&adapter->hw, E1000_RFCTL, rfctl);
3495 	}
3496 
3497 	/* Receive Checksum Offload for IP and TCP/UDP */
3498 	rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3499 	if (ifp->if_capenable & IFCAP_RXCSUM)
3500 		rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3501 	else
3502 		rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3503 	E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3504 
3505 	/*
3506 	 * XXX TEMPORARY WORKAROUND: on some systems with 82573
3507 	 * long latencies are observed, like Lenovo X60. This
3508 	 * change eliminates the problem, but since having positive
3509 	 * values in RDTR is a known source of problems on other
3510 	 * platforms another solution is being sought.
3511 	 */
3512 	if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3513 		E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3514 		E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3515 	}
3516 
3517 	/*
3518 	 * Setup the Base and Length of the Rx Descriptor Ring
3519 	 */
3520 	bus_addr = adapter->rxdma.dma_paddr;
3521 	E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3522 	    adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3523 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3524 	    (uint32_t)(bus_addr >> 32));
3525 	E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3526 	    (uint32_t)bus_addr);
3527 
3528 	/*
3529 	 * Setup the HW Rx Head and Tail Descriptor Pointers
3530 	 */
3531 	E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3532 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3533 
3534 	/* Set PTHRESH for improved jumbo performance */
3535 	if (ifp->if_mtu > ETHERMTU) {
3536 		uint32_t rxdctl;
3537 
3538 		if (adapter->hw.mac.type == e1000_ich9lan ||
3539 		    adapter->hw.mac.type == e1000_pch2lan ||
3540 		    adapter->hw.mac.type == e1000_ich10lan) {
3541 			rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3542 			E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0),
3543 			    rxdctl | 3);
3544 		} else if (adapter->hw.mac.type == e1000_82574) {
3545 			rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3546                 	rxdctl |= 0x20;		/* PTHRESH */
3547                 	rxdctl |= 4 << 8;	/* HTHRESH */
3548                 	rxdctl |= 4 << 16;	/* WTHRESH */
3549 			rxdctl |= 1 << 24;	/* Switch to granularity */
3550 			E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl);
3551 		}
3552 	}
3553 
3554 	if (adapter->hw.mac.type >= e1000_pch2lan) {
3555 		if (ifp->if_mtu > ETHERMTU)
3556 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3557 		else
3558 			e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3559 	}
3560 
3561 	/* Setup the Receive Control Register */
3562 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3563 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3564 		E1000_RCTL_RDMTS_HALF |
3565 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3566 
3567 	/* Make sure VLAN Filters are off */
3568 	rctl &= ~E1000_RCTL_VFE;
3569 
3570 	if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3571 		rctl |= E1000_RCTL_SBP;
3572 	else
3573 		rctl &= ~E1000_RCTL_SBP;
3574 
3575 	switch (adapter->rx_buffer_len) {
3576 	default:
3577 	case 2048:
3578 		rctl |= E1000_RCTL_SZ_2048;
3579 		break;
3580 
3581 	case 4096:
3582 		rctl |= E1000_RCTL_SZ_4096 |
3583 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3584 		break;
3585 
3586 	case 8192:
3587 		rctl |= E1000_RCTL_SZ_8192 |
3588 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3589 		break;
3590 
3591 	case 16384:
3592 		rctl |= E1000_RCTL_SZ_16384 |
3593 		    E1000_RCTL_BSEX | E1000_RCTL_LPE;
3594 		break;
3595 	}
3596 
3597 	if (ifp->if_mtu > ETHERMTU)
3598 		rctl |= E1000_RCTL_LPE;
3599 	else
3600 		rctl &= ~E1000_RCTL_LPE;
3601 
3602 	/* Enable Receives */
3603 	E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3604 }
3605 
3606 static void
3607 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3608 {
3609 	struct em_buffer *rx_buffer;
3610 	int i;
3611 
3612 	if (adapter->rx_buffer_area == NULL)
3613 		return;
3614 
3615 	for (i = 0; i < ndesc; i++) {
3616 		rx_buffer = &adapter->rx_buffer_area[i];
3617 
3618 		KKASSERT(rx_buffer->m_head == NULL);
3619 		bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3620 	}
3621 	bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3622 	bus_dma_tag_destroy(adapter->rxtag);
3623 
3624 	kfree(adapter->rx_buffer_area, M_DEVBUF);
3625 	adapter->rx_buffer_area = NULL;
3626 }
3627 
3628 static void
3629 em_rxeof(struct adapter *adapter, int count)
3630 {
3631 	struct ifnet *ifp = &adapter->arpcom.ac_if;
3632 	uint8_t status, accept_frame = 0, eop = 0;
3633 	uint16_t len, desc_len, prev_len_adj;
3634 	struct e1000_rx_desc *current_desc;
3635 	struct mbuf *mp;
3636 	int i;
3637 
3638 	i = adapter->next_rx_desc_to_check;
3639 	current_desc = &adapter->rx_desc_base[i];
3640 
3641 	if (!(current_desc->status & E1000_RXD_STAT_DD))
3642 		return;
3643 
3644 	while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3645 		struct mbuf *m = NULL;
3646 
3647 		logif(pkt_receive);
3648 
3649 		mp = adapter->rx_buffer_area[i].m_head;
3650 
3651 		/*
3652 		 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3653 		 * needs to access the last received byte in the mbuf.
3654 		 */
3655 		bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3656 				BUS_DMASYNC_POSTREAD);
3657 
3658 		accept_frame = 1;
3659 		prev_len_adj = 0;
3660 		desc_len = le16toh(current_desc->length);
3661 		status = current_desc->status;
3662 		if (status & E1000_RXD_STAT_EOP) {
3663 			count--;
3664 			eop = 1;
3665 			if (desc_len < ETHER_CRC_LEN) {
3666 				len = 0;
3667 				prev_len_adj = ETHER_CRC_LEN - desc_len;
3668 			} else {
3669 				len = desc_len - ETHER_CRC_LEN;
3670 			}
3671 		} else {
3672 			eop = 0;
3673 			len = desc_len;
3674 		}
3675 
3676 		if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3677 			uint8_t	last_byte;
3678 			uint32_t pkt_len = desc_len;
3679 
3680 			if (adapter->fmp != NULL)
3681 				pkt_len += adapter->fmp->m_pkthdr.len;
3682 
3683 			last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3684 			if (TBI_ACCEPT(&adapter->hw, status,
3685 			    current_desc->errors, pkt_len, last_byte,
3686 			    adapter->min_frame_size,
3687 			    adapter->hw.mac.max_frame_size)) {
3688 				e1000_tbi_adjust_stats_82543(&adapter->hw,
3689 				    &adapter->stats, pkt_len,
3690 				    adapter->hw.mac.addr,
3691 				    adapter->hw.mac.max_frame_size);
3692 				if (len > 0)
3693 					len--;
3694 			} else {
3695 				accept_frame = 0;
3696 			}
3697 		}
3698 
3699 		if (accept_frame) {
3700 			if (em_newbuf(adapter, i, 0) != 0) {
3701 				IFNET_STAT_INC(ifp, iqdrops, 1);
3702 				goto discard;
3703 			}
3704 
3705 			/* Assign correct length to the current fragment */
3706 			mp->m_len = len;
3707 
3708 			if (adapter->fmp == NULL) {
3709 				mp->m_pkthdr.len = len;
3710 				adapter->fmp = mp; /* Store the first mbuf */
3711 				adapter->lmp = mp;
3712 			} else {
3713 				/*
3714 				 * Chain mbuf's together
3715 				 */
3716 
3717 				/*
3718 				 * Adjust length of previous mbuf in chain if
3719 				 * we received less than 4 bytes in the last
3720 				 * descriptor.
3721 				 */
3722 				if (prev_len_adj > 0) {
3723 					adapter->lmp->m_len -= prev_len_adj;
3724 					adapter->fmp->m_pkthdr.len -=
3725 					    prev_len_adj;
3726 				}
3727 				adapter->lmp->m_next = mp;
3728 				adapter->lmp = adapter->lmp->m_next;
3729 				adapter->fmp->m_pkthdr.len += len;
3730 			}
3731 
3732 			if (eop) {
3733 				adapter->fmp->m_pkthdr.rcvif = ifp;
3734 				IFNET_STAT_INC(ifp, ipackets, 1);
3735 
3736 				if (ifp->if_capenable & IFCAP_RXCSUM) {
3737 					em_rxcsum(adapter, current_desc,
3738 						  adapter->fmp);
3739 				}
3740 
3741 				if (status & E1000_RXD_STAT_VP) {
3742 					adapter->fmp->m_pkthdr.ether_vlantag =
3743 					    (le16toh(current_desc->special) &
3744 					    E1000_RXD_SPC_VLAN_MASK);
3745 					adapter->fmp->m_flags |= M_VLANTAG;
3746 				}
3747 				m = adapter->fmp;
3748 				adapter->fmp = NULL;
3749 				adapter->lmp = NULL;
3750 			}
3751 		} else {
3752 			IFNET_STAT_INC(ifp, ierrors, 1);
3753 discard:
3754 #ifdef foo
3755 			/* Reuse loaded DMA map and just update mbuf chain */
3756 			mp = adapter->rx_buffer_area[i].m_head;
3757 			mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3758 			mp->m_data = mp->m_ext.ext_buf;
3759 			mp->m_next = NULL;
3760 			if (adapter->hw.mac.max_frame_size <=
3761 			    (MCLBYTES - ETHER_ALIGN))
3762 				m_adj(mp, ETHER_ALIGN);
3763 #endif
3764 			if (adapter->fmp != NULL) {
3765 				m_freem(adapter->fmp);
3766 				adapter->fmp = NULL;
3767 				adapter->lmp = NULL;
3768 			}
3769 			m = NULL;
3770 		}
3771 
3772 		/* Zero out the receive descriptors status. */
3773 		current_desc->status = 0;
3774 
3775 		if (m != NULL)
3776 			ifp->if_input(ifp, m, NULL, -1);
3777 
3778 		/* Advance our pointers to the next descriptor. */
3779 		if (++i == adapter->num_rx_desc)
3780 			i = 0;
3781 		current_desc = &adapter->rx_desc_base[i];
3782 	}
3783 	adapter->next_rx_desc_to_check = i;
3784 
3785 	/* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3786 	if (--i < 0)
3787 		i = adapter->num_rx_desc - 1;
3788 	E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3789 }
3790 
3791 static void
3792 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3793 	  struct mbuf *mp)
3794 {
3795 	/* 82543 or newer only */
3796 	if (adapter->hw.mac.type < e1000_82543 ||
3797 	    /* Ignore Checksum bit is set */
3798 	    (rx_desc->status & E1000_RXD_STAT_IXSM))
3799 		return;
3800 
3801 	if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3802 	    !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3803 		/* IP Checksum Good */
3804 		mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3805 	}
3806 
3807 	if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3808 	    !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3809 		mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3810 					   CSUM_PSEUDO_HDR |
3811 					   CSUM_FRAG_NOT_CHECKED;
3812 		mp->m_pkthdr.csum_data = htons(0xffff);
3813 	}
3814 }
3815 
3816 static void
3817 em_enable_intr(struct adapter *adapter)
3818 {
3819 	uint32_t ims_mask = IMS_ENABLE_MASK;
3820 
3821 	lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3822 
3823 #if 0
3824 	/* XXX MSIX */
3825 	if (adapter->hw.mac.type == e1000_82574) {
3826 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3827 		ims_mask |= EM_MSIX_MASK;
3828         }
3829 #endif
3830 	E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3831 }
3832 
3833 static void
3834 em_disable_intr(struct adapter *adapter)
3835 {
3836 	uint32_t clear = 0xffffffff;
3837 
3838 	/*
3839 	 * The first version of 82542 had an errata where when link was forced
3840 	 * it would stay up even up even if the cable was disconnected.
3841 	 * Sequence errors were used to detect the disconnect and then the
3842 	 * driver would unforce the link.  This code in the in the ISR.  For
3843 	 * this to work correctly the Sequence error interrupt had to be
3844 	 * enabled all the time.
3845 	 */
3846 	if (adapter->hw.mac.type == e1000_82542 &&
3847 	    adapter->hw.revision_id == E1000_REVISION_2)
3848 		clear &= ~E1000_ICR_RXSEQ;
3849 	else if (adapter->hw.mac.type == e1000_82574)
3850 		E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3851 
3852 	E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3853 
3854 	adapter->npoll.ifpc_stcount = 0;
3855 
3856 	lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3857 }
3858 
3859 /*
3860  * Bit of a misnomer, what this really means is
3861  * to enable OS management of the system... aka
3862  * to disable special hardware management features
3863  */
3864 static void
3865 em_get_mgmt(struct adapter *adapter)
3866 {
3867 	/* A shared code workaround */
3868 #define E1000_82542_MANC2H E1000_MANC2H
3869 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3870 		int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3871 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3872 
3873 		/* disable hardware interception of ARP */
3874 		manc &= ~(E1000_MANC_ARP_EN);
3875 
3876                 /* enable receiving management packets to the host */
3877                 if (adapter->hw.mac.type >= e1000_82571) {
3878 			manc |= E1000_MANC_EN_MNG2HOST;
3879 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3880 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3881 			manc2h |= E1000_MNG2HOST_PORT_623;
3882 			manc2h |= E1000_MNG2HOST_PORT_664;
3883 			E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3884 		}
3885 
3886 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3887 	}
3888 }
3889 
3890 /*
3891  * Give control back to hardware management
3892  * controller if there is one.
3893  */
3894 static void
3895 em_rel_mgmt(struct adapter *adapter)
3896 {
3897 	if (adapter->flags & EM_FLAG_HAS_MGMT) {
3898 		int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3899 
3900 		/* re-enable hardware interception of ARP */
3901 		manc |= E1000_MANC_ARP_EN;
3902 
3903 		if (adapter->hw.mac.type >= e1000_82571)
3904 			manc &= ~E1000_MANC_EN_MNG2HOST;
3905 
3906 		E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3907 	}
3908 }
3909 
3910 /*
3911  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3912  * For ASF and Pass Through versions of f/w this means that
3913  * the driver is loaded.  For AMT version (only with 82573)
3914  * of the f/w this means that the network i/f is open.
3915  */
3916 static void
3917 em_get_hw_control(struct adapter *adapter)
3918 {
3919 	/* Let firmware know the driver has taken over */
3920 	if (adapter->hw.mac.type == e1000_82573) {
3921 		uint32_t swsm;
3922 
3923 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3924 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3925 		    swsm | E1000_SWSM_DRV_LOAD);
3926 	} else {
3927 		uint32_t ctrl_ext;
3928 
3929 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3930 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3931 		    ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3932 	}
3933 	adapter->flags |= EM_FLAG_HW_CTRL;
3934 }
3935 
3936 /*
3937  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3938  * For ASF and Pass Through versions of f/w this means that the
3939  * driver is no longer loaded.  For AMT version (only with 82573)
3940  * of the f/w this means that the network i/f is closed.
3941  */
3942 static void
3943 em_rel_hw_control(struct adapter *adapter)
3944 {
3945 	if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3946 		return;
3947 	adapter->flags &= ~EM_FLAG_HW_CTRL;
3948 
3949 	/* Let firmware taken over control of h/w */
3950 	if (adapter->hw.mac.type == e1000_82573) {
3951 		uint32_t swsm;
3952 
3953 		swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3954 		E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3955 		    swsm & ~E1000_SWSM_DRV_LOAD);
3956 	} else {
3957 		uint32_t ctrl_ext;
3958 
3959 		ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3960 		E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3961 		    ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3962 	}
3963 }
3964 
3965 static int
3966 em_is_valid_eaddr(const uint8_t *addr)
3967 {
3968 	char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3969 
3970 	if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3971 		return (FALSE);
3972 
3973 	return (TRUE);
3974 }
3975 
3976 /*
3977  * Enable PCI Wake On Lan capability
3978  */
3979 static void
3980 em_enable_wol(device_t dev)
3981 {
3982 	uint16_t cap, status;
3983 	uint8_t id;
3984 
3985 	/* First find the capabilities pointer*/
3986 	cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3987 
3988 	/* Read the PM Capabilities */
3989 	id = pci_read_config(dev, cap, 1);
3990 	if (id != PCIY_PMG)     /* Something wrong */
3991 		return;
3992 
3993 	/*
3994 	 * OK, we have the power capabilities,
3995 	 * so now get the status register
3996 	 */
3997 	cap += PCIR_POWER_STATUS;
3998 	status = pci_read_config(dev, cap, 2);
3999 	status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4000 	pci_write_config(dev, cap, status, 2);
4001 }
4002 
4003 
4004 /*
4005  * 82544 Coexistence issue workaround.
4006  *    There are 2 issues.
4007  *       1. Transmit Hang issue.
4008  *    To detect this issue, following equation can be used...
4009  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
4010  *	  If SUM[3:0] is in between 1 to 4, we will have this issue.
4011  *
4012  *       2. DAC issue.
4013  *    To detect this issue, following equation can be used...
4014  *	  SIZE[3:0] + ADDR[2:0] = SUM[3:0].
4015  *	  If SUM[3:0] is in between 9 to c, we will have this issue.
4016  *
4017  *    WORKAROUND:
4018  *	  Make sure we do not have ending address
4019  *	  as 1,2,3,4(Hang) or 9,a,b,c (DAC)
4020  */
4021 static uint32_t
4022 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
4023 {
4024 	uint32_t safe_terminator;
4025 
4026 	/*
4027 	 * Since issue is sensitive to length and address.
4028 	 * Let us first check the address...
4029 	 */
4030 	if (length <= 4) {
4031 		desc_array->descriptor[0].address = address;
4032 		desc_array->descriptor[0].length = length;
4033 		desc_array->elements = 1;
4034 		return (desc_array->elements);
4035 	}
4036 
4037 	safe_terminator =
4038 	(uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
4039 
4040 	/* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
4041 	if (safe_terminator == 0 ||
4042 	    (safe_terminator > 4 && safe_terminator < 9) ||
4043 	    (safe_terminator > 0xC && safe_terminator <= 0xF)) {
4044 		desc_array->descriptor[0].address = address;
4045 		desc_array->descriptor[0].length = length;
4046 		desc_array->elements = 1;
4047 		return (desc_array->elements);
4048 	}
4049 
4050 	desc_array->descriptor[0].address = address;
4051 	desc_array->descriptor[0].length = length - 4;
4052 	desc_array->descriptor[1].address = address + (length - 4);
4053 	desc_array->descriptor[1].length = 4;
4054 	desc_array->elements = 2;
4055 	return (desc_array->elements);
4056 }
4057 
4058 static void
4059 em_update_stats(struct adapter *adapter)
4060 {
4061 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4062 
4063 	if (adapter->hw.phy.media_type == e1000_media_type_copper ||
4064 	    (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4065 		adapter->stats.symerrs +=
4066 			E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
4067 		adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
4068 	}
4069 	adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
4070 	adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
4071 	adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
4072 	adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
4073 
4074 	adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
4075 	adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
4076 	adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
4077 	adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
4078 	adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
4079 	adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
4080 	adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
4081 	adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
4082 	adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
4083 	adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
4084 	adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
4085 	adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
4086 	adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
4087 	adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
4088 	adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
4089 	adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
4090 	adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
4091 	adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
4092 	adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
4093 	adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
4094 
4095 	/* For the 64-bit byte counters the low dword must be read first. */
4096 	/* Both registers clear on the read of the high dword */
4097 
4098 	adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
4099 	adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
4100 
4101 	adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
4102 	adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
4103 	adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
4104 	adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
4105 	adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
4106 
4107 	adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
4108 	adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
4109 
4110 	adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
4111 	adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
4112 	adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
4113 	adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
4114 	adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
4115 	adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
4116 	adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
4117 	adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
4118 	adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
4119 	adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
4120 
4121 	if (adapter->hw.mac.type >= e1000_82543) {
4122 		adapter->stats.algnerrc +=
4123 		E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
4124 		adapter->stats.rxerrc +=
4125 		E1000_READ_REG(&adapter->hw, E1000_RXERRC);
4126 		adapter->stats.tncrs +=
4127 		E1000_READ_REG(&adapter->hw, E1000_TNCRS);
4128 		adapter->stats.cexterr +=
4129 		E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
4130 		adapter->stats.tsctc +=
4131 		E1000_READ_REG(&adapter->hw, E1000_TSCTC);
4132 		adapter->stats.tsctfc +=
4133 		E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
4134 	}
4135 
4136 	IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
4137 
4138 	/* Rx Errors */
4139 	IFNET_STAT_SET(ifp, ierrors,
4140 	    adapter->dropped_pkts + adapter->stats.rxerrc +
4141 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4142 	    adapter->stats.ruc + adapter->stats.roc +
4143 	    adapter->stats.mpc + adapter->stats.cexterr);
4144 
4145 	/* Tx Errors */
4146 	IFNET_STAT_SET(ifp, oerrors,
4147 	    adapter->stats.ecol + adapter->stats.latecol +
4148 	    adapter->watchdog_events);
4149 }
4150 
4151 static void
4152 em_print_debug_info(struct adapter *adapter)
4153 {
4154 	device_t dev = adapter->dev;
4155 	uint8_t *hw_addr = adapter->hw.hw_addr;
4156 
4157 	device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
4158 	device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
4159 	    E1000_READ_REG(&adapter->hw, E1000_CTRL),
4160 	    E1000_READ_REG(&adapter->hw, E1000_RCTL));
4161 	device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
4162 	    ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
4163 	    (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
4164 	device_printf(dev, "Flow control watermarks high = %d low = %d\n",
4165 	    adapter->hw.fc.high_water,
4166 	    adapter->hw.fc.low_water);
4167 	device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
4168 	    E1000_READ_REG(&adapter->hw, E1000_TIDV),
4169 	    E1000_READ_REG(&adapter->hw, E1000_TADV));
4170 	device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
4171 	    E1000_READ_REG(&adapter->hw, E1000_RDTR),
4172 	    E1000_READ_REG(&adapter->hw, E1000_RADV));
4173 	device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
4174 	    (long long)adapter->tx_fifo_wrk_cnt,
4175 	    (long long)adapter->tx_fifo_reset_cnt);
4176 	device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
4177 	    E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
4178 	    E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
4179 	device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
4180 	    E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
4181 	    E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
4182 	device_printf(dev, "Num Tx descriptors avail = %d\n",
4183 	    adapter->num_tx_desc_avail);
4184 	device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
4185 	    adapter->no_tx_desc_avail1);
4186 	device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
4187 	    adapter->no_tx_desc_avail2);
4188 	device_printf(dev, "Std mbuf failed = %ld\n",
4189 	    adapter->mbuf_alloc_failed);
4190 	device_printf(dev, "Std mbuf cluster failed = %ld\n",
4191 	    adapter->mbuf_cluster_failed);
4192 	device_printf(dev, "Driver dropped packets = %ld\n",
4193 	    adapter->dropped_pkts);
4194 	device_printf(dev, "Driver tx dma failure in encap = %ld\n",
4195 	    adapter->no_tx_dma_setup);
4196 }
4197 
4198 static void
4199 em_print_hw_stats(struct adapter *adapter)
4200 {
4201 	device_t dev = adapter->dev;
4202 
4203 	device_printf(dev, "Excessive collisions = %lld\n",
4204 	    (long long)adapter->stats.ecol);
4205 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
4206 	device_printf(dev, "Symbol errors = %lld\n",
4207 	    (long long)adapter->stats.symerrs);
4208 #endif
4209 	device_printf(dev, "Sequence errors = %lld\n",
4210 	    (long long)adapter->stats.sec);
4211 	device_printf(dev, "Defer count = %lld\n",
4212 	    (long long)adapter->stats.dc);
4213 	device_printf(dev, "Missed Packets = %lld\n",
4214 	    (long long)adapter->stats.mpc);
4215 	device_printf(dev, "Receive No Buffers = %lld\n",
4216 	    (long long)adapter->stats.rnbc);
4217 	/* RLEC is inaccurate on some hardware, calculate our own. */
4218 	device_printf(dev, "Receive Length Errors = %lld\n",
4219 	    ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
4220 	device_printf(dev, "Receive errors = %lld\n",
4221 	    (long long)adapter->stats.rxerrc);
4222 	device_printf(dev, "Crc errors = %lld\n",
4223 	    (long long)adapter->stats.crcerrs);
4224 	device_printf(dev, "Alignment errors = %lld\n",
4225 	    (long long)adapter->stats.algnerrc);
4226 	device_printf(dev, "Collision/Carrier extension errors = %lld\n",
4227 	    (long long)adapter->stats.cexterr);
4228 	device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
4229 	device_printf(dev, "watchdog timeouts = %ld\n",
4230 	    adapter->watchdog_events);
4231 	device_printf(dev, "XON Rcvd = %lld\n",
4232 	    (long long)adapter->stats.xonrxc);
4233 	device_printf(dev, "XON Xmtd = %lld\n",
4234 	    (long long)adapter->stats.xontxc);
4235 	device_printf(dev, "XOFF Rcvd = %lld\n",
4236 	    (long long)adapter->stats.xoffrxc);
4237 	device_printf(dev, "XOFF Xmtd = %lld\n",
4238 	    (long long)adapter->stats.xofftxc);
4239 	device_printf(dev, "Good Packets Rcvd = %lld\n",
4240 	    (long long)adapter->stats.gprc);
4241 	device_printf(dev, "Good Packets Xmtd = %lld\n",
4242 	    (long long)adapter->stats.gptc);
4243 }
4244 
4245 static void
4246 em_print_nvm_info(struct adapter *adapter)
4247 {
4248 	uint16_t eeprom_data;
4249 	int i, j, row = 0;
4250 
4251 	/* Its a bit crude, but it gets the job done */
4252 	kprintf("\nInterface EEPROM Dump:\n");
4253 	kprintf("Offset\n0x0000  ");
4254 	for (i = 0, j = 0; i < 32; i++, j++) {
4255 		if (j == 8) { /* Make the offset block */
4256 			j = 0; ++row;
4257 			kprintf("\n0x00%x0  ",row);
4258 		}
4259 		e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
4260 		kprintf("%04x ", eeprom_data);
4261 	}
4262 	kprintf("\n");
4263 }
4264 
4265 static int
4266 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4267 {
4268 	struct adapter *adapter;
4269 	struct ifnet *ifp;
4270 	int error, result;
4271 
4272 	result = -1;
4273 	error = sysctl_handle_int(oidp, &result, 0, req);
4274 	if (error || !req->newptr)
4275 		return (error);
4276 
4277 	adapter = (struct adapter *)arg1;
4278 	ifp = &adapter->arpcom.ac_if;
4279 
4280 	lwkt_serialize_enter(ifp->if_serializer);
4281 
4282 	if (result == 1)
4283 		em_print_debug_info(adapter);
4284 
4285 	/*
4286 	 * This value will cause a hex dump of the
4287 	 * first 32 16-bit words of the EEPROM to
4288 	 * the screen.
4289 	 */
4290 	if (result == 2)
4291 		em_print_nvm_info(adapter);
4292 
4293 	lwkt_serialize_exit(ifp->if_serializer);
4294 
4295 	return (error);
4296 }
4297 
4298 static int
4299 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4300 {
4301 	int error, result;
4302 
4303 	result = -1;
4304 	error = sysctl_handle_int(oidp, &result, 0, req);
4305 	if (error || !req->newptr)
4306 		return (error);
4307 
4308 	if (result == 1) {
4309 		struct adapter *adapter = (struct adapter *)arg1;
4310 		struct ifnet *ifp = &adapter->arpcom.ac_if;
4311 
4312 		lwkt_serialize_enter(ifp->if_serializer);
4313 		em_print_hw_stats(adapter);
4314 		lwkt_serialize_exit(ifp->if_serializer);
4315 	}
4316 	return (error);
4317 }
4318 
4319 static void
4320 em_add_sysctl(struct adapter *adapter)
4321 {
4322 	struct sysctl_ctx_list *ctx;
4323 	struct sysctl_oid *tree;
4324 
4325 	ctx = device_get_sysctl_ctx(adapter->dev);
4326 	tree = device_get_sysctl_tree(adapter->dev);
4327 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4328 	    OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4329 	    em_sysctl_debug_info, "I", "Debug Information");
4330 
4331 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4332 	    OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4333 	    em_sysctl_stats, "I", "Statistics");
4334 
4335 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4336 	    OID_AUTO, "rxd", CTLFLAG_RD,
4337 	    &adapter->num_rx_desc, 0, NULL);
4338 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4339 	    OID_AUTO, "txd", CTLFLAG_RD,
4340 	    &adapter->num_tx_desc, 0, NULL);
4341 
4342 	if (adapter->hw.mac.type >= e1000_82540) {
4343 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4344 		    OID_AUTO, "int_throttle_ceil",
4345 		    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4346 		    em_sysctl_int_throttle, "I",
4347 		    "interrupt throttling rate");
4348 	}
4349 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
4350 	    OID_AUTO, "int_tx_nsegs",
4351 	    CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4352 	    em_sysctl_int_tx_nsegs, "I",
4353 	    "# segments per TX interrupt");
4354 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
4355 	    OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4356 	    &adapter->tx_wreg_nsegs, 0,
4357 	    "# segments before write to hardware register");
4358 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_nmbuf",
4359 	    CTLFLAG_RD, &adapter->tx_nmbuf, 0, "# of pending TX mbufs");
4360 	SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "tx_gc",
4361 	    CTLFLAG_RW, &adapter->tx_gc, "# of TX GC");
4362 }
4363 
4364 static int
4365 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4366 {
4367 	struct adapter *adapter = (void *)arg1;
4368 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4369 	int error, throttle;
4370 
4371 	throttle = adapter->int_throttle_ceil;
4372 	error = sysctl_handle_int(oidp, &throttle, 0, req);
4373 	if (error || req->newptr == NULL)
4374 		return error;
4375 	if (throttle < 0 || throttle > 1000000000 / 256)
4376 		return EINVAL;
4377 
4378 	if (throttle) {
4379 		/*
4380 		 * Set the interrupt throttling rate in 256ns increments,
4381 		 * recalculate sysctl value assignment to get exact frequency.
4382 		 */
4383 		throttle = 1000000000 / 256 / throttle;
4384 
4385 		/* Upper 16bits of ITR is reserved and should be zero */
4386 		if (throttle & 0xffff0000)
4387 			return EINVAL;
4388 	}
4389 
4390 	lwkt_serialize_enter(ifp->if_serializer);
4391 
4392 	if (throttle)
4393 		adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4394 	else
4395 		adapter->int_throttle_ceil = 0;
4396 
4397 	if (ifp->if_flags & IFF_RUNNING)
4398 		em_set_itr(adapter, throttle);
4399 
4400 	lwkt_serialize_exit(ifp->if_serializer);
4401 
4402 	if (bootverbose) {
4403 		if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4404 			  adapter->int_throttle_ceil);
4405 	}
4406 	return 0;
4407 }
4408 
4409 static int
4410 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4411 {
4412 	struct adapter *adapter = (void *)arg1;
4413 	struct ifnet *ifp = &adapter->arpcom.ac_if;
4414 	int error, segs;
4415 
4416 	segs = adapter->tx_int_nsegs;
4417 	error = sysctl_handle_int(oidp, &segs, 0, req);
4418 	if (error || req->newptr == NULL)
4419 		return error;
4420 	if (segs <= 0)
4421 		return EINVAL;
4422 
4423 	lwkt_serialize_enter(ifp->if_serializer);
4424 
4425 	/*
4426 	 * Don't allow int_tx_nsegs to become:
4427 	 * o  Less the oact_tx_desc
4428 	 * o  Too large that no TX desc will cause TX interrupt to
4429 	 *    be generated (OACTIVE will never recover)
4430 	 * o  Too small that will cause tx_dd[] overflow
4431 	 */
4432 	if (segs < adapter->oact_tx_desc ||
4433 	    segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4434 	    segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4435 		error = EINVAL;
4436 	} else {
4437 		error = 0;
4438 		adapter->tx_int_nsegs = segs;
4439 	}
4440 
4441 	lwkt_serialize_exit(ifp->if_serializer);
4442 
4443 	return error;
4444 }
4445 
4446 static void
4447 em_set_itr(struct adapter *adapter, uint32_t itr)
4448 {
4449 	E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4450 	if (adapter->hw.mac.type == e1000_82574) {
4451 		int i;
4452 
4453 		/*
4454 		 * When using MSIX interrupts we need to
4455 		 * throttle using the EITR register
4456 		 */
4457 		for (i = 0; i < 4; ++i) {
4458 			E1000_WRITE_REG(&adapter->hw,
4459 			    E1000_EITR_82574(i), itr);
4460 		}
4461 	}
4462 }
4463 
4464 static void
4465 em_disable_aspm(struct adapter *adapter)
4466 {
4467 	uint16_t link_cap, link_ctrl, disable;
4468 	uint8_t pcie_ptr, reg;
4469 	device_t dev = adapter->dev;
4470 
4471 	switch (adapter->hw.mac.type) {
4472 	case e1000_82571:
4473 	case e1000_82572:
4474 	case e1000_82573:
4475 		/*
4476 		 * 82573 specification update
4477 		 * errata #8 disable L0s
4478 		 * errata #41 disable L1
4479 		 *
4480 		 * 82571/82572 specification update
4481 		 # errata #13 disable L1
4482 		 * errata #68 disable L0s
4483 		 */
4484 		disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4485 		break;
4486 
4487 	case e1000_82574:
4488 	case e1000_82583:
4489 		/*
4490 		 * 82574 specification update errata #20
4491 		 * 82583 specification update errata #9
4492 		 *
4493 		 * There is no need to disable L1
4494 		 */
4495 		disable = PCIEM_LNKCTL_ASPM_L0S;
4496 		break;
4497 
4498 	default:
4499 		return;
4500 	}
4501 
4502 	pcie_ptr = pci_get_pciecap_ptr(dev);
4503 	if (pcie_ptr == 0)
4504 		return;
4505 
4506 	link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4507 	if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4508 		return;
4509 
4510 	if (bootverbose) {
4511 		if_printf(&adapter->arpcom.ac_if,
4512 		    "disable ASPM %#02x\n", disable);
4513 	}
4514 
4515 	reg = pcie_ptr + PCIER_LINKCTRL;
4516 	link_ctrl = pci_read_config(dev, reg, 2);
4517 	link_ctrl &= ~disable;
4518 	pci_write_config(dev, reg, link_ctrl, 2);
4519 }
4520 
4521 static int
4522 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4523 {
4524 	int iphlen, hoff, thoff, ex = 0;
4525 	struct mbuf *m;
4526 	struct ip *ip;
4527 
4528 	m = *mp;
4529 	KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4530 
4531 	iphlen = m->m_pkthdr.csum_iphlen;
4532 	thoff = m->m_pkthdr.csum_thlen;
4533 	hoff = m->m_pkthdr.csum_lhlen;
4534 
4535 	KASSERT(iphlen > 0, ("invalid ip hlen"));
4536 	KASSERT(thoff > 0, ("invalid tcp hlen"));
4537 	KASSERT(hoff > 0, ("invalid ether hlen"));
4538 
4539 	if (adapter->flags & EM_FLAG_TSO_PULLEX)
4540 		ex = 4;
4541 
4542 	if (m->m_len < hoff + iphlen + thoff + ex) {
4543 		m = m_pullup(m, hoff + iphlen + thoff + ex);
4544 		if (m == NULL) {
4545 			*mp = NULL;
4546 			return ENOBUFS;
4547 		}
4548 		*mp = m;
4549 	}
4550 	ip = mtodoff(m, struct ip *, hoff);
4551 	ip->ip_len = 0;
4552 
4553 	return 0;
4554 }
4555 
4556 static int
4557 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4558     uint32_t *txd_upper, uint32_t *txd_lower)
4559 {
4560 	struct e1000_context_desc *TXD;
4561 	int hoff, iphlen, thoff, hlen;
4562 	int mss, pktlen, curr_txd;
4563 
4564 	iphlen = mp->m_pkthdr.csum_iphlen;
4565 	thoff = mp->m_pkthdr.csum_thlen;
4566 	hoff = mp->m_pkthdr.csum_lhlen;
4567 	mss = mp->m_pkthdr.tso_segsz;
4568 	pktlen = mp->m_pkthdr.len;
4569 
4570 	if (adapter->csum_flags == CSUM_TSO &&
4571 	    adapter->csum_iphlen == iphlen &&
4572 	    adapter->csum_lhlen == hoff &&
4573 	    adapter->csum_thlen == thoff &&
4574 	    adapter->csum_mss == mss &&
4575 	    adapter->csum_pktlen == pktlen) {
4576 		*txd_upper = adapter->csum_txd_upper;
4577 		*txd_lower = adapter->csum_txd_lower;
4578 		return 0;
4579 	}
4580 	hlen = hoff + iphlen + thoff;
4581 
4582 	/*
4583 	 * Setup a new TSO context.
4584 	 */
4585 
4586 	curr_txd = adapter->next_avail_tx_desc;
4587 	TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4588 
4589 	*txd_lower = E1000_TXD_CMD_DEXT |	/* Extended descr type */
4590 		     E1000_TXD_DTYP_D |		/* Data descr type */
4591 		     E1000_TXD_CMD_TSE;		/* Do TSE on this packet */
4592 
4593 	/* IP and/or TCP header checksum calculation and insertion. */
4594 	*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4595 
4596 	/*
4597 	 * Start offset for header checksum calculation.
4598 	 * End offset for header checksum calculation.
4599 	 * Offset of place put the checksum.
4600 	 */
4601 	TXD->lower_setup.ip_fields.ipcss = hoff;
4602 	TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4603 	TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4604 
4605 	/*
4606 	 * Start offset for payload checksum calculation.
4607 	 * End offset for payload checksum calculation.
4608 	 * Offset of place to put the checksum.
4609 	 */
4610 	TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4611 	TXD->upper_setup.tcp_fields.tucse = 0;
4612 	TXD->upper_setup.tcp_fields.tucso =
4613 	    hoff + iphlen + offsetof(struct tcphdr, th_sum);
4614 
4615 	/*
4616 	 * Payload size per packet w/o any headers.
4617 	 * Length of all headers up to payload.
4618 	 */
4619 	TXD->tcp_seg_setup.fields.mss = htole16(mss);
4620 	TXD->tcp_seg_setup.fields.hdr_len = hlen;
4621 	TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4622 				E1000_TXD_CMD_DEXT |	/* Extended descr */
4623 				E1000_TXD_CMD_TSE |	/* TSE context */
4624 				E1000_TXD_CMD_IP |	/* Do IP csum */
4625 				E1000_TXD_CMD_TCP |	/* Do TCP checksum */
4626 				(pktlen - hlen));	/* Total len */
4627 
4628 	/* Save the information for this TSO context */
4629 	adapter->csum_flags = CSUM_TSO;
4630 	adapter->csum_lhlen = hoff;
4631 	adapter->csum_iphlen = iphlen;
4632 	adapter->csum_thlen = thoff;
4633 	adapter->csum_mss = mss;
4634 	adapter->csum_pktlen = pktlen;
4635 	adapter->csum_txd_upper = *txd_upper;
4636 	adapter->csum_txd_lower = *txd_lower;
4637 
4638 	if (++curr_txd == adapter->num_tx_desc)
4639 		curr_txd = 0;
4640 
4641 	KKASSERT(adapter->num_tx_desc_avail > 0);
4642 	adapter->num_tx_desc_avail--;
4643 
4644 	adapter->next_avail_tx_desc = curr_txd;
4645 	return 1;
4646 }
4647 
4648 /*
4649  * Remove all descriptors from the TX ring.
4650  *
4651  * We want to clear all pending descriptors from the TX ring.  Zeroing
4652  * happens when the HW reads the regs.  We assign the ring itself as
4653  * the data of the next descriptor.  We don't care about the data we
4654  * are about to reset the HW.
4655  */
4656 static void
4657 em_flush_tx_ring(struct adapter *adapter)
4658 {
4659 	struct e1000_hw *hw = &adapter->hw;
4660 	struct e1000_tx_desc *txd;
4661 	uint32_t tctl;
4662 
4663 	tctl = E1000_READ_REG(hw, E1000_TCTL);
4664 	E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
4665 
4666 	txd = &adapter->tx_desc_base[adapter->next_avail_tx_desc++];
4667 	if (adapter->next_avail_tx_desc == adapter->num_tx_desc)
4668 		adapter->next_avail_tx_desc = 0;
4669 
4670 	/* Just use the ring as a dummy buffer addr */
4671 	txd->buffer_addr = adapter->txdma.dma_paddr;
4672 	txd->lower.data = htole32(E1000_TXD_CMD_IFCS | 512);
4673 	txd->upper.data = 0;
4674 
4675 	E1000_WRITE_REG(hw, E1000_TDT(0), adapter->next_avail_tx_desc);
4676 	usec_delay(250);
4677 }
4678 
4679 /*
4680  * Remove all descriptors from the RX ring.
4681  *
4682  * Mark all descriptors in the RX ring as consumed and disable the RX ring.
4683  */
4684 static void
4685 em_flush_rx_ring(struct adapter *adapter)
4686 {
4687 	struct e1000_hw	*hw = &adapter->hw;
4688 	uint32_t rctl, rxdctl;
4689 
4690 	rctl = E1000_READ_REG(hw, E1000_RCTL);
4691 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4692 	E1000_WRITE_FLUSH(hw);
4693 	usec_delay(150);
4694 
4695 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
4696 	/* Zero the lower 14 bits (prefetch and host thresholds) */
4697 	rxdctl &= 0xffffc000;
4698 	/*
4699 	 * Update thresholds: prefetch threshold to 31, host threshold to 1
4700 	 * and make sure the granularity is "descriptors" and not "cache
4701 	 * lines".
4702 	 */
4703 	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
4704 	E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
4705 
4706 	/* Momentarily enable the RX ring for the changes to take effect */
4707 	E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
4708 	E1000_WRITE_FLUSH(hw);
4709 	usec_delay(150);
4710 	E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
4711 }
4712 
4713 /*
4714  * Remove all descriptors from the descriptor rings.
4715  *
4716  * In i219, the descriptor rings must be emptied before resetting the HW
4717  * or before changing the device state to D3 during runtime (runtime PM).
4718  *
4719  * Failure to do this will cause the HW to enter a unit hang state which
4720  * can only be released by PCI reset on the device.
4721  */
4722 static void
4723 em_flush_txrx_ring(struct adapter *adapter)
4724 {
4725 	struct e1000_hw *hw = &adapter->hw;
4726 	device_t dev = adapter->dev;
4727 	uint16_t hang_state;
4728 	uint32_t fext_nvm11;
4729 
4730 	/*
4731 	 * First, disable MULR fix in FEXTNVM11.
4732 	 */
4733 	fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
4734 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
4735 	E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
4736 
4737 	/*
4738 	 * Do nothing if we're not in faulty state, or if the queue is
4739 	 * empty.
4740 	 */
4741 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
4742 	if ((hang_state & FLUSH_DESC_REQUIRED) &&
4743 	    E1000_READ_REG(hw, E1000_TDLEN(0)))
4744 		em_flush_tx_ring(adapter);
4745 
4746 	/*
4747 	 * Recheck, maybe the fault is caused by the RX ring.
4748 	 */
4749 	hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
4750 	if (hang_state & FLUSH_DESC_REQUIRED)
4751 		em_flush_rx_ring(adapter);
4752 }
4753